
Population Dynamics in a stochastic environment

Author:
Anderson, Chad

Publication Date:
2017

DOI:
https://doi.org/10.26190/unsworks/20149

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/59051 in https://
unsworks.unsw.edu.au on 2024-04-27

http://dx.doi.org/https://doi.org/10.26190/unsworks/20149
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/59051
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


SCIENTIA

MANU E T MENTE

POPULATION DYNAMICS IN A
STOCHASTIC ENVIRONMENT

A thesis submitted for the degree of
Master of Philosophy

by

Chad Anderson

Applied and Industrial Mathematics Research Group,
School of Physical, Environmental and Mathematical Sciences,

The University of New South Wales,
Australian Defence Force Academy.

March 2017



Abstract

When modelling population dynamics within an ecosystem, there are many factors
that need to be considered, these include; birth and death rates, intra-species compe-
tition, migration, resources available, environmental conditions and predation. With
so many aspects that need to be considered, many of which are constantly changing,
population models quickly become very complicated. Often, in an attempt to reduce
complexity, many of these factors are either ignored or overly simplified.

One of the most fundamental approaches to population modelling, based on the
logistic differential equation, bundles many of these factors as demographic (the
intrinsic growth rate) and environmental (through the carrying capacity). Current
models treat both the demographic and environmental factors as constants. Whilst
this simplifies the modelling process, it is well known that both demographic and
environmental factors change with time, which in turn affects the population dy-
namics.

Of particular importance are environmental fluctuations. Recent attempts to model
environmental fluctuations as time-dependent variables have demonstrated an in-
creased complexity in population dynamics. However, environmental fluctuations
cannot completely be characterised by time-dependent functions alone, the environ-
ment is also subjected to random and unpredictable perturbations and should be
modelled accordingly.

This thesis is an investigation into population dynamics that are the result of random
environmental fluctuations. Here, the carrying capacity (the maximum population
an environment can sustain) is treated as a proxy for the state of the environment.
The environment is allowed to vary according to a Wiener and as an Ornstein-
Uhlenbeck process with an appropriate absorbing boundary condition ensuring that
the carrying capacity must remain positive for the population to remain viable. For
both processes, the exact probability density function for the carrying capacity is
found.

The statistical properties of the carrying capacity and the population are analysed
using the Monte Carlo method giving: the expected time evolution of the population
and its variance, the probability distribution of the population and the mean-time
to extinction.

Finally, future developments are discussed that include, among others, the effects
of environmental stochasticity on the strength of the interaction between competing
populations.
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Chapter 1

A survey of population models

The concepts of ecological modelling and carrying capacity is introduced, and some

common models and recent developments are reviewed. Continuous time stochastic

population models and the motivation for using them is presented.

Purpose of ecological modelling

Ecological modelling has a wide variety of applications, and it is an important

tool in environmental and resource management. It may be used to assess the

survival or possible extinction of a species or ecosystem by evaluating the potential

impact of changes to the environment. For example, chemical exposure from the

use of pesticides or fertilisers in the environment, either by direct application in

an ecosystem or due to drift, run-off or spillage, has significant ramifications for

an ecosystem and its biodiversity. Other possible sources of chemical exposure are

industrial operations and oil spills in the ocean. Such exposure may have a negative

impact on a species’ habitat, possibly threatening the survival of the species.

Invasive species, of both flora and fauna, are other well-known factors that can

change an environment and provide competition for resources with endemic species.

A similar situation may also occur in agriculture, where native animals may be

considered pests because they compete with stock for feed. The introduction of

disease into an environment may also have negative impacts on the survival of a given

species. A well-known example of this is the Tasmanian devil facial tumor disease,

which is a transmittable cancer that has caused the species to become endangered

after a significant decline in the wild population. Another source of change in the

environment that impacts both the survival and distribution of species is climate

change, with research on its potential impacts having increased significantly in recent

years [2].

Ecological modelling has provided insight into the potential impact changes in the

environment have on the survival of a given species. It aids the policy development to
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best manage changes as they occur, providing predictions in ecosystem dynamics and

guidance in assessing the significance of changes. Plans may be developed to respond

to changes and minimise their impact based on mathematical models, or steps may

be taken to mitigate the likelihood of significant changes in the environment.

Models with constant carrying capacity

The concept of carrying capacity was observed by the English scholar, Malthus [3], as

the “strong law of necessity acting as a check upon the greater power” of population

increase. This is simply illustrated in nature, where plants and animals are driven

by instinct to breed to ensure perpetuation of the species, but in which growth is

kept in check by limited resources. In general, carrying capacity is considered to be

the maximum population an environment can sustain. In ecology, it is regarded as

a proxy for the state of the environment, often related to the availability of food,

water, space or other resources, or to the impact of pollutants having a detrimental

effect on the environment [4].

The Logistic model

Carrying capacity was first incorporated into a mathematical model by the Belgian

mathematician, Verhulst [5], as a limit on exponential population growth. This

renders the classic logistic equation [6]

dNt

dt
= rNt

󰀠
1− Nt

K0

󰀡
, N(0) = N0, (1.1)

where N(t) ≡ Nt is the population of a given species at time t, r is the intrinsic

growth rate and K0 is the constant carrying capacity. N0 is the population at time

t = 0. The exponential growth of the population, given by rN , is limited by intra-

species competition for resources described by the term −rN2/K0. The ratio r/K0

is also referred to as the crowding coefficient.

Equation (1.1) is autonomous, since r and K0 are constants, and the solution may

be obtained using either separation of variables or Bernoulli’s method to give

Nt =
N0K0

N0(1− e−rt) +K0e−rt
. (1.2)

Figure (1.1) shows solutions of equation (1.1) for various initial conditions N0 and

growth rates r. It is clear that all solutions converge monotonically to the carrying
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capacity K0. For very small values of N0, the population increases slowly at first,

until it reaches a point of inflection at Nt = K0/2, where the rate of increase is at

its greatest. It then slows as the population asymptotically approaches the carrying

capacity from below. For values of N0 greater than K0/2 but less than K0, the rate

of increase of the population is gradual as it approaches the carrying capacity K0.

When the initial population is greater than the carrying capacity, the population

decreases rapidly at first before it gradually asymptotes to K0.

Figure 1.1: Plots of the logistic model, equation (1.1), for various values of r and
N0, with K0 = 1.

The logistic model was also used to estimate the population of the United States

in intercensal years [7]. It also became a basis for many estimates of the maxi-

mum sustainable population of the Earth. Vandermeer [8] conducted experiments

in which he expected to show ecological models need to take into account higher-

order interactions to be accurate and useful. However, he found against his own

prejudice that simple models such as equation (1.1) can in some circumstances be

excellent predictors of population dynamics, despite failing to include higher-order

interactions. However, in general, this model with its constant carrying capacity

does not successfully represent reality, as physical and biological processes change

the environment, in turn changing the carrying capacity for a given species.

In many applications, there is an underlying assumption that a finite level of re-

sources implies a fixed level of resources. In particular, in resource management

the carrying capacity is often assumed to be constant and unchanging [4]. Many

efforts to predict the world’s carrying capacity, the maximum sustainable popula-

tion, are based on this assumption [9]. However, innovations and developments in

3



technology have raised crop yields, allowing a greater population to be supported by

a given land area [10]. As such, technology is changing the carrying capacity of the

Earth, and that for human populations, a constant carrying capacity is not realistic

[11]. Similarly in nature, the inherent variability of natural systems means that an

unchanging carrying capacity fails to adequately represent the environment [12].

The general assumption of a constant carrying capacity was challenged by del Monte-

Luna et al. [4] through an analysis of the different ways it is applied to populations,

communities, ecosystems and the biosphere, and proposed the following definition

for carrying capacity:

“the limit of growth or development of each and all hierarchical levels

of biological interaction, beginning with the population, and shaped by

processes and interdependent relationships between finite resources and

the consumers of these resources”.

This definition highlights the importance of defining the carrying capacity in a math-

ematical model so that it may vary with time. Such a treatment of the concept allows

a more realistic portrayal of the way in which various processes and relationships,

both biotic and abiotic, influence the environment.

Models with a time-dependent carrying capacity

In this Section we relax the requirement that the carrying capacity be a fixed quan-

tity. There are many situations involving the evolution of a population in which the

carrying capacity changes with time. The starting point is a brief description of the

well known Jillson experiment.

Experimental example of environmental periodicity

Periodic fluctuations in the environment have been observed to influence popu-

lations, both detrimentally and advantageously. A specific example of this was

demonstrated by Jillson [1], in which the responses of populations of the red flour

beetle, Tribolium castaneum, were examined under the influence of a periodic en-

vironment. A culture medium providing food for the beetles of 95% unbleached

wheat flour and 5% brewers yeast (by weight) was provided for thirty separate pop-

ulations of 30 adults (with a 1:1 sex ratio) and 75 unsexed small larvae. For the first

eighteen weeks of the experiment, each population was subject to a constant envi-

ronment with 20 g of medium. At week eighteen, five different experimental regimes
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were commenced, with six populations undergoing each regime. The first was a

control, with the medium kept at a constant 20 g for the duration of the experiment.

