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Sensitivity analysis of a Decision Tree classification to input 

data errors using a general Monte-Carlo error sensitivity model 

Abstract 

We analysed the sensitivity of a decision tree derived forest type mapping to simulated 

data errors in input DEM, geology and remotely sensed (Landsat Thematic Mapper) 

variables.  We used a stochastic Monte Carlo simulation model coupled with a one-at-a-

time approach.  The DEM error was assumed to be spatially autocorrelated with its 

magnitude being a percentage of the elevation value. The error of categorical geology 

data was assumed to be positional and limited to boundary areas. The Landsat data error 

was assumed to be spatially random and follow a Gaussian distribution. Each layer was 

perturbed using its error model with increasing levels of error, and the effect on the 

forest type mapping was assessed.  The results of the three sensitivity analyses were 

markedly different, with the classification being most sensitive to the DEM error, then 

to the Landsat data errors, but with only a limited sensitivity to the geology data error 

used. A linear increase in error resulted in non-linear increases in effect for the DEM 

and Landsat errors, while it was linear for geology.  As an example, a DEM error of as 

small as ±2% reduced the overall test accuracy by more than 2%. More importantly, the 

same uncertainty level has caused nearly 10% of the study area to change its initial class 

assignment at each perturbation, on average. A spatial assessment of the sensitivities 

indicates that most of the pixel changes occurred within those forest classes expected to 

be more sensitive to data error. In addition to characterising the effect of errors on forest 

type mapping using decision trees, this study has demonstrated the generality of 

employing Monte Carlo analysis for the sensitivity and uncertainty analysis of 

categorical outputs which have distinctive characteristics from that of numerical 

outputs. 
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1 Introduction 

Land cover maps play a very important role in natural resource management, both as a 

final product and as an input to other modelling processes. Land cover classification is 

used to develop these maps and is often conducted using GIS layers as predictor 

variables (e.g., topographic, soil, climatic and remotely sensed).  All of the variables 

used in the classification process contain some level of error (Goodchild 1989, Unwin 

1995, Van Niel et al. 2004, Richards and Jia 2006).  This error will be propagated 

through the classification process, with its effect dependent on the sensitivity of the 

analysis to that error.  There is therefore a constant need to assess its potential impact on 

land cover classifications.   

 

In terms of modelling error in GIS operations, Veregin (1989) considered a ‘hierarchy 

of needs’ as: error source identification, error detection and measurement, error 

propagation modelling, strategies for error management, and strategies for error 

reduction. There has been a great deal of research on these topics since then (Foody 

2003). Consequently, sensitivity and uncertainty analyses have been the subject of much 

attention in spatial and environmental sciences (Crosetto et al. 2000, Crosetto and 

Tarantola 2001, Jager and King 2004).  Sensitivity and uncertainty analyses have been 

used to assess model parameters (Hamby 1994, Hwang et al. 1998, McKenney 1999), 

and input data, both continuous (Davis and Keller 1997, Wang et al. 2000, Goovaerts 

2001, Canters et al. 2002, Gertner et al. 2004) and categorical (Goovaerts 1996, Finke 

et al. 1999, Canters et al. 2002, Hines et al. 2005).  

 

The objective of sensitivity analysis is to help the strategies of error management and 

reduction. We follow the definition of Jager and King (2004), where the sensitivity 

analysis is the assessment of which spatially distributed input variables the model is 

most sensitive to. Therefore, it is not concerned with the actual properties of input error 

or uncertainty, for example the error magnitude and its distribution (Jager and King 

2004). It does need, however, to characterize uncertainty using reasonable assumptions 

(Hines et al. 2005). There are three decisions to make in terms of conducting a 
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sensitivity analysis. They include a reasonable uncertainty assumption, a suitable error 

model, and an appropriate sensitivity analysis method. Sensitivity analyses can be 

divided into two groups. One deals with model (parameter) uncertainty and the other 

deals with input data uncertainty. This research is concerned only with input data 

uncertainty. 

 

Error models are generally needed to investigate how data error is propagated through a 

modelling process and can be divided into formal mathematical models and simulation 

models. Formal mathematical models such as those described by Taylor (1982), 

MacDougall (1975), Newcomer and Szajgin (1984), Geman and Geman (1984), 

Veregin (1989, 1995), and Goodchild et al. (1992), have been used to model error 

propagation through simple GIS overlay functions (e.g., RESELECT, AND, OR, XOR, 

addition, ratios, univariate overlay, logic functions, and area measurement) (Drummond 

1987, Walsh et al. 1987, Heuvelink et al. 1989, Lanter and Veregin 1992, Haining and 

Arbia 1993, Arbia et al. 1998). Simulation models such as Monte Carlo analysis have 

been strongly recommended for error propagation analysis (Lodwick 1989, Openshaw 

1989). The advantage of simulation models over formal mathematical models is that 

their applications are not limited to simple GIS functions.  Instead they are theoretically 

applicable to any function.  For example, simulation models have been used for the 

buffer function (Veregin 1994, 1996, De Genst et al. 2001), DEM derivation (Lee et al. 

