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Sensitivity analysis of a Decision Tree classification to input

data errors using a general Monte-Carlo error sensitivity model

Abstract

We analysed the sensitivity of a decision treeveekiforest type mapping to simulated
data errors in input DEM, geology and remotely senf_andsat Thematic Mapper)
variables. We used a stochastic Monte Carlo sitimmlanodel coupled with a one-at-a-
time approach. The DEM error was assumed to b&afipaautocorrelated with its
magnitude being a percentage of the elevation vdlbe error of categorical geology
data was assumed to be positional and limited tmtbary areas. The Landsat data error
was assumed to be spatially random and follow as§an distribution. Each layer was
perturbed using its error model with increasingelsvof error, and the effect on the
forest type mapping was assessed. The resultseothree sensitivity analyses were
markedly different, with the classification beingsh sensitive to the DEM error, then
to the Landsat data errors, but with only a limigeshsitivity to the geology data error
used. A linear increase in error resulted in naedr increases in effect for the DEM
and Landsat errors, while it was linear for geologys an example, a DEM error of as
small as +2% reduced the overall test accuracy tmerthan 2%. More importantly, the
same uncertainty level has caused nearly 10% dfttidy area to change its initial class
assignment at each perturbation, on average. Aas@asessment of the sensitivities
indicates that most of the pixel changes occurrgdinvthose forest classes expected to
be more sensitive to data error. In addition tarabirising the effect of errors on forest
type mapping using decision trees, this study hesiahstrated the generality of
employing Monte Carlo analysis for the sensitivi;md uncertainty analysis of
categorical outputs which have distinctive chanasties from that of numerical

outputs.
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1 Introduction

Land cover maps play a very important role in reltuesource management, both as a
final product and as an input to other modellinggeisses. Land cover classification is
used to develop these maps and is often condudted) GIS layers as predictor
variables (e.g., topographic, soil, climatic anchotely sensed). All of the variables
used in the classification process contain somel lezerror (Goodchild 1989, Unwin
1995, Van Nielet al. 2004, Richards and Jia 2006). This error will gyrepagated
through the classification process, with its effdependent on the sensitivity of the
analysis to that error. There is therefore a @onisteed to assess its potential impact on

land cover classifications.

In terms of modelling error in GIS operations, \gre(1989) considered a ‘hierarchy
of needs’ as: error source identification, erroteddon and measurement, error
propagation modelling, strategies for error manag#mand strategies for error
reduction. There has been a great deal of researdhese topics since then (Foody
2003). Consequently, sensitivity and uncertainglygses have been the subject of much
attention in spatial and environmental sciencesog€itoet al. 2000, Crosetto and
Tarantola 2001, Jager and King 2004). Sensitiaitg uncertainty analyses have been
used to assess model parameters (Hamby 1994, Hetaalg1998, McKenney 1999),
and input data, both continuous (Davis and Kel@97, Wanget al. 2000, Goovaerts
2001, Canteret al. 2002, Gertneet al. 2004) and categorical (Goovaerts 1996, Finke
et al. 1999, Canterst al.2002, Hinest al.2005).

The objective of sensitivity analysis is to hele tstrategies of error management and
reduction. We follow the definition of Jager andnii(2004), where the sensitivity
analysis is the assessment of which spatially idigted input variables the model is
most sensitive to. Therefore, it is not concernétl the actual properties of input error
or uncertainty, for example the error magnitude #@addistribution (Jager and King
2004). It does need, however, to characterize teiogy using reasonable assumptions

(Hines et al. 2005). There are three decisions to make in temmsonducting a
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sensitivity analysis. They include a reasonablestlamty assumption, a suitable error
model, and an appropriate sensitivity analysis weettSensitivity analyses can be
divided into two groups. One deals with model (pagter) uncertainty and the other
deals with input data uncertainty. This researcttaacerned only with input data

uncertainty.

Error models are generally needed to investigate deta error is propagated through a
modelling process and can be divided into formalhmaatical models and simulation
models. Formal mathematical models such as thoserided by Taylor (1982),
MacDougall (1975), Newcomer and Szajgin (1984), @enmand Geman (1984),
Veregin (1989, 1995), and Goodchiid al. (1992), have been used to model error
propagation through simple GIS overlay functiong.(eRESELECT, AND, OR, XOR,
addition, ratios, univariate overlay, logic funet® and area measurement) (Drummond
1987, Walstet al. 1987, Heuvelinket al. 1989, Lanter and Veregin 1992, Haining and
Arbia 1993, Arbiaet al. 1998). Simulation models such as Monte Carlo aslgave
been strongly recommended for error propagationyaisa(Lodwick 1989, Openshaw
1989). The advantage of simulation models over &rmathematical models is that
their applications are not limited to simple Gl®idtions. Instead they are theoretically
applicable to any function. For example, simulatinodels have been used for the
buffer function (Veregin 1994, 1996, De Geastl.2001), DEM derivation (Leet al.
1992), logical models and continuous classificatidauvelink and Burrough 1993), for
Bayes theorem (Aspinall 1992), as well as for Gi&rtay functions (Openshaet al.
1991). It is also not possible to build a matheoahterror model for a classification

process that results in discrete classes as dtisantinuously linearly differentiable.