The remaining populations were subject to periodic fluctuations in the amount of

medium, either 32 g or 8 g. The period for each regime was 4 weeks, 8 weeks, 12

weeks or 16 weeks. A census was taken of the total number of animals (including

adults, pupae and larvae) every two weeks, and the experiment concluded after a

total of 64 weeks.

Figure (1.2) shows the results of the experiment. The control populations experi-

enced small fluctuations, which Jillson attributed in part to cannibalistic interac-

tions (adults and larvae will eat the eggs and pupae of their own species [13]). The

population increased by an average of four animals per week. Under the four-week

regime, the beetles responded much better, showing an increase of 21 animals per

week up until week 54, when a decline was observed before the population began

to grow again. In the 8, 12 and 16-week regimes, the populations grew during the

periods of 32 g of medium, and declined in the periods of 8 g of medium.

This experiment is a clear demonstration that periodically changing the carrying

capacity impacts the dynamics of the resident population. In the case of the red

flour beetles, a period of four weeks proved more beneficial to the population than

either a constant environment or fluctuations of longer period. Jillson suggested

that that four-week oscillation in the environment was so advantageous because it

suited the beetle, with high levels of recruitment during times of abundant medium,

and minimising cannibalism in the leaner times with only 8 g of medium.

The dynamics observed were successfully modelled using a discrete-time ‘LPA’

model (accounting for larvae, pupae and adults, governed by separate equations)

which included the volume of culture (food) available to the beetles [14]. In this

manner, the changing carrying capacity was successfully modelled in a non-linear

system. However, its application is limited to this specific situation. This is just

one example of a population responding to a periodic environment.

5



Figure 1.2: Graphs from Jillson [1] showing the mean number of animals in
constant and fluctuating environments. Shaded bars represent periods of 32 g of
medium; intervening periods had 8 g of medium.
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A Logistic model with time-dependent carrying capacity

Time-dependent carrying capacities have been successfully used in many models.

In these cases, the carrying capacity is defined explicitly as a function of time,

K(t) ≡ Kt. A periodic form of the carrying capacity, for example

Kt = K0 + 󰂢 sin(ωt), (1.3)

might be used to represent seasonal variations in the environment, possibly influ-

encing the amount of vegetation available for food. Models of a similar form have

been used to represent population growth in a periodic environment [15, 16, 17].

Populations are known to change as a result of periodic changes in their carrying

capacity. For example, in a long-term study of five commercial orchards, Aluja et al.

[18] observed marked seasonal fluctuations in the populations of Anastrepha fruit fly

species. In laboratory conditions, Jillson [1] found that populations of the red flour

beetle Tribolium castaneum thrived far better in a periodically fluctuating environ-

ment than in a controlled environment with constant carrying capacity. Turchin and

Ellner [19] found vole populations in southern Fennoscandia followed dynamics de-

scribed by a model using seasonal carrying capacity with large oscillations. Multiple

time scales have also been used, representing environmental fluctuations on a longer

time scale than that of the population [20, 21]. Using equation (1.3) in conjunction

with equation (1.1) produces the system

dNt

dt
= rNt

󰀠
1− Nt

Kt

󰀡
,

Kt = K0 + 󰂢 sin(ωt).

(1.4)

It is important to note that the carrying capacity is completely independent of

the population, meaning that the population does not have any impact on the

environment. Figure (1.3) plots two solutions to system defined by equation (1.4),

with r = 1.2 and r = 5. It can be seen that both solutions tend to follow the carrying

capacity curve, and while a larger growth rate r causes the population to always

be much closer to the carrying capacity Kt, the solutions have the same period. As

opposed to the monotonic convergence when the carrying capacity is constant, a

periodic carrying capacity forces periodicity into the model for the population.
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Figure 1.3: Plot of Nt against t for system equation (1.4) with K0 = 1, N0 = 0.5,
ω = 1 and 󰂢 = 0.1.

The carrying capacity has also been represented by a saturation function, for exam-

ple

Kt = a+ b
󰀎
1− e−αt

󰀏
, (1.5)

for which the carrying capacity monotonically increase for some lower value a to a

higher value a+ b. This model was used to describe the carrying capacity to model

the dynamics of a fish population in a eutrophicated inland sea [22], and also used

to model the total microbial biomass under an occlusion on human skin [23].

Another possibility is to represent the carrying capacity using a logistic function

Kt = a+
b

1 + ce−dt
. (1.6)

This type of functional form for the carrying capacity was applied to model the

cumulative number of nuclear tests by the US, the installed electric generating ca-

pacity of the US, and the cumulative number of publications written or edited by a

colleague [24].

Defining carrying capacity explicitly as a function of time allows better modelling of

changes in the environment. However, these models do not allow for a population

to have an impact on its own environment. One way to overcome this is to couple

the carrying capacity as a variable in a system of ordinary differential equations.

8



Carrying capacity as a state-variable

Even though proposing a specific functional form for the carrying capacity has

proved useful, as indicted by the above examples, the main criticism is that the

functional form needs to be prescribed from the outset. In a series of papers, Sa-

fuan and co-workers have argued that a better approach is to model the carrying

capacity as a state-variable [23, 25, 26, 27, 28]. This approach requires that the rate

of change of the carrying capacity, Kt, be expressed through a differential equation.

Then the above illustrative examples of a time-dependent carrying capacities can

be written as differential equations, but more importantly, it provides the flexibly

to model population-environment interactions directly.

Illustrative examples

A possibility for describing carrying capacity is to define it as a state-variable, rep-

resented by an ordinary differential equation. In this case a system of equations is

used, one equation for the rate of change of the population N ′
t , defined by equa-

tion (1.1), and one for the rate of change of the environment’s carrying capacity,

K ′
t. Models of this form have been successfully used in some applications. Huzimura

and Matsuyama [29] used a decay model for the carrying capacity, given by

dKt

dt
= −bNt, (1.7)

where the rate of decay is proportional to the population. They applied it to isolated

deer populations, where the carrying capacity was determined by the amount of

lichen available, the main food source for the deer. With only small hunting pressure

and no predation of the deer due to isolation on an island, this model was found to

produce estimates accurate to within 10% of the actual deer population.

A bilogistic model, expressing the carrying capacity with a logistic differential equa-

tion
dKt

dt
= bKt

󰀠
1− Kt

K0

󰀡
(1.8)

was applied to the human populations of Japan and England, as affected by the

increase in carrying capacity that resulted from the industrial revolution [11].

An interaction model of the form

dKt

dt
= bKt − cKtNt (1.9)
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was more recently developed to allow for the interaction between the population and

its environment through the carrying capacity [25]. This model was shown to have

the potential to be applied in biology and ecology, as an improvement on previous

modified logistic models.

What’s next?

This Chapter was concerned with continuous time processes modelled as a system of

ordinary (nonlinear) differential equations. These models assume that the observed

dynamics are driven exclusively by deterministic processes. However, real ecological

systems are always exposed to influences that are also random. Therefore there

is an increasing requirement to extend deterministic models to include stochastic

(random) influences or noise. A natural extension of a deterministic differential

equation is a stochastic differential equation (sde), where relevant parameters are

modelled as suitable stochastic processes, or more importantly, stochastic processes

are added as driving forces. These forces may be internal to the ecological system

or external to the system, or both.

All ecological systems evolve under stochastic forces. To be realistic, ecological

models need to include these random influences. The justification to include random

processes can be found in many ecological circumstances: variability in rainfall over

a region, the intermittent release of toxins in waterways, and the occasional coral

bleaching due to climate change.

It is therefore essential to investigate and understand the influence of noise on the

dynamics of a population that is affected by stochastic environmental processes. In

some cases the noise simply blurs the underlying dynamics without qualitatively af-

fecting it. However, in many nonlinear models, the noise can dramatically change the

corresponding deterministic dynamics. Stochastic effects may influence population

dynamics in new and surprising ways – may enhance, diminish or even completely

change the dynamical behaviour of the population.

The next Chapter provides a brief introduction to stochastic processes and to sde.
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Chapter 2

Stochastic Processes: Basic ideas

There exist a number of excellent textbooks that cover stochastic processes and

stochastic differential equations [30, 31, 32]. This Chapter brings together the main

concepts relevant to this thesis.