1992), logical models and continuous classification (Heuvelink and Burrough 1993), for 

Bayes theorem (Aspinall 1992), as well as for GIS overlay functions (Openshaw et al. 

1991).  It is also not possible to build a mathematical error model for a classification 

process that results in discrete classes as it is not continuously linearly differentiable. 

 

Through using sensitivity analysis methods, we can rank the sensitivity of modelling 

process to individual inputs and even partition individual error contributions to the 

model output.  Many sensitivity analysis methods have been proposed (see Hamby 1994 

for a good review), some of which have been used by GIS researchers. They include the 

one-at-a-time method (McKenney 1999), variance based method (Finke et al. 1999, 

Crosetto et al. 2001), automatic differentiation (Hwang et al. 1998), and the regression 
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method (Gertner et al. 2004). Most of the existing sensitivity methods, however, are 

designed for outputs that are interval or ratio data types and are not suitable for 

categorical (nominal) data.  Multi-source classification often involves using both 

categorical data and continuous data.  The natures of these data clearly differ, and so 

different strategies have been developed for each. 

 

According to Goodchild et al. (1992), an exact probability distribution of any pixel 

belonging to different classes is required to corrupt (rasterized) categorical data. If the 

data is a product of classification process, one often-used approach to fulfil this 

requirement is to use a classification confusion matrix (e.g. Hines et al. 2005), although 

class memberships derived from soft classification can also be used (Canters et al. 

2002). The Semantic Import Model of expert knowledge has been proposed for when 

categorical data are not the result of a classification process (Davis and Keller 1997). 

Geostatistical approaches such as joint sequential simulation and sequential indicator 

simulation from sample data are also used (e.g. Goovaerts 1996, Finke et al. 1999).  

 

One approach to corrupting continuous data is to generate a random error surface based 

on an assumed error distribution model and then add it back to the original data. The 

random error surface can be generated using pseudo-random number generators (Van 

Niel and Laffan 2003). The other common approach is to use geostatistical methods to 

directly generate an effective input data surface from samples (e.g. Davis and Keller 

1997, Atkinson 1999, Goovaerts 2001, Canters et al. 2002, Gertner et al. 2002, Gertner 

et al. 2004). The advantage of the geostatistical approach is that it can take into account 

the spatial auto-correlation of a single attribute as well as spatial cross-correlation 

between different attributes. 

 

As noted above, the subjects of most previous uncertainty studies are continuous 

modelling outputs, for which it is relatively simple to partition the uncertainty 

contributions due to the inputs. Comparatively little effort has been spent in assessing 

the impact of errors for non-continuous data.  One possible reason for this is that the 

outcome of land cover classification is a categorical (nominal) data type, and this does 
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not naturally fit into traditional methods of sensitivity and uncertainty analyses. The 

nature of classification into land cover classes may also make these systems less 

sensitive to input data errors than for continuous outputs. 

 

This study is an attempt to fill this gap in our knowledge of the effects of error on land 

cover classifications, addressing one obvious question among many others: How 

sensitive is land cover classification, in this case forest type mapping, to the error and 

uncertainty of input data? 

 

To address this question, we present a case study of sensitivity analysis of a decision 

tree derived forest type mapping to errors in both categorical and continuous data. In the 

following methods section, we describe the study area, input data, and baseline 

classification. We then present three separate sensitivity analyses for the three input data 

sources, which include a new approach of corrupting categorical data. The results of the 

sensitivity analyses and the comparison analysis are summarized in the result section, 

followed by discussion of the causes of the observed results. 

 

2 Methods 

The purpose of a sensitivity analysis is to investigate and evaluate the sensitivity of 

modelling output to model input(s).  The need of a sensitivity analysis only arises when 

we know that a certain level of uncertainty is present in the model input(s). A sensitivity 

analysis is only feasible when we have sufficient knowledge and thus can make a 

reasonable assumption about the nature of the input uncertainty. After that, we can 

select an appropriate error model to simulate the uncertainty assumption. When there 

are multiple model inputs involved in a sensitivity analysis, methods must be used to 

allow the evaluation and ranking of the model sensitivities to individual inputs.   

 

2.1 Study area and data set 
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The study area is a 15.75 km by 15.75 km region at Kioloa, NSW, Australia (Figure 1).  

It has been extensively used for land cover classification research (e.g. Lees and Ritman 

1991, Moore et al. 1991, Fitzgerald and Lees 1996, Gahegan et al. 1999, Huang and 

Lees 2004, Huang and Lees 2005).   

 

The study area has a large variety of vegetation types ranging from eucalypt-dominated 

scherophyll forest to warm-temperate rain forest (Moore et al. 1991).  It is extremely 

complex in both physiography and parent material, resulting in complex distributions of 

the vegetation types. There are approximately 450 forest species which have been 

classified into 30 forest communities on the basis of dominant species and the 

composition of understory species (Moore et al. 1991).  These were subsequently 

aggregated into seven forest types with additional ocean and cleared classes (Lees and 

Ritman 1991) (Table 1, Figure 1).  The boundaries of the seven forest types are not 

clear-cut, with considerable spatial overlap. 