Through using sensitivity analysis methods, we @k the sensitivity of modelling
process to individual inputs and even partitionivitiial error contributions to the
model output. Many sensitivity analysis methodeehlaeen proposed (see Hamby 1994
for a good review), some of which have been use@Ii$/researchers. They include the
one-at-a-time method (McKenney 1999), variance dhasethod (Finkeet al. 1999,

Crosettoet al. 2001), automatic differentiation (Hwareg al. 1998), and the regression
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method (Gertneet al. 2004). Most of the existing sensitivity methodswever, are

designed for outputs that are interval or ratioadgtpes and are not suitable for
categorical (nominal) data. Multi-source classifion often involves using both
categorical data and continuous data. The natfréisese data clearly differ, and so

different strategies have been developed for each.

According to Goodchilcet al. (1992), an exact probability distribution of apixel
belonging to different classes is required to catriwasterized) categorical data. If the
data is a product of classification process, onenefised approach to fulfil this
requirement is to use a classification confusiotrimge.g. Hineset al. 2005), although
class memberships derived from soft classificattam also be used (Cantegs al.
2002). The Semantic Import Model of expert knowked@s been proposed for when
categorical data are not the result of a classiinaprocess (Davis and Keller 1997).
Geostatistical approaches such as joint sequesitiadlation and sequential indicator

simulation from sample data are also used (e.gv&ats 1996, Finket al. 1999).

One approach to corrupting continuous data is tegge a random error surface based
on an assumed error distribution model and theniaddck to the original data. The
random error surface can be generated using psemdom number generators (Van
Niel and Laffan 2003). The other common approadio isse geostatistical methods to
directly generate an effective input data surfacenfsamples (e.g. Davis and Keller
1997, Atkinson 1999, Goovaerts 2001, Cangdral. 2002, Gertneet al. 2002, Gertner
et al. 2004). The advantage of the geostatistical appraathat it can take into account
the spatial auto-correlation of a single attribate well as spatial cross-correlation

between different attributes.

As noted above, the subjects of most previous tmiogy studies are continuous
modelling outputs, for which it is relatively singplto partition the uncertainty
contributions due to the inputs. Comparativelydigffort has been spent in assessing
the impact of errors for non-continuous data. @aossible reason for this is that the

outcome of land cover classification is a categdriopominal) data type, and this does
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not naturally fit into traditional methods of sensty and uncertainty analyses. The
nature of classification into land cover classesy m#so make these systems less

sensitive to input data errors than for continuouigputs.

This study is an attempt to fill this gap in ouokriedge of the effects of error on land
cover classifications, addressing one obvious guesamong many others: How
sensitive is land cover classification, in thisecdgrest type mapping, to the error and

uncertainty of input data?

To address this question, we present a case sfuslgngitivity analysis of a decision

tree derived forest type mapping to errors in lmattegorical and continuous data. In the
following methods section, we describe the studgaarinput data, and baseline
classification. We then present three separatétsgétysanalyses for the three input data
sources, which include a new approach of corruptatggorical data. The results of the
sensitivity analyses and the comparison analysissammarized in the result section,

followed by discussion of the causes of the obskresults.

2 Methods

The purpose of a sensitivity analysis is to ingede and evaluate the sensitivity of
modelling output to model input(s). The need skasitivity analysis only arises when
we know that a certain level of uncertainty is presn the model input(s). A sensitivity

analysis is only feasible when we have sufficienbwledge and thus can make a
reasonable assumption about the nature of the inpogrtainty. After that, we can

select an appropriate error model to simulate theedainty assumption. When there
are multiple model inputs involved in a sensitivégalysis, methods must be used to

allow the evaluation and ranking of the model g@nses to individual inputs.

2.1 Study area and data set
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The study area is a 15.75 km by 15.75 km regidfi@ba, NSW, Australia (Figure 1).

It has been extensively used for land cover clasgibn research (e.g. Lees and Ritman
1991, Mooreet al. 1991, Fitzgerald and Lees 1996, Gahegtaal. 1999, Huang and
Lees 2004, Huang and Lees 2005).