A random walk

A common way to introduce stochastic based modelling is to approach it from the

perspective of a random walk. A (symmetric) random walk can be thought of as

the path travelled when: standing at an initial starting point, a (fair) coin is tossed,

should the result be heads, one step is taken to the left, conversely, should the

result be tails, one step is taken to the right. Let Xt represent the location of the

walker after t steps. If the initial starting point is X0 = 0 and taking a step to

the right is the equivalent of decreasing Xt by one and taking a step to the left

is the equivalent of increasing Xt by one, then by repeatedly tossing a coin and

executing the corresponding steps a random walk is generated. Figure (2.1) is a

graphical representation of several realisations of a random walk. Obviously, each

time the experiment is run, over a long enough time period, it will result in different

realisations, this is illustrated with the different coloured paths.

To describe this mathematically, we first define the probability mass function (pmf)

for the discrete random variable which describes the event of an individual coin toss.

Since the result of each coin toss does not effect the result of any other coin toss, the

events are considered to be independent. Thus, the random variable Yi describing

the movement based on the outcome of the i-th coin toss has pmf: PPP (Yi = 1) =

PPP (Yi = −1) = 1
2
. This is a transformed Bernoulli distribution, Yi ∼ 2 ·Bern

󰀎
1
2

󰀏
− 1.

From here, it is a straight forward to calculate the expected value EEE [Yi] = 0 and

variance VVV [Yi] = 1.

11



The random walk is then defined as the sum of discrete steps of size one unit starting

at the position X0 = 0,

Xn =
n󰁦

i=1

Yi. (2.1)

As Yi is a transformed Bernoulli distribution, the pmf of equation (2.1) can be

written as a transformed Binomial distribution

Xn ∼
n󰁦

i=1

󰀢
2 · Bern

󰀠
1

2

󰀡
− 1

󰀣
= 2 · Bin

󰀠
n,

1

2

󰀡
− n. (2.2)

The expectation and variance of the random walk can be found from (2.1), with the

expected value

EEE [Xn] = EEE
󰀢
2 · Bin

󰀠
n,

1

2

󰀡
− n

󰀣
= 2 ·EEE

󰀢
Bin

󰀠
n,

1

2

󰀡󰀣
−EEE [n] = 2 · n

2
−n = 0 (2.3)

and variance

VVV [Xn] = VVV
󰀢
2 · Bin

󰀠
n,

1

2

󰀡
− n

󰀣
= 22·VVV

󰀢
Bin

󰀠
n,

1

2

󰀡󰀣
−VVV [n] = 4·n

4
−0 = n. (2.4)

The expected value of a random walk can be numerically calculated by determining

the mean, at every discrete time step, of many realisations. Figure (2.2) illustrates

Figure 2.1: Multiple realisations of a random walk

12



the convergence to the mean where an increasing number of realisations is averaged

at each discrete time step and plotted on the same graph. It is clear that as the

number of realisations increases, the resultant average gets closer to EEE[Xn] = 0.

Figure 2.2: The expectation of an increasing number of realisations of a random
walk.

The variance of many realisations of a random walk can similarly be calculated

by finding the variance at every discrete time step. Figure (2.3) illustrates the

convergence of the variance with an increasing number of realisations. It is clear

that as the number of realisations increases, the resultant variance gets closer to

VVV [Xn] = n.

Figure 2.3: The variance of an increasing number of realisations of a random walk.
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Wiener process

The most important stochastic process in continuous time is the Wiener process. It

is used as a building block in more elaborate models. In 1828 the Scottish botanist

Robert Brown observed that pollen grains suspended in water moved in an appar-

ently random way, changing direction continuously. This was later explained by

the pollen grains being bombarded by water molecules. The precise mathematical

formulation to explain this phenomenon was given by Wiener in 1923.

The Wiener process can be seen as the limit of a (symmetric) random walk when the

time steps and the jump sizes both approach 0. To construct a Wiener process from

a random walk two small adjustments need to be made. Instead of of Xt moving

up or down by one unit, it now moves a small amount ∆x, and instead of making

that movement every unit of time it moves every ∆t units of time. This results in

the probability mass function of the random variable Yi becoming PPP (Yi = ∆x) =

PPP (Yi = −∆x) = 1
2
. Again, the expected value and variance can be calculated simply

as EEE [Yi] = 0 and VVV (Yi) = (∆x)2. The continuous random walk is then defined as

the sum of steps of size ∆t starting at the position X0 = 0,

Xt =

t
∆t󰁦

i=1

Yi. (2.5)

As seen previously with the random walk, Yi can be interpreted as a transformed

Bernoulli distribution, the pmf of equation (2.1) can be written as a transformed

Binomial distribution

Xt ∼
t

∆t󰁦

i=1

󰀢
2∆x · Bern

󰀠
1

2

󰀡
−∆x

󰀣
= 2∆x · Bin

󰀠
t

∆t
,
1

2

󰀡
− t ·∆x

∆t
. (2.6)

The expected value and variance of the continuous random walk with X0 = 0 can

be calculated as

EEE [Xt] = EEE
󰀢
2∆x · Bin

󰀠
t

∆t
,
1

2

󰀡
− t ·∆x

∆t

󰀣
=

2t ·∆x

2∆t
− t ·∆x

∆t
= 0, (2.7)

and

VVV [Xt] = VVV
󰀢
2∆x · Bin

󰀠
t

∆t
,
1

2

󰀡
− t ·∆x

∆t

󰀣
=

4t · (∆x)2

4∆t
− 0 =

t · (∆x)2

∆t
. (2.8)
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By allowing ∆x and ∆t approach zero simultaneously, the continuous random walk

becomes a continuous stochastic process, the Wiener process. To ensure that the

variance is not zero or infinite, it is necessary for ∆x = σ
√
∆t, substituting into

equation (2.8), the variance becomes, VVV [Xt] = σ2t, and the expected value, from

equation (2.7), is EEE [Xt] = 0. Here σ is a constant that describes the size of the noise.

The distribution of Xt can be found by substituting ∆x = σ
√
∆t into equation (2.6)

and approximating the Binomial distribution with a Normal distribution.

Xt ∼ 2σ
√
∆t · Bin

󰀠
t

∆t
,
1

2

󰀡
− t · σ

√
∆t

∆t

= 2σ
√
∆t ·N

󰀠
t

2∆t
,

t

4∆t

󰀡
− t · σ

√
∆t

∆t

= N

󰀮
2t · σ

√
∆t

2∆t
− t · σ

√
∆t

∆t
,
4t · σ2 ·∆t

4∆t

󰀯

Xt ∼ N
󰀎
0, σ2t

󰀏

A stochastic process Wt, defined for t ≥ 0, is called a Wiener process (or sometimes

as Brownian motion) if the following conditions are satisfied:

(a) Wt=0 = 0, with probability 1,

(b) Wt, for t ≥ 0, has independent increments

Wt1 ,Wt2 −Wt1 , · · · ,Wtk −Wtk−1

which are independent and identically distributed random variables for all

0 < t1 < t2 < · · · < tk.

(c) Wt+s −Ws ∼ N(0, t) for all t > 0.

Here, N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. Thus,

the Wiener process is a Gaussian process: a stochastic process Xt is called a Gaus-

sian process if for any finite set of indices t1, . . . , tk the vector of random variables

(Xt1 , . . . , Xtk) is a k-dimensional normal distribution.

The Wiener process is continuous with mean zero and variance proportional to

the elapsed time: EEE [Wt] = 0 and VVV [Wt] = t. If Xt is a stationary stochastic

process, then Xt has the same distribution as Xt+h for all h > 0. Thus, the Wiener

process cannot be stationary since the variance increases with t. The auto-covariance

function is given by C [Wt,Ws] = min (s, t).
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An important obseravtion is that the sample paths of a Wiener process are contin-

uous but are nowhere differentiable. For a technical discussion see Hanson [33].

Stochastic differential equations

Assume the ordinary differential equation

dx

dt
= g(x, t) (2.9)

describes a one-dimensional ode. Assume that g(x, t) fulfills conditions such that

a unique solution exists, thus x(t) = x(t; x0, t0) is a solution satisfying the initial

condition x(t0) = x0 [34]. Given the initial condition, we know how the ode behaves

at all subsequent times t, even when an analytic solution is not possible. Of course

the ode can be solved numerically to any desired accuracy. In many ecological

applications deterministic models are not realistic, and a more realistic model allows

for the inclusion of random effects.

A natural extension of a deterministic ode model is to employ a sde model. In this

thesis random effects are introduced exclusively via the Wiener process. It leads to

a differential equation with both a deterministic and a stochastic contribution,

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, (2.10)

where Xt is a stochastic process. Here Wt is a Wiener process and since it is nowhere

differentiable, care is needed to define what the differential means. It turns out that

it is very useful to write dWt = ξt dt, where ξt is a white noise process, defined as

being normally distributed for any fixed t and uncorrelated, E [ξt ξs] = 0 if s ∕= t.

