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Abstract

Fractional calculus has a long history, almost as old as calculus itself, dating back

to the late seventeenth century. There has been a great deal of mathematical in-

terest in this area by pure mathematicians but it is only in recent decades that the

applications of fractional calculus have been systematically explored. The physi-

cal interest in fractional calculus is due to it’s nonlocal nature which introduces a

history dependence into the system.

Differential equations are the mainstay of mathematical models that describe and

predict the evolution of systems in time. It is intuitive to replace some of the integer

order time derivatives with fractional order time derivatives to provide a model

that incorporates a history dependence. However, including fractional derivatives

in this way can lead to problems in reconciling the dimensions of parameters in the

systems. In this thesis we have developed a modelling approach, to include fractional

derivatives and a history dependence, which is based on a well defined stochastic

process. The resulting fractional order models and their parameters are well posed.

The thesis begins with a discussion of the history of fractional calculus, leading

to the application to partial differential equations (PDEs), derived from continuous

time random walks (CTRWs). We provide a brief overview of CTRWs and their

role in deriving fractional order ordinary differential equations (ODEs) and PDEs.

Some of the fundamental tools of fractional calculus are introduced. A discrete time

analogue of a CTRW is also introduced.

After the introductory material, the remainder of the thesis is a compilation of

original published work that I have co-authored. This material is separated into
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three parts. Part I, consisting of Chapters 2 - 7, features the derivation of fractional

order ODE models and their discretisations. Part II, consisting of Chapters 8 - 10, is

focused on the derivation of fractional PDE models. Part III, consisting of Chapters

11 - 12, presents novel numerical approaches for solving fractional-order ODEs and

PDEs via piecewise approximations.

This thesis includes the results drawn from nine published papers produced over

the course of my PhD candidature.
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Chapter 1

Introduction

Fractional calculus has a long history dating back to the origins of calculus in the late

1600s [121]. In the past few decades there has been renewed interest in fractional

calculus due to modelling applications. Fractional calculus mathematical models

are typically written as ordinary differential equations (ODEs) or partial differen-

tial equations (PDEs) with fractional derivatives. The incorporation of fractional

derivatives introduces a history dependence into the model; the future state is de-

pendent on all past states. These models have been applied to a variety of contexts;

including anomalous diffusion [106], epidemiology [21], pharmacokinetics [144] and

viscoelasticity [97].

In recent years it has become popular to investigate mathematical models with

fractional derivatives included in an ad hoc fashion, by replacing standard deriva-

tives with fractional derivatives. This direct derivative substitution introduces more

parameters, e.g. the order of the derivatives, and thus can result in better fit-

ting models or lead to interesting mathematical results. However from a modelling

perspective replacing ordinary derivatives with fractional derivatives can lead to in-

consistent model dimensions and thus the clear interpretation of parameters may

be lost. This thesis provides a physically consistent method, using an underlying

stochastic process, as a basis for deriving fractional equations. The method can be

applied to both ODE and PDE systems and in this thesis it is applied to compart-

ment models and diffusion processes on non-uniform domains.

1



1.1 Brief History

The origin of fractional calculus is generally dated back to a letter exchange between

l’Hôpital and Leibniz in 1695 [86]. In their exchange, they consider the possibility of

taking a derivative with order 1
2
. Whilst this provides an anecdotal and oft quoted

introduction to the field, it was not until the 19th century that formal mathematical

definitions of the fractional integral and derivative were formulated.

The first recorded use of fractional calculus occurred by Abel in 1823 [3, 4].

In order to solve the tautochrone problem, Abel introduces formulas which can be

recognised as a fractional integral and derivative [122]. The properties of fractional

derivatives are exploited in order to solve the problem. However, it was not until

1834 that the Riemann-Liouville fractional integral and derivative were formally

defined by [91].

There has been increased attention in the fractional calculus arena over the past

fifty years as the applications of fractional derivatives have become more appar-

ent. This interest has occurred across multiple subfields. In particular the history

dependence that fractional derivatives introduce were found to be useful in viscoelas-

ticity. This was first noted by Caputo in 1967 [34] and explored in greater detail

by Mainardi [95, 96]. Mainardi makes use of the fractional diffusion considered by

Wyss [154], which is defined by replacing the standard temporal derivative with a

time-fractional derivative.

The applications of fractional calculus have also been seen in the development of

diffusion equations from the limit of the continuous time random walk (CTRW) [111,

133]. If the CTRW has a history dependence the resulting diffusion equations may

include time-fractional derivatives [67, 35, 28, 106]. Fractional diffusion equations

obtained in this manner model anomalous diffusion in which the mean squared

displacement does not scale linearly. CTRWs have been generalised in various ways

to model fractional diffusion with reactions [63, 142], forces [60, 61], trapping [7],

and on non-uniform, see Chapter 9, and on growing domains [85, 23].
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The remainder of the first chapter will provide a more detailed introduction and

background to the areas of mathematics required in deriving fractional ODE and

PDE models from underlying stochastic processes. This will include CTRWs in Sec-

tion 1.2, anomalous diffusion in Section 1.3, compartment models in Section 1.4 and

fractional derivatives and their properties in Section 1.5. The related discretisations

and numerical schemes for fractional models are introduced in Section 1.7.

1.2 Continuous Time Random Walks

The random walk was introduced by; Bachelier in his PhD thesis [25], by Pearson in

a problem posed in Nature [116], and by Einstein in his consideration of Brownian

motion [46]. Einstein showed that the probability density function describing the

position of a random walk was governed by the diffusion equation. In general terms

this demonstrates a connection between stochastic processes and PDEs. In the past

few decades this connection has been greatly expanded through the consideration

of CTRWs and their limit processes.

The CTRW was originally considered by Montroll and Weiss in 1965 [111] and

further developed by Scher and Lax [133]. This approach was further generalised

over the following decades [125, 148, 137, 112, 79]. Partial differential equations

can be derived by taking an appropriate diffusion limit of the master equation of

a CTRW. An advantage of constructing PDEs from a CTRW is that the model

parameters can be understood easily as physical processes and the CTRW describes

the dynamic process at a mesoscopic level.

The CTRW is set up by considering the governing dynamics of an individual

walker on a lattice and extending this consideration to an ensemble of walkers. In

the CTRW each walker waits at a site, x′, for an amount of time drawn from a

waiting time density, ψ(t), before jumping to a new site, x, governed by the jump

density λ(x, x′, t). Let us now consider an ensemble of walkers, where each walker is

governed by a common jump density, λ(x, x′, t), and a common waiting time density,

ψ(t). The expected concentration of walkers at any given site can now be expressed.

3



By taking the limit in which the distance between the lattice sites goes to zero, the

dynamics of the walkers can be considered on a spatial continuum. The diffusion

limit requires both the lattice spacing to go to zero and the characteristic time-scale

to go to zero. This needs to be done carefully to avoid singularities and this will be

discussed further in subsequent sections of this thesis.

If the central limit theorem holds for the stochastic process of the CTRWs then

the walkers will be undergoing Brownian motion [55, 32, 106] and the dynamics of

their concentration will be described by a standard diffusion equation. Standard

diffusion is characterised by the mean squared displacement growing proportionally

with time [116], i.e.,

〈X2(t)〉 ∼ t. (1.1)

The central limit theorem does not hold for all choices of jump densities or wait-

ing time densities. In particular if the jump or waiting time density has a power-law

tail, for example a Pareto or Mittag-Leffler density, the central limit theorem does

not hold. The work in this thesis focuses on power-law waiting time densities. As

the first moment of power-law distributions diverges, the standard central limit the-

orem does not appy to describe the resulting dynamics of the walkers. However the

Lévy-Gnedenko generalised central limit theorem [57, 88] can be applied and mak-

ing use of the properties of geometrically stable distributions, a power-law waiting

time produces anomalous diffusion. The diffusion limit of the master equations for

CTRWs with power-law waiting times can be expressed with time-fractional deriva-

tives. The mean squared displacement calculated from these fractional diffusion

equations has anomalous scaling, i.e.,

〈X2(t)〉 ∼ tα, (1.2)

for α 6= 1. This result, commonly referred to as anomalous diffusion, has been

experimentally observed across a variety of settings, so much so that it has been
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noted that “Anomalous is ubiquitous” [52] and has lead to increasing interest in the

mathematical nature of anomalous diffusion.

1.3 Subdiffusion

The size of α in Eq. (1.2) quantifies the anomalous diffusion. In particular this thesis

focuses on subdiffusion, classified by 0 < α < 1. Subdiffusion has been commonly

observed in biological systems with traps and obstacles [131, 45, 151]. It has also

been observed in the diffusion of molecules in spiny nerve cells [129], diffusion across

potassium channels in membranes [99, 150], and diffusion of HIV virions in cervical

mucous [138]. Subdiffusion is also present in other physical systems such as cosmic

rays [136], porous media [87], and volcanic earthquakes [2].

The equation for subdiffusion is a generalisation of the standard diffusion equa-

tion. This equation can be expressed with a fractional derivative [28],

∂ρ(x, t)

∂t
=

∂2

∂x2

(
0D1−α

t (ρ(x, t))
)
, (1.3)

and as α → 1 the equation limits to the standard diffusion equation. The notable

difference between the subdiffusion equation and the standard diffusion equation,

is the presence of the Riemann-Liouville fractional derivative, 0D1−α
t (ρ(x, t)). The

definition for this and other fractional derivatives are presented in Section 1.5.

Before the stochastic derivation of the subdiffusion equation, Wyss replaced the

time derivative of the standard diffusion equation with a fractional derivative [154]

and analysed it’s mathematical properties. This equation was found to be useful

in modelling viscoelasticity by Mainardi [95]. Hilfer and Anton derived the mas-

ter equation using the CTRW framework [67], which after taking a diffusion limit,

results in the subdiffusion equation. In doing so Hilfer and Anton considered a

Mittag-Leffler waiting time density [121]. Building on [79], Compte took the diffu-

sion limit of this master equation [35], deriving an equation for subdiffusion which

was identical to Wyss’ equation.
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The equation for subdiffusion with forces and/or reactions was subsequently de-

rived from the CTRW framework. The incorporation of subdiffusion has proven

non-trivial in these extensions. In a standard Fokker-Planck equation or reaction-

diffusion equation the diffusion is independent of either the forces or reactions re-

spectively. However, one of the notable results from the derivation of subdiffusive

equations with forces or reactions is that the diffusion can affect the forcing or re-

actions. Subdiffusion with forcing was introduced by implementing a power-law

waiting time density and a time biased jump length density in the CTRW, resulting

in a fractional Fokker-Planck equation [105, 104, 28, 106]. Space dependent forcing

and time dependent forcing has also been considered in this context [142, 61, 11].

An equation with fractional-advection, with no diffusion, has also been derived from

the CTRW framework [18].

By introducing a source term along with power-law waiting times, reactions

were able to be introduced, giving rise to fractional reaction-diffusion equations

[63, 62, 143, 83, 53, 1, 158]. More recently, the equation for subdifffusion with both

forcing and reaction was systematically derived [7]. These fractional equations have

been derived outside of the CTRW framework as well [152, 93, 141].

Another area of interest has been in deriving PDEs on a growing domain. Over

the past two decades, equations for diffusion, forcing and reactions have been derived

on a growing domain [36, 113, 37, 153]. These equations have been generalised to

account for more complex forcing and non-uniform growth [26, 155, 140, 157]. A

natural extension has been to consider subdiffusion on a growing domain [23, 85].

My contribution to this field has been the derivation of the fractional-advection

equation without diffusion, which makes up Chapter 8, subdiffusion on a geometri-

cally spaced lattice, in Chapter 9 and subdiffusion on a growing domain, Chapter

10.
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1.4 Compartment Models

In addition to considering the derivation of fractional-order PDEs, this thesis also

considers the derivation of fractional-order ODE models. In particular, this thesis

contains the derivations for epidemiological models containing fractional derivatives,

as well as the derivation for a general fractional-order compartment model. A com-

partment model is a mathematical model which describes the dynamics of entities

moving between different compartments. Typically the compartments are assumed

to be homogeneous, i.e. all elements in the compartment are assumed to have the

same probabilities of leaving the compartment. These models are typically repre-

sented by a set of coupled ODEs with time the independent variable. The dependent

variable may represent numbers of entities or concentrations of entities.

These models have been applied to a range of contexts, including epidemiology

[73, 64], pharmacokinetics [144] and economics [70, 147]. The particular quantities

of interest vary between applications. For example in a compartment model for epi-

demiology, the compartments represent states in which individuals are susceptible,

infected, or removed from the infection, commonly known as an SIR model [73].

While in pharmacokinetic compartment models, the compartments may represent

the concentration of particular drugs in various organs in a person’s body.

If the transition between compartments are Markovian, i.e., they do not depend

on the ‘age’ of the system, the dynamics can be captured by standard ODE models.

In such models, the time when ‘particles’ leave a compartment is not dependent on

how long they have spent in the compartment. If the behaviour of the particles is

dependent on how long they have been in a compartment, then the mathematical

formulation of the compartment model can no longer be captured by autonomous

ODEs. There are many examples of systems in which the length of time particles

have spent in a given state, represented as a compartment, will affect their subse-

quent behaviour. Such systems are said to have a history dependence. There are a

variety of methods of capturing the system’s history dependence, including the use
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of non-local operators such as integro-differential terms and fractional derivatives

[74, 75, 65, 44, 43, 59, 21, 20, 14, 130, 144]. The growing interest in fractional ODE

models can, in part, be attributed to the popularity of fractional derivatives in PDEs

[42].

The original epidemiological compartment model was introduced by Kermack

and McKendrick [73]. They proposed a three compartment model, commonly re-

ferred to as the SIR model. The model splits the population into three classes, those

susceptible (S), infected (I) and recovered (or removed) (R) from the infection. In

this model individuals begin susceptible to the infection, through interaction with

an infected individual they may become infected and moved to the infected class,

before finally recovering from the disease and developing immunity to the infection.

This can be described by the ODE system,

dS

dt
= λ− βSI − γS, (1.4)

dI

dt
= βSI − ωI − γI, (1.5)

dR

dt
= ωI − γR, (1.6)

in which λ and γ are the birth and death rates respectively. In these equations it is

assumed that birth and death rates are the same for all compartments. Susceptible

individuals become infected after contact with an infected individual with probabil-

ity β and 1
ω

is the expected infected time before individuals recover. All individuals

are subject to the same recovery rate regardless of how long they have been infected.

Many variations of the SIR model have been proposed [64], typically through

the introduction of a new state, resulting in an additional compartment, or creating

a new path between states. Some SIR extensions include; the possibility for waning

immunity after an individual has recovered from an infection; and having an incuba-

tion time before infected individuals become infectious. These extensions produce

autonomous, coupled ODE systems. The limitations of autonomous ODE models
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can be seen in epidemiological applications when considering a chronic infection. If

a disease is known to be chronic, the longer an individual has been infected, the less

likely they are to recover [126]. This property cannot be captured by a standard

ODE epidemic model.

