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Donor spins in silicon allow for extremely long storage of quantum information and
provide accurate single spin control. While these properties make them attractive for
quantum computation, to build a large-scale quantum computer some major chal-
lenges still need to be addressed.

One key issue is coupling two donor quantum bits (qubits) with high fidelity, in
a scalable manner, without requiring extremely accurate donor placement. In this
thesis, we propose a new type of qubit, the flip-flop qubit, a combination of the
electron-nuclear spin states of the phosphorus donor, that can be controlled by mi-
crowave electric fields. A dipole is created when separating the donor electron from
the nucleus, allowing two-qubit gates mediated by electric dipole-dipole interaction
at donor distances of several hundred nanometres. Gate fidelities are predicted to
be within fault-tolerance thresholds for quantum error correction codes, using real-
istic charge noise values. Strong coupling of the qubit to superconducting resonators
can also be achieved. This idea can be extended to couple nuclear spins to electric
fields by adding a magnetic drive, applied simultaneously with the electric drive in a
Raman-like configuration. Both qubits can be incorporated in a large scale quantum
processor.

Two types of flip-flop qubit prototypes, one suited for direct dipole-dipole cou-
pling and one for coupling to a resonator, have been designed, fabricated and mea-
sured. Fundamental functionalities have been established and the coupling of a
charge qubit to a resonator has been observed.

When building a large scale quantum computer, precise knowledge of the funda-
mental physics of the donor system is of key importance. To this end, we analyse the
electron spin relaxation. We find that the spin relaxation is caused by phonon emis-
sion at high magnetic fields (> 3 T), but becomes dominated by evanescent-wave
Johnson noise at lower fields. We also find evidence of spurious spin relaxation
caused by electron tunnelling to a charge reservoir, preventable by appropriate tun-
ing of the donor electrochemical potential.

Overall, the achievements made in this thesis bring us a step closer to achieving
a scalable spin-based quantum computer in silicon.
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Chapter 1

Introduction: A different form of
computation

“Nature isn’t classical, [. . . ], and if you want to make a simulation of nature, you’d better
make it quantum mechanical, and [. . . ] it’s a wonderful problem, because it doesn’t look so

easy."
– Richard Feynman, 1982



2 Chapter 1. Introduction: A different form of computation

1.1 The quantum revolution of computation

Ever since the invention of the abacus around 2700− 2300 BC in Babylon [1] compu-
tation has been a fundamental pillar of human societies. Over centuries calculus and
mathematics have evolved and become more and more relevant in all aspects of our
lives. When in the second half of the 20th century the digital computer was invented,
data processing and storage capabilities grew exponentially [2]. In the last decades
digital computing has revolutionized many aspects of modern life, ranging from
logistics to medicine, banking and many more. Not only is the computing power
developing though, but computing is constantly reinventing itself. New technolo-
gies emerge, enveloping their predecessors. A powerful example is the invention of
the internet in the late 1980s [3] which enabled networking, collaboration and open-
source culture. Nowadays computing is deeply embedded in everyday life. We, as
a society and as individuals, rely on the ever increasing and evolving technology.
However, we have been approaching a critical turning point in computation history
in recent years. Not only has the processing power growth started to saturate since
device feature size reached atomistic distances, but also is the complexity of modern
society’s challenges increasing to a point where many of these challenges are fun-
damentally unsolvable with classical computation. One of these challenges is the
understanding of advanced molecules and quantum systems to engineer chemical
processes and nanotechnology. We find ourself at the "frontier of complexity" [4],
when the next evolution of computation is necessary - the quantum revolution.

Quantum systems are inherently complex once many particles are involved. For
instance in quantum chemistry, to find the stable electron configuration of a molecule,
the ground state, one needs to perform configuration interaction (CI) calculations.
Many-particle molecular wave functions are represented by single-particle atomic
orbitals, where the number of orbitals is proportional to the number of electrons
(corresponding to the number of atoms) in a molecule [5]. Depending on the desired
accuracy, a basis set is chosen and then the CI matrix is computed. The calculation
time and resources scale exponentially with the molecule size on a classical com-
puter. For instance, even today’s largest supercomputers cannot accurately simulate
the molecule cholesterol C27H46O, an essential component for all animal and human
life. To describe the interactions of the 84 electrons, we chose a correlation consis-
tent basis, which gives around 1500 spatial basis functions which in turn yields 10162

configurations - more than atoms in the universe [5], [6]. We find that the complex-
ity of this quantum system prevents any precise predictions. However, if we cannot
conquer this complexity with current means, why not harness it instead?

Already in 1982, physicist Richard Feynman suggested to harness the inherent
complexity of quantum systems to simulate other quantum systems when he said
"Nature isn’t classical, [. . . ], and if you want to make a simulation of nature, you’d better
make it quantum mechanical, and [. . . ] it’s a wonderful problem, because it doesn’t look so
easy." [7] The complexity of quantum systems and the power of information encoded
in quantum particles arises from two inherent quantum mechanical properties of
all quantum particles: superposition and entanglement [8]. The former allows the
quantum particle to be in exclusive states at the same time. The latter describes
the correlation between different states - fully entangled states cannot be described
independently, they are not separable.

A quantum computer consists of many such quantum particles that have only
two available states (quantum bits or qubits), equivalent to the classical bits 0 and
1. On such a computer, the exponential scaling of resources needed to simulate
quantum systems on classical computers turns into a more favourable polynomial
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overhead [6], [9]. For instance, for cholesterol only around 1000 qubits are required
to store the molecules wave function and calculate its ground state. Efficient quan-
tum simulation of a molecule’s ground-state energies with a variational quantum
eigensolver has already been demonstrated for smaller molecules such as H2 and
LiH [10]. Many more quantum algorithms for condensed matter physics, chemistry,
math and computer science have been developed and promise quantum speed-up
[11], [12].

The foundation of such a quantum computer is a single qubit: a well-defined
two-level system, that can interact strongly with another qubit but does not interact
with the environment, except when being measured. These requirements stand in
conflict with each other and already give us an indication that building a quantum
computer is indeed a challenging task, just as Feynman suggested.

As the stakes in this "quantum race" are high, in the last years not only re-
searchers but also companies like IBM, Intel, Microsoft and Google have started to
participate. Billions of dollars have been invested for the potential to push past the
frontier of complexity and many different paths are being explored.

There exist a myriad of physical systems that promise good qubits, ranging from
microscopic systems such as trapped atoms, photons and spins in semiconductors to
macroscopic systems such as superconducting qubits [13]. As it stands, trapped ions
and superconducting qubits are leading in the number of connected qubits, reaching
53 and 72 respectively [14], [15] (as of December 2018). However, these system do
not represent universal quantum computers yet. The former lacks universality as
only specific problems like the Ising model can be simulated, while the latter has yet
to proof full control of its qubits. If these platforms will establish themselves in the
long run is still in question as trapped ions are challenging to scale up to large qubit
networks and superconducting qubits struggle with relatively short coherence times
[13], [16].

Another promising and growing sector are semiconductor spin qubits, specifi-
cally silicon based ones. Firstly, they can draw from the experience and technology
of the billion dollar semiconductor industry, and secondly, they have a good poten-
tial for large scale quantum computing as they are small and adjustable with long
coherence times [17]. D. DiVincenzo and D. Loss first proposed a single spin qubit
in 1998 [18]. Shortly thereafter, the first GaAs spin qubit was build [19] and has
seen huge development since [20], [21]. However, the inevitable presence of nu-
clear spins in GaAs makes the qubits challenging to work with. In silicon, this noise
source is strongly reduced and superior industry nano-fabrication techniques are
available. Consequently, already in 1998 Kane envisioned a silicon based quantum
computer [22]. Nevertheless, it took until 2007 for the first single electron occupation
silicon quantum dot to be realised [23]. Since then donor based qubits [24], quan-
tum dot qubits [25], [26], SiGe qubits [27] and CMOS qubits [28] have been devised,
reaching high levels of accuracy and control [17]. The current state of the art is a
programmable two-qubit quantum processor in Si/SiGe quantum dots [29].

UNSW has pioneered this era of silicon qubits. Since Kane made his silicon quan-
tum processor proposal here at UNSW [22], our researches have worked to achieve
this goal. A. Morello and his research group have pursued the path to silicon quan-
tum computing by using implanted phosphorus donors in silicon. Both the electron
and the nucleus spin perform well as qubits with exceptional coherence times of
over 30 s and single qubit gate fidelities of 99.99 % for the nucleus [30]. Nevertheless,
integrating donor qubits into a scalable quantum computer architecture remains a
formidable challenge and many effects in the quantum system remain little under-
stood.
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1.2 Scope of this thesis

In this thesis, I continue on the path towards a donor based silicon quantum pro-
cessor by proposing a new way to not only couple donor spin qubits over distances
of several hundred nanometres but also entangle them with photons in a super-
conducting resonator. To this end, the quantum information is encoded in a novel
electrically accessible qubit, the flip-flop qubit, which is formed by both the electron
and the nuclear spin together. The flip-flop qubit relies on the formation of a charge
qubit by separating the electron from the donor nucleus. The resulting large electric
dipole enables electric driving and two-qubit coupling. I have devised, built and
measured devices, which support the flip-flop qubit for both coupling two qubits
via dipole-dipole interaction and coupling a qubit to a superconducting resonator.
For the first time, I show the coupling of the donor charge qubit to a single photon.

Another important factor in advancing donor qubits is the full understanding
of the qubit system. To this end, I have measured the electron spin relaxation of a
donor in silicon extensively. This work has expanded the general understanding of
the relaxation processes involved and compliments other studies of relaxation times
in silicon [24], [31]–[33].

To fully understand all concepts in this thesis, Chap. 2 gives an overview of the
fundamental knowledge on which this thesis is based. Starting with the basics of
qubits, it then moves to properties of donors in silicon, such as orbital structure,
valleys and effective mass. This is followed by an explanation how quantum infor-
mation can be encoded in both the donor electron and nuclear spin and how those
qubits are controlled and measured. Qubit decoherence is also discussed briefly.
Then the fundamentals of circuit quantum electrodynamics (cQED) are laid out.
The representation of a quantized electromagnetic field by an harmonic oscillator
is derived. This oscillator can be created by a superconducting resonator circuit. It
is explained how the resonator couples to the transmission lines and its fields are
measured through the scattering matrix. Finally the coupling of a qubit to such a
resonator, described by the Jaynes-Cummings Hamiltonian, is elaborated.

Chap. 3 introduces the flip-flop qubit, where the quantum information is en-
coded in the joined electron-nuclear states {|↓⇑〉 , |↑⇓〉}. It can be controlled by mi-
crowave electric fields with error rates of 10−3 and coupled to photons of a super-
conducting resonator with a coupling rate of 3 MHz. Furthermore, its second-order
electric dipole-dipole interaction allows for long range two-qubit coupling with a
SWAP frequency of 2 MHz and an error rate below 10−2. The qubit exhibits clock
transitions, regions where the qubit is protected from charge noise and the dephas-
ing can be as slow as 1/T∗2 ≈ 3× 103 s−1. These properties show the flip-flop qubit to
be compatible with quantum error correction and open up the pathway for a scalable
donor qubit quantum processor.

Chap. 4 expands the concepts of the flip-flop qubit and shows that a strong elec-
tric dipole (> 100 D) for the nuclear spin can be created by applying a magnetic drive
in addition to the electric flip-flop control. This dipole can then be employed to cou-
ple the nuclear spin to a superconducting resonator at a megahertz rate. Two-qubit
nuclear spins transitions can be driven at a frequency of 1 MHz while 400 nm apart.
The nuclear spin remains resilient against charge noise when at a clock-transition,
where the dephasing rate is below 10× 103 s−1. The nuclear spin, equipped with the
artificial electric dipole, can then be incorporated into large hybrid quantum archi-
tectures.

Chap. 5 gives a brief introduction to quantum error correction and explores ideas
how both the flip-flop and the nuclear qubit can be incorporated in large quantum
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computing architectures, capable of quantum error correction. Moreover, a small
qubit array design for short term proof-of principle measurements is discussed.

Chap. 6 presents the device design, fabrication, the experimental setup and mea-
surement apparatus. First, the design for the flip-flop qubit aimed at direct two-qubit
dipole-dipole coupling is laid out. This is followed by the discussion of the super-
conducting resonator, designed to incorporate the flip-flop qubit. Next, fabrication
procedures are detailed. Finally the experimental setups for each type of experi-
ment, ranging from electron qubit to flip-flop measurements and cQED analysis, are
shown, including cabling, filtering and measurement apparatus.

Chap. 7 provides measurements to determine the functionalities of the flip-flop
qubit devices and observations of both the flip-flop resonance and coupling of the
charge qubit to a resonator. Moreover, the designed resonators are characterized.
Difficulties, preventing proper operation of the flip-flop qubit and coherent control,
are discussed.

Chap. 8 contains a detailed analysis of the electron spin relaxation in donors.
After a review of the theory of relaxation in donors, the relaxation rate as a function
of magnetic field for multiple devices is presented. The measurement shows that
at low magnetic fields evanescent wave Johnson noise (EWJN) is responsible for an
increase of the electron spin relaxation. At high magnetic fields, phonon-induced
relaxation is dominant, but is modulated by different strain in the various samples.
Additionally, direct tunnelling is found to increase relaxation when the donor elec-
trochemical potential is close to SET electrochemical potential.

Finally, Chap. 9 presents an overview of the achievements reported in this thesis
and their limitations. The outlook for donor quantum computation is discussed. The
thesis concludes with a brief personal viewpoint.
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Chapter 2

Fundamentals: Donor qubits in
silicon and circuit QED

“The world used to be a much simpler place. A hundred years or so ago, we lived in a very
normal, classical universe where everything made sense, and nothing behaved strangely.

Then along came quantum theory."
– Michael Brooks

In this chapter, the concepts of quantum computation with a
focus on donor qubits in silicon are presented as well as the
fundamentals of circuit quantum electrodynamics.
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2.1 The quantum bit

A qubit is a well-defined quantum two-level system. The quantum system is defined
by its Hamiltonian, a Hermitian operator which corresponds to the total energy of
the system. The two levels are described by the eigenstates of this system, ground
state |0〉 and excited state |1〉, analogous to a classical bit with states 0 and 1. The
qubit can be in any superposition state

|ψ〉 = α |0〉+ β |1〉 =
(

α
β

)
(2.1)

with α, β ∈ C and |α2|+ |β2| = 1. Whenever a quantum state is measured directly,
the part of the wave function associated with that state collapses into an eigenstate,
in this case either |0〉 or |1〉 if measured along the quantization axis. The probability
to collapse into these states is respectively |α|2 and |β|2. Thus, to readout a quantum
state, it is measured repeatedly to determine the state probability.

Y

Z

X

|1〉

|0〉

|𝜓𝜓〉

FIGURE 2.1: Bloch sphere. The qubit state |ψ〉 is represented by a vector inside a sphere
with radius unity.

A qubit state can be represented geometrically as a vector in a three-dimensional
sphere, where the mutually orthogonal eigenstates |0〉 , |1〉 are typically positioned
on the north and south pole respectively. All points on the surface of the sphere
symbolize pure superpositions of the eigenstates while interior points signify mixed
states, statistical ensembles of different qubit states. This visual construct is called
Bloch sphere (Fig. 2.1). The basis of this vector space are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.2)

We can express the qubit Hamiltonian in its general form as

H =
ε

2
σz +

∆
2

σx, (2.3)

where ε
2 σz describes the unperturbed qubit system with eigenenergies ± ε

2 while
∆
2 σx is the coupling term between the two eigenstates. The energy splitting between
ground and excited state of the coupled Hamiltonian is then

EQ =
√

ε2 + ∆2. (2.4)
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When H is time-independent, the time-evolution of the qubit state is given by
the Schrödinger equation

H |ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 (2.5)

to

|ψ(t)〉 = U |ψ(t0)〉 = exp
(
−iHt

h̄

)
, |ψ(t0)〉 (2.6)

where U is the time-evolution operator.

Qubit implementation Quantum two-level systems exist in many different phys-
ical systems. However, to viably implement a qubit a number of criteria need to be
fulfilled at a minimum, the DiVincenzo criteria [34]. The qubit itself must be well-
defined and therefore describable by a Hamiltonian. Moreover, it must possess a
well-defined known initial state in which it can be prepared with high precision.
Furthermore, the qubit’s state needs to be measurable, such that we can determine
its value precisely at any time. Additionally, a universal set of quantum gates has to
exist for one and two qubits to execute quantum algorithms. Nonetheless, the qubit
needs to be isolated from its environment to prevent fluctuations on the outside to
change the quantum state, leading to a loss of quantum information. The rate of in-
formation loss needs to be much smaller than the longest gate operation time. Lastly
the qubits have to form a scalable architecture where many qubits can interact with
each other, long distance transport of qubit states is possible and errors can be cor-
rected.

Note that while qubits are the most common way to attempt building a quantum
computer, quantum d-state systems or continuous quantum variables are viable al-
ternatives [13].

2.2 Phosphorus dopants in silicon

In the last decade, silicon has become popular for qubits and quantum computation
as spins in silicon are well decoupled from their environment, leading to long co-
herence times. Moreover, it is an attractive material as technologies and knowledge
from the large semiconductor industry can be harnessed.

3𝑠𝑠 3𝑝𝑝𝑥𝑥 3𝑝𝑝𝑦𝑦 3𝑝𝑝𝑧𝑧

FIGURE 2.2: Silicon orbital structure. Combining one s-type and three p-type atomic or-
bitals results in four sp3 hybrid orbitals which are oriented at 109.5◦ to one another in a
tetrahedral structure. The arrows represent the electron spin state. The figure is adapted

from Ref. [35].

Silicon is a group-IV semiconductor with 14 protons and consequently 14 elec-
trons in its atomic shell. In an isolated atom, the electrons fill the orbitals succes-
sively, complying with Hund’s rule. Hund’s rule states that the ground state of the
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atom has the biggest total spin that complies with the Pauli principle. With its 14
electrons, silicon has an electron configuration of 1s22s22p63s23p2. In a crystal, the 4
valence electrons with the orbitals 3s23p2 of neighbouring atoms hybridize with one
electron each and sp3 hybrid orbitals are formed instead, resulting in a tetrahedral
structure (Fig. 2.2).

Conduction 
band minima x 6

a
𝑘𝑧

𝑘𝑥

𝑘𝑦 𝑚𝑙

𝑚𝑡

b

FIGURE 2.3: Silicon band structure and valley properties. a Band structure of bulk silicon.
The conduction band minimum is at finite crystal momentum k = 0.85 k0 and six-fold de-
generate. b 6 constant energy surfaces at the conduction band minimum in k-space represent
the 6 valleys. The anisotropic energy dispersion results in the longitudinal ml and transverse

mt effective masses. Fig. a is taken from Ref. [17].

As the crystal lattice contains a large number of silicon atoms and the Pauli prin-
ciple prevents any electrons to have the same quantum number, the molecular or-
bitals are very tightly spaced in energy and can be considered a continuum, an en-
ergy band. The band structure of a silicon crystal (Fig. 2.3a) exhibits a band gap
of 1.12 eV with a minimum of the conduction band at a finite crystal momentum
k = 0.85k0 (k0 = 1/a is the Brillouin zone boundary and a is the lattice constant) and
as such has an indirect band gap. This conduction band minimum consists of 6 de-
generate valleys with two valleys along each kx, ky and kz (Fig.2.3b). The dispersion
relation at the band edge is

E(k) = E(0) +
h̄2k2

2m∗
, (2.7)

which determines the effective mass m∗ of the electrons in the energy band. For sili-
con, the dispersion is anisotropic along different crystal directions (Fig.2.3b), which
results in a transverse effective mass of mt ≈ 0.19 me along kx and ky and a longitudi-
nal effective mass of ml ≈ 0.98 me along kz, where me is the mass of the free electron

[36]. This gives a total effective mass of m∗ =
√

m2
l + 2m2

t /3 ≈ 0.33me.
Group-V elements such as P, As, Sb and Bi are single electron donors for silicon.

However, this thesis focusses on phosphorus donors only. When incorporating a
donor into the silicon crystal, the extra positive charge of the donor nucleus creates
a Coulomb binding potential for the outermost weakly bound electron of the donor

V(r) =
1

4πε0εr

−Ze
r

, (2.8)

where Z is the excess charge of the dopant, ε0 the permittivity of vacuum and εr the
relative dielectric constant (Fig. 2.4a). In the environment of the silicon crystal the
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FIGURE 2.4: Donor Coulomb potential and wave function. a Donor Coulomb potential
V(r) with ground state (A1) and excited states (T2, E) indicated. The valley degeneracy has
been lifted by the strong confinement due to the dopant atom. b Wave function and charge
distribution of the donor electron states A1 (top panel) and Tx (bottom panel), exhibiting
valley oscillations. c Valley splitting of quantum dots. The degeneracy of the 6 valleys is
lifted by strong electric fields and the z-confinement. Fig. b is taken from Ref. [37] and Fig.

c from Ref. [17].

donor can be treated analogous to a hydrogen atom in vacuum, where the effective
electron mass is m∗, according to the dispersion relation of the conduction band
electrons, and εr = 11.9 due to silicon screening the Coulomb force. Thus, the donor
has a Bohr radius of ad = a0εr/m∗ ≈ 20 Å, where a0 is the Bohr radius in vacuum
[17].

Central-cell corrections due to the strong donor confinement potential split the
six valleys into a singlet with A1 symmetry (ground state, −45.6 meV below the
conduction band minimum), a triplet with T2 symmetry (11 meV above A1) and
a doublet with E symmetry (13 meV above A1), see Fig. 2.4a [36]. For each of
these states i ∈ (A1, Tx

2 , Ty
2 , Tz

2 , Exy, Ez), the corresponding donor wave function
Ψi = ∑6

j=1 α
(j)
i ψ(j) is a linear combination of the envelope-modulated Bloch func-

tions ψ(j) of the 1s orbital from the six valleys j [36], [37], where the coefficients

α
(j)
A1

=
1√
6
(1, 1, 1, 1, 1, 1), (2.9a)

α
(j)
Tx

2
=

1√
2
(1,−1, 0, 0, 0, 0), (2.9b)

α
(j)
Ty

2
=

1√
2
(0, 0, 1,−1, 0, 0), (2.9c)

α
(j)
Tz

2
=

1√
2
(0, 0, 0, 0, 1,−1), (2.9d)

α
(j)
Exy =

1
2
(1, 1,−1,−1, 0, 0), (2.9e)

α
(j)
Ez =

1
2
(1, 1, 0, 0,−1,−1), (2.9f)

denote the relative contribution from each of the individual valleys. For instance,
the singlet ground state A1 is a symmetric combination of all 6 valleys. Its wave
function is symmetric but exhibits oscillations within ad (Fig. 2.4b, taken from Ref.
[37]). These oscillations arise from the donor confinement and the finite momentum
k0 of the valley states and are called valley oscillations. All donor states exhibit
valley oscillations which can strongly influence interactions related to wave function
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overlap, like the exchange interaction.
Note that, in quantum dots the valley degeneracy is also lifted (Fig. 2.4c). Large

electric fields and the triangular quantum well confinement at the Si/SiO2 interface
increase the energy of the in-plane k±x, k±y valleys and split the two-fold degeneracy
the k±z valleys [17].

2.3 A donor spin qubit

Spin is an intrinsic quantum mechanical property of elementary particles and atomic
nuclei that describes how the particle is deflected when moving in magnetic fields. It
gives the particle angular momentum and a small magnetic moment. Spin is quan-
tized, thus can only take the discrete values −s,−s + 1, ..., s− 1, s where s = n/2 is
the spin quantum number with n ∈ N0. This property makes spin s = 1/2 ideal for
quantum computation, being a natural two level system.

|↑⇓〉
|↑⇑〉

|↓⇓〉
|↓⇑〉

𝜈𝜈𝑒𝑒⇑𝜈𝜈𝑒𝑒⇓

𝜈𝜈𝑛𝑛↑

𝜈𝜈𝑛𝑛↓

FIGURE 2.5: Electron-nucleus level diagram. Electron and nuclear spin energy levels with
magnetic transitions indicated.

Both the donor electron and the phosphorus nucleus carry a spin of 1/2. Conse-
quently, both the electron spin {|↑〉, |↓〉} and the nuclear spin {|⇑〉, |⇓〉} can be used
to encode quantum information. Unperturbed, the spin states have the same energy
- they are spin-degenerate. However, if an external magnetic field B0 is applied,
they split by the Zeeman energy EZ = hγB0, with γ being the corresponding gyro-
magnetic ratio (Fig. 4.3). The quantization of the spin happens along the direction
of B0, which we set in the z-direction unless otherwise indicated. The Hamiltonian
describing the uncoupled electron-nuclear system is

HZ = hγeB0Sz − hγnB0Iz (2.10)

with Sz = 1
2 σz and Iz = 1

2 σz as the spin operators in z-direction of the electron and
nucleus respectively and γe = 27.97 GHz/T, γn = 17.23 MHz/T as the respective
gyromagnetic ratios.

However, the electron and the nucleus are not isolated from each other. They
interact intrinsicly due to the Fermi contact hyperfine interaction A. The hyperfine
interaction arises from the overlap of the electron wave function and the nucleus.
The singlet ground state wave function ψA1 has a finite probability at the position
of the nucleus (Fig. 2.4b) while for the excited states ψT2 , ψE the probability is zero.
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Consequently, only the A1 state enables the hyperfine interaction. There is no dipo-
lar interaction between the electron and the nucleus as the ground state is a sym-
metric 1s state. Note, that any other nuclei in the vicinity contribute to the contact
hyperfine interaction. These nuclei also have a finite dipolar contribution as they are
positioned off-centre of the wave function. The hyperfine interaction Hamiltonian is

HA = hAS · I, (2.11)

where S = Sx + Sy + Sz and I = Ix + Iy + Iz with Si/Ii as the spin operator in di-
rection i = x, y, z. This interaction leads to the Hamiltonian of the coupled electron-
nuclear system

H = HZ +HA = hγeB0Sz − hγnB0Iz + hAS · I. (2.12)

For γeB0 � γN B0 > A the detuning between the coupled states |↑⇓〉 , |↓⇑〉 is
much larger than A and the electron and nuclear states can be separated. The eigen-
states of the Hamiltonian {|↑⇑〉 , |↑⇓〉 , |↓⇑〉 , |↓⇓〉} (Fig. 4.3) are then the tensor prod-
ucts of the individual spin states (|↑⇑〉 = |↑〉 ⊗ |⇑〉 etc.) with eigenenergies

E↓⇑/h =
−
√
(γ+B0)2 + A2 − A/2

2
, (2.13a)

E↓⇓/h =
−γ−B0 + A/2

2
, (2.13b)

E↑⇓/h =

√
(γ+B0)2 + A2 − A/2

2
, (2.13c)

E↑⇑/h =
−γ−B0 − A/2

2
, (2.13d)

where γ± = γe ± γN .

2.3.1 Electric field influence

Electric fields, arising from strain, surface charges, confinement effects or an exter-
nal voltage bias, influence the electron orbital, the valley states and the hyperfine
interaction significantly.

If an electric field is applied to the donor, the electron is slowly separated from
nucleus, until the donor is ionized and the electron is confined at the Si/SiO2 inter-
face in form of a quantum dot (Fig. 2.6a insets). When transitioning from donor
to dot, the 6 valley states’ energies shift when the electric field increases and the
confinement transitions from the strong symmetric donor potential to a triangular
potential well at the Si/SiO2 interface. As a consequence the valley splitting between
the first and excited state decreases (Fig. 2.6a, As donor, taken from Ref. [38]) and
valley mixing may have to be considered.

As an electric field distorts the wave function, the hyperfine interaction will
change, creating a Stark shift of the spectral line (Fig. 2.6b, taken from Ref. [39]).

These electric effects are both very relevant for our qubit experiments, where
large electric fields are present.

2.3.2 Qubit control

As spins possess a magnetic moment, they can be controlled via magnetic resonance,
where an external oscillating magnetic field is applied in resonance with the spin
states energy splitting.
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FIGURE 2.6: Effect of electric fields on the donor electron. a First six eigenlevels of an As
donor electron at depth d = 4.3 nm as a function of electric field, calculated in a tight-binding
approximation. Insets show a sketch of the electron wave function for three different electric
fields. b Change of the hyperfine interaction as a function of electric field for different donor
depths, calculated with tight-binding (TB) and band minima basis (BMB) methods. Fig. a is

adapted from Ref. [38] and Fig. b is taken from Ref. [39].

Within a static magnetic field B0ẑ, a spin precesses around the magnetization
axis ẑ at the Larmor frequency ω0 = γB0 (Fig. 2.7a). It is convenient to change
our reference frame from the laboratory to a rotating frame which rotates at angular
frequency ω (Fig. 2.7b). This corresponds to a basis transformation of

|ψr〉 = exp
(

iωt
2

σz

)
|ψ〉 . (2.14)

In this reference frame, the spin state appears to precess with the angular frequency
∆ω = ω0 −ω.

We apply a magnetic pulse 2Bac cos(ωact)x̂, perpendicular to B0ẑ, oscillating at
an angular frequency ωac in the laboratory frame. As cos(ωact) = 1

2 [exp (iωact) +
exp (−iωact)], we find two magnetic field components of amplitude Bac in the ro-
tating frame: one rotating with the frame at ∆ωac = ω − ωac and one against at
∆′ωac = ω + ωac. We now choose ω = ωac. If ωac ≈ ω0, the counter-rotating part
can be neglected, as it is far detuned from resonance. This is called the rotating wave
approximation (RWA). The spin will then precess around the effective magnetization
axis with ωeff = ∆ω + ωR, where ωR = γBac (Fig. 2.7c). If ∆ω = ωac − ω0 = 0, the
spin rotates at ωR in the yz-plane of the Bloch sphere. These oscillations are called
Rabi oscillations and their angular frequency ωR is the Rabi frequency. If ∆ω 6= 0,
the evolution of the spin state |ψ(t)〉 is described by the Rabi formula which gives
the probability that the state is found in |↑〉, when initially in |↓〉, to

|〈↑ |ψ(t)〉 |2 =
ω2

R

ω2
R + ∆ω2

sin2


√

ω2
R + ∆ω2

2
t

 . (2.15)

When this magnetic resonance technique is applied to the electron, we speak of
electron spin resonance (ESR) and, when it is applied to the nucleus, of nuclear mag-
netic resonance (NMR). In figure 4.3 these magnetic transitions and their resonance
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FIGURE 2.7: Spin qubit in the rotating frame. a In the laboratory frame, the spin precesses
around B0ẑ with an angular frequency of ω0. b In a rotating frame with angular frequency ω,
the magnetic field along the z-direction is reduced and the spin now precesses at ∆ω = ω0−
ω. c When an oscillating magnetic field with ωac is applied, it appears static in a rotating
frame with ωR = γBac for ω = ωac. The spin precesses around the effective magnetic field
axis with ωeff = ∆ω + ωR. At zero detuning ωac = ω0, the spin perfectly oscillates between

|0〉 to |1〉 at frequency ωR.

frequencies

νe⇑ = γeB0 + A/2,
νe⇓ = γeB0 − A/2,
νn↑ = A/2− γnB0,
νn↓ = A/2 + γnB0

are illustrated.
For a single phosphorus donor electron qubit, spin control was first demon-

strated in 2012 [40] and for the nuclear qubit in 2013 [41]. When implanting the
donor in purified 28Si, which contains only 800 ppm 29Si with nuclear spin 1/2, con-
trol fidelities of 99.94 % and 99.99 % respectively have been achieved [30], [42].

2.3.3 Qubit initialization and measurement

To successfully operate a spin system as a qubit, we need to be able to determine
in which spin state it is at any given time. Therefore, we employ spin-to-charge
conversion, which turns the electron spin signal into a charge signal and use a single
electron transistor (SET) to detect small charge changes in its vicinity.

A SET consists of a small island of accumulated electrons which is capacitively
coupled to a top gate TG and tunnel coupled to two electron reservoirs, the source S
and the drain D (Fig. 2.8a). The energy of this island is

E =
Q2

2C

=
e2N2

2C
= EC N2,

(2.16)

where Q is the charge on the island which consists out of N electrons, C is the total
capacitance of the island and EC is the charging energy. To add one electron to the
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FIGURE 2.8: Electron readout with spin-dependent tunnelling. a The SET consists out of an
island with a total capacitance C. The island is tunnel coupled to S and D with capacitances
CS and CD respectively and capacitively coupled to a top gate TG with CTG. Additionally
the SET is tunnel coupled to any donor in the vicinity with capacitance Cm. The total capac-
itance of the donor C∑ depends on its surroundings. Tunnel coupled junctions are indicated
with X. b Sketch of the electrochemical potentials along the dashed yellow line in panel
a. The SET island and the donor form a parallel double dot such that µSET depends on the
charge state of the donor. c Charge stability diagram where the green lines represent the SET
Coulomb peaks, as shown in the inset, spaced by ∆VTG. µSET can be kept fixed by biasing Vd
and VTG along the yellow line. d Sketch of the electrochemical potentials at finite B0, where
all spin states are split by EZ. Only |↑〉 can tunnel into the SET and enable current flow, while

|↓〉 stays confined and the current blocked. Fig. c is adapted from Ref. [43].

island one needs the energy

∆E(N) = E(N + 1)− E(N)

= EC

(
N +

1
2

)
≡ µSET(N),

(2.17)

called the electrochemical potential. The SET island exhibits a ladder of these poten-
tials µSET(N), µSET(N + 1), ... (Fig. 2.8b).

In our qubit devices, the diameter of the SET island is usually dSET ≈ 50− 100 nm
which corresponds to a capacitance of C = 2πε0εrdSET = 33− 65 aF and a charging
energy of EC = 2.4− 1.2 meV. For charging effects to be relevant, the temperature
needs to be small in comparison to the charging energy (EC � kBTe with Te as the
electron temperature).
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Assuming zero bias between S and D, the corresponding electrochemical poten-
tials µS and µD align (µS = µD). When a voltage bias VTG is applied on TG, µSET(N)
is shifted. For µSET(N) ≥ µD, the Nth electron cannot be added to the SET island
and no current can flow from S to D - the SET is in Coulomb blockade. Only when
µSET(N) = µD, electrons can tunnel on and off the SET island one at a time at no
energy cost - the blockade is lifted and a current is observed. Hence, when con-
tinuously increasing VTG, the current oscillates between high and low values and
we observe Coulomb oscillations (Fig. 2.8c, inset). The spacing between the peaks
corresponds to

∆VTG =
EC

eαTG
, (2.18)

where
αTG =

CTG

C
(2.19)

is the lever arm between TG and the SET island with CTG as their mutual capacitance.
The finite width of the peaks arises from the thermal broadening of the occupied
states at the Fermi level EF, the bias between S and D and the tunnel rate ΓSET of an
electron through the barrier ("lifetime broadening").

When a donor is in the vicinity of the SET, it is tunnel coupled with a capacitance
of Cm to the island (Fig. 2.8a). The SET island and the donor then form a parallel
double quantum dot. Thus, both µSET(N) and µd(N), the donor electrochemical
potential, depend on the charge state of the donor and the SET island respectively
(Fig. 2.8b). We tune the SET such that µSET(0, N + 1) = µD < µSET(1, N + 1). We
shift µd by applying a voltage Vd on the donor top gate. During this process we keep
the SET energy levels fixed by compensating with VTG such that we follow the angle
of the Coulomb peaks (yellow line in Fig. 2.8c). As long as the donor is neutral, the
SET stays in Coulomb blockade. However, when µd ≥ µSET(1, N + 1), the donor
becomes ionized and the SET potential shifts from µSET(1, N + 1) to µSET(0, N + 1)
- Coulomb blockade is lifted and current flows. This allows us to detect a change
of the donor charge state. When we measure the SET current both as a function of
VTG and Vd, we record a 2D map of Coulomb peaks, the charge stability diagram
(Fig. 2.8c). Charges, e.g. donors, can easily be identified by discontinuities in the
Coulomb peaks that appear when the donor is loaded. This charge transfer signal is
given by

∆q
e

=
∆Vm

∆VTG
=

Cm

C∑
, (2.20)

where C∑ is the total donor capacitance. ∆q/e approaches one, the closer the donor
is positioned to the SET.

At finite B0, all spin states are split by EZ. When EZ � kBTe, we can exploit this
splitting to link the spin state to the charge state and distinguish between an electron
in spin state |↑〉 and |↓〉. To this end, we carefully tune the donor potential such that
µd(↑, N) = µSET(0, N + 1) + EZ/2 and µd(↓, N) = µSET(0, N + 1)− EZ/2 (Fig. 2.8d).
In this case, an electron in spin state |↓〉 always stays confined at the donor and the
SET remains in Coulomb blockade. Thus, we associate a |↓〉 electron with a low
current signal. On the contrary, an electron in spin state |↑〉 can tunnel to the SET.
Coulomb blockade is lifted and a high current flows until another electron in spin
state |↓〉 tunnels onto the donor and blocks the current again. Hence, we associate
a |↑〉 electron with a high current blip (Fig. 2.8d). The blip duration is determined
by the tunnel rate Γd,↓ of an electron in spin state |↓〉 from the SET to the donor.
Note, that the electron spin states in the SET are also split by EZ. Nevertheless,
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the tunnel rate for both electron spin states remains equal as long as the number of
available states around EF is the same for both spin states. Moreover, assuming the
SET island to be a quasi-continuum of states serves only as an approximation. In fact,
mostly we operate our SETs with around 100 electrons. In this regime we observe
some remaining many-electron quantum-dot behaviour [44]. As a consequence the
density of states in the SET is not fully continuous and Γd,↓ and Γd,↑ can slightly vary
for different voltages and are not necessarily equal.

This measurement process can also be used to initialize the qubit into a well
known state, a vital feature for qubit operation. When tuned for read out, any elec-
tron in spin state |↑〉 will eventually escape and be replaced by an electron in spin
state |↓〉. Thus, after a time t > Γ−1

d,↓ + Γ−1
d,↑, the electron is initialized in the spin state

|↓〉.
This type of single-shot donor electron spin readout has been first demonstrated

in 2010 by A. Morello et. al. [24]. The nuclear spin state can also be readout via this
mechanism as its state can be mapped onto the electron spin via NMR pulses [41].

2.3.4 Qubit decoherence

Small amounts of information loss from the qubit to the environment can lead to the
destruction of a coherent quantum state. This process is called decoherence.

Y

Z

X

|1〉
a

|0〉

|𝜓〉

b

FIGURE 2.9: Qubit decoherence. a An initially coherent state |ψ〉 decoheres through dephas-
ing, relaxation and excitation. Dephasing corresponds to a diffusion of the qubit’s phase
when the Larmor frequency slowly changes (purple arrows). Relaxation (yellow arrow) cor-
responds to a transition from |1〉 to |0〉 while excitation leads to a transition from |0〉 to |1〉.
b Slow noise along σz changes the qubit Larmor frequency over time. Thus a temporal en-
semble dephases on a time scale T∗2 (left panel). Interactions with the environment also can
change the qubits phase in a single trail, causing decoherence of the temporal ensemble on
the time scale T2 (right panel). Energy exchange with the environment leads to relaxation on

the time scale of T1 (right panel). Fig. b is taken from Ref. [13].