Strictly speaking, the white noise process ξt does not exist as a conventional function

of t, but should be interpreted as the generalised derivative of a Wiener process.

A sde in the form of equation (2.10) is said to be written in the Itô form. The

functions µ(Xt, t) and σ(Xt, t) can be nonlinear, where µ(Xt, t) is called the drift or

the deterministic component (even though it may be a function of a random variable

(Xt), and σ(Xt, t) is the diffusion part or the stochastic component. Equation (2.10)

should be interpreted in the following way,

Xt = Xt0 +

󰁨 t

t0

µ(Xs, s)ds+

󰁨 t

t0

σ(Xs, s)dWs, (2.11)

where Xt0 is a random variable independent of the Wiener process. It could simply

be a constant. The first integral on the right hand side can be interpreted as an
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ordinary integral, however, the second integral is a little more problematic as the

Wiener process is nowhere differentiable.

In an attempt to subscribe meaning to the definite integral

󰁨 t

t0

f(s)dWs. (2.12)

it is instructive to look to ordinary calculus for clues. If f(t) ≡ σ is constant then it

is reasonable to expect the integral in equation (2.12) to equal σ(Wt −Wt0). Since

the increments of a Wiener process has expectation 0, the above integral also has

expectation equal to 0.

Now assume that f(t) is a non-random step function of the form f(s) = σj on

tj < s < tj+1 for j = 1, 2, · · · , n where t0 = t1 < t2 < · · · < tn+1 = t. Following on

from above 󰁨 t

t0

f(s)dWs ≈
n󰁦

j=1

σj(Wtj+1
−Wtj).

It is logical to approximate a well-behaved function f(t) by a series of step functions

for sufficiently small increments of t. Define a partition Pn of the interval [t0, t] by

t0 = t1 < t2 < · · · < tn+1 = t where |Pn| = max {|tj+1 − tj| : j = 1, . . . , n} is the

norm of the partition, and approximate

f(t) ≈ f(t∗j) for tj ≤ t < tj+1

where the point t∗j ∈ [tj, tj+1]. Then define

󰁨 t

t0

f(s)dWs = lim
|Pn|→0

n󰁦

j=1

f(t∗j)(Wtj+1
−Wtj). (2.13)

When f(t) is stochastic it turns out that – unlike ordinary integrals – it makes a

difference how t∗j is chosen! To see this consider the special case f(t) = Wt and

define two approximations: t∗j = tj, the left-end point, and t∗j = tj+1, the right-end

point. Taking expectations of the two choices yield different results:

EEE

󰀰
n󰁦

j=1

Wtj(Wtj+1
−Wtj)

󰀱
=

n󰁦

j=1

EEE
󰀐
W (tj)(Wtj+1

−Wtj)
󰀑

=
n󰁦

j=1

EEE
󰀐
Wtj

󰀑
EEE
󰀐
(Wtj+1

−Wtj)
󰀑
= 0
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using condition (c). On the other hand,

E

󰀰
n󰁦

j=1

Wtj+1
(Wtj+1

−Wtj)

󰀱
= EEE

n󰁦

j=1

󰀐
(Wtj+1

−Wtj)
2
󰀑

+EEE
n󰁦

j=1

󰀐
Wtj(Wtj+1

−Wtj)
󰀑

=
n󰁦

j=1

EEE
󰀐
(Wtj+1

−Wtj)
2
󰀑
+ 0

=
n󰁦

j=1

(tj+1 − tj) = t− t0.

Two useful and common choices are the following,

(a) The Ito integral: t∗j = tj , the left-end point.

(b) The Stratonovich integral: t∗j = (tj + tj+1)/2, the mid-point.

There are arguments for using either one or the other, most of them rather technical

[30]. In this thesis only the Ito interpretation of the stochastic integral is used.

Some important examples

Three important stochastic processes are considered, all expressed in the Ito form.

Example 1 – Wiener process with drift

Imagine the pollen grain, mentioned earlier, suspended in water which is subject

to the constant bombardment of water molecules. The temperature of the water

influences the momentum of the water molecules which in turn determines the force

of the bombardment. A parameter, say σ is needed to characterise the strength of

this force. Assume there exists a water current which drives the pollen grain in a

certain direction, and assume the parameter µ characterises the drift. The sde that

describe this stochastic process is

dXt = µdt+ σdWt, (2.14)

which has the solution

Xt = µt+ σWt. (2.15)

18



ThenXt is normally distributed with mean, EEE[Xt] = µt+σ EEE[Wt] = µt, and variance,

VVV[Xt] = σ2 VVV[Wt] = σ2t.

Example 2 – Geometric Brownian motion

Suppose a drug is injected into the blood stream and that the average metabolic pro-

cess of the drug is modelled as exponential decay through the deterministic equation

x′ = −kx, where x is the concentration of the drug and k is the decay rate. Suppose

now that the decay rate fluctuates randomly due the enzymatic action involved in

the breakdown of the drug. Such a scenario could be modelled by allowing k to vary

randomly, k = µ+ σξt, where ξt is a Gaussian white noise process.

Then ξt dt can be written as the differential of a Wiener process, dWt. This leads to

the model

dXt = −µXtdt+ σXtdWt. (2.16)

Later, it is shown that the explicit solution is

Xt = X0 exp

󰀠
−
󰀠
µ+

1

2
σ2

󰀡
t+ σWt

󰀡
. (2.17)

The process only takes positive values and Xt follows a log-normal distribution with

parameters −(µ+ σ2/2)t and σ2t.

Example 3 – Ornstein-Uhlenbeck process

Imagine a process subject to a restoring force, that is, the process is attracted to

some constant level but is continuously perturbed by noise. An example is given by

the membrane potential of a neuron that is constantly being perturbed by electrical

impulses from the surrounding network, and at the same time is attracted to an

equilibrium value depending on the resting potentials for different ions present at

different concentrations inside the cell and in the interstitium. This leads to the

model

dXt = −γ(Xt − α)dt+ σdWt. (2.18)

Here 1/γ has units of time, and is the typical time constant of the process. The

autocorrelation is given by E [XtXt+s] = e−γs, and thus the autocorrelation has

decreased with a factor of e−1 after 1/γ units of time. It has the explicit solution

Xt = X0e
−γt + α(1− e−γt) +

󰁨 t

0

σe−γ(t−s)dWs. (2.19)
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The stochastic process Xt (given X0) is normally distributed with mean EEE[Xt|X0] =

X0e
−γt + α(1− e−γt) and variance VVV[Xt|X0] = σ2(1− e−2γt)/(2γ).

When the diffusion term does not depend on the state-variable Xt, such as in the

Wiener process with drift and the Ornstein-Uhlenbeck process, the noise is said

to be additive. In the case of Geometric Brownian motion the noise is said to

multiplicative.

Stochastic chain rule (Itô’s formula)

Stochastic differentials do not obey the ordinary chain rule as we know it from

classical calculus. To see this let Xt be a stochastic process given by

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

and let f(t, x) be a sufficiently smooth and differential function in x and t. Then

Yt = f(t,Xt)

is also a stochastic process that satisfies

dYt =
∂f

∂t
(t,Xt)dt+

∂f

∂Xt

(t,Xt)dXt +
1

2
σ2(t,Xt)

∂2f

∂X2
t

(t,Xt)dt. (2.20)

Note that the first two terms on the right hand side correspond to the chain rule

we know from classical calculus, but an extra term appears in stochastic calculus

because the Wiener process (dWt)
2 behaves like dt.

As an illustrative example, consider the sde of the Geometric Brownian motion

given by equation (2.16). Rewrite the equation as

dXt

Xt

= −µdt+ σdWt. (2.21)

Thus, integrating 󰁨 t

0

dXs

Xs

= −µt+ σWt, (2.22)

which suggests the transformation Yt = ln(Xt) with Y0 = ln(X0). Applying the Ito

formula leads to

dYt = d(lnXt) = 0 +
dXt

Xt

+
1

2
σ2X2

t

󰀠
− 1

X2
t

󰀡
dt =

dXt

Xt

− 1

2
σ2dt.
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Substituting equation (2.16) into the above equation

dYt = −
󰀠
µ+

σ2

2

󰀡
dt+ σdWt,

whose solution is

Yt = Y0 −
󰀠
µ+

σ2

2

󰀡
t+ σWt.

Transforming back to the original process Xt,

Xt = X0 exp

󰀠
−
󰀠
µ+

1

2
σ2

󰀡
t+ σWt

󰀡
. (2.23)

Numerical solution: The Euler-Maruyama scheme

When no explicit solution is available it is possible to approximate different char-

acteristics of the process by simulation, such as sample paths, moments, qualitative

behavior etc. Usually such simulation are based on discrete approximations of the

continuous solution to the governing sde. Different schemes are available depend-

ing on how good the approximation is required to be, which comes at a price of

computer time.