The study area has a large variety of vegetatipasgyanging from eucalypt-dominated
scherophyll forest to warm-temperate rain foreso@ké et al. 1991). It is extremely
complex in both physiography and parent materggulting in complex distributions of
the vegetation types. There are approximately 4%@st species which have been
classified into 30 forest communities on the basisdominant species and the
composition of understory species (Mooge al. 1991). These were subsequently
aggregated into seven forest types with additiacalan and cleared classes (Lees and
Ritman 1991) (Table 1, Figure 1). The boundarieshe seven forest types are not

clear-cut, with considerable spatial overlap.

A base classification (Figure 1, see also SuppléangrMaterial) was developed using
the C4.5 decision tree algorithm (Quinlan 1993hisTdecision tree was used for all the
sensitivity analyses in this study (the input datae perturbed, the tree was not). The
input dependent variables used to develop theareall in raster format with a 30 m
pixel size (275 625 pixels), which can be group#d three sets. The first set includes a
DEM (elevation range 0 to 280 m) and its derivatigtope and aspect. The second set
is the geology variable (seven categories: Quatgrddluvium, Tertiary Essexite,
Snapper Point Permian, Pebbly Beach Permian, Waegd HPermian, Ordovician
metasediments, and Ocean). The Permian categoded| marine sediments. The third
set is three Landsat Thematic Mapper (TM) bandedBddigital numbers (DN) range
14 to 101), band4 (5 to 89 DN), and band7 (0 taD8§. The classification scheme
consists of seven forest types and two other lamekrcclasses (cleared and water)
(Table 1). The dependent variable of this study iayer of 1708 ground samples. The
samples were collected through several stagesfouelyears by several authors (Lees
and Ritman 1991). A randomly selected 80% of theugd samples were used for

training the decision tree. The remaining 20% ompgies were used for testing
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classification accuracy of the base data set aaddhults of sensitivity analyses. The
overall accuracy of the base classification is &.IT'he relationships between the
classification rules and the input data set arensarnsed in Table 2 and Table 3, from

which it is evident that DEM and slope were usednadten.

2.2 Sensitivity analyses

We used a Monte Carlo simulation method, as it @enreadily applied to the C4.5
decision tree classifier than mathematical metHdas Taylor series (e.g. Davis and
Keller 1997, Crosett@t al. 2000, Crosetto and Tarantola 2001, Cangtral. 2002).
The approach used in a Monte Carlo analysis isetbugb one or more of the input
datasets at some chosen level of random errorriergte a different realisation of the
original dataset. This process is repeated for soomber of iterations until a stable
solution is achieved. In this case we used 106fatibns to ensure convergence, as
recommended by Heuvelink (1998). All random valwesre generated using the
Mersenne Twister pseudo-random number generatoecasnmended by Van Niel and
Laffan (2003).

We used the one-at-a-time sensitivity analysis @ggr where each variable is
perturbed separately (Hamby 1994, McKenney 199%us t simplifying the
interpretation of results. In this case the vdealare the data sources (DEM, Landsat
image and geology). The DEM and its derivativesengssessed together, as were the
three bands of the satellite image. For exampltenithe DEM is perturbed, slope and
aspect are calculated from the perturbed DEM. drigenal decision tree classifier was
used for each perturbation. Each data source ifasetit errors and each needs to be
modelled differently to obtain a fuller understangli of the sensitivity of the

classification to error.

2.2.1 The DEM and its derivatives

The DEM is a continuous variable. It was interpetatrom elevation contours digitised

from the 1:25,000 scale topographic map of theystuda, and therefore includes errors
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in map production, digitisation and interpolatidn.this study, we assumed the DEM

error is stochastic in nature but with a spatialliyocorrelated distribution (Van Niet

al. 2004). Also, the DEM error was assumed to be tlressociated with, and a small

percentage of, the elevation value at individualefs. This is an appropriate error
model for this landscape, as error magnitudesheillarger in the steeper slopes of the
upland parts of the study area due to spatial wifsend lower in the comparatively

flatter coastal parts. Other landscapes will regjai different error model, but this will

not require changes to the sensitivity analysis@agh.

The sensitivity analysis of the DEM and its derive$ was conducted by perturbing the
DEM using five levels of spatially autocorrelateshdom error, respectively £2%, +4%,
+6%, 8% and +10% of individual elevation valuesheT general Monte Carlo

procedure used involves the following steps:

1. Randomly select 1000 pixels from the DEM (this s @erage spacing of

approximately 17 cells for this data set).

2. Randomly generate error values for the 1000 salepieels, calculated as a
percentage of each elevation value. The percentagdom a uniform

distribution within the chosen error level (e.qR%).

3. Generate a spatially autocorrelated error surfacen fthe 1000 pixels using

ordinary kriging.

4. Generate a perturbed realisation of the DEM by ragithe error surface to the

original DEM.
5. Generate derivative data sets (slope and aspeant)tire perturbed DEM.

6. Generate a perturbed forest type map using théqusgly trained decision tree
with the perturbed DEM, slope and aspect, and tiggnal unperturbed geology

and Landsat datasets.