Any external noise source that couples to the qubit system leads to fluctuations
in the qubit HamiltonianH0 (Eq. 2.3) resulting in a perturbed Hamiltonian of

H(t) = H0 +H′. (2.21)

H′ is the noise perturbation which can be divided into longitudinal noise along the
z-direction with

H′z = δε(t)σz (2.22)
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and perpendicular noise along the x-direction with

H′x = δ∆(t)σx. (2.23)

Here δε(t) and δ∆(t) are the energy shifts caused by noise sources in z- and x-
direction respectively.
H′z causes fluctuations in the qubit frequency ω0(t). Consequently, when taking

a temporal ensemble measurement, the qubit precesses with a different angular fre-
quency around its quantization axis at each trial. Hence, the phase at a specific time
t′ of the qubit oscillation is different for each trail. This causes an apparent damp-
ing of the oscillation on a time scale called T∗2 (Fig. 2.9). A single qubit oscillation
can retain its phase coherence much longer, although it will still interact with the
environment. The interaction may result in a phase shift of the qubit and the qubit
coherence will dephase on a time scale T2 (Fig. 2.9).

Longitudinal noise for donors in silicon can arise from Overhauser field fluc-
tuations of 29Si nuclear spins, thermal Johnson-Nyquist radiation and instability of
B0 [30]. The dephasing time can be extended by dynamical decoupling techniques
where clever pulse sequences cancel slow noise [45]. The longest coherence time for
a single spin in silicon was measured to T2 = 35.6 s for the phosphorus nuclear spin
while employing such techniques [30]. For the electron spin T2 = 1 s was achieved
[46].

Fluctuations in the off-diagonal elements of the qubit Hamiltonian due trans-
verse noise sources, as expressed in H′x, create an energy exchange with the envi-
ronment and cause transitions between the qubit eigenstates. On the time scale T1
the qubit system will then relax into thermal equilibrium (Fig. 2.9).

Perpendicular noise for donors in silicon is weak and mostly caused by phonons.
Relaxation times can reach T1 = 30 s for the electron spin and exceed hours for the
nuclear spin [47]. Refer to Chap. 8 for a detailed discussion of relaxation in donors.

2.4 Circuit Quantum Electrodynamics

In cQED a single photon inside a cavity, comprised of an on-chip resonator, coher-
ently couples to a quantum system. In quantum computation, cQED can be em-
ployed to measure qubits, couple qubits over long distances and to connect different
types of quantum systems.

2.4.1 A quantized electric field

To describe the coupled system of a cavity electric field and the quantum system, we
need to find a quantum mechanical treatment of the electric field to understand its
interaction with single quantum particles. Therefore we first determine the energy
contained by an electromagnetic field and then quantize the field, following Refs.
[48], [49].
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For any electromagnetic field Maxwell’s equations apply

~∇× ~E = −∂~B
∂t

(Faradays Law), (2.24)

1
µ0

~∇× ~B = ε0
∂~E
∂t

+~J (Amperes Law), (2.25)

ε0 · ~∇~E = σ (Gauss Law), (2.26)
~∇~B = 0 (Gauss Law), (2.27)

where ~E(t) is the electric field, ~B(t) the magnetic field, µ0 the magnetic permeability
in vacuum, ε0 the electric permittivity in vacuum, σ is the charge density and ~J the
current density. In free space σ = 0,~J = 0. We introduce the vector potential

~B = ~∇× ~A(r, t), (2.28)

~E = −~∇φ(r, t)− ∂~A(r, t)
∂t

, (2.29)

where φ is the scalar potential, and apply the Coulomb gauge ~∇~A = 0. This leads to
the wave equation

~∇2 ~A(~r, t) =
1
c2

∂2 ~A(~r, t)
∂2t

, (2.30)

that describes the propagation of the vector potential in free space.
In a cubic cavity with length L and volume V = L3, the solution for an electro-

magnetic field with periodic boundary conditions is

~A = ∑
k

{
~Ake−iωkt+i~k·~r + ~A∗k eiωkt−i~k·~r

}
, (2.31)

where~k = 2πni/L is the wave vector with ni ∈ N0 for i = x, y, z, ωk = c0~k is the
angular frequency and c = 1/

√
µ0ε0 the speed of light in vacuum. The energy con-

tained in the kth mode of the electromagnetic field is given by the Poynting vector
to

Sk =
1
2

∫
cavity

(
ε0|~Ek|2 +

1
µ0
|~Bk|2

)
dV

= 2ε0Vω2
k |~Ak|2. (2.32)

We can express the vector potential in form of the ’momentum’ pk and the ’posi-
tion’ qk of mode k as

Ak =
1

2
√

ε0Lω2
k

(ωkqk + ipk)~εk, (2.33a)

A∗k =
1

2
√

ε0Lω2
k

(ωkqk − ipk)~εk (2.33b)

with~εk as the polarization direction. Then the field energy follows to

Sk =
1
2
(

p2
k + ω2

k q2
k
)

. (2.34)
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We identify this energy as the energy of an harmonic oscillator.
Now we quantize the electromagnetic field by replacing the classical position

and momentum with their quantum operators pk and qk, leading to a Hamiltonian
of

H = ∑
k

1
2
(

p2
k + ωkq2

k
)

. (2.35)

We call this quantization "Second Quantization". This terminology arises as the
quantization of discrete modes, e.g. of a particle in a cavity, is considered the first
quantization and then the integer number of excitations of each of these modes is
considered the second quantization.

We introduce the annihilation a and creation a† operators for each wave vector
k which destroy and create a quantum of energy h̄ωk in the electromagnetic field
mode k:

ak =
1√

2h̄ωk
(ωkqk + ipk) , (2.36a)

a†
k =

1
2
√

h̄ωk
(ωkqk − ipk) (2.36b)

with the commutator
[ak, a†

k ] = δk,k′ . (2.37)

Thus the Hamiltonian transforms into the standard harmonic oscillator Hamiltonian
of

HHO = ∑
k

h̄ωk

(
a†

k ak +
1
2

)
. (2.38)

HHO indicates that an electromagnetic field consists out of many independent
quantum mechanical systems: each mode k is represented by one harmonic oscil-
lator with energy Ek = h̄ωk. The nth excitation of the kth harmonic oscillator is
interpreted as having n particles. Thus we introduce the number operator

nk = a†
k ak, (2.39)

with its eigenvectors |nk〉, which counts the number nk of excitations (and hence
particles) in each mode k. The eigenenergy of each mode with nk particles is given
by

En,k = h̄ωk

(
nk +

1
2

)
. (2.40)

The ground state n = 0, also called vacuum state as no excitations are present,
contains the energy E0,k = 1

2 h̄ωk. While being an eigenstate of HHO, the vacuum
state is not an eigenstate of the electric and magnetic field operators E = ∑k Ek and
B = ∑k Bk, where

Ek = iE0,k

{
ake−iωkt+ik·r − a†

k eiωkt−ik·r
}

, (2.41)

Bk =
i
c

B0,k

{
ake−iωkt+ik·r − a†

k eiωkt−ik·r
}

(2.42)

with E0,k =
√

h̄ωk
2ε0V εk and B0,k =

√
h̄ωk

2ε0V k× εk. Thus, the electric and magnetic fields
do not have definite values in this state and fluctuate around their mean value of
zero. These fluctuations are called zero-point fluctuations and can be interpreted as
pairs of virtual photons that are continuously appearing and disappearing.
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FIGURE 2.10: LC resonator. a Harmonic oscillator formed by an LC resonator with capac-
itance C and inductance L. b The resonator is coupled via capacitors Cc,1 and Cc,2 to trans-

mission lines with impedance Z0. A resistor R represents internal losses of the resonator.

2.4.2 Superconducting resonators

The simplest harmonic oscillator in superconducting circuits is the lumped element
LC resonator, which consists of a capacitor C and an inductance L (Fig. 2.10a). Fol-
lowing Ref. [50], [51], this section gives an overview over important properties of
superconducting resonators.

The LC resonator is described by the Hamiltonian

H =
Q2

2C
+

Φ2

2L
, (2.43)

where Φ is the flux in the inductor and Q the charge accumulated on the capaci-
tor. The system can be represented as a harmonic oscillator HHO with resonance
frequency ωr = 1/

√
LC and creation and annihilation operators

a† =
1√

2h̄Zr
(Φ− iZrQ) , (2.44)

a =
1√

2h̄Zr
(Φ + iZrQ) , (2.45)

where Zr =
√

L/C is the resonator impedance. The voltage V across the capacitor
and the current I in the inductor can be expressed as

V =
Q
C

= iVrms

(
a† − a

)
, (2.46)

I =
Φ

L
= ωr

Vrms

Zr

(
a† + a

)
(2.47)

(2.48)

with Vrms = ωr

√
h̄Zr

2 as the root-mean-square vacuum fluctuations of the voltage.
The voltage and current then generate an electric and magnetic field

E(r) = iEvac
rms(r)

(
a− a†

)
, (2.49)

B(r) = iBvac
rms(r)

(
a + a†

)
(2.50)

with Evac
rms and Bvac

rms as their respective vacuum rms fluctuations at position r.
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Coupling to the transmission lines

In an experiment, the resonator is coupled to measuring lines and exhibits losses.
We examine the situation where the resonator is coupled by capacitances Cc,1 and
Cc,2 to two transmission lines with impedance Z0 (Fig. 2.10b). The capacitances
create a strong impedance mismatch, confining the electromagnetic field inside the
resonator. The new effective capacitance is

C′ = C +
Cc,1

1 + (Cc,1ωrZ0)2 +
Cc,2

1 + (Cc,2ωrZ0)2 ≈ C + Cc,1 + Cc,1. (2.51)

Hence, coupling the resonator to transmission lines changes its resonance frequency
and impedance to ωr = 1/

√
LC′ and Zr =

√
L/C′. A resistance R in the resonator

represents the internal losses, which gives an effective resistance of

1
R′

=
1
R
+

1
Rext,1

+
1

Rext,2
, (2.52)

where Rext,i = [1/(Cc,iZ0ωr)2 + 1]Z0 for i = 1, 2. The total losses are expressed by
the resonator’s quality factor

Q−1
tot =

Zr

R′
= Q−1

ext,1 + Q−1
ext,2 + Q−1

int , (2.53)

with the contributions Q−1
int = R

√
L/C′ describing the internal losses and Q−1

ext,i =

Rext,i
√

L/C the losses to the transmission lines. The corresponding damping rates
are κL = ω′r/Qint and κi = ω′r/Qext,i.

For Cc,i � C (Q� 1), we can approximate

ω′r ≈ ωr, Z′r ≈ Zr, Rext,i ≈ 1/Z0C2
c,iω

2
r (2.54)

and
κi = ω3

r C2
c,iZ0Zr (2.55)

with Cc,i = 1/
√

Qext,iZ0Zrω2
r .

𝜅𝜅L

𝜅𝜅1 𝜅𝜅2

𝑎𝑎out,1

𝑎𝑎in,1

𝑎𝑎out,2

𝑎𝑎in,2

FIGURE 2.11: Probing a resonator from the outside. When measuring a resonator with
classical microwave fields, the input and output electromagnetic fields of the resonator can
be determined with a scattering matrix approach, using the classical input and output waves
a. To account for quantum back-action, input-output theory is applied, considering an intra-

resonator field a(t), coupled to external fields with coupling strengths κ.

When measuring the resonator from the outside with classical microwave fields,
it is connected to voltage sources through the transmission lines. The input and
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output electromagnetic fields of the resonator can be attained through the scattering
matrix S [52]. We probe a resonator coupled to two ports with capacitors Cc,1 and Cc,2
(Fig. 2.10b, 2.11) with a Vector Network Analyser (VNA) to determine the scattering
matrix coefficients

Sij =
aout,i

ain,j
, (2.56)

where aout,i (ain,j) is the classical output (input) wave at port i = 1, 2 (j = 1, 2). To
account for quantum back-action, we apply a quantum mechanical treatment where
these classical waves are replaced by coherent electromagnetic waves. Input-output
theory [53] gives

S21(ω) =
2
√

κ1κ2

κ1 + κ2 + κL − 2i(ω−ω0)
(2.57)

for the transmitted signal and

Sii(ω) =
κi − κj − κL + 2i(ω−ω0)

κi + κj + κL − 2i(ω−ω0)
(2.58)

for the reflection.
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FIGURE 2.12: Transmission and reflection measurements. Amplitude and phase of the
scattering matrix components for κc = 10κL (blue, over-coupled regime), κc = κL (green,

critical regime), κc = 0.1κL (yellow, under-coupled regime).

Depending on the strength of the internal damping rate κL in comparison with
the external coupling rate κc = κ1 + κ2, we can identify three distinct regimes in
which the resonator can be operated (Fig. 2.12):

• The under-coupled regime, where κL � κc (yellow curves). The peak width
is mostly determined by κL.

• The critical coupling regime, where κL = κc (green curves).
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• The over-coupled regime, where κL � κc (blue curves). Both the amplitude
and phase response at resonance is maximum for S11 and S21.

2.4.3 Coupling a qubit to a quantized field: Jaynes-Cummings Hamilto-
nian

To understand how a two-level system, in our case the qubit with Hamiltonian

HQ =
h̄ω0

2
σz (2.59)

(Sec. 2.1), interacts with a single mode resonator of frequency ωr with the free field
Hamiltonian

HHO = h̄ωr

(
a†a +

1
2

)
(2.60)

(Sec. 2.4.1), we explore the source of their interaction, the Lorentz force.
When a charged particle travels through an electromagnetic field, it experiences

the Lorentz force
~F = q

(
~E +~v× ~B

)
, (2.61)

where ~v is the velocity and q the charge of the particle. The corresponding La-
grangian of this motion is

L =
1
2

m~̇q2 − qφ + q~A · ~̇q, (2.62)

where m is the mass of the particle. The classical Hamiltonian of the system is then
given by

H(~q,~p) = ~p~̇q− L(~p,~̇q)

=
1

2m

(
~p− q~A

)2
+ qφ. (2.63)

Following Refs. [48], [49], we quantize the system by replacing the classical vari-
ables with their quantum operators and get the quantum mechanical Hamiltonian
of

H(r, t) =
1

2m
(p− qA(r, t))2 + qφ(r, t) (2.64)

=
p2

2m
− q

m
pA(r, t) +

q2

2m
A(r, t)2 + qφ(r, t) (2.65)

= H0 +Hint, (2.66)

whereH0 = p2

2m and

Hint =
q
m

pA(r, t) +
q2

2m
A(r, t)2 + qφ(r, t) (2.67)

≈ q
m

pA(r, t). (2.68)

We have neglected the diamagnetic term ∼ A2 as we are only considering small
fields. Furthermore, the term qφ only creates a global phase and thus can be ignored.
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If the wavelength of the field photons is much larger than the relevant distances
(kr � 1), we can approximate the electromagnetic field’s spacial component as con-
stant eikr ≈ 1 (dipole approximation). The interaction Hamiltonian is then given by
the dipole interaction

Hint = −dE(t), (2.69)

where d = qr is the dipole moment of the qubit.
We consider a single mode cavity field (Eq. 2.41) of

E = E0

(
a + a†

)
sin(kz), (2.70)

leading to an interaction of

Hint = dλ
(

a + a†
)

(2.71)

with λ = −E0 sin(kz).
We introduce the raising and lowering operators of the qubit

σ+ = |e〉〈g|, (2.72)

σ− = |g〉〈e| = σ†
+, (2.73)

which obey the Pauli spin algebra.
For the dipole operator, it holds that 〈e|d|g〉 = 〈g|d|e〉 = 0 because the operator

changes sign under parity and parity is conserved in the electromagnetic interaction.
Thus only the off-diagonal elements are non-zero and the dipole operator can be
expressed as

d = d|g〉〈e|+ d∗|e〉〈g| = dσ− + d∗σ+, (2.74)

which leads to
Hint = h̄g (σ+ + σ−)

(
a + a†

)
(2.75)

with g = dλ/h̄ as the coupling between the qubit and the electric field with d =
〈e|d|g〉 = d∗ as the qubit dipole moment.

The operators of both, the qubit and the resonator field, evolve as plane waves
with ω0 and ωr respectively. Hence, we can employ the rotating wave approxima-
tion and eliminate the counter-rotating terms σ+a, σ−a which gives

Hint = h̄g
(

σ+a + σ−a†
)

. (2.76)

The total Hamiltonian, that describes the qubit-cavity system, known as the
Jaynes-Cummings Hamiltonian, then follows to

H = HQ +HHO +Hint

=
h̄ω0

2
σz + h̄ωr

(
a†a +

1
2

)
+ h̄g

(
σ+a + σ−a†

)
. (2.77)

When analysing the interaction between the qubit and the cavity we need to take
into account the dissipation in the system (Fig. 2.13a). Firstly, the cavity states de-
cay with rate κωr/Qtot, where κ = κc + κL, caused by the coupling of the cavity to
the continuum. Secondly, the qubit’s coupling to modes other than the cavity mode
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leads to a decay of rate γ. These effects can be included by a master equation ap-
proach. However, here we will only consider stationary dynamics when the number
of excitations in the system remains constant, following Ref. [54].

In the basis of the uncoupled states

|Ψ1n〉 = |e〉|n〉, (2.78)
|Ψ2n〉 = |g〉|n + 1〉 (2.79)

we calculate the eigenvalues to

E±(n) = (n + 1) h̄ωr ± h̄Ωn(∆) (2.80)

with Ωn(∆) =
√

∆2 + 4g2(n + 1)/2 as the Rabi frequency, where ∆ = ω0 − ωr is
the detuning between the qubit and the cavity. The corresponding eigenstates (also
called the dressed states or Jaynes Cummings doublet) are

|n,+〉 = cos(Φn)|Ψ1n〉+ sin(Φn)|Ψ2n〉, (2.81)
|n,−〉 = − sin(Φn)|Ψ1n〉+ cos(Φn)|Ψ2n〉 (2.82)

with Φn = tan−1
(

Ωn(0)
∆

)
/2. The two states are split by the Rabi frequency due the

AC Stark shift of the resonator.
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FIGURE 2.13: Jaynes-Cummings ladder. a Energy levels of the uncoupled (left and right)
and dressed (center) qubit-photon states when the qubit and the resonator are in resonance
(∆ = 0). The coupling g between the qubit and the resonator lifts the degeneracy of the
uncoupled states by 2g

√
n + 1. b Energy levels of the uncoupled (orange lines) and the

perturbed states in the dispersive regime. The resonator energy levels are shifted, depending
on the qubit state by ±g2/∆.

When the qubit and the resonator are in resonance (∆ = 0), the uncoupled states
are degenerate. However, the dressed states are split by 2g

√
n + 1 due to the qubit-

photon interaction (Fig. 2.13a). The splitting increases for an increasing photon
number n, making the level spacing anharmonic. This causes non-linear effects at
high drive powers when the average photon number in the resonator is large 〈n〉 >
1. In the single photon limit, the eigenstates are maximally entangled and form the
dressed states |0,±〉 = (|e, 0〉 ± |g, 1〉) /

√
2. An initial state with an excited qubit

and zero photons |e, 0〉 evolves into a photon and a qubit in the ground state |g, 1〉
and then back, at the vacuum Rabi frequency g

π . As one excitation is shared between
the qubit and the photon, the decay rate of |0,±〉 is b = κ+γ

2 . The pair of states |0,±〉
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FIGURE 2.14: Transmission spectrum of the resonator in the strong coupling and disper-
sive regime. a When the resonator and the qubit are in resonace (ωr = ω0) the resonance
is split into two peaks, separated by twice the coupling strength 2g. They can be resolved
when the qubit and the resonator are in the strong coupling regime with g � κ, γ. b In the
dispersive regime g� ∆ when the resonator and the qubit are far detuned, the resonance is

AC Stark shifted depending on the qubit state.

can be resolved in the transmission or reflection of the cavity if their splitting 2g is
larger than the linewidth b (Fig. 2.14a). The coupling strength g is determined by
the strength of the transition dipole moment d and the rms zero-point electric field
of the resonator mode Erms. Strong coupling is achieved when g� κ, γ.

When the detuning is large, such that direct qubit transitions do not occur and
only dispersive interactions between the qubit and the cavity field are allowed, we
speak of the dispersive regime with g� ∆. A Taylor expansion of Eq. (2.80) gives

E±(n) =
(

n +
1
2

)
h̄ω± h̄∆

(
1 +

2g2(n + 1)
∆2 + ...

)
. (2.83)

This expansion breaks down when n approaches the critical photon number ncrit =
∆2

4g2 , setting an upper limit for the photon number in the dispersive regime. The
corresponding eigenstates are

|n,−〉 = |g, n〉 − g
√

n
∆
|e, n− 1〉, (2.84)

|n,+〉 = g
√

n
∆
|g, n〉+ |e, n− 1〉 (2.85)

and the decay rates

Γn,− ≈ κ − g
√

n
∆

γ, (2.86)

Γn,+ ≈
g
√

n
∆

κ + γ. (2.87)

For small g
∆ , the coupling between the qubit and the cavity can be treated as a per-

turbation. Applying the uniform transformation

U = exp
[ g

∆

(
aσ+ − a†σ−

)]
(2.88)
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yields the perturbed Hamiltonian

H′ = UHU† ≈ h̄
[

ωr +
g2

∆
σz

]
a†a +

h̄
2

[
ω0 +

g2

∆

]
σz. (2.89)

We can interpret the perturbation as an AC Stark shift of the qubit transition by
g2

∆ (n + 1
2 ) or a dispersive shift of the resonator resonance by ± g2

∆ , depending on the
qubit state (Fig. 2.13b, 2.14b).
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Chapter 3

The flip-flop qubit

“Physics is the only profession in which prophecy is not only accurate but routine. "
–Neil deGrasse Tyson

Building a quantum computer in silicon demands high-
fidelity, low power long-distant qubit interactions. In this
chapter we introduce the flip-flop qubit, a combination
of the electron-nuclear spin states of a phosphorus donor
that can be controlled by microwave electric fields and
meets these demands. A second-order electric dipole-dipole
interaction allows for robust two-qubit coupling at sepa-
rations of hundreds of nanometers. Moreover, it enables
coupling to microwave resonators that can extend qubit
entanglement to macroscopic distances. We predict gate
fidelities within fault-tolerance thresholds using realistic
noise models, opening up a pathway to a scalable silicon
quantum computer.

A condensed version of the work presented in this chapter has been pub-
lished in:
G. Tosi, F. A. Mohiyaddin, V. Schmitt, S. Tenberg, R. Rahman, G. Klimeck, A.
Morello. “Silicon quantum processor with robust long-distance qubit couplings”,
Nature communications Vol. 8, 450 (2017).

The author acknowledges G. Tosi for the conception of the idea
and large parts of the simulation work, F. A. Mohiyaddin for tight-
binding simulations and electric modelling and V. Schmitt for
assistance with pulse shaping and noise influences. The author helped
develop the project, interpret the results, assisted with simulations and
constructed parts of the theoretical framework.
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3.1 Introduction

To successfully implement quantum algorithms, a quantum processor has to be able
to run quantum error correction codes [55] that deal with the fragile nature of qubits
(see Sec. 5.1). The highest tolerances in error rates of 10−3 to 10−2 are found when us-
ing nearest-neighbour topological codes [56], [57], long-distance entanglement links
[58] or a combination of both [59]. Therefore a large number of qubits have to be
constructed in expandable arrays to form a scalable, universal quantum processor.

To implement such a quantum processor, one not only needs excellent single
qubits but also two-qubit logic gates that posses fault-tolerant fidelities and allow
for the interconnection of many qubits.

Silicon is a desirable platform for qubits due to its connection to the Metal-
Oxide-Semiconductor (MOS) industry and the nanometric qubit unit size [17]. Sin-
gle qubits with high state preservation and precise qubit control have been estab-
lished in silicon for many different physical systems such as donor spin ensembles
[60], MOS quantum dots [25], SiGe quantum dots [27], [61] and phosphorus donors
[42], [47]. While two-qubit gates have been performed [26], [62]–[64], fault-tolerance
has not yet been demonstrated.

Out of these different silicon qubit approaches, donor spin qubits are especially
appealing as they are extremely well isolated from their environment. By using
isotopically enriched 28Si as the substrate material [65], coherence times can reach
around a second (for the electron) and a minute (for the nucleus) [30], up to hours in
bulk ensembles [60], and control error rates as small as 10−4 [42]. However, integrat-
ing several of these qubits in a scalable architecture remains a formidable challenge
- their good isolation is here a major drawback as it makes reliable two-qubit gates
difficult to achieve.

The seminal Kane proposal [22] for a nuclear-spin quantum computer in sili-
con described the use of short-range exchange interactions J between donor-bound
electrons, to mediate an effective inter-nuclear coupling of order ∼ 100 kHz at a
∼ 15 nm distance. The exchange interaction has an exponential and oscillatory spa-
tial behaviour that can result in an order of magnitude variation in strength upon
displacement by a single lattice site [66], [67]. Notwithstanding, plenty of research
has explored the inter-donor exchange [68]–[70] and recently a two-qubit gate has
been achieved in donor devices fabricated with scanning tunnelling microscopy
(STM) lithography [63]. Nevertheless, the stringent requirements of the donor place-
ment make large-scale device fabrication extremely difficult. Slightly relaxed re-
quirements on donor placement can be found when using a hyperfine-controlled
exchange interaction between electron spin qubits [71], or a slower magnetic dipole-
dipole coupling effective at ∼ 30 nm distances [72]. Other proposals space donors
further apart by introducing some intermediate coupler, e.g. donor chains [73], [74],
charge-coupled devices [75], ferromagnets [76], probe spins [77] or quantum dots
[78].

Our proposal, presented in this chapter, to avoid the issues related to using the
exchange coupling for two-qubit gates, is to employ electric dipole-dipole coupling
instead. Not only is this interaction robust against imprecise donor placement but it
also allows for fast, fault-tolerant two-qubit gates at spacings of 150− 500 nm. This
distance leaves sufficient space to intersperse classical control and readout devices,
while retaining some of the compactness of atomic-size qubits, making it ideal for a
large quantum processor.

To create an electric dipole for the phosphorus donor qubit and make it accessible
to electric fields, we introduce a new type of qubit, the flip-flop qubit.
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FIGURE 3.1: Coupling donor spin qubits to electric fields via hyperfine modulation. a
Level diagram of the electron-nucleus spin states in an external magnetic field B0 with the
magnetic transitions (ESR, NMR) and the electric flip-flop transition (EDSR) indicated. The
flip-flop basis is coloured in yellow. b Bloch sphere of a flip-flop spin qubit in an exter-
nal magnetic field B0 coupled to a vertical electric field Ez via the hyperfine interaction
A. Electron-nuclear singlet and triplet states are denoted by S = (|↓⇑〉 − |↑⇓〉) /

√
2 and

T0 = (|↓⇑〉+ |↑⇓〉) /
√

2. c Donor qubit where a vertical electric field supplied by a metallic
gate modifies the hyperfine interaction.

The new qubit is based on the phosphorus donor qubit (Sec. 2.3, Fig. 3.1a).
Instead of encoding the quantum information in just the electron or the nuclear
spin and control the qubit with magnetic resonance (ESR, NMR), we define a new
qubit with the anti-aligned electron-nuclear spin states {|↓⇑〉 , |↑⇓〉} as the basis,
the flip-flop qubit. The transition between these two eigenstates is not magneti-
cally accessible as the total z-angular momentum is constant. However, the hyper-
fine interaction A is a transverse term in the flip-flop basis since its eigenstates are
S = (|↓⇑〉 − |↑⇓〉) /

√
2 and T = (|↓⇑〉+ |↑⇓〉) /

√
2 (Fig. 3.1b). Therefore, modulat-

ing A at frequency

εff(A)/h =

√
(γ+B0)

2 + A2, (3.1)

corresponding to the flip-flop qubit energy splitting εff, causes an electric dipole spin
resonance (EDSR) transition between the |↓⇑〉 , |↑⇓〉 basis states (Fig. 3.1a).

We can modify A by applying an electric field. For a donor in silicon, A is dom-
inated by the Fermi contact hyperfine interaction between the electron and the nu-
cleus which depends on the overlap of the electron wave function Ψ with the nu-
cleus. The overlap can be altered by applying an electric field on the donor that
pulls the electron away from the donor to the Si/SiO2 interface, where the electron
then behaves like a quantum dot after ionization (Fig. 3.1c, see also Sec. 2.3.1). The
electron charge position is described by its orbital degree of freedom. In this way, the
electric field couples the orbital degree of freedom to the spin states via the hyper-
fine interaction - an artificial spin-orbit coupling is created which can be employed
to drive flip-flop qubit transitions.
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3.2.1 Manipulating the orbital degree of freedom: the charge qubit

When the electron is at the donor, the ground orbital wavefunction |d〉 is a symmetric
combination of the six valleys k±x, k±y, k±z (A1 like, see Sec. 2.2). The next excited
valley-orbit states (T2 like) are split off by 11 meV and thus can be neglected.

When a strong electric field with potential VE = Ezr is applied on the donor, the
conduction band edge is lowered and a triangular quantum well is formed at the
Si/SiO2 interface in which the electron is confined, a quantum dot is formed (inset
Fig. 3.2). The applied electric fields split off the k±x, k±y valleys so that the wave
function is composed of z valleys k±z, where the remaining two-fold degeneracy is
lifted by the abrupt potential of the interface into a lower valley |i〉 and a higher
valley |v〉, separated by the valley splitting Vs. The remainder of the excited donor
and dot states are well above the ground states by several meV [79], [80]. Thus, close
to electric field where the donor electron is ionized from the donor E0

z (ionization
point), the lowest-energy states of the system are |d〉 , |i〉 , |v〉.
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FIGURE 3.2: Orbital and valley states. The lowest orbital energy levels of the donor-
interface system, with respect to the lower valley interface state |i〉 (set as the zero-energy
reference). The donor is assumed zd = 15.2 nm below a Si/SiO2 interface. The dots corre-
spond to the energy levels obtained from a full-scale tight-binding calculation with NEMO-
3D. Solid lines represent the energy levels obtained from the two level charge qubit approx-
imation (Eq. 3.2). Inset: Potential profile as a function of depth, illustrating the donor |d〉,
lower |i〉 and upper |v〉 valley interface states. The donor ground state is tunnel-coupled to

the lower and upper valley interface states by Vt and Vv
t respectively.

These levels can be computed with atomistic tight binding calculations using the
package NEMO-3D [81], [82]. Fig. 3.2 shows the dependence of the energy levels on
the applied electric field Ez with the dots indicating the tight binding simulations,
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calculated with a donor depth zd = 15.2 nm below the Si/SiO2 interface and the
donor biased close to ionization.

We find that the electron orbital degree of freedom can be approximated by a
two-level system, a charge qubit, with ground state |g〉 and excited state |e〉. These
charge qubit eigenstates are combinations of the donor ground state |d〉 and the
lower valley interface state |i〉 which are coupled by the tunnel coupling Vt. This
approximation holds as long as the third valley state |v〉 can be neglected.

When Ez � E0
z , the charge qubit ground state |g〉 consists of the electron wave-

function being localized at the donor, |d〉, whereas the first excited state |e〉 corre-
sponds to the lower valley interface state |i〉. With increasing Ez, the two states
approach and anti-cross at the ionization point Ez = E0

z due to Vt. For Ez � E0
z , |d〉

is the excited state, until it eventually anti-crosses with the upper valley interface
state |v〉 at an electric field of Ev

z , where the two-level approximation breaks down.
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FIGURE 3.3: Charge qubit dispersion relation. Charge qubit dispersion relation εo as a
function of vertical electric field Ez, for Vt/h = 9.3 GHz, d = 11 nm and E0

z = 4.0856 MV/m.
The dots are obtained by NEMO-3D full-scale tight binding simulation while the line corre-

sponds to the two-level charge-qubit approximation (Eq. 3.3).

Choosing |d〉 =
(

0
1

)
, |i〉 =

(
1
0

)
as the basis states, we can describe the charge

qubit with the Hamiltonian

Horb =
Vtσx −

[
e(Ez − E0

z)d
]

σz

2
(3.2)

(eigenvalues are shown as solid lines in Fig. 3.2) with a transition energy (Fig. 3.3)
of

εo =

√
V2

t + [e(Ez − E0
z)d]

2, (3.3)

where d is the length of the induced dipole which represents the separation between
the center-of-mass positions of the donor |d〉 and interface |i〉 orbitals. For the case
of zd = 15.2 nm, we find Vt/h = 9.3 GHz, E0

z = 4.0856 MV/m and d = 11 nm, which
is expectedly lower than the donor depth zd.
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The charge qubit eigenstates can be expressed as (see App. A for the derivation)

|e〉 = β |i〉+ α |d〉 =
(

β
α

)
, (3.4a)

|g〉 = −α |i〉+ β |d〉 =
(
−α
β

)
(3.4b)

with

α =
φ√

1 + φ2
, (3.5a)

β =
1√

φ2 + 1
, (3.5b)

where

φ =

(
Ez − E0

z
)

ed + ε0

Vt
. (3.6)

At E0
z , we find

|ei〉 =
1√
2
(|i〉+ |d〉) = 1√

2

(
1
1

)
, (3.7a)

|gi〉 =
1√
2
(|i〉 − |d〉) = 1√

2

(
1
−1

)
, (3.7b)

when ε0 = Vt.1

The interaction between a 31P donor electron and an electron in a MOS quantum
dot has been demonstrated in Ref. [83] for a two electron system, where a qubit
was encoded in the spin singlet and triplet states. The tunnel coupling of the singlet
and triplet was measured to 4.6 GHz and 7.5 GHz respectively. Even though these
tunnel couplings do not directly correspond to the single electron tunnel coupling
of our charge qubit, they give a good indication and are similar to the estimates of
our model.

3.2.2 Modulating the hyperfine interaction

The state of the charge qubit affects the effective electron-nuclear hyperfine interac-
tion, since it depends on the overlap of the electron wavefunction at the nuclear site.
The hyperfine interaction is maximum when the charge qubit is in state |d〉 (electron
fully on the donor), and drops to zero when the charge qubit is in state |i〉 (electron
fully displaced at the interface dot). Thus, we can describe the orbital dependent
hyperfine Hamiltonian as

Horb
A = hA

(
1− σz

2

)
S · I. (3.8)

We determine the effective hyperfine strength with applied electric field with
tight-binding simulations (dots in Fig. 3.4). Our two-level approximation yields
good agreement with these simulations when we calculate the expectation value of

1One can also express the charge qubit in the basis of |gi〉 , |ei〉. Therefore, we apply the unitary

transformation U = 1
2 (σz + σx) = 1

2

(
1 1
1 −1

)
. This transforms any operator O to O′ = U†OU,

giving σz → −σx and σx → σz.
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Horb
A (line in Fig. 3.4) for the charge qubit ground state |g〉

A(Edc) = 〈g|A
(

1− σz

2

)
|g〉

= A|β|2

=
A
2

(
1−

e
(
Ez − E0

z
)

d
ε0

)
. (3.9)

To find the spin-orbit coupling between the charge qubit and the flip-flop spin
states |↓⇑〉 , |↑⇓〉, we calculate the matrix transition element

gso = 〈g ↑⇓ |Horb
A |e ↓⇑〉

=
A
4
〈g|σz |e〉

= Aαβ

=
hA
4

Vt

ε0
. (3.10)

As Vt = ε0 at the ionization point, the coupling is the strongest there, allowing for
fast driving.

Here we have assumed that the hyperfine coupling between the electron spin
and 31P nucleus is purely isotropic [84], i.e. dominated by the Fermi contact hyper-
fine term. This assumption may no longer exactly hold when the donor electron
wave function is distorted from its spherical symmetry in the presence of the strong
vertical electric field, whereby a small dipolar component can be created (a related
case, where the electron is shared between two proximal phosphorus donors, has
been recently studied [85]). However, it is known that the Fermi contact component
of the hyperfine coupling for donors in silicon is always the dominant term. This
holds even for an electron centred on a phosphorus donor, coupled to 29Si nuclei
which are placed off-center with respect to the symmetry point of the wavefunction
[86]. Therefore, we expect the isotropic approximation to capture the main physics
of the problem.
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3.2.3 The flip-flop qubit

To lift the degeneracy of the spin states, we apply an external magnetic field B0. The
Zeeman energy splitting of the electron and nuclear spins depends on the respective
gyromagnetic ratio γ. However, the electron gyromagnetic ratio γe changes when
the electron is confined at the Si/SiO2 interface, up to ∆γ = 0.7% from the donor-
bound electron [79]. We include this change in the Zeeman Hamiltonian

Horb
B0

= γehB0

[
1 +

(
1 + σz

2

)
∆γ

]
Sz − γnhB0 Iz. (3.11)

Hence, the full physics - orbital and spin effects - of the flip-flop qubit, are described
by the Hamiltonian

Hff = Horb
B0

+Horb
A +Horb. (3.12)

The flip-flop qubit system is composed of three degrees of freedom: charge, electron
spin and nuclear spin. This results in an eight-dimensional Hilbert space

Hff = Horb ⊗He ⊗Hn (3.13)

with the basis states of the uncoupled charge, electron and nuclear system {|g〉 , |e〉}⊗
{|⇑〉 , |⇓〉} ⊗ {|↑〉 , |↓〉}. As long as the Zeeman energy exceeds the hyperfine cou-
pling, characterized by A/4, the latter is a perturbation only and the energy eigen-
states ofHff remain the approximate products of the uncoupled basis states.

To calculate the flip-flop qubit transition energy we numerically determine the
eigenvectors of Hff and find the ones with the largest overlap to the flip-flop states
|g ⇓↑〉 , |g ⇑↓〉 where the charge qubit remains unexcited. We then compute the flip-
flop qubit transition energy by calculating the difference of the corresponding eigen-
values (yellow line in Fig. 3.5).

When we compare these results to the bare flip-flop energy εff(A, γe) (Eq. 3.1,
dotted grey in Fig. 3.5) we find a large deviation around the ionization point. εff(A, γe)
shows a steep slope, mostly caused by the Ez-dependence of γe as γ+B0 � A, while
Hff sees a dip. This dip is a dispersive shift of the flip-flop transition for Vt > εff as
the charge qubit states |g〉 , |e〉 and the flip-flop spin states |↓⇑〉 , |↑⇓〉 are detuned by

δso = εo − εff (3.14)

(inset Fig. 3.5) but transversely coupled by the hyperfine interaction with gso.
For small detuning, the coupling hybridizes the charge and spin states (Fig. 3.6)

where the ground state and two hybridized charge-spin excited states are given by

|g̃〉 = |g ↓⇑〉 , (3.15a)
|ẽ1〉 = βso |g ↑⇓〉+ αso |e ↓⇑〉 , (3.15b)
|ẽ2〉 = −αso |g ↑⇓〉+ βso |e ↓⇑〉 (3.15c)

with (see App. A)

αso =
1√

1 + φ2
so

, (3.16a)

βso =
φso√

φ2
so + 1

, (3.16b)



3.2. A new electrically accessible qubit, the flip-flop qubit 39

𝜖 f
f/
ℎ
(G
H
z)

𝐸𝑧 − 𝐸𝑧
0(kV/m)

𝜖 o
/ℎ
(G
H
z)

12

13

-6 -3 0 3 6

11.19

11.20

2nd order CT

CQCT

𝐷so

𝛿so

𝜖o
ℋff

𝜖ff(𝐴, 𝛾𝑒)
𝜖ff(𝐴, 𝛾𝑒 , 𝐷so)

FIGURE 3.5: Flip-flop qubit dispersion relation. Charge, εo, and flip-flop, εff, qubit tran-
sition frequencies as a function of vertical electric field Ez, for B0 = 0.4 T, A = 117 MHz,
d = 15 nm, ∆γ = −0.2% and Vt/h = 11.44 GHz. The inset shows the level diagram of flip-
flop states coupled to charge states. CT stands for ’clock transition’ and CQCT for ’charge

qubit clock transition’.

where

φso =
δso +

√
δ2

so + 4g2
so

2gso
. (3.17)

For gso � δso, the charge and spin states are dispersively coupled and the flip-
flop transition is a second-order process. The dispersive shift of the transition can be
calculated with second order perturbation theory to2

Dso(Ez) =

∣∣〈↑⇓ g|HA
orb |e ↓⇑〉 〈e ↓⇑ |HA

orb |g ↑⇓〉
∣∣

Ee↓⇑ − Eg↑⇓

=
[gso(Ez)]2

δso(Ez)
, (3.18)

reducing the flip-flop qubit frequency to

εff(A, γe, Dso) = εff(A, γe)− Dso(Ez), (3.19)

2Generally, it is expected to observe a dispersive shift of g2/∆, where g is the coupling and ∆ the
detuning, for two coupled systems in the dispersive regime [54]. Compare Sec. 2.4.3 for details.
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coupling spin to charge
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FIGURE 3.6: Hybridized charge-flip-flop states. Level diagram showing the hybridization
of the charge and flip-flop states due to the coupling gso when the detuning δso is small.

when the charge qubit is in the ground state.
Around Ez ≈ E0

z the charge qubit comes closest to the flip-flop qubit (Fig. 3.5)
while gso is highest. Consequently, Dso(Ez) is largest at this point. Eq. (3.19) (thin
black line in Fig. 3.5) agrees with the full numerical simulations of the Hamiltonian
in Eq. (3.12).