The earliest non-autonomous SIR model is the age-structured SIR model intro-

duced by Kermack and McKendrick in 1932 [74], in the form of integro-differential

equations. The age-structuring of this model refers to the ‘age’ of the infection.

Given that the length of time that an individual is infected will affect the dynamics,

the model incorporates a history dependence. In such a model individuals who have

been infected for different amounts of time may be subject to different recovery

probabilities. This model reduces to the standard Eqs. (1.4), (1.5) and (1.6) when

individuals have the same chance of recovering, regardless of how long they have

been infected.

A more recent approach to incorporating history dependence into compartment

models is to consider a fractional-order compartment model. We have derived frac-

tional SIR models by allowing for the inclusion of memory effects on the infectivity

or recovery of the infection [21, 20, 22]. Fractional pharmacokinetic models allow

for the modelling of drugs which lead to long term accumulation [42, 44, 43, 59].

The inclusion of memory effects through fractional derivatives in economic models

has also been considered [145, 146]. We have also derived a general fractional order

compartment model that can be adopted to different applications [14].

Our approach in deriving fractional order compartment models has been to con-

sider an underlying stochastic process, representing a CTRW between compartments

[21, 20, 14, 22, 130]. This is analogous to the derivation of PDEs from CTRWs, dis-

cussed in Section 1.2. Using a CTRW, a compartment model can be derived with an

arbitrary survival probability density. Choosing a memoryless survival density will

produce a standard compartment model, while choosing a heavy-tailed power-law

density leads to a fractional-order compartment model. This type of derivation is

used to produce different sorts of fractional order SIR models including; a fractional
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recovery SIR model in Chapter 2 [21]; a fractional infectivity SIR model in Chapter

4 [20]; a fractional infectivity with fractional recovery SIR model in Chapter 5 [22];

and a general fractional order compartment model in Chapter 3 [14].

1.5 Introductory Fractional Calculus

A cursory understanding of fractional calculus, specifically fractional derivatives,

is fundamental to this thesis. Here I present a set of definitions and properties

of the necessary fractional derivatives to understand the fractional models derived

throughout this thesis.

The canonical definition for the fractional integral, also known as the Riemann-

Liouville integral, is given by,

0D−αt f(x, t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(x, τ)dτ, (1.7)

for α ∈ R+. This definition is a generalisation of the Cauchy n-fold integral, extend-

ing n ∈ N to allow for all positive reals.

Unlike integer order derivatives, there are multiple, contradictory definitions for

fractional derivatives [115, 128, 121, 89]. Riemann-Liouville, Caputo and Grünwald-

Letnikov fractional derivatives will feature throughout this thesis. These fractional

derivatives are introduced in this section along with the generalised fractional deriva-

tive and Riesz space fractional derivative. The Riemann-Liouville fractional deriva-

tive, with order α ∈ R+, is given by taking an integer order derivative of the

Riemann-Liouville fractional integral [115], defined as,

RLDα0,tf(x, t) =
∂m

∂tm
0D−(m−α)

t f(x, t) =
1

Γ(m− α)

∂m

∂tm

∫ t

0

(t− τ)m−α−1f(x, τ)dτ,

(1.8)

with m − 1 ≤ α < m and m ∈ N. The fractional derivative can be seen as a

generalisation of an integer order derivative explicitly in Laplace space. The Laplace
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transform, from t to s, of the fractional derivative is,

L
{
RLDα0,tf(x, t)

}
= sαL{f(x, t)} −

m−1∑
k=0

sk 0Dα−k−1
t f(x, t)

∣∣
t=0
. (1.9)

However, the initial conditions required for this Laplace transform are in the form of

a fractional integral over the function’s history [66]. The Caputo fractional derivative

was proposed [34] to enable standard initial conditions. The Caputo fractional

derivative, with order α ∈ R+ is defined as,

CDα0,tf(x, t) = 0D−(m−α)
t

∂m

∂tm
f(x, t) =

1

Γ(α)

∫ t

0

(t− τ)α−1 ∂
m

∂τm
f(x, τ)dτ, (1.10)

with m− 1 ≤ α < m. The Laplace transform of the Caputo fractional derivative is,

L{ CDα0,tf(x, t)} = sαL{f(x, t)} −
m−1∑
k=0

sα−k−1∂
kf(x, t)

∂tk

∣∣∣∣
t=0

, (1.11)

for m − 1 ≤ α < m, for m ∈ N. The initial conditions here involve integer order

derivatives at a point, and the Caputo derivative of a constant is zero. Some re-

searchers cite these as reasons to use the Caputo derivative rather than the Riemann-

Liouville derivatives [34]. However a disadvantage of the Caputo derivative is that it

does not limit to an ordinary derivative in the limit as α→ (m−1)+ [89]. Moreover,

despite the differences between the Riemann-Liouville and Caputo derivatives, an

elementary relationship exists between the two derivatives,

RLDα0,tf(x, t) = CDα0,tf(x, t) +
m−1∑
k=0

tk−α

Γ(1− α + k)

∂kf(x, t)

∂tk

∣∣∣∣
t=0

. (1.12)

The two derivatives are equivalent if,

∂kf(x, t)

∂tk

∣∣∣∣
t=0

= 0, (1.13)

for all k = 0, 1, ...,m− 1.
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The third fractional derivative, that is widely used in this thesis, is the Grünwald-

Letnikov derivative, defined by,

GLDα0,tf(x, t) = lim
h→0,nh=t

h−α
n∑
k=0

(−1)k
(
p

k

)
f(x, t− kh). (1.14)

This derivative is equivalent to the Riemann-Liouville derivative for functions f(x, t),

which are sufficiently smooth around t = 0. This equivalence can be seen more

clearly in the alternate definition for the Grünwald-Letnikov derivative [89],

GLDα0,tf(x, t) =
m−1∑
k=0

tk−α

Γ(k + 1− α)

∂kf(x, t)

∂tk

∣∣∣∣
t=0

+
1

Γ(m− α)

∫ t

0

(t−τ)m−α−1∂
mf(x, t)

∂tm
dτ.

(1.15)

The Grünwald-Letnikov derivative is included here as it’s limit form provides a basis

for numerical schemes for fractional-order differential equations [159]. This is done

by considering a small enough h and taking a finite sum approximation.

The generalised fractional derivative is typically defined through it’s Laplace

transform,

L{ GDα0,tf(x, t)} = sαL{f(x, t)}, (1.16)

which is equivalent to the Riemann-Liouville derivative, Eq. (1.8), when 0 ≤ α < 1

and x(t) is sufficiently regular around t = 0. A more formal definition for the

generalised fractional derivative is provided in [89].

Another common fractional derivative is the Riesz fractional derivative [124].

This derivative is typically derived through it’s Fourier transform [30] rather than

it’s Laplace transform,

F {Rα
xf(x, t)} = −|ω|αF (ω, t), (1.17)

where F (ω, t) is the Fourier transform of f(x, t). This derivative is used commonly

in ‘space’ fractional systems, however this is beyond the scope of this thesis and will

not be discussed further.
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I have presented the partial derivative form of the fractional derivatives. Orig-

inally these derivatives were proposed as total derivatives, however it has become

common to use the same notation for fractional derivatives, regardless of whether

they are being taken of a function with one or more variables. Hence when we

consider ODE systems, we will use the same notation as that of the PDE systems.

While all the fractional derivatives presented above are valid for α ∈ R+, from

this point forward I limit my discussion of these derivatives to the 0 ≤ α < 1

case. This is due to their association with power-law, heavy tailed distributions,

[67] trapping [7, 21] and subdiffusion [106] processes. It is with these applications in

mind that I have incorporated fractional derivatives into the ODE [21, 20, 14, 22, 19]

and PDE [17, 23] models.

I have constrained this very brief introduction on fractional calculus to the defi-

nitions and properties that I make use of in the later chapters of this thesis. For a

more thorough introduction into fractional calculus please see [115, 127, 107, 121].

1.6 Generalized Caputo Models with Unknown Derivation Methods

The major motivation for Part I of this thesis is to introduce and implement a

systematic approach for including fractional differential operators into ODE models.

Our approach, based on underlying stochastic process with history dependence, leads

to the formal introduction of fractional differential operators. This avoids physical

problems that arise when integer order derivatives are simply replaced with fractional

derivatives. To focus on these problems, consider the following ad hoc fractional SIR

model:

dα1S

dtα1
= λ− βSI − γS, (1.18)

dα2I

dtα2
= βSI − ωI − γI, (1.19)

dα3R

dtα3
= ωI − γR. (1.20)
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An assumption of the SIR model is that the flux out of one compartment matches the

flux into a corresponding one i.e. the number of individuals leaving the susceptible

compartment, due to becoming infected, will match the number of incoming infected

individuals. The flux-balance is violated when α1 6= α2. A similar violation occurs

when α2 6= α3, resulting in a flux-balance violation of the number of individuals

recovering from the infection.

If we let [a] denote the dimensions of the parameter a, and carry out a simple

dimensional analysis of this system then: from Eq. (1.18) the dimensions of the

parameters are [λ] = time−α1 , [β] = time−α1 , [γ] = time−α1 , from Eq. (1.19)

[β] = time−α2 , [ω] = time−α2 , [γ] = time−α2 and from Eq. (1.20) [ω] = time−α3 ,

[γ] = time−α3 . This analysis highlights potential inconsistent dimensions of the

model parameters. Similar issues arising from ad hoc fractional models were noted by

Dokoumetzidis, Magin and Macheras, in the context of fractional pharmacokinetic

models [43, 44].

To reconcile both the flux balance and dimensional issues, we require α1 = α2

and α2 = α3; i.e., α = α1 = α2 = α3. If we now add Eqs. (1.18), (1.19) and (1.20)

and define the total population, N , as N = S + I +R then,

dαN

dtα
= λ− γN. (1.21)

If the birth rate is equal to the death rate then λ−γN = 0, which requires dαN
dtα

= 0.

If dα

dtα
is a Riemann-Liouville fractional derivative, this would imply N = 0. If dα

dtα
is

a Caputo fractional derivative this particular issue is avoided. The resulting system,

dαS

dtα
= λ− βSI − γS, (1.22)

dαI

dtα
= βSI − ωI − γI, (1.23)

dαR

dtα
= ωI − γR, (1.24)
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where dα

dtα
is a Caputo fractional derivative is an SIR model with a history dependence

but this is a very restricted generalisation and there is no obvious physical mechanism

for the fractional derivative. In an SIR model with integer order deriviatives, the

parameters have a clear physical interpretation and can be easily observed, i.e. λ

represents the number of births per year. However in the fractional model governed

by Eqs. (1.22), (1.23) and (1.24), the physical interpretation of the parameters is

less clear, for example λ represents the number of births per year to the −α. Our

systematic approach for the incorporation of fractional derivatives, as outlined in

Part I, resolves the above issues.

1.7 Discretisation of Fractional-Order Equations

The use of fractional derivatives within models can lead to difficulties in finding

exact algebraic solutions. Many numerical methods have been proposed to numeri-

cally solve fractional ODEs [41, 156, 76, 120, 59, 161, 39, 16]. However the history

dependence of fractional derivatives can make stable numerical methods complex

to implement [19]. The approach considered throughout this thesis, to numerically

deal with fractional-order ODEs, is to derive a corresponding discrete time random

walk (DTRW) master equation. This DTRW is derived such that it limits to the

CTRW when the length of the time steps approaches zero. These master equa-

tions can then be used as the basis for a stable numerical scheme. Furthermore,

the equivalence of the Riemann-Liouville and Grünwald-Letnikov fractional deriva-

tives [121] can be exploited in producing a discretisation. The Grünwald-Letnikov

fractional derivative allows the Riemann-Liouville fractional derivative, used in our

fractional-order ODEs, to be expressed as an infinite sum, Eq. (1.15), which can be

truncated for a numerical scheme. This approach is considered for the discretisation

of the fractional recovery SIR model in Chapter 6 and for a general fractional-order

compartment model in Chapter 7.
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1.8 Fractional-order Models

The focus of this thesis is the derivation of stochastically consistent fractional-order

equations. The thesis is organised as follows. Part I, consisting of Chapters 2 - 7,

focuses on the derivation of fractional order ODE models and their discretisations.

This includes; derivation of an SIR model with a fractional recovery term; a deriva-

tion for a general multi-compartment system, where each compartment can have a

multiple Markovian leaving terms and a single fractional leaving term; a derivation

of a fractional infectivity SIR model; derivation of a fractional infectivity and frac-

tional recovery SIR model; a discretisation of the fractional recovery SIR model; and

a discretisation for general fractional compartment models.

Part II, consisting of Chapters 8 - 10, is concerned with the derivation of frac-

tional PDE models. This includes; derivation of a fractional advection equation

without diffusion; derivation for a time-fractional geometric Brownian motion equa-

tion; and derivation for the governing equation for anomalous diffusion on a growing

domain.

Part III, consisting of Chapters 11 - 12, describes a novel numerical approach for

solving fractional-order ODEs and PDEs via piecewise approximations.

Table 1.1 presents some of the fundamental equations derived throughout Parts

I and II of this thesis.

16



Type Example Chapter

frODEs

dI
dt

= ωS(t)I(t)− γI(t)− µθ(t, 0) 0D1−α
t

(
I(t)
θ(t,0)

)
2

dρk
dt

= q+
k (t)− ωk(t)ρk(t)− τ−αkk Θk(t, 0) 0D1−αk

t

(
ρk(t)

Θk(t,0)

)
3

dI
dt

= ω(t)S(t)Φ(t, 0) 0D1−α
t

(
I(t)

Φ(t,0)

)
− µ(t)I(t)− γ(t)I(t) 4

dI(t)
dt

= ω(t)S(t)θ(t,0)
τβ 0D1−β

t

(
I(t)
θ(t,0)

)
− θ(t,0)

τα 0D1−α
t

(
I(t)
θ(t,0)

)
− γ(t)I(t) 5

frPDEs

∂ρ(x,t)
∂t

= − ∂
∂x

(
v(x, t) 0D1−α

t ρ(x, t)
)

8

∂S(x,t)
∂t

= Dα
∂
∂x

(
x2 ∂

∂x 0D1−α
t S(x, t)− βx2F (x) 0D1−α

t S(x, t)
)

9

∂ρ(y,t)
∂t

= Dα
∂2

∂y2

(
e−rt g0C1−α

t (ρ(y, t)ert)
)
− ry ∂ρ(y,t)

∂y
− rρ(y, t) 10

Table 1.1: Some Fundamental Equations Derived in this Thesis
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Part I

Fractional-Order ODE Models
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Chapter 2

Fractional Recovery SIR

2.1 Introduction

This Chapter is based on the publication [21]. We derive a fractional recovery SIR

model from an underlying physical stochastic process. We consider a variation of

an SIR model where recovery from the disease is dependent on the time since infec-

tion. The model is derived from a directed CTRW through the SIR compartments,

with the time in the infectious compartment drawn from a waiting time probabil-

ity density. We show that, in the case of a power-law tailed waiting time density,

the governing equations become a set of fractional-order differential equations. The

expected recovery time diverges in a power-law waiting time density and this leads

to chronic infection in the fractional recovery SIR model. As the fractional-order

derivative operates on the recovery we refer to this as the fractional recovery SIR

model. There have been several studies of semi-Markovian epidemic models in the

recent literature [72, 109] that are related to the approach presented here, but they

are not formulated as coupled integro-differential equations.