Suppose an approximate solution to equation (2.10) is sought over the time interval

[0, T ]. Consider the time discretisation

0 = t0 < t1 < · · · < tj < · · · < tn = T

and denote the time steps by ∆tj = tj+1 − tj and the increments of the Wiener

process by ∆Wj = Wtj+1
− Wtj . Then ∆Wj ∼ N(0,∆tj), which can be used to

construct approximations by generating normally distributed numbers, a trivial task

for modern software packages such as MatLab.

For simplicity consider a time-homogenous process, one for which t does not ex-

plicitly appear in the sde. The simplest scheme is the stochastic analogue of the

deterministic Euler scheme. Approximate the process Xt at the discrete time-points

tj, 1 ≤ j < n by the recursion

X̂tj+1
= X̂tj + µ(X̂tj)∆tj + σ(X̂tj)∆Wj, with X̂t0 = x0

where ∆Wj =
󰁾

∆tj Zj , with Zj being a standard normal variable with mean 0 and

variance 1 for all j. The scheme can be easily implemented in MatLab. The code

for simulating a trajectory of a Geometric Brownian motion over the time interval
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[0, T ] is given below [35]. This code, and its adaptation to other applications, is

used extensively throughout this thesis.

clear all;

x0 = 1; % initial condition

beta = -0.5; sigma = 0.5; % parameter values

n = 1000; % number of discretization points

T = 1; % length of simulation interval

dt = T/n; % size of time step

randn(’state’,0); % sets the seed of the random number generator

% simulate a trajectory

x_euler = zeros(n+1,1); % initialization of the trajectory

x_euler(1) = x0; % the initial condition

for j=2:n+1 % the Euler-Maruyama scheme

dW = sqrt(dt)*randn; % the Wiener increment

x = x_euler(j-1);

x_euler(j) = x + beta*x*dt + sigma*x*dW;

end

% plot the approximation

figure

plot([0:dt:1],x_euler,’k-’)

xlabel(’t’)

title(’Euler-Mayurama approximation of GBM’)

This approximating procedure assumes that the drift and diffusion functions are

constant between time steps, so obviously the approximation improves for smaller

time steps. To evaluate the convergence things are more complicated for stochastic

processes.

Consider the expectation of the absolute error at the final time T of the Euler-

Maruyama scheme. It can be shown that there exist constants C > 0 and δ0 > 0

such that

E
󰁶
|XT − X̂tn |

󰁷
≤ Cδ

1
2

for any time discretisation with maximum step size δ ∈ (0, δ0). It is said that the

approximating process X̂t converges in the strong sense with order 1
2
. This is similar

to how approximations are evaluated in a deterministic ode, only here expectations

are taken, since XT and X̂tn are random variables. Compare with the Euler scheme

for an ode which has order of convergence 1.
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Sometimes a close path-wise approximation is not required, but only some function

of the value at a given final time T , such as EEE[XT ], EEE[X2
T ] or generally EEE[g(XT )].

In this case there exist constants C > 0 and δ0 > 0 such that for any polynomial

function g 󰀚󰀚󰀚
󰁶
EEE[g(XT )]− EEEE[g(X̂tn)]

󰁷󰀚󰀚󰀚 ≤ Cδ1

for any time discretisation with maximum step size δ ∈ (0, δ0). The approximating

process X̂t is said to converge in the weak sense with order 1.

Probability density function for a Wiener process

Consider a stochastic processXt defined by equation equation (2.10). The associated

Fokker-Planck equation, which gives the time evolution of the probability density

function PPP(x, t) is

∂

∂t
PPP(x, t) = − ∂

∂x
(µ(x, t)PPP(x, t)) +

1

2

∂2

∂x2

󰀎
σ2(x, t)PPP(x, t)

󰀏
, (2.24)

subject to an initial distribution, PPP(x, 0) = δ(x), where δ(x) is the Dirac distribution

function.

For the very simple case of a Wiener process, dXt = σdWt, the pdf satisfies the well

know diffusion equation

∂

∂t
PPP(x, t) =

1

2
σ2 ∂2

∂x2
PPPP (x, t),

whose solution is

PPP(x, t) =
1√

2πσ2t
exp

󰀠
− x2

2σ2t

󰀡
.

The solution represents the probability density function of a Normal distribution

with mean zero and variance σ2t.
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Chapter 3

Population dynamics in a simple stochastic

environment

Introduction

The origins of population growth models are traced back to the influential Malthus’

exponential model and later to Verhulst’s logistic model [6]. The logistic model

acknowledges the reality of finite resources that cannot support exponential growth

indefinitely. Central to this limitation is the concept of a ‘saturation level’ or carrying

capacity – the maximum population level that an environment can support given

finite resources [36]. The logistic equation is

dNt

dt
= rNt

󰀠
1− Nt

K

󰀡
, (3.1)

where Nt is the population size at time t, r is the intrinsic growth rate and K is the

carrying capacity. The logistic equation has been adapted and modified for over a

century. Tsoularis and Wallace [37] summarise some of these adaptations.

The carrying capacity is assumed to be constant in population growth models used

for resource assessment and management [38]. However, changes to the carrying

capacity do occur due to both exogenic and endogenic processes [9]. Long ago,

Cushing [39] and Coleman [40] recognised the need to treat the carrying capacity

as a function of time to model population dynamics in an environment that under-

goes change. Most populations experience fluctuations in their environment due to

seasonal change [41].

The simplest approach is to specify some time-dependent function for the carrying

capacity that reflects the observed behaviour of the changing environment [6, 26].

However, this approach is quite limiting as it does not allow for the more realistic

portrayal of the environment, and therefore its carrying capacity is not “shaped

by processes and interdependent relationships between finite resources and the con-
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sumers of those resources” [4]. To mitigate this issue, Safuan et al. [25, 26, 27, 28]

developed models that treat the carry capacity as a state-variable, thereby coupling

the carrying capacity directly to the population.

The variations to the logistic equation mentioned thus far have their applications,

however, there are many external environmental effects like fire, drought, floods,

contamination of water resources etc, that also need to be accounted for. By adding

stochasticity (noise), it is possible to account for these anomalous impacts on pop-

ulation dynamics that deterministic models often ignore.

How stochasticity is incorporated in population models is a modelling issue. One

approach is to explicitly write the carrying capacity as consisting of a deterministic

and a stochastic term [42]. More generally environmental fluctuations are modelled

by adding noise to the competition term (reciprocal of K) leading to the stochastic

differential equation (sde) [43];

dNt = rNt

󰀠
1− Nt

K

󰀡
dt+ rσN2

t dWt, (3.2)

whereWt is a standard Weiner process with mean EEE[Wt] = 0 and variance VVV[Wt] = t.

The noise intensity is σ. In the next section, a different approach is proposed, that

the carrying capacity as a state-variable.
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Figure 3.1: Three different realisations of Kt with K0 = 10 and σ = 0.4.
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The model

The simplest model that treats the carrying capacity as a random state-variable is;

dNt

dt
= rNt

󰀠
1− Nt

Kt

󰀡
, Nt=0 = N0 (3.3a)

dKt = σdWt, Kt=0 = K0 (3.3b)

Equation (3.3a) is just the standard logistic differential equation as seen in equa-

tion (3.1) which describes the growth of a population as it responds to the fluctu-

ations of the carrying capacity (Kt). Equation (3.3b) defines the carrying capacity

by a simple sde, where σ is the intensity of the noise. Equation (3.3b) is solved

independently from equation (3.3a), the solution is;

Kt = K0 + σWt. (3.4)

Substituting equation (3.4) into equation (3.3a), we get

dNt

dt
= rNt

󰀠
1− Nt

K0 + σWt

󰀡
. (3.5)

Three different realisations (simulations) of equation (3.4) are shown in Figure (3.1).

Although this model appears simple, it may find useful applications in certain ecosys-

tems. For example, Wt may be a proxy variable for excess rainfall over an ecosystem

and then average rainfall sustains the carrying capacity at K0. When Wt > 0, above

average rainfall contributes to an increase in the carrying capacity. On the other

hand, when Wt < 0, below average rainfall results in a decrease in the carrying

capacity. Figure (3.1) shows a realisation (green) that is a result of successive pe-

riods of below average rainfall leading to a deterioration of the carrying capacity:

the ecosystem is experiencing a drought. If Kt = 0, then the environment can not

sustain a population, leading to the population’s extinction. Predicting extinction

times and its causes is very important for conservation [44].

Expected population size

An exact solution to equation (3.5) is currently not known. A numerical solution can

be obtained once Wt is generated. Alternatively, the method used here is to numer-

ically solve the coupled sdes defined in equation (3.3) using the Euler-Maruyama

method. Higham [35] described the method and its strong and weak convergence
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in detail. Here we use graphical data analysis methods, especially quantile-quantile

(qq) plots to investigate the distributions forKt and Nt. For these cases a step size of

∆t = 0.01 was used. Smaller step sizes did not make any difference to the qq-plots.