3.3 Decoherence and relaxation due to electrical noise

3.3.1 Dephasing

Since we are coupling the flip-flop spin states to electric fields, the presence of elec-
tric noise is a concern for the longevity of our qubit states. Generally, to achieve a
high qubit performance one needs a high ratio of qubit coherence time to qubit gate
operation time.

For the charge qubit we find that at the ionization point, the transition frequency
exhibits a local minimum ε0 = Vt and is thus first order insensitive to electrical noise
∂εo/∂Ez = 0 (Fig. 3.3). Such a tuning point is called a clock transition (CT).

Conveniently, the flip-flop qubit also exhibits a noise insensitive region close to
the ionization point. The properties of this region depend on Vt (Fig. 3.7). For low Vt
the dispersive shift is strong due to the proximity of the charge qubit and thus creates
two first order clock transitions. These merge into one for Vt/h = 11.44 GHz, which
is second-order insensitive to electrical noise ∂2εff/∂E2

z = 0 - dephasing is strongly
suppressed at this point. Finally, for high Vt the dispersive shift is not strong enough
and does not yield a minimum.

We estimate the dephasing from quasi-static Ez noise. This is noise with a spec-
tral weight centred at frequencies smaller than the qubit resonance and Rabi fre-
quency, that acts on the qubit operators along σz. We assume Enoise

z,rms = 100 V/m
which corresponds to 1.5 µeV charge detuning noise for d = 15 nm. For details
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about the noise in the flip-flop devices, consult Sec. 3.7 which discusses the noise
effects extensively.
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z,rms = 100 V/m.

To estimate the dephasing resulting from this charge noise, we calculate the
difference between the qubit transition frequency ε and the transition frequen-
cies εn that result when applying a uniformly distributed noise in the range
En

z =
√

3[−Enoise
z,rms, Enoise

z,rms]. This gives

Dephasing rate = ∑
n
|ε− εn| /Nn, (3.20)

where Nn is the number of sampled En
z and εn is calculated for each value of En

z .
The resulting dephasing rates for both the charge and the flip-flop qubit are

shown in Fig. 3.8. We do not intend to operate the charge qubit as its dephasing
rate is expected to exceed 106 s−1, even at its clock transition. However, for the flip-
flop qubit, the dephasing can be as low as 1/T∗2 ≈ 3× 103 s−1 at the second order
clock transition. This value is comparable to the dephasing of 1/T∗2 ≈ 1× 103 s−1 of
the electron due to magnetic noise from the superconducting magnet which creates
B0 [30].
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3.3.2 Relaxation

Relaxation can also inhibit qubit performance (see Sec. 2.3.4). For donors in silicon
the electron spin lattice relaxation time is T1 > 1 s due to very weak coupling be-
tween the phonons and the spins. However, according to Ref. [87], for the charge
and the flip-flop qubit the difference in valley population between the interface and
donor state causes an effective electron-phonon coupling which leads to relaxation.
Firstly, the relaxation is enhanced by the first excited charge state |e〉which creates a
strong interaction between the flip-flop qubit and phonon-induced deformation po-
tentials. Secondly, the relaxation is "valley-enhanced" due to the non-trivial valley
structure of the electron-phonon interaction and the orbital states.

The charge qubit relaxation rate is given by [87]

1/T1,c =
Ξ2

u

60πh̄4ρ

(
2

3v5
l
+

1
v5

t

)
εoV2

t , (3.21)

where Ξu = 8.77 eV is the uniaxial deformation potential, ρ = 2330 kg/m3 the den-
sity of silicon and vl = 9330 m/s, vt = 5420 m/s the longitudinal and transverse
sound velocity. At the ionization point (εo = Vt) we find 1/T1,c ≈ 0.49× 106 s−1. The
charge qubit relaxation rate increases with higher εo, away from the clock transition.
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In the dispersive regime δso � gso the flip-flop relaxation directly relates to the
charge qubit relaxation. It is equal to the amount of charge excited state in the flip-
flop eigenstates times the charge qubit relaxation rate which gives [87]

1/T1,ff = (gso/δso)
2 /T1,c. (3.22)

The larger the detuning δso, the smaller is the component of admixed excited eigen-
state |e ↓⇑〉 and consequently the relaxation (Fig. 3.9a). At our proposed operat-
ing point, the second order flip-flop clock transition, the relaxation rate is 1/T1,ff ∼
104 s−1 for B0 = 0.4 T. This indicates that the qubit dephasing will be relaxation lim-
ited 1/T∗2 = 1/(2T1). However, the relaxation rate depends on the external magnetic
field with the power-law relation 1/T1,ff ∼ B3 [87]. Thus reducing the magnetic field,
suppresses the relaxation strongly (Fig. 3.9b). We find that for B0 < 0.3 T, the de-
phasing is no longer T1 dominated. Note though, that when using spin-dependent
tunnelling into a SET reservoir as a readout mechanism, we cannot operate the qubit
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at this low fields (see Sec. 2.3.3 for details on qubit readout with an SET). Readout
via a superconducting resonator is possible however (see Sec. 3.9).

3.4 Tunnel coupling tuning

Tuning the flip-flop qubit, e.g. into a clock transition, requires the ability to tune
the tunnel coupling Vt. Moreover, Vt can exhibit oscillations at the atomic scale [80],
which previously have been ignored, arising from a similar valley interference effect
as the one afflicting the exchange interaction [66]. However, Vt is difficult to control
at the fabrication stage, given its exponential dependence on donor depth.

The vertical uncertainty of ion-implanting a donor at zd ≈ 15 nm below the
interface is of the order ±10 nm [88], resulting in more than 2 orders of magnitude
uncertainty in Vt [80]. Therefore, it is crucial to implement a method to tune Vt in
situ.

a b
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FIGURE 3.10: Tunnel coupling tuning. a Device structure to tune the tunnel coupling Vt of
the charge qubit by applying lateral voltages. b Vt as a function of right gate voltage, cal-
culated using a finite element Poisson solver (Synopsis R© TCAD) and atomistic tight biding
simulations (NEMO-3D [81], [82]). The insets illustrate the NEMO-3D wavefunctions for
three right gate voltages Vr = −1, −0.35 and −0.27 V. The left gate voltage is Vl = −0.5 V
for all the simulations, and the top gate is biased such that the position of the electron is in
between the donor and interface. The donor is assumed to be zd = 9.2 nm below the Si/SiO2

interface.

A possible solution is to displace the location of the interface wavefunction later-
ally, which in turn modifies the overlap between the donor and interface wavefunc-
tions and therefore reduces Vt. This can be done by adding two gates on either side
of the donor top gate (Fig. 3.10a), which pulls the donor electron to the interface, in
such a way that a relative voltage between the gates can modify the interface lat-
eral potential landscape. This gate stack is identical to the well-established scheme
for the confinement of single electrons in silicon quantum dots [25]. This technique
allows Vt to be reduced by at least 2 orders of magnitude when displacing the wave-
function by around 30 nm (Fig. 3.10b), therefore circumventing the uncertainty in
donor depth and Vt arising from ion-implantation.
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Note that, when moving the interface wavefunction laterally to tune Vt, the elec-
tric dipole acquires some horizontal component. In this case, the detuning noise is
caused by the noise component along the donor-interface state direction.

3.5 Adiabatic phase control

To incorporate flip-flop qubits in a quantum processor, the presence of slow dephas-
ing regions is important to control the qubit phase with high fidelity and extend the
qubit lifetime. Therefore, idle qubits are decoupled from electric fields by fully dis-
placing the electron either to the interface or to the donor to minimize dephasing.
Operations are performed close to the ionization point. Consequently, we need to
displace the electron, which in turn changes its precession frequency (Fig. 3.5). As a
result, the accumulated phase must be corrected after quantum operations.

Optimally, the phase is corrected by moving the electron to the 2nd-order clock
transition, therefore minimizing dephasing errors. At this point, the flip-flop qubit
phase precesses ∼ ∆γγeB0/2− Dorb/h ∼ 20 MHz faster than at its idle point, and
therefore any phase correction in a 2π period can be applied within tens of nanosec-
onds. The dephasing rate at the clock transition, on the order of 103 s−1, would
cause very small errors (< 10−4). However, while moving the electron from the
interface towards the donor, the flip-flop qubit goes through regions of fast dephas-
ing (Figs. 3.8, 3.9), and therefore this operation has to be performed as quickly as
possible.

Moving the electron also has to be slow enough to avoid errors due to non-
adiabaticity, which include e.g. leakage to unwanted high-energy states. These er-
rors depend on the adiabatic factor K, which quantifies the fractional rate of change
of the system’s eigenstates (the higher the value of K, the more adiabatic and slower
is the process). K is defined, in units of rad/s, as

K =
∣∣∣ωeff

α̇

∣∣∣� 1, (3.23)

given a time-dependent Hamiltonian in a two-dimensional Hilbert space,

H2 = ∆(t)σz + Ω(t)σx, (3.24)

where ωeff =
√

∆2 + Ω2 is the instantaneous transition angular frequency between
eigenstates, and α̇K is the rate of change of the orientation of ωeff(αK) with αK =
arctan (Ω/∆) [89]. Following from Eq. 3.23, the adiabaticity is given by

K =

(
∆2 + Ω2)3/2

|∆̇Ω− Ω̇∆|
� 1. (3.25)

To determine the change in Ez per ns that satisfies the adiabatic condition at any
given point, we calculate (from Eq. 3.25)

dt
dEz

= K
|d∆/dEz ·Ω− dΩ/dEz · ∆|

(∆2 + Ω2)3/2 . (3.26)

Although the transition process involves multiple levels, we apply Eq. 3.25 as an
approximation of adiabaticity. This is confirmed to be always valid by checking that
the leakage errors are kept below a target level.
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For the charge qubit, the σz-coefficient is given by ∆c = πe(Ez− E0
z)d/h (in angu-

lar frequency units) and the Rabi angular frequency is Ωc = πVt/h. For the flip-flop
qubit we find accordingly ∆so = πδso/h and Ωso = 2πgso/h. For an adiabatic factor
K, we then calculate dEz/dt for each Ez by satisfying the condition

dEz/dt(total) = min [dEz/dt(charge), dEz/dt(flip-flop)] . (3.27)

For K = 50 (Fig. 3.11), Ez is initially swept quickly for 0.8 ns, allowed by the
large charge qubit splitting when Ez � E0

z , followed by a slower sweep for 3.5 ns,
limited by the proximity of excited charge states to the flip-flop qubit when Ez ≈ E0

z .
This gives a total setup time of 4.3 ns due to the adiabatic ramp. The electron then
remains at the clock transition for a time

tπ =
αrot/2π − 2π

∫ Ef
Es

(εff[Ez(t)]− εff[Ez(t0)]) · (dEz/dt)−1 h−1dEz

εff[Ez(tend)]/h− εff[Ez(t0)]/h
(3.28)

= 60 ns,

where αrot = π is rotation angle we aim to perform for the gate and Es,f are the start
and final electric field values. This time tπ is then the time necessary to perform the
gate to correct for the phase shift, after the incurred phase shift during the adiabatic
ramp has been subtracted.

To determine the time dynamics of an initial state |ψ(t0)〉 = |g〉 ⊗ (|↓⇑〉 +
|↑⇓〉)/

√
2, while sweeping Ez adiabatically to move the electron from the interface

to the 2nd-order clock transition and back in order to realize a π z-gate, we compute
its time evolution

|ψ(t)〉 = e−iHfft/h̄ |ψ(t0)〉 . (3.29)

We then find the expectation values, according to 〈#〉 = 〈ψ(t)| # |ψ(t)〉, of the flip-
flop z-state

σff
z = |↑⇓〉 〈↑⇓| − |↓⇑〉 〈↓⇑| , (3.30)

the flip-flop x-state
σff

x = |+ff
x 〉 〈+ff

x | − |−ff
x 〉 〈−ff

x | , (3.31)
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where

|+ff
x 〉 =

1√
2

(
|↑⇓〉+ exp

(
−i2πεt=0

ff /h
)
|↓⇑〉

)
, (3.32a)

|−ff
x 〉 =

1√
2

(
|↑⇓〉+ exp

(
−i2πεt=0

ff /h− iπ
)
|↓⇑〉

)
, (3.32b)

the electron position σz and the charge qubit excitation |e〉 〈e|. We find that indeed
during the 69 ns the flip-flop phase π-gate is performed while keeping both the flip-
flop and charge excitation minimal (Fig. 3.12). Fast oscillations between the charge
and flip-flop states are due to small deviations from perfect adiabaticity.

Overall, we find that moving the electron fast, when the different qubit states are
far detuned, and slowly when they are close to resonance, allows for minimal errors
while switching between the different operation modes.

Adiabatic phase gate error rates

The adiabatic errors (without noise) of an adiabatic unitary process Uideal, express-
ing leakage to other states, can be calculated by averaging the fidelity of the actual
process U over a set of initial states |j〉,

Adiabatic error = 1−∑
|j〉

∣∣∣〈j|U†Uideal |j〉
∣∣∣2 /Nj, (3.33)

where Nj is the number of initial states.
For the z-gate, we choose the 1-qubit (Nj = 4) states |j〉 = {|g ↓⇑〉e , |g ↑⇓〉e ,

(|g ↓⇑〉e + |g ↑⇓〉e)/
√

2, (|g ↓⇑〉e + i |g ↑⇓〉e)/
√

2}, which closest correspond to the
uncoupled eigenstates.
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The adiabatic errors can be controlled with the factor K, which determines the
setup time (see Fig. 3.13a). The longer the setup time, the smaller are the adiabatic
errors.

Quasi-static Ez noise can increase errors, due to dephasing (Fig. 3.13b). At real-
istic noise levels (100 V/m), the gate error rate is found to be < 10−4 for setup times
of several nanoseconds. Similar error levels arise due to relaxation, which remains
below 3 · 104 Hz (arrow in Fig. 3.9).

3.6 Electric drive

a b

FIGURE 3.14: Electric drive of the flip-flop qubit. a Spatial representation for an electric
drive of the flip-flop qubit, showing the partially ionized electron wavefunction and spin

arrows. b Level diagram of the detuned charge and spin states.

High-fidelity one-qubit x(y)-gates can be achieved when addressing the flip-flop
qubit electrically (Fig. 3.14a). A vertical microwave electric field of amplitude Eac is
applied in resonance with the flip-flop qubit, i.e, νE = εff/h, which modulates the
hyperfine interaction, rendering HA(t) time-dependent. The flip-flop qubit is then
driven via a second order process (Fig. 3.14b). The fastest 1-qubit gates are obtained
when the electron is at the ionization point, where ∂A/∂Ez is maximum and thus the
spin-orbit coupling gso = hA/4 (Fig. 3.4, Eq. 3.10).

Note that the presence of clock transitions does not affect the ability to use Eac
to resonantly drive the qubit, since the transverse term A(Ez) still responds fully to
the electric field (this is similar to the case of magnetic clock transitions, e.g. in Si:Bi
[90]).
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For a linearly polarized electric field, the electric drive of a dipole of size d is
described by the Hamiltonian

HE = edEac cos(2πνEt)σz. (3.34)

The coupling of this electric field to the charge qubit is then determined (with Eq.
3.10) by3.

gE = 〈g| HE |e〉

=
eEacd

4
〈g| σz |e〉

=
eEacd

4
Vt

εo
. (3.35)

A large detuning δso � gso between the charge and flip-flop qubit ensures the
least amount of the charge excited state |e〉 in the flip-flop qubit eigenstates (Eq.
3.16a), minimizing qubit relaxation via charge-phonon coupling. The flip-flop qubit
is still driven, via a second-order process, at a rate:

gff
E =

gsogE

2

(
1

δso
+

1
δE

)
, (3.36)

where δE = hνE − εo is the detuning between the electric drive and the charge qubit.
Here, we see again that the fastest 1-qubit gates are obtained when the electron is at
the ionization point: δso and δE are minimum (εo is minimum), and gso and gE are
maximum (Eqs. 3.10 and 3.35).

3.6.1 Optimized pulse shaping: adiabatic gates

The electrical drive can cause some excitation of the charge qubit. This has to be
avoided as both the dephasing and the relaxation rates of the charge qubit are ex-
pected to be on the order of 106 s−1. It is therefore convenient to turn Eac on/off
adiabatically to make sure that any small amount of charge excitation is de-excited
at the end of the gate. As for the adiabatic z-gate, we find the adiabatic increase of
Eac(t) (Fig. 3.15 top panel) with Eq. (3.25) where ∆E = πδE/h and ΩE = 2πgE/h.
We assume an adiabatic factor K = 30, which is sufficient for leakage errors < 10−3.

To determine the time dynamics of the gate, we employ Floquet theory to effi-
ciently calculate the time evolution of the time-dependent Hamiltonian. For a peri-
odically driven open quantum system with a Hamiltonian

H(t) = H(t + T) (3.37)

with period T, the Floquet theorem states [91], [92] that the time evolution operator
K(t, t0) of the system, defined by

|ψ(t)〉 = K(t, t0) |ψ(t0)〉 , K(t0, t0) = 1, (3.38)

3We adapt a definition of the coupling rates consistent with the Jaynes-Cummings model (see Sec.
2.4.3). As such, g corresponds to half the Rabi frequency in the one-photon limit. Furthermore, in
every case of resonant driving we assume a linearly polarized field, resulting in a Rabi frequency that
equals the dipole matrix element times half the driving field amplitude (RWA, see Sec. 4.3.1, Eq. 4.11).
This explains the factors of 4 appearing in all the formulas for coupling rates of driving fields.
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can be factorized as
K(nT, 0) = [K(T, 0)]n, (3.39)

where we use the propagator over a full period K(T, 0) to construct the time evolu-
tion over many multiples n of the fundamental period. This formalism effectively
renders our time-dependent Hamiltonian time-independent. Additionally, we de-
construct the adiabatic ramp into a few coarse time steps to account for large changes
in the driving parameters.

In this way we calculate the time-evolved eigenstate ofHff +HE and then deter-
mine the expectation values of flip-flop z-state 〈σff

z 〉, the electron position 〈|d〉 〈d|〉 −
〈|i〉 〈i|〉 and the charge qubit state 〈|e〉 〈e|〉 − 〈|g〉 〈g|〉 (Fig. 3.15 bottom panel).

To perform a π/2 x-gate, Eac increases steadily until a π/4 rotation is completed,
after which Eac is gradually switched off to achieve the gate. Meanwhile, an average
4% excitation of the charge qubit causes a∼ 4× 104 s−1 relaxation rate of the encoded
quantum state (Eq. 3.21), or error levels close to 10−3.

This shows that shaping the electric pulses applied to the qubit, minimizes qubit
decoherence.

Adiabatic gate errors

Now we investigate how the total π/2 x-gate errors depend on the biasing of the
electron wavefunction. Therefore we calculate the adiabatic error (Eq. 3.33), the
error from quasi-static Ez noise with

Noise error = 1− ∑
n,|j〉n

∣∣∣〈j|n U†
nUn,ideal |j〉n

∣∣∣2 /(NjNn), (3.40)
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where |j〉 = {|g ↓⇑〉e , |g ↑⇓〉e , (|g ↓⇑〉e + |g ↑⇓〉e)/
√

2, (|g ↓⇑〉e + i |g ↑⇓〉e)/
√

2} and
Nj = 4, and the relaxation errors with

Relax. error =

1− exp

−
τgate∫
0

 ∑
|j(t)〉
〈j(t)|e〉 〈e|j(t)〉 /Nj

 dt/T1,c


 /2, (3.41)

where |j(t)〉 are the time-evolution of the initial set states |j〉.
At the ionization point4, Ez = E0

z , error levels close to 10−3 are found over a wide
range of Vt (Fig. 3.16b). The K = 30 choice ensures adiabatic errors < 10−3 with an
oscillatory character typical of adiabatic processes [93]. At small Vt (and therefore
small detuning δso), the qubit eigenstates contain a substantial amount of charge,
causing more errors due to charge-phonon relaxation. Increasing the detuning δE
with larger Vt allows for a faster adiabatic sweep and higher powers (Fig. 3.16a),
yielding shorter gate times and therefore less errors due to quasi-static noise. Still,
the incident power is at least three orders of magnitude lower than the one needed to
drive donor electron spin qubits, at the same Rabi frequency, with oscillating mag-
netic fields [30], [40].

Low error rates for quasi-static noise (Eq. 3.40) are still available away from the
ionization point (Fig. 3.17a), even though the best values are found at Ez = E0

z . This
is because our gate times are so fast (∼ 20 ns) that dephasing, and therefore clock
transitions, do not play a crucial role. Instead, quasi-static Ez noise causes errors
mainly by modulating the driving strength gff

E, causing “gate time jitter”. Indeed,
the gate time is sensitive to the charge qubit transition frequency εo (Eq. 3.36), and
therefore gate errors are minimized close to the charge qubit clock transition (CQCT),
where ∂εo/∂Ez = 0 (Fig. 3.8).

Finally, lower quasi-static Ez noise can cause less errors, provided that the adia-
batic factor K is increased, to reduce leakage errors, up to an optimum value where
gate times are still fast as to keep noise errors low (Fig. 3.17b). Relaxation errors
could also be reduced by reducing B0 (recall Fig. 3.9).

4Note, that the 2nd clock transition is close but not exactly at E0
z .
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the electric noise r.m.s. amplitude and adiabatic factor K (which sets the gate time).

Overall, we can achieve an electrically driven π/2 x-gate with a gate time of 30 ns
and an error rate of 10−3 with an incident power < 1 pW.

3.7 Noise influences

3.7.1 Charge noise

The Si/SiO2 interface contains a number of defects and electron traps, which can
generate charge noise and therefore degrade the operation of qubits sensitive to elec-
tric fields. Some experimental studies have extracted the trap density, in the middle
of the silicon band gap, for the MOS devices we consider here [94]. It is known,
experimentally and theoretically, that these charge fluctuators yield a 1/ f frequency
dependence of the noise spectral density [95]. These models capture the averaged
collective effect of many charge fluctuators on the qubit operation. In specific cases,
one can occasionally encounter individual charge traps or fluctuators whose effect
is more drastic than that of an overall 1/ f noise. However, it is usually possible ex-
perimentally to tune the electrostatic landscape of a nanoscale device in such a way
that the individual trap is frozen, i.e. does not change its charge state while the qubit
is operated. This results in a static shift in the local electric field that can be com-
pensated with other gate voltages. In very rare occasions, a charge trap cannot be
frozen while placing the qubit at its optimal operation point. In that case, the qubit
will have to be considered faulty, and excluded from participating in the operations
of the quantum processor.

In the general case where charge noise can be considered an average collective
effect, it can be thought of as a quasi-static drift of the qubit electrostatic environ-
ment (noise with a spectral weight centred below the Rabi frequency). Indeed, since
individual gates take less than a microsecond, the qubit environment is usually static
within a single gate, but fluctuates in between gates. The dephasing time T∗2 charac-
terises the influences of these fluctuations on the qubit (see Sec. 2.3.4).

Experimentally, average quasi-static charge detuning noises around 1-9 µeV are
typically found in a range of semiconductor nanodevices, including SiGe [96]–[98],
AlGaAs [99] and Si/SiO2 [83], [98]. In particular, MOS structures were found re-
cently [98] to have a charge noise spectrum similar to SiGe devices, around
(0.5 µeV)2/Hz. Integrating over a quasi-static bandwidth relevant to experimental
time scales, say between 1 Hz and 1 MHz (∼ Rabi frequency), yields 1.7 µeV noise.
In our simulations, given that the distance between the donor and interface sites is
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∼ 10-30 nm, a noise field of 100 V/m would correspond to 1-3 µeV charge detuning
noise.

We assume any quasi-static noise to be along the z-direction. However, when we
tune Vt by moving the electron wavefunction laterally, the electric dipole acquires
some horizontal component (Fig. 3.4). In this case, the detuning noise is caused
by the noise component along the donor-interface states direction. At the same time,
horizontal noise will also have an effect, albeit minimal, in gate performance. For the
parameters at which Vt/h ≈ 10 GHz in Fig. 3.10b, 10 µV r.m.s. lateral noise would
cause less than 0.01% uncertainty in the dipole size, therefore causing negligible
gate errors. The same noise causes less than 1% uncertainty in δso (and therefore in
gate time), which translates into maximum 10−4 errors due to gate time jitter, and
maximum ∼ 104 s−1 extra dephasing due to dispersive shifts (Eq. 3.18).

Overall, charge noise is the main source of quasi-static noise (see discussion in
the following section) with a typical 1/ f spectrum. Consistently with recently mea-
sured spectral density S∆ε

SiO2 = 0.5 µeV/
√

Hz for Si/SiO2 interfaces [98], we assume
the power spectral density at the donor to be

Sc(ω) = Sc(1 Hz)/ω (3.42)

with

Sc(1 Hz) ≈
(

S∆ε
SiO2
ezd

)2

≈ 2× 104 V2 m−2 s. (3.43)

3.7.2 Other quasi-static noise sources

Besides quasi-static Ez noise, a number of other noise sources can also affect the
qubits.

Johnson-Nyquist noise Another source of electric field noise can be the thermal
and electrical noise produced by the metallic gates on top of the qubits, and the
room-temperature instruments they connect to. An R = 50 Ω resistor at room tem-
perature produces Johnson-Nyquist noise with an r.m.s voltage

VJN
rms =

√
4kBTR∆ν. (3.44)

The corresponding noise spectral density is

SJN(ω) =

(
∂Ez

∂V

)2 2Rh̄ω

π
(eh̄ω/kBT − 1)−1, (3.45)

where we have used ∂Ez/∂V = 107 m−1, typical in MOS nanostructures (simulated
with Synopsis R© TCAD).

A quasi-static bandwidth ∆ν ∼ 1 MHz (up to the Rabi frequency) produces
∼ 1 µV voltage noise, which is equivalent to Enoise

z,rms ∼ 10 V/m, or errors < 10−5

(Fig. 3.17). Furthermore, because of the very low powers required by the electrically-
driven 1-qubit gates and adiabatic shuttling, it is possible to insert abundant low-
temperature attenuation along the high-frequency lines, and therefore the relevant
temperature for the Johnson-Nyquist noise is well below room temperature (as low
as several mK, see Sec. 6.4.2).
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Evanescent wave Johnson noise Being close to a metallic interface, our qubit will
be subject to evanescent wave Johnson noise (EWJN). Here, quantum and thermal
fluctuations of the electrical current create electromagnetic field noise which leaks
out of the metal in form of evanescent waves (see Sec. 8.2.2). The corresponding
electrical noise r.m.s. voltage is [100]

VEWJN
rms =

√
kBT∆ν/(2z3

dσ) (3.46)

and the electrical noise spectral density is [100], [101]

SEWJN(ω) ≈ h̄ω

4πz3
dσ

, (3.47)

where σ is the electric conductivity of the metal gates.
Assuming the qubit is zd = 15 nm under aluminium gates at T = 100 mK with

σ = 1.6× 106 S m−1 (Sec. 8.4.1), a quasi-static bandwidth ∆ν ≈ 1 MHz produces
VEWJN

rms =∼ 0.01 V/m, which is negligible.

3.7.3 High frequency noise

In general, a driven qubit Rabi-oscillates with a decay envelope function given by
[102]

P1(t) = ζ(t) exp(−ΓRt), (3.48)

where ζ(t) represents the decay due to quasi-static noise which shifts the qubit res-
onance frequency and detunes it from resonance. We find ζ(t) to be on the order of
a few kHz, leading to errors below 10−3 (Sec. 3.3.1).

ΓR = Γ1 + Γ∆
1 + Γν

1 + ΓΩ (3.49)

is the exponential Rabi decay rate which combines various decay mechanisms Γi
which will be discussed in the following.

Qubit relaxation Γ1 = 1/T1 is the qubit relaxation rate due to an energy exchange
with the environment and is around 104 s−1 which leads to error levels on the order
of 10−3 (see Ref. [87], Secs. 3.3.2, 3.6.1).

Quasi-static gate time jitter Γ∆
1 is the inverse of the gate time jitter caused by quasi-

static noise which modulates the drive strength. This decay leads to error rates
around 10−3 (Sec. 3.6.1).

Gate time jitter at the drive frequency Γν
1 is the inverse of the gate time jitter due

to noise at the drive frequency.
Vertical (thus parallel to the driving field Eac) noise at the qubit resonance fre-

quency (εff/h ∼ 11 GHz) would cause transitions between the qubit eigenstates -
essentially a spurious excitation/relaxation process driven by noise - at a rate Γν

1.
This noise can be caused e.g. by charges fluctuating in resonance with the qubit or
by voltage noise at the metallic gates. This is dominated by vacuum fluctuations,
since the qubit frequency is generally higher than the corresponding device tem-
perature. Also, during gate operations, the portion of the noise spectrum around
the qubit frequency can add incoherently to the external resonant drive, causing the
gate time to fluctuate.
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For the flip-flop qubit, the Rabi decay rate is given by

Γν
1 =

π

2

(
µff

e
h̄

)2

S(2πεff), (3.50)

where S(2πεff) is the noise power spectral density taken at the qubit angular fre-
quency (in units of V2 m−2 rad−1 s) and

µff = 〈 gso

δso
〉ed (3.51)

is the average flip-flop qubit electric dipole moment. It is dependent on the amount
gso/δso of charge excitation in the flip-flop states [54] as the charge qubit exhibits the
physical dipole with a dipole moment of µc = ed and only acts as a second-order
enabler. Because the charge excitation is minimized in our gate schemes (Figs. 3.12a,
3.15 and 3.22a), µff is much smaller than the charge dipole, which in turn makes it
less susceptible to electrical noise.

In case of charge noise we get Γν
1 ∼ 104 s−1 with Eq. (3.42). This implies π/2

x-gate errors5 of ∼ 10−4. There could also be vacuum fluctuations of charge traps,
which could generate errors due to relaxation. We do not know of any experimental
measurement of such a noise for semiconductor nanostructures. For superconduct-
ing charge qubits, it has been found that charge noise increases linearly at frequen-
cies beyond the thermal bath [103], [104]. If a similar phenomenon afflicts our qubits,
those quantum fluctuations will play an important role beyond ∼ 2 GHz (100 mK),
implying that, at 10 GHz, relaxation can be up to 25 times enhanced. This can in-
crease relaxation error rates to ∼ 10−3.

Johnson-Nyquist noise, at a noise temperature T = 100 mK with Eq. (3.45),
would give Γν

1 < 104 s−1, and therefore error rates < 10−4.
Finally, for EWJN (Eq. 3.47) at T = 100 mK we get Γν

1 < 104 s−1, therefore again
error rates < 10−4.

Note that, in the dressed qubit picture, we find the dephasing of the dressed
qubit [105]

1/T2ρ = Γ1 + Γ∆
1 + Γν

1. (3.52)

Detuning noise at the Rabi frequency ΓΩ is the decay rate of the Rabi oscillations
due noise at the Rabi frequency (ΩR > 10 MHz). This type of noise feeds into the
driven qubit via fluctuations in the detuning between drive frequency and the qubit
precession frequency. The decay rate of the flip-flop qubit is given by

ΓΩ =
π

2

(
2π ∑

i=x,y,z

∂εff

∂Ei

)2

S(ΩR). (3.53)

When performing gate operations while tuned such that we expect low gate er-
rors (Fig. 3.17a), we estimate the change in qubit precession frequency with electric
field for vertical Ez-noise to ∂εff/∂Ei ∼ 103 Hz V−1 m (Eq. 3.1). The change in pre-
cession due to horizontal electric noise Ex,y can be estimated from the change in Vt
due to such noise (from Fig. 3.10b) which in turn changes εff. We find ∂εff/∂Ex,y ∼
102 Hz V−1 m.

1/ f charge noise (Eq. 3.42) gives ΓΩ < 104 s−1, implying < 10−4 errors. Johnson-
Nyquist noise (Eq. 3.45) from room temperature gives ΓΩ = 300 s−1, whereas EWJN

5We estimate the error rate as Γi · τgate where τgate is the gate duration.
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(Eq. 3.47) at 100 mK gives ΓΩ = 20 s−1, therefore producing < 10−5 and < 10−6

errors, respectively.
Note that, in the dressed qubit picture, we find the relaxation of the the dressed

qubit [105],[106]
1/T1ρ = ΓΩ. (3.54)

3.7.4 Summary

Error levels at different spec-
tral bandwidths

Noise source Quasi-static
(< 1 MHz)

Rabi
(∼ 10 MHz)

Qubit
(∼ 10 GHz)

1/f vertical (Ez) 10−3 < 10−4 10−4

1/f horizontal (Ex,y) 10−4 < 10−5 -
Charge-phonon
relaxation

- - 10−3

Johnson-Nyquist � 10−5 < 10−5 < 10−4

EWJN - < 10−6 < 10−4

TABLE 3.1: Gate errors for different noise sources Hyphens indicate non-existent or negli-
gible errors.

We conclude that quasi-static Ez noise dephasing and charge-phonon relaxation
T1 are the main sources of error and the most deleterious ones for flip-flop qubits.
Therefore our analysis is sufficient to provide a reliable estimate of dephasing and
gate errors. Indeed, low-frequency noise was found to be the most deleterious one
in a hybrid donor-dot qubit in a silicon MOS device [83]. Finally, note that we do
not assume any type of dynamical noise correction or cancellation to be applied,
and therefore our calculations are a worst-case scenario. Table 3.1 summarizes these
results.

3.8 Dipole-dipole coupling

To couple two flip-flop qubits, we exploit the electric dipole that naturally arises
when a donor-electron wavefunction is biased to the ionization point, due to the fact
that a negative charge has been partly displaced away from the positive 31P nucleus.
The electric field produced by this induced dipole in turn, modifies the energy of a
nearby donor which is also biased at the ionization point, resulting in a long-range
coupling between the two dipoles (Fig. 3.18).

The interaction energy between two distant dipoles, µ1 and µ2, oriented perpen-
dicularly to their separation r is

Vdip = µ1µ2/(4πεrε0r3), (3.55)

where ε0 is the vacuum permittivity and εr the material’s dielectric constant (εr =
11.7 in silicon) [107]. The electric dipole of each donor-interface state is

µc
i = edi(1 + σz,i)/2, (3.56)



56 Chapter 3. The flip-flop qubit

𝑑1 𝑑2

𝑟 = 100 − 500 nm

𝐸dip

FIGURE 3.18: Electric dipole-dipole interaction between two distant flip-flop qubits. De-
vice schematic for coupling flip-flop qubits, showing dipole field lines, Edip, produced by
the dipole with dipole length d1 on the left. The distance r between two qubits can be up to

500 nm.

which yield an interaction energy of

Vdip =
1

16πε0εr

e2d1d2

r3 , (3.57)

which implies that the dipole-dipole interaction Hamiltonian between two such
dipoles is:

Hdip = Vdip (σz,1σz,2 + σz,1 + σz,2) . (3.58)

This electric dipole-dipole interaction is therefore equivalent to a small shift in
the equilibrium orbital position of both electrons plus a coupling term between the
charge qubits (blue dashed rectangle in Fig. 3.20a) equal to:

gdd = 〈g2e1| Hdip |g1e2〉
= Vdip 〈e1| σz,1 |g1〉 〈g2| σz,2 |e2〉

= Vdd
Vt,1Vt,2

εo,1εo,2
.

(3.59)

The strength of this dipole interaction is influenced by screening effects due to
the dielectric/metal surface above it.

3.8.1 Dipole Screening

Our device topology consists of a SiO2 layer sandwiched between a metal gate and a
silicon substrate, with the donor embedded in the substrate. In such a topology, the
image charges of the donor electron and nucleus will be located above the donor,
thereby creating an additional vertical dipole. The magnitude and polarity of the
image charges depend on the details of the nanostructure, such as the donor depth
and thickness of the oxide.

We first analyse two extreme scenarios, considering image charges at (i) silicon-
metal and (ii) silicon-oxide interfaces. For a source donor electron (or nuclear) charge
De(n), in silicon, the image charge Ie(n) in the interface material is given by [79]

Ie(n) = Q De(n), (3.60)

where
Q =

εSi − εI

εSi + εI
, (3.61)
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FIGURE 3.19: Screening and image charges. Image (Ie and In) charges of the donor electron
(De) and nucleus (Dn) for silicon-metal (a) and silicon-oxide (b) interfaces. The magnitude
and polarity of the image charges are given by Eq. 3.60. Schematic top view of two inter-
acting dipoles when the negative charges (blue spheres) are displaced in perpendicular (c)
and parallel (d) direction to the inter-dipole separation. e Top view of a gate stack that tunes
each qubit’s Vt by displacing their interface states perpendicularly to their nearest neighbour
displacement, leaving gdd unchanged. Inter-dipole coupling gdd, as predicted by Eq. (3.59)
using Eq. (3.63), for the orientation shown in c (f) and d (g), for r = 200 nm, d1 = d2 = 10 nm

and Q = −0.5.
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defines the strength and polarity of the image charge according to the difference
between the dielectric constant of silicon εSi = 11.7 and the SiO2 interface εI =
3.9 or the metal interface εI = ∞ respectively6. Figs. 3.19a,b show the magnitude
and polarity of the image charges for both types of interfaces. For simplicity, we
assume in Fig. 3.19 and Eq. 3.60 that the donor electron as well as its image are point
charges. Given that the separation between the two donors is at least 180 nm (more
than hundred times the Bohr radius of the donor electron), the above assumption is
valid when calculating their dipolar interaction.

Vertical dipole We first consider the electric dipole to be vertical. For the silicon-
metal interface (Fig. 3.19a) we find Q = −1. Therefore the image charges have
the opposite sign and same magnitude as the source charges. As a result, the total
electric field Edip from each donor will be enhanced by a factor of 2. This improves
the electric dipole coupling gdd between the two donors by a factor of 4. On the
contrary, for the silicon-oxide interface (Fig. 3.19b), the image charges have the same
sign and reduced magnitude (Q = 0.5) as the source charges, which decreases Edip
by half and therefore gdd to a quarter of its bare value.