 

A base classification (Figure 1, see also Supplementary Material) was developed using 

the C4.5 decision tree algorithm (Quinlan 1993).  This decision tree was used for all the 

sensitivity analyses in this study (the input data were perturbed, the tree was not).  The 

input dependent variables used to develop the tree are all in raster format with a 30 m 

pixel size (275 625 pixels), which can be grouped into three sets. The first set includes a 

DEM (elevation range 0 to 280 m) and its derivatives slope and aspect. The second set 

is the geology variable (seven categories: Quaternary Alluvium, Tertiary Essexite, 

Snapper Point Permian, Pebbly Beach Permian, Wasp Head Permian, Ordovician 

metasediments, and Ocean).  The Permian categories are all marine sediments. The third 

set is three Landsat Thematic Mapper (TM) bands: band2 (digital numbers (DN) range 

14 to 101), band4 (5 to 89 DN), and band7 (0 to 86 DN). The classification scheme 

consists of seven forest types and two other land cover classes (cleared and water) 

(Table 1).  The dependent variable of this study is a layer of 1708 ground samples. The 

samples were collected through several stages over four years by several authors (Lees 

and Ritman 1991). A randomly selected 80% of the ground samples were used for 

training the decision tree. The remaining 20% of samples were used for testing 
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classification accuracy of the base data set and the results of sensitivity analyses. The 

overall accuracy of the base classification is 65.1%. The relationships between the 

classification rules and the input data set are summarised in Table 2 and Table 3, from 

which it is evident that DEM and slope were used most often.  

 

2.2 Sensitivity analyses 

We used a Monte Carlo simulation method, as it is more readily applied to the C4.5 

decision tree classifier than mathematical methods like Taylor series (e.g. Davis and 

Keller 1997, Crosetto et al. 2000, Crosetto and Tarantola 2001, Canters et al. 2002).  

The approach used in a Monte Carlo analysis is to perturb one or more of the input 

datasets at some chosen level of random error to generate a different realisation of the 

original dataset. This process is repeated for some number of iterations until a stable 

solution is achieved.  In this case we used 1000 iterations to ensure convergence, as 

recommended by Heuvelink (1998).  All random values were generated using the 

Mersenne Twister pseudo-random number generator, as recommended by Van Niel and 

Laffan (2003). 

 

We used the one-at-a-time sensitivity analysis approach where each variable is 

perturbed separately (Hamby 1994, McKenney 1999), thus simplifying the 

interpretation of results.  In this case the variables are the data sources (DEM, Landsat 

image and geology).  The DEM and its derivatives were assessed together, as were the 

three bands of the satellite image.  For example, when the DEM is perturbed, slope and 

aspect are calculated from the perturbed DEM.  The original decision tree classifier was 

used for each perturbation.  Each data source has different errors and each needs to be 

modelled differently to obtain a fuller understanding of the sensitivity of the 

classification to error.   

 

2.2.1 The DEM and its derivatives 

The DEM is a continuous variable. It was interpolated from elevation contours digitised 

from the 1:25,000 scale topographic map of the study area, and therefore includes errors 
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in map production, digitisation and interpolation. In this study, we assumed the DEM 

error is stochastic in nature but with a spatially autocorrelated distribution (Van Niel et 

al. 2004). Also, the DEM error was assumed to be directly associated with, and a small 

percentage of, the elevation value at individual pixels.  This is an appropriate error 

model for this landscape, as error magnitudes will be larger in the steeper slopes of the 

upland parts of the study area due to spatial offsets, and lower in the comparatively 

flatter coastal parts.  Other landscapes will require a different error model, but this will 

not require changes to the sensitivity analysis approach.  

 

The sensitivity analysis of the DEM and its derivatives was conducted by perturbing the 

DEM using five levels of spatially autocorrelated random error, respectively ±2%, ±4%, 

±6%, ±8% and ±10% of individual elevation values. The general Monte Carlo 

procedure used involves the following steps: 

1. Randomly select 1000 pixels from the DEM (this is an average spacing of 

approximately 17 cells for this data set). 

2. Randomly generate error values for the 1000 selected pixels, calculated as a 

percentage of each elevation value.  The percentage is from a uniform 

distribution within the chosen error level (e.g., ±2%). 

3. Generate a spatially autocorrelated error surface from the 1000 pixels using 

ordinary kriging. 

4. Generate a perturbed realisation of the DEM by adding the error surface to the 

original DEM. 

5. Generate derivative data sets (slope and aspect) from the perturbed DEM.  

6. Generate a perturbed forest type map using the previously trained decision tree 

with the perturbed DEM, slope and aspect, and the original unperturbed geology 

and Landsat datasets. 