However, in generating several thousand simulations there was a noticeable increase

in computer running time. A step size of 0.01 seemed a reasonable compromise.
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Figure 3.2: The effect of varying r on the mean and variance of the population
with K0 = 10, σ = 0.1 and N0 = 2. In the top panel r = 0.2 and for the bottom
panel r = 2.

Since Wt ∼ N(0, t) and as Kt is a linear transformation of Wt, Kt ∼ N (K0, σ
2t).

From an ecological perspective this distribution is technically not correct as Kt > 0.

It is possible to calculate the exact (conditional) pdf for Kt > 0;

PPP(Kt, t) =
1

σ
√
2πt

󰀢
exp

󰀠
−(Kt −K0)

2

2σ2t

󰀡
− exp

󰀠
−(Kt +K0)

2

2σ2t

󰀡󰀣
. (3.6)

It is to be noted that the full pdf is the sum of a mass density function for the

probability that Kt = 0 and the above pdf for Kt > 0. Here we are only concerned

with the properties of equation (3.6). From equation (3.6) the mean, EEE [Kt], can be

found as;
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EEE [Kt] =

󰁨 ∞

0

Kt · PPP (Kt, t) dKt

=

󰁨 ∞

0

Kt

σ
√
2πt

·
󰀢
exp

󰀠
−(Kt −K0)

2

2σ2t

󰀡
− exp

󰀠
−(Kt +K0)

2

2σ2t

󰀡󰀣
dKt

=

󰀨
K0

2
·
󰀢
erf

󰀠
Kt −K0√

2σ2t

󰀡
+ erf

󰀠
Kt +K0√

2σ2t

󰀡󰀣

+

exp

󰀠
−(Kt −K0)

2

2σ2t

󰀡
− exp

󰀠
−(Kt +K0)

2

2σ2t

󰀡

√
2π

󰀚󰀚󰀚󰀚󰀚󰀚󰀚󰀚

∞

0

EEE[Kt] = K0

(3.7)

where erf(x) is the Error function. From equation (3.7) it can be seen that the

absorbing boundary, Kt = 0, does not change the value of the mean of the carrying

capacity; EEE [Kt]. In a similar way, the variance of the carrying capacity can be found

to be;

VVV [Kt] = EEE
󰀐
(Kt)

2󰀑− (EEE [Kt])
2 =

󰁨 ∞

0

(Kt)
2 · PPP (Kt, t) dKt −K2

0

EEE
󰀐
(Kt)

2󰀑 =
󰁨 ∞

0

(Kt)
2

σ
√
2πt

·
󰀢
exp

󰀠
−(Kt −K0)

2

2σ2t

󰀡
− exp

󰀠
−(Kt +K0)

2

2σ2t

󰀡󰀣
dKt

=

󰀨
σ2t+K2

0

2
·
󰀢
erf

󰀠
Kt −K0√

2σ2t

󰀡
+ erf

󰀠
Kt +K0√

2σ2t

󰀡󰀣

− σ
√
t√

2π
· exp

󰀮
−(Kt +K0)

2

2σ2t

󰀯
·
󰀢
(Kt +K0) · exp

󰀠
2K0Kt

σ2t

󰀡
−Kt +K0

󰀣󰀚󰀚󰀚󰀚󰀚

∞

0

=
󰀎
σ2t+K2

0

󰀏
· erf

󰀠
K0√
2σ2t

󰀡
+

K0

√
2σ2t√
π

· exp
󰀠
− K2

0

2σ2t

󰀡

(3.8)
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In equation (3.8) it is obvious that the variance of the carrying capacity, VVV [Kt],

with an absorbing boundary, (Kt = 0), is very different to the variance without an

absorbing barrier, VVV [Wt] = σ2t. For small values of t, it can be seen that the

variance, VVV [Kt≈0] ≈ σ2t, is linear and for large values of time it can be seen that

the variance, VVV [Kt→∞] ≈ K0

√
2σ2t√
π

−K2
0 , is proportional to the

√
t.

Since Nt pursues Kt, this suggests that the population has (asymptotically) a sim-

ilar distribution to that of the carrying capacity: PN(N, t|N0) ≈ PK(K, t|K0). To

investigate this a Monte Carlo approach was employed and the mean and variance of

2000 simulations were calculated. Figure (3.2) supports the idea that the population

has a mean and variance that closely matches the mean and variance of the carrying

capacity. An interesting point to note is that a smaller value of r does not affect

the mean asymptotically approaching K0, but does slightly reduce the variance.

Distribution of the population size

From the numerical simulations, beyond the initial transient behaviour, Nt follows

Kt closely, the expected value and variance ofNt also closely followKt. This suggests

that Nt and Kt may have the same distribution. To establish if the distributions

of Nt and Kt are the same, the qq-plots in Figure (3.3) were produced for t = 100

and t = 400 with σ = 0.1 and σ = 0.4. A qq-plot is a non-parametric method

for comparing two probability distributions by plotting the quantiles against each

other. When interpreting the qq-plots the closer the quantiles lie to a straight line,

the more likely they belong to the same distribution. For the different times and σ,

the distributions of Nt and Kt are likely to be the same.

Using qq-plots, Figure (3.4) compares the distributions of Nt and Kt. For times

t = 100 and t = 400 with σ = 0.1 the distributions of Kt and Nt are likely to be

normally distributed. The quantiles for both Kt and Nt lie on the dashed straight

line. For small enough σ and large enough K0 the second term in equation (3.6) is

small and the assumption of normality holds true for a restricted amount of time.

When σ = 0.4, as time increases, the tails of the qq-plot becomes noticeably less

linear, especially on left. This indicates that the distributions for Kt and Nt are

skewed. This is because as time passes, more and more of the realisations of Kt and

subsequentlyNt are truncated at zero instead of continuing into negative values. The

truncation is necessary as negative values for population and carrying capacity have

no physical meaning. This is seen from equation (3.6), which gives PPPK(0, t|K0) = 0.

29



6 8 10 12 14
6

8

10

12

14

Nt Quantiles

K t Q
ua

nt
ile

s

Time = 100, σ=0.1

0 5 10 15 20
0

5

10

15

20

Nt Quantiles

K t Q
ua

nt
ile

s

Time = 400, σ=0.1

0 5 10 15 20 25
−10

0

10

20

30

Nt Quantiles

K t Q
ua

nt
ile

s

Time = 100, σ=0.4

0 10 20 30 40 50
0

20

40

60

Nt Quantiles

K t Q
ua

nt
ile

s

Time = 400, σ=0.4

Figure 3.3: The qq-plots of distributions for Kt and Nt with K0 = 10, r = 0.2 and
N0 = 2.
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Figure 3.4: The qq-plots showing if the distributions Kt and Nt are normally
distributed, with K0 = 10, r = 0.2 and N0 = 2.

Distribution of extinction times

Recall that Kt = K0 + σWt is a scaled Wiener process with mean K0. The first-

hitting time when the carrying capacity reaches zero, τ = inf{t : Kt = 0}, is

equivalent to τ = inf{t : Wt = −K0/σ}. For our problem, the distribution of

first-hitting times is well known and is given by [30],

fτ (t) =
K0

σ
√
2πt3

exp

󰀠
− K2

0

2σ2t

󰀡
. (3.9)
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Figure (3.5) compares the theoretical distribution of first-hitting times with the

numerically calculated equivalent. The simulations indicate that the first-hitting

times for Kt satisfy equation (3.9). Furthermore, extensive numerical simulations

indicated that the first-hitting times for Nt may be approximated by those for Kt.
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Figure 3.5: The theoretical distribution function (curve) and the numerical proba-
bility distribution function (histograms) of the first-hitting time forKt withK0 = 10,
r = 0.2 N0 = 2 and σ = 0.1.
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Chapter 4

Environment as an Ornstein-Uhlenbeck process

Introduction

Verhulst’s well know logistic model includes the concept of a ‘saturation level’ or

carrying capacity, a value that represents the maximum population that an environ-

ment can sustain [36]. The logistic equation is written as

dNt

dt
= rNt

󰀠
1− Nt

K

󰀡
, (4.1)

where Nt is the population at time t, r is the intrinsic growth rate and K is the

carrying capacity.

This simple model has been adapted for over a century, [37]. The carrying capacity,

often assumed to be a constant [38], can change due to exogenic and endogenic

processes [9]. Models where the carrying capacity is treated as a function of time

to describe changing environmental conditions can be found in Cushing [39] and

Coleman [40].