For a real device, which typically contains a few metal gates on top of a ∼ 8 nm
thick SiO2, it is difficult to make a precise estimate of the extra electric field from
image charges. Rahman et. al. [79] assumed that a combination of metallic and
oxide screening effects yields Q = −0.5, corresponding to an improvement in the
magnitude of the electric dipole by ≈ 50%, which yields an improvement in gdd by
125%. This means that, while building a real device, one would have to aim for
slightly larger inter-donor separations than the ones presented here.

Including a lateral dipole component Since the donor-interface tunnel coupling
Vt has to be tuned to a precise value, the dipole will also have lateral components
(insets of Fig. 3.10). These components will also be affected by image charges. In
the case of a metallic interface (Fig. 3.19a), the lateral image dipole has opposite
direction as the original one. Hence, in the far field, the two horizontal dipoles cancel
each other out, leaving only an electric quadrupole which produces an electric field
that decays like r5. On the other hand, for the Si/SiO2 interface (Fig. 3.19b), the
lateral component of the dipole will be enhanced by 50%. Finally, for our assumed
real structure (Q = −0.5), the lateral dipole will decrease to half its original value.

In total, the dipole size and orientation, including screening, will be:

Di = di + Q× (di,x, di,y,−di,z), (3.62)

where di refers to the bare dipole, with x, y and z components di,x, di,y and di,z,
respectively.

As the image charges decrease a lateral dipole in a real device, the uncertainty in
the total electric dipole of a donor-interface state is minimal, even when displacing
the interface wavefunction laterally to tune up Vt. At Vt ≈ 10 GHz, the vertical
total dipole size (Fig. 3.2, dz = 11 nm) is (1 + 0.5)dz = 16.5 nm, while the total
dipole size with a laterally displaced wavefunction (Fig. 3.10, dz = 5 nm, dx =
25 nm) is

√
[(1 + 0.5)dz]2 + [(1− 0.5)dx]2 = 14.6 nm. This is important for qubit

reproducibility over a large scale processor.

6The dielectric constant describes how much the electric field due to the Coulomb force between
two point charges in a material is reduced relative to vacuum. In a conductor, no electric field can exist.
Hence, the dielectric constant is infinite.
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To include images charges and angular dependencies, the dipole-dipole interac-
tion term Vdip (Eq. 3.57), has to be modified to [107]:

Vdip =
e2

16πε0εrh
D1 ·D2 − 3(D1 · r)(D2 · r)/r2

r3 , (3.63)

Note, that we neglect the interaction of a dipole with its own charge since it does
not produce inter-donor coupling.

Lateral displacement influence on the dipole-dipole coupling strength Laterally
displacing the interface charge is also alters the total electric dipole direction and can
therefore affect the dipole-dipole coupling gdd between neighbouring qubits.

We first consider the case in which the displacements are perpendicular to the
separation between dipoles (Fig. 3.19c). The gdd dependence on y1 and y2 is plotted
in Fig. 3.19f, for maximum displacements of 30 nm (enough to tune Vt by two orders
of magnitude - see Fig 3.10b). It shows that, provided that the interface states are
displaced along the same direction, gdd only varies by a factor of two.

For completeness, we also analyze the case in which the interface states are dis-
placed in the same direction as the inter-donor separation (Fig. 3.19d). Here, gdd
varies by a factor of three if the interface states are displaced in opposite directions.

Finally, the variation in gdd can be reduced even further by fabricating the gate
stack in such a way that the charges in neighbouring qubits are displaced in perpen-
dicular directions (Fig. 3.19e). In this way, from Eq. (3.63), the only dipole terms
contributing to the coupling are the vertical ones, and therefore gdd is unchanged (to
first order) while tuning Vt.

3.8.2 Two-qubit coupling
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FIGURE 3.20: Level diagrams two qubits coupled via electric dipole-dipole interactions.
a Two flip-flop qubits are coupling second-order by the dipole-interaction between their
charge qubits. b Lowest molecular eigenstates for the two charge qubits inside dashed rect-

angle in a.

The electric dipole-dipole interaction provides a natural way to couple two dis-
tant flip-flop qubits since each flip-flop qubit is coupled to their electron position
(Eq. 3.8, Fig. 3.20a). The two qubit system is described by the Hamiltonian

Hff
2q = H1

ff +H2
ff +Hdip. (3.64)
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We compute the 2-qubit coupling strength between the singlet ground state and ex-
cited triplet state

|S〉 = 1√
2
(|g1 ↑1⇓1, g2 ↓2⇑2〉 − |g1 ↓1⇑1, g2 ↑2⇓2〉) , (3.65a)

|T〉 = 1√
2
(|g1 ↑1⇓1, g2 ↓2⇑2〉+ |g1 ↓1⇑1, g2 ↑2⇓2〉) (3.65b)

from Hff
2q as half of the corresponding eigenenergy difference. Fig. 3.21a shows the

results at the ionization point

E0,2q
z = E0

z −
gdd

edi
, (3.66)

which is shifted by the presence of the second qubit i, for a range of qubit distances
r. The coupling rate exceeds 10 MHz around two narrow regions.

We also analyse the coupling as a function of electric field at a fixed inter-qubit
distance of r = 180 nm (Fig. 3.21b) which also yields two regions with high coupling
rates.
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FIGURE 3.21: Coupling rate between two flip-flop qubits. Effective coupling between two
flip-flop qubits as a function of Vt,1 = Vt,2 = Vt, inter-qubit distance r (a) and electric field
Ez,1 = Ez,2 = Ez (b). The arrows in b represent the adiabatic path followed for 2-qubit gates.

In these regions of high coupling the flip flop qubit is, while detuned from each
individual charge qubit, in resonance with a molecular charge state. This molec-
ular state is formed when the dipole coupling gdd between the two charge qubits
hybridizes the charge qubit states (Fig. 3.20b) such that the eigenstates are

g̃ = |gg〉 , (3.67a)
ẽ1 = βm |e1g2〉+ αm |g1e2〉 , (3.67b)
ẽ2 = −αm |e1g2〉+ βm |g1e2〉 , (3.67c)

with (see App. A)

αm =
1√

1 + Φ2
(3.68a)

βm =
Φ√

Φ2 + 1
, (3.68b)
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where

Φ =
δso,2 − δso,1 +

√
(δso,2 − δso,1)

2 + 4g2
dd

2gdd
. (3.69)

While the coupling rates are high in this resonant regime, the charge qubits are
also resonantly excited which induces relaxation errors. Therefore, it is best to de-
tune the flip-flop qubits from the molecular states, while still keeping a substantial
inter-qubit coupling rate, via a second-order process. The coupling rate between the
flip-flop qubits in the dispersive regime is given by

gff
2q = gso,1gso,2αmβm

(
1

Ddd − δso,1
+

1
Ddd + δso,2

)
(3.70)

where

Ddd =
δso,2 − δso,1

2

√1 +
4g2

dd
(δso,2 − δso,1)2 − 1

 (3.71)

the dispersive shift of the charge qubit eigenenergies due to the coupling between
the two qubits (compare Sec. 3.2.3).

3.8.3 Two-qubit gates with optimized adiabatic pulse shapes
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FIGURE 3.22: Dynamics during an adiabatic
√

iSWAP gate between two distant flip-flop
qubits. Time evolution of an adiabatic

√
iSWAP gate, for K = 30, r = 180 nm, B0 = 0.4 T

and Vt/h = 11.58 GHz.

To perform high-fidelity two-qubit gates, we again use optimised adiabatic pulse
shapes. We start with both electrons at the interface, where qubits are decoupled
since the electric dipoles and the hyperfine interactions are first-order insensitive to
vertical electric fields. Indeed, from Eq. (3.70), gff

2q is negligible since gso vanishes
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and δso diverges. The electrons are then simultaneously and adiabatically displaced
to the ionization point for a time necessary for an

√
iSWAP gate, before returning

to the interface (Fig. 3.22, with an adiabatic factor K = 30, trajectory indicated by
arrows in Fig. 3.21b). Similarly to 1-qubit z gates (compare Sec. 3.5), the electron
is first displaced on a fast time scale (∼ 0.3 ns) set by the charge qubit parameters
(εo and Vt), followed by a slower sweep (∼ 19 ns) set by the spin-charge coupling
parameters (δso and gso), until it reaches the ionization point. The electron remains at
the ionization point for a short time before the whole process is then reversed. In the
end a

√
iSWAP gate is performed. While some amount of charge is excited during

the process, it goes back to its ground state, |gg〉, with an adiabatic error around
10−3.

Overall, we find that the a two-qubit gate is best achieved by adiabatically bring-
ing both qubits into resonance, in a similar fashion to the single qubit adiabatic z-
gates.

Adiabatic 2-qubit gate errors

We quantify the 2-qubit gate fidelity in presence of the most deleterious noise types
for our qubits, namely quasi-static Ez noise and charge-phonon relaxation. For this,
we observe that the optimal gate fidelities are achieved when Ez(τ√iSWAP/2) ≈ E0

z .
Similarly to 1-qubit x-gates, this happens because

√
iSWAP gates are sensitive to gate

time jitter, and therefore errors are minimized at the charge qubit clock transition
where gff

2q is robust against Ez noise to first order (Fig. 3.21b and Eq. 3.70).
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FIGURE 3.23: Error rates for adiabatic
√

iSWAP gates between two distant flip-flop qubits.
a, Optimized

√
iSWAP gate error, gate time and adiabatic factor K for r = 180 nm and

B0 = 0.4 T. b Optimized error rate arising from quasi-static Ez-noise, for different noise
amplitudes and adiabatic factor K (which sets the gate time) at Vt/h = 11.58 GHz.

We find the best adiabaticity K that minimizes errors due to Ez noise for each
value of Vt,1 = Vt,2 = Vt (Fig. 3.23a). Smaller detunings δso (small Vt) result in shorter
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gate times, which in turn reduces errors from quasi-static noise. However, this also
implies a larger admixture of charge in the qubit eigenstates, which slightly increases
relaxation errors. The lowest error rates, ∼ 3× 10−3 are found at small detunings,
Vt − εff − Ddd ≈ 100 MHz (Vt/h ≈ 11.59 GHz). At even smaller detunings, the
2-qubit coupling rate becomes too fast, requiring faster adiabatic sweeps to avoid
over-rotation (lower K, Fig. 3.23a) and generating more leakage errors. The gate
errors remain within 10−3 − 10−2 for a wide range of Vt.

Finally, we estimate how noise errors depend on the noise amplitude and adi-
abatic factor K, which sets the gate time (Fig. 3.23b). We find that a slower sweep
(larger K) leads to less errors for low noise levels, same as for the 1-qubit gates (Fig.
3.17b).

Robustness against donor misplacement

Our proposed 2-qubit gates are not only well protected against noise, but also robust
against donor misplacement. Variations in r, d1 and d2 mainly cause variations in
the charge qubits’ coupling gdd, therefore simply changing the energy separation
between molecular charge states (Fig. 3.20b). However, the coupling gff

2q between the
flip-flop qubits can be kept essentially constant by simply readjusting Vt (Sec. 3.4).
Fig. 3.21a shows that one can keep a constant value of, for example, gff

2q = 1 MHz for
any inter-donor spacing between 180 nm and 500 nm, by adjusting Vt/h between
11.3 GHz and 11.8 GHz.

In other words, since the flip-flop qubit coupling is mediated by a tunable inter-
action with their respective charge qubits, the inter-qubit interaction does not need
to decay with r3, as one would otherwise get when the dipole interaction couples
the qubits directly [72], [77], but can stay constant over several hundred nanometers.
Therefore, two-qubit operations can be turned on between pairs of qubits separated
by many sites in a 2-dimensional array. This tunable long-range connectivity can
be exploited to great advantage in large-scale quantum processors [108]. The large
tolerance in gdd also accommodates very well the donor depth uncertainties inher-
ent to ion implantation [88], given the linear dependence of gff

2q on di (Eqs. 3.57 and
3.59).

We conclude that our scheme provides a dramatic reduction in the fabrication
complexity, especially compared to schemes that require placing a gate between a
pair of tightly-spaced donors, such as the Kane’s proposal [22], which requires r ≈
15 nm separation between two 31P nuclear spins.

Note that, by relocating the problem of valley oscillations from the exchange
interaction [22] to the tunnel coupling, we have effectively provided a way in which
the delicate parameter can now be tuned using a much simpler gate geometry.

3.9 Scaling up using cQED

In order to reach the long-term goal of a large-scale quantum processor, wiring up
the control and read-out lines for each individual qubit is not trivial, given the high
density in typical spin qubit architectures [109]. Recent solutions include cross-
wiring using multilayer lithography [72] or floating gate electrodes inspired by dy-
namic random access memory (DRAM) systems [110]. In both cases, using flip-flop
qubits with long-distance interactions would result in widely spaced donors and
loose fabrication tolerances. In addition, since flip-flop qubits are coupled via elec-
tric fields, they could be spaced further apart by using electrical mediators. These
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FIGURE 3.24: Coupling to a single photon in a superconducting resonator. a Level di-
agram for distant flip-flop qubit coupling via a photon in a microwave resonator, showing
photon number states and off-resonant charge states. b Device schematic for coupling qubits
via a photonic link. Distant donors, placed next to the resonator center line and biased to
their ionization point, are subject to the vacuum electric field Evac of a shared microwave

resonator.

include floating metal gates [76] or even microwave resonators. Indeed, the use of
electric dipole transitions allows a natural integration of donor-based spin qubits
into a cQED architecture [54], [111]–[113] (see Fig. 3.24b for a possible device lay-
out).

A photon of the resonator electric vacuum field couples to the charge qubit with
coupling rate gE (Eq. 3.35), with νE now representing the resonator fundamental
mode frequency and Eac the amplitude of the resonator vacuum field Evac. More
rigorously, we can determine the coupling rate gE of the charge qubit to the resonator
through analysis of their Jaynes-Cummings Hamiltonian

HJC,orb =
Vt

2
σx −

e∆Vd
2hs

σz, (3.72)

where

∆V =

√
h̄ωr

2C

(
a† + a

)
(3.73)

is the voltage across the resonator (Eq. 2.46) and s the distance between the resonator
ground plane and the central conductor (see. Fig. 6.4). This results in a coupling of

gJC,E =
ed

2hs

√
h̄ωr

2C
(3.74)

close to the ionization point.
Again, it is best to have the charge excited state detuned from the flip-flop tran-

sition and resonator photon (Fig. 3.24a), therefore minimizing charge excitation
while retaining a second-order flip-flop-photon coupling gff

E (Eq. 3.36). Assuming
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FIGURE 3.25: Gate performance summary. Figures of merit summarizing the speed and er-
ror rates of different gate schemes presented in this chapter, assuming realistic noise sources.

δso ≈ δE ≈ 10gso ≈ 10gE, a zd = 15 nm deep 31P flip-flop qubit would be coupled to
photons at a gff

E/h ≈ 3 MHz rate.
This coupling rate is three orders of magnitude faster than the electron-spin cou-

pling rate to a resonator via its magnetic vacuum field [114], [115], and comparable
to the coupling strength obtained by using strong magnetic field gradients [116],
[117], but without the need to integrate magnetic materials within a superconduct-
ing circuit. This assumes a vacuum field amplitude Evac ≈ 30 V/m, which can be
obtained by using tapered coplanar waveguide or high-impedance resonators [118].

The possibility of coupling the qubits to microwave photons provides a path
for dispersive qubit readout, as well as for photonic interconnects. Near-quantum
limited amplifiers have recently become available to obtain excellent readout speed
and fidelities [119].

The resonator can also be used as a quantum bus to couple two spin qubits sep-
arated by as far as 1 cm (Fig. 3.24b), a distance given by the mode wavelength, at a
coupling rate of [54]

gff
2q ≈ (gff

E)
2/δff

E , (3.75)

where δff
E = νE − εff is the detuning between the resonator and the qubit. To avoid

losses from photon decay, the qubits should be detuned from the resonator (Fig.
3.24a) by an amount much greater than the qubit-photon coupling rates. Assuming
δff

E = 10gff
E, the effective 2-qubit coupling gff

2q/h ≈ 0.3 MHz yields a
√

iSWAP gate
that takes only 0.4 µs.

Thus, microwave resonators could be also used to interface donors with super-
conducting qubits [120], [121], for the long-term goal of a hybrid quantum processor
that benefits from the many advantages of each individual architecture [112].

3.10 Conclusion

In conclusion, we have presented a way to encode quantum information in the
electron-nuclear spin states of implanted 31P donors in silicon which enables fast,
high-fidelity, electrically-driven universal quantum gates.

The key figures of merit of our flip-flop qubits coupled by electric dipole inter-
actions are summarized in Fig. 3.25. Fast 1-qubit x-gates are attainable with low
electric drive power and error rates ∼ 10−3. 2-qubit

√
iSWAP gates are fast and

with error rates approaching 10−3. At the end of all operations, the phase of each
qubit can be corrected, via adiabatic z-gates, in fast time scales and low error rates
∼ 10−4. These values are based on current experimentally known values of charge
noise in silicon devices [98], and are possibly amenable to improvement through
better control of the fabrication parameters. More advanced control pulse schemes
could allow for faster gates with less leakage [122]–[124], and active noise cancella-
tion techniques, e.g. pulses for gate time jitter [125] or decoherence [126] suppression,
could further improve gate fidelities.
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Consequently, our proposal provides a credible pathway to the construction of
a large-scale quantum processor as it not only features qubits with low error rates,
compatible with fault-tolerant quantum error correction but also enables large qubit
spacing, not requiring atomic-scale precision in the qubit placement.
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Chapter 4

The nuclear spin qubit with an
electric dipole transition

“I’ve yet to see any problem, however complicated, which when you looked at it the right
way didn’t become still more complicated."

–Poul Anderson, Call Me Joe

The nuclear spin state of a phosphorus donor in isotopically
enriched 28Si is an excellent host to store quantum informa-
tion in the solid state. The spin’s insensitivity to electric
fields yields a solid-state qubit with record coherence times
but also renders coupling to other quantum systems very
challenging. In this chapter, we describe how to generate
a strong electric dipole (> 100 D) at microwave frequencies
for the nuclear spin. This is achieved by applying a magnetic
drive to the electrically driven flip-flop qubit. The dipole
then allows for coupling to microwave resonators, with a
vacuum Rabi splitting of the order of 1 MHz. This work
brings the 31P nuclear qubit into the realm of hybrid quan-
tum systems and opens up new avenues in quantum infor-
mation processing.

The work presented in this chapter has been published in:
G. Tosi, F. A. Mohiyaddin, S. Tenberg, A. Laucht, A. Morello. “Robust electric
dipole transition at microwave frequencies for nuclear spin qubits in silicon”, Phys-
ical Review B Vol. 98, 075313 (2018).

The author acknowledges G. Tosi for the conception of the idea and
large parts of the simulation work and F. A. Mohiyaddin for tight-binding
simulations and electric modelling. The author helped develop the
project, interpret the results, assisted with simulations and constructed
parts of the theoretical framework.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.075313
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.075313
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4.1 Introduction

The nuclear spin of a phosphorus donor in silicon has long been the subject of much
study in the context of solid-state quantum information processing, either as a qubit
cell for large-scale quantum processors [22], [72], [77], or a memory for long-lived
quantum information storage [127], [128]. Whether in ensemble form [60] or as in-
dividual qubit [30], the 31P nuclear spin has record-long coherence times, thanks to
its insensitivity to charge noise and the possibility to drastically reduce magnetic en-
vironmental noise by hosting it in isotopically pure 28Si [65]. However, as it is well
isolated, it cannot trivially be coupled to other quantum systems, and therefore all
quantum computing proposals so far impose short interaction distances and slow
quantum gate operations [22], [72], [77].

In the hybrid approach to quantum information processing [112], different quan-
tum systems interact in a large architecture that benefits from the best properties of
each system, which are often coupled together via microwave resonators. In order
to couple to individual spin qubits, the resonator vacuum field can be enhanced by
shrinking its dimensions in the vicinity of the spin qubit, thereby enhancing the spin-
photon coupling rate [114], [115], [129], [130]. However, having a Zeeman splitting
in the radio-frequency range and a null electric dipole, phosphorus nuclear-spins do
not interact naturally with microwave resonators.

The artificial creation of electric dipole transitions has been proposed for differ-
ent spin systems [114], [131]–[134], as a way to facilitate scalability. The challenge
is how to make the spin drivable by electric fields without making it too suscepti-
ble to electrical noise, which is significant in nanoscale electronic devices. In this
chapter, we show how to engineer a strong electric dipole transition at microwave
frequencies for the nuclear spin, based on the flip-flop qubit and our findings from
Chap. 3, by applying an oscillating magnetic field to the nucleus while the electron
is shared between the donor and a quantum dot defined at the Si/SiO2 interface [25],
[80], [83], [114]. While the admixture of spin and charge states can potentially make
the system very sensitive to electric noise, we show that the nuclear spin precession
frequency and electric dipole strength can be rendered highly immune to electrical
noise by a specific choice of spin-charge hybridization, same than for the flip-flop
qubit. By providing a robust coupling between the nuclear spin and electric fields,
our scheme opens up new avenues to couple 31P qubits to other quantum systems,
including microwave resonators, superconducting qubits, or simply other nuclear
spins but at distances and with rates that had not been anticipated so far.

4.2 Second-order Raman drive of a 31P nuclear spin

Usually, the phosphorus nuclear (electron) spin is coherently driven by conventional
magnetic resonance using an oscillating magnetic field at radio (microwave) fre-
quencies [41] (Chap. 2.3.2). In particular, the nuclear spin transition frequency when
the electron spin is |↓〉 (i.e. the |↓⇑〉 ↔ |↓⇓〉 transition) is:

εns(A) = γnhB0 + hA/2. (4.1)

Now however, to create an electric dipole transition, we drive the nuclear spin
via a Raman transition, such that it is coupled via a second-order process to the flip-
flop qubit.

Driving a Raman transition requires a three-level Λ system (Fig. 4.1), where two
stable states |0〉 , |1〉 are coupled via a higher radiative virtual state |2v〉, which is
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FIGURE 4.1: Raman Λ transition. A three-level system with stable states |0〉 , |1〉 and inter-
mediate state |2〉 enables a Raman drive. The Raman transition |0〉 ↔ |1〉 is driven via the
virtual level |2v〉with driving fields of frequency νpump and νStokes. The detuning δ between
|2〉 and |2v〉 is large in comparison with the couplings gStokes and gpump of the driving fields.

detuned by δ from an intermediate state |2〉. Two fields with frequency νStokes and
νpump couple the states {|1〉 , |2〉} with strength gStokes and {|0〉 , |2〉} with strength
gpump respectively1. In a Stokes Raman process the energy hνpump − hνStokes is ab-
sorbed to drive the Raman transition νRaman with strength [135], [136]

gRaman =
gpumpgStokes

δ
. (4.2)

In the electron-nuclear spin system, the stable states are the flip-flop state |↓⇑〉
and the "nuclear" state |↓⇓〉, while the intermediate state is the flip-flop state |↑⇓〉
(Fig. 4.2b). The flip-flop transition is driven with a microwave electric field (the
pump field) with coupling strength gff

E (Eq. 3.36). The electron transition |↓⇓〉 ↔
|↑⇓〉 is driven via a magnetic microwave drive Bac cos(2πνBt) (ESR, Stokes field),
perpendicular to the static B0 (Fig 4.2a), with a Hamiltonian

HESR = hBac cos(2πνBt) (γeSx − γn Ix) (4.3)

and coupling strength

gB = 〈↓| HESR |↑〉 = γehBac/4. (4.4)

Consequently, the Hamiltonian describing this system is

Hns = Hff +HE +HESR. (4.5)

With the electron in the ground spin state |↓〉, the AC electric and magnetic fields
drive the nuclear-spin “up”, |↓⇑〉, and “down”, |↓⇓〉, states, respectively, to a virtual
level detuned from the |↑⇓〉 state by δ � gB, gff

E. As a result, the nuclear spin is
driven via a second order Raman process, with minimal excitation of the electron
spin, at a rate (Eq. 4.2)

gns
E =

gBgff
E

δ
. (4.6)

This Raman process provides a way of controlling the nuclear spin state without
any radiofrequency field, by using instead two microwave-frequency excitations,

1The coupling g corresponds to half the Rabi frequency.



70 Chapter 4. The nuclear spin qubit with an electric dipole transition

ba ȁ ۧ↑⇑

ȁ ۧ↑⇓

ห ൿ↓⇓

ห ൿ↓⇑

𝜈𝐵

𝜖ns

𝑔𝐵

𝛿𝐵
𝜖ff

𝑔so

ȁ ۧ𝑔

ȁ ۧ𝑒

𝛿so

𝜖0

𝛿𝐸

𝜈𝐸

𝑔𝐸

c

FIGURE 4.2: Nuclear Raman transition. a Components of a Raman-enabled Si:P nuclear
electric dipole transition. The electron spatial wavefunction (transparent gray) is shared be-
tween an interface-dot, |i〉, and a donor-bound state, |d〉, coupled by a tunnel rate Vt, such
that a charge qubit is formed. Metallic gates (blue) on top of SiO2 dielectric (not shown)
control the charge qubit via a static vertical field Edc, and can introduce an oscillating elec-
tric field Eac, controlling the flip-flop states. In a cQED setup, the electrostatic gate can be
replaced by the inner conductor of a microwave resonator, and Eac by the vacuum field of
such resonator. A nearby broadband antenna [68] (orange) provides the magnetic drive Bac.
b Energy level diagram for Raman-drive of the Si:P nuclear-spin qubit, with energy splitting
εns. The second-order Raman drive is obtained by combining the microwave electric flip-
flop drive and a magnetic ESR drive, having frequencies νB and νE, and coupling rates gB
and gff

E, respectively. The drive is detuned by a frequency δ from the |↑⇓〉 state. c Expanded
energy diagram including the charge states, that enable the electric flip-flop drive.

one of which is the local electric flip-flop drive (Fig. 4.2a). This has important ad-
vantages over magnetic-only schemes [127], [128], since it allows coupling a nucleus
to the vacuum electric field of a microwave cavity, or to another nucleus similarly
equipped with an electric dipole, as we will show below.

The nuclear Raman transition can be interpreted such that the microwave mag-
netic drive Bac creates an electric dipole transition for the nuclear spin mediated by
the flip-flop qubit, with strength:

pns
E =

4gns
E

Eac
=

4gBgff
E

Eacδ
. (4.7)

The coupling gff
E between the flip-flop qubit and the AC electric field corresponds

to a strong electric-dipole flip-flop transition (∼ 80 Debye, assuming δso = 10gso).
Combining the strong flip-flop drive with the magnetic drive at rate gB (Eq. 4.6) re-
sults in a strong electric dipole transition for the nuclear spin (∼ 8 Debye, assuming
δ = 10gB).

However, since the nuclear transition frequency depends linearly on A (Eq. 4.1),
and A is a very sensitive function of electric field near the donor ionization point
(Fig. 3.4), electrical noise in the device will cause fast dephasing of the nuclear pre-
cession.

4.3 Robust electric dipole transition of a Si:P nuclear spin

4.3.1 Electron, nuclear and charge hybridization

We now show that, by adopting a specific choice of device tuning, the nuclear spin
can be made largely insensitive to electrical noise, while having its electric dipole
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νB. From left to right, the system eigenstates are shown while adding the electron spin state,
then the charge state, then increasing the strength of the magnetic drive. See main text for a

detailed description.

transition increased even further. This is achieved by tuning all qubit levels in reso-
nance: the charge qubit is in resonance with the flip-flop qubit (εo ≈ εff, i.e. δso ≈ 0),
the magnetic drive is in resonance with the electron spin (δB = γehB0 − h〈A〉/2−
hνB ≈ 0), and the electric drive is in resonance with the flip-flop (and charge) qubit
(δE ≈ 0). In this strongly hybridized regime, second-order perturbation theory can
not be directly applied. We therefore analyse the nuclear spin Hamiltonian Hns by
expressing it in the rotating frame of the magnetic drive by using the transformation:

H′ = U†HnsU − ih̄UU̇†, (4.8a)

U = ei2πνBt(Sz+Iz). (4.8b)

We get
ih̄UU̇† = hνB (Sz − Iz) (4.9)

and with cos(2πνBt) = 1
2

(
ei2πνBt + e−i2πνBt) follows

UHESRU† =
hBac

2

[
γe

(
0 e2·i2πνBt + 1

e−2·i2πνBt + 1 0

)
− γn

(
0 e2·i2πνBt + 1

e−2·i2πνBt + 1 0

)]
.

(4.10)
We neglect the counter-rotating terms, according to the rotating wave approximation
and arrive at the transformed Hamiltonian

H′ = (γehB0 − hνB)︸ ︷︷ ︸
δB

Sz − (γnhB0 + hνB)Iz

+
hBac

2
(γeSx − γn Ix) +Horb +Horb

A +HE, (4.11)
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where the magnetic drive is time-independent.
The dominant energy scale in the above Hamiltonian is given by the term

−(γnhB0 + νBh)Iz, which represents the energy splitting of the nuclear spin states,
but shifted to microwave frequencies by the transformation to the rotating frame of
the magnetic drive. The corresponding energy levels are shown as |⇑〉 , |⇓〉 at the
left-most end of Fig. 4.3. These levels are further split due to the electron spin states,
by (δB + h〈A〉Iz) Sz + 2gBSx, where the expectation value of the hyperfine coupling
〈A〉 depends on the electron charge state, yielding the electron-nuclear spin levels
shown in Fig. 4.3, depicted in the limit of vanishing Bac (and therefore gB) (compare
Fig. 3.6). In this case, the nuclear-spin transition frequency, in the rotating frame,
with the electron in the ground state, is:

ε′ns(A) = γnhB0 + hνB + h〈A〉/2. (4.12)

In Fig. 4.4a we plot ε′ns(A) (dashed line) by including the dependence of 〈A〉 on
vertical electric field Edc (Eq. 3.9). This is valid when the electron charge states are far
detuned from the spin levels (δso � gso). The plot highlights the strong dependence
of ε′ns on electric fields under such conditions.

However, the nuclear spin dispersion changes dramatically when δso approaches
zero. In that case, Horb

A hybridizes the flip-flop and charge states, as shown in the
blue panel within Fig. 4.3. The overall ground state is |g ↓⇑〉, but the excited flip-
flop state splits into two hybridized states βso |g ↑⇓〉+ αso |e ↓⇑〉 and −αso |g ↑⇓〉+
βso |e ↓⇑〉, with (compare Sec. 3.2.3, Eq. 3.15)

αso =
1√

φ2
so + 1

, βso =
φso√

φ2
so + 1

, where φso =
δso +

√
δso

2 + 4gso2

2gso
, (4.13)

so that αso = βso = 1/
√

2 for δso = 0.
As a final step, by increasing the magnetic drive amplitude Bac, the Hamiltonian

term 2gBSx couples the electron spin |↑〉 and |↓〉 states, further hybridizing the sys-
tem eigenstates |g ↓⇓〉 with the hybridized flip-flop states as well as |g ↑⇑〉. Two of
those eigenstates, which we call |̃⇓〉 and |̃⇑〉 (Fig. 4.3, orange box), are chiefly com-
posed of the tensor product of the nuclear |⇓〉, |⇑〉 states with the ground charge
state |g〉 and the ground |↓〉 electron spin state. They are obtained as:

|̃⇓〉 ≈ β1β2 |g ↓⇓〉+ (α1βso − α2αso) |g ↑⇓〉+ (α1αso + α2βso) |e ↓⇑〉 , (4.14)

|̃⇑〉 ≈ α3 |g ↑⇑〉+ β3 |g ↓⇑〉 , (4.15)

with coefficients αi, βi (i = 1, 2, 3) given by (analogous to Eq. (3.15), App. A):

α1 =
1√

φ1
2 + 1

, β1 =
φ1√

φ1
2 + 1

, φ1 =
δ1 +

√
δ1

2 + (2βsogB)2

2βsogB
, (4.16a)

α2 =
1√

φ2
2 + 1

, β2 =
φ2√

φ2
2 + 1

, φ2 =
δ2 −

√
δ2

2 + (2αsogB)2

2αsogB
, (4.16b)
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FIGURE 4.4: Nuclear qubit dispersion, dipole strength and relaxation. a Nuclear spin tran-
sition frequency ε′ns in the rotating frame of the magnetic drive Bac, as a function of the static
vertical electric field Edc across the donor-dot system, for vanishing magnetic drive (ε′ns(A)
– Eq. 4.12, grey dashed line) and strong magnetic drive (ε′ns(A, Ddrive) – Eq. 4.17, black solid
line). We have assumed B0 = 0.2 T, Bac = 0.6 mT, d = 15 nm, Vt ≈ εff and νB ≈ γeB0 − A/4
(since 〈A〉 = A/2 at the ionization point). Green/yellow lines show transition frequencies
calculated numerically from the Hamiltonian in Eq. 4.11. The color indicates the degree of
admixture of the bare |g ↓⇓〉 state into the higherH′ns eigenstate corresponding to each tran-
sition. The nuclear spin transition (predominantly |g ↓⇑〉 ↔ |g ↓⇓〉, green) anticrosses a flip-
flop transition (predominantly |g ↓⇑〉 ↔ |g ↑⇓〉, yellow) at Edc = 350 V/m, with a splitting
∼ 2gB set by the strength of the magnetic drive. The flip-flop transition is strongly shifted
by Dso, due to its coupling to the charge qubit states around Edc = 0. At Edc = 250 V/m,
the nuclear-spin excited eigenstate has ∼ 75% of |g ↓⇓〉 and is robust against electrical noise
(∂ε′ns/∂Edc = 0). b Nuclear electric dipole strength pns

E = ∂gns
E /∂Eac obtained from Eqs. 4.19

(theory, black line), or for numerical diagonalization of the full Hamiltonian H′ under Eac
drive (numerics, light blue line). For the choice of parameters used in this figure, pns

E peaks
where Edc = 250 V/m. c Nuclear spin relaxation rate 1/T1,ns in the presence of the magnetic

drive Bac and the effect of coupling to phonons via charge states, Eq. 4.20.
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α3 =
1√

φ3
2 + 1

, β3 =
φ3√

φ3
2 + 1

, θ3 =
δ3 −

√
δ3

2 + 4gB2

2gB
. (4.16c)

The energy splitting between |̃⇓〉 and |̃⇑〉, ε′ns, equals the bare nuclear-spin tran-
sition, ε′ns(A) (Eq. 4.12), plus an amount that dependents on Edc:

ε′ns(A, Ddrive) = ε′ns(A)− Ddrive(Edc), (4.17)

where Ddrive is a dispersive shift given by perturbation theory to (analogous to Eqs.
3.18, 3.71):

Ddrive(Edc) = ∑
i=1,2,3

δi

2

√1 +
(

2gi

δi

)2

− 1

 , (4.18a)

g1 = βsogB, g2 = −αsogB, g3 = gB. (4.18b)

This equation agrees with numerical simulations of the full Hamiltonian in the
rotating frame of Eq. (4.11) (Fig. 4.4a). Around the ionization point, the flip-flop
transition (itself strongly affected by the hybridization with the charge state) anti-
crosses the nuclear spin transition (in the rotating frame), creating a region where
∂ε′ns/∂Edc = 0, i.e. a first-order ‘clock transition’ [90], [137] where ε′ns is insensi-
tive to electric noise to first order. Further adjustment of the parameters allows for
∂2ε′ns/∂Edc

2 = 0 (second-order clock transition), improving noise insensitivity even
further.

In a key result of our proposal, the small admixture of the excited charge state,
|e〉, into |̃⇓〉 creates an electric-dipole transition for the nuclear spin. Indeed, the
|̃⇓〉 ↔ |̃⇑〉 transition can be electrically-driven at a rate given by the charge admix-
ture coefficients in Eq. 4.16:

gns
E = gEβ3 (α1αso + α2βso) . (4.19)

This electric dipole transition, at microwave frequencies, can reach > 100 Debye
around Edc = 0 (Fig. 4.4b). This means that even an extremely weak AC electric field,
Eac ≈ 3 V/m, can drive a nuclear spin transition at a megahertz Rabi frequency. This
is two orders of magnitude faster than the typical Rabi frequencies obtained with
standard (NMR) magnetic drive at radiofrequency [41], and an order of magnitude
faster than obtained (at very high electric drive amplitudes) in a recent experiment
where electrically-driven NMR was achieved by modulating the quantization axis
of the electron spin [138].

4.3.2 Resilience against charge noise

The issue of charge noise is of paramount importance in semiconductor spin qubits.
It is known, experimentally and theoretically, that charge fluctuators yield a 1/ f
frequency dependence of the noise spectral density [95]. These models capture the
averaged collective effect of many charge fluctuators on the qubit operation. In this
case, charge noise results in a slow drift of the qubit electrostatic environment. In-
deed, since individual qubit operations take less than a microsecond, the qubit envi-
ronment is usually static within a single operations, but fluctuates in between opera-
tions. On the basis of typical experimental values of charge noise found in literature
[98], we estimate a 1.7 µeV r.m.s. noise amplitude in our system, which, given the
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distance between donor and interface d ≈ 15 nm, corresponds to an r.m.s. noise on
the amplitude of the vertical electric field of order 100 V/m (refer to Sec. 3.7 for a de-
tailed noise discussion). Inserting this noise magnitude into our model of the qubit
dephasing rate (Eq. 3.20) yields a predicted nuclear spin dephasing rate of order
1− 10× 103 s−1. Note that, similarly to dressed states [105], [139], [140], the addition
of the strong magnetic drive has the effect of extending the coherence of our qubit.
However, here the suppressed noise is of electrical nature (despite the drive being
magnetic), given the particular hybridization with charge states.

We thus derived the striking result that the nuclear spin has a strong electric
dipole despite being robust against electrical noise. This is because, while the qubit
precession frequency is insensitive to noise, its effective transverse matrix element is
strongly dependent on electric fields. Importantly, the electric dipole is induced on
the nuclear spin only around the flip-flop transition frequency, which is at several
gigahertz. Since the charge and gate noise in nanoscale devices mainly has a 1/ f
spectrum, the power spectral density of the noise at the frequency that would affect
the nuclear qubit is expected to be very weak. Moreover, at the same bias point
where the clock transition (∂ε′ns/∂Edc = 0) for the nuclear energy takes place, the
nuclear electric dipole itself is also first-order insensitive to electrical noise, since
∂gns

E /∂Edc = 0 (Fig. 4.4b). A realistic 1.5 µeV charge detuning noise [98] would make
gns

E fluctuate by only ∼ 2%. In other words, in this system both the free precession
frequency and the Rabi frequency can be made first-order insensitive to charge noise.

As a final note, although we assumed δso → 0, the electric and magnetic driving
fields are still off-resonance with the eigenstates of the full Hamiltonian Hns due to
the hybridized charge-flip-flop states, ensuring minimal excitation of the |↑〉 and |e〉
states.

4.3.3 Coupling to microwave cavity photons

This strong electric dipole at microwave frequencies provides a pathway for strongly
coupling 31P nuclear spins to microwave resonators [54], where a vacuum field Evac
of a few V/m can result in vacuum Rabi splittings around 1 MHz. This could be
achieved e.g. by connecting the top blue gate on Fig. 4.2a to the center pin of a
superconducting coplanar waveguide resonator. Our proposal thus provides a so-
lution to the fact that the standard (NMR) nuclear-spin transition does not naturally
couple to microwave resonators. Similarly to other proposals [111], [141]–[143], here
it is a classical drive (Bac) that enables coupling to a quantum field (Evac).