The Monte Carlo analysis was run 1000 times to generate 1000 forest type maps for 

each of the five error levels. 
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2.2.2 The geology data 

The geology variable is a categorical data type with the seven categories mapped as 

choropleths. The layer was digitised from Gostin’s (1969) 1:25,000 scale geological 

map and, like the DEM, also includes mapping and digitising errors. We do not have 

classification outcomes, expert knowledge or sample data to derive probability 

distributions of individual pixels for the geology data. However, we can assume that 

some of the most important errors occur near the boundaries of the geology types due to 

the definition of the boundaries and their subsequent digitisation. This part of the 

attribute error can be treated as a direct function of the positional (boundary) error. 

Approaches such as error bands and epsilon bands (Perkal 1956, Goodchild and Hunter 

1997), corridor of transition model (Davis and Keller 1997), confidence regions (Shi 

1998), and rough sets (Ahlqvist et al. 2000, Fisher 2001) have been used to represent 

positional uncertainty in vector and raster formats. We propose another way of 

representing boundary uncertainty for raster data. This is achieved by using a moving 

window approach and randomly assigning the centre pixel the class of one of its 

neighbours. By varying the window sizes, the width of boundary error varies. One could 

also employ a distance decay function to assign different probabilities for neighbours 

conditioned on their distances from the centre pixel, but this was not done here since we 

are using relatively small window sizes. The idea and approach are essentially the same 

as that described in Huang and Lees (2007) for the representation of fuzziness of 

location.  

 

We applied five moving window sizes to represent five error levels in the geology data: 

3 by 3, 5 by 5, 7 by 7, 9 by 9, and 11 by 11. The general Monte Carlo procedure used 

involves the following steps: 

1. Assign a new geology category to the processing (centre) pixel from a 

neighbouring pixel randomly selected from within the moving window 

(including the centre pixel). 

2. Generate a perturbed realisation of the geology data by repeating the above 

process for all pixels. 
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3. Generate a perturbed forest type map using the previously trained decision tree 

with the perturbed geology data, and the original unperturbed DEM, slope, 

aspect and Landsat datasets. 

As with the DEM sensitivity analyses, the Monte Carlo analysis was run 1000 times to 

generate 1000 forest type maps for each of the five error levels. 

 

2.2.3 The Landsat data 

The Landsat TM data was acquired in April 1988, close in time to the survey of 

vegetation sites. Signal to noise ratio is usually used to indicate the quality of the 

remotely sensed data. Noise (i.e., the combination of errors) in remotely sensed data 

often follows a Gaussian distribution and is independent from the signal (Richards and 

Jia 2006), so this was used as the random error distribution model for the three Landsat 

TM bands. We also assumed that the random error had mean of zero and used standard 

deviations (SD) of 0.25, 0.5, 0.75, 1 and 1.25 to represent five error levels. With the 

increase of the error levels, the signal to noise ratios of the Landsat data were effectively 

decreased. It should be noted that the quality of the remotely sensed data could also 

have been affected by such factors as atmospheric effects, geometric aspects, sensor 

errors, and data pre-processing (Lunetta et al. 1991). These can be incorporated into 

further sensitivity assessments where they are known. 

 

The general Monte Carlo procedure used involves the following steps: 

1. Generate a random error surface using a Gaussian distribution with a mean of 

zero and the specified standard deviation. 

2. Generate a perturbed realisation of the Landsat TM band2 by adding the error 

surface to the original Landsat TM band2. 

3. Repeat steps 1 and 2 to generate perturbed realisations of Landsat TM bands 4 

and 7. 
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4. Generate a perturbed forest type map using the previously trained C4.5 decision 

tree with the perturbed Landsat TM bands, and the original unperturbed DEM, 

slope, aspect, and geology data. 

As with the DEM and geology analyses, the Monte Carlo analysis was run 1000 times 

to generate 1000 forest type maps for each of the five error levels. 

 

2.3 Assessment of sensitivity analysis results 

Three criteria were used to evaluate the results of the three individual sensitivity 

analyses. We first assessed the overall test accuracy difference between each of the 

1000 forest type maps and the base forest type map (the “accuracy criterion”).  Second, 

we assessed the number of pixels in the perturbed classification that changed their 

classes when compared to the base forest type map (the “pixels changed criterion”). 

Third, a spatial assessment of the change in pixels was generated by calculating the 

frequency each pixel changed across all iterations for each error level. To assess the 

convergence on a stable solution, the mean and standard deviation of the criteria were 

assessed as the number of iterations increased. 

 

3 Results 

All of the results show an increase in sensitivity as the error increases, as is to be 

expected, but the rates differ between the different data sources (Figure 2).  A small 

proportion of the perturbations for geology and Landsat show a higher accuracy than the 

original, but this difference is typically small.  Less than 2% of the Landsat 

perturbations, and none of the geology perturbations, are more than 1% more accurate.  

All of the analyses converged on a stable solution after approximately 500 iterations. 