The Monte Carlo analysis was run 1000 times to g#ael000 forest type maps for

each of the five error levels.
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2.2.2 The geology data

The geology variable is a categorical data typéh lie seven categories mapped as
choropleths. The layer was digitised from Gosti(t969) 1:25,000 scale geological
map and, like the DEM, also includes mapping aritiding errors. We do not have
classification outcomes, expert knowledge or samgidda to derive probability
distributions of individual pixels for the geologiata. However, we can assume that
some of the most important errors occur near thentharies of the geology types due to
the definition of the boundaries and their subsatudigitisation. This part of the
attribute error can be treated as a direct funcabnhe positional (boundary) error.
Approaches such as error bands and epsilon baedsa{956, Goodchild and Hunter
1997), corridor of transition model (Davis and kelll997), confidence regions (Shi
1998), and rough sets (Ahlgvist al. 2000, Fisher 2001) have been used to represent
positional uncertainty in vector and raster formafge propose another way of
representing boundary uncertainty for raster dakes is achieved by using a moving
window approach and randomly assigning the cenixel ghe class of one of its
neighbours. By varying the window sizes, the widttboundary error varies. One could
also employ a distance decay function to assigieréift probabilities for neighbours
conditioned on their distances from the centrelplxeat this was not done here since we
are using relatively small window sizes. The ided approach are essentially the same
as that described in Huang and Lees (2007) forrépeesentation of fuzziness of

location.

We applied five moving window sizes to represewe ferror levels in the geology data:
3by3,5by5 7by7 9by9, and 11 by 11. Teaagal Monte Carlo procedure used

involves the following steps:

1. Assign a new geology category to the processingitiee pixel from a
neighbouring pixel randomly selected from withinethmoving window

(including the centre pixel).

2. Generate a perturbed realisation of the geologg gt repeating the above

process for all pixels.
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3. Generate a perturbed forest type map using thaéqugly trained decision tree
with the perturbed geology data, and the originaparturbed DEM, slope,

aspect and Landsat datasets.

As with the DEM sensitivity analyses, the Monte IGanalysis was run 1000 times to

generate 1000 forest type maps for each of thesfika levels.

2.2.3 The Landsat data

The Landsat TM data was acquired in April 1988,seldn time to the survey of

vegetation sites. Signal to noise ratio is usuakgd to indicate the quality of the

remotely sensed data. Noise (i.e., the combinagioarrors) in remotely sensed data
often follows a Gaussian distribution and is indegent from the signal (Richards and
Jia 2006), so this was used as the random errwibdison model for the three Landsat
TM bands. We also assumed that the random errontesh of zero and used standard
deviations (SD) of 0.25, 0.5, 0.75, 1 and 1.25dpresent five error levels. With the

increase of the error levels, the signal to ncédms of the Landsat data were effectively
decreased. It should be noted that the qualityhefremotely sensed data could also
have been affected by such factors as atmosphifect® geometric aspects, sensor
errors, and data pre-processing (Lunettaal. 1991). These can be incorporated into

further sensitivity assessments where they are know

The general Monte Carlo procedure used involvesdit@ving steps:

1. Generate a random error surface using a Gausssétibdtion with a mean of

zero and the specified standard deviation.

2. Generate a perturbed realisation of the Landsatb@kd2 by adding the error

surface to the original Landsat TM band2.

3. Repeat steps 1 and 2 to generate perturbed realisatf Landsat TM bands 4
and 7.
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4. Generate a perturbed forest type map using thequgly trained C4.5 decision
tree with the perturbed Landsat TM bands, and tigtnal unperturbed DEM,

slope, aspect, and geology data.

As with the DEM and geology analyses, the MontelCanalysis was run 1000 times

to generate 1000 forest type maps for each ofitieestror levels.

2.3 Assessment of sensitivity analysis results

Three criteria were used to evaluate the resultghef three individual sensitivity
analyses. We first assessed the overall test ancutifference between each of the
1000 forest type maps and the base forest type(thapaccuracy criterion”). Second,
we assessed the number of pixels in the perturlteskification that changed their
classes when compared to the base forest type thag'dixels changed criterion”).
Third, a spatial assessment of the change in pwels generated by calculating the
frequency each pixel changed across all iteratfonseach error level. To assess the
convergence on a stable solution, the mean andatrmeviation of the criteria were

assessed as the number of iterations increased.

3 Results

All of the results show an increase in sensitiaty the error increases, as is to be
expected, but the rates differ between the diffedata sources (Figure 2). A small
proportion of the perturbations for geology and dsat show a higher accuracy than the
original, but this difference is typically small.Less than 2% of the Landsat
perturbations, and none of the geology perturbatiane more than 1% more accurate.

All of the analyses converged on a stable solwiter approximately 500 iterations.