4.3.4 Nuclear spin relaxation

The engineered nuclear electric dipole also opens up a new pathway for nuclear spin
relaxation: |̃⇓〉 can decay into |̃⇑〉 through a peculiar effect, where a photon from the
driving field is combined with the nuclear spin energy (which is at radiofrequency)
to emit a phonon at microwave frequency. The rate for this process can be roughly
estimated as the admixture of the |e〉 charge excited state into the |̃⇓〉 eigenstate times
the charge relaxation rate 1/T1,c (Eq. 3.21):

1
T1,ns

=
|〈̃⇓|e〉|2

T1,c
≈ |α1αso + α2βso|2

T1,c
. (4.20)
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FIGURE 4.5: Nuclear electric dipole strength and relaxation as a function of electric field.
a Nuclear electric dipole strength pns

E and b nuclear spin relaxation rate 1/T1,ns, as a function
of the donor-dot electric field detuning, Edc, and the magnetic drive frequency, νB. Edc = 0
is the ionization point. In a, the dashed line shows the ESR frequency νe,⇓ when the nu-
clear spin is in the |⇓〉 state, the dot-dashed line shows the charge qubit frequency minus
the nuclear spin frequency, εo/h− εns/h, and the dot-dot-dashed line the electron spin reso-
nance frequency νe,⇑ when the nuclear spin is in the |⇑〉 state. The charge and flip-flop states
are detuned by δso, which is close to zero at Edc = 0. Charge and flip-flop states then hy-
bridize, shifting the system eigenenergies by an AC-Stark shift Dso. The plots in Figs. 4.4b,c
correspond to specific line cuts of the graphs shown here, for νB = νe,⇓ at Edc = 0, i.e.

νB = 5.565 GHz.

As Fig. 4.4c shows, 1/T1,ns peaks, around the ionization point, at a value that
is still two orders of magnitude slower than e.g. the spin’s coupling rate to a mi-
crowave resonator, therefore allowing the strong coupling regime to be well within
reach.

4.3.5 Dependence of electric dipole strength and spin relaxation rate on
frequency and field detuning

In Fig. 4.4 we have shown an operation point (Edc = 250 V/m, B0 = 0.2 T and
νB = 5.565 GHz) where the proposed nuclear spin electric dipole transition is ro-
bust against noise, i.e. both its precession frequency, ε′ns, and electric dipole strength,
pE

ns = gns
E /Eac, are to first order insensitive to small perturbations of the static electric

field. To understand how the system behaves when slightly detuned from the opti-
mal working point, we calculate the dependence of the nuclear spin electric dipole
strength pE

ns and relaxation rate 1/T1,ns on the magnetic drive frequency, νB, and on
the static electric field, Edc (Fig. 4.5). Both plots show two branches (bright yel-
low) where both dipole moment and relaxation rate are enhanced. To understand
these branches, we refer to the level diagrams in Figs. 4.2b,c. First, note that νB
unequivocally sets the electric dipole transition frequency νE (in the simplest case,
νE = νB + εns/h). The two bright branches in Fig. 4.5 correspond to νE being in
resonance with either of the two charge-flip-flop hybridized states (yellow and blue
states inside the light blue rectangle in Fig. 4.3). If the charge and flip-flop states were
uncoupled or off-resonance, then the lower branch would simply correspond to the
flip-flop dipole transition, νE = νe,⇓+ εns/h (where νe,⇓ is the electron spin resonance
frequency when the nuclear spin is in the ‘down’ state), which means that the mag-
netic drive frequency simply coincides with the electron spin resonance νB = νe,⇓.
This would represent a simple, on-resonance Raman transition, i.e. as in the sketch
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FIGURE 4.6: Long distance coupling of two nuclear qubits. a Components and b level
diagram for long-distance coupling of two 31P nuclear spins via electric dipole-dipole inter-
actions. Each displaced electron produces an electric dipole field Edip (shown only for one
electron). The charge dipoles induced by displacing the electron wavefunction partly to-
wards the interface dot interact with a strength gdd (Eq. 3.59), and the charge qubits interact
with the flip-flop states with strength gso (Eq. 3.10). Adding the (global) magnetic drive of
strength gB and tuning the system to the fully-hybridized regime described in Sec. 4.3 results

in a nuclear-nuclear coupling strength gns
2q ≈ 0.55 MHz at a 400 nm distance (Eq. 4.21).

in Fig. 4.2b but where δ = 0. Then, the upper branches in Fig. 4.5 would correspond
to the pure charge transition, νE = εo/h, or equivalently νB = εo/h− εns/h. How-
ever, since the charge and flip-flop states are coupled, they hybridize and further
split the two branches by an amount equal to Dso.

Upon closer inspection, the upper branch shows an extra subtle feature. This
branch corresponds to excitation conditions that put the magnetic drive frequency
close to the electron spin resonance frequency when the nuclear spin is in the |⇑〉
state, νe,⇑. This, in turn, creates a pair of dressed electron spin states that further
split the upper branch into two, separated by the ESR (magnetic) Rabi frequency of
the νe,⇑ resonance.

4.4 Long-distance coupling of nuclear spin qubits

We have shown in the previous section that a robust electric dipole at microwave
frequencies is induced on the nuclear spin by the magnetic drive Bac, combined with
the spin-charge hybridization that is obtained by displacing the electron from the
donor towards an interface quantum dot. A natural and important extension of this
effect is to exploit the induced electric dipole to achieve a long-distance coupling
of the nuclear spins, mediated by long-range electric dipole interaction, similar to
coupling two distant the flip flop qubits (Sec. 3.8, Fig. 4.6a). This dipole interaction
between two charge qubits results in a coupling of gdd (Eq. 3.59).

Two distant nuclear spin qubits can then be coupled when both electrons are
around their ionization point, and an AC magnetic drive Bac is applied (Fig. 4.6a,b)
to each of them, resulting in the electric dipole pns

E at microwave frequencies. For
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the operation parameters used in Fig. 4.4, εo ≈ εff ≈ hνB + εns and gB � gso, the
two-qubit coupling rate is obtained as:

gns
2q =

(
gB

gso

)2

gdd, (4.21)

which is valid if gB � (gso)2/gdd. For two nuclear spins r = 400 nm apart, gns
2q =

0.55 MHz, yielding a
√

iSWAP gate time of ∼ 230 ns. To put this in perspective, the
Kane’s proposal [22] described a system of two 31P nuclear spins placed r = 15 nm
apart, where a

√
iSWAP gate mediated by the electron spin exchange interaction

requires 3 µs - an order magnitude slower, for over an order of magnitude tighter
spacing. A recent proposal by Hill et al. [72] describes a CNOT gate between nu-
clear spins mediated by the electron magnetic dipole interaction, wherein the 2-qubit
gate time requires 300 µs for donors spaced 30 nm apart - three orders of magnitude
slower than the electric-dipole mediated gate we have introduced here.

This method of coupling nuclear spin qubits at long distances via their induced
electric dipole can be switched off completely - pns

E ≈ 0 when the electron charge
is moved back to the donor - thus offering great flexibility in how multi-qubit oper-
ations are undertaken in a large array of qubits. The magnetic drive Bac necessary
to induce the dipole can be a global, always-on field, acting on every donor in the
array. This can be optimally achieved by placing the device in a three-dimensional
microwave cavity with good Bac homogeneity [144]. Alternatively, Bac could be de-
livered locally using a grid of microwave striplines [108]. The “robust” mode of
operation described in Sec. 4.3 requires δB ≈ 0, i.e. Bac in resonance with the electron
spin transition. However, this resonance condition must be met while the donor is
at the ionization point, where the hyperfine coupling is approximately half the value
it has while the electron is fully at the donor (〈A〉 ≈ A/2), thus νB ≈ γeB0 − A/4.
Therefore, idle qubits with the electron resting at the donor will be left unaffected by
the global magnetic drive, and completely decoupled from both electric and mag-
netic AC-fields.

4.5 Conclusion

The exceptional quantum coherence of 31P nuclear spins in isotopically enriched 28Si
is experimentally well established [30], [60]. However, it has been widely accepted
that using the 31P nuclear spin as the physical qubit in a quantum computer archi-
tecture requires dealing with the very small nuclear magnetic dipole, which ren-
ders operation and multi-qubit coupling slow and cumbersome [22], [72], [77], even
with inter-donor spacings ∼ 10 nm. Indeed, most of the recent focus on 31P nuclei
for quantum information has been on using them as long-lived quantum memories
[127], [128] rather than data qubits.

By engineering an electric dipole transition, we have shown here that the 31P
qubit can also be driven at microwave frequencies, and coupled to other nuclei or to
microwave cavities via electric dipole interactions, thus making it also a convenient
system as a data qubit. The effects of electrical noise can be strongly suppressed by
operating around clock transitions, which allow the 31P system to retain dephasing
times in the 0.1 − 1 ms range. The nuclear spin, equipped with an artificial elec-
tric dipole, can then be incorporated into large hybrid quantum architectures [112]
where - in analogy to flip-flop qubits - large arrays of nuclear qubits couple either
by electric dipole-dipole coupling or via cavity microwave photons (see Chap. 5). In
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such architectures, the spacing between qubits can be several hundreds of nanome-
ters, leaving ample space for classical interconnects [145], [146] and readout devices,
fabricated using conventional silicon nanoelectronics fabrication methods.
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Chapter 5

Building a quantum processor

“Think big. Think fast. Think ahead. Ideas are no ones monopoly."
–Dhirubhai Ambani

The ultimate aim of quantum computing - a high stakes com-
petition - is a fault-tolerant large scale quantum computer,
that is capable of solving relevant, complex problems. In this
chapter we present our bet at it, employing the advances the
flip-flop and nuclear qubit bring. We present ideas ranging
from an immediately achievable small quantum processor to
a large scale architecture.

Parts of the work presented in this chapter have been published in:
G. Tosi, F. A. Mohiyaddin, V. Schmitt, S. Tenberg, R. Rahman, G. Klimeck, A.
Morello. “Silicon quantum processor with robust long-distance qubit couplings.”
Nature communications vol. 8, 450 (2017).
G. Tosi, F. A. Mohiyaddin, S. Tenberg, A. Laucht, A. Morello. “Robust electric
dipole transition at microwave frequencies for nuclear spin qubits in silicon.” Phys-
ical Review B vol. 98, 075313 (2018).

The author acknowledges G. Tosi for the conception of the idea and J.
O’Gorman for discussions about fault-tolerant quantum computation.
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5.1 Quantum Error Correction

Efficient quantum algorithms use large arrays of entangled qubits, whose quantum
states are fragile. Any interference from the environment and imprecisions in the
operations lead to a loss of the quantum information and induce errors into the al-
gorithm. Hence, large scale quantum computation is all but impossible unless all
errors are accounted for.

To make qubits robust against errors, logical qubits are encoded in multiple phys-
ical qubits, similar to classical error correction. However, the principles, which make
quantum information fundamentally different from classical information, have to be
considered while implementing quantum error correction [147]. Most importantly,
quantum information cannot be cloned, which means that it cannot be copied as in
classical systems. Moreover, the number of error processes is infinite as qubits are
coupled to a continuum of environmental states, and any measurement of a qubit
state destroys the quantum information it contains. The principles of quantum er-
ror correction are explained briefly in this section. More detailed information and a
generous overview is given in Refs. [147], [148].

A B2
3

1

Qubits

Ancillas
2
1

FIGURE 5.1: Simple example of quantum error correction. The information |ϕ〉 is trans-
ferred from A to B, encoded in three qubits with controlled-NOT operations. Errors are
detected by two ancilla qubits through two controlled-NOT operations each. The error syn-
drome, acquired by the readout of the ancillas, gives the information to correct the errors.
Finally the information is recovered at B, after decoding. The figure is adapted from Ref.

[149].

A simple quantum error correction scheme is presented in Fig. 5.1, where the in-
formation |ϕ〉 = a |0〉+ b |1〉 is transferred from A to B. We initialize two additional
qubits in state |0〉 to detect and correct errors caused by noise. Thus, the total initial
state is

|ϕ〉 = a |000〉+ b |100〉 . (5.1)

Now, we encode the information in all three qubits, forming a logical qubit. There-
fore we perform an entangling controlled-NOT gate between the first and second
and the first and third qubit sequentially. A controlled-NOT gate inverts the state of
the second qubit when the first qubit is in state 1. Hence, the encoded state reads

|ϕ′〉 = a |000〉+ b |111〉 (5.2)

and is sent out towards B. During the information transfer, noise may have changed
the qubits’ states and introduced errors. To gather information about the noise,
we add another pair of qubits, called ancillas, prepared in state |00〉. We perform
controlled-NOT gates from the first and second received qubits to the first ancilla
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Error syndrome Error type Action
00 no error nothing
01 bit-flip on qubit 3 σx to qubit 3
10 bit-flip on qubit 2 σx to qubit 2
11 bit-flip on qubit 1 σx to qubit 1

TABLE 5.1: Quantum error correction with three qubits and two ancillas. The measure-
ment of the ancillas yields the error syndrome which contains the information which error

occurred and where. Thus, the error can be corrected.

and then from the first and third received qubits to the second ancilla. Now we mea-
sure both ancilla qubits to gain information about their state, called error syndrome.
The error syndrome contains information if an error occurred and where, such that
the error can be corrected (Tab. 5.1).

Describing error correction codes in form of the encoded states’ vector represen-
tation, as has been done here, is inconvenient as it will differ between different codes.
A general method for error correction, with which most error correction codes can
be described, is the stabilizer formalism [150]. It describes quantum states in terms
of operators in the Heisenberg picture. If a state |ψ〉 is in the positive eigenstate of
an operator K

K |ψ〉 = |ψ〉 , (5.3)

it is stabilized by K. For a single qubit, K ∈ P , where

P = {±1,±i1,±σx,±iσx,±σy,±iσy,±σz,±iσz} (5.4)

is the Pauli group. For N qubits the group can be extended by taking the N-fold
tensor product of all elements of P . Some well known stabilizer states are the two-
qubit Bell states, Greenberger-Horne-Zeilinger (GHZ) states [151] and Cluster states
[152]. Error detection in a stabiliser code is achieved by measuring all stabilizers K
to acquire the error syndrome.

To accomplish fault-tolerant quantum computing, "a single error will cause at
most one error in the output for each logical qubit block" [148]. This leads to the
threshold theorem, which implies that for a finite error rate p per physical qubit, the
logical qubit error can be made arbitrarily small by concatenating many encoding
levels which correct errors. The threshold for the physical error rate is determined
by pth < 1/c, where c is given by the probability of two errors or more occurring at
the physical qubit level while an error correction cycle is running.

Most efficient quantum error correction codes with low error thresholds of 10−3−
10−2 like the Bacon-Shor code [153], [154] and the surface code [56], [57], require a 2D
qubit architecture with nearest-neighbour interactions, where error-detection mea-
surements can be performed at several locations simultaneously. Otherwise, errors
cannot be as quickly detected as they are generated. While in 1D architectures error
correction can still be performed to form a logical qubit [155], [156], an extension to
many logical qubits is not possible.

In the following section we will present ideas, how a logical qubit can be imple-
mented with donors in silicon, as well as how a large scalable quantum processor
could be build.
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Top viewBottom viewa b

CPW resonator

Single electron transistor

top gate Eac drive

electron reservoir

confinement, Vt gate

Donor + electron

FIGURE 5.2: Qubit cell out of 14 flip-flop qubits. Bottom (a) and top (b) view of schematic
of a small-scale qubit array which is feasible to build with current fabrication standards in
our laboratory. 14 flip-flop qubits are coupled via dipole-dipole interaction to their nearest-
neighbours and next-nearest neighbours. Electrons can be loaded via a central reservoir
(purple) and each qubit is read-out via a SET (yellow). Long range connections to other

14-qubit cells are also possible by coupling one qubit to a CPW resonator.

5.2 Quantum processor architectures

The flip-flop and the nuclear qubit, presented in Chaps. 3 and 4, are excellent build-
ing blocks for a large scale quantum processor due to their long range couplings and
low error rates.

Firstly however, we present a small-scale qubit array, that only uses current stan-
dar university fabrication techniques (Chap. 6.2) and can be fabricated in our labora-
tory. The array consists out of 14 flip-flop qubits that are connected via dipole-dipole
interaction to their nearest-neighbours and next-nearest neighbours. The electrons
can be loaded onto the donor via a central reservoir (purple). Readout is performed
via a SET (yellow) for each individual qubit. This architecture is basically a linear
array, although it does allow for cross-coupling between qubits and consequently of-
fers more flexibility. In such an array, we can encode one logical qubit robust against
errors [155]–[158] and implement Shor’s 9 qubit code, where the remaining 5 qubits
are needed for error detection [159]. Long range connections to other 14-qubit cells
can be added by coupling one qubit to a CPW resonator to extend the computing
capabilities.

In the long run, we need a large-scale quantum processor of millions of qubits to
outperform classical computers [160]. Fig. 5.3 shows a design aimed to accommo-
date many qubits. We incorporate large 2D arrays of dipolar coupled flip-flop qubits
with CPW resonators. Here, the size of the 2D flip-flop arrays is limited by the space
required by read-out and control lines. In this case advanced error-correction codes
may be implemented [55], [58], [59], [161]. The limitation of this design is given by
the size of the 2D array and the capability of operating many stabilizer measure-
ments simultaneously. This type of 2D arrays already requires 3D CMOS fabrica-
tion as the control and read-out lines need to be connected from above or below to
achieve reasonable large flip-flop arrays. The CPW resonators can also be used to
couple the silicon qubits to another type of qubit, e.g. Transmon qubits [120], [121].
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FIGURE 5.3: Large-scale hybrid quantum processor. Schematic of a large-scale quantum
processor where 2D arrays of 16 dipolar coupled flip-flop qubits are connected via CPW

resonators. The drawing is not to scale, control lines and readout devices are not shown.
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FIGURE 5.4: Large-scale qubit array. Schematic of a large-scale quantum processor that
is compatible with the quantum error correction. Qubit unit cells consisting out of donors
with a gate stack for tunnel coupling control are coupled via the dipole-dipole interaction.

Readout and initialization is performed via a SET.
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Ultimately, one wants to achieve a full 2D array of only dipolar coupled flip-flop
qubits (Fig. 5.4), compatible with industry CMOS standards. This architecture not
only allows quantum error correction but can also accommodate many qubits within
a small spacing. All mutual qubit couplings are tunable and gateable, resulting in
full in-situ control.

5.3 Operation principles of an electrically controlled donor
quantum processor

The fundamental operation principle for a quantum processor consisting out of flip-
flop qubits remains the same for all suggested implementations.

To initialize the qubit, we load an electron onto the donor either from the SET
island when in Coulomb blockade, or from a designated reservoir. Idle qubits have
electrons either at the interface or the donor, leaving them completely uncoupled to
other qubits. The electrons are then adiabatically shifted towards the donor ioniza-
tion point for quantum operations (Secs. 3.5, 3.6). Qubit read-out can be obtained
by spin-dependent tunnelling into a cold charge reservoir, detected by a SET (Sec.
2.3.3). Read-out times can be ∼ 1 µs with cryogenic amplifiers [162], which is com-
parable to the time necessary to perform, for example, ∼ 20 individual gates lasting
∼ 50 ns each, in a surface code error correction protocol [56].

Instead of flip-flop qubits, nuclear qubits can also be used in the quantum pro-
cessor. These have the advantage of having record coherence times T2 & 30 s [30]
when the donor is ionized (the electron is at the interface). The magnetic drive can
be a global, always-on field, e.g. supplied by a 3D microwave cavity. Quantum in-
formation can be swapped between the nuclear and the flip-flop qubit by simply
applying a local ESR π-pulse that excites the |↓⇓〉 state to |↑⇓〉.
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Chapter 6

Device fabrication and
experimental methods

“They say the definition of madness is doing the same thing and expecting a different
result...That’s right!"

–The Hives, Try It Again

In this chapter we present the device design of the flip-flop
qubit, the device fabrication techniques and the experimen-
tal set-ups developed to carry out the experiments.

The author acknowledges the following facilities and its staff that en-
abled the work in this thesis: Most fabrication has taken place in the
Australian National Fabrication Facility at the University of New South
Wales. Donor implantation was carried out by the group of Prof. David
Jamieson at the University of Melbourne. Experiments were performed
at the low-temperature facilities at the Centre for Quantum Computa-
tion and Communication Technology at the University of New South
Wales and the Fundamental Quantum Technologies laboratory. The
isotopically-purified silicon wafers were provided by K. Itoh of Keio
University.
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FIGURE 6.1: Silicon donor and quantum dot qubit designs. a Scanning electron micrograph
of a typical phosphorus donor device in silicon. Both the electron and the nucleus can be
operated as a qubit in this device structure. b Scanning micrograph of a typical CMOS
quantum dot device in silicon which can be operated as a single or double quantum dot

qubit. Fig. b is adapted from Ref. [26].

6.1 Device design

To propel the flip-flop qubit from theory to reality, we are using nanofabrication
techniques to build the qubit, starting from a blank silicon wafer. We invent device
designs for both the direct dipole-dipole coupling approach (Sec. 3.8) and coupling
to a superconducting resonator (Sec. 3.9). These designs need to fulfil all require-
ments necessary to operate the flip-flop qubit while complying with the fabrication
tool abilities available to us.

The flip-flop qubit requirements entail the following: We need to be able to read-
out the electron spin state, control the tunnel coupling between the Si/SiO2 interface
and the donor, confine the electron at the interface and most importantly electrically
control the donor electron both with DC voltages and fast electric pulses. Addition-
ally we would like a microwave antenna to be able to perform ESR and NMR on
the electron and nuclear spin states separately from any flip-flop control, just like
in a standard donor qubit device. The following section describes how these re-
quirements can be implemented for direct dipole-dipole coupling while Sec. 6.1.2
discusses the resonator approach.

6.1.1 Coupling two flip-flop qubits via dipole-dipole interaction

We base our flip-flop qubit device design on existing donor and quantum dot struc-
tures, nanometric multi-layer aluminium devices (Fig. 6.1), that have made our re-
search teams at UNSW very successful over the last decade [25], [30]. The flip-flop
qubit is a donor qubit that exhibits quantum dot features when we confine the elec-
tron at the Si/SiO2 interface. Hence, the flip-flop qubit gate layout will be a hybrid
of the donor design (Fig. 6.1a) and the quantum dot design (Fig. 6.1b). The first
generation of the flip-flop qubit is shown in Fig. 6.2a with a color-coded gate layout
on the left and a scanning electron micrograph image on the right.

The key elements prominent in both donor and dot devices are also prominent in
the flip-flop qubit: We use a SET for electron spin readout (yellow), consisting out of
two barriers ("right barrier" - RB, "left barrier" - LB) and a top gate (TG) which over-
laps with two degenerately doped (n+) regions ("source" - S and "drain" - D). More-
over, we employ a coplanar microwave antenna (MW, grey) to supply microwave
and radio frequency magnetic fields to control the qubit spin states.
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FIGURE 6.2: Flip-flop qubit designs for direct dipole-dipole coupling. The left column
shows the flip-flop qubit design color-coded with gate purpose and gate labels while the
right column shows the corresponding scanning electron micrograph of the finished de-
vices. a Two-qubit flip-flop design featuring a donor gate (DG, red), a SET (TG, RB, LB,
yellow), a microwave antenna (MW, grey), electron confinement control (RS, green) and a
second reservoir (RG, orange). The confinement gate RS can also be used to modify the tun-
nel coupling within the voltage range set by the readout constrains. b Two-qubit flip-flop
design with extended tunnel coupling control (RTC, blue). A plunger gate (PL, yellow) was
added for increased adjustability of the SET. However the second reservoir was removed. c
Single flip-flop qubit device with full tunnel coupling control (RTC, LTC, blue) and readout

adjustability (RR, RS, green and RG, orange).
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We position a gate between the donor and the SET ("rate gate SET" - RS, green),
like in the quantum dot devices, to control the tunnel rate of the electron to the SET
and prevent escape of the quantum dot interface state. Within the voltage range that
yields good readout, this gate can also be used to shift the electron wavefunction
laterally and thus decrease the tunnel coupling of the donor to the interface.

Most importantly we add a gate on top of the donor ("donor gate" - DG, red) to
control the donor orbital state and send fast electric pulses. This gate is an impedance
matched coplanar waveguide, until only the central conductor remains on the last
50 µm before the donor.

𝐸F
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FIGURE 6.3: Flip-flop qubit readout energy diagram. Coulomb energy of the donor with-
out and with an electric field of Edc = 2 MV/m (light blue) and Edc = 5 MV/m (dark blue)
applied. The D0 donor ionization energy is 45.6 mV. The Si/SiO2 interface is positioned at
z = 0 nm. The dotted lines show the reservoir Fermi energy ER

F adjusted for donor read-
out (black, ER

F (donor)) and dot readout (blue, ER
F (dot)). µd (µ2MV/m

d , µ5MV/m
d ) is the donor

electrochemical potential (with Edc = 2 MV/m, Edc = 5 MV/m applied).

One difficulty we encounter is that to tune the tunnel coupling significantly we
need to pull the electron horizontally by up to 30 nm. Thus we choose an implanta-
tion window size of 60× 120 nm, where donors will be randomly implanted, which
is positioned next to the SET rate gate. Consequently the distance of the donor to the
SET reservoir can potentially be over 100 nm - too far to achieve significant electron
tunnelling rates to the SET reservoir for readout. To account for this difficulty, we
add a second reservoir ("reservoir gate" - RG, orange, "reservoir source" - R). This
brings two distinct advantages: Firstly, any donor close to either the SET island or
the second reservoir can be read out directly from the donor as the SET will sense
the change of the donor charge state regardless of where the electron tunnels to. A
similar approach has been successful for silicon quantum dots [25]. Hence we signif-
icantly increase the likelihood of finding a donor in a position that allows its readout.
Secondly, if the electron cannot be read out from the donor, we can read out the inter-
face quantum dot state instead. The dot’s wavefunction is more spread out and we
can even move the wavefunction laterally with the confinement and tunnel coupling
control gates. This increases the tunnel rate between the electron and the reservoir
such that readout becomes possible. To transfer the electron from the donor to the
interface dot, we bias the donor with large positive gate voltages until the dot state
becomes favourable (Fig. 6.3). However, to perform spin-dependent readout of the
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FIGURE 6.4: Coplanar waveguide resonator geometry. Geometric dimensions determining
the impedance of a coplanar waveguide resonator consisting out of a superconducting film

(orange) on top of two dielectric layers (grey).

electron from the quantum dot, we need to adjust the Fermi level of the reservoir ER
F

such that µQD,↑ > ER
F > µQD,↓, where µQD,↑ (µQD,↓) is the electrochemical potential

of the quantum dot with the electron in state |↑〉 (|↓〉). During this process, the SET
Fermi level EF stays constant to provide charge sensing.

To achieve a two-qubit device, we mirror this one-qubit structure at a distance of
200 nm.

One drawback of this basic flip-flop design is that it only has a very limited lat-
eral control of the electron wave function. Hence in the second generation of the
devices (Fig. 6.2b) we added an additional tunnel gate ("right tunnel coupling gate"
- RTC, blue). Furthermore, we also inserted a plunger gate (PL, yellow) for increased
SET adjustment. However, in this device structure the second reservoir gate was re-
moved due to space restrictions.

Generation three (Fig. 6.2c) incorporates both high tunnel coupling control with
another additional tunnel coupling control gate ("left tunnel coupling gate" - LTC,
blue) and a highly tunable read out with a plunger gate, a second reservoir (RG)
and two rate gates ("rate gate reservoir" - RR and RS, green). In this layout, we
decide to concentrate on developing a single, highly tunable flip-flop qubit instead
of attempting to fabricate a two-qubit device. A few additional small design changes
are to be noted. The SET rate gate as well as the plunger gate have been moved
slightly further away from the SET top gate to reduce the effect of strain on the 2DEG
below the SET as this can prevent turn-on. Furthermore, short-circuit termination of
the microwave antenna has been increased in both width and thickness to make it
less susceptible to electrostatic discharge (ESD).

6.1.2 Coupling a flip-flop qubit to a coplanar waveguide resonator

Resonator design

To couple our flip-flop qubit to a single photon, we use a standard coplanar waveg-
uide resonator (CPWR). This geometry consists of a central conductor with a ground
plane on either side (Fig. 6.4). The waveguide width and gap size are chosen for an
impedance of Z0 = 50 Ω to w = 20 µm and s = 12 µm (s/w = 0.6). The relevant
parameters are ε1 = 11.7, h1 = 500 µm for the silicon wafer, ε2 = 3.78, h2 = 8 nm for
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FIGURE 6.5: CPWR qubit design. a Overview of the CPWR design, color-coded with feature
purpose. The sample is covered in a superconducting film with etched regions indicated in
orange and green. Purple shows the n+ regions with their respective Ohmic contacts in
black. The qubit region, the capacitors and the inductor are shown in detail in b with gate
labels. c Scanning micrograph of the CPWR. d, e Scanning micrograph of the qubit region
for two different designs. To avoid ESD in the devices, we have removed the ground plane
tips which can channel a voltage (d) in an improved design (e). Additionally, all gates are

connected to the large ground planes by leaving small strips of metal unetched (a,c).

the silicon oxide layer and t = 50 nm for the superconducting film thickness [163],
[164].

We like to operate the resonator at a frequency fr � kBT/h ≈ 250 MHz to reduce
thermal population, choosing fr ≈ 6 GHz to keep component costs low. We operate
the fundamental mode of a λ/2 resonator which determines the resonator length to
l = c0

2
√

εeff
/ fr = 9.95 mm. εeff is the effective permittivity of the wave guide which

can be estimated to εeff = (1 + ε1)/2 = 6.3 [164], [165]. The resulting resonator is
shown in Fig. 6.5a (orange).

The coupling of the resonator to the feedlines is determined by the size of the ca-
pacitor at each end of the resonator, acting as a semi-reflecting mirror, introducing a
strong impedance mismatch (Sec. 2.4.2). We are aiming for the over-coupled regime
where the coupling exceeds the internal losses (κL � κc). We simulate the capac-
itor size in a finite-elements computer simulation theory microwave studio R© (CST
MWS). Ultimately however, we rely on testing different designs. Fig.6.5b shows an
example capacitor design. As we are working in transmission mode, we place one
capacitor at each end of the resonator, connecting it to two transmission lines.

Now we integrate our spin qubit into the resonator design by placing several
phosphorus donors directly beneath the resonator central conductor (CC). However,
we require a vacuum electric field amplitude of Evac ≈ 30 V/m to achieve high
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qubit-resonator coupling rates (Sec. 2.4.3, 3.9). These electric field amplitudes can
be reached by narrowing the central conductor in the qubit region to 100 nm or less
(Fig. 6.5b, d, e) [118]. In order to load electrons to the donors, we bring a 2DEG close
to the qubit. Therefore, we add two n+ regions, Ohmic contacts ("source" - S and
"drain" - D) and reservoir top gates ("top top gate" - TT and "bottom top gate" - TB,
green) for each qubit region.

Finally, we need to apply a bias to the qubit to control the donor electron orbital.
Thus we have to bias the centre conductor. Therefore, we add a DC feed line at the
electric field node at the centre of the resonator. High frequency signals are filtered
with an on-chip inductor (Fig. 6.5a,b).

Due to the large metallic ground planes involved in this design, ESD can be a se-
rious problem with charges accumulating on the metal during fabrication and chip
handling. Consequently, we removed the tips of the ground plane which can chan-
nel a voltage (Fig. 6.5d, improved design in Fig. 6.5e) and grounded all gates to the
large ground planes by leaving small strips of metal unetched. After a device has
been mounted to an enclosure (Sec. 6.3) and all gates are grounded, these strips can
be disconnected by scratching with a diamond-tip pen or scriber.

Advanced resonator qubit design

While the design presented in the previous section is proficient to operate a flip-flop
qubit in its most basic functionality with a bit of luck in the donor placement (Sec.
7.3.3), its qubit control capability is very limited. The reservoir gates allow biasing,
however they are far away from the qubit due to fabrication limitations (Sec. 6.2.3)
and thus wavefunction control will be very limited if not impossible. Furthermore,
many electrons can be loaded under the central conductor during qubit loading. To
mitigate these issues, we are developing a design that is both more robust against
implantation uncertainties as well as allowing higher qubit control, inspired by de-
signs of other groups that achieved strong coupling in silicon [113], [166].

The main difference between the new advanced design (Fig. 6.6) and the current
design is that we use a two-layer aluminium structure in the qubit region (Fig. 6.6c),
allowing for a much smaller feature size and a more complex gate layout. Further-
more we operate the resonator in reflection. We have only one qubit region but fit
two qubits inside it. Both have a separate reservoir ("reservoir gate" - RG, yellow)
as well as two gates to confine the electron and control the tunnel coupling ("tunnel
coupling gate" - TC and "confinement gate" - CG, green). Each of these gates has its
own on-chip inductor to allow for loss-less DC biasing. We also incorporate a mi-
crowave antenna into our design to allow for individual electron and nuclear spin
control.

6.2 Device fabrication

In this section the device fabrication techniques for our qubit devices are presented.

6.2.1 Silicon wafer

All devices start off as a bare silicon wafer. For testing, high resistivity, uncompen-
sated, intrinsic natural silicon wafers are used, while highly precise qubit experi-
ments are performed on wafers with an 800 nm epitaxial layer of isotopically puri-
fied 28Si on top of 500 µm thick natural silicon, provided by Prof. K. Itoh. The 28Si
has a residual concentration of 730 ppm of 29Si and 30 ppm 30Si.
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FIGURE 6.6: Advanced CPWR qubit design. a Overview of an advanced resonator flip-flop
qubit structure, color-coded with feature purpose. The design includes several control gates
and the resonator is operated in reflection. b Detailed view of the qubit region with gate

labels, the inductor and an example capacitor.

We have two different wafer designs for multi-layer aluminium devices (direct
dipole-dipole coupled flip-flop qubit, electron and nuclear qubit) and resonator de-
vices (Fig. 6.7). However, the wafers are processed in the same way with the follow-
ing steps:

1. A thorough clean to remove oils and organic residues is performed.

2. Optical alignment marks are etched into the silicon.

3. The wafers are weakly doped with Boron to create p+ regions. These posi-
tively charged regions block any conducting channels that are formed when
positive charges trapped in the thick field SiO2 induce an unintentional leak-
age path.

4. Phosphorus is diffused to create n+ regions to form the source and drain con-
tacts.

5. 200 nm of field oxide are grown in a wet thermal oxidation furnace.
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FIGURE 6.7: Silicon wafer layout. Layout of the features patterned on the silicon wafer
during wafer preparation for the standard aluminium devices (a) and the resonator devices

(b). Doped n+ and p+ regions are created and optical markers are added.

6. The field oxide is removed in the active qubit region to be replaced by 8 nm of
high quality gate oxide, grown in an ultra-dry furnace.

7. Micrometer sized markers formed out of platinum on top of titanium (TiPt
markers) are patterned for coarse alignment with electron beam lithography
(EBL).

The one noticeable difference between the two wafer designs is that for the res-
onator structures most of the wafer is considered the active region and thus a thick
field oxide is grown only where the top gates are intended.

Once the silicon wafers have been processed in this way, they are ready for device
fabrication and are called "stock".

6.2.2 Nano-fabrication process - multi-layer aluminium devices

Once the silicon wafers have been prepared, they are diced into smaller chips for
different projects. While all silicon donor multi-layer aluminium devices use inher-
ently a very similar fabrication process, small differences occur due to individual
preferences and cleanroom superstitions. In the following the process specific to the
flip-flop qubit used by the author of this thesis is presented.

Cleaning To remove any residue of resist or other contaminants the chips are clea-
ned by soaking them first in acetone and subsequently in isopropyl alcohol (IPA) for
each 10 min while applying ultrasound. The cleaning process is finished with 10 min
of oxygen plasma ashing at a power of 50 W.

TiPt markers The first processing step is the formation of the nanometric mark-
ers in each device cell which allow alignment of different layers during EBL. These
markers need to withstand temperatures of 1000 ◦C during subsequent processing
steps. Therefore we use 65 nm of platinum which not only has a very high melting
point of 1763 ◦C but also has a high atomic number resulting in good contrast under
the electron beam microscope. For adhesion to the silicon oxide surface, we add a
thin 15 nm layer of titanium with a melting point of 1668 ◦C. Regardless of these high
melting points, large TiPt structures would nonetheless slightly deform during the
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1 μm

FIGURE 6.8: TiPt marker design. Nanometric TiPt markers used for EBL alignment of the
different layers. The individual square design is robust against melting during RTA.

high-temperature rapid thermal anneal (RTA). Therefore we use instead a pattern of
many small 100× 100 nm squares (Fig. 6.8). Even if the individual squares were to
deform at high temperature, the overall location of the pattern would remain very
accurate. We create these markers with EBL, applying the following steps.

Standard EBL process:

1. EBL resist is applied. Therefore, we bake the chip at 180 ◦C for 10 min and then
spin polymethyl methacrylate (PMMA) A4 resist with 4000 rpm for 40 s which
includes 10 s of 8000 rpm at the end. This gives a resist thickness of 200 nm.
The resist is then baked for 90 s at 180 ◦C.

2. Droplets of colloidal gold solution can be placed on the corners of the chip as
focus markers.

3. The pattern is written with a RAITH150-Two EBL system with an acceleration
voltage of 30 keV and a dose of around 500 µC/cm2, depending on aperture,
feature size and geometry.

4. After exposure, the resist is developed for 40 s in a 1:3 solution of methyl-
sobutyl-ketone (MIBK) and IPA and for 20 s in IPA with a 5 s ultrasound finish.

After EBL, 15 nm of Titanium and 65 nm of Platinum are evaporated by electron
beam physical vapour deposition (EBPVD). Then the chip is placed in N-methyl-2-
pyrollidone (NMP) at 80 ◦C for 5 min to perform lift off.

Donor implantation The next step is the implantation of the phosphorus donors.
Therefore a PMMA mask of dimensions 120 nm×60 nm is patterned with EBL in
each device cell ("implantation window"). We require a donor depth of around
10 − 15 nm below the silicon oxide. As the tunnel coupling between the donor
and dot can be reduced but not increased we aim for 10 nm. An acceleration volt-
age of 12 keV of phosphorus ions complies with this requirement as the simulated
ion depth distribution in Fig. 6.9 shows. We aim for around 10 donors in our im-
plantation window which corresponds to a fluence of 2× 1011/cm2 and an average
donor distance of 25 nm. The implantation is performed by the group of Prof. David
Jamieson at the University of Melbourne.

After the implantation is completed the resist is removed and the chip undergoes
RTA for 5 s at 1000 ◦C. This activates the donors and repairs the damage caused in
the silicon lattice by the ion implantation [167].
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FIGURE 6.9: Ion distribution for phosphorus implantation. Distribution of phosphorus
ions as a function of depth z for an acceleration voltage of 12 keV with a fluence of 2 ×

1011/cm2 and an implantation window of area A = 60 nm×120 nm.