 

3.1 The DEM and its derivatives 

Figure 2 and Table 4 indicate the effect of the DEM error on the accuracy assessment of 

the forest type mapping. As is to be expected, the magnitude of the mean overall 

accuracy reduction and its variance increases with increasing error levels.  However, the 
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effect is not linear and becomes more prominent when the uncertainty level increases. 

However, one should also note that the range of the median accuracy differences over 

all error levels is less than 1%. 

 

The pixels changed criterion shows a similar pattern to the accuracy criterion, although 

the mean change for each error level is close to 10% of all data set pixels. The 

uncertainty levels of ±2% and ±4% are very similar, but there is an increasing difference 

as the uncertainty level increases to ±10%. These differences are also much more 

pronounced than for the accuracy criterion. 

 

Spatial assessment of the impact of random DEM error on the results of forest type 

mapping shows some interesting results (Figure 3). While approximately 10% of all 

pixels to change their initial class assignment in each perturbed classification, there was 

considerable variation in which pixels changed.  For the ±6% level of error, 26.5% of all 

pixels changed at least once across all perturbations, 13.1% changed 100 or more times, 

and 11.6% changed 200 or more times (Figure 3, Table 5).  The Eucalyptus botryoides 

forest class was most affected by the ±6% DEM uncertainty level (Table 5).  Cells 

assigned to this class in the base data set changed class assignments 558 times out of 

1000 iterations on average, with 64% of cells changing at least 200 times. It is followed 

by Lower slope wet forest and Dry Sclerophyll forest. Wet E. maculata forest is the 

most tolerant to this DEM uncertainty level.  

 

3.2 The geology data 

Figure 2 and Table 6 indicate that employing some level of random error on the geology 

data does reduce the overall test accuracy. However, the magnitudes are very small at 

less than 1%. As is expected, the magnitude of the mean overall accuracy reduction and 

its standard deviation increases with increasing error levels.  The rate of change is also 

close to linear.  The mean overall accuracy reduction appears to be saturated by the 9 by 

9 error level. 
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The pixels changed criterion is consistent with the accuracy criterion for geology.  

Figure 2 shows the assessment of the mean and standard deviation of the pixels changed 

criterion as the number of iterations increases. Figure 2 and Table 6 indicate that 

applying some level of random boundary error on the geology data makes a small 

proportion of pixels change their initial class assignments. As is expected, the 

magnitude of the mean number of pixels and its standard deviation increases with an 

increasing error level. However, the effect is near linear, and becomes slightly less 

prominent when the uncertainty level increases. There is also no overlap between the 

impacts of the different error levels. 

 

When considering the spatial distribution, the impact of random geology (boundary) 

error on the results of forest type mapping is very different from the case of random 

DEM error (Figure 4). For example, for the 7 by 7 level geology data error, only 3.4% 

of all pixels changed at least once across all perturbations, 2.5% changed 100 or more 

times, and 1.7% changed 200 or more times (Table 7). As is expected, the changes of 

classification are confined to the areas of geology boundaries and also primarily within 

the forest classes.  Dry E. maculata forest and Rainforest were most affected by the 7 by 

7 window (Table 7). Cells assigned to these classes in the base data set changed class 

assignments close to 30 times out of 1000 iterations on average. Lower slope wet forest 

is the most tolerant to the geology data uncertainty level.  Geology is not used in the 

rules to define it, and so any effects are due to perturbations of neighbouring classes. 

 

3.3 The Landsat data 

The effect of the Landsat data error on the overall accuracy varies from 0.7% to 3.4%. 

(Figure 2 and Table 8). As with the DEM data errors, the rate of change of the error 

increases with increasing magnitude.  The impacts from uncertainty levels of 0.25 SD 

and 0.5 SD are quite similar, but there is a large difference starting from the uncertainty 

level of 0.75 SD. 
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The proportion of pixels that change their initial class assignments is between 6.3% and 

15% on average (Figure 2 and Table 8).  The effect on the accuracy criterion is not 

linear, and the rate of change increases as the uncertainty level increases. The impacts 

from uncertainty levels of 0.25 SD and 0.5 SD are quite similar, but there is a large 

difference beginning at the 0.75 SD uncertainty level. In addition, the impacts of the 

five uncertainty levels of Landsat data on the number of pixels changed do not overlap 

(Figure 2). 

 

The spatial distribution of the impact of random Landsat data error on the forest type 

mapping differs from that for the DEM and geology (Figure 5). For example, for the 

error level of 0.75 SD, 56.3% of all pixels changed at least once across all perturbations, 

21.5% changed 100 or more times, and 12.8% changed 200 or more times (Figure 5, 

Table 9).  All seven forest types were noticeably or moderately affected by the 0.75 SD 

Landsat data uncertainty level (Table 9). Among them, Lower slope wet forest was most 

affected. Cells assigned to this class in the base data set changed class assignments 282 

times out of 1000 iterations on average, with 43% of cells changing at least 200 times. It 

is followed by E. botryoides forest. Dry Sclerophyll forest is the forest type most 

tolerant to the Landsat data uncertainty level. 