3.1 The DEM and its derivatives

Figure 2 and Table 4 indicate the effect of the D&fbr on the accuracy assessment of
the forest type mapping. As is to be expected, ntagnitude of the mean overall

accuracy reduction and its variance increasesingtteasing error levels. However, the
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effect is not linear and becomes more prominentnathe uncertainty level increases.
However, one should also note that the range ofhtldian accuracy differences over

all error levels is less than 1%.

The pixels changed criterion shows a similar patterthe accuracy criterion, although
the mean change for each error level is close % Dd all data set pixels. The
uncertainty levels of +2% and 4% are very similar there is an increasing difference
as the uncertainty level increases to +10%. ThaHerehces are also much more

pronounced than for the accuracy criterion.

Spatial assessment of the impact of random DEMramothe results of forest type
mapping shows some interesting results (FigureAB)ile approximately 10% of all
pixels to change their initial class assignmergach perturbed classification, there was
considerable variation in which pixels changedr the 6% level of error, 26.5% of all
pixels changed at least once across all perturgtit3.1% changed 100 or more times,
and 11.6% changed 200 or more times (Figure 3,eTapl TheEucalyptus botryoides
forest class was most affected by the 6% DEM unady level (Table 5). Cells
assigned to this class in the base data set chagesl assignments 558 times out of
1000 iterations on average, with 64% of cells ciram@gt least 200 times. It is followed
by Lower slope wet forest and Dry Sclerophyll fare&/'et E. maculataforest is the

most tolerant to this DEM uncertainty level.

3.2 The geology data

Figure 2 and Table 6 indicate that employing soevellof random error on the geology

data does reduce the overall test accuracy. Howévwemmagnitudes are very small at

less than 1%. As is expected, the magnitude ofrthan overall accuracy reduction and

its standard deviation increases with increasimgrdevels. The rate of change is also

close to linear. The mean overall accuracy redadppears to be saturated by the 9 by
9 error level.
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The pixels changed criterion is consistent with #Hezuracy criterion for geology.

Figure 2 shows the assessment of the mean andastiageliation of the pixels changed
criterion as the number of iterations increaseguile 2 and Table 6 indicate that
applying some level of random boundary error on gleelogy data makes a small
proportion of pixels change their initial class igaments. As is expected, the
magnitude of the mean number of pixels and itsdsteth deviation increases with an
increasing error level. However, the effect is nkaear, and becomes slightly less
prominent when the uncertainty level increases.rdlie also no overlap between the

impacts of the different error levels.

When considering the spatial distribution, the iotpaf random geology (boundary)
error on the results of forest type mapping is wdifferent from the case of random
DEM error (Figure 4). For example, for the 7 byevdl geology data error, only 3.4%
of all pixels changed at least once across allupeations, 2.5% changed 100 or more
times, and 1.7% changed 200 or more times (Tabl&g)s expected, the changes of
classification are confined to the areas of geologyndaries and also primarily within
the forest classes. DB. maculatdorest and Rainforest were most affected by thg 7

7 window (Table 7). Cells assigned to these classéise base data set changed class
assignments close to 30 times out of 1000 iteratmmaverage. Lower slope wet forest
is the most tolerant to the geology data uncestdmiel. Geology is not used in the

rules to define it, and so any effects are duesttupbations of neighbouring classes.

3.3 The Landsat data

The effect of the Landsat data error on the overedluracy varies from 0.7% to 3.4%.
(Figure 2 and Table 8). As with the DEM data erréne rate of change of the error
increases with increasing magnitude. The impacis funcertainty levels of 0.25 SD
and 0.5 SD are quite similar, but there is a lalifference starting from the uncertainty
level of 0.75 SD.
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The proportion of pixels that change their inittidss assignments is between 6.3% and
15% on average (Figure 2 and Table 8). The effecthe accuracy criterion is not
linear, and the rate of change increases as thertaintty level increases. The impacts
from uncertainty levels of 0.25 SD and 0.5 SD améeqgsimilar, but there is a large
difference beginning at the 0.75 SD uncertaintyelein addition, the impacts of the
five uncertainty levels of Landsat data on the nemdf pixels changed do not overlap
(Figure 2).

The spatial distribution of the impact of randomrntaat data error on the forest type
mapping differs from that for the DEM and geolodyigure 5). For example, for the
error level of 0.75 SD, 56.3% of all pixels changgdeast once across all perturbations,
21.5% changed 100 or more times, and 12.8% chag@eédr more times (Figure 5,
Table 9). All seven forest types were noticeablynoderately affected by the 0.75 SD
Landsat data uncertainty level (Table 9). Amongrtheower slope wet forest was most
affected. Cells assigned to this class in the dasea set changed class assignments 282
times out of 1000 iterations on average, with 43%etls changing at least 200 times. It
is followed by E. botryoidesforest. Dry Sclerophyll forest is the forest typeosn

tolerant to the Landsat data uncertainty level.

