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ABSTRACT  
 
A navigation system based on a low-cost, low-grade 
MEMS inertial measurement unit (IMU) integrated with 
differential GPS has been developed for machine 
automation applications. Because the inertial sensors have 
no ability to measure Earth rotation, the attitude errors of 
pitch and heading cannot be obtained using only IMU 
measurements. To overcome this deficiency, two Kalman 
filters are used for robust estimation of navigation 
parameters and the errors of inertial sensors. An adaptive 
fading factor Kalman filter uses a GPS dynamic model to 
generate the velocities and accelerations which can be 
used to acquire approximate pitch and heading values. 
Another Kalman filter is used to integrate position, 
velocity and attitude from both the IMU and GPS so that 
position and attitude can be estimated directly - due to 
their individual observabilities. The drift error of the 
inertial sensors is also well compensated. The proposed 
algorithm has been implemented into post-processing 
integration software and has been tested in the field. The 
test results demonstrated that this robust MEMS/DGPS 
integrated system has the capability of providing 
continuous and reliable navigation for machine 
automation applications. 
 

INTRODUCTION  
 
Agriculture is fundamental to the world’s economy. In the 
next decade, machine automation will play an important 



role in the agriculture revolution. Already the impact of 
automating process such as ploughing, planting and 
application of fertilizers is being felt in many types of 
farming. Other examples of machine automation are 
guidance of dozers, drills, draglines and shovels in mining 
and grader excavators and pavers for construction.  
 
Traditionally, machine automation products used a GPS-
based navigation system to report position information. 
Such products suffer from a number of problems which 
hamper the uptake of machine automation within 
industry: 
 
• GPS suffers “outages”, i.e. periods when 

positioning is not possible, for various reasons but 
particularly where obstruction of the satellites by 
trees occurs. This affects both the amplitude and 
phase of received satellite signals and causes the 
receiver to lose lock on a blocked satellite, meaning 
it needs both to reacquire the signal, and to resolve 
ambiguities in the phase measurements. Both these 
processes take time, and if several satellites are 
affected, the receiver cannot provide a position 
solution for a significant period of time. If 
interruptions to GPS signals occur repeatedly, then 
ambiguity re-initialization is at the very least an 
irritation and at worst a significant weakness of 
current GPS carrier-phase-based systems. 

• The data rate for GPS is too low. For the type of 
control loops used in automating large agricultural 
machines, the latency between 20 Hz measurements 
is too great for the precision required. 

 
Both of these problems can be solved by “aiding” the 
GPS receiver, using gyroscopes and accelerometers, 
configured as an inertial navigation system (INS) which 
updates position much more rapidly. However, low-cost 
inertial sensors have a problem of their own: they 
experience significant drift and are very susceptible to 
time dependent errors. So a navigation system based on 
low-cost, low-grade MEMS inertial measurement unit 
(IMU) integrated with differential GPS has been 
developed for machine automation applications in this 
paper to address these deficiencies. 
 
The purpose of this study is to develop a navigation 
system by sensor fusion integration of a low-cost, low-
grade MEMS inertial measurement unit (IMU) and 
differential GPS for machine automation applications. 
Two Kalman filters are used for robust estimation of 
navigation parameters and the errors of inertial sensors. 
An adaptive fading factor Kalman filter uses a GPS 
dynamic model to generate velocity and acceleration 
values which can be used to acquire approximate pitch 
and heading values. Another Kalman filter is used to 
completely integrate position, velocity and attitude from 

both the IMU and GPS so that position and attitude can be 
estimated directly - due to their individual observabilities. 
 
The environment considered in this study is for an 
agricultural tractor operating on a low-value row crop. 
This is a unique automation environment in that row 
cropping activities typically occur in open fields with 
good satellite visibility and relatively flat terrain. A key 
indicator in row cropped agricultural applications is to 
minimize the cross track error of the tractor. This is 
defined as the deviation of the centre of the rear of the 
tractor from the desired path and for low value crops 
accuracies of approximately 55 mm are required to 
improve performance compared to a human operator. 
 

INITIAL ALIGNMENT 
 
An initial alignment procedure is needed to initialize the 
INS. Through the subsequent integration of IMU 
acceleration and angular velocity measurements, it is 
possible to then obtain vehicle position, velocity and 
attitude. So, it is crucial to have an accurate initial 
alignment in order to implement an integration navigation 
system.  
 
The Direction Cosine Matrix (DCM) from the body frame 
to the navigation frame can be defined as  
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Where ! is the pitch angle, ! is the roll angle, and ! is 
the heading of the vehicle. 
 
When the vehicle is stationary, the measurement from the 
three accelerometers is 
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Hence, the pitch and roll can easily be estimated as 
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Because the bias of the MEMS gyro used is too large to 
measure the earth rotation rate, it is impossible to perform 
the azimuth alignment without using an external aid. 