 

4 Discussion and Conclusion 

This study has demonstrated the feasibility of the sensitivity analysis of categorical 

model output in general and to land cover classification, in particular to the input data 

error.  However, the nature of categorical model outputs means that many sensitivity 

analysis techniques cannot be used. In this study the one-at-a-time approach was used 

with a Monte Carlo simulation model for the sensitivity analysis of land cover 

classification. The Monte Carlo analysis is computationally demanding but effective for 

cases where formal mathematical models are not feasible. At least 500 iterations were 

required before the sensitivity analyses converged on a stable solution. This is less than 

that proposed by Heuvelink (1998), but is still larger than that used for previous 

research into the effects of error (e.g. Van Niel et al. 2004). 
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The detailed results of the three sensitivity analyses indicate that the impact patterns and 

extents of the three error sources to the C4.5 decision tree derived forest type mapping 

are quite different.  These are now discussed.  

 

The geology error model we applied had little effect, both in terms of overall test 

accuracy and the number of pixels changed. The rate of change between each increasing 

error level was also approximately linear. That the effect was limited to the geology 

boundary areas is to be expected, as we assumed only positional (boundary) type error. 

The number of pixels that actually occur within the spatial window used is a small 

proportion of those in the entire landscape, and so the relative number of pixels affected 

will always be less than that for the DEM and Landsat error models.  Additionally, the 

rules involving geology only required categories of Pebbly Beach Permian, Wasp Head 

Permian and Ocean, albeit this was across 24 of the 47 rules (Table 2). Classification 

schemes involving more complex spatial arrangements of choropleths, and for which 

such boundary error is appropriate, will exhibit a greater effect. There are certainly 

attribute (thematic) errors uncertainties in the geology data that can not be represented 

as boundary error. If we had information to simulate such attribute error and uncertainty, 

we would expect to see a much greater effect on the forest type mapping.  

 

Conversely, the decision tree derived forest type mapping was quite sensitive to DEM 

and Landsat data errors. This is despite the fact that decision tree classifiers have long 

been claimed to be more error tolerant than traditional statistical models in classification 

(Quinlan 1986). For example, with as small as a ±2% DEM error level, the overall test 

accuracy could be reduced by more than 2%. More importantly, the same uncertainty 

level has on average caused nearly 10% of the study area to change its initial class 

assignment at each perturbation. The forest type mapping was affected more profoundly 

with the increase of the DEM and Landsat data uncertainty level than with the geology 

error.  This effect also has a non-linear rate of increase with respect to the error level. 
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While the impact of random DEM error and Landsat data error on the results of forest 

type mapping is not entirely surprising, we do now have an assessment of the extent to 

which this occurs. The percentages of pixels that change their class assignments due to 

random DEM error (e.g. 13.1% changed 100 or more times with the error level of ±6%) 

or Landsat data error (e.g. 21.5% changed 100 or more times with the error level of 0.75 

SD) are considerable when one considers that approximately 28% of the study area is 

ocean (with DEM values being 0 and band7 value less than 10). Because the 

classification rule for water (ocean plus lakes) uses pixels with Landsat band7 values 

less than 15 and DEM values less than 3, the assignment of DEM or Landsat data errors 

means that all ocean cells away from the coast will have an error assigned to them that 

will not change their class assignment.  In addition, a spatial assessment of the pixel 

changes due to either DEM error or Landsat data error indicates that their distribution is 

primarily within the forest classes (Table 5, Table 9, Figure 3, Figure 5), for which non-

parametric classifiers like decision trees are most needed. 

 

The pixels changed criterion and the accuracy criterion have different implications for 

critical uncertainty levels, albeit the accuracy criterion is not as reliable as the pixels 

changed criterion as it is based on only a limited number of test samples dispersed 

across the study area.  When mapped, the assessment of changing class assignment can 

give us insights into which classes of and where the forest type mapping has been 

affected.  In particular, E. botryoides forest and Lower slope wet forest were most 

affected by the DEM and Landsat data error. This is to be expected if we look at the 

classification rules of the base classification (Table 2 and Table 3). For example, the 

DEM was used eleven times in all seven classification rules for E. botryoides forest. It 

was also used five times in all three classification rules of Lower slope wet forest. For 

band7, it was used four times in all three classification rules of Lower slope wet forest 

and six times across five out of seven classification rules of E. botryoides forest. This 

study thus confirms the findings of Huang and Lees (2004) that E. botryoides forest and 

Lower slope wet forest are more difficult to classify for this study site. In comparison, 

geology was used in nine of the ten classification rules for the Dry E. maculata forest 

and five of the eight rules for Rainforest. However, because these form large polygons 
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and the effect of geology error was limited to the boundary areas, we could only see a 

minimal distribution disturbance for the two forest types due to geology. 

 

We can derive the general conclusion that the decision tree derived forest type mapping 

is sensitive to topographic variables and remotely sensed data. The sensitivity of the 

forest type mapping to input data error increases with increasing error, but the rate of 

change is non-linear and that sensitivity differs considerably for the input variables.  