4 Discussion and Conclusion

This study has demonstrated the feasibility of sleasitivity analysis of categorical
model output in general and to land cover clasaifin, in particular to the input data
error. However, the nature of categorical moddpots means that many sensitivity
analysis techniques cannot be used. In this stuelyohe-at-a-time approach was used
with a Monte Carlo simulation model for the sendyi analysis of land cover
classification. The Monte Carlo analysis is compateally demanding but effective for
cases where formal mathematical models are noibleag\t least 500 iterations were
required before the sensitivity analyses conveged stable solution. This is less than
that proposed by Heuvelink (1998), but is stillglar than that used for previous
research into the effects of error (e.g. Van Niehl. 2004).
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The detailed results of the three sensitivity asedyindicate that the impact patterns and
extents of the three error sources to the C4.5sueriree derived forest type mapping

are quite different. These are now discussed.

The geology error model we applied had little effdmoth in terms of overall test
accuracy and the number of pixels changed. Theofatkange between each increasing
error level was also approximately linear. That éfiect was limited to the geology
boundary areas is to be expected, as we assumggasitional (boundary) type error.
The number of pixels that actually occur within theatial window used is a small
proportion of those in the entire landscape, antheaelative number of pixels affected
will always be less than that for the DEM and Latd=sror models. Additionally, the
rules involving geology only required categoriesPebbly Beach Permian, Wasp Head
Permian and Ocean, albeit this was across 24 ofiTheiles (Table 2). Classification
schemes involving more complex spatial arrangemehthoropleths, and for which
such boundary error is appropriate, will exhibigieater effect. There are certainly
attribute (thematic) errors uncertainties in thelggy data that can not be represented
as boundary error. If we had information to simellstich attribute error and uncertainty,

we would expect to see a much greater effect ofotiest type mapping.

Conversely, the decision tree derived forest ty@gpmng was quite sensitive to DEM
and Landsat data errors. This is despite the Fattdecision tree classifiers have long
been claimed to be more error tolerant than tiawakti statistical models in classification
(Quinlan 1986). For example, with as small as a £2&M error level, the overall test
accuracy could be reduced by more than 2%. Moreitaptly, the same uncertainty
level has on average caused nearly 10% of the stuely to change its initial class
assignment at each perturbation. The forest tygepimg was affected more profoundly
with the increase of the DEM and Landsat data uac#y level than with the geology

error. This effect also has a non-linear ratenoféase with respect to the error level.
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While the impact of random DEM error and Landsatadzror on the results of forest
type mapping is not entirely surprising, we do neave an assessment of the extent to
which this occurs. The percentages of pixels thange their class assignments due to
random DEM error (e.g. 13.1% changed 100 or monegiwith the error level of +6%)
or Landsat data error (e.g. 21.5% changed 100 oe nmoes with the error level of 0.75
SD) are considerable when one considers that appately 28% of the study area is
ocean (with DEM values being 0 and band7 value ligss 10). Because the
classification rule for water (ocean plus lakesgsupixels with Landsat band7 values
less than 15 and DEM values less than 3, the assignof DEM or Landsat data errors
means that all ocean cells away from the coasthale an error assigned to them that
will not change their class assignment. In addijtia spatial assessment of the pixel
changes due to either DEM error or Landsat data @rdicates that their distribution is
primarily within the forest classes (Table 5, Ta®Jd=igure 3, Figure 5), for which non-

parametric classifiers like decision trees are mestded.

The pixels changed criterion and the accuracy rawitehave different implications for
critical uncertainty levels, albeit the accuraciteczion is not as reliable as the pixels
changed criterion as it is based on only a limitesnber of test samples dispersed
across the study area. When mapped, the assessh@ranging class assignment can
give us insights into which classes of and wheee ftirest type mapping has been
affected. In particularE. botryoidesforest and Lower slope wet forest were most
affected by the DEM and Landsat data error. Thimibe expected if we look at the
classification rules of the base classificationh[€a2 and Table 3). For example, the
DEM was used eleven times in all seven classificatules forE. botryoidedorest. It
was also used five times in all three classificgatioles of Lower slope wet forest. For
band7, it was used four times in all three clasaifon rules of Lower slope wet forest
and six times across five out of seven classificatules ofE. botryoidesforest. This
study thus confirms the findings of Huang and L&&94) that. botryoidedorest and
Lower slope wet forest are more difficult to clégdor this study site. In comparison,
geology was used in nine of the ten classificatidies for the DryE. maculataforest

and five of the eight rules for Rainforest. Howeusgcause these form large polygons
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and the effect of geology error was limited to Hmindary areas, we could only see a

minimal distribution disturbance for the two forégves due to geology.