When the vehicle starts moving, the azimuth can be 
obtained by GPS velocity information 
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When the vehicle is static, the outputs of the gyros can be 
considered to be measurement biases. This is because the 
Earth rotation can not be measured by our gyros and the 
true angular rate of the body frame during the stationary 
periods can be assumed to be zero. By averaging all gyro 
measurements during the stationary periods, we can 
remove the noise effects and use this average value as the 
gyro bias estimate. So we have 
 
 )( b
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VEHICLE DYNAMIC MODEL 
 
The inertial sensors that were used cannot guarantee a 
steady heading or pitch reading, so the GPS information 
was used to provide azimuth and pitch information 
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The GPS can only give the position information such as 
latitude, longitude and height, and the acceleration and 
velocity of GPS can not be obtained directly from the 
GPS observation. So a Kalman filter is needed to estimate 
the accurate velocities from GPS. A dynamic model is set 
up as a 12-state vector as shown below.  
 

[ ]TUENUENUEN kkkaaavvvhLx !=  (9) 
 

Where   
     hL ,,!     - are latitude, longitude and height, 
respectively 
 UEN vvv ,,  - are north, east and up velocities, 
respectively 
 UEN aaa ,,  - are north, east and up accelerations, 
respectively 
 UEN kkk ,,  - are north, east and up jerks, 
respectively 
 
The dynamic model of the state vector in equation (9) is 
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The measurement model can be expressed as 
 

      vHxz +=               (11) 
 

Where 
 

     [ ]33333333 000 !!!!= IH   
 

KALMAN FILTER 
 
Basically, the Kalman filtering estimation algorithm 
comprises two steps, namely, the prediction step to 
provide the apriori state vector and the update step with 
external measurements. The main Kalman filtering 
equations are given below: 
 
Prediction: 
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where 

1/
ˆ

!kk
x  is the predicted state vector;

1/ !kk
P  is the 

variance matrix for 
1/

ˆ
!kk

x ; 
k
K  is the gain matrix; 

k
x̂  is 

the estimated state vector; and 
k
P  is its variance matrix. 

 
Due to the difficulty in determining an accurate value for 
both the system noise covariance and the measurement 
noise covariance, a novel adaptive fading Kalman filter is 
used to estimate the velocity accurately.  (Yanrui Geng, 
etc, 2004)  
 



 
ADAPTIVE KALMAN FILTER 
 
The Kalman filtering estimation at epoch k can be 
considered as a ‘weighted’ adjustment between the new 
measurements (observation model) and the predicted state 
vector based on the dynamic model and all previous 
measurements. If too much ‘weight’ were put on the 
dynamic model component, the estimation would ignore 
the information received from the measurements and this 
would cause the divergence of the filtering process. Fagin 
(1964) initiated a method to limit the memory of the KF 
by using an exponential fading of past data via a 
forgetting factor s. The equations describing the fading 
Kalman filter are identical to those of the normal Kalman 
filter in equations (13) except the forgetting factor s in the 
covariance equation.  
 

1)( 11,1/11,1/ >+= !!!!!! sQsPP k
T
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The main difference between different fading memory 
algorithms is on how to calculate the scale factors. One 
approach is to assign the scale factor as a constant, s = 
1.0~1.4. When S =1.0, it becomes the conventional 
Kalman filter. Obviously there are some drawbacks with a 
constant factor. For example, as the filtering progresses, 
the precision of the filter will decrease because the effects 
of the old data will reduce with time. The best method is 
to use a variant scale factor that will be determined based 
on the dynamic and observation model accuracy.  
       
For a linear dynamic system, when a filter is stable, we 
have 
 

),0(~ 1/ k
T

kkkkk RHPHNv +!    (18) 
 
where  
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When the filter is unstable, a scale factor S≥1 is 
introduced to the predicted covariance matrix 
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Then  
 

k
T
kk

T
kkkkkkk RHQsPHv ++= !!!! )()var( 11/11/ ""  (21) 

 
We can construct a statistic:  
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which has such an attribute as follows: 
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k!  is then submitted to the chi-square distribution with m 
freedom. Then we have the following test criteria:  
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Where the scale factor for the statistical test is ! and !  is 
the threshold value according to the chi-square 
distribution table at the given reliability. 
 
We have two matrices as follows: 
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Written 
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Where kA  and kB  are both symmetrical positive-defined 
matrices.  
When the filter is in steady state processing, we have  
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Each element of kv  satisfies 
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Where )(ivk  is the i th element of kv , )(iiJk  is the i th 
diagonal element of matrix kJ .We also have  
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With the same test criteria, when a filter is stable, we can 
further obtain that  
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With equation (30), we can have 
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Written  
 

)}(,),2(),1(,1{ msssmaxs L=    (33) 
Finally we can calculate the fading factor s  adaptively. 
 