 

The degree to which the same results will be obtained using other types of classifier 

remains to be assessed, for example the Maximum Likelihood and Artificial Neural 

Network methods.  These use very different operational principles (Gahegan 2000), and 

thus the error will propagate through the classification in different ways (Huang and 

Lees 2004, Huang and Lees 2005).  The effect of the errors on decision tree classifiers is 

restricted to the decision boundaries, whereas continuous or distance based classifiers 

are expected to have a more continuous effect, modified by any final cut to a hard 

classification.  It is therefore possible that the impact of the errors modelled here might 

be reduced.  However, any such assessment can use the same general Monte Carlo error 

approach we have used here.  This can be summarised as: 

1. Generate a benchmark classification model using the original input data. 

2. Select an input data set, identify its error source(s) and determine an appropriate 

error model. 

3. Randomly perturb the input data set to generate a perturbed input data set, 

calculating any necessary derivative data sets. 

4. Apply the benchmark model using the perturbed data set and other original input 

data to generate a perturbed classification, assessing the change in accuracy or 

other characteristics of the results (assessment criteria). 

5. Repeat steps 3 and 4 some number of times until the assessment criteria 

converge on a stable distribution (for example the mean and variance of the 

overall accuracy). 
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6. Select the next input data source and repeat steps 2-5, until all required 

sensitivity analyses have been conducted. 

 

While model sensitivity to errors is often used to determine which variables should be 

used, knowledge of the sensitivity of classifications to input data errors can also be 

treated as an opportunity.  If the error distribution is known then it can be incorporated 

into subsequent analysis, most likely as a weighting factor such that the relative 

contribution of each input layer is adjusted appropriately.  The pixels changed criterion 

means this can be done for each layer as either a constant value or spatially distributed, 

as appropriate.  Such weighting approaches are routinely used to for geographical 

analyses (e.g. Bickford and Laffan 2006).  Additionally, ensemble approaches that 

combine the results of multiple models, for example using Dempster-Schafer evidential 

theory (Huang and Lees 2005), could be more explicitly weighted to account for the 

relative sensitivity of the different models to the input data errors. 

 

The overall implication of our analyses is that, even though numerous studies have 

demonstrated that multi-source data can be used for complex land cover classifications 

with good results, the impact of increasing error in the input data on the final accuracy 

is not necessarily proportional to their magnitudes. This is especially true for the 

continuous data, being the DEM driven topographic data and remotely sensed data in 

this study. An obvious solution is to use more accurate ground elevation measures such 

as from Radar and LiDAR.  However, until such data are available over large areas at 

appropriate resolutions, most analyses will use data such as those used here with their 

associated data errors. 
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Table 1.  Land cover class types and frequencies in the base forest type data set. 

Class Forest type Cell count 

1 Dry Sclerophyll 76 315 

2 Eucalyptus botryoides 7375 

3 Lower slope wet forest 6588 

4 Wet E. maculata 46 364 

5 Dry E. maculata 15 501 

6 Rainforest Ecotone 11 568 

7 Rainforest 14 063 

8 Cleared land 20 213 

9 Water 77 638 
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Table 2. Number of classification rules that use each data set, summarised by class. 

 

Class Band2 Band4 Band7 DTM Slope Aspect Geology Number 

of rules 

1 2 2 1 3 3 1 0 3 

2 2 4 5 7 4 3 3 7 

3 0 0 3 3 3 2 0 3 

4 2 2 0 2 4 1 3 4 

5 5 3 5 8 10 2 9 10 

6 1 2 2 4 5 1 4 5 

7 3 3 2 6 5 4 5 8 

8 1 0 2 2 0 1 0 3 

9 0 0 1 1 0 0 0 1 

Total 16 16 21 36 34 15 24 44 
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Table 3.  Number of conditions in which each data set was used in classification rules, summarised by 

class.  Note that each data set can be used more than once in each rule. 

 

Class Band2 Band4 Band7 DEM Slope Aspect Geology Number of 

conditions 

1 3 2 2 4 4 1 0 15 

2 2 5 6 11 5 3 3 36 

3 0 0 4 5 4 2 0 15 

4 3 2 0 2 4 1 3 15 

5 5 4 6 9 11 2 9 46 

6 1 2 2 5 6 2 4 22 

7 3 3 2 9 5 5 5 32 

8 1 0 2 3 0 1 0 7 

9 0 0 1 1 0 0 0 2 

Total 18 18 25 49 39 17 24 190 
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Table 4.  Summarised results of the sensitivity analysis of DEM and its derivatives.  Accuracy values are 

in the interval [0,1]. 