We can derive the general conclusion that the abecisee derived forest type mapping
is sensitive to topographic variables and remoselgsed data. The sensitivity of the
forest type mapping to input data error increasils imcreasing error, but the rate of

change is non-linear and that sensitivity diffesagiderably for the input variables.

The degree to which the same results will be obthinsing other types of classifier
remains to be assessed, for example the Maximuralihdod and Artificial Neural
Network methods. These use very different opematiprinciples (Gahegan 2000), and
thus the error will propagate through the clasatfan in different ways (Huang and
Lees 2004, Huang and Lees 2005). The effect oéttars on decision tree classifiers is
restricted to the decision boundaries, whereasiragmis or distance based classifiers
are expected to have a more continuous effect, freddby any final cut to a hard
classification. It is therefore possible that impact of the errors modelled here might
be reduced. However, any such assessment cahaisarhe general Monte Carlo error

approach we have used here. This can be summassed
1. Generate a benchmark classification model usingtiggnal input data.

2. Select an input data set, identify its error so{glcand determine an appropriate
error model.

3. Randomly perturb the input data set to generateraugibed input data set,

calculating any necessary derivative data sets.

4. Apply the benchmark model using the perturbed datand other original input
data to generate a perturbed classification, asgeti®e change in accuracy or

other characteristics of the results (assessm#getia).

5. Repeat steps 3 and 4 some number of times untiladsssment criteria
converge on a stable distribution (for example ttean and variance of the

overall accuracy).
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6. Select the next input data source and repeat s2eps until all required

sensitivity analyses have been conducted.

While model sensitivity to errors is often usedd&termine which variables should be
used, knowledge of the sensitivity of classificaicto input data errors can also be
treated as an opportunity. If the error distribatis known then it can be incorporated
into subsequent analysis, most likely as a weighfiactor such that the relative
contribution of each input layer is adjusted appedply. The pixels changed criterion
means this can be done for each layer as eithenstant value or spatially distributed,
as appropriate. Such weighting approaches arenedytused to for geographical
analyses (e.g. Bickford and Laffan 2006). Additityy ensemble approaches that
combine the results of multiple models, for exammang Dempster-Schafer evidential
theory (Huang and Lees 2005), could be more exiplieieighted to account for the

relative sensitivity of the different models to theut data errors.

The overall implication of our analyses is thateewhough numerous studies have
demonstrated that multi-source data can be usedofoplex land cover classifications

with good results, the impact of increasing errothe input data on the final accuracy
IS not necessarily proportional to their magnitud&his is especially true for the

continuous data, being the DEM driven topograplitacand remotely sensed data in
this study. An obvious solution is to use more aatiground elevation measures such
as from Radar and LIDAR. However, until such data available over large areas at
appropriate resolutions, most analyses will usa gath as those used here with their

associated data errors.
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Table 1. Land cover class types and frequencies in tleefbrest type data set.

Class Forest type Cell count

1 Dry Sclerophyll 76 315
2 Eucalyptushotryoides 7375

3 Lower slope wet forest 6588
4 WetE. maculata 46 364

5 Dry E. maculata 15501

6 Rainforest Ecotone 11 568
7 Rainforest 14 063
8 Cleared land 20213
9 Water 77638
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Table 2. Number of classification rules that use each skt summarised by class.

Class Band2 Band4 Band7 DTM Slope Aspect Geology mbér
of rules
1 2 2 1 3 3 1 0 3
2 2 4 5 7 4 3 3 7
3 0 0 3 3 3 2 0 3
4 2 2 0 2 4 1 3 4
5 5 3 5 8 10 2 9 10
6 1 2 2 4 5 1 4 5
7 3 3 2 6 5 4 5 8
8 1 0 2 2 0 1 0 3
9 0 0 1 1 0 0 0 1
Total 16 16 21 36 34 15 24 44
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Table 3. Number of conditions in which each data setusas in classification rules, summarised by

class. Note that each data set can be used more thamm @acdh rule.

Class Band2 Band4 Band7 DEM Slope Aspect Geology midén of
conditions

1 3 2 2 4 4 1 0 15
2 2 5 6 11 5 3 3 36
3 0 0 4 5 4 2 0 15
4 3 2 0 2 4 1 3 15
5 5 4 6 9 11 2 9 46
6 1 2 2 5 6 2 4 22
7 3 3 2 9 5 5 5 32
8 1 0 2 3 0 1 0 7
9 0 0 1 1 0 0 0 2
Total 18 18 25 49 39 17 24 190
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Table 4. Summarised results of the sensitivity anslysDEM and its derivatives. Accuracy values are

in the interval [0,1].