In Section 2.2 we derive an SIR model with an arbitrary waiting time before

transitioning from the infectious compartment to the recovered compartment. This

general model is shown to be consistent with the structured formulation of Kermack

and McKendrick [74, 75]. We also derive an integral equation representation of the

model and show that it reduces to the integral equations presented by Hethcote

and Tudor [65] when the parameters are constants. In Section 2.3 we show that in
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the case of a power-law waiting time distribution in the infectious compartment we

obtain fractional-order derivatives in the model and we present the governing equa-

tions for the fractional recovery SIR model. Chapter 6 contains the discretisation

and numerical scheme for the model derived in this Chapter.

2.2 SIR as a Continuous Time Random Walk

An underlying assumption in the simplest SIR models is that the transition of an

individual through each of the compartments is independent of the amount of time

since the individual entered the compartment. This assumption is mathematically

equivalent to assuming that the time spent in each compartment is exponentially

distributed. This is a very restrictive assumption with no a priori reason for it to

hold. In some diseases with the potential for chronic infection, such as human papil-

lomavirus (HPV), there is evidence of power-law tails in the distribution of infected

times [126]. We have incorporated an arbitrary time in the infected compartment

in our derivation of a generalised SIR model below by way of a CTRW [111, 133].

In this Chapter we derive an SIR model with births and deaths. This derivation

may be adapted to any compartment model where the transition out of a com-

partment is dependent on the length of time since entering the compartment. This

generalisation is presented in Chapter 3.

In the standard manner, we separate the population into three compartments,

Susceptible (S), Infectious (I), and Recovered (R) [64]. The population is composed

of individuals who are born into the S compartment and undergo a directed CTRW

on the S, I, and R, compartments until they die and are removed from consideration.

As in the standard model, individuals may only move from the S compartment to the

I compartment and then to the R compartment. The transition to the I compartment

occurs when an individual becomes infected and the transition to the R compartment

occurs when an individual recovers from the infection. The derivation of fractional

diffusion equations [67, 106], fractional reaction diffusion equations [62, 143, 53],

fractional Fokker-Planck equations [28, 142, 61] and fractional chemotaxis diffusion
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equations [82, 54] from CTRWs has been well studied and provides clear physical

motivation for each of these systems. Our derivation of the evolution equations

for the SIR model and fractional SIR model from a stochastic CTRW process with

reactions is similar to the derivation of the fractional Fokker-Planck equation with

reactions [7] and the derivation of the master equations for CTRWs with reactions

on networks [8].

Consider an individual who is infectious. The probability that they will infect a

susceptible person in the time t to t+δt is assumed to be a product of the probability

that the infectious person will encounter a susceptible and the probability that an

encounter with a susceptible will result in an infection. Without loss of generality

we can express the probability that an encounter with a susceptible will result in

infection by ω(t)δt + o(δt), identifying ω(t) as the rate of becoming infected per

time interval δt. Given that there are S(t) susceptible people at time t, this implies

that the probability of an infected individual creating a new infected individual in

the time interval t to t + δt is ω(t)S(t)δt + o(δt). We represent the number of

individuals entering the infected state at time t, i.e. the flux, by q+(I, t), which can

be recursively constructed from the flux at earlier times. Explicitly we have

q+(I, t) =

∫ t

−∞
ω(t)S(t)Φ(t, t′)q+(I, t′)dt′, (2.1)

where Φ(t, t′) is the probability that an infected individual has survived in the in-

fected state until time t given that they entered the state at time t′. Let i(−t′, 0)

be the number of individuals who became infected at time t′ < 0 and who are still

infected at time 0, hence,

q+(I, t′) =
i(−t′, 0)

Φ(0, t′)
, t′ < 0. (2.2)

23



We can then write Eq. (2.1) for t ≥ 0 as,

q+(I, t) =

∫ t

0

ω(t)S(t)Φ(t, t′)q+(I, t′)dt′ +

∫ 0

−∞
ω(t)S(t)

Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′. (2.3)

For an individual to be in the infected compartment at time t they must have

become infected at time t or at some prior time t′ and remained in the compartment

until t. The number infected at time t can therefore be found from the flux, and the

survival probability, as follows,

I(t) = I0(t) +

∫ t

0

Φ(t, t′)q+(I, t′)dt′. (2.4)

Here we have defined the function,

I0(t) =

∫ 0

−∞

Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′. (2.5)

We assume that there are two possible ways in which an individual can move from

the infectious compartment; they can either recover from the disease and move to

the R compartment, or they can die and be removed from consideration. If these

two possibilities are independent we may write,

Φ(t, t′) = φ(t− t′)θ(t, t′) (2.6)

where φ(t− t′) is the probability of surviving the jump transition to the R compart-

ment from time t′ to time t, and θ(t, t′) is the probability of surviving death from

time t′ until time t. If we have a time dependent death rate such that the probability

of death occurring in the interval t to t+ δt is γ(t)δt+ o(δt), then the death survival

can be written as,

θ(t, t′) = e−
∫ t
t′ γ(s)ds. (2.7)
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The rate of change of the population in the infectious compartment can be found

by differentiating Eq. (2.4) to get,

dI(t)

dt
= q+(I, t)−

∫ t

0

ψ(t− t′)θ(t, t′)q+(I, t′)dt′ − γ(t)

∫ t

0

φ(t− t′)θ(t, t′)q+(I, t′)dt′ +
dI0(t)

dt

= q+(I, t)−
∫ t

0

ψ(t− t′)θ(t, t′)q+(I, t′)dt′ − γ(t)I(t) + θ(t, 0)
d

dt

(
I0(t)

θ(t, 0)

)
.

(2.8)

Here we have used the fact that, φ(0) = 1, and that the derivative of the jump

survival function, φ(t), is a waiting time probability density function, here denoted

ψ(t), i.e.,

dφ(t)

dt
= −ψ(t). (2.9)

Substituting Eq. (2.3) into Eq. (2.8) gives,

dI(t)

dt
=ω(t)S(t)

(∫ t

0

φ(t− t′)θ(t, t′)q+(I, t′)dt′ + I0(t)

)
−
∫ t

0

ψ(t− t′)θ(t, t′)q+(I, t′)dt′ − γ(t)I(t) + θ(t, 0)
d

dt

(
I0(t)

θ(t, 0)

)
.

(2.10)

In order to obtain a generalised master equation we need to express the right hand

side of this equation in terms of I(t). We first use the definition of I(t) in Eq. (2.4),

to write,

dI(t)

dt
= ω(t)S(t)I(t)−

∫ t

0

ψ(t− t′)θ(t, t′)q+(I, t′)dt′−γ(t)I(t)+θ(t, 0)
d

dt

(
I0(t)

θ(t, 0)

)
.

(2.11)

Further, noting that,

θ(t, 0) = θ(t, t′)θ(t′, 0) ∀ 0 < t′ < t, (2.12)

we can write Eq. (2.4) as,

I(t)

θ(t, 0)
=

I0(t)

θ(t, 0)
+

∫ t

0

φ(t− t′)q
+(I, t′)

θ(t′, 0)
dt′. (2.13)
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As the right hand side contains a convolution, taking the Laplace transform, L, of

the equation with respect to time and rearranging gives,

L
{
q+(I, t)

θ(t, 0)

}
= L

{
I(t)

θ(t, 0)

}
1

L{φ(t)} − L
{
I0(t)

θ(t, 0)

}
1

L{φ(t)} . (2.14)

This result can then be used to write,

∫ t

0

ψ(t− t′)q
+(I, t′)

θ(t′, 0)
dt′ = L−1

{L{ψ(t)}
L {φ(t)}L

{
I(t)

θ(t, 0)

}}
− L−1

{L{ψ(t)}
L {φ(t)}L

{
I0(t)

θ(t, 0)

}}
,

=

∫ t

0

K(t− t′)
(

I(t′)

θ(t′, 0)
− I0(t′)

θ(t′, 0)

)
dt′.

(2.15)

where we have defined the memory kernel,

K(t) = L−1

{L{ψ(t)}
L {φ(t)}

}
. (2.16)

Equation (2.12) allows us to write Eq. (2.11) as,

dI(t)

dt
= ω(t)S(t)I(t)−θ(t, 0)

∫ t

0

ψ(t−t′)q
+(I, t′)

θ(t′, 0)
dt′−γ(t)I(t)+θ(t, 0)

d

dt

(
I0(t)

θ(t, 0)

)
,

(2.17)

which, using Eq. (2.15), becomes,

dI(t)

dt
= ω(t)S(t)I(t)−γ(t)I(t)−θ(t, 0)

(∫ t

0

K(t− t′)
(

I(t′)

θ(t′, 0)
− I0(t′)

θ(t′, 0)

)
dt′ − d

dt

(
I0(t)

θ(t, 0)

))
.

(2.18)

This equation is the generalised master equation that describes the time evolution

of the number of infected individuals in an SIR model with arbitrary waiting time

in the infectious compartment.
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Simple flux balance considerations give the master equations for the other two

states. The equations for the susceptible and recovered populations are,

dS(t)

dt
= λ(t)− ω(t)S(t)I(t)− γ(t)S(t), (2.19)

dR(t)

dt
= θ(t, 0)

(∫ t

0

K(t− t′)
(

I(t′)

θ(t′, 0)
− I0(t)

θ(t′, 0)

)
dt′ − d

dt

(
I0(t)

θ(t, 0)

))
− γ(t)R(t).

(2.20)

Equations (2.18), (2.19), and (2.20) are the governing, or generalised master, equa-

tions for an SIR model with a general recovery probability.

2.2.1 Relation to the Classic SIR Model

The master equations for the SIR model with a general recovery probability reduce

to the classic SIR model equations, with births and deaths, if the probability of

not clearing an infection is exponentially distributed, i.e. φ(t) = exp(−µt). In

this case the probability of an individual clearing an infection is not dependent on

the amount of time that the person has already been infected. Subsituting the

exponential distribution for φ(t) into the kernel, Eq. (2.16), we obtain,

K(t− t′) = µδ(t− t′), (2.21)

where δ(t) is the Dirac delta function. Also noting that as φ(t) = exp(−µt) we can

write,

d

dt

(
I0(t)

θ(t, 0)

)
= −µ I0(t)

θ(t, 0)
. (2.22)

We can now substitute the expression for the kernel, Eq. (2.21), into the generalised

master equations, Eqs. (2.18), (2.19), and (2.20), to yield the classic SIR equations,

dS(t)

dt
= λ(t)− ω(t)S(t)I(t)− γ(t)S(t), (2.23)

dI(t)

dt
= ω(t)S(t)I(t)− µI(t)− γ(t)I(t), (2.24)

dR(t)

dt
= µI(t)− γ(t)R(t). (2.25)
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2.2.2 Relation to the Kermack and McKendrick Age-Structured Model

The master equations for the SIR model with a general recovery probability are

formally equivalent to a reduction of the general SIR model presented by Kermack

and McKendrick [74]. The derivation of the Kermack and McKendrick model from

our stochastic process is presented in Appendix A. Here we show how the master

equations, Eqs. (2.18), (2.19), (2.20), can be obtained from a reduction of the

Kermack and McKendrick SIR model equations given by,

dS

dt
= λ−

∫ ∞
0

ωi(a, t)daS(t)− γS(t), (2.26)

∂i

∂t
+

∂i

∂a
= −β(a)i(a, t)− γi(a, t), (2.27)

dR

dt
=

∫ ∞
0

β(a)i(a, t)da− γR(t), (2.28)

I(t) =

∫ ∞
0

i(a, t)da. (2.29)

In this model i(a, t) is the number of individuals who are infected at time t and who

have been infected since time t − a. The equivalence can be seen by making the

identification,

i(a, t) = Φ(t, t− a)q+(I, t− a). (2.30)

Then Eq. (2.29) is equivalent to Eq. (2.4), provided that the separability assump-

tion, Eq. (2.6), holds. If we assume that i(a, t) → 0 as a → ∞. Integrating Eq.

(2.29) with respect to a then gives

dI

dt
− i(0, t) = −

∫ ∞
0

β(a)φ(a)θ(t, t− a)q+(I, t− a)da− γI. (2.31)

Identifying β(a)φ(a) = ψ(a) and i(0, t) = q+(I, t), we can then split the integral to,

dI

dt
= i(0, t)−

∫ t

0

ψ(a)θ(t, t−a)q+(I, t−a)da−
∫ ∞
t

ψ(a)θ(t, t−a)q+(I, t−a)da−γI.
(2.32)
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This allows for the use of the same Laplace transform method as in Eqs. (2.14)-

(2.18), hence with a change of variable of integration t′ = t− a becoming,

dI

dt
= ωSI − θ(t, 0)

∫ t

0

K(t− t′)
(

I(t′)

θ(t′, 0)
− I0(t′)

θ(t′, 0)

)
dt′ + θ(t, 0)

d

dt

(
I0(t)

θ(t, 0)

)
− γI.
(2.33)

Using the result that,

θ(t, 0)
d

dt

(
I0(t)

θ(t, 0)

)
= −

∫ 0

−∞
ψ(t− t′)θ(t, t′)q+(I, t′)dt′. (2.34)

Hence we have recovered the generalised master equation given in Eq. (2.18) with

time independent rates.

2.2.3 Integral Equation Formulation

The master equations for the fractional recovery SIR model can be formulated as

a coupled set of integral equations. This enables comparisons with other related

models and it enables the application of integral equation methods for analysis of

equilibrium states. To formulate the system as integral equations we begin by noting

that Eqs. (2.1), (2.3) can be substituted into Eq. (2.4) to yield,

q+(I, t) = ω(t)S(t)I(t), (2.35)

and then Eq. (2.4) can be re-written to obtain the integral equation for the time

evolution of the infected state,

I(t) = I0(t) +

∫ t

0

Φ(t, t′)ω(t′)S(t′)I(t′) dt′. (2.36)

The integral equation for the time evolution of the susceptible state can be

obtained by direct integration of Eq. (2.19), to yield,

S(t) = S(0) +

∫ t

0

λ(t′) dt′ −
∫ t

0

ω(t′)S(t′)I(t′) dt′ −
∫ t

0

γ(t′)S(t′) dt′. (2.37)
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Note that the total population,

N(t) = S(t) + I(t) +R(t), (2.38)

and the master equations with a fractional-order recovery were obtained with,

dN

dt
= λ(t)− γ(t)N(t). (2.39)

We can combine Eqs. (2.38) and (2.39) to obtain the differential equation for the

time evolution of the recovery state in the form,

dR

dt
= −dI

dt
− dS

dt
+ λ(t)− γ(t)S(t)− γ(t)I(t)− γ(t)R(t), (2.40)

and then integrate to find ,

R(t) = R(0)− I(t) + I(0)− S(t) + S(0) +

∫ t

0

λ(t′) dt′

−
∫ t

0

γ(t′)S(t′) dt′ −
∫ t

0

γ(t′)I(t′) dt′ −
∫ t

0

γ(t′)R(t′) dt′. (2.41)

After substituting for I(t) and S(t) using Eqs. (2.36) and (2.37) we have the integral

equation for the time evolution of the recovered state,

R(t) = R(0) + I0(0)− I0(t)−
∫ t

0

Φ(t, t′)ω(t′)S(t′)I(t′) dt′ +

∫ t

0

ω(t′)S(t′)I(t′) dt′

−
∫ t

0

γ(t′)I(t′) dt′ −
∫ t

0

γ(t′)R(t′) dt′. (2.42)

Equations (2.37), (2.36) and (2.42), provide a general set of coupled integral

equations for fractional recovery SIR models. The integral equation for the sus-

ceptible state, Eq. (2.47), can be shown to be equivalent to the integral equation

obtained from S(t) = N(t)− I(t)−R(t) in the special case where λ(t) = γ(t)N(t),

and thus N(t) = N(0) is constant.
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2.2.4 Reduction to the Hethcote and Tudor Endemic Disease Model

If γ(t), ω(t) and λ(t) are constant in time then the integral equations, (2.37), (2.36),

(2.42) reduce to the integral equation model for endemic infection diseases that was

introduced by Hethcote and Tudor [65].