  ±2% ±4% ±6% ±8% ±10% 

Difference from overall test accuracy Mean  -0.0263 -0.0265 -0.0268 -0.027 -0.0281 

 SD 0.0046 0.0053 0.0061 0.0067 0.0071 

Number of pixels changed Mean  26925 27016 27414 28038 28807 

 SD 371 368 403 461 556 
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Table 5. Number of class changes for cells in each land cover class when using the ±6% DEM uncertainty 

level, summarised by class 

Class  Cell 

Count 

Min Max Mean SD Cells 

changed 

once (%) 

Cells 

changed 

>100 times 

(%) 

Cells 

changed 

>200 times 

(%) 

1 76315 0 1000 196  361  50.8 25.0 22.2 

2 7375 0 1000 558  430  78.9 65.2 63.6 

3 6588 0 1000 343  450  53.2 39.7 38.2 

4 46364 0 1000 32  153  18.6 4.8 3.6 

5 15501 0 1000 98  266  38.1 14.5 10.7 

6 11568 0 1000 155  324  39.2 20.4 18.5 

7 14063 0 1000 58  161  30.0 12.0 10.4 

8 20213 0 913 7  60  2.7 1.4 1.3 

9 77638 0 547 5  49  1.3 1.0 1.0 

Overall 275625     26.5 13.1 11.6 
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Table 6. Summarised results of the sensitivity analysis of geology data 

 

  3 by 3 5 by 5 7 by 7 9 by 9 11 by 11 

Difference from overall test accuracy Mean  -0.00290 -0.00412 -0.00559 -0.00600 -0.00603 

 SD 0.002452 0.003074 0.003680 0.003956 0.004154 

Number of pixels changed Mean  882 1524 2125 2701 3257 

 SD 24 31 38 43 45 
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Table 7. Number of class changes for cells in each land cover class when using the 7 by 7 geology 

uncertainty level, summarised by class 

Class  Cell 

Count 

Min Max Mean SD Cells 

changed 

once (%) 

Cells 

changed 

>100 times 

(%) 

Cells 

changed 

>200 times 

(%) 

1 74852 0 804 7  46.5  3.0 2.1 1.5 

2 7215 0 604 9  52.6  4.0 2.8 2.0 

3 6588 0 0 0  0.0  0.0 0.0 0.0 

4 45642 0 740 11  60.3  4.4 3.2 2.4 

5 15298 0 671 36  102.0  16.1 11.6 8.1 

6 11246 0 770 7  50.4  2.9 2.2 1.8 

7 13897 0 679 32  94.5  14.9 10.5 7.2 

8 20213 0 0 0  0.0  0.0 0.0 0.0 

9 77638 0 0 0  0.0  0.0 0.0 0.0 

Overall 272589     3.4 2.5 1.7 
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Table 8. Summarised results of the sensitivity analysis of Landsat data 

 

  ±0.25 SD ±0.50 SD ±0.75 SD ±1.00 SD ±1.25 SD 

Difference from overall test accuracy Mean  -0.0069 -0.0085 -0.0141 -0.0232 -0.0337 

 SD 0.0078 0.0086 0.0102 0.0115 0.0129 

Number of pixels changed Mean  17441 19412 25616 33201 41165 

 SD 93 97 124 134 160 
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Table 9. Number of class changes for cells in each land cover class when using the Landsat data 

uncertainty level of mean zero and standard deviation of 0.75, summarised by class 

Class  Cells 

Count 

Min Max Mean SD Cells 

changed 

once (%) 

Cells 

changed 

>100 times 

(%) 

Cells 

changed 

>200 times 

(%) 

1 76315 0 898 117  194  74.1 25.2 17.8 

2 7375 0 820 214  203  95.5 60.3 30.5 

3 6588 0 555 282  189  90.9 83.0 42.8 

4 46364 0 858 123  162  95.7 28.9 12.7 

5 15501 0 893 150  201  81.9 38.4 17.9 

6 11568 0 784 189  224  86.8 38.5 32.6 

7 14063 0 778 178  209  89.0 37.8 27.4 

8 20213 0 584 25  76  28.0 4.5 1.7 

9 77638 0 528 0  13  0.4 0.1 0.1 

Overall 275625     56.3 21.5 12.8 
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Figure 1.  Benchmark forest type map and study area location. 

 

Figure 2.  Boxplots of the analysis results for the accuracy (upper) and cells changed (lower) criteria.  The 

accuracy of the benchmark classification is denoted by the dotted line in the accuracy plots. 

 

Figure 3. Spatial distribution of pixels changed with the ±6% DEM uncertainty level. 

 

Figure 4.  Spatial assessment of pixels changed with the 7 by 7 geology uncertainty level. 

 

Figure 5.  Spatial assessment of pixels changed with the Landsat data uncertainty level of mean zero and 

standard deviation of 0.75. 
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Figure 6.  Benchmark forest type map and study area location. 
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Figure 7.  Boxplots of the analysis results for the accuracy (upper) and cells changed (lower) criteria.  The accuracy of the benchmark classification is denoted by the dotted line in 

the accuracy plots. 
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Figure 8. Spatial distribution of pixels changed with the ±6% DEM uncertainty level. 
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Figure 9.  Spatial assessment of pixels changed with the 7 by 7 geology uncertainty level. 
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Figure 10.  Spatial assessment of pixels changed with the Landsat data uncertainty level of mean zero and 

standard deviation of 0.75. 

 