The simplest approach to modelling a changing environment is by specifying the

carrying capacity as a time-dependent function [26]. However, this approach is

limiting, as it does not allow for the environment to be shaped by the interdependent

relationships between the resources and the population that consumes them [4].

This issue was mitigated in a series of papers, Safuan et al. [23, 25, 27, 28], models

were developed that treated the carrying capacity as a state-variable coupled to the

population model.

The variations to the logistic model mentioned thus far have their applications,

however, there are many external environmental factors like; fire, drought, floods,

resource contamination, etc that need to be accounted for. By adding stochasticity

to the model, it is possible to account for the effects of such perturbations on the

population that deterministic models ignore.
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How stochasticity is added to population models is a modelling issue. Usually,

environmental fluctuations are modelled by adding noise to the ‘crowding term’ (the

reciprocal of the carrying capacity), the nonlinear term of equation (4.1), leading to

[32, 43],

dNt = rNt

󰀠
1− Nt

K

󰀡
dt+ rσN2

t dWt. (4.2)

Here Wt is a standard Weiner process with EEE [Wt] = 0, VVV [Wt] = t and the noise

intensity is σ.

The model

An alternate approach was proposed by Safuan et al. [23]. The approach is based

on treating the carrying capacity as a state variable, that is, governed by a separate

equation that describes the changes in the carrying capacity. A simple stochastic

extension of the Safuan et al. [23] model is

dNt

dt
= rNt

󰀠
1− Nt

Kt

󰀡
, Nt=0 = N0 (4.3a)

dKt = −γ (Kt − k1) dt+ σdWt, Kt=0 = K0 (4.3b)

The population, Nt, is still modelled by a logistic equation but now coupled to the

carrying capacity, Kt, which in turn is modelled by a stochastic differential equation.

Equation (4.3b) consists of a deterministic and a stochastic term. In the absence of

random variations, σ = 0, equation (4.3) can be solved exactly [26]. It represents a

model for the growth of bacteria under an occlusion of the skin.

Equation (4.3b) is commonly known as the Ornstein-Uhlenbeck (OU) equation, a

stochastic process that is stationary, Markovian and Gaussian [45]. The OU equation

is ‘mean-reverting’ (drifts towards its long-term mean k1). Figure (4.1) shows several

realisations (paths or trajectories) of Kt with with different parameters. From the

top plot the ‘mean reverting’ nature of the OU equation can be seen: starting with

different initial conditions K0 all realisations approach k1. How fast realisations

of Kt approach k1 depends on γ. It places a constraint on how large the random

variations can get. Large variations, either above or below k1 are pulled back to k1.

The bottom plot shows realisation ofKt for different noise intensities, σ = 1, 0.5, 0.1.

In particular it depicts a realisation that reaches Kt = 0 in finite time when σ is

large, in a relative sense to other parameters. If the situation arises such thatKt = 0,
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then the environment can no longer sustain the population leading to extinction.

From a conservationist perspective, predicting extinction times are very important

[44]. As equation (4.3b) is independent of Nt it can be solved separately, giving the

well known solution of the OU equation

Kt = k1 + (K0 − k1) e
(−γt) + σ

󰁨 t

0

eγ(s−t)dWs. (4.4)

Substituting equation (4.4) into equation (4.3a) leads to

dNt

dt
= rNt

󰀾

󰁐󰁐󰁎1− Nt

k1 + (K0 − k1) e(−γt) + σ

󰁨 t

0

eγ(s−t)dWs

󰀿

󰁑󰁑󰁏 , Nt=0 = N0. (4.5)

The exact solution of equation (4.5) is currently unknown, the numerical solution is

discussed in the next section.

Figure 4.1: Three different realisations of Kt with parameters (top) γ = 0.03 and
σ = 0.1, (bottom) K0 = 15 and γ = 0.01. For both cases k1 = 10.
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Expected solution path

According to equation (4.4), the distribution of Kt (conditioned on K0) is normal,

Kt ∼ N(µt, σ
2
t ), with (conditional) mean and variance

µt = EEE [Kt] = k1 + (K0 − k1) e
−γt, (4.6)

σ2
t = VVV (Kt) =

σ2

2γ

󰀎
1− e−2γt

󰀏
. (4.7)

However, from an ecological perspective, we require that Kt > 0, therefore the exact

conditional probability distribution for Kt > 0 is [46]

PPP(Kt, t|K0) =
1󰁾
2πσ2

t

󰀰
exp

󰀮
−(Kt − µt)

2

2σ2
t

󰀯
− exp

󰀮
−(Kt + µt)

2

2σ2
t

󰀯󰀱
. (4.8)

Note that PPP(Kt = 0, t|K0) = 0 constitutes the absorbing boundary condition; when

the carrying capacity reaches zero it remains there. Ecologically this later condition

represents the collapse of the environment thus leading to the extinction of the

population. Similar to that of the Wiener process discussed on page 27, the exact

pdf consists of the sum of a mass density function at Kt = 0 and equation (4.8).

Knowing the properties of Kt, a Monte Carlo approach was employed to determine

the distribution of Nt as well as its mean and variance. This was achieved by con-

structing 40,000 realisations of equation (4.4). For each realisation, equation (4.5)

was solved numerically using Euler’s method with a step size of ∆t = 0.01. This

size of ∆t was a good compromise between accuracy and computational effort. The

mean and variance of Kt and Nt are plotted in Figure (4.2).

On both plots, the simulated Kt is plotted in black, the simulated Nt is plotted in

blue, for the initial conditions K0 = 15 and N0 = 2. The top plot shows the (condi-

tional) mean of Kt which coincides with the predicted mean given by equation (4.6).

It is possible to write the solution to equation (4.5) formally as

Nt =
ert

1

N0

+

󰁨 t

0

rers

Ks

ds

. (4.9)

An exact algebraic expression for EEE [Nt] is not possible. An approximate expression
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Figure 4.2: The mean and variance of the carrying capacity and the population.
The plot shows both the numerically simulated values and the analytical model.
Here K0 = 15, k1 = 10, N0 = 2, r = 0.1, γ = 0.05 and σ = 0.5.

for the (conditional) mean of Nt is

EEE [Nt] ≈
ert

1

N0

+

󰁨 t

0

rerµ

EEE [Kµ]
dµ

, (4.10)

The predicted mean for Nt is also shown in the plot (red). Apart from the early

transient behaviour the means of Kt and Nt both approach k1, independent of the

initial conditions.

Similarly, in the bottom plot, the (conditional) variance of Kt matches up with the

theoretical expression given by equation (4.7). No simple expression for the variance

of Nt could be found. We note that VVV (Nt) < VVV (Kt) for all time t. However, beyond

some time, t ≫ 1/γ, each asymptotically converges to some constant, but different,

value.

A quantile-quantile plot (qq-plot) of the simulated values of Nt against Kt is shown

in Figure (4.3). It demonstrates that the distributions are similar and since the slope

of the line is less than one it further indicates that VVV (Nt) < VVV (Kt), as mentioned

previously.
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Figure 4.3: Quantile-quantile plots at different times of the population (Nt) against
the carrying capacity (Kt). The parameters are: K0 = 15, N0 = 5, k1 = 10, r = 0.1,
γ = 0.05 and σ = 0.1.

Distribution of extinction times

As alluded to previously we require Kt > 0 for all t. However as can be seen from

Figure (4.1) there is a realisation for which Kt reaches zero. For fixed k1 and K0,

according to (4) this is possible depending on the relative size of γ and σ. On the

characteristic time scale of 1/γ the dynamics of Kt is predominantly governed by

the Weiner process, W (t), and if σ is large then it is possible for Kt to reach zero.

The instant Kt = 0, it remains there and the environment has collapsed; which leads

to the subsequent extinction of the population. The probability of the environment

collapsing by a given time t, is 1− S(t|K0), where S(t|K0) is the survival function,

S(t|K0) =

∞󰁨

0

PPP(Kt, t|K0) dKt.

The distribution of the first-hitting (extinction) time represents the probability den-

sity for which Kt has collapsed by time t. It is defined by f(t|K0) = −S ′(t|K0). The

distribution is [47]
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Figure 4.4: Plot showing both the theoretical and numerical probability distri-
bution function of the first-hitting time for Kt with K0 = 12, k1 = 10, r = 0.5,
γ = 0.01 and σ = 2.

f(t) =

2 exp

󰀠
− µ2

t

2σ2
t

󰀡

󰁾
2πσ2

t

·
󰀠
µtσ

′
t

σt

− µ′
t

󰀡
(4.11)

where µt and σ2
t are given by equation (4.6) and equation (4.7), respectively. Here,

µ′
t and σ′

t are the derivatives of the mean and variance. Figure (4.4) is a plot of the

probability density function for the first-hitting times. The Monte Carlo simulations

are shown as dots (blue) and the line is the theoretical probability density function

given by equation (4.11). It is clear that equation (4.11) is a good approximation.