+2% +4% +6% +8% +10%
Difference from overall test accuracy Mean -0.0263 -0.0265 -0.0268 -0.027 -0.0281
SD 0.0046 0.0053 0.0061 0.0067 0.0071
Number of pixels changed Mean 26925 27016 27414 0328 28807
SD 371 368 403 461 556
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Table 5. Number of class changes for cells in each land ctags when using the 6% DEM uncertainty

level, summarised by class

Class Cell Min Max Mean SD Cells Cells Cells
Count changed changed changed

once (%) >100 times  >200 times

(%) (%)
1 76315 0 1000 196 361 50.8 25.0 22.2
2 7375 0 1000 558 430 78.9 65.2 63.6
3 6588 0 1000 343 450 53.2 39.7 38.2
4 46364 0 1000 32 153 18.6 4.8 3.6
5 15501 0 1000 98 266 38.1 14.5 10.7
6 11568 0 1000 155 324 39.2 20.4 18.5
7 14063 0 1000 58 161 30.0 12.0 10.4
8 20213 0 913 7 60 2.7 1.4 1.3
9 77638 0 547 5 49 1.3 1.0 1.0
Overall 275625 26.5 131 11.6
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Table 6. Summarised results of the sensitivity analysigofogy data

3by3 5by5 7by7 9by9 11lby 11
Difference from overall test accuracy Mean -0.0D29 -0.00412 -0.00559 -0.00600 -0.00603
SD 0.002452 0.003074 0.003680 0.003956 0.004154
Number of pixels changed Mean 882 1524 2125 2701 2573
SD 24 31 38 43 45
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Table 7. Number of class changes for cells in eacti tver class when using the 7 by 7 geology

uncertainty level, summarised by class

Class Cell Min Max Mean SD Cells Cells Cells
Count changed changed changed

once (%) >100 times  >200 times

(%) (%)
1 74852 0 804 7 46.5 3.0 2.1 15
2 7215 0 604 9 52.6 4.0 2.8 2.0
3 6588 0 0 0 0.0 0.0 0.0 0.0
4 45642 0 740 11 60.3 4.4 3.2 2.4
5 15298 0 671 36 102.0 16.1 11.6 8.1
6 11246 0 770 7 50.4 2.9 2.2 1.8
7 13897 0 679 32 94.5 14.9 10.5 7.2
8 20213 0 0 0 0.0 0.0 0.0 0.0
9 77638 0 0 0 0.0 0.0 0.0 0.0
Overall 272589 3.4 2.5 1.7
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Table 8. Summarised results of the sensitivity analysisotisat data

+0.25 SD +0.50 SD +0.75 SD +1.00 SD +1.25 SD
Difference from overall test accuracy Mean -0.0069 -0.0085 -0.0141 -0.0232 -0.0337
SD 0.0078 0.0086 0.0102 0.0115 0.0129
Number of pixels changed Mean 17441 19412 25616 20B3 41165
SD 93 97 124 134 160
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Table 9. Number of class changes for cells in each landrcdass when using the Landsat data

uncertainty level of mean zero and standard deviation of Sumdmarised by class

Class Cells  Min Max Mean SD Cells Cells Cells
Count changed changed changed
once (%) >100times  >200 times
(%) (%)

1 76315 0 898 117 194 74.1 25.2 17.8
2 7375 0 820 214 203 955 60.3 30.5
3 6588 0 555 282 189 90.9 83.0 42.8
4 46364 0 858 123 162 95.7 28.9 12.7
5 15501 0 893 150 201 81.9 38.4 17.9
6 11568 0 784 189 224 86.8 38.5 32.6
7 14063 0 778 178 209 89.0 37.8 27.4
8 20213 0 584 25 76 28.0 4.5 1.7
9 77638 0 528 0 13 0.4 0.1 0.1
Overall 275625 56.3 21.5 12.8
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Figure 1. Benchmark forest type map and study area docati

Figure 2. Boxplots of the analysis results for the acgufagper) and cells changed (lower) criteria. The

accuracy of the benchmark classification is denotetthéylotted line in the accuracy plots.

Figure 3. Spatial distribution of pixels changed with t6&DEM uncertainty level.

Figure 4. Spatial assessment of pixels changed with thier ©bology uncertainty level.

Figure 5. Spatial assessment of pixels changed with thésah data uncertainty level of mean zero and

standard deviation of 0.75.
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Figure 6. Benchmark forest type map and study areadocati
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Figure 7. Boxplots of the analysis results for #ieeuracy (upper) and cells changed (lower) cateiihe accuracy of the benchmark classificatiateisoted by the dotted line in

the accuracy plots.
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Figure 8. Spatial distribution of pixels changedhwhe +6% DEM uncertainty level.
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Figure 9. Spatial assessment of pixels changddthét 7 by 7 geology uncertainty level.
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Figure 10. Spatial assessment of pixels changddthe Landsat data uncertainty level of mean aexb
standard deviation of 0.75.
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