We first note that, with γ constant,

Φ(t, t′) = φ(t− t′)e−γ(t−t′), (2.43)

and,

dY (t)

dt
+ γY (t) = e−γt

d

dt

(
eγtY (t)

)
, (2.44)

Substituting Eq. (2.43) into Eq. (2.36), with ω also constant, we have,

I(t) = I0(t) +

∫ t

0

φ(t− t′)e−γ(t−t′)ωS(t′)I(t′) dt′. (2.45)

Using Eq. (2.44) we can re-write Eq. (2.19), with ω, γ and λ constant as,

d

dt

(
eγtS(t)

)
= eγtλ− eγtωS(t)I(t), (2.46)

and then integrate with respect to time to obtain,

S(t) = e−γtS(0) +

∫ t

0

e−γ(t−t′)λ dt′ −
∫ t

0

e−γ(t−t′)ωS(t′)I(t′) dt′. (2.47)

Using Eq. (2.44) we can re-write Eq. (2.40), with ω, γ and λ constant as,

d

dt

(
eγtR(t)

)
= λeγt − d

dt

(
eγtS(t)

)
− d

dt

(
eγtI(t)

)
, (2.48)

and then integrate with respect to time to obtain,

R(t) = R(0)e−γt − I(t) + I(0)e−γt − S(t) + S(0)e−γt +

∫ t

0

λe−γ(t−t′) dt′. (2.49)
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We now substitute for I(t) and S(t) using Eqs. (2.45), (2.47) to obtain,

R(t) = R(0)e−γt+I0(0)e−γt−I0(t)+

∫ t

0

ωS(t′)I(t′)e−γ(t−t′) (1− φ(t− t′)) dt′. (2.50)

Equations (2.45) and (2.50) recover the integral equations for the infected state

and the recovery state in the endemic infection diseases model introduced in [65].

The integral equation for the susceptible state in this case can be shown to be

equivalent to the integral equation obtained from S(t) = N − I(t) − R(t) with

N(t) = N(0) = λ/γ.

2.3 Fractional Recovery SIR Model

When a person is persistently infected for a long period period of time, with little

chance of spontaneous recovery, they are said to be chronically infected. This type

of behaviour is not captured by the assumptions of the standard SIR model, i.e.,

exponentially distributed waiting times. We can incorporate chronic infections by

having, at least asymptotically, the rate of clearing the disease decrease with the

amount of time that an individual has been infected. In this case the ‘hazard rate’,

h(t), defined as the rate of recovering at time t conditional on surviving until time

t, will be a monotonically decreasing function. In general we can write the hazard

rate as,

h(t) =
ψ(t)

φ(t)
. (2.51)

All power-law tailed distributions have an asymptoticly decreasing hazard rate. In

the tail of the distribution ψ(t) ∼ αt−α−1 and φ(t) ∼ t−α. Hence the hazard rate

will asymptote to α
t
, which is a monotonically decreasing function. As such a power-

law tailed waiting time distribution may be an appropriate distribution in modelling

chronic infections, although it is not the only choice for distributions with a decreas-

ing hazard rate. If we consider a power-law exponent α < 1 then the first moment

of the distribution will not exist, and the expected waiting time will diverge. Thus
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using a power-law tailed waiting time distribution in our SIR model can lead to

some individuals becoming “trapped” in the infectious compartment until they die.

We will take the power-law tailed Mittag-Leffler distribution as our waiting time

distribution. Using this distribution our general SIR model will reduce to a set of

differential equations with a fractional-order time derivative on the recovery transi-

tion.

The Mittag-Leffler probability density is defined by [67],

ψ(t) =
tα−1

τα
Eα,α

(
−
(
t

τ

)α)
, (2.52)

with 0 < α ≤ 1. Here Eα,β(z) is the two parameter Mittag-Leffler function, defined

by,

Eα,β(z) =
∞∑
k=0

zk

Γ(kα + β)
. (2.53)

The Mittag-Leffler distribution limits to an exponential distribution in the case

α = 1. For 0 < α < 1 the density has a power-law tail at long times [29],

ψ(t) ∼ t−1−α. (2.54)

The corresponding survival function is given by,

φ(t) = Eα,1

(
−
(
t

τ

)α)
. (2.55)

The Laplace transform from t to s of the memory kernel, Eq. (2.16), for a

Mittag-Leffler distribution is given by,

Lt[K(t)|s] = s1−ατ−α. (2.56)

Here we use the notation Lt[Y (t)|s] to denote the Laplace transform of Y (t) from t

to s and we use the notation L−1
s [Y (s)|t] to denote the inverse Laplace transform of
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Y (s) from s to t. Without loss of generality we define,

µ = τ−α. (2.57)

We also recall that the Riemann-Liouville fractional derivative, defined by Eq. (1.8)

for 0 < α < 1 is,

0D1−α
t f(t) =

1

Γ(α)

d

dt

∫ t

0

f(t′)

(t− t′)1−α dt
′. (2.58)

The Laplace transform, defined in Eq. (1.9), can be expressed as,

Lt[ 0D1−α
t f(t)|s] = s1−αLt[f(t)|s], (2.59)

for sufficiently smooth f(t). The fractional derivative can also be written as the

following convolution,

0D1−α
t f(t) =

∫ t

0

L−1
s

[
s1−α∣∣t′] f(t− t′)dt′. (2.60)

It follows from Eq. (2.56) and Eq. (2.60) that if the kernel in Eqs. (2.18), (2.19),

(2.20) is obtained from the Mittag-Leffler waiting time density then we obtain the

generalised master equations with fractional recovery,

dS(t)

dt
= λ(t)− ω(t)S(t)I(t)− γ(t)S(t), (2.61)

dI(t)

dt
= ω(t)S(t)I(t)− γ(t)I(t)− θ(t, 0)

(
µD1−α

t

(
I(t)

θ(t, 0)
− I0(t)

θ(t, 0)

)
− d

dt

(
I0(t)

θ(t, 0)

))
,

(2.62)

dR(t)

dt
= θ(t, 0)

(
µD1−α

t

(
I(t)

θ(t, 0)
− I0(t)

θ(t, 0)

)
− d

dt

(
I0(t)

θ(t, 0)

))
− γ(t)R(t). (2.63)

In the following we will refer to the above set of equations as the fractional recovery

SIR model. Letting α = 1 recovers the standard SIR model.
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2.3.1 Equilibrium States

The fractional recovery SIR model is a non-autonomous dynamical system which

can be simplified, by taking the birth, infectivity and death rate to be constant

parameters, λ(t) = λ, ω(t) = ω and γ(t) = γ respectively, giving,

dS(t)

dt
= λ− ωS(t)I(t)− γS(t), (2.64)

dI(t)

dt
= ωS(t)I(t)− γI(t)− e−γt

(
µ 0D1−α

t

(
eγt (I(t)− I0(t))

)
− d

dt

(
eγtI0(t)

))
,

(2.65)

dR(t)

dt
= e−γt

(
µ 0D1−α

t

(
eγt (I(t)− I0(t))

)
− d

dt

(
eγtI0(t)

))
− γR(t). (2.66)

We take the equilibrium state to be (S∗, I∗, R∗), such that,

lim
t→∞

S(t) = S∗, lim
t→∞

I(t) = I∗, lim
t→∞

R(t) = R∗. (2.67)

Taking the limit as t→∞ of Eqs. (2.64), (2.65), and (2.66), and noting that,

lim
t→∞

I0(t) = 0, lim
t→∞

d

dt

(
eγtI0(t)

)
= 0. (2.68)

we have

0 = λ− ωS∗I∗ − γS∗, (2.69)

0 = ωS∗I∗ − lim
t→∞

e−γtµ 0D1−α
t

(
eγt (I(t)− I0(t))

)
, (2.70)

0 = lim
t→∞

e−γtµ 0D1−α
t

(
eγt (I(t)− I0(t))

)
− γR∗. (2.71)

In order to calculate the unevaluated limits in Eqs. (2.70), and (2.71) we consider

a Laplace transform of the terms,

L{e−γt 0D1−α
t

(
eγtJ(t)

)
} = (s+ γ)1−α

(
Ĵ(s)

)
. (2.72)
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In which we have defined,

J(t) = I(t)− I0(t). (2.73)

We can express Eq. (2.72) using a Taylor series expansion,

Ĵ(s)(s+ γ)1−α = Ĵ(s)
(
γ1−α + (1− α)γ−αs+O(s2)

)
. (2.74)

As the Laplace transform is a linear operator we can take the inverse termwise,

producing,

e−γt 0D1−α
t

(
eγt(I(t)− I0(t))

)
= L−1{Ĵ(s)

(
γ1−α + (1− α)γ−αs+O(s2)

)
}, (2.75)

= γ1−αJ(t) + (1− α)γ−α
dJ(t)

dt
+ L−1

(
O(s2)

)
.

(2.76)

The limit of J(t) is,

lim
t→∞

J(t) = I∗. (2.77)

It is then clear that, in the long time limit, the inverse Laplace transform of the

higher order terms of the Taylor expansion will become zero, i.e.

lim
t→0

dJ(t)

dt
= 0, (2.78)

lim
t→0
L−1

(
O(s2)

)
= 0. (2.79)

Thus we can compute the desired limit,

lim
t→∞

e−γt 0D1−α
t

(
eγt (I(t)− I0(t))

)
= γ1−αI∗. (2.80)
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Substituting Eq. (2.80) into Eqs. (2.64), (2.65), and (2.66) yields,

0 = λ− ωS∗I∗ − γS∗, (2.81)

0 = ωS∗I∗ − µγ1−αI∗ − γI∗, (2.82)

0 = µγ1−αI∗ − γR∗. (2.83)

Solving Eqs. (2.81), (2.82), and (2.83) reveals two equilibrium states, the disease

free state,

S∗ =
λ

γ
, I∗ = 0, R∗ = 0, (2.84)

and the endemic state,

S∗ =
µγ1−α + γ

ω
, I∗ =

λ

µγ1−α + γ
− γ

ω
, R∗ =

µλ

µγ + γ1+α
− µγ1−α

ω
. (2.85)

As the population in each compartment can not be negative the endemic equilibrium

can only exist if,

λω > µγ2−α + γ2. (2.86)

When α = 1, the equilibrium states are equivalent to the fixed points of the

classic SIR model with constant parameters. For 0 < α < 1 the equilibrium states

are not fixed points. This invalidates the use of a standard linear stability analysis

around the equilibrium states. However some progress can be made by considering

the integral equation formulation of the fractional recovery SIR model, Eqs. (2.45),

(2.47), and (2.50). After a translation of the equilibrium states to the origin, the

asymptotic behaviour of the resulting system of nonlinear Volterra integral equations

is equivalently given by the asymptotic behaviour of its linearisation as a system

of linear Volterra integral equations [108]. This result was used by Hethcote and

Tudor [65] to infer local stability properties of the equilibrium states of the integral

equations Eqs. (2.45), (2.47), and (2.50). If the results of Hethcote and Tudor [65]

are applied to the special case of the fractional recovery SIR model, where φ(t) is
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defined in Eq. (2.55), then the disease free state, Eq. (2.84), is locally stable if

λω ≤ µγ2−α + γ2 and the endemic equilibrium state, Eq. (2.85), is locally stable

when it exists.

2.4 Summary

We have derived a fractional recovery SIR model that differs from the classic SIR

model by considering the case where the recovery from a disease does not follow

an exponential distribution, but follows a distribution with a power-law tail. The

fractional-order model is biologically motivated by the observation that in some

disease processes, the longer a person is infectious the more likely they will remain

infectious. The fractional-order model permits both a disease free equilibrium state

and an endemic equilibrium state. We have related the fractional-order model to the

generalised SIR models introduced by Kermack and McKendrick. The fractional-

order model that we have derived is different to ad hoc fractional epidemic models

and avoids dimensionality and flux-balance problems. While we have focused on the

derivation of a fractional-order recovery SIR throughout this chapter, we consider the

conditions necessary to result in a fractional-order infectivity SIR model in Chapter

4. Additionally, the derivation of a combined fractional infectivity and fractional

recovery SIR model is discussed Chapter 5. It is natural to extend the derivation of

fractional-order recovery SIR model, outside of epidemic applications, to a general

fractional compartment model, which is considered in Chapter 3.
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Chapter 3

General Fractional Compartment Model

3.1 Introduction

This Chapter is based on the publication [14]. In this Chapter we derive a general

framework for formulating fractional-order compartment models, by considering the

governing equations from an underlying stochastic processes. The stochastic process

models particles entering a compartment, waiting for a random time, and then leav-

ing the compartment. The governing equations we derive describe the time evolution

of an ensemble of particles that are undergoing this process. If the particles that

leave one compartment always enter another compartment the stochastic process

is equivalent to a generalised CTRW [111] with waiting times moderating transi-

tions between compartments. As such, this formalism for the compartment model

dynamics further extends the theory of CTRWs with reactions [62, 53, 158, 7, 114]

and it generalizes recent work on fractional-order SIR models [21, 20], presented

in Chapters 2 and 4. Fractional-order compartment models are obtained when the

waiting time in a compartment is governed by a non-Markovian process, whereby

the probability of leaving the compartment is dependent on the length of time spent

in the compartment. The fractional models can be formulated as age structured

integro-differential models, however the formulation using fractional derivatives en-

ables ready comparison with the growing literature on fractional-order compartment

models. Moreover the age structured integro-differential models can be derived from

the underlying stochastic processes considered here.
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The remainder of this Chapter is organized as follows: In Section 3.2, start-

ing with a stochastic process, we derive the governing equation for an ensemble of

particles in a single compartment. This is reduced to a fractional-order differential

equation by considering a power-law distribution for the time that a particle remains

in the compartment. fractional-order multi-compartment models can be constructed

by linking multiple fractional-order single compartment models. Details on this are

provided in Sections 3.3, and in Section 3.4, examples of fractional-order multi-

compartment models are developed.