INTEGRATED GPS/MEMS INS 
 
A basic set of system parameters in the Kalman filter for 
the GPS/INS system normally only include the navigation 
parameters, the accelerometer and gyroscope error states 
such as follows: 
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Where UNE !!! ,,  gives the attitude errors; UNE vvv !!! ,,  the 
velocity errors; hL !!"! ,,  the position errors; bzbybx !!! ,,  
the gyro constant drifts. rzryrx !!! ,,  the first-order Markov 
process and zyx !!! ,,  the accelerometer biases. 
 
The error state equation is then 
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and the measurement equation is: 
 
 VHXZ +=  
 
Where 
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SYSTEM DESIGN AND TEST 
 
This section introduces the GPS and INS measurement 
systems for field test on a typical mid-sized agricultural 
tractor. The test tractor is a Challenger 865 tractor which 
is shown in figure 1 and the IMU is mounted in the device 
shown in figure 2 which also houses the GPS receivers 
and mounts in the radio slot onboard the tractor. Four 
GPS antenna, which were used to determine accurate roll, 
pitch and heading, were amounted on the roof of the 
tractor as a benchmark, the height and geometry of the 
antennas was kept as even as possible.  
 

 

              

 
Figure 1: Test tractor for machine automation 

 

 
Figure 2: Radio package including IMU 

 
During the tractor test, the data from the GPS receivers 
and IMU was collected via a USB stick with the USB port 
visible in figure 2. GPS receivers provided position and 
attitude data at approximately 10Hz and the IMU 
provided acceleration and angular data also approximately 
at 10Hz. However, the device does not guarantee 
accuracy in the sampling rates.    
 
The position of the tractor was measured with a dual-
frequency carrier-phase differential GPS receiver with a 
measurement error of 2-3 cm. The trajectory of the test 
tractor is shown in figure 3. 
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Figure 3: Trajectory of test tractor 

 



As mentioned previously, the IMU used to measure the 
tractor’s acceleration and angular rate was of a very low 
grade. Technical specifications of the gyros are provided 
in Table 1.  
 

Characteristics Specification 

Gyro Sensitivity Error %6±  

Gyro Linearity  %3.0±  

Gyro Bias Variation at Constant 

Temperature 

4.0± °/s 

Gyro Bias Variation over Temperature 5.2± %FSO 

Gyro Bias Stability over one hour 4.0± °/s 
Table 1: Technical specifications of Gyros 

 
 

While the software was implemented in C++ in order to 
give the capability for real time processing the first stage 
was post processed to test the correctness of our 
algorithms.  The software scheme is shown in figure 4. 
 

Accel 

preprocessing

IMU

Gyro 

preprocessing

Raw accel data

Raw gyro data

GPS positionGPS velocityGPS attitude

Kalman filter
Navigation parameters

Position output

Yaw output

Yaw Rate output

Accel Bias Estimation

Gyro Bias Estiamtion

Position , Velocity and Aiittude  Correction

 
 

Figure 4: Scheme of GPS/MEMS integrated system for 
machine automation 

 
The results of testing are shown in figure 5.  
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Figure 5:  Test results  
 

The expected outcomes was to determine what is an 
achievable accuracy by reviewing the yaw rate, the track 
of the x-axis of the body and heading errors over the 
length of the run. The cross track error, heading error and 
yaw rate for the first 500 seconds can be seen in figure 6. 
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Figure 6: Results of Xtrack, Heading and Yaw rate 

 
The statistics are shown in Table 2.  
 

Stats Mean Stdev Units 
Xtrack -0.078 0.054821 m 

Heading -0.143851 0.522923 deg 
Yaw rate 0.192811 0.232130 deg/s 

 
Table 2. Statistics results 

 
From figure 6 and table 2, we can see that the absolute 
mean value of the xtrack error is less than 0.2m, the 
absolute value of heading error is less than 0.2deg and the 
value of the yaw rate error is less than 0.2 deg/s. All of 
the standard deviations are in the range of 0.05 m for the 
xtrack and 0.52 deg for the heading error. The results 
show that the integration of the low cost IMU and 
differential carrier phase GPS using this methodology 
provides a good position solution with an acceptable error 
range. 
 
CONCLUSION AND FUTURE RESEARCH 
 
In this paper, two Kalman filters were adopted as fusion 
integration methodology to develop a robust navigation 
system based on the sensor fusion integration with GPS 
and MEMS INS. An adaptive fading factor Kalman filter 
uses a GPS dynamic model to generate velocity and 
acceleration information which can be used to derive 
approximate pitch and heading values. Another Kalman 

filter is used to completely integrate position, velocity and 
attitude from both the IMU and GPS systems so that 
position and attitude can be estimated directly - due to 
their individual observabilities. The drift error of the 
inertial sensors was also well compensated as seen in the 
field tests. The proposed algorithm has been implemented 
for post-processing and has been tested in the field. The 
test results demonstrated that this robust MEMS/DGPS 
integrated system has the capability of providing 
continuous and reliable navigation for machine 
automation applications. The next stage will be to 
implement the algorithms in a real time implementation. 
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