Furthermore, extensive numerical simulations indicated that the first-passage times

for Nt may also be approximated by those of Kt.
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Chapter 5

Conclusion

This final Chapter provides concluding remarks as well as some suggested extensions

that stem directly result from the models described in the thesis.

Concluding remarks

Physical environments are rarely static. It is well recognised that environmental

parameters such as temperature and rainfall have strong impacts on natural popu-

lations of plants and animals. This thesis provides an analysis of a simple ecosystem

comprising of a single-species population inhabiting an environment that is subject

to random fluctuations. A logistic differential equation is used to model the dynam-

ics of the population while treating the carrying capacity, a proxy variable for the

state of the environment, as a state-variable. This approach differs from current

approaches and interpretations.

Two different stochastic process for the carrying capacity are considered. The first

is a Wiener process with a non-zero mean. This model for the environment is not

terribly realistic, however a possible interpretation based on deviations from say,

average monthly rainfall over a region, is still meaningful. The second is an OU

process. This process may find application for the growth of bacteria under an

occlusion of the skin [23, 26].

To describe the probabilistic nature of the environment, the exact pdf for both

processes was derived. An exact treatment of the population size is not possible.

Numerical simulations based on a Monte-Carlo approximation show that the popu-

lation Nt will always pursue Kt, suggesting that the distributions are approximately

the same. Beyond the transient, the means of Nt and Kt are the same and the

variance of the population is slightly reduced compared to that of the carrying ca-

pacity: the reduction being larger for smaller values of r. Nevertheless, for smaller

values of r the population is not strongly affected by the extremes that the carrying

capacity may experience, thus the population size remains more stable compared to
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populations with large r. Figure (5.1) where the carrying capacity is modelled as a

Wiener process illustrates the effect of varying the intrinsic growth rate (r). Similar

behaviour is also obtained for the OU process.
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Figure 5.1: Evolution of the population for two different growth rates. Here
N0 = 2, K0 = 10, σ = 0.5 and ∆t = 0.01.

For the Wiener model, simulations demonstrate that for small σ and large K0 the

distribution for Kt was approximately normal. Since Kt > 0 the distribution is

certainly not normal. Both Kt and Nt are better approximated by a skewed distri-

bution. Moreover, simulations for the OU process, reveal that for small σ and large

N0, K0 and k1 the distribution of Kt is approximately normal even when Kt > 0.

The qq-plots indicated that Nt has a similar distribution to Kt, thus the distribution

of Nt is also approximately normal. Beyond the early transient period, the means

are the same and the variance is constant, albeit smaller for Nt.

These observations can be explained with reference to logistic differential equation.

No matter how complicated the carrying capacity appears as long as it is independent

of Nt then in principle it can be solved for Kt. From the differential equation for

Nt, when Kt is higher than Nt, Nt will increase toward Kt and when Kt is lower it

will decrease toward Kt. This implies that the population Nt will always pursue the

carrying capacity Kt. In the special case where r is large this means that the rate
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of change of Nt will be large in magnitude so that it follows Kt more closely. For

this reason, the fluctuations of Nt will always be smaller than Kt, VVV (Nt) < VVV (Kt).

In the extreme case where r → ∞ then Nt = Kt, so that the distribution of Nt will

be the same as the distribution of Kt. In this case only does VVV [Nt] = EEE [Kt].

To formally show this, start with the coupled sde

dNt

dt
= rNt

󰀠
1− Nt

Kt

󰀡
, Nt=0 = N0 (5.1a)

dKt = σdWt, Kt=0 = K0 (5.1b)

where σ > 0 is the intensity of the noise. Recall the solution forKt isKt = K0+σWt,

which implies Kt ∼ N(K0, σ
2t). The solution to the differential equation for Nt is

Nt =
N0

e−rt +N0

󰁨 t

0

re−r(t−s)

Ks

ds

, t > s. (5.2)

Consider,

lim
r→∞

Nt = lim
r→∞

N0

e−rt +N0

󰁨 t

0

re−r(t−s)

Ks

ds

. (5.3)

The first term in the denominator is zero, to evaluate the second term we note,

lim
r→∞

re−r(t−s) = δ(t− s), t > s, (5.4)

where δ(t− s) is the Dirac delta function. Then

lim
r→∞

󰁨 t

0

re−r(t−s)

Ks

ds =

󰁨 t

0

δ(t− s)

Ks

ds, t > s, (5.5)

=
1

Kt

,

leading to

lim
r→∞

Nt = Kt. (5.6)

The practical implication is that for large values of the intrinsic birth rate, r, the

distributions for Nt and Kt are approximately the same. What the situation is for

the more realistic and interesting case, small r, is beyond the scope of this thesis.

The next step is to construct and numerically solve the Fokker-Planck equation for

the joint pdf of Nt and Kt including the appropriate absorbing boundary conditions
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for Nt and Kt. The marginal distributions can then be calculated from which esti-

mates of extinction times can be determined [44]. This latter knowledge is important

in the consideration of possible conservation practices. The analysis is beyond the

scope of this thesis.

Future work

A few possible extensions are offered.

Environmental stochasticity: a modelling issue

Changes in environmental conditions also leads to a response in the species’ fecun-

dity, thus modelling the growth rate rt with noise as well as the carrying capacity

Kt is an important extension.

Using a multiplicative noise to model the effect of stochastic fluctuations in the

intrinsic growth rate and for the carrying capacity being represented by a Wiener

process, we get

dNt = rNt

󰀠
1− Nt

Kt

󰀡
dt+ σ1Nt dW

(1)
t , Nt=0 = N0 (5.7a)

dKt = σ2dW
(2)
t , Kt=0 = K0 (5.7b)

where W
(1)
t and W

(2)
t are standard and uncorrelated Wiener processes. This model

can be modified to account for a degree of correlation by writing

dNt = rNt

󰀠
1− Nt

Kt

󰀡
dt+Nt

󰀞
σ1ρ dW

(1)
t + σ2

󰁾
1− ρ2 dW

(2)
t

󰀟
(5.8a)

dKt = σ1

󰁾
1− ρ2 dW

(1)
t + σ2ρ dW

(2)
t (5.8b)

where |ρ| ≤ 1 may be thought of as a correlation parameter. The additional aim is

to understand the effect of ρ on population dynamics.
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Gompertz model

Another equally popular model is the Gompertz differential equation

dNt

dt
= γNt (ln(K)− ln(Nt)) , (5.9)

where K has the meaning of carrying capacity, similar to that of the logistic differ-

ential equation, and γ is a parameter.

Originally, the Gompertz model was not written as equation (5.9). It was motivated

by seeking a model with non-constant human mortality rates, being expressed as a

decaying function with time, namely

dNt

dt
= rNt, with r = a0e

−γt, (5.10)

where a0 is the maximal growth rate. To see how the carrying capacity emerges

note that on separating variables and integrating

ln(Nt) = −a0
γ
e−γt + C

where C is an arbitrary constant of integration. Now assuming that as t → ∞,

Nt → K, leads to

ln

󰀠
Nt

K

󰀡
= −a0

γ
e−γt

then substitution into equation (5.10) leads to equation (5.9). Thus introducing the

carrying capacity, a purely mathematical outcome.

More fundamental, however, is to treat the growth rate as a state-variable

dr

dt
= −γr, r(0) = a0. (5.11)

In the deterministic cases all three representations of the Gompertz differential equa-

tion are equivalent. What is not clear is if this is true for their stochastic versions.

Since stochasticity enters the model via γ, how noise appears in equation (5.9) and

equation (5.11) is quite different. It is not certain that the concept of a carry capacity

has any meaning in this case.
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The carrying capacity as a potential

Suppose that the state-variable is now described by the equation

dKt

dt
= −dν(Kt)

dKt

+ ξt

where ν(Kt) > 0 (for all Kt > 0) is a quartic bistable potential with two local

minima, Ka < Kb such that ν(Ka) < ν(Kb). Define h = ν(Kb) − ν(Ka) ≥ 0.

When h = 0 the potential is symmetric. For this situation and under stochastic

perturbation an important consideration is to estimate the mean waiting-time before

the environment ‘escapes’ the state Kb and accelerates towards the new equilibrium

state Ka. If h = 0 or h ∕= 0 (but still small), it might be possible for the ecosystem

to transition back to the higher state after some mean waiting-time in state Ka. If

on the other hand h is very much larger than the noise intensity, the environment

with a lower carrying capacity may become the new permanent state.

Such a situation may have significant consequences for a native population. A more

hostile environment would reduce the population size thus making it more vulnerable

to other types of environmental stresses, including predation by invasive species.

This approach may contribute to the important area of catastrophic ecological

regime shift that is claimed to be the mechanism for the sudden extinction of species.
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