3.2 Single Compartment Model

In order to develop a general compartment model we first consider the dynamics

of a single compartment. We derive a generalised master equation that describes

the population of the compartment through time, and show the assumptions that

lead to fractional dynamics. We will then combine multiple single compartments

together to form the general model.

In a single compartment we consider an ensemble of particles. We assume that

each member of this ensemble is undergoing a stochastic process in which; they are

created, they last for a random amount of time, and then they are removed from

the compartment. In general, new particles can be created in this ensemble by a

number of distinct creation processes, and similarly particles can be removed from

the ensemble by a number of distinct removal processes.

We assume that the creation of the particles in the ensemble is governed by NC

distinct creation processes. In the mean field, the arrival flux of particles due to the

ith creation process is labeled βi(t). The expected number of particles created in the

compartment by the creation process between times t and t+ δt, is βi(t)δt+ o(δt).

The total arrival flux, q(t), is the sum of the fluxes due to the creation processes,

q(t) =

NC∑
i=1

βi(t) . (3.1)
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A particle remains in a compartment until removed by one of the removal pro-

cesses. We allow for an arbitrary number NR of Markovian removal processes where

the probability of a particle being removed from the ensemble at time t only de-

pends on the state of the system at time t. For each individual Markovian removal

process, the probability of surviving, from time t0 to t, is Λi(t, t0). The probabil-

ity of surviving all Markovian removal processes from time t0 to t is then given by

Θ(t, t0) =
∏NR

i=1 Λi(t, t0). As a particle can not be created and removed in the same

instance we have Θ(t0, t0) = 1.

In general, the probability that a particle will be removed by the ith Markovian

removal process in the time interval t to t + δt will be λi(t)δt + o(δt). This allows

us to write the survival function as,

Θ(t, t0) = exp

(
−
∫ t

t0

ω(s)ds

)
. (3.2)

where,

ω(t) =

NR∑
i=1

λi(t). (3.3)

From this we can see that the Markovian survival function must obey the semi-group

property,

Θ(t, t0) = Θ(t, u)Θ(u, t0) , (3.4)

for any t0 ≤ u ≤ t. And furthermore,

dΘ(t, t0)

dt
= −ω(t)Θ(t, t0) . (3.5)

We also include a non-Markovian removal process, where the probability that a

particle is removed from the ensemble is dependent on the length of time since the

particle entered the compartment, i.e. if the particle entered the compartment at

time t0 the process at time t will be dependent on the variable t− t0. The survival

probability for the non-Markovian removal process is given by Φ(t), and we require
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that Φ(0) = 1. It can be expressed in terms of a waiting time density, φ(t),

Φ(t) = 1−
∫ t

0

φ(u) du . (3.6)

The waiting time density φ(t) gives the likelihood of waiting in a compartment for

a length of time t having arrived at time 0. From Eq. (3.6) the derivative of the

survival function is,

dΦ(t)

dt
= −φ(t). (3.7)

For a particle to be in the compartment at time t it must have entered the

compartment at some earlier time t0, and survived until time t. We assume that the

various removal processes are independent and hence can say that the probability

of surviving all of the removal processes, given an arrival time of t0, is given by

Φ(t− t0)Θ(t, t0). Thus the number of particles in the compartment at time t, ρ(t),

can be written,

ρ(t) =

∫ t

0

Φ(t− t0)Θ(t, t0) q(t0) dt0 . (3.8)

We have assumed that there are no particles in the compartment before time zero,

i.e. ρ(t) = 0 for t < 0.

To obtain a differential equation that governs the dynamics of the number of

particles in the compartment we take the derivative of ρ. This can be done by using

Leibniz rule for differentiating under the integral sign provided that the integrand

is continuous [7]. Here, we wish to consider the case where there can be an injection

of flux into the compartment at time t = 0, with the flux a continuous function for

t > 0. Thus we write,

q(t) = i0δ(t− 0+) + q+(t), (3.9)

where i0 is the initial injection and q+(t) is right continuous at t = 0 and continuous

for all t > 0. Substituting Eq. (3.9) into Eq. (3.8) we can write,

ρ(t) = i0Φ(t)Θ(t, 0) +

∫ t

0

Φ(t− t0)Θ(t, t0) q+(t0) dt0 , (3.10)
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this ensures that the integrand is continuous for continuous survival functions. Tak-

ing the derivative of Eq. (3.10), applying the Leibniz rule and using Eqs. (3.5) and

(3.7), we find that,

dρ

dt
= q+(t)− ω(t)ρ(t)− Fφ(t), (3.11)

where we have defined,

Fφ(t) =

∫ t

0

φ(t− t0)Θ(t, t0)q(t0) dt0 , (3.12)

which denotes the outgoing flux due to the non-Markovian process. The outgoing

flux Fφ(t) can be expressed in terms of ρ by using Laplace transform techniques.

We divide Eqs. (3.8) and (3.12) by Θ(t, 0), and using the semi-group property, Eq.

(3.4), we find,

ρ(t)

Θ(t, 0)
=

∫ t

0

Φ(t− t0)
q(t0)

Θ(t0, 0)
dt0, (3.13)

Fφ(t)

Θ(t, 0)
=

∫ t

0

φ(t− t0)
q(t0)

Θ(t0, 0)
dt0 . (3.14)

As both these equations are convolutions, taking the Laplace transform gives,

Lt
{

ρ(t)

Θ(t, 0)

}
= Lt{Φ(t)}Lt

{
q(t)

Θ(t, 0)

}
, (3.15)

Lt
{
Fφ(t)

Θ(t, 0)

}
= Lt{φ(t)}Lt

{
q(t)

Θ(t, 0)

}
. (3.16)

Re-arranging Eq. (3.15) and substituting into Eq. (3.16), we simplify this to

Lt
{
Fφ(t)

Θ(t, 0)

}
= Lt{K(t)}Lt

{
ρ(t)

Θ(t, 0)

}
, (3.17)
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where we have defined the memory kernel K(t) as,

Lt{K(t)} =
Lt{φ(t)}
Lt{Φ(t)} . (3.18)

Taking the inverse Laplace transform of Eq. (3.17) allows us to express Fφ(t) as,

Fφ(t) =

∫ t

0

K(t− t0) Θ(t, t0) ρ(t0) dt0 . (3.19)

Using Eq. (3.19) in Eq. (3.11) we write,

dρ

dt
= q+(t)− ω(t)ρ(t)−

∫ t

0

K(t− t0)Θ(t, t0)ρ(t0) dt0. (3.20)

This is the governing equation for an ensemble of particles in a single compartment,

where the particles are created and removed by underlying stochastic processes. This

equation is true for an arbitrary waiting time distribution for the non-Markovian

removal process. The formulation of Eq. (3.11) relies on the history of q(t) while

Eq. (3.20) relies on the history of ρ(t). We shall show that, with the appropriate

choice of a waiting time distribution, the convolution over the memory kernel may

be expressed as a fractional derivative.

3.2.1 Relationship to Age-Structured Models

Age-structured compartment models [73, 102, 38] allow for the dynamics of the

system to depend on ‘system’ time, as well as the length of time particles have been

in a particular compartment. The governing evolution equation for age structured

dynamics can be shown to be equivalent to the governing evolution equation for

an ensemble of particles in a single compartment, where the particles are created

and removed by underlying stochastic processes. Moreover the governing evolution

equation for age structured dynamics can be derived from the underlying stochastic

process. In the derivations below we consider the simplification in which the arrival

density q(t) is continuous for t ≥ 0.
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3.2.1.1 Derivation of Age-Structured Dynamics from an Underlying Stochastic

Process

Considering the underlying stochastic process for single compartment dynamics in-

troduced in Section II we define ρ̂(t, a) as the number density of particles in the

compartment at time t with age a. Similar to Eq. (3.8) this is given by

ρ̂(t, a) =

∫ t

0

Φ(t− t0)Θ(t, t0)q(t0)δ(t− t0, a) dt0, (3.21)

where the delta function has been introduced to select those particles that arrived

in the compartment at time t0 and have age a at time t. The integral over all times

t0 leads to

ρ̂(t, a) = Φ(a)Θ(t, t− a)q(t− a). (3.22)

The evolution equation for the age-structured number density can now be found

by differentiating Eq. (3.21) with respect to time. This results in

∂ρ̂(t, a)

∂t
+
∂ρ̂(t, a)

∂a
=

dΦ(a)

da
Θ(t, t− a)q(t− a)

+Φ(a)q(t− a)

(
∂

∂t
Θ(t, t− a) +

∂

∂a
Θ(t, t− a)

)
,(3.23)

where we have used the results that

dt

dt
=
da

dt
= 1,

and

∂

∂t
q(t− a) = − ∂

∂a
q(t− a).

In general we can write the survival function as

Φ(a) = exp

(
−
∫ a

0

γ(s) ds

)
, (3.24)
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where

γ(a) =
ψ(t)

Φ(t)
(3.25)

is the associated hazard rate dependent on age [21]. Furthermore, recalling

Θ(t, t− a) = exp

(
−
∫ t

t−a
ω(s)ds

)
, (3.26)

it is a simple exercise to show that

∂

∂t
Θ(t, t− a) +

∂

∂a
Θ(t, t− a) = −ω(t)Θ(t, t− a), (3.27)

and using Eq. (3.24),

dΦ

da
= −γ(a)Φ(a). (3.28)

We can now substitute Eqs. (3.28) and (3.27) into Eq. (3.23) and simplify, using

Eq. (3.22), to obtain

∂ρ̂(t, a)

∂t
+
∂ρ̂(t, a)

∂a
= −γ(a)ρ̂(t, a)− ω(t)ρ̂(t, a), (3.29)

which is the governing evolution equation for the number density of particles in an

age-structured model. The terms on the right hand side of this equation identify a

non-Markovian removal process dependent on the age of the particle, with a corre-

sponding rate γ(a) and a Markovian removal process with rate ω(t). It also follows

from Eqs. (3.22), (3.24) and (3.26) that

ρ̂(t, 0) = q(t), (3.30)

so that the flux from creation processes, q(t), are incorporated into the model as a

boundary condition. The governing equation, Eq. (3.29), encompasses models such

as Kermack and McKendrick’s structured SIR model [73].
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3.2.2 From Age-Structured Dynamics to Stochastic Compartment Dynamics

We can obtain the evolution equation for the stochastic compartment dynamics

from the governing evolution equation for the number density of particles in an

age-structured model. First we note that

ρ(t) =

∫ t

0

ρ̂(t, a) da. (3.31)

As q(t) is continuous ρ̂(t, a) is also continuous and we can differentiate with respect

to time using Leibniz rule, to arrive at

dρ(t)

dt
=

∫ t

0

∂ρ̂(t, a)

∂t
da+ ρ̂(t, t). (3.32)

Taking the integral of the evolution equation for age-structured dynamics, Eq.

(3.29), with respect to a, we obtain,

∫ t

0

∂ρ̂(t, a)

∂t
da+ ρ̂(t, t)− ρ̂(t, 0) = −ω(t)

∫ t

0

ρ̂(t, a) da−
∫ t

0

γ(a)ρ̂(t, a) da. (3.33)

The results in Eqs. (3.31), (3.32) and (3.33) can be combined to arrive at

dρ(t)

dt
− ρ̂(t, 0) = −ω(t)ρ(t)−

∫ t

0

γ(a)ρ̂(t, a) da. (3.34)

We now replace ρ̂(t, a) and ρ̂(t, 0) using Eqs. (3.22) and (3.30) respectively. This

results in

dρ(t)

dt
= q(t)− ω(t)ρ(t)−

∫ t

0

γ(a)Φ(a)Θ(t, t− a)q(t− a) da, (3.35)

and after a change of variables a = t− t0,

dρ(t)

dt
= q(t)− ω(t)ρ(t)−

∫ t

0

γ(t− t0)Φ(t− t0)Θ(t, t0)q(t0) dt0. (3.36)
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It follows from Eq. (3.25) that

γ(t− t0)Φ(t− t0) = φ(t− t0), (3.37)

so that we can use the same sequence of steps as Eqs. (3.15) - (3.19) to arrive at

the governing evolution equation for stochastic compartment dynamics

dρ(t)

dt
= q(t)− ω(t)ρ(t)−

∫ t

0

K(t− t0)Θ(t, t0)ρ(t0) dt0, (3.38)

which is equivalent to Eq. (3.20) in the case on continuous q(t).

3.2.3 Fractional-order Single Compartment Model

The inclusion of a fractional derivative in the governing equations requires a power-

law tailed waiting time distribution for the non-Markovian removal process. The use

of such a distribution implies that the longer particles have been in a compartment

the slower their rate of removal by this process. If there are no other removal

processes, this is akin to particles becoming trapped in the compartment as the

expected time until removal diverges. To obtain the fractional derivatives at all

times, rather then simply asymptotically, we will take the non-Markovain waiting

time to be Mittag-Leffler distributed. This distribution has a power-law asymptotic

decay [29] as t → ∞, i.e. φ(t) ∼ t−1−α. The survival function of a Mittag-Leffler

distribution was introduced in Chapter 2, Eq. (2.55). We have written it again here

for convenience,

Φ(t) = Eα,1

(
−
(
t

τ

)α)
, (3.39)

for an exponent 0 < α ≤ 1, and time scale parameter τ > 0. Taking the Laplace

transform of the Mittag-Leffler survival function from t to s gives,

Lt{Φ(t)} =
1

s(1 + (τs)−α)
. (3.40)
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The Laplace transform of the corresponding memory kernel K, calculated from Eq.

(3.18), is,

Lt{K(t)} = τ−αs1−α, (3.41)

where we have used Eq. (3.6) and the fact that Lt{φ} = 1− sLt{Φ}.
Again using Laplace transforms we can rewrite the outgoing flux due to the

non-Markovian removal process, Fφ(t), as,

Fφ(t) =

∫ t

0

K(t− t0)Θ(t, t0) ρ(t0) dt0,

= Θ(t, 0)

∫ t

0

K(t− t0)
ρ(t0)

Θ(t0, 0)
dt0,

= Θ(t, 0)L−1
s

{
τ−αs1−αLt

{
ρ(t)

Θ(t, 0)

}}
. (3.42)

This Laplace space representation of the flux can be related to a Riemann-Liouville

fractional derivative, allowing us to write the governing equation as a fractional-

order differential equation.

The Laplace transform of the Riemann-Liouville fractional derivative, from Eq.