Ohmic contacts Then aluminium Ohmic contacts to the diffused n+ regions are
formed and activated with a forming gas anneal (FGA, N2 95%, H2 5%) at 400 ◦C for
15 min in the clean anneal furnace. Afterwards, the chip is diced into pieces with
4× 4 device cells for individual processing.

Layer 1 Layer 2 Layer 3

Layer 1

Layer 3

Layer 2

100nm

100nm

FIGURE 6.10: Aluminium layer arrangement of the dipole flip-flop qubit. Qubit gate lay-
out color-coded for the three aluminium layers, and corresponding scanning electron micro-

graph images for each layer.

Multi-layer aluminium nanostructures On each 4× 4 piece, three layers of alu-
minium gates on top and around the implantation window are added (Fig. 6.10).
For each layer the piece undergoes the following steps.

1. The wafer piece is cleaned (see paragraph Cleaning 6.2.2).
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2. EBL resist is applied, exposed and developed (see paragraph Standard EBL pro-
cess 6.2.2).

3. Aluminium is evaporated either in a thermal or an EBPVD evaporator. Tests
have been performed and we find that the evaporation rate and its stability
directly influences the aluminium grain size. Thermal evaporation can be un-
stable due to a fluctuating current and is restricted to rates below 3 Å/s. Thus
it regularly leads to a larger grains than EBPVD where evaporation rates of
10 Å/s can be achieved - see figure 6.11. With EBPVD, we evaporate 25 nm,
45 nm and 80 nm subsequently for the different layers

4. The aluminium is lifted off in hot NMP for 1.5− 3 h.

5. The outer 2− 3 nm of each aluminium layer are oxidized to form an electrically
insulating layer by oxygen plasma ashing and baking.

50nm

EBPVD 
10 Å/s

thermal 
2 Å/s

a b

FIGURE 6.11: Aluminium grain size for thermal evaporation and EBPVD. a Aluminium
structure evaporated at a rate of 2 Å/s in a thermal evaporator. The grains are 30− 50 nm
large. b Aluminium structure evaporated at a rate of 10 Å/s with EBPVD. The grains are

10− 30 nm large.

Finish After the last layer has been completed, the piece is cleaned one more time
and FGA is performed for 15 min to passivate any charge traps at the Si/SiO2 inter-
face [168].

6.2.3 Nano-fabrication process - resonator devices

As our research group had not fabricated any form of superconducting devices be-
fore, we started building up a new process which is still undergoing development.
This section describes the fabrication performed for the measurements presented in
this thesis, using the simple resonator design and niobium for the superconducting
film. An outlook for the new, advanced resonator devices will also be given.

Cleaning Starting from the resonator specific stock, first the wafer is cleaned in
the same way as for the aluminium devices. However, once the niobium layer has
been deposited, oxygen ashing oxidises the niobium - the film can even become
insulating. Thus, no plasma ashing will be performed on the niobium films.
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FIGURE 6.12: Cross-section of a Nb resonator device. A 50 nm layer of niobium is sputtered
on top of the silicon stock which is covered with 3 nm of Al2O3. The resonator gap is then
etched such that the central conductor constriction is on top of the donors. Ohmic contacts

to n+ regions allow to bring a 2DEG close to the donors. Distances are not to scale.

Donor implantation The next step is the implantation of the phosphorus donors,
performed at the university of Melbourne. Therefore a photo mask of dimensions
44 × 24 µm is patterned with photo-lithography in each pixel ("implantation win-
dow"). We implant phosphorus ions with an acceleration voltage of 11 keV and a
fluence of 1× 1011/cm2 which corresponds to an average donor distance of 38 nm.
After the implantation is completed the resist is removed and the wafer undergoes
RTA. Finally, aluminium Ohmic contacts to the diffused n+ regions are formed and
activated with FGA for 15 min.

Sputtering First, we apply a thin layer of Al2O3 that serves as an etch stopper.
Using atomic layer deposition (ALD) we run 30 cycles at 250 ◦C which gives 3 nm.
Then the wafer is sent to CSIRO at Lindfield where 50 nm of niobium are sputtered.
However, the effective film thickness fluctuates between 30− 50 nm which is deter-
mined with a stylus profilometre. Using a 4-point measurement we find these films
to have a resistivity of 38 nΩ·m at room temperature.

Resonator structures To create the resonator devices (cross section in Fig. 6.12) we
employ the following steps.

1. We pattern the resonator design with EBL (see paragraph Standard EBL process
6.2.2). In contrast to the aluminium style devices, we will etch the niobium
wherever the resist has been exposed. Moreover, the resonators are larger than
one EBL write field. To create a smooth coplanar waveguide we employ the
fixed beam moving stage (FBMS) technique that moves the stage below the
beam for the entirety of the device, thus preventing stitching issues.

2. We perform hollow cathode reactive ion etching (HC RIE) with a gas mixture
of 20 sccm CF4 and 10 sccm Ar at a pressure of 5 Pa with 50 W power to remove
the niobium not protected by our PMMA mask. This process needs to be care-
fully calibrated so that after the etch duration the niobium is fully removed but
the PMMA mask is still protecting the remaining niobium surface, otherwise
the niobium quality will be compromised (Fig. 6.13). For this purpose we al-
ways add test samples to the process. The usual etch time is 10 min. The Al2O3
layer acts as an etch stopper once the niobium has been fully etched.

3. The sample is cleaned with acetone and IPA (including USB) and ready for
packaging.
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a b

400 nm 400 nm

FIGURE 6.13: Niobium resonators, under- and over-etched. a A niobium resonator which
has not been etched enough. Niobium particles remain in the gaps. This can create losses
and even shorten the resonator. b A niobium resonator which has been etched too long,
such that the PMMA mask was destroyed and the niobium of the resonator has been etched
slightly. This leads to a high surface roughness which can compromise the conductivity. The
dark spots in the gaps are PMMA residue, supporting the need for a thorough clean after

etching.

Outlook for advanced resonator devices The advanced resonator design fabrica-
tion deviates in a few important steps. Firstly, we will use NbTiN instead of nio-
bium, which has a higher critical field. This makes the resonator more resilient to
field misalignment - it can withstand a higher perpendicular field component until
its superconductivity is destroyed. Additionally, NbTiN allows for plasma ashing,
as no oxide is formed. Secondly, the resonator will be patterned with optical lithog-
raphy using the mask shown in Fig. 6.6a. After etching, we then fabricate the qubit
nanostructures like the aluminium devices described in Sec. 6.2.2.

6.3 Device packaging

To connect our samples to electronics, we use a printed circuit board (PCB) inside a
copper enclosure as shown in Fig. 6.14. These PCBs have been carefully designed
with impedance matched lines for all high frequency ports and spare ports to ac-
commodate design changes. The dipole PCB (Fig. 6.14a) holds two devices which
makes chip handling slightly easier as the device cell size is only 1.2 mm×1.2 mm.
It features two SMA lines (< 18 GHz), one K-type line (< 40 GHz) and 22 MMCX
lines (DC). The CPWR PCB (Fig. 6.14b) holds one device and has two SMA and 12
MMCX lines.

The device is mounted in the PCB opening with PMMA and subsequently con-
nected to the PCB lines with an aluminium wedge wire bonder. Fast frequency lines
are bonded as matched as possible by using many short bonds. The CPW requires
many additional bonds (from PCB ground to sample ground and across the different
ground sections on the sample) to properly secure the ground plane over the entire
chip. During the bonding process all lines remain grounded to avoid ESD damage.
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a b

FIGURE 6.14: Flip-flop qubit enclosures. Enclosure with PCB for the dipole-coupled flip-
flop qubit (a) and the resonator qubit (b).

6.4 Experimental setup

Our experiments are performed at low temperatures (∼ 11 mK) to prevent spurious
thermal excitation as much as possible. Cryogen-free dilution refrigerators (BlueFors
LD400) can achieve these temperatures by exploiting the enthalpy of mixing of 4He
and 3He [169]. The coldest part of the fridge is where the gases mix and is fittingly
called the mixing chamber. There we attach the sample enclosures with our qubits
to a cold finger. The fridge is fitted with a superconducting magnet. The qubit sits
in the centre of this magnet and thus experiences a homogeneous magnetic field of
up to 5 T.

In this thesis, three different types of qubits are discussed: the standard elec-
tron qubit (Chaps. 2, 8), the flip-flop qubit implemented with direct dipole-dipole
coupling and resonator coupling (Chap. 3 and 7). These different qubits have dif-
ferent demands on the measurement setup which will be explained in the following
sections.

6.4.1 Electron and nuclear qubit

Cables and filtering

The qubit has three distinct types of connections to the room temperature world out-
side of the dilution refrigerator: DC, AC (80 MHz) and high frequency (. 40 GHz).
Each type of connection aims to allow a sufficient amount of power down to the
qubit while simultaneously minimizing any thermal noise. Any resistor R at tem-
perature T emits thermal white noise, called Johnson-Nyquist noise [170], [171] with
a spectral density of v2

n = 4kBTR. For each line this noise is transmitted through the
line to the device at low temperatures. However, it can be reduced either by attenu-
ation or filtering. We choose our approach according to the bandwidth of line. Fig.
6.15 shows the schematic of the line attenuation, filtering and instrument control
used for the electron and nuclear qubit.

The DC lines require a fixed voltage bias and consist of the left (LB) and right (RB)
SET barrier, the SET top gate (TG), and two donor gates (DS1, DS2). To minimize the
Johnson-Nyquist noise as much as possible we filter these lines with a home-built
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FIGURE 6.15: Electron qubit setup. Schematic of the experimental setup for the electron
qubit. Detailed description in the main text.
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filter box that acts as a low pass filter and attenuates any signal above 20 Hz. It con-
sists of two passive first-order RC filters in series, with thin-film nichrome resistors
of 20 kΩ and 470 nF and 1 pF ceramic capacitors, resulting in cut-off frequencies of
20 Hz and 8 MHz respectively. The lines running from room temperature to the filter
box are copper-nickel twisted-pair wires that are thermalized at every temperature
stage (11 mK, 1 K, 4 K, 64 K).

The AC lines - two fast donor gates (DF1, DF2), source (S), drain (D) and the
plunger gate (TGAC) - require a fixed voltage bias, but also pulsing on the order
of megahertz. Thus we use copper semi-rigid (EZ47) coaxial lines and a filter box
with a cut-off frequency of 80 MHz, consisting of seventh-order integrated LC filters
(Mini-Circuits LFCN-80).

In addition to the passive filters, both filter boxes contain an anti-inductive wound
coil with an ECCOSORB R©core in series to reduce high-frequency noise. Connec-
tions from both filter boxes to the enclosure are made with copper semi-rigid coaxial
cables with diameter 0.047”, terminated by MMCX connectors.

The high frequency line needs to transmit pulses of up to 40 GHz, thus cannot be
low-pass filtered. Consequently we use attenuators at different temperature stages
to create a good thermal contact between the coaxial signal line of the copper-nickel
cable, with silver-plated inner conductor (EZ86), and the ground shield which in
turn is thermalized to the fridge using copper anchors. The attenuation depends on
the required power at the sample and the cooling power at the respective tempera-
ture stage. We place 10 dB of attenuation at 1 K and 3 dB at 11 mK, which results in
a noise temperature of 15.5 K 1. Additionally we add an Aeroflex 8141A DC block at
mK to remove any DC current noise.

Instrument control

All instruments are controlled with our home-built measurement software SilQ [172]
which is a python environment built on top of the open-source quantum measure-
ment package QCoDes [173]. DC voltages are applied with the National instruments
PXIe4322 voltage source card in the PIXe rack, directly controlled with SilQ. AC volt-
ages are also supplied by the PXI, however for TGAC, DF1 and DF2 the DC voltage is
combined by a resistive combiner with a pulse from a Signadyne M3300A arbitrary
waveform generator (AWG). ESR pulses are generated by the Agilent E8267D Vector
Source. The measurement signal of the device consists of the SET current, usually of
magnitude of I ∼ 1 nA. We amplify the current using a FEMTO DLPCA-200 trans-
impedance amplifier set at 107 V/A. Afterwards the voltage is further amplified by
a SIM910 voltage amplifier with a gain of 10 V/V, which also acts as a ground de-
coupling point, by choosing the "float" setting of the input connector. This prevents
a large ground loop through the fridge between source and drain. Finally the signal
is filtered by a SIM965 analogue filter module set to a low-pass fourth order Bessel
filter with a cut-off frequency of 40 kHz before it is acquired with the a Signadyne
M3300A digitizer card. SilQ controls the data acquisition and transmission from the
Signadyne temporary storage to the data hard drive.
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FIGURE 6.16: Flip-flop qubit setup. Schematic of the experimental setup for the dipole-
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point shifts from 5 Hz at room temperature to 70 Hz at 1.6 K. b Transmission of a Marki
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cabling with the VNA.

6.4.2 Flip-flop qubit

The setup for the dipole coupled flip-flop qubit (Fig. 6.16) is very similar to the
standard electron qubit setup. The qubit has 6 DC lines (RB, LB, TG, TLC, BC and
RG), 6 AC lines (S, D, PL, RS, RR, and R) and the high-frequency microwave line.
All these lines are wired and operated in the same fashion as for the electron qubit.
The distinct difference to that standard setup is that the donor gate (DG) requires
both fast pulsing (40 GHz) as well as a DC voltage and AC (1 GHz) pulsing. To
combine these three different frequency lines we use a home-built bias-T and a Marki
Microwave DPX-1721 diplexer at the mixing chamber.

The bias-T consists of a 10 kOhm thin-film nichrome resistor and a 2.18 µF ce-
ramic capacitor (inset Fig. 6.17a) resulting in a cut-off frequency of 5 Hz at room
temperature which shifts to 70 Hz at 1.6 K (Fig. 6.17a). We use this bias-T to combine
the DC bias from the DC sources, filtered by the 20 Hz filter box, with an attenuated
AC pulse from the AWG of up to 1 GHz. We choose attenuators of 20 dB at 4 K, 10 dB
at 1 K and 10 dB at 11 mK, giving a noise temperature of 170 mK at base 2.

The diplexer passively combines high-frequency and low-frequency signals by
frequency-domain multiplexing with a cut-off at 18 GHz (Fig. 6.17b). We connect
the low-frequency port to the output of the bias-T and the high-frequency port to a
microwave source with attenuators of 20 dB at 4 K, 10 dB at 1 K and 40 dB at 11 mK,
resulting in a noise temperature of 15 mK at base.

In this setup, we are using Stanford Research Systems (SRS) SIM928 Isolated
Voltage Source modules in a SIM900 mainframe, a TTL pulse generator (SpinCore
PulseBlasterESR-PRO) for triggering, the Lecroy ArbStudio AWG and a AlazarTech
ATS9440 PCI digitizer card instead of the PXI and Signadyne cards.

1300 K room temperature noise gets reduced by a factor 10 (10 dB) at 1 K, leading to 30 K additional
noise. 31 K thermal noise at 1 K gets reduced by a factor 2 (3 dB) at 11 mK, leading to thermal noise of
temperature 15.5 K at the sample.

2Assuming an applied voltage of 5 mV at the sample with a 50 Ω impedance, we create 500 nW
power dissipation at sample and 5 µW at 11 mK which can be handled by our dilution refrigerator
which has a cooling power of 20 µW at 20 mK [169].
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6.4.3 Resonator flip-flop qubit

When coupling the flip-flop qubit to a superconducting resonator, the setup (Fig.
6.18) changes significantly from the electron qubit setup. The four gates (TT, TB, S,
D) and the inductor of the central conductor (CC) are connected via the 80 MHz filter
box to the Stanford Research Systems (SRS) SIM928 Isolated Voltage Source modules
in a SIM900 main frame. These lines are thermalized at every temperature stage.

Readout is performed by analysing the transmitted signal through the resonator.
We operate in transmission mode. We use a Keysight N5231A vector network anal-
yser (VNA), a machine that sends a microwave signal and detects the amplitude and
phase of the transmitted or reflected signal. The input signal is attenuated by 20 dB at
4 K and 11 mK and by 10 dB at 1 K (noise temperature of 180 mK) . The output signal
is routed through two PAM TECH 55387 circulators (with a 50 Ω termination on the
unused port) to reduce any thermal noise coming down the line and a Micro-Tronics
BPC50403 4− 8 GHz bandpass filter to reduce any noise before amplification. The
signal then passes a cryogenic low noise amplifier (LNF-LNC1-12A s/n 265B) with
38 dB gain and a room temperature low noise amplifier (LNF-LNR1-15A) with 37 dB
gain before entering the VNA. SilQ controls the SIM modules and the VNA.

Advanced resonator design

The setup for the advanced resonator (Fig. 6.19) design is more complex as we now
not only have several additional gates and a microwave antenna but also are oper-
ating the resonator in reflection. It is basically a hybrid between the more simple
resonator design and the dipole flip-flop design with some additional components
for good reflective resonator operation.

The microwave antenna and the AC gates (S, RT, TLT and CB) are connected as
for the dipole-coupled flip-flop qubit in Sec. 6.4.2, with the difference that each gate
has its own on-chip inductor. The central conductor is biased through an on-chip
inductor where the DC signal from a SIM module is combined via the home-made
bias-T with a signal from an AWG which is attenuated with 20 dB at 4 K, 10 dB at
1 K and 10 dB at 11 mK. This is the same setup as for the donor gate AC line of the
dipole-coupled flip-flop qubit donor gate.

The resonator is operated in reflection where the readout is performed by analy-
sing the reflected signal at one port of the resonator. The signal is generated by the
VNA, attenuated by 20 dB at 4 K, 1 K and 11 mK, passes through a PAM TECH 55387
circulator and reaches the resonator. Then the signal is reflected, travels up the same
line and enters the circulator where it is separated from the input signal. It is then fed
into a Pulsar (CS10-56-436/20) directional coupler where the signal is combined with
a pump tone from a second microwave source of a frequency and power calibrated
to the signal. This tone is required at the next stage, the Josephson travelling-wave
parametric amplifier (TWPA), confined in a lead box, which amplifies the signal up
to 20 dB over a 3 GHz bandwidth [174]. Following is the same readout setup as for
the previous resonator design.

We add Aeroflex 8143A double-DC blocks on all high-frequency lines to prohibit
ground loops.
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flip-flop qubit coupled to a superconducting resonator. Detailed description in the main text.
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Chapter 7

Flip-flop qubit measurements

“Beginnings are always messy."
– John Galsworthy

Many flip-flop devices, for both dipole-dipole and resonator
coupling, were fabricated and tested by the author during
the duration of her PhD. This chapter presents the most rep-
resentative and successful measurements, showing prelimi-
nary results about flip-flop qubit operation.

The author acknowledges assistance of A. Laucht with the measure-
ments in Fig. 7.2, G. Tosi with resonator fabrication and V. Schmitt with
resonator measurements.
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7.1 Proof of principle flip-flop measurement

7.1.1 Driving the flip-flop transition on an electron qubit device
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FIGURE 7.1: Driving the flip-flop transition on an electron qubit device. a Scanning elec-
tron micrograph of a device similar to the one used in the experiment. A SET charge sensor
is used for electron readout. Two sets of donor gates (DD, DP) as well as a plunger gate
(PL) tune the potential and electric field at the donor location. A positive applied voltage
attracts the electron towards the Si/SiO2 interface. A microwave antenna emits predomi-
nantly an AC magnetic field, but also emits a spurious AC electric field. b Level diagram
of the phosphorus donor with one electron. ESR, NMR and flip-flop transition (EDSR) are

indicated.

While we were developing dedicated flip-flop qubit devices, we measured the
flip-flop transition on an electron and nuclear qubit device (Sec. 6.4.1, Fig. 7.1a). This
device contains a SET for readout, a plunger gate (PL), two sets of donor gates (DD,
DP) and a microwave antenna. In this design we do not have proper control of the
electron orbital degree of freedom, as the electron cannot be confined at the interface.
Moreover, the device lacks a gate designated for electrical driving. However, we can
harness the imperfections in the device to drive the flip-flop resonance nevertheless.

Firstly, the hyperfine coupling between the electron and phosphorus nucleus was
measured to A ≈ 98.5 MHz, deviating strongly from the bulk value of 117.6 MHz.
For phosphorus donors, the hyperfine interaction is strongly dominated by the Fermi
contact interaction. Consequently, the deviation of the hyperfine coupling shows a
distortion of the electron wave function. This can be caused by external electric
fields applied to the donor gates and by strain in the sample due to the different
thermal expansion coefficients of aluminium and silicon. The measured device is
expected to exhibit strain of 0.05 % in-plane with B0 and −0.1 % perpendicular to B0
(Supplementary of Ref. [175]), which statically distorts the electron wave function
by separating the electron slightly from the nucleus. An applied oscillating electric
field can then by used to modulate the hyperfine interaction and drive flip-flop ro-
tations. The device shows a hyperfine tunability of ∆A = 0.4 MHz for an applied
voltage of VDG = 250 mV on the donor gates (Supplementary of Ref. [175]). As the
cut-off frequency for these gates is around 1 MHz, they cannot be used to drive the
flip-flop transition. However, the microwave antenna supports gigahertz driving.

The coplanar waveguide microwave antenna is usually used to supply the mag-
netic drive to perform ESR on the electron and NMR on the nucleus. It is designed
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to maximize the magnetic field and minimize the electric field at the short tip. Nev-
ertheless, imperfections result in the emission of a spurious electric field at high fre-
quencies > 20 GHz [176]. Here, we deliberately exploit such imperfections and seek
specific frequencies where the antenna appears to emit the strongest electric field.
We estimate the emitted electric field by measuring the response of the SET current
to a microwave pulse repeatedly, when the SET is tuned in Coulomb blockade (Fig.
7.2c). At a frequency of 43.38 ± 0.04 GHz we observe a significant increase of the
SET current which indicates a shift of the SET tuning induced by a large electric
field emitted by the antenna (Fig. 7.2c). The repetitions show that the current spikes
are a real effect due to the microwave and not random noise. Once the frequency
yielding maximum electric field has been found, we adapt the magnetic field B0 to
provide the flip-flop resonance at the desired frequency. In this, we apply an exter-
nal magnetic field of B0 = 1.55 T such that the flip-flop transition appears at (Eq.
3.19)

fff =
√
(γe + γn)2B2

0 + A2 = 43.38 GHz, (7.1)

neglecting any change in γe and orbital shift Dorb due to the small shift of the elec-
tron.

7.1.2 Measuring the flip-flop transition

To measure the flip-flop transition, we determine whether the nuclear spin has flipped
after an adiabatic EDSR pulse has been applied. Therefore we use the following
pulse sequence (Fig. 7.2a). First, we perform a nuclear readout. To this end, we load
an electron in state |↓〉, apply an electron π-pulse with frequency fe⇓ and readout
the electron. If the electron is in state |↑〉, the nuclear spin is in state |⇓〉 and if the
electron is in state |↓〉, the nuclear spin is in state |⇑〉. Now, that we know the ini-
tial nuclear state, we perform the flip-flop EDSR rotation. Therefore, we load |↓〉. If
the nucleus is |⇓〉, we are outside of the flip-flop space and need to apply another
electron π-pulse with frequency fe⇓ to reach |↑⇓〉. This pulse will have no effect on
a |↓⇑〉 state. Once we initialized in the flip-flop subspace |↓⇑〉 , |↑⇓〉, we perform
an adiabatic inversion (50 kHz sweep in 10 ms) at frequency fEDSR with a power of
18 dBm at room temperature. If the flip-flop transition is successfully driven, both
the electron and the nuclear spin will flip. To determine whether such a flip has oc-
curred, we measure the nuclear spin state again. Is the nuclear state different than at
the start of the pulse sequence, we know that we have successfully driven the flip-
flop transition1. We repeat this pulse sequence many times to find the nuclear spin
flip probability for each frequency fEDSR.

Additional, we measure the electron spin flip probability for the two ESR transi-
tions with a drive power of 18 dBm at room temperature.

7.1.3 Analysis of the flip-flop drive

We find a clear peak in the nuclear spin flip probability for the flip-flop drive (Fig.
7.2c,d) at f meas

ff = 43.3782 GHz (Gaussian fit with width 50 kHz, corresponding to
adiabatic sweep depth). To compare this value to the expectation, we determine the
ESR transition frequencies fe,⇓, fe,⇑. As these transitions were measured with very
high power, the resonance lines exhibit oscillations that indicate coherent Rabi drive
of the spin (Fig. 7.2c). To determine the respective resonance frequencies, we fit the

1As the nuclear spin relaxation time is on the order of hours, we assume that no non-driven flips
occur.



112 Chapter 7. Flip-flop qubit measurements

c

𝜋𝜈⇓ 10ms adiabatic 𝑓EDSR

d

b

𝑉p

𝑡
0

ȁ ۧ↓⇓

ȁ ۧ↓⇑

ȁ ۧ↑⇓

ȁ ۧ↑⇑
flip-flop 
drive ?

Load ↓ Read, Load ↓

Read 
nucleus

a

Read 
nucleus

𝜋𝜈⇓
Load ↓ Read, Load ↓

𝜋𝜈⇓

40 42 44

𝑓 (GHz)

0

0.2

0.4

0.6

I (
n
A

)

43.3781 43.3782 43.3783

𝑓EDSR (GHz)

0

0.2

0.4

0.6

0.8

1
s
p
in

-u
p

p
ro

p
o
rt

io
n

Data

Fit

43.3 43.32 43.34 43.36 43.38 43.4

𝑓 (GHz)

0

0.2

0.4

0.6

0.8

1

s
p
in

-u
p

p
ro

p
o
rt

io
n

ESR 

ESR 

Flip-flop

FIGURE 7.2: Flip-flop qubit resonance. a Pulsing scheme to drive the flip-flop resonance.
The top panel shows the state of the qubit during the pulse sequence, when the nuclear spin
is initially |⇑〉 (orange) or |⇓〉 (green). The bottom panel shows the pulse sequence. First a
nuclear readout is performed. Than |↓〉 is loaded and a π-pulse at fe⇓ = 43.302415 GHz is
performed to bring an initial state of |↓⇓〉 into the flip-flop space |↓⇑〉 , |↑⇓〉. Subsequently
an adiabatic inversion (50 kHz sweep in 10 ms) at fEDSR with a power of 18 dBm at room
temperature is performed. Finally the nuclear spin is read out again. b Multiple SET current
traces measured, while tuned in Coulomb blockade and applying a microwave pulse with
the ESR line. c Spectrum with ESR and flip-flop transitions. Fitting the Rabi formula to
the ESR transitions gives fe⇓ = 43.3028 GHz with a pulse length of tp = 911 ns and a Rabi
frequency of fR = 2.9 MHz for |⇓〉 and fe⇑ = 43.4007 GHz with a pulse length of tp = 653 ns
and a Rabi frequency of fR = 1.1 MHz for |⇑〉. Fitting a Gaussian to the EDSR flip-flop

transition gives f meas
ff = 43.3782 GHz.
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transitions with the Rabi formula

P↑( f ) =
f 2
R

f 2
R + ( f0 − f )2

sin
(

2π
√

f 2
R + ( f0 − f )2/2 · tp

)2

+ offset, (7.2)

where fR is the Rabi frequency, tp the Rabi pulse length and f0 the resonance fre-
quency. This gives fe⇓ = 43.3028 GHz with a pulse length of tp = 911 ns and a Rabi
frequency of fR = 2.9 MHz for |⇓〉 and fe⇑ = 43.4007 GHz with a pulse length of
tp = 653 ns and a Rabi frequency of fR = 1.1 MHz for |⇑〉.

We calculate the expected flip-flop frequency from these measurements to

f exp
ff = fe⇓ + A/2 + γnB0 = 43.3784 GHz. (7.3)

The difference between the directly measured flip-flop transition f meas
ff and the ex-

pectation f exp
ff is 0.2 MHz. This small deviation can be attributed to changes in the

hyperfine coupling of up to 200 kHz depending on the exact device tuning [175].
Consequently, we confirm with this measurement that we can drive the flip-flop

transition electrically. However, the small range of hyperfine coupling tunability and
the small electric drive through the magnetic antenna, prevented us from coherent
control.

7.2 Dipole-dipole coupling devices

LB RBRSDG

MW 
Antenna

DS

TG
DR

100 nm

RG

FIGURE 7.3: Device layout of the flip-flop qubit. Scanning electron micrograph of a device
similar to the one used in the experiment. A SET charge sensor is used for electron readout
(TG, LB, RB, yellow). A donor gate (DG, green) tunes the potential and electric field at
the donor location and emits electric fields at microwave frequencies. A confinement gate
(RS, blue) controls the electron tunnel rate to the SET and tunes the electron wavefunction
laterally. An additional reservoir (RG, red) allows for more electron readout options and
a microwave antenna (MW, purple) emits an AC magnetic field to drive ESR and NMR

transitions.

Many two qubit flip-flop devices designated for direct dipole-dipole coupling
were measured. The results shown in this section were measured on a device as
depicted in Fig. 7.3 at 12 mK and are representative for other measured devices
(see Sec. 6.1.1 for device designs). In this section, we will walk the reader through
the measurements performed on any new donor or quantum dot qubit device to
establish its basic functionality. Therefore, we firstly form a SET and then establish
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FIGURE 7.4: SET turn-on and pinch-off. a Current characteristic when increasing the SET
gates, TG, RB and LB, simultaneously. At 1.3 V the channel between S and D becomes con-
ducting - the transistor "turns-on". b Current measured when the SET barriers LB and RB are
decreased individually until the conducting channel is "pinched-off" and no current flows at
1.15 V and 1.1 V respectively. Just above pinch-off we observe Coulomb oscillations when a

quantum dot is formed between the barriers (region in dashed square).

electron readout (compare Sec. 2.3.3 for a detailed description of the concepts), as
will be described in the following sections.

7.2.1 SET characterization

When a new qubit device is tested, the first step is to test all gates for leakage cur-
rents. As all gates are open circuits, no current flow is expected. However, imper-
fections in the device can create current pathways (more details will be discussed in
Sec. 7.2.3).

If all gates are well isolated, the next step is to form a SET. Therefore, the cur-
rent between source S and drain D is measured while increasing the voltage on the
SET top-gate TG and the two barriers RB and LB simultaneously, with a small bias
voltage of 250 µV applied to S while D is grounded (Fig. 7.4a). We observe that the
channel between S and D becomes conducting above the threshold voltage of 1.3 V
when a 2DEG is induced under the gates - this is called the transistor "turn-on". The
current increases until it saturates, mostly because the resistance of the channel be-
comes negligible compared to the resistance of the Ohmics. By increasing the S-D
voltage difference, the transistor current can be increased if desired.

Next, we test if the SET barriers are working. We set the top gate TG above turn-
on at 1.8 V and decrease the voltage of both barriers LB and RG independently until
the current flow has stopped - the conducting channel is "pinched-off" (Fig. 7.4b).
Just before the current flow is completely restricted, electrons are still trapped on
the SET island in between the barriers and a many-electron quantum dot is formed.
When both barriers are near "pinch-off", we observe Coulomb oscillations of the cur-
rent when the electron occupancy of the island changes by one (highlighted region
in Fig. 7.4b). Decreasing the barrier voltage increases the barrier height and opaque-
ness. Electrons are forced out one-by-one until any current is suppressed when the
barriers become fully opaque and no electron can come through.

We aim to form a large quantum dot, the SET island, that only allows for single
electron transport. Therefore we tune the barriers just above pinch-off such that the
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FIGURE 7.5: Coulomb oscillations and Coulomb diamonds. a Coulomb oscillations of the
SET current showing the single electron transport through the SET with the barriers just
above pinch-off (LB= 1.25 V, RB= 1.2 V). b Coulomb diamonds of the SET current when TG
and the S-D bias are varied. The parameters ∆VTG = 15.8 mV and Vc = 1.2 mV relate to the

lever arm of TG to µSET and the charging energy of the SET island respectively.

Coulomb oscillations are sharp and have maximum contrast: the current is max-
imum during an electron tunnel event and zero otherwise, when the island is in
Coulomb blockade (Fig. 7.5a). When increasing the TG voltage, we sequentially
load electrons one-by-one. The plunger gate PL can also be used to fine-tune the
SET.

Finally, we measure the so-called "Coulomb diamonds" by sweeping both the
TG voltage and the S-D bias (Fig. 7.5b). We observe periodic regions, where the
conduction is blocked, which are the Coulomb diamonds. From the height Vc and
width ∆VTG of the diamonds, we can extract the charging energy of the SET island
to

Ec = Vc · e = 1.2 meV (7.4)

and the lever arm αTG of the gate TG to the shift in µSET to

αTG =
Vc

∆VTG
=

CTG

C
= 0.038, (7.5)

where CTG is the capacitance between TG and the SET island and C is the total ca-
pacitance of the island.

7.2.2 Donor and quantum dot formation and readout

Now that we characterized our SET, we are looking for donors in our device. There-
fore, we sweep TG and the donor gate DG over a vast range of bias voltages while
measuring the SET current and monitoring the Coulomb peaks. This results in a 2D
map, the "charge stability diagram". Donors are revealed by discontinuities in the
Coulomb peaks when the donor charge state changes, the "charge transition"2. These
transitions indicate the boundary between donor ionization and neutralization. Fig.
7.6a shows such a charge stability diagram with four donor charge transitions visi-
ble.

2Note, that any charge transition, e.g. a charge trap being loaded, will appear in the charge stability
diagram. While the charge transfer signal (size of the break of the Coulomb peaks, see Sec. 2.3.3) can
give an indication whether it is a donor, only an ESR measurement at finite B0 can confirm this.
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FIGURE 7.6: Flip-flop qubit charge stability diagrams. Map of the SET Coulomb peaks
with SET top gate TG and donor gate DG voltage bias, showing several donor transitions
(a) and the transitions of a quantum dot that is filled with electrons one-by-one (b, n is the

number of electrons in the dot) (indicated with white dashed lines).

It is important to note that donor charge transitions can appear over a wide range
of voltages and their visibility strongly depends on the device tuning. Depending
on the exact location of the donor, each gate has a different effect on the donor due
to a different capacitive coupling. Thus, varying all available gate voltages in a sys-
tematic way while searching for donors is necessary. Determining the capacitive
coupling of each gate to a specific donor also allows for an estimate of the donor
location by triangulation [175].

The flip-flop device design also allows for the formation of a quantum dot at the
interface. Fig. 7.6b shows the charge stability diagram with many charge transitions
of such a quantum dot. Each transition indicates the loading of one more electron
onto the dot and the transitions are spaced by ∆VDG = EQD

C /eβ, where β is the lever
arm between the donor gate and the quantum dot electrochemical potential and EQD

C
is the charging energy of the quantum dot.

Once donor and dot charge transitions have been identified, we need to estab-
lish spin-readout. Therefore we choose a donor (or dot) transition and tune to a
voltage such that we observe a high current when the donor is ionised and zero cur-
rent when the donor is neutral (red dot in Fig. 7.7a). When tuned exactly at the
boundary between ionization and neutralization, we measure at B0 = 0 T a random
telegraph signal of short current peaks ("blips", inset in Fig. 7.7a) caused when the
electron tunnels on and off the donor randomly. Once we observe blips we can apply
an external magnetic field and use the pulse sequence empty-load-read (Fig. 7.7b) to
determine the tuning spot where we observe high current while emptying, zero cur-
rent while loading and blips at the start of the read-phase. This is the indicator that
we are tuned such that µ↑− EZ/2 = µSET = µ↓+ EZ/2 and only |↑〉 electrons escape
the donor. When |↑〉 escapes, it will eventually be replaced by |↓〉, which stays con-
fined and no more blips are observed. Consequently, we can distinguish between
the two electron spin states. Measuring this pulse sequence repeatedly gives the
contrast between between |↑〉 and |↓〉, which shows how well we can distinguish
the two. If a contrast well above 50 % can be achieved, the donor or dot is deemed
operational. Unfortunately, we could not find any spin readout in this device.
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FIGURE 7.7: Qubit spin readout. a Charge stability diagram with donor transition (white
dashed line). The red dot marks the readout position where we measure a random telegraph
signal at B = 0 (inset) and should achieve spin readout for B0 � kBT. To empty the dot
we move into the ionized regime and to load into the neutral regime, while keeping the
SET electrochemical potential constant. b Pulse sequence of the TG and DG voltages for an

empty-load-read sequence.

7.2.3 Failure modes of devices

Nanometric devices, as were fabricated and measured in this thesis, are very fragile.
Different failure modes can cause a device to not function properly.

One major failure mode concerns the conduction between source and drain. At
temperatures T < 50 K in intrinsic silicon, the thermally-induced charge carriers
freeze out, resulting (theoretically) in zero current between S and D, unless an elec-
tron channel is formed by applying a voltage above turn-on to the top gate. Never-
theless, we encountered many devices where the S-D channel was conducting sev-
eral nA without any applied voltage. In this case the SET cannot be operated, as
the transistor can never be turned-off. This failure mode arises from the fact, that
positive charges trapped in the thick SiO2, grown by wet oxidation, attract electrons
and induce a 2DEG along random paths. If a continuous path between S and D is
created in this way, we observe a leakage current and have to discard the device.
This problem is currently being addressed in two ways. Firstly, we introduced p+
doped regions which block the conducting pathways between S and D. Secondly,
we are refining the stock fabrication such that a cleaner SiO2 is used which contains
fewer trapped positive charges.

Another common failure mode, related to the previous issue, are leakage cur-
rents from the gates to ground or S/D. Small holes in the SiO2 in combination with
the randomly induced conductive channels allow for a current flow from a gate to
the substrate and then to ground or S/D. These issue is also being addressed by a
refined stock fabrication.

Another problem are small holes in the Al2O3, separating overlapping gates,
which lead to leakage between those gates. Moreover, lift-off issues, where parts
of the gates have either been removed or wrongly connected, can cause individual
gates to not function. With proper oxidation and careful device processing however,
these problems occur rarely.



118 Chapter 7. Flip-flop qubit measurements

A further issue is electro static discharge (ESD) which can destroy the whole
device. Even with careful grounding during mounting and bonding, severe ESD
can sometimes occur during fabrication. Thus, recently we have started to connect
all gates to ground with small aluminium connections during the whole fabrication
process which are later removed once the device has been bonded and grounded.

Finally, we have to find an appropriate donor which can be readout with the
SET and that has a tunnel coupling to the interface dot roughly of the right order of
magnitude.

Engineering of the stock, the device fabrication, device layout and donor implan-
tation is still ongoing to improve device yield.

7.3 Resonator qubit devices
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FIGURE 7.8: Charge qubit resonator design. Scanning micrograph of the resonator with the
qubit region and the capacitor shown in detail. The resonator is operated in transmission
with the input at port 1 and the output at port 2. The central conductor (CC) can be biased
through an on-chip inductor. A 2DEG can be induced under the top gates TT and TB (and
TT2, TB2). The capacitor dimensions are h = 90 µm and w = 30 µm. The constriction of the

central conductor, where the donors are implanted, is 80 nm.

The results presented in this section were measured on a resonator device as
shown in Fig. 7.8 and are representative for all other measured devices (see Sec.
6.1.2 for device designs). For a detailed description of the concepts see Sec. 2.4.