(1.9), is in this case,

Lt{ 0D1−α
t f(t)} = s1−αLt{f(t)} − 0D−αt f(t)|0. (3.43)

We assume that f(t) = ρ(t)
Θ(t,0)

is continuous for t ≥ 0 in which case we have [89],

0D−αt
(

ρ(t)

Θ(t, 0)

) ∣∣∣
0

= 0. (3.44)

Using Eq. (3.43) we can simplify Eq. (3.42) to,

Fφ(t) = τ−αΘ(t, 0) 0D1−α
t

(
ρ(t)

Θ(t, 0)

)
. (3.45)
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Finally, substituting this into Eq. (3.20), we have,

dρ

dt
= q+(t)− ω(t)ρ(t)− τ−αΘ(t, 0) 0D1−α

t

(
ρ(t)

Θ(t, 0)

)
. (3.46)

This is the fractional-order governing equation for a single compartment model. We

will use this to construct general compartment models. It should be noted that the

regularity condition given in Eq. (3.44) can be relaxed by considering a Grünwald-

Letnikov derivative in place of the Riemann-Liouville derivative, see for example

[158].

3.2.4 Equilibrium State Analysis

The inclusion of the fractional derivative leads to some complication with the cal-

culation of equilibrium states. This is due to the fact that the Riemann-Liouville

derivate of a constant is non-zero. A further complication is the explicit t dependence

in the Θ(t, 0) function. As such, to find the equilibrium behaviour of the model we

need to consider the behaviour of solutions as t → ∞. The system approaches an

equilibrium solution if the limit,

lim
t→∞

ρ(t) = ρ∗, (3.47)

exists. It should be noted that this limit may be dependent on the initial condition

of the system, and hence multiple equilibrium solutions are possible. The first

requirement for the existence of an equilibrium is that the rates associated with

the Markovian removal processes and the incoming flux all approach a constant as

t→∞, i.e.

lim
t→∞

ω(t) = ω∗, (3.48)

lim
t→∞

q+(t) = q∗. (3.49)
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For simplicity we will consider the case where ω(t) = ω∗ for all time so that,

Θ(t, 0) = exp (−ω∗t) . (3.50)

Consider the limit of Eq. (3.46),

lim
t→∞

dρ

dt
= lim

t→∞

(
q+(t)− ω(t)ρ(t)− τ−αΘ(t, 0) 0D1−α

t

(
ρ(t)

Θ(t, 0)

))
. (3.51)

From Eq. (3.47) the left hand side is zero, and the first two terms on the right hand

side simplify trivially leaving,

0 = q∗ − ω∗ρ∗ − τ−α lim
t→∞

exp (−ω∗t) 0D1−α
t (exp (ω∗t) ρ(t)) . (3.52)

To evaluate the last term on the right hand side of Eq. (3.52), we take the Laplace

transform, and apply the well known shift identity, as well as the binomial expansion,

to yield

Lt
{

exp (−ω∗t) 0D1−α
t (exp (ω∗t) ρ(t))

}
= Lt

{
0D1−α

t (exp (ω∗t) ρ(t)) ; s+ ω∗
}

=(s+ ω∗)1−αLt {exp (ω∗t) ρ(t); s+ ω∗}

=(s+ ω∗)1−αLt {ρ(t); s}

=Lt {ρ(t)}
(
(ω∗)1−α + (1− α)(ω∗)−αs+O(s2)

)
.

(3.53)

This equation can be inverted term-by-term due to the linearity of the Laplace

transform. Hence we find

exp (−ω∗t) 0D1−α
t (exp (ω∗t) ρ(t)) = (ω∗)1−αρ(t) + (1− α)(ω∗)−α

dρ

dt
+L−1

s

{
O(s2)

}
.

(3.54)
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Thus in the limit we find

lim
t→∞

exp (−ω∗t) 0D1−α
t (exp (ω∗t) ρ(t)) = (ω∗)1−αρ∗. (3.55)

Note that this is the same result as simply substituting a constant ρ∗ in to the origi-

nal expression, the key point that we have demonstrated being that the non-locality

of the fractional derivative is not unduly affected by pre-asymptotic behaviour. Sub-

stituting Eq. (3.55) in to Eq. (3.52) and taking the limit gives,

ρ∗ =
q∗

ω∗ + τ−α (ω∗)1−α . (3.56)

Analysis of the stability of the equilibrium points is possible, however this is difficult

in a general setting. The specific example of a fractional-order SIR model has

previously been considered [21].

3.3 Fractional-order Multiple Compartment Model

In general, any number of fractional-order single compartment models can be com-

posed together to form a fractional-order multiple compartment model. The exact

nature of how the compartments are joined is system dependent. Consider a set of N

compartments, the dynamics of each compartment will be governed by a governing

equation of the form,

dρk
dt

= q+
k (t)− ωk(t)ρk(t)− τ−αkk Θk(t, 0) 0D1−αk

t

(
ρk(t)

Θk(t, 0)

)
, (3.57)

where k = 1, . . . , N indicates the compartment.

In a multiple compartment model the flux entering a compartment, qk(t), may be

dependent on the flux leaving another compartment. This is achieved by matching

removal processes from a compartment to creation processes in another. It is also

possible to have creation processes that do not depend on removal processes from
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other compartments. The Markovian rates, ωk(t), are general functions of time and

hence may depend on the population in any compartment.

Using this approach we can build the governing equations for any given com-

partment model, with fractional dynamics. Further demonstration is best done by

way of examples and reductions to existing models.

3.4 Examples of Fractional-order Compartment Models

The general framework which we have established in this Chapter can be used to

create specific examples of fractional-order compartment models. With the ap-

propriate choice of fluxes, rates, and fractional parameters the general governing

equation reduces to the fractional recovery SIR model [21]. We provide fractional

models for epidemiological, pharmacokinetic and in-host disease dynamics, with

figures demonstrating the fluxes between compartments. In these figures we have

defined Markovian transitions with a regular arrow and anomalous transitions with

a dashed arrow.

3.4.1 An SIS model with Fractional Re-susceptibility

Similar to the fractional recovery SIR model, a fractional SIS model is a generalisa-

tion of the standard SIS model. This model splits the population into a susceptible

compartment, S, and an infected compartment I. Individuals start in the suscep-

tible compartment, then transition into the infected compartment through a mass

action term, as in the SIR model. Subsequently, individuals undergo an anomalous

transition back into the susceptible compartment, as represented in Fig. 3.1.

S L
�SI������!99999999

⌫ 0D
1�↵
t I

I

1

Figure 3.1: Flux flow of fractional SIS Model
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We obtain this model from Eq. (3.57). Here, we have two compartments, ρ1 = S

and ρ2 = I. We take the flux into the infected compartment to be q+
2 (t) = βSI.

There is no Markovian removal process from the infected compartment, so that

ω2(t) = 0, and, using Eq. (3.2), Θ(t, 0) = 1. In the fractional SIS model we are

considering an anomalous re-susceptibility, we define α2 = α and τ−α2 = ν. This

yields the governing evolution equation for the infected compartment,

dI

dt
= βSI − ν 0D1−α

t (I) . (3.58)

Taking, q+
1 (t) = ν 0D1−α

t (I), ω1 = βS and, as there is no non-Markovian removal

process, i.e. Φ1(t) = 1, we can define the governing equation for the susceptible

compartment,

dS

dt
= −βSI + ν 0D1−α

t (I) . (3.59)

There are no vital dynamics in this model so that the total population is constant for

all time, and S(t)+I(t) = N , where N is the total population. Equations (3.58) and

(3.59), subject to the initial conditions S(0) = s0 and I(0) = i0, define the complete

dynamics of the fractional SIS model. While we have constructed this model as an

epidemic model, the standard SIS model has been used for general applications such

as changing opinion dynamics [149] and it is feasible that the fractional SIS model

could be used in a similar way where the time spent in a state affects the probability

of switching states.

3.4.2 A Compartment Model for Chromium Clearance in Mice

A fractional-order compartment model can be used to model the clearance of chromium

in mice. When chromium enters the body a variety of processes may cause it to

become trapped. This includes chemical reactions and the physical trapping of

chromium within red blood cells [78]. We can use Eq. (3.46) to model the whole-

body clearance of chromium in mice. In this model we consider a single compartment
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model which represents the concentration of chromium remaining in the cell, see Fig.

3.2.

c
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Figure 3.2: Flux flow of chromium clearance

In this example, ρ = c and we consider the only flux into the compartment to

occur as an initial dose, i.e. i0 = c0 and q+(t) = 0. We assume that there are no

Markovian removal processes, hence ω(t) = 0 which yields the equation,

dc

dt
= −τ−α0D1−α

t (c (t)) , (3.60)

where c(0) = c0.

We can solve Eq. (3.60), as we did in Eq. (3.62), to give us the solution for the

chromium content in the mouse body over time, hence,

c(t) = c0Eα,1

(
−
(
t

τ

)α)
. (3.61)

We compare this model to the experiment by Bryson and Goodall [33], in which

the whole-body chromium clearance of mice is observed over time. In this experi-

ment, a high dose of Cr(VI), as potassium dichromate, is injected into a cohort of

mice at time, t = 0. Mice were sacrificed at three, seven and twenty one days after

the initial dose and the total whole body chromium concentration was measured.

The experimental results reveal that whole-body clearance of chromium from mice

is observed to be rapid during the first week, with 31% of the initial dose remaining

after three days and 16% after seven days. Clearance then slows dramatically, at

21 days 7.5% of the initial dose remains [33]. Using a least squares fit we found the

best parameters for the Mittag-Leffler solution in Eq. (3.61) to be α = 0.71 and
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Figure 3.3: Percentage of initial Chromium dose remaining in mice after a time
(dots). The ODE single compartment prediction (dashed) and fractional-order single
compartment prediction (full).

τ = 1.60. We compare this fit to the solution of a standard constant-decay ODE

model for which the solution is an exponential function, c(t) = c0 exp(−t/τ), i.e.

α = 1. Plots of the solutions are shown in Figure 3.3. The Mittag-Leffler solution

shows excellent agreement with the experimental data.

3.4.3 A Compartment Model for in Vivo Dynamics of HIV

Many mathematical models have been developed to study HIV infection and drug

treatment in vivo, and the response of the immune system to the infection. These

models are typically concerned with modelling the population of CD4+ T cells, the

primary target of HIV, and the population of the virus itself [118].

Here we present a simplistic two-compartment model for the population dy-

namics of the virus and infected CD4+ T-cells. We consider the case of combined

antiretroviral therapy with 100% efficacy, meaning there will be no replenishment of

the infected T-cells from uninfected stock. We let I denote the number of infected

CD4+ T cells and V the number of HIV virions. Virions from Long-lived infected

cells are typically observed after treatment has begun [117]. To model this we will

have a fractional death of infected cells using Eq. (3.57) with ρ1(t) = I(t) and

ρ2(t) = V (t), see Fig. 3.4.
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Figure 3.4: Flux flow of fractional HIV model

As no new infected cells are created, q+
1 (t) = 0 and the only flux into the infected

compartment occurs as the initial conditions, we assume there is no Markovian

removal process of infected cells hence, ω1(t) = 0. We take α1 = α and τ1 = 1/δI .

This gives us the governing equation for infected cells,

dI

dt
= −δαI 0D1−α

t I, (3.62)

subject to the initial conditions I(0) = i0. Upon death of an infected cell, virions

are released. This occurs through a burst event and we will assume that on average

N virions are created from each infected cell death. As such we take q+
2 (t) =

NδαI 0D1−α
t I, and assuming no long lived virions, we will only consider a Markovian

death rate of virions. Hence, ω2(t) = δV , i.e. the governing evolution equation for

the number of virions is,

dV

dt
= NδαI 0D1−α

t I − δV V , (3.63)

subject to the initial conditions V (0) = V0.

The well-known solution [121] of Eq. (3.62) is,

I(t) = I0Eα,1 (−(δIt)
α) . (3.64)
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Substituting Eq. (3.64) into Eq. (3.63) we can then use an integrating factor method

to solve for V (t),

V (t) = e−δV tI0N

([
1− eδV tEα,1 (−(δIt)

α)
]

+ δV

∫ t

0

eδV sEα,1 (−(δIs)
α) ds

)
+ V0e

−δV t.

(3.65)

3.5 Summary

We have derived the governing evolution equations for compartment model dynamics

from the stochastic process of particles undergoing a CTRW. The resulting dynamics

are represented by a coupled set of master equations, Eq. (3.57), derived through

Sections 3.2 and 3.3. Under a natural, power-law, choice of waiting time proba-

bilities these master equations become coupled ODEs with fractional dynamics, as

demonstrated in Section 3.2.3.

The use of fractional derivatives in compartment models has attracted increasing

levels of interest in recent years. It is easy to construct fractional-order compart-

ment models by including fractional derivatives in an ad hoc manner, e.g., simply

replacing integer order derivatives with fractional-order derivatives. The approach

for developing fractional-order compartment models in this thesis starts by consid-

ering an underlying stochastic process and fractional-order evolution equations are

obtained systematically by considering power-law distributed waiting times in com-

partments. The ad hoc inclusion of fractional derivatives in compartment models

can result in equations that are unphysical; they may violate conservation of mass.

In Eq. (3.57) we observe an entanglement of the Markovian removal waiting times

in the non-Markovian removal processes. This ensures a conservation of probability

or mass between the local operators and the non-local fractional derivative operator.

Furthermore, in a given physical system, it is to be expected that only some reactions

will experience trapping or power-law waiting time. Our derivation accommodates

this.
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Finally we have provided some simple examples of fractional-order

multi-compartment models whose governing evolution equations have been obtained

using the methods of this chapter, which will be considered in their discretised form

in Chapter 7.
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Chapter 4

Fractional Infectivity SIR

4.1 Introduction

The results of this Chapter are drawn from [20]. The main objective in this Chapter

is to provide a sound derivation of an SIR model that includes a fractional-order

derivative as the infectivity term. Part of the motivation is that some of the ad

hoc fractional compartment models have been shown to be unphysical [43]. In

the case of the fractional-order infectivity SIR model derived here, the fractional

derivatives appear if the infectivity of an individual depends on their age-since-

infection in a power-law manner. The power-law in the infectivity can arise, as a

special case, in a disease process where the longer that a person has been infected,

the less likely they are to transmit the disease. The assumptions that give rise to the

fractional derivative can be experimentally validated from epidemiological studies

by estimating the infectivity as a function of time and time since infection.

The conditions under which the fractional infectivity SIR model occurs, differ to

the conditions of the fractional recovery SIR, derived in Chapter 2. In Section 4.2

we derive a general infectivity SIR model from a CTRW and show the consistency

of the derived model with a Kermack-McKendrick age-structured SIR model. A

power-law rate is considered for the infectivity in Section 4.3. This results in the

inclusion of a fractional-order derivative in the infectivity term of the model. The

equilibrium states of the system are found in Section 4.4.
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4.2 Derivation

In order to incorporate the fractional-order infectivity, we first derive master equa-

tions for an SIR model with a general infectivity rate, using a stochastic process.

We consider a generalised CTRW where an individual transitions through the three

compartments, waiting a random time in each compartment. The model considers

an ensemble of such individuals. An individual who has been infectious since time

t′ will infect a particular susceptible person in the time interval t to t + δt, with

probability σ(t, t′)δt + o(δt). The transmission rate per infected individual, σ(t, t′)

is dependent on both the time of infection, t′, and current time, t. Given that there

are S(t) susceptible people at time t then in the time interval t to t+δt the expected

number of new infections per infected individual will be σ(t, t′)S(t)δt+ o(δt).

The number of individuals entering the infected compartment at time t, i.e. the

flux into I, will be represented as q+(I, t). This can be recursively constructed from

the flux at earlier times by,

q+(I, t) =

∫ t

−∞
σ(t, t′)S(t)Φ(t, t′)q+(I, t′)dt′, (4.1)

where Φ(t, t′) is the survival function that an individual infected at a prior time t′

remains infected at time t. Considering the initial distribution of infected individuals

in the population, we let i(−t′, 0) be the number of individuals who became infected

at time t′ < 0 and who are still infected at time 0, hence,

q+(I, t′) =
i(−t′, 0)

Φ(0, t′)
, t′ < 0. (4.2)

Hence we can split Eq. (4.1) into,

q+(I, t) =

∫ t

0

σ(t, t′)S(t)Φ(t, t′)q+(I, t′)dt′ +

∫ 0

−∞
σ(t, t′)S(t)

Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′.

(4.3)
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It is natural to assume that the rate of infection, σ(t, t′), is dependent on the time

t to account for environmental changes in time. It is expected that σ(t, t′) may also

depend on the age of infection, t−t′, to account for the natural course of the disease.

In the following we incorporate these effects by writing,

σ(t, t′) = ω(t)ρ(t− t′). (4.4)

Noting that an individual may leave the infected compartment in two ways, either

they die or they recover from the disease, and assuming these effects are independent

we can write the survival function as,

Φ(t, t′) = φ(t, t′)θ(t, t′). (4.5)

Here φ(t, t′) is the probability of surviving the transition to the R compartment from

time t′ to time t, and θ(t, t′) is the probability of surviving the death transition from

time t′ until time t. We will assume that the recovery and death survival take the

form,

θ(t, t′) = e−
∫ t
t′ γ(s)ds, (4.6)

φ(t, t′) = e−
∫ t
t′ µ(s)ds. (4.7)

From this it follows that Φ(t, t′) satisfies the semi-group property,

Φ(t, t′) = Φ(t, s)Φ(s, t′), ∀ t′ < s < t. (4.8)

For an individual to be infected at time t they must have become infected at some

time prior to t and not yet transitioned into the removed compartment nor died.

Hence the number of individuals in the I compartment at time t can be expressed
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recursively using the flux as,

I(t) = I0(t) +

∫ t

0

Φ(t, t′)q+(I, t′)dt′. (4.9)

In Eq. (4.9) I0(t) is the number of initially infected individuals, i(−t′, 0), whose

infection has persisted until time t, expressed as,

I0(t) =

∫ 0

−∞

Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′,

= Φ(t, 0)

∫ 0

−∞
i(−t′, 0)dt′.

(4.10)

In order to recover the master equations governing the dynamics, we differentiate

Eq. (4.9) to produce,

dI(t)

dt
= q+(I, t)− (µ(t) + γ(t))

∫ t

0

φ(t, t′)θ(t, t′)q+(I, t′)dt′ − (γ(t) + µ(t))I0(t),

= q+(I, t)− (µ(t) + γ(t))I(t).

(4.11)

Substituting Eqs. (4.3), (4.4) into Eq. (4.11) gives,

dI(t)

dt
=

∫ t

0

ω(t)ρ(t− t′)S(t)Φ(t, t′)q+(I, t′)dt′ +

∫ 0

−∞
ω(t)ρ(t− t′)S(t)Φ(t, 0)i(−t′, 0)dt′

− (µ(t) + γ(t))I(t).

(4.12)

In order to obtain a generalised master equation we need to express the right hand

side of this equation in terms of I(t). We can write Eq. (4.9) using Eq. (4.8) as,

I(t)

Φ(t, 0)
=

I0(t)

Φ(t, 0)
+

∫ t

0

q+(I, t′)

Φ(t′, 0)
dt′. (4.13)
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Taking the Laplace transform from t to s then gives,

L
{
q+(I, t)

Φ(t, 0)

}
= sL

{
I(t)− I0(t)

Φ(t, 0)

}
. (4.14)

Returning to the first integral of Eq. (4.12) we can rewrite it using Laplace trans-

forms as,

ω(t)S(t)

∫ t

0

ρ(t− t′)q
+(I, t′)

Φ(t′, 0)
dt′ = ω(t)S(t)L−1

{
L{ρ(t)}L

{
q+(I, t)

Φ(t, 0)

}}
. (4.15)

Making use of Eq. (4.14) this becomes,

ω(t)S(t)L−1

{
L{ρ(t)}L

{
q+(I, t)

Φ(t, 0)

}}
= ω(t)S(t)L−1

{
sL{ρ(t)}L

{
I(t)− I0(t)

Φ(t, 0)

}}
,

= ω(t)S(t)

∫ t

0

κ(t− t′)I(t′)− I0(t′)

Φ(t′, 0)
dt′,

(4.16)

where we have defined,

κ(t) = L−1{sL{ρ(t)}}. (4.17)

Using Eqs. (4.16) and (4.17), in Eq. (4.12), we obtain the master equation,

dI(t)

dt
=ω(t)S(t)Φ(t, 0)

(∫ t

0

κ(t− t′)I(t′)− I0(t′)

Φ(t′, 0)
dt′ +

∫ 0

−∞
ρ(t− t′)i(−t′, 0)dt′

)
− µ(t)I(t)− γ(t)I(t).

(4.18)

Noting that I0(t)
Φ(t,0)

is a constant and using Eq. (4.17) this may be written as,

dI(t)

dt
=ω(t)S(t)Φ(t, 0)

(∫ t

0

κ(t− t′) I(t′)

Φ(t′, 0)
dt′ +

∫ 0

−∞
(ρ(t− t′)− ρ(t)) i(−t′, 0)dt′

)
− µ(t)I(t)− γ(t)I(t).

(4.19)
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This equation is the generalised master equation that describes the time evolution of

the number of infected individuals in an SIR model with arbitrary time dependent

infectivity and recovery. As individuals may only enter the infected compartment

from the susceptible compartment, there must be a corresponding decrease in the

number of individuals in the susceptible compartment. Accounting for vital dynam-

ics, the differential equation for the susceptible population is then given by,

dS(t)

dt
=λ(t)− ω(t)S(t)Φ(t, 0)

(∫ t

0

κ(t− t′) I(t′)

Φ(t′, 0)
dt′

+

∫ 0

−∞
(ρ(t− t′)− ρ(t))i(−t′, 0)dt′

)
− γ(t)S(t),

(4.20)

where λ(t) ≥ 0 is the birth rate and γ(t) ≥ 0 is the per capita death rate. Using

a similar balance between the infected and recovered compartment, the differential

equation for the recovered compartment is,

dR(t)

dt
= µ(t)I(t)− γ(t)R(t). (4.21)

Taking the initial condition i(−t, 0) = i0δ(−t), where δ(−t) is a Dirac delta function

and i0 is a constant, these equations further simplify to give,

dS(t)

dt
=λ(t)− ω(t)S(t)Φ(t, 0)

(∫ t

0

κ(t− t′) I(t′)

Φ(t′, 0)
dt′
)
− γ(t)S(t), (4.22)

dI(t)

dt
=ω(t)S(t)Φ(t, 0)

(∫ t

0

κ(t− t′) I(t′)

Φ(t′, 0)
dt′
)
− µ(t)I(t)− γ(t)I(t), (4.23)

dR(t)

dt
=µ(t)I(t)− γ(t)R(t). (4.24)
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4.2.1 Structured SIR

Here we show how the master equations, Eqs. (4.22), (4.23), (4.24), can be reduced

to the Kermack and McKendrick age-structured SIR model [74] equations given by,

dS

dt
= λ− S(t)

∫ ∞
0

ν(t, a)i(a, t)da− γS(t), (4.25)

∂i

∂t
+

∂i

∂a
= −β(a)i(a, t)− γi(a, t), (4.26)

dR

dt
=

∫ ∞
0

β(a)i(a, t)da− γR(t), (4.27)

I(t) =

∫ ∞
0

i(a, t)da. (4.28)

In this model we consider i(a, t) to be the number of the individuals infected at time

t who have been infected for length of time a. To show how Eq. (4.23) reduces to

Eq. (4.26) we set i(a, t) to,

i(a, t) = Φ(t, t− a)q+(I, t− a). (4.29)

This allows us to see that i(0, t) = q+(I, t). Integrating Eq. (4.26) with respect to

a, using Eq. (4.28) and equating β(a) = µ yields,

dI(t)

dt
= q+(I, t)− µ

∫ ∞
0

Φ(t, t− a)q+(I, t− a)da− γI(t). (4.30)

By taking a change in variable to t′ = t− a and making use of Eqs. (4.3) and (4.4)

we arrive at,

dI(t)

dt
=

∫ t

0

ρ(t− t′)ω(t)S(t)Φ(t, t′)q+(I, t′)dt′

+

∫ 0

−∞
ρ(t− t′)ω(t)S(t)

Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′ − µ

∫ t

−∞
Φ(t, t′)q+(I, t′)dt′ − γI(t).

(4.31)
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We further simplify this expression by using Eqs. (4.14), (4.15) and (4.16) and

taking the initial condition to be i(−t′, 0) = i0δ(−t′). This yields,

dI(t)

dt
=ω(t)S(t)

∫ t

0

κ(t− t′) I(t′)

Φ(t′, 0)
dt′ − µI(t)− γI(t), (4.32)

which is a special case of Eq. (4.23). To show how Eq. (4.22) reduces to Eq. (4.25)

we consider a change of variable a = t− t′, hence we can rewrite Eq. (4.25) as,

dS(t)

dt
= λ− S(t)

∫ t

−∞
ν(t, t− t′)Φ(t, t′)q+(I, t′)dt′ − γS(t), (4.33)

which is equivalent to Eq. (4.22) if ν(t, t−t′) = σ(t, t′). Finally to recover Eq. (4.24)

from Eq. (4.27) we make use of Eq. (4.29) and the change of variable a = t − t′,
resulting in,

dR(t)

dt
= µI(t)− γR(t). (4.34)

4.3 Fractional Infectivity SIR

The general master equations given in Eqs. (4.22), (4.23), (4.24) reduce to the

classic SIR ODEs if ρ(t) = ρ, a constant. This can be seen from Eq. (4.17) where

the corresponding memory kernel reduces to,

κ(t) = ρδ(t). (4.35)

If ρ(t) is a power-law of the form,

ρ(t) =
tα−1

Γ(α)
, 0 < α ≤ 1, (4.36)

then the general master equations reduce to a set of fractional-order differential

equations. The memory kernel following from Eq. (4.17) with power-law ρ(t) given
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by Eq. (4.17) has Laplace transform,

Lt{κ(t)} = s1−α. (4.37)

Hence the integral in Eqs. (4.22) and (4.23) can be written as follows,

∫ t

0

κ(t− t′) I(t′)

Φ(t′, 0)
dt′ =

∫ t

0

κ(t− t′) I(t′)

Φ(t, 0)
dt′, (4.38)

= L−1
s

{
s1−αLt

{
I(t′)

Φ(t′, 0)

}}
. (4.39)

To evaluate the inverse Laplace transform in the above equation we use Eq. (1.9),

0D−αt f(t)
∣∣
t=0+ = 0, and we can express Eq. (4.38) as,

∫ t

0

κ(t− t′) I(t′)

Φ(t′, 0)
dt′ = 0D1−α

t

(
I(t′)

Φ(t′, 0)

)
. (4.40)

Substituting Eq. (4.40) into the generalised master equations Eqs. (4.22) and (4.23)

yields the fractional-order infectivity SIR model,

dS(t)

dt
= λ(t)− ω(t)S(t)Φ(t, 0) 0D1−α

t

(
I(t)

Φ(t, 0)

)
− γ(t)S(t), (4.41)

dI(t)

dt
= ω(t)S(t)Φ(t, 0) 0D1−α

t

(
I(t)

Φ(t, 0)

)
− µ(t)I(t)− γ(t)I(t), (4.42)

dR(t)

dt
= µ(t)I(t)− γ(t)R(t). (4.43)

4.3.1 Dimensionality

An aspect of fractional SIR models that warrants further consideration is the di-

mensionality of the parameters. A time derivative of order one has dimension of

[time]−1, a fractional derivative of order α, either a Caputo or Riemann-Liouville,

will have a dimension of [time]−α. Hence the inclusion of fractional derivatives ne-

cessitates the redefinition of parameters in the associated models. This may lead to

complications when considering the physical interpretation of rates [43].
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In the fractional model derived above, we consider the equation for change in the

number of infected individuals over time, Eq. (4.42). As we have a order one time

derivative of a population on the left hand side its dimension is [population][time]−1.

Thus the dimension of the right hand side must be the same. It is clear that the

recovery and death rates, µ(t), and γ(t), must have dimension [time]−1 as I(t) has

the dimension [population].

For the infectivity term, it is clear that the dimension of S(t) is [population],

and the fractional derivative 0D1−α
t

(
I(t)

Φ(t,0)

)
is [population][time]α−1. In order for

the dimensions of the infectivity term to be consistent with the model, we are left

with ω(t) having dimension [population]−1[time]−α. We note that the dimensions of

the infectivity rate per infected individual of the disease, σ(t, t′) = ω(t)ρ(t − t′), is

[population]−1[time]−1, regardless of the fractional α exponent.

4.4 Equilibrium State Analysis

The set of fractional infectivity SIR Eqs. (4.41), (4.42) and (4.43) are a non-

autonomous dynamical system. This set up creates difficulty in finding the equilib-

rium states hence we will simplify the model by taking the birth, death, recovery

and contact rates to be constant, i.e. λ(t) = λ, γ(t) = γ, µ(t) = µ and ω(t) = ωα

respectively, where ωα represents the dependence of the chosen α exponent on ω(t),

due to dimensionality considerations. Hence the model becomes,

dS(t)

dt
= λ− ωαS(t)Φ(t, 0) 0D1−α

t

(
I(t)

Φ(t, 0)

)
− γS(t), (4.44)

dI(t)

dt
= ωαS(t)Φ(t, 0) 0D1−α

t

(
I(t)

Φ(t, 0)

)
− µI(t)− γI(t), (4.45)

dR(t)

dt
= µI(t)− γR(t). (4.46)

This can be simplified further using Eqs. (4.5), (4.6), (4.7) to rewrite,

Φ(t, 0) = e−(γ+µ)t. (4.47)
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The equilibrium state, (S∗, I∗, R∗), is defined by,

lim
t→∞

S(t) = S∗, lim
t→∞

I(t) = I∗, lim
t→∞

R(t) = R∗.