7.3.1 Resonator characterization

We operate the resonator in transmission and characterize it by finding its resonance
frequency, the coupling strength to the transmission lines described by the quality-
factor Qc ∝

√
C (C is the coupling capacitance on both ports) and internal losses

described by the internal quality-factor Qint ∝ 1/R (R is the resistance that describes
the internal losses). In transmission mode the transmitted amplitude |S21( f )|2 and
phase ∠S21( f ) can be expressed from Eq. (2.57) as

|S21( f )|2 =

(
Qtot

Qc

)2 1

1 + 4Q2
tot

(
f− fr

fr

)2 (7.6)

∠S21( f ) = − arctan
(

2Qtot
f − fr

fr

)
(7.7)
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FIGURE 7.9: Resonator transmission amplitude |S21| (a) and phase ∠S21 (b). The input
power is −35 dBm at room temperature. The fit uses Eqs. (7.6) and (7.7) and gives fr =
5.7260 GHz, Qtot = 1307 and Qc = 2062 for the amplitude and fr = 5.7259 GHz and Qtot =
1114 for the phase. The capacitor design that leads to this coupling strength is shown in the

inset, with dimensions h = 90 µm and w = 30 µm.

where
1

Qtot
=

1
Qc

+
1

Qint
(7.8)

is the total quality factor and fr the resonance frequency. Thus, by fitting these ex-
pressions to the measured resonance curves, we can extract the required knowledge
about our resonator.

Fig. 7.9 shows the amplitude and phase measurement of the resonators reso-
nance including a fit of Eq. (7.6) and (7.7). We extract

fr = 5.726± 0.002 GHz,
Qtot = 1210± 136,

Qc = 2062.

The values of Qc and Qtot lead to Qint = 2928. Consequently, our resonator is over-
coupled, as intended. However, this also means that the internal losses cannot be
properly determined and Qtot and Qint are to be considered with care. The insert in
Fig. 7.9a shows the capacitor design that results in the measured Qc with dimensions
h = 90 µm and w = 30 µm.

To achieve a good understanding of our resonators, we observe their behaviour
under temperature and external magnetic field change. These characteristics will
not only give insight into the internal losses of the resonator but also help with un-
derstanding the resonators behaviour at different measurement conditions.

Only at zero frequency are superconductors truly lossless, otherwise they dissi-
pate power [177]. Bardeen–Cooper–Schrieffer (BCS) theory predicts losses through
the acceleration of quasi-particles which depend on the quasi-particle density which
in turn diminishes with temperature. Additionally dissipation can be caused by ra-
diation or dielectric losses [165]. Moreover, the conductivity of a superconductor is
predicted to change, leading to a change in the resonance frequency.

When studying the effect of temperature on the resonator frequency fr and the
internal quality factor Qint, we indeed observe a shift of fr and an increase of Qint
upon lowering the temperature (Fig. 7.10). The former saturates below 2.5 K, while
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FIGURE 7.10: Resonance temperature dependence. a Resonance frequency fr shift with
temperature. b Internal quality-factor Qint change with temperature.

the latter continues to increase until the lowest temperature in the range allowed by
our variable-temperature insert (VTI) system, T = 1.3 K. As we aim to operate over-
coupled resonators the internal losses of the resonator do not concern us as long as
they are lower than Qc. For Qc ≈ 2000, internal losses are negligible for T . 3.8 K.
It is important to note that this temperature lies below the temperature of 4.2 K of
liquid helium. Consequently, any studies of these resonators at 4.2 K will be limited
by the internal losses.
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FIGURE 7.11: Resonance magnetic field dependence. a Resonance frequency fr shift with
external magnetic field. b Internal quality-factor Qint change with external magnetic field

B0.

When analysing the dependence of the resonance frequency and the internal
quality factor with applied external magnetic field B0, applied in-plane with the nio-
bium film, we observe a shift in resonance frequency and an increase in Qint towards
lower magnetic fields (Fig. 7.11), as for the temperature dependence. Although, here
the dependence is much less significant. The resonance shift is most likely caused
by a change in the kinetic inductance of the resonator which increases with greater
magnetic field. The internal losses are enhanced when vortices are induced and
the critical magnetic field is approached. However, we are planning to operate at
magnetic fields of 200− 400 mT where the induced losses are still small. Note that,
small perpendicular field components, resulting from a misalignment between B0
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FIGURE 7.12: Resonance dependence on excitation power. a Resonance amplitude |S21|
with input power. b Line traces from (a, white dashed lines) at three different powers, show-
ing the different regimes of the resonator operation. The frequency sweep direction is from

left to right, indicated by the arrow.

and the chip, reduce the critical magnetic field and introduce additional losses due
to trapped vortices.

Finally, we characterize the resonator performance with input power (Fig. 7.12).
The power indicated here, is the output power of the VNA at room temperature.
At cold temperatures attenuation of in total −60 dB is added in from of attenuators,
on top of any line attenuation (see Fig. 6.18). When increasing the input power,
we increase the photon number in the resonator. A high photon number leads to
non-linear effects and the destruction of the resonance when the superconductivity
breaks down. The large powers cause heating of the metal, creating hot spots and
ultimately the metal transitions from superconducting to normal [178]. While per-
forming qubit measurements, we aim to operate the resonator in the single-photon
regime (corresponding to−64 dBm at room temperature), way below any non-linear
effects.

7.3.2 2DEG influence

After characterizing the resonator, we test the qubit functionalities. To load an elec-
tron onto the donor, we need to activate a 2DEG below the reservoir top gates TT
and TB and load the electron from the reservoir onto the donors by biasing the cen-
tral conductor CC. To determine whether we are inducing a 2DEG, we measure the
current from source S to drain D through the central conductor, passing through the
gap (see inset in Fig. 7.13a). However, this induces a 2DEG below the entire central
conductor. We measure a turn-on at 1.45 V (Fig. 7.13a) and achieve a pinch-off of the
current by controlling the bias voltage on both TB, TT and the central conductor CC
(Fig. 7.13b).

Now that we have confirmed that we can indeed induce a 2DEG and bias the cen-
tral conductor, we study the influence of a 2DEG beneath the resonator (Fig. 7.14).
When inducing a 2DEG beneath the central conductor, we measure an increase of
internal losses (corresponding to a reduction of Qint, Fig. 7.14d) until the resonance
ultimately breaks down at CC = 2.5 V. We relate these losses to the excitation of the
mobile charge carriers below the resonator which resonate with the resonator. The
more carriers are induced, the stronger the effect becomes until a critical number
of charge carriers is reached. The movement of this many charges can also lead to
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FIGURE 7.13: Resonator turn-on and pinch-off. a Measured current flow from source S to
drain D along the gates TT, CC and TB as shown in the inset, when increasing their bias volt-
ages simultaneously. At 1.45 V the channel between source and drain becomes conducting
and the transistor turns-on. b Current measured when the bias voltages of the reservoir top
gate TB and the central conductor CC are decreased individually until the conducting chan-
nel is pinched-off and no current flows at 1.5 V and 1.25 V respectively, while TT is biased

above turn-on at 1.6 V.

heating of the device and cause a breakdown of superconductivity as was observed
for high input powers. We also observe a shift in resonance frequency (Fig. 7.14c)
which indicates an increase in the kinetic inductance of the resonator by the charge
carriers.

7.3.3 Charge qubit

After establishing and analysing the basic functionalities of our resonator qubit de-
vice, we search for the charge qubit at B0 = 0 T while operating the resonator in the
single photon regime.

The charge qubit frequency is given by Eq. (3.3)

fc =

√
(Vt/h)2 + [e(Ez − E0

z)d/h]2.

Here the vertical electric field Ez is applied through the resonator central conductor
CC with Ez = αEV(CC), where αE = ∂Ez/∂V is the conversion factor between the
bias voltage on the central conductor and the resulting electric field at the donor,
specific to this device.

fc is controlled by the tunnel coupling Vt between the donor and the interface
dot state. Thus, when coupling the charge qubit to the resonator, we can operate in
three different regimes, depending on Vt: the dispersive regime with Vt/h� fr (Fig.
7.15a), the resonant regime with Vt/h = fr (Fig. 7.15b), and Vt/h� fr (Fig. 7.15c).

The coupling between the charge qubit and the resonator is given by Eq. (3.35)

gE =
eEacd

4h
Vt

εo
.

Assuming a dipole length of d = 11 nm and an AC electric field of the resonator at
the qubit of maximally Eac = 30 V/m, the coupling is expected to be at most gE '
79 MHz. As Vt is determined by the ion implantation and thus uncertain by several
orders of magnitude, we will most likely find Vt/h 6= fr. The coupling between the
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FIGURE 7.14: Resonance dependence on 2DEG induction. a Resonance amplitude |S21|
with central conductor bias voltage CC while TT and TB are biased at 1.6 V. At 1.25 V a
2DEG is induced beneath the central conductor which changes the resonance. b Resonance
amplitude traces at two different voltages, one with a strong 2DEG induced (CC = 3 V)
and one without (CC = 0 V). c Resonance frequency fr shift and internal quality-factor Qint

change (d) with applied bias voltage on the central conductor.

qubit and the resonator photon will cause a dispersive shift of g2
E/∆ with ∆ = fr− fc

for Vt/h � fr. When Vt/h � fr, we will observe the anti-crossing between the
charge qubit excited state |e〉 and the single photon resonator state |1〉.

To observe the resonator-charge qubit coupling, we are applying the following
measurement procedure. First, we are loading any potential donors by biasing TT
and TB above turn-on to induce a 2DEG and increasing CC to 1 V, below turn-on
to avoid flooding the central conductor with charge carriers. Then we are turning-
off TT and TB again so that the electrons remain trapped at the donors. Once the
loading phase is completed, we measure the amplitude and phase response of the
resonator at fr in the single photon regime (excitation power of P < −124 dBm at
12 mK) while sweeping CC. The bias will separate the electron from the donor and a
charge qubit is formed. The qubit then couples to the resonator photon and induces
a dispersive shift. Once a shift has been detected, we measure the amplitude and
phase response of the resonator for frequencies and bias voltages in the vicinity (Fig.
7.16).
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FIGURE 7.15: Resonator-charge qubit interaction Jaynes-Cummings Hamiltonian calcu-
lations. Eigenenergies EJC of the Jaynes-Cummings Hamiltonian (Eq. 7.9) describing the
resonator-charge qubit system for three different values of Vt, calculated with g = 5 MHz
and fr = 5.7285 GHz. a Dispersive regime with Vt/h = 5.74 GHz (∆ = 12 MHz), where the
resonator resonance is shifted by the qubit. b Resonant regime where we can observe strong
coupling. c For Vt/h = 5.5 GHz< fr, the qubit and the resonator anti-cross. The dominantly

populated eigenstate is indicated in each sub-figure.

We fit the Jaynes-Cummings Hamiltonian of the charge-qubit resonator system

H = Horb +Hr +Hint

=
Vt

2
σx +

eαEV(CC)d
2

σz + frh
(

a†a +
1
2

)
+ gEh

(
σ+a + σ−a†

)
(7.9)

to the measured amplitude and phase (dashed lines). The fit gives an estimation
of Vt/h = 5.695± 0.005 GHz, E0

z = 0.1753± 0.0001 MV/m (which corresponds to
38.975± 0.002 mV), αE = 1.6± 0.3 MV/m/V and gE = 2± 1 MHz.

Electrical simulations with Synopsis R© TCAD found αE = 2− 10 MV/m/V (Chap.
3, 8, Supp. Ref. [175]) and tight-binding simulations yield Vt/h = 9.3 GHz and
E0

z = 4.085MV/m for d = 11 nm (Sec. 3.2.2). These simulations strongly depend on
the donor depth and the corresponding dipole strength. However, due to the im-
plantation uncertainty, we do not know these parameters for the resonator device.
Consequently, we consider the simulated values as a guide only. Nevertheless, the
simulations and the fit values agree well, supporting the conclusion that a donor
charge qubit was measured. However, without characterizing the donor spin by, for
instance, spin resonance or spin relaxation, the charge transition cannot with cer-
tainty be distinguished from a MOS interface defect.

Unfortunately, the device was very unstable and the ionization point voltage
varied between each measurement by up to 1 mV. Thus, no further measurements
were performed. The reason for the charge fluctuations can be many, for instance a
high donor implantation density, trapped electrons under the resonator after turn-on
or simply a low SiO2 or Al2O3 quality.
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|𝑆21| - offset (dB)

Charge qubit frequency
estimation

∠𝑆21 - offset (deg)

FIGURE 7.16: Charge qubit coupling to the resonator. Resonance amplitude |S21| (a)
and phase ∠S21 (b) when sweeping the central conductor bias voltage CC. The shift in
both frequency and phase is consistent with the coupling of a charge qubit to the resonator
photon. The dashed line indicates a fit of the resonator and charge qubit frequencies re-
sulting from the Jaynes-Cummings Hamiltonian of the coupled qubit-resonator system (Eq.
7.9), giving Vt/h = 5.695± 0.005 GHz, E0

z = 0.1753± 0.0001 MV/m (which corresponds to
38.975± 0.002 mV), αE = 1.6± 0.3 MV/m and gE = 2± 1 MHz.
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Chapter 8

Electron spin relaxation of single
phosphorus donors in
metal-oxide-semiconductor
nanoscale devices

“In physics, you don’t have to go around making trouble for yourself - nature does it for
you."

–Frank Wilczek

Understanding our qubits fully is of utmost importance for
large scale quantum computing. In this chapter we analyse
the electron spin relaxation the donor electron qubit with
external magnetic field and donor confinement depth. We
observe interesting effects such as evanescent wave John-
son noise, strain and tunnelling that all influence the relax-
ation time. These results give precious insights into the mi-
croscopic phenomena that affect spin relaxation in MOS na-
noscale devices, and provide strategies for engineering spin
qubits with improved spin lifetimes.

The work presented in this chapter has been submitted for publication:
S. Tenberg, S. Asaad, M. Madzik, M.A.I. Johnson, B. Jöcker, A. Laucht, F.E. Hudson,
D.N. Jamieson, J.C. McCallum, A.S. Dzurak, R. Joynt, A. Morello. “Electron spin
relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale
devices.” arXiv:1812.06644 (2018).

The author acknowledges S. Asaad for performing the measurements
in Fig. 8.8 in conjunction with the author and for general assistance
with measurements, M. Madzik for providing the T1 measurement of
device 2018A in Fig. 8.3, B. Jöcker for the electrical simulations in Fig.
8.6 and R. Joynt for the EWJN theory.
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8.1 Introduction

Electrons bound to shallow donors in silicon became a centerpoint of solid-state
physics in the 1950s, when the study of their spin and orbital states was used as
a benchmark for the then emerging theories of band structure, effective mass and
impurity states in solids [36]. In particular, the detailed analysis of the donor elec-
tron spin-lattice relaxation time T1 provided key insights into the multi-valley band
structure of silicon, and the way it influences spin-phonon coupling [179].

Fast-forward half a century, donor spins have become the subject of intense re-
search for their potential use in quantum computing [22], [72], [78], [114]. In this
context, the old results on the electron spin T1 seemed to provide ample reassurance
that spin lifetime would not constitute a limitation to the encoding and protection
of quantum information. The donor electron T1 in bulk samples exceeds an hour
at cryogenic temperatures and moderate magnetic fields [84], whereas the spin de-
coherence time T2 is limited to a few hundred microseconds [40], [180], due to the
coupling of the electron spin to the bath of spin-1/2 29Si nuclei present with 4.7%
abundance in natural silicon. However, the adoption of isotopically enriched 28Si
samples, where the conentration of 29Si nuclei is reduced below 0.1% [65], has al-
lowed extending T2 close to [30] or beyond [181] one second. This comes within an
order of magnitude of the T1 time observed in nanoscale single-donor qubit devices
[24] at the magnetic fields & 1 T typically used for control and readout of the elec-
tron spin [40], and calls for an effort to understand in detail all spurious channels of
spin relaxation.

In this chapter, we provide an extensive collection of experimental results and
theoretical models on the electron spin relaxation time T1 of single 31P donors in
silicon metal-oxide-semiconductor (MOS) nanoelectronics devices, with the aim of
elucidating how the environment of the donors influences the spin lifetime. Earlier
measurements of T1 on single donors in nanoscale devices [24], [33], [182], [183] had
already shown evidence of deviation from bulk-like behavior. Here, by analyzing
data on 7 different devices, we uncover several microscopic mechanisms that affect
the spin relaxation time. In particular, we provide evidence for relaxation induced by
evanescent-wave Johnson noise (EWJN), by electron tunneling to a nearby reservoir,
and modifications of the spin-phonon relaxation rate caused by strain.

8.2 Background on electron spin relaxation in donors

We describe a single 31P donor in silicon, subjected to an external magnetic field
B0 ‖ ẑ, with the following spin Hamiltonian:

HP = gzµBB0Sz − hγnB0 Iz + hAS · I, (8.1)

where h is the Planck constant, gz is the component the electron Landè g-tensor along
the field direction, µB is the Bohr magneton, γn = 17.25 MHz/T is the nuclear gy-
romagnetic ratio, A is the electron-nuclear hyperfine coupling, S and I are spin-1/2
vector Pauli matrices describing the electron and the 31P nuclear spins, respectively,
and Sz, Iz are the operators representing the electron and nuclear spin projections
along the ẑ-axis. For 31P donors in bulk silicon, the parameters in Eq. 8.1 take the
values gz = 1.9985 (corresponding to gzµB/h = 27.971 GHz) and A = 117.53 MHz,
but the distortion of the wavefunction caused by electric fields, strain or local con-
finement can result in small shifts of such values [175].
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In this chapter we focus on the physics of the electron spin alone. Earlier ex-
periments on the 31P nucleus [41] have shown that it retains its state for extremely
long times (typically many days, or even months). Moreover, we work in the regime
where the electron Zeeman energy gµBB0 greatly exceeds the hyperfine coupling A,
and the electron-nuclear eigenstates are simply the tensor products of the electron
(|↓〉 , |↑〉) and nuclear (|⇓〉 , |⇑〉) basis states. Therefore, choosing for example the nu-
clear |⇑〉 state, the donor Hamiltonian can be truncated to an electron-only operator:

H = gzµBB0Sz − hA/2. (8.2)

The constant energy offset −hA/2 is inconsequential for the discussion of electron
spin relaxation, and will be ignored from here onward.

Electron spin relaxation consists of transitions between the |↑〉 and |↓〉 basis states
leading to thermal equilibrium with a bath at temperature T, and is mathematically
described by the presence of off-diagonal matrix elements in the Hamiltonian, cou-
pling the spin to some operators of the bath. In a simplified picture, we can de-
scribe the bath as a noise source that introduces a perturbation to the Hamiltonian
described by:

H′[λ(t)] = ∆⊥[λ(t)]S. (8.3)

Here ∆⊥[λ(t)] is an operator that does not commute with H, and depends on the
parameter λ(t) which describes the noise acting on the electron spin. The electron
relaxation rate is the sum of the decay (W↑↓) and excitation (W↓↑) rates:

T−1
1 (λ) = W↑↓ + W↓↑. (8.4)

Thermal equilibrium is obtained by imposing that decay and excitation rates obey
the detailed balance condition:

W↓↑
W↑↓

= exp
(
− gzµBB0

kBT

)
. (8.5)

In the experiments presented here, conducted at B0 > 0.5 T and T ≈ 200 mK,
gzµBB0 � kBT and we can approximate T−1

1 (λ) ≈W↑↓, with:

W↑↓ =
2π

h̄
∣∣〈↓| H′[λ(t)] |↑〉∣∣2 ρf. (8.6)

This expression is an application of Fermi’s golden rule, where ρf is the density of
available final states for emission of energy from the spin into the bath. Introducing
the transition operator of the noise perturbation

D⊥,λ =
∂H′[λ(t)]

∂λ
(8.7)

and the noise power spectral density

Sλ (ω) =
∫ +∞

−∞
dτ〈λ(0)λ(τ)〉 exp(−iωτ), (8.8)

we can express the total relaxation rate as [184], [185]

T−1
1 = ∑

λ

| 〈↑|Dλ,⊥ |↓〉 |2

h̄2 Sλ (ω0) . (8.9)
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8.2.1 Phonon-induced relaxation

In bulk silicon, the dominant mechanism that creates a transverse operator ∆⊥[λ(t)]
acting on the donor electron spin is the modification of the g-tensor caused by elastic
distortions of the crystal lattice (phonons).

The band structure of silicon contains six degenerate conduction band minima
along directions ±x,±y,±z (labeled below by the index j = 1, 2, . . . , 6) at finite crys-
tal momentum k0, called valleys. A bound electron state in silicon must be con-
structed from linear combinations of the 6 valleys, whose index effectively consti-
tutes an additional quantum number, in addition to the usual hydrogen-like princi-
pal, orbital and magnetic quantum numbers. The spherical symmetry of the Coulomb
potential produced by the donor nucleus is broken by the cubic crystal field po-
tential, creating a valley-orbit coupling. As a result, the ground 1s orbital state is
further split into six valley-orbit states: a singlet with A1 symmetry (ground state),
a triplet with T2 symmetry and a doublet with E symmetry, with wave functions
Ψi = ∑6

j=1 α
(j)
i ψ(j) (Eq. 2.9), where ψ(j) are envelope-modulated Bloch functions of

the 1s orbital and [36], [37]

α
(j)
A1

=
1√
6
(1, 1, 1, 1, 1, 1), (8.10a)

α
(j)
Tx

2
=

1√
2
(1,−1, 0, 0, 0, 0), (8.10b)

α
(j)
Ty

2
=

1√
2
(0, 0, 1,−1, 0, 0), (8.10c)

α
(j)
Tz

2
=

1√
2
(0, 0, 0, 0, 1,−1), (8.10d)

α
(j)
Exy =

1
2
(1, 1,−1,−1, 0, 0), (8.10e)

α
(j)
Ez =

1
2
(1, 1, 0, 0,−1,−1). (8.10f)

When a phonon with wave vector q travels through the crystal, it creates a local
strain ~U that inhomogeneously deforms the lattice by the displacement

Q(r) = ∑
q,t

[
et(q)aq,teiq·r + e∗t (q)a∗q,te

−iq·r
]

, (8.11)

where e(q) = e∗(−q) is the polarization vector, aq,t the displacement amplitude and
t = x, y, z. The deformation alters the crystal symmetry such that the jth valley is
shifted by an energy

ε(j) = ∑
t,t′

Ut,t′
(

Ξdδt,t′ + ΞuG(j)
t G(j)

t′

)
, (8.12)

where Ut,t′ is the component of the strain tensor ~U, G(j) is the unit vector pointing
from the origin to the bottom of the jth valley in the first Brillouin zone, and Ξd and
Ξu are the Herring deformation-potential which describe the shift in the band edge
energy caused by isotropic dilations and uniaxial strain, respectively [186], [187]. If
unperturbed, the ground state A1 (Eq. 8.10) has an equal population of all valleys.
As a consequence of the energy shifts ε(j) caused by the lattice phonon, the relative
valley populations become unequal, causing the mixing of some excited states with
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the ground state. This effect is called "valley-repopulation" and causes a change in
the electron g-factor.

The g-factor of each valley depends on the spin-orbit interaction, which differs
whether the electron moves in or out of plane with respect to the external magnetic
field, resulting in an anisotropic value given by [179]:

g2 = g2
|| cos2 θ + g2

⊥ sin2 θ, (8.13)

where θ is the angle between B0 and the valley axis and g|| and g⊥ are the g values
with B0 pointing parallel and perpendicular to the valley axes, respectively. In the
unperturbed case, once averaged over all valley states according to their population,
the g-factor actually becomes isotropic for the A1 ground state due to the even valley
population:

g0 =
1
3

g|| +
2
3

g⊥. (8.14)

However, in the strained case, the valley population is unequal which leads to an
anisotropic g which depends on the amount of strain. For instance, for stress along
the [100] direction, the g-factor becomes [179]:

g− g0 =
1
6
(

g|| − g⊥
) (

1− 3
2

sin2 θ

)
×
[
1− (1 + 3x/2)

√
1 + x/3 + x2/4

]
, (8.15)

with x = Ξ′u/E12, where Ξ′u is the deformation potential adjusted for stress and E12 is
the valley-orbit splitting between the ground state A1 and the doublet state E. This
g-factor anisotropy effectively couples the electron spin S to the lattice phonon q via
the Hamiltonian [187]:

H′ph =
2g′µBB0Ξu

−3E12
f (q)q

(
aq,t ∑

r
D(t)

r D(t′)
r + c.c.

)
St′ (8.16)

where g′ = 1
3 (g|| − g⊥), f (q) = 1/

[
1 + 1

4 a∗20 q2]2
, a∗0 is the effective Bohr radius, and

Dr = 3 ∑
j

α(j)α
(j)
r U(j) (8.17)

is a tensor that describes the geometrical structure of the conduction band edge, with
r labeling the valley-orbit excited states and U(j) the tensor that selects the direction
of the j-th valley.

The spin-phonon interaction described by Eq. (8.16) represents one example of
off-diagonal perturbation H′ as in the general formalism of Eq. (8.6). From this,
Hasegawa [187] calculated the donor spin-lattice relaxation rate as:

T−1
1,rp =

1
90π

( g|| − g⊥
g0

)(
Ξu

E12

)2
(

1
ρv5

t
+

2
3ρv5

l

)

×
(

gµBB0

h̄

)4

frp(θ) · kBT

= Krp
4 B4

0T,

(8.18)

where vt = 5860 m/s and vl = 8480 m/s are the transverse and longitudinal sound
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velocities in silicon, respectively, ρ = 2330 kg/m3 is the density of silicon and
frp(θ) = sin2 θ(1 + 3 cos2 θ) is a geometric factor where θ is the angle between B0
and the [100] crystal axis [179], [187].

Even if the electron wave function were entirely confined in one valley, strain
can cause a change in g-factor by shifting the nearby energy bands that determine g
[179], [188]. This "one-valley" mechanism yields a spin-lattice relaxation rate of the
form:

T−1
1,ov =

1
20π

(
M
g0

)2 ( Ξu

E12

)2
(

1
ρv̄5

t
+

2
3ρv̄5

l

)

×
(

gµBB0

h̄

)4

fov(θ) · kBT

= Kov
4 B4T,

(8.19)

where M = 0.44 is the matrix element of the one-valley g-factor shift and fov(θ) =
cos4 θ(1 + 1/2 sin4 θ) [188]. Since the magnetic field in our experiment is aligned
along the [110] direction, θ = 45◦, both the "valley repopulation" and the "one-
valley" mechanisms provide a channel for spin relaxation.

The spin relaxation rates in Eq. (8.18) and (8.19) were derived in the high-tempe-
rature limit, kBT � gµBB0, where both spontaneous and stimulated phonon emis-
sion take place. These are described by including a factor (1 + nph) in the rate
calculation, where nph = 1/[exp(gµBB0/kBT) − 1] is the Bose occupation factor
for phonons of energy matching the electron Zeeman energy. The factor kBT in
Eqs. (8.18), (8.19) appears because (1 + nph) ≈ kBT/gµBB0 in the high-T limit.

The low-temperature limit of the spin relaxation rates, of relevance to experi-
ments we present here, is obtained by replacing kBT/gµBB0 with 1 in Eqs. (8.18),
(8.19), which results in the well-known T−1

1 ∝ B5 dependence [17], [24]:

T−1
1 |low−T = K4

gµB

kB
B5

0 = K5B5
0. (8.20)

8.2.2 Evanescent-wave Johnson noise

Another mechanism inducing electron spin relaxation is magnetic noise leaking from
the aluminum gates in the vicinity of the electron. Quantum and thermal fluctua-
tions of the electrical currents in the metal create electromagnetic fluctuations known
as Johnson noise [170], [171], [189]. The Johnson noise leaks out of the metal into the
insulator in form of evanescent waves when the photon modes in the metal are to-
tally reflected at the metal-insulator interface (Fig. 8.4a) [190]. This effect is called
evanescent-wave Johnson noise [100], [101], [191] and is particularly strong near a
metal interface. EWJN can cause spin relaxation at low temperatures because the
evanescent waves constitute an electromagnetic reservoir that can absorb energy
(Eq. 8.6).

In the nanoscale MOS devices studied here, the main sources of EWJN are the
metallic control gates (see Fig. 8.1a). At r, the position of the donor, this noise is
characterized by the power spectrum

Sii (ω) =
∫ ∞

−∞
eiωt 〈Bi (r, t) Bi (r, 0)〉 dt

= 〈Bi (r) Bi (r)〉ω . (8.21)
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Here i = x, y, z is a Cartesian index and B the magnetic component of the EWJN
field. The angle brackets denote a thermal average over the quantum states of the
system. The power spectrum determines T1 according to the formula

1
T1

=
(µB

h̄

)2 [
Sxx (ω0) + Syy (ω0)

]
, (8.22)

for B0 in the z direction.
As will be shown below, the conditions of our experiment are such that firstly we

can approximate the electromagnetic fields as quasi-static, since the vacuum photon
wavelength is on the order of cm and exceeds the device dimensions. Secondly, we
anticipate a local relation between the electric field and the electric displacement
since the devices satisfy the inequalities `� a� δ, where a is any linear dimension
of the metal pieces,

` = vF
me

ne2 σ (8.23)

is the mean free path with vF as the electron Fermi velocity, me the electron mass, n
the electron density, and

δ =
√

2/µ0µRσω0 (8.24)

is the skin depth with µ0 as the magnetic permeability constant and µR as the relative
permeability. µR = 1 for our device.

For this situation, it has been shown that [191]

1
T1

=
1
L

µ2
Bµ2

0σω0

4πh̄
, (8.25)

where L is a length that depends only on the geometry of the metallic elements of
the device and the position of the qubit. Its calculation can be rather involved and
we will give estimates for our device in Sec. 8.4.1.

8.2.3 Charge noise

Charge noise does not directly couple to the spin of the qubit. However, when com-
bined with spin-orbit coupling, it creates a fluctuating effective magnetic field that
will contribute to T1 [192]. According to Ref. [192], if the frequency dependence of
the charge noise power spectrum is proportional to 1/ f a, then the field dependence
of 1/T1 is B2−a

0 . For 1/ f noise (a = 1) this would give 1/T1 ∼ B0. While a 1/ f charge
noise spectrum has been observed between 10−2 and 3× 105 Hz in Si-based devices
[61], it is exceedingly unlikely that it would hold up to the > 1010 Hz frequency
range that is relevant for 1/T1. Indeed, a recent re-analysis of the data in Ref. [61]
suggests that the noise spectrum changes from 1/ f to 1/ f 2 for f > 2× 105 Hz [193].

In the MOS donors-based devices discussed in this work, the noise spectrum
became white for f ≥ 10 kHz [30]. This would give 1/T1 ∼ B2

0 if extended up to the
electron Larmor frequency.

8.3 The qubit system and measurement methods

8.3.1 Qubit setup

Our qubit system consists of a single electron spin confined by a phosphorus 31P
donor, implanted in either natural silicon natSi or isotopically-enriched 28Si with
800 ppm residual 29Si nuclei (Fig. 8.1a) [65]. With the ion implantation parameters
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FIGURE 8.1: Phosphorus donor qubit system. a Schematic of a phosphorus donor im-
planted in silicon with a false-colored scanning electron micrograph of a device similar to
the ones measured. Two independent gates control the donor potential (DD and DP, green)
while a single-electron transistor (SET, yellow) determines the donor charge state, which is
correlated to the electron spin state via a spin-dependent tunneling process. A plunger gate
(PL, green) controls the electrochemical potential of the SET (and of a donor, if one is present
in its vicinity). A broadband microwave antenna (purple) provides a magnetic drive for both
the electron and the nuclear spins. b Energy level diagram of the electron-nuclear spin sys-
tem, with electron spin resonance (ESR) and nuclear magnetic resonance (NMR) transitions
indicated. c Schematic of the (electron-spin dependent) donor electrochemical potentials
µd,↑, µd,↓ during readout and operation. The nuclear state is irrelevant in the readout pro-
cess. For readout, the donor is tuned such that µd,↑ − EZ/2 = µSET = µd,↓ + EZ/2 and |↑〉
can tunnel out, leaving the donor ionized. The resulting positive donor charge shifts the
SET tuning to a high-conductance point. In contrast, |↓〉 stays confined, keeping the SET in
Coulomb blockade. For operation, both spin states are well confined below the SET elec-
trochemical potential with µd,↓, µd,↑ � µSET, so the electron cannot escape. This is the bias
point for the device during the wait time for spin relaxation measurements. N(E) is the

density of states in the SET island.

used for the devices described in the present work, each device contains typically
10− 20 donors in a 100× 100 nm2 window1.

Aluminum gates, defined by electron beam lithography, control the electrostatic
environment and allow selecting a specific donor for the measurements. Here, spin
readout is obtained via spin-dependent tunneling into the island of a single-electron
transistor (SET) [24] kept at a low electron temperature (T ≈ 100 mK). It is always
possible to tune the gate voltages in such a way that one and only one donor has its
electrochemical potential aligned with that of the SET island, while all other donors
are either already ionized, or are kept far below the Fermi level (Fig. 8.1c).

A DC-only (DD) and a pulsed (DP) gate above the donor control the donor poten-
tial. Additionally a plunger gate (PL) is used to manipulate the donor potential and
the SET electrochemical potential µSET. In all devices from 2013 onward, a broad-
band microwave antenna [176] is used for microwave and radio frequency pulses,

1For details on the fabrication techniques see Sec. 6.2.2, as the electron qubit devices measured here
follow a very similar fabrication as the dipole-dipole coupled flip-flop devices.
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allowing for full control over the electron [40] and nuclear [41] spins (Fig. 8.1b, Sec.
6.4.1).

8.3.2 Measurement procedures

Donor control via a virtual gate. The spin readout process depends on the relative
alignment of the (spin-dependent) donor electrochemical potentials µd,↑, µd,↓ with
respect to the SET electrochemical potential µSET [24], [43]. To simplify the analysis
we define a virtual pulsed gate voltage VDV by combining the effects of the voltage
pulses on the SET plunger, Vac

PL, and on the donor pulsed gates, Vac
DP:

VDV =

√
(βVac

PL)
2 +

(
Vac

DP

)2. (8.26)

These pulsed voltages are applied in addition to the DC voltages VPL and VDP chosen
to select a specific donor to be near the readout condition.

The factor β determines the way in which we choose to shift µd and µSET. We
typically choose “compensated pulses", i.e. keep µSET fixed while moving µd by
using VPL to compensate for the effect of VDP on µSET. We thus call βc the slope of
the Coulomb peaks in the charge stability diagram of the donor and plunger gates
(Fig. 8.2a), determined by the ratio of capacitive couplings of gates PL and DP to the
SET island:

βc = ∆VPL/∆VDP

= CSET−PL/CSET−DP.
(8.27)

Any other value of β corresponds to an uncompensated operation (βuc), i.e. one
where µSET varies during the pulsing.

We also define the donor plunge voltage Vc
p (Vuc

p ) as the effective voltage that
determines how far below µSET the donor electrochemical potential µd is plunged
when operating compensated (uncompensated):

Vc/uc
p = VDV(βc/uc) sin θ, (8.28)

where θ = ∠ [VDV(βc/uc), µSET]. Note that, for Vuc
p , the shift of µSET caused by the

uncompensated pulsing can result in a change in the electron number in the SET
island.

Electron spin read out. The current through the SET, ISET, is used to determine the
charge state of the donor which, in turn, correlates to the electron spin state in the
presence of spin-dependent tunneling [19], [24], [43], [194] (see Sec. 2.3.3 for general
concepts). The SET is biased in Coulomb blockade (ISET ≈ 0) when the donor is
in the neutral charge state. For spin readout, the donor and SET electrochemical
potentials are tuned such that µd,↑ − EZ/2 = µSET = µd,↓ + EZ/2. This ensures that
the electron can only leave the donor and tunnel onto the SET if in state |↑〉, leaving
behind a positively charged donor which shifts the SET bias point and brings it to
a high-conductance state (ISET ≈ 1 nA). Coulomb blockade is restored when a |↓〉
electron tunnels back onto the donor. Thus we observe a current spike whenever the
electron was in state |↑〉, while the current stays low if in state |↓〉 (Fig. 8.1c). This
donor tuning is called“read level" and, in our definition, corresponds to Vp = VDV =
0 V (Fig. 8.2a).
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FIGURE 8.2: Relaxation rate measurement. a Charge stability diagram of plunger gate (PL)
and donor gate (DP). We observe the donor transition from ionized (D+) to neutral (D0)
when µd = µSET, indicated by the dashed purple line. The virtual gate voltage VDV(βc =
−0.51) is indicated (blue arrow), determined by ∆VPL and ∆VDP (Eq. 8.27). Vc/uc

p is the
effective plunge voltage. b Schematic of the T1 pulse sequence and corresponding spin-up
proportion. For fields B0 ≤ 1.5 T (orange line), |↓〉 is initialized and then inverted with
an adiabatic ESR pulse while for B0 > 1.5 T (green line) an electron with a random spin
state is loaded. Then the donor is plunged for time τ until the spin state is determined by
spin-dependent tunnelling with the SET. c Example of a T1 measurement at B0 = 1 T. The
relaxation time T1 = 9.8± 0.7 s is extracted using a least-square exponential fit (Eq. 8.29),

with Coffset = 0.10 determined in a separate experiment.
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Electron spin initialization For B0 ≤ 1.5 T we prepare a |↑〉 state in two steps.
First we use the read level, Vp = 0 V, to initialize |↓〉. After a waiting time suitably
longer than the electron tunnel-out time, a |↑〉 will have escaped the donor and be
replaced by a |↓〉, while |↓〉will remain in place. Second, we invert the spin from |↓〉
to |↑〉 using an oscillating magnetic field B1 whose frequency is adiabatically swept
through the resonance [195].

For B0 > 1.5 T the above method would require ESR frequencies higher than
those available with our microwave source. We thus resort to a random electron
initialization, obtained by loading the electron when µd,↓, µd,↑ � µSET. In this case
both the |↑〉 and |↓〉 states are accessible and electron spin is prepared with roughly
equal probability of the two.

Spin relaxation measurement. The electron spin relaxation time T1 is obtained by
measuring the probability of finding the spin in the |↑〉 state after a wait time τ has
elapsed. To this end, we apply the pulse sequence illustrated in Fig. 8.2b to the
virtual gate DV.

For B0 ≤ 1.5 T we prepare a |↑〉 state while for B0 > 1.5 T a random electron is
initialized with roughly equal probability of |↑〉 and |↓〉 (see paragraph Electron spin
initialization).

Next, we plunge the donor electrochemical potential far below µSET with a volt-
age pulse of amplitude Vp and duration τ. This ensures that the previously initial-
ized electron spin cannot escape the donor (see, however, Sect. 8.5). Finally, a single
shot-spin readout is performed at Vp = 0 V.

We repeat this sequence 30 times to determine the spin-up fraction P↑ after each
wait time τ. The measurement of P↑(τ) is repeated multiple times to check for con-
sistency, which can be occasionally disrupted by drifts and jumps in the electrostatic
environment.

T1 is extracted by performing a least-square fit to P↑(τ) with the exponential
decay:

P↑(τ) = Cinite−τ/T1 + Coffset, (8.29)

where Cinit is the initial spin-up proportion and Coffset the offset at τ → ∞ created by
erroneous spin-up counts, caused e.g. by tunnel-out events of |↓〉 spins into states
made available in the electron reservoir by thermal excitations, or by noise spikes
counted as |↑〉 spins. Cinit and T1 are free fitting parameters, whereas Coffset is deter-
mined separately by measuring the spin-up proportion after |↓〉 has been initialized,
and is fixed at that value in the fit.

As an example, Fig. 8.2c shows set of P↑(τ) that, fitted to Eq. (8.29), yielded the
longest measured relaxation time at B0 = 1T, T1 = 9.8± 0.7 s.

8.4 Relaxation time dependence on external magnetic field

The dependence of the electron relaxation rate T−1
1 on the strength of the external

magnetic field B0 gives insight into the mechanisms that lead to the relaxation itself.
Fig. 8.3 (a) shows sets of relaxation rates as a function of B0 for seven different
donor qubit devices, fabricated and measured in our laboratory between 2010 and
2018. Devices 2010A, 2010B (described in Ref. [24]) and 2011A were fabricated on
natSi. Devices 2013A, 2013B, 2017A (described in Ref. [30]), 2018A were fabricated
on enriched 28Si. We fit the relaxation rate of devices 2010A, 2010B, 2017A and 2018A
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 Fit  function: 
 𝑇𝑇1−1 𝐵𝐵0 = 𝐾𝐾0+𝐾𝐾1𝐵𝐵0 + 𝐾𝐾5𝐵𝐵05 

𝑲𝑲𝟎𝟎(𝐬𝐬−𝟏𝟏) 𝑲𝑲𝟏𝟏(𝐬𝐬−𝟏𝟏𝐓𝐓−𝟏𝟏) 𝑲𝑲𝟓𝟓 (𝐬𝐬−𝟏𝟏𝑻𝑻−𝟓𝟓) 

2010 A - 0.88 ± 0.02 5.5 ± 0.5 × 10−3 

2010 B - - 1.54 ± 0.05 × 10−2 

2017 A - 0.250 ± 0.004 (5.6 ± 0.7) × 10−4 

2018 A 0.14 ± 0.02  - 10 ± 1 × 10−4 
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FIGURE 8.3: Relaxation rate as a function of external magnetic field. a Measurements of the
electron relaxation time T1 as a function of external magnetic field B0 for different samples.
Devices 2010A and 2010B are republished from Ref. [24] and fabricated on natSi, same as
device 2011A (diamonds). Devices 2013A, 2013B, 2017A and 2018A have been fabricated
on Si28 (dots). For reference, a data point measured on a bulk Si:P crystal at T < 5 K is
shown (green square, J. J. L. Morton, personal communication). For devices 2010A, 2010B,
2017A and 2018A polynomials of form T−1

1 (B0) = K0 + K1B0 + K5B5
0 have been fitted to the

relaxation rate. The insets show the respective device designs. b Fit results of the different
samples. A dash indicates that the parameter was fixed at Ki = 0.

with a polynomial function of the form:

T−1
1 (B0) = K0 + K1B0 + K5B5

0, (8.30)

with the results displayed in Tab. 8.3b (a dash indicates that the parameter was fixed
at Kn = 0).

The prefactor K5 describing the phonon-induced relaxation rate ∝ B5
0 at high

magnetic fields varies significantly between the different devices (see Sec. 8.4.2).
Furthermore, all fitted devices show a deviation from T−1

1 ∝ B5
0 at magnetic fields

B0 . 3 T, except for device 2010B: devices 2010A and 2017A follow T−1
1 ∝ B0, while

device 2018A shows a T−1
1 ∼ const. behavior at low field.

These deviations from bulk-like relaxation behaviors unveil details of the interac-
tion betwen the donor electron spin and its environment in the MOS nanostructures
under study.

8.4.1 Evanescent wave Johnson noise induced relaxation

In our metal-oxide-semiconductor devices, the electrostatic gates, SET, and microwave
antennas are all potential sources of EWJN (Fig. 8.4a).
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FIGURE 8.4: Evanescent wave Johnson noise. a Schematic of the origin of EWJN in our qubit
devices. b Device layout showing the donor position, the external magnetic field and the
crystal orientation. a is the metallic gate dimension, d is the distance between the donor and
the metal gates. c Relaxation rates predicted by the EWJN theory using σ = 1.6× 107 S/m,

B0 = 1.5 T, a = 50 nm and d = 20 or 50 nm, compared to two measured values.

Replacing the qubit Larmor frequency with ω0 = gµBB0/h̄ in Eq. (8.25) yields:

T−1
1 =

µ2
Bµ2

0σgB0

4πh̄2
1
L

= K1B0. (8.31)

The most important point about this formula is that no other plausible spin relax-
ation mechanism gives a rate proportional to B0. Linearity of T−1

1 in B0 is thus a
convincing signature of EWJN.

For the validity of the analysis that follows, the value of the electrical conduc-
tance σ of the aluminum structures is very important. σ determines the characteristic
length scales ` (mean free path) and δ (skin depth) and the resulting magnitude of the
relaxation. We extracted σ from 4-point measurements on Hall bar structures (Fig.
8.5a) with feature sizes varying from 300 nm to 30 nm. We tested aluminum layers
formed both via thermal evaporation and electron beam physical vapour deposition
(EBPVD), but all devices on which spin relaxation was measured and reported in
Fig. 8.3 were fabricated using thermal evaporation.

We find that the conductivity drops with reduced feature size but only up to a
factor of 2 (Tab. 8.5b), which is consistent with a grain size of approximately 20 nm,
i.e. comparable but still smaller than the width and thickness of the fabricated gates.
We base the calculations below on the value σ = 1.6 × 107 S/m obtained for the
30 nm feature size, which corresponds to the smallest gate dimensions used in donor
devices studied in this paper. This conductance results in a skin depth δ(B0 = 1 T) =
752 nm (Eq. 8.24) and a mean free path ` = 6.3 nm (Eq. 8.23) with µR = 1, n =
18× 1028 m−3 and vF = 2× 102 m/s [197]. This shows that ` is always smaller than
even the smallest feature sizes in our devices, placing the conduction electrons in the
aluminum gates in the diffusive regime.
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𝝈 (S/m)

Room temperature bulk 3.8 ⋅ 107

300nm width, thermal, 4 K 3.9 ⋅ 107

100nm width, thermal, 4 K 3.4 ⋅ 107

30nm width, thermal, 4 K 𝟏. 𝟔 ⋅ 𝟏𝟎𝟕

300nm width, EBPVD, 4 K 6.9 ⋅ 107

100nm width, EBPVD, 4 K 4.2 ⋅ 107

a b

30nm

FIGURE 8.5: Aluminium conductivity measurements. a Scanning electron micrograph of a
Hall bar structure to measure the conductivity σ of the Al gates. The width is w = 30 nm in
the depicted device. b Conductance of 50 nm thick Al metal, measured at temperature T =
4 K with Hall bar structures as in (a), for different feature width w, formed either by thermal
evaporation or electron-beam physical vapour deposition (EBPVD). Room-temperature bulk

value for comparison [196].

EWJN depends on the gate geometry through the geometric factor L (Eq. 8.31).
L can be calculated analytically for different cases: half spaces and spheres. The
electron spin effectively sees a metallic half space when its distance to the gates d is
much smaller than the gate lateral dimensions a. When the spin is further away from
a finger gate or an antenna (d � a, Fig. 8.4b), it sees approximately a conducting
cylinder. Since our devices have d ≈ 10− 20 nm and a ≈ 30− 80 nm, we employ an
interpolation between both cases in form of

1/T1i = 1/
[
T1i(Lhs) + T1i(Lcyl)

]
, (8.32)

where i indicates the direction x, y or z of the applied field B0. We model an antenna
or finger gate as a string of spherical beads. The final relaxation rate follows as

T−1
1,x =

µ2
Bµ2

0σω0

32πh̄d

(
1 +

256d4

15πa4

)−1

, (8.33a)

T−1
1,y =

3µ2
Bµ2

0σω0

64πh̄d

(
1 +

256d4

91πa4

)−1

, (8.33b)

T−1
1,z =

3µ2
Bµ2

0σω0

64πh̄d

(
1 +

256d4

47πa4

)−1

. (8.33c)

Using the measured conductivity (Tab. 8.5b), the predicted relaxation rate due to
EWJN for B0 = 1.5 T applied in the z-direction (in the plane of the device) is T−1

1z ≈
4 s−1, for a donor depth d = 20 nm and aluminum gates of width a = 50 nm (Tab.
8.4c). This prediction is close to the measured value of T−1

1 = 1.3 s−1 in device
2010A, while it overestimates T−1

1 by around one order of magnitude for device
2017A. Neither device 2010B nor device 2018A exhibit a T−1

1 ∝ B0 behaviour within
the measured range of magnetic fields.

This order of magnitude agreement between theory and experiment can be con-
sidered satisfactory, in light of the many experimental parameters that are only ap-
proximately known, such as the donor depth d, as well as the lateral position of the
donor with respect to the gates (the devices that show no evidence of 1/T1 ∝ B0
could have the donor underneath the gaps between the gates, for example).
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Tab. 8.4c shows the predicted anisotropy of 1/T1 as a function of the direction of
B0. In the future, such anisotropy of the EWJN contribution could provide a further
test of the theory, if 1/T1 were measured as a function of field direction using a 3D
vector magnet.

8.4.2 Phonon-induced relaxation: effects of lattice strain

The phonon-induced electron spin relaxation strongly depends on the crystalline en-
vironment of the donor. We observed nearly two orders of magnitude variation in
the prefactor K5 of the term T−1

1 ∼ B5
0 (Fig. 8.3). We tentatively attribute this vari-

ability to the variation of local strain in the devices. Strain in MOS devices arises
due to the different thermal expansion coefficients of aluminum and silicon [198].
The donors are quite close to the Al gates, and the presence of strain has been doc-
umented in several experiments, especially for its impact on the hyperfine coupling
A [175], [199], [200].

As shown in Eq. (8.12), the valley energies shift with strain. This leads to a
lowering in energy of the E excited states [Eq. (8.10)e,f], i.e. to a reduction of the
valley-orbit splitting E12 [179], [201], which would suggest that the spin relaxation
becomes faster with strain [see Eqs. (8.18),(8.19)]. However, for large compressive
strain in the z-direction the lowest-energy valley-orbit states become symmetric and
antisymmetric combinations of the ±z valleys. This causes the overlap matrix ele-
ment Dr [Eq. (8.17)] to become vanishingly small [201]. The decrease of Dr caused
by the change in valley composition greatly outweighs the increase of 1/E12, result-
ing in an overall reduction T−1

1 , according to Eq. (8.16).
Device 2017A was also the subject of the experiments by Laucht et. al. [175]. In

that work, the analysis of the hyperfine shift yielded sxy ≈ −0.1% in-plane compres-
sive strain. This device exhibits the slowest phonon-induced relaxation (lowest K5)
among all tested and, significantly, the strongest deviation from the bulk value of
the hyperfine coupling (A ≈ 97 MHz).

In Device 2018A we measured A ≈ 115 MHz from which, using the atomistic
tight binding simulations from Fig. S6 in Ref. [175], we estimate a strain sxy ≈
−0.05%. This lower value of the strain is consistent with the faster spin-phonon
relaxation observed in this device (K5 ≈ 10× 10−4 s−1T−5, compared to K5 ≈ 5×
10−4 s−1T−5 in Device 2017A).

The highest value of K5 ≈ 1.5× 10−2 was found in Device 2010B. That device did
not have a microwave antenna, so the hyperfine coupling could not be measured.
Interestingly, 1/T1 in Device 2010B coincides with the relaxation rate measured in
an all-epitaxial single-donor device fabricated via STM hydrogen lithography [183].
The STM device is likely to exhibit very little strain, since the donor is deeply embed-
ded in the silicon crystal and no metal gates are present in its vicinity. This findings
suggest that device 2010B contained a donor implanted deeper than usual, far away
from the aluminium gates, and therefore subjected to a reduced amount of strain.
The deep location of the donor would also explain the absence of EWJN-induced
relaxation in this device, which followed 1/T1 ∝ B5

0 down to the lowest field.

8.4.3 Other relaxation processes

One device, 2018A, exhibits a field-independent relaxation rate for B0 < 2 T. In
Ref. [24], the relaxation rate of Device 2010A was also interpreted as a combination
of 1/T1 ∝ B5

0 and 1/T1 = const. (the data point at B0 = 1.75 T was thought to be an
outlier), and a quantitative model was developed to justify the constant contribution.
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FIGURE 8.6: Perpendicular electric field at the typical donor depth. Absolute value of
the electric field component |E⊥| perpendicular to the magnetic field applied along the z-
axis, calculated using the COMSOL finite-elements electrostatic package. We show values
10 nm under the Si/SiO2 interface, a typical implantation depth. The model consists of a
2 µm×2 µm×2 µm silicon substrate grounded at the bottom. On top of a 8 nm SiO2 layer, we
define the aluminum gates, which are coated by 2 nm of Al2O3. We assume typical voltages,
i.e. 0.4 V to the barrier, plunger and donor gates, 2 V to the top gate, and we set the potential
of the microwave antenna at ground. To model the 2DEG under the top gate, we ground the

Si/SiO2 interface in the relevant regions.

Since our devices contain on average 10− 20 donors in a 100× 100 nm2 region, we
analyzed the rate at which a spin excitation on the donor under measurement can
diffuse to nearby donors by means of magnetic dipole-dipole interactions. The flip-
flop rate Γff between a pair of donors can be expressed as [24]:

Γff ≈
π

2〈∆ωI〉
Mff(θ, d), (8.34)

where 〈∆ωI〉 is the half-width of each electron spin resonance as caused by the Over-
hauser field from the 29Si nuclei, and Mff is the flip-flop matrix element in the mag-
netic dipolar coupling Hamiltonian, which depends on the angle θ and the distance
d between the spins. This model yields Γff ≈ 2 s−1 using d = 24 nm and taking
〈∆ωI〉/h̄ ≈ 3.5 MHz [40] as the typical value of Overhauser field broadening in
natSi.

It is immediately clear from Eq. (8.34) that this model would yield implausible
results when applied to the 28Si enriched samples, where 〈∆ωI〉/h̄ ≈ 1 kHz is three
orders of magnitude smaller than in natSi [30]. This is because Eq. (8.34) assumes
that the donors have the same hyperfine coupling A and the same g-factor, and their
resonance frequencies are detuned solely by Overhauser fields. We now know that
this assumption is, in general, unlikely to hold: we have observed hyperfine cou-
plings ranging from 97 to 116 MHz in various devices, with the spread arising from
different local electric fields and strain [175]. Including the effect of locally different
A and g for different donors within the same device would result in a near-complete
suppression of the (energy-conserving) flip-flop processes. Therefore, we do not be-
lieve that this mechanism can be responsible for the field-independent relaxation
rate observed in Device 2018A.
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FIGURE 8.7: Spin relaxation through quantum tunnelling. a Spin relaxation via direct
tunneling of |↑〉 from the donor into the SET reservoir as long as µd,↑ & µSET. |↑〉 is then
replaced by |↓〉. b Spin relaxation via co-tunneling of |↑〉 into a virtual free state in the SET

while |↓〉 tunnels onto the donor. c For µd � µSET all tunnel processes are suppressed.

Another relaxation mechanism, recently discovered in STM-fabricated donor de-
vices [33], is a spin-orbit coupling (SOC) induced by the presence of an electric field
E⊥ perpendicular to the external magnetic field B0. In our devices, the direction and
strength of the electric field at the donor can vary significantly, depending on where
exactly the donor is located with respect to the gates (Fig. 8.6). An electric field
component E⊥ perpendicular to B0 should, in general, be expected. This mechanism
would mediate an additional spin-phonon relaxation channel on top of the bulk-like
valley repopulation and one-valley relaxation, resulting in values of K5 higher than
in the bulk. Instead, in all devices except 2010A and 2010B, we found K5 to be lower
than the bulk value. This does not mean that this SOC mechanism does not exist in
our devices, but it indicates that, in almost all cases, its contribution is less significant
than the suppression of the relaxation rate caused by local strain.

8.5 Tunnelling effects

The experiments described in this work rely upon switching between a “plunge/wait"
phase, during which the electron remains bound to the donor while its spin is al-
lowed to relax, and a “read” phase, during which electron tunneling between the
donor and the SET island is used to measure the spin state (Fig. 8.1c). Here we
discuss the impact on the measurement results of the possibility that the electron
tunnels out of the donor during the plunge/wait phase.

To describe the rate of first-order tunneling between donor and SET island, we
first define αp as the lever arm of the gate voltages to the donor, which determines
the shift in µd induced by the effective donor plunge Vp [see Eq. (8.28)]:

∆µd = −eαpVp (8.35a)

αp =
βcCd−PL + Cd−DP

C∑
(8.35b)

where Cd−PL and Cd−DP are the capacitances between the donor and the plunger gate
PL and the donor and the donor gate DP, respectively, and C∑ is the total capacitance
of all gates to the donor. In the presence of a magnetic field we define the donor
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electrochemical potential as the average of the |↓〉 and |↑〉:

µd =
µd,↓ + µd,↑

2
. (8.36)

With this definition, the direct (first-order) tunnel-out rate of the |↑〉 electron at
electrochemical potential µd,↑ can be written as [202], [203]:

ΓDT ≈ Γ0 · [1− f (Vp, Te)], (8.37)

where
f (Vp, Te) =

1(
1 + exp −eαpVp+EZ/2

kBTe

) (8.38)

is the Fermi function, Te is the electron temperature of the SET island and the term
−eαpVp + EZ/2 = µd,↑ − µSET describes the energy detuning between the |↑〉 state
and the SET electrochemical potential at a plunge voltage Vp. Since kBTe � EZ in
our experiments, Γ0 effectively represents the bare |↑〉 tunnel-out rate at the “read"
position. For simplicity, we assumed that Γ0 remains independent of Vp within the
small voltage range used in the experiment.

This direct tunnel process results in an apparent electron spin relaxation, when
|↑〉 tunnels from donor to SET and is replaced by a different electron in state |↓〉 (Fig.
8.7a). The spin relaxation rate is therefore similar (although not identical [204]) to the
charge tunneling rate. In this work, we have used the first-order tunneling process
to deliberately initialize the spin in the |↓〉 state for the experiments at B0 ≤ 1.5 T.
Direct tunneling is exponentially suppressed with the energy difference between µd
and µSET and is only expected as long as |↑〉 is aligned with available free states in
the SET island, above or just below µSET.

Even if no free states are available for first-order tunneling, the |↑〉 electron can
relax via a second-order tunneling process. If an empty state at energy E > µd,↑ is
available in the electron reservoir, the |↑〉 donor electron can virtually occupy such
state for a time tH ∼ h̄/(E − µd,↑) given by the Heisenberg uncertainty principle.
During this time, another electron coming from the reservoir can occupy the donor
state. This process can be elastic if the original |↑〉 electron is replaced by a |↓〉 elec-
tron from the reservoir (Fig. 8.7b). This process is then called spin-flip co-tunneling,
and leads to a spin relaxation rate described by [204]–[206]

ΓCT =
Ez

πh̄
·
(

h̄Γ0

eαVp

)2

. (8.39)

Eq. (8.39) shows that the co-tunnelling rate is suppressed only quadratically (in-
stead of exponentially) with plunge voltage, so it can in principle remain significant
for µd,↑ . µSET. Eventually, when µd � µSET all tunnel process should be sup-
pressed (Fig. 8.7c).

However, ΓCT also depends quadratically (instead of linearly) on the bare tunnel
rate Γ0. Experiments showing co-tunneling effects have been ones where the elec-
tron under study was strongly tunnel-coupled to the charge reservoir, typically in
a quantum transport setup [206], [207], which requires Γ0 & 1× 109 s−1. Here we
have instead Γ0 . 1× 103 s−1, making the co-tunneling process extremely weak.

In Fig. 8.8 we present the measurements of the spin relaxation rate 1/T1 as a
function of plunge voltage Vp. Fig. 8.8a shows the measured plunge voltage points
with respect to µSET (dashed purple line) in the charge stability diagram. We both
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FIGURE 8.8: Relaxation rate as a function of plunge voltage. a Charge stability diagram of
plunger gate (PL) and donor gate (DP). The donor transition from ionized (D+) to neu-
tral (D0) when µd = µSET is indicated by the dashed purple line. Virtual gate voltage
VDV(βc = −0.51) (compensated plunging, green) and VDV(βuc = 1.81) (uncompensated
plunging, blue) are indicated. The corresponding effective plunge voltage is Vc/uc

p (orange
arrows). b Relaxation rates as a function of Vc/uc

p . The dotted region indicates the position
we show in greater detail in (c). c Zoomed-in plot for low plunge voltages with voltage
VZ

p (VZ
p /2) corresponding to the Zeeman energy EZ (EZ/2) marked. The direct tunnelling

process is described by Eq. (8.37) (purple line). The red dotted line indicates a potential
co-tunnelling process.
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move µd while keeping µSET = const., using βc = −0.51 (compensated plunging,
green points, Vc

p), as well as perpendicular, using βuc = 1.82 (uncompensated, blue
points, Vuc

p ). The latter allows for much higher Vp but also shifts µSET and even leads
to a change in SET electron number N when a Coulomb peak is crossed.

As expected, the relaxation rate strongly decreases the deeper the donor is plunged
below µSET (Fig. 8.8b), until it stabilises at around T−1

1 = 9−1 s−1. Clearly we iden-
tify two regimes: On the one hand, at high plunge voltages (Vc/uc

p & 10 mV) the
relaxation rate shows no dependence on Vc/uc

p which implies that the relaxation rate
is not limited by any type of tunnel process. On the other hand, at low Vc/uc

p , the
relaxation strongly depends on Vc/uc

p . Fig. 8.8c shows the region Vc
p ∈ (0, 13)mV in

greater detail.

Δ𝑉𝑉pc 

Read Plunge Empty 

FIGURE 8.9: Spin tail measurement. SET current as a function of the read level voltage
Vc

p , resulting is a spin tail of ∆Vc/uc
p = 7.2 mV at B0 = 5 T. Inset shows the applied pulse

sequence.

To relate Vc
p to energy, we determine αp by measuring the Zeeman energy through

spin-dependent tunnelling (Fig. 8.9). Therefore, we tune the read level and measure
at which voltages |↑〉 and |↓〉 tunnel out of the donor. We relate

∆µd = µd,↑ − µd,↓ = EZ. (8.40)

To perform this measurement, we apply the following pulse sequence (inset Fig. 8.9).
We load an electron with a random spin state, bias the donor at the read level with
voltage Vc

p and finally empty it. During the whole pulse sequence, the SET current
is measured. Then we repeat the pulse sequence while varying Vc

p from µd,↓ > µSET,
causing a high current by lifting Coulomb blockade regardless of the spin state, to
µd,↑ < µSET, blocking conduction fully. In the intermediate regime where µd,↓ ≤
µSET ≤ µd,↑, |↑〉 tunnels to the SET, creating a current spike, and is replaced by |↓〉 -
we observe a spin tail [24]. The voltage range of this tail ∆Vc

p = 7.2 mV corresponds
to the Zeeman energy at the external magnetic field of B0 = 5 T. We calculate the
lever arm to

αp =
EZ

∆µd
=

gµBB0

e∆Vc
p

= 0.08. (8.41)

The voltage corresponding to the Zeeman energy at 1 T is VZ
p = 1.4 mV which is

marked in Fig. 8.8c. We also mark half the Zeeman energy as this is the plunge
voltage where µd,↑ ≥ µSET.
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Within the detailed region in 8.8c, we can again identify two regimes: For Vp .
2 mV, we observe a strong dependence of the relaxation rate on Vc

p which we at-
tribute to direct tunnelling from |↑〉 to the SET reservoir enhancing the relaxation
process. The purple line shows Eq. (8.37) with the realistic experimental parameters
Γ0 = 50 s−1, Te = 250 mK, and VZ

p = 1.4 mV, αp = 0.08, as determined by the spin
tail measurement.

For Vc
p ∈ (2, 4)mV we observe a slower decrease of the relaxation rate. Due to

the slow direct tunnelling rate Γ0 = 50 s−1, Eq. (8.39) predicts an extremely slow
co-tunnelling rate ΓCT(Vc

p = 2 mV) = 3× 10−9 s−1. This rules out co-tunnelling for
this relaxation process and leaves us searching for an explanation. Note, however,
that a co-tunnelling process with Γ = 1.4× 106 s−1 would fit the data (see dotted
red guideline in Fig. 8.8c).
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FIGURE 8.10: Relaxation rate as a function of electron number. a Charge stability diagram
of plunger gate (PL) and donor gates (DD, DP) with bias points corresponding to differ-
ent SET island electron numbers N indicated. b Relaxation rates with plunge voltage for

different N. Only compensated plunging is performed.

We also study the relaxation time for several different Coulomb peaks, corre-
sponding to a different electron number N on the SET island. (Fig. 8.10). A thermal
cycle of the measured device was performed which results in a different device tun-
ing as in Fig. 8.8. We find a strong variation in relaxation behaviour between differ-
ent electron numbers for Vc

p . 10 mV, when tunnelling processes are relevant. For
any tunnelling process the density of free states of the SET island is paramount. We
estimate our SET with around 100 electrons, in the transition regime where the SET
island does not yet behave like a proper metallic electron reservoir with a continuous
density of states but shows some remaining many-electron quantum-dot behaviour
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[44]. As a consequence the density of states is modulated by quantum effects arising
from the Hund’s rule when consecutively filling the electron orbitals. Different or-
bitals have different wave functions which can lead to different tunnel rates between
the SET island and the donor. The same effect occurs for a shift of the wave func-
tion due to a different voltage bias. Consequently, the direct tunnel rate Γ0 and in
turn the relaxation rate can vary strongly with voltage bias when tuned to a voltage
where the electron sees a non-uniform SET density of states. We also observe this
effect in the spin tail measurement (Fig. 8.8c) as the tail is non-uniform. Changing
the SET electron number has the same effect, as µSET is shifted. Nevertheless, for
deep plunge voltages, tunnel effects are suppressed and these differences disappear.

8.6 Conclusion

In summary, we find that EWJN is a likely candidate for the increase of the relaxation
rate at low magnetic fields if the qubit is close to a strongly conducting surface,
like aluminium gates. Moreover, we discover that strain at the donor site decreases
the relaxation rate. This can lead to very long T1 times of up to 9 s at B = 1 T.
Furthermore, tunnel effects influence the relaxation, esp. at low plunge voltages.
This has to be taken into consideration for any qubit experiments of long duration -
deep plunging is required.

Overall, we believe that this work expands the scope of fundamental research on
donor qubits in silicon. We highlight several effects that influence qubit performance
and need to be taken into consideration during high precision experiments. Even
though (or especially because!) the origin of some of our observations are still not
fully understood, we hope to inspire more theoretical and experimental research in
this area to not only keep improving a promising qubit, but also understand more
about donors in semiconductors.
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Conclusion

“Climb the mountain not to plant your flag, but to embrace the challenge, enjoy the air and
behold the view. Climb it so you can see the world, not so the world can see you."

– David McCullough Jr.
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Since the first realization of a donor spin qubit in 2012 by J. Pla et al. [40], these
qubits have advanced significantly. Single Clifford gate fidelities of 99.94 % [42] and
99.99 % [30] have been achieved for the electron and the nuclear qubit, with coher-
ence times of T2 = 980 ms [46] and T2 = 35.6 s [30] respectively. Exquisite single
qubits need to be augmented with a clear pathway to multi-qubit operations and
device scalability. This thesis has provided several contributions to the quest of
building a large-scale donor-based quantum computer.

9.1 Understanding dopants in silicon: electron spin relax-
ation

One important issue is to gain full understanding of our qubit system. When engi-
neering reproducible, high quality qubits with low decoherence and high fidelites,
accurate knowledge of the fundamental physics of donors in silicon is of key impor-
tance.

The electron spin relaxation time T1 gives insight into the mechanisms that cou-
ple the electron spin to its environment. While for many years most research efforts
were focussed on extending T2 when qubits were limited by dephasing, recently the
interest in T1 has been revived when the limit 1/T2 ≤ 1/2 T1 was approached. This
occurred, in donor spin qubits, because T2 was extended significantly through the
application of purified silicon 28Si and clever pulse sequences [46], [208], [209].

Previous research has mainly focussed on spin-orbit induced relaxation in SiGe
quantum dots [31], [32] and donors [33]. This thesis concentrates on relaxation due
spin-orbit coupling of deformation potential phonons, evanescent wave Johnson
noise and tunnelling effects (Chap. 8).

We have measured T1 as a function of external magnetic field and observed
phonon-induced relaxation at high magnetic fields of B0 & 3 T. We found that the
strength of this phonon-induced relaxation varied by up to two orders of magnitude
between different devices and relate this variation to different amounts of strain in
the devices. Strain arises due to the difference in thermal expansion coefficients of
the device materials aluminium and silicon. As such, it can differ for different de-
vices and donor positions. The presence of strain shifts the valleys and reduces the
relaxation rate. Hence, one can engineer qubits with longer relaxation times by pur-
posefully introducing strain to the sample. However, the strain magnitude needs to
be carefully adjusted to not lower the excited valley states too strongly. To expand
our knowledge of the phonon-induced relaxation, it would be interesting to measure
T1 as a function of the angle θ between the crystal axis and B0. Phonons cause elec-
tron spin relaxation both through repopulation of different valley states and energy
shifts within one valley. These two effects have different dependences on θ. Thus
their individual strength could be evaluated.

Furthermore, we found that at low magnetic fields B0 . 3 T the relaxation rate is
dominated by EWJN, which results in magnetic noise emitted from the aluminium
gates. The strength of this effect depends on the aluminium conductivity, the gate
geometry and the distance between the donor and the gates. Measuring T1 as a
function of θ would also give further insight into the anisotropy of this effect.

We also analysed T1 as a function of plunge voltage, which determines the differ-
ence between the electrochemical potential of the donor and the SET. The measure-
ments show that direct tunnelling of the electron between the donor and the SET
limits the relaxation times for low plunge voltages. This effect can be mitigated by
deeply plunging the donor below the SET electrochemical potential such that any
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tunnel process is suppressed. Employing this strategy, we have measured a very
long relaxation time of a single donor electron spin to T1 = 9.8± 0.7 s.

9.2 Robust two-qubit coupling

Another outstanding challenge concerning donor qubits, maybe the most important
one, is coupling two donor qubits with high fidelity while having some tolerance on
the donor placement precision.

While the exchange interaction is the most natural way to couple two donor
spins, it demands very precise donor placement, on the order of one lattice site. Even
though this requirement can be slightly relaxed when using a hyperfine-controlled
exchange interaction between electron spin qubits [71], scaling up this approach to
many qubits will be very challenging. Other proposals include a slow magnetic
dipole-dipole coupling effective at ∼ 30 nm distances [72], donor chains [73], [74],
charge-coupled devices [75], ferromagnets [76], probe spins [77] or quantum dots
[78]. These approaches either only provide slow gates or demand a complex device
architecture due to the use of intermediate couplers.

In this thesis, we have addressed this problem by proposing a new type of donor
qubit, the flip-flop qubit, consisting of the combined electron-nuclear states {|↑⇓〉 ,
|↓⇑〉} (Chap. 3).

We separate the electron from the donor to form a vertical charge qubit where
the electron can be at the donor or at the Si/SiO2 interface. This introduces an ar-
tificial spin-orbit coupling through the change in hyperfine interaction, when the
electron wavefunction is manipulated, and makes the qubit electrically accessible.
Single qubit gates can be performed by applying a microwave electric drive, and the
predicted error rates are below 10−3, assuming an r.m.s. charge noise of 1.5 µeV.

The charge qubit is associated with a large artificial electric dipole. Two distant
(200− 500 nm) flip-flop qubits can then be coupled via second-order dipole-dipole
interaction at strength exceeding 1 MHz with gate errors below 10−2. The two-qubit
coupling is robust again donor misplacement since the electric dipole interaction
scales very gently with inter-donor distance. In this scheme, the exponentially sen-
sitive parameter is the tunnel coupling between the donor and the interface dot,
which can be tuned in-situ by laterally displacing the dot wave function using sur-
face gates. The flip-flop qubit can also be coupled to the electric field of a supercon-
ducting resonator, opening the pathway for hybrid quantum computers and long
distance coupling.

The concept of creating an artificial spin-orbit coupling and a large dipole by
separating the electron charge from the donor can be extended to couple two nu-
clear spins robustly over hundreds of nanometers (Chap. 4). For that purpose, we
apply a magnetic microwave drive simultaneously with the electric flip-flop drive.
This results in a second-order Raman process between the "nuclear qubit" states
{|↓⇑〉 , |↓⇓〉}. The magnetic drive effectively creates an electric dipole transition for
the nuclear spin. The dipole moment can reach > 100 D such that the nuclear spin
can be driven at 1 MHz with a dephasing rate of 1− 10× 103 s−1. This also allows us
to couple the nuclear spin to a superconducting resonator with a coupling of 1 MHz
and to couple two nuclear spins at long distances. For a separation of 400 nm, a two
qubit coupling of 0.55 MHz can be achieved.

Both the flip-flop and the nuclear qubit can be implemented with current fabri-
cation techniques, based on the successful donor and quantum dot MOS structures.
We followed two approaches: coupling two flip-flop qubits directly via dipole-dipole
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interaction and coupling a flip-flop qubit to a superconducting resonator. In this the-
sis, the device design, the device fabrication and the measurement setup have been
developed (Chap. 6). Many tests were performed to evolve the qubit fabrication.

The experimental demonstration of electric dipole coupling has been hindered
by fabrication issues such as leakage between the gates and the Ohmic contacts and
ESD. The former issue is being addressed by improving the initial processing of the
silicon wafer. The quality of the SiO2 has to be improved to prevent the appearance
of holes in the oxide which create leakage. The ESD is puzzling as it appears even
when all gates are connected. More testing on how often, where and when exactly it
happens, needs to be done.

Once the device fabrication issues have been resolved, the first measurements
will include full control of the electron wave function with the donor top gate, sep-
arating the electron from the donor and measuring the hyperfine interaction with
ESR. Next, we will implement gate control of the donor-dot tunnel coupling, and
fine-tune the flip-flop qubit Hamiltonian parameters to enter the ideal regime where
the spin is dispersively coupled to the charge. Finally, we will seek to observe and
characterize the second-order clock transition for the flip-flop qubit frequency, as
predicted by our theory.

For the cQED approach, we have tested the resonator design and found a total
quality factor of Qtot ≈ 1200, which is dominated by the external coupling. We can
induce a 2DEG beneath the qubit gates and bias the central conductor. On such
a resonator device we observed coupling of the charge qubit to the resonator with
gE ≈ 2 MHz (Chap. 7). However, due to strong charge fluctuations in the device,
no spin control or strong coupling was achieved. The design of this device was
very limited in terms of qubit control due to the small number of gates, imposed
by the single layer etching technique. Thus, for future measurements we developed
an aluminium-niobium hybrid device where the flip-flop Hamiltonian parameters
can be optimized to achieve strong coupling between a spin in silicon and a photon
[113], [166]. In this design, we can accommodate many gates in a two- or three-layer
aluminium process, analogous to the direct flip-flop devices. These structures are
currently under test.

9.3 Large scale silicon quantum computing

Ultimately, we need a large quantum computer with many interconnected qubits
which performs quantum error correction. In this thesis, we have envisioned a clear
pathway towards such a quantum computer using donor qubits in silicon (Chap.
5). Both the flip-flop and the nuclear qubit can be coupled in large arrays and be
interconnected with superconducting resonators. While ours is a competitive ap-
proach to large scale quantum computing, alternative proposals using donors [72],
[77], [78], silicon MOS quantum dots [110] and SiGe quantum dots [108] have been
made.

While academic researchers work in the laboratory to build well-functioning,
cleverly designed qubits, the silicon industry is preparing already for large scale
qubit fabrication. Currently silicon wafers specifically for quantum computing are
being developed by Intel [210], CEA-leti and IMEC. With competitive companies
investing in silicon quantum computing and strongly cooperating with researchers,
we can hope to see many more advances in large scale silicon fabrication geared
towards quantum computing. Electronics companies are also developing compact
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and capable control apparatuses such as AWGs and cold amplifiers to cater to the
ever-growing quantum community.

Overall, both advances at the small scale for one- and two-qubit devices as well
as new large scale technologies will improve qubit performance and interconnectabil-
ity. In the end, it may be one specific idea that triggers a breakthrough and decides
which qubit platform will be most successful. It is important to note though, that
most technologies and discoveries made in the "quantum race" can be transferred
between different platforms, especially within the family of silicon qubits. Hence,
combining our efforts is the most likely pathway to success.

9.4 A personal viewpoint

While quantum computing in general, and silicon quantum computing specifically,
has made large strides in the recent years, it is still uncertain when (and maybe
even if ) we will achieve to build a quantum computer. How it will be build is even
more uncertain. Although at this point in time, it seems most likely that the first
proof of quantum supremacy over classical computing will be accomplished with
superconducting qubits - both IBM and Google are working on qubit processors
with 50 [211] and 72 [15] qubits respectively which should be capable to outperform
a classical computer [212]. Nevertheless, a million qubit quantum computer might
be based on silicon as typical qubit unit cells are much smaller for spin qubits than
superconducting qubits.

Overall, this research field still has no certainties, but that is one of the reasons it
remains so exciting. Every year new interesting quantum effects are observed. The
amount of control we exhibit over quantum properties on nanometric scales is stag-
gering. New control technologies and fabrication techniques allow for ever cleaner,
smaller devices and more precision. Even if a quantum computer never came to be,
we will have learned physics of immeasurable value and advanced technology for
many applications. However, I am a believer.
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“Remember tonight... for it is the beginning of always.”

Dante Alighieri
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Appendix A

Hamiltonian calculations

A.1 Eigenvectors

For a general Hamiltonian of

H =

(
−C D
D C

)
(A.1)

we aim to find the eigenvectors

|e〉 = α1 |1〉+ β1 |0〉 =
(

α1
β1

)
, (A.2a)

|g〉 = α2 |1〉+ β2 |0〉 =
(

α2
β2

)
(A.2b)

in the basis of |0〉 =
(

0
1

)
and |1〉 =

(
1
0

)
.

The eigenvectors are calculated by(
−C− λ1,2 D

D C− λ1,2

)
·
(

α1,2
β1,2

)
=

(
0
0

)
, (A.3)

where λ1,2 are the corresponding eigenvalues. We arrive at the set of linear equations

(−C− λ1,2) α1,2 + Dβ1,2 = 0, (A.4a)
α1,2D + (C− λ1,2) β1,2 = 0. (A.4b)

Furthermore, the eigenstates need to be normalized which gives the normalization
condition

β1,2 =
√

1− α2
1,2. (A.5)

We insert equation (A.5) into (A.4a), (A.4b) and get

α1,2 =
1√

1 + (C+λ1,2)
2

D2

, (A.6)

β1,2 =

√√√√1− 1

1 + (C+λ1,2)
2

D2

. (A.7)

With
λ1,2 = ±

√
C2 + D2 (A.8)
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follows
α1 =

1√
Φ2 + 1

= β2 ≡ β,

β1 =
Φ√

1 + Φ2
≡ α,

α2 =
1√

1 + Θ2
= −β1 = −α,

β2 =
Θ√

1 + Θ2
= β,

(A.9)

where

Φ =
C +
√

C2 + D2

D
,

Θ =
C−
√

C2 + D2

D
.

(A.10)

Thus, we find the eigenstates

|e〉 = β |1〉+ α |0〉 , (A.11a)
|g〉 = −α |1〉+ β |0〉 . (A.11b)

With cos(arctan(x)) = 1√
1+x2 and sin(arctan(x)) = x√

1+x2 we can also express the
eigenstates as

|e〉 = cos η |1〉+ sin η |0〉 , (A.12a)
|g〉 = − sin η |1〉+ cos η |0〉 . (A.12b)

with tan η = Φ.
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