Taking the limit as t → ∞ of Eqs. (4.44), (4.45) and (4.46) reduces the equations

to,

0 = λ− lim
t→∞

ωαS(t)e−(γ+µ)t
0D1−α

t

(
e(γ+µ)tI(t)

)
− γS∗, (4.48)

0 = lim
t→∞

ωαS(t)e−(γ+µ)t
0D1−α

t

(
e(γ+µ)tI(t)

)
− (γ + µ)I∗, (4.49)

0 = µI∗ − γR∗. (4.50)

We are able to split the remaining limit into,

lim
t→∞

ωαS(t)e−νt 0D1−α
t

(
eνtI(t)

)
=
(

lim
t→∞

ωαS(t)
)(

lim
t→∞

e−νt 0D1−α
t

(
eνtI(t)

))
,

where ν = γ + µ. Using the result of [21],

lim
t→∞

e−νt 0D1−α
t

(
eνtI(t)

)
= ν1−αI∗,

and trivially we have limt→∞ ωαS(t) = ωαS
∗, hence,

lim
t→∞

ωαS(t)e−νt 0D1−α
t

(
eνtI(t)

)
= ωα(γ + µ)1−αS∗I∗. (4.51)

Substituting Eq. (4.51) into Eqs. (4.48), (4.49) and (4.50) yields,

0 = λ− ωα(µ+ γ)1−αS∗I∗ − γS∗, (4.52)

0 = ωα(µ+ γ)1−αS∗I∗ − (µ+ γ)I∗, (4.53)

0 = µI∗ − γR∗. (4.54)
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Solving these equations reveals two equilibrium states, the disease free state,

S∗ =
λ

γ
, I∗ = 0, R∗ = 0, (4.55)

and the endemic state,

S∗ =
µ+ γ

ωα(µ+ γ)1−α , I∗ =
λ

µ+ γ
− γ

ωα(µ+ γ)1−α , R∗ =
µ

γ

(
λ

µ+ γ
− γ

ωα(µ+ γ)1−α

)
.

(4.56)

The disease free equilibrium state is non-negative for all valid system parameters.

However, the endemic equilibrium is only non-negative if,

λωα
γ

> (µ+ γ)α. (4.57)

In the case where α = 1 the equilibrium states reduce to the steady states of the

standard SIR ODE model with vital dynamics. We anticipate that, similar to the

fractional recovery SIR model [21], the endemic equilibrium state will be an asymp-

totically stable state for all parameters where it is non-negative.

4.4.1 Basic Reproduction Number

A fundamental quantity of interest in SIR models is the basic reproduction number

R0 defined as the number of new infections that an infected person will produce

over the course of their infection in an otherwise uninfected population. This can

be calculated from

R0 = N

∫ ∞
0

ωαρ(t′)Φ(t′, 0) dt′ (4.58)

where N is the total population. After substituting Eq. (4.36), and Eq. (4.47), into

the above we obtain the result,

R0 =
ωαN

(γ + µ)α
. (4.59)
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This defines the basic reproduction number for fractional infectivity SIR model.

Given that the equilibrium population is given by,

N = lim
t→∞

S(t) + I(t) +R(t)

=
λ

γ
, (4.60)

it then follows from Eq. (4.57) that the existence of the endemic equilibrium requires

R0 > 1. It is worth noting that the integral in Eq. (4.58) would diverge for ρ(t) ∼ t−β

with β > 1, which is consistent with the restriction 0 < α ≤ 1 in Eq. (4.36).

4.5 Summary

In this Chapter, we have provided a physical derivation of an SIR model that includes

fractional-order derivatives. This is motivated by the concerns that many fractional-

order compartment models that have been postulated are not physically meaningful.

Starting from a stochastic process, we have derived an SIR model where the evolution

equations incorporate a fractional-order derivative in the infectivity term. This

derivative arises from a power-law dependence in the infectivity. We have shown

that this fractional infectivity SIR model can be written as an age structured SIR

model. The dimensions of the parameters in the fractional model depend on the

order of the fractional derivative. The fractional model permits both a disease free,

and an endemic, long time equilibrium state, dependent on the system parameters.

Whilst we have not identified a particular disease process with the required power-

law properties of the infectivity that gives rise to the fractional derivatives in the

model these assumptions could be experimentally validated from epidemiological

studies by estimating the infectivity σ(t, t′) as a function of time t, and time of

infection t′.
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Chapter 5

Fractional Infectivity and Fractional Recovery SIR

5.1 Introduction

In this Chapter we extend the stochastic process derivation of an SIR model con-

sidered in the past three chapters to allow for a fractional infectivity and fractional

recovery. This Chapter follows the publication [22]. In Section 5.2 we derive the

governing master equations of an SIR model from a stochastic process with general

history dependent infectivity and recovery. In Section 5.3 we consider particular

forms of the infectivity and recovery such that the governing equations will con-

tain fractional derivatives. In Section 5.4 we consider the limits under which the

fractional-order infectivity and recovery SIR model reduce back to the classic and

fractional recovery SIR models. In Section 5.5 we derive the steady states of the

fractional-order infectivity and recovery SIR model.

5.2 Derivation

We incorporate both a fractional-order infectivity and recovery into an SIR model

by deriving the master equations for a stochastic SIR model with age since infection

dependences. We consider a generalised CTRW through three compartments, those

susceptible (S) to the infection, those infectious (I) with the infection and those

recovered (R) from the infection. An individual is born into the S compartment.

They wait a random amount of time in each compartment before moving to the

next compartment. The individual may die in any compartment and be removed
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from consideration. Here we derive the master equations for the time evolution of

an ensemble of individuals undergoing these dynamics.

Considering an individual who has been infectious since time t′, the probability

this infectious individual will infect a particular susceptible person in the time in-

terval t to t+ δt, is σ(t, t′)δt+ o(δt). The transmission rate per infected individual,

σ(t, t′) is dependent on both how long the individual has been infectious, t− t′, and

the current time, t. If there are S(t) susceptible individuals at time t then in the

time interval t to t+δt the expected number of new infections per infected individual

will be σ(t, t′)S(t)δt+ o(δt).

The probability that an individual who is infected at time t′ is still infected at

time t is given by the survival function Φ(t, t′). For an individual to become infected

at time t they must come in contact with an individual who has become infected

already. The flux of individuals into the infected compartment, I, at time t, is

denoted q+(I, t), will therefore be constructed recursively via,

q+(I, t) =

∫ t

−∞
σ(t, t′)S(t)Φ(t, t′)q+(I, t′)dt′. (5.1)

Initial conditions are given as the number of individuals who are infected at time

0, and how long each individual has been infected. This is given by the function

i(−t′, 0) that represents the number of individuals that are still infected at time 0

who were originally infected at some earlier time t′, hence,

q+(I, t′) =
i(−t′, 0)

Φ(0, t′)
, t′ < 0. (5.2)

Equation (5.1) can then be written,

q+(I, t) =

∫ t

0

σ(t, t′)S(t)Φ(t, t′)q+(I, t′)dt′ +

∫ 0

−∞
σ(t, t′)S(t)

Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′.

(5.3)
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We will assume that the rate of infection, σ(t, t′) will be a function of both the

current time, t, and the time since infection, t − t′. This accounts for both time

dependent extrinsic changes as well as the intrinsic change in the infectivity of the

disease over its natural course. As such we may write,

σ(t, t′) = ω(t)ρ(t− t′), (5.4)

where ω(t) ≥ 0 is the extrinsic infectivity and ρ(t) ≥ 0 is the intrinsic infectivity.

An individual may only leave the infected compartment by either dying or recover-

ing from the disease. Assuming that these processes are independent, the survival

function for remaining in the infectious compartment can be written,

Φ(t, t′) = φ(t− t′)θ(t, t′). (5.5)

Here φ(t−t′) is the probability that an individual has not recovered and transitioned

to the R compartment by time t given that they were infected at an earlier time

t′. Similarly θ(t, t′) is the probability that the an individual has not died by time t

given that they were infected at the earlier time t′. We will assume that the survival

function of the death process takes the form,

θ(t, t′) = e−
∫ t
t′ γ(u)du, (5.6)

and hence,

θ(t, t′) = θ(t, u)θ(u, t′), ∀ t′ < u < t. (5.7)

Individuals in the infected compartment at time t must have arrived in the

compartment at some earlier time and not left the compartment. We can therefore

express the number of individuals in the infectious compartment via the flux into
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the compartment and the survival function to give,

I(t) = I0(t) +

∫ t

0

Φ(t, t′)q+(I, t′)dt′. (5.8)

The function, I0(t), gives the number of individuals who were infected at time 0,

who are still infected at time t. In terms of the initial condition function, i(−t′, 0),

this can be written,

I0(t) =

∫ 0

−∞

Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′. (5.9)

The master equations are derived by differentiating Eq. (5.8). This yields,

dI(t)

dt
= q+(I, t)−

∫ t

0

ψ(t− t′)θ(t, t′)q+(I, t′)dt′ − γ(t)

∫ t

0

φ(t− t′)θ(t, t′)q+(I, t′)dt′

+
dI0(t)

dt
,

(5.10)

where ψ(t) = −dφ(t)
dt

is the probability density function related to φ(t). Using Eqs.

(5.3), (5.4) and (5.5), Eq. (5.10) can be written,

dI(t)

dt
=ω(t)S(t)

(∫ t

0

ρ(t− t′)Φ(t, t′)q+(I, t′)dt′ +

∫ 0

−∞
ρ(t− t′) Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′

)
−
∫ t

0

ψ(t− t′)θ(t, t′)q+(I, t′)dt′ + θ(t, 0)
d

dt

(
I0(t)

θ(t, 0)

)
− γ(t)I(t).

(5.11)

A generalised master equation can be obtained by removing the dependence on

q+(I, t) in the above equation. Using Eq. (5.7), Eq. (5.8) can be rewritten as,

I(t)

θ(t, 0)
=

I0(t)

θ(t, 0)
+

∫ t

0

φ(t− t′)q
+(I, t′)

θ(t′, 0)
dt′. (5.12)
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As this is now in the form of a convolution, taking a Laplace transform from t to s,

L{·}, then gives,

L
{
I(t)− I0(t)

θ(t, 0)

}
= L{φ(t)}L

{
q+(I, t)

θ(t, 0)

}
. (5.13)

Again using Eq. (5.7), the first integral of Eq. (5.11) can be rewritten using Laplace

transforms as,

L
{∫ t

0

ρ(t− t′)φ(t− t′)q
+(I, t′)

θ(t′, 0)
dt′
}

= L{ρ(t)φ(t)}L
{
q+(I, t)

θ(t, 0)

}
. (5.14)

Making use of Eq. (5.13) this becomes,

L{ρ(t)φ(t)}L
{
q+(I, t)

θ(t, 0)

}
=
L{ρ(t)φ(t)}
L {φ(t)} L

{
I(t)− I0(t)

θ(t, 0)

}
= L

{∫ t

0

KI(t− t′)
I(t′)− I0(t′)

θ(t′, 0)
dt′
}
.

(5.15)

Here we have defined the infectivity memory kernel as,

KI(t) = L−1

{L{ρ(t)φ(t)}
L{φ(t)}

}
, (5.16)

where L−1{·} defines the inverse Laplace transform from s to t. Once again using

Eq. (5.7), the third integral of Eq. (5.11) can similarly be rewritten using Laplace

transforms as,

L
{∫ t

0

ψ(t− t′)q
+(I, t′)

θ(t′, 0)
dt′
}

= L{ψ(t)}L
{
q+(I, t)

θ(t, 0)

}
. (5.17)

Making use of Eq. (5.13) this becomes,

L{ψ(t)}L
{
q+(I, t)

θ(t, 0)

}
=
L{ψ(t)}
L {φ(t)}L

{
I(t)− I0(t)

θ(t, 0)

}
= L

{∫ t

0

KR(t− t′)I(t′)− I0(t′)

θ(t′, 0)
dt′
}
.

(5.18)
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Here we have defined the recovery memory kernel,

KR(t) = L−1

{L{ψ(t)}
L{φ(t)}

}
. (5.19)

Using Eq. (5.15) and Eq. (5.18), Eq. (5.11) becomes the master equation for the

infectious compartment,

dI(t)

dt
=ω(t)S(t)

(
θ(t, 0)

∫ t

0

KI(t− t′)
I(t′)− I0(t′)

θ(t′, 0)
dt′ +

∫ 0

−∞
ρ(t− t′) Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′

)
− θ(t, 0)

(∫ t

0

KR(t− t′)I(t′)− I0(t′)

θ(t′, 0)
dt′ − d

dt

(
I0(t)

θ(t, 0)

))
− γ(t)I(t).

(5.20)

This equation governs the time evolution of the number of individuals in the in-

fectious compartment. All individuals who enter the infectious compartment must

have previously been susceptible. Taking this into account we may write the master

equation for the susceptible compartment, with the addition of the vital dynamics,

as

dS(t)

dt
=λ(t)− ω(t)S(t)

(
θ(t, 0)

∫ t

0

KI(t− t′)
I(t′)− I0(t′)

θ(t′, 0)
dt′

+

∫ 0

−∞
ρ(t− t′) Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt′

)
− γ(t)S(t),

(5.21)

where λ(t) ≥ 0 is the flux into the compartment due to births. The per capita

death rate is assumed to be the same as for the infectious compartment. Similarly

considering that individuals who enter the recovered compartment must have left

the infectious compartment, we write the master equation for the recovered com-

partment as,

dR(t)

dt
= θ(t, 0)

(∫ t

0

KR(t− t′)I(t′)− I0(t′)

θ(t′, 0)
dt′ − d

dt

(
I0(t)

θ(t, 0)

))
− γ(t)R(t). (5.22)
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Together Eqs. (5.21), (5.20) and (5.22) are the master equations for an SIR

model with both time since infection dependent infectivity and recovery. These

equations are simplified by taking the initial conditions to be i(−t, 0) = i0δ(−t),
where δ(t) is the Dirac delta function and i0 is a constant. With these choices we

can write, ∫ 0

−∞
ρ(t− t′) Φ(t, t′)

Φ(0, t′)
i(−t′, 0)dt = ρ(t)i0Φ(t, 0). (5.23)

This leads to simplifications and our full set of SIR master equations become,

dS(t)

dt
=λ(t)− ω(t)S(t)θ(t, 0)

∫ t

0

KI(t− t′)
I(t′)

θ(t′, 0)
dt′ − γ(t)S(t), (5.24)

dI(t)

dt
=ω(t)S(t)θ(t, 0)

∫ t

0

KI(t− t′)
I(t′)

θ(t′, 0)
dt′ − θ(t, 0)

∫ t

0

KR(t− t′) I(t′)

θ(t′, 0)
dt′ − γ(t)I(t),

(5.25)

dR(t)

dt
=θ(t, 0)

∫ t

0

KR(t− t′) I(t′)

θ(t′, 0)
dt′ − γ(t)R(t). (5.26)

Henceforth we will use the master equations with Dirac delta initial conditions for

simplicity.

5.3 Fractional Infectivity and Recovery SIR

We incorporate fractional derivatives into both the infective and recovery terms by

choosing ψ(t) to be power-law distributed and ρ(t) related to our choice of ψ(t).

Similar to Section 2.3, we take ψ(t) to be Mittag-Leffler distributed,

ψ(t) =
tα−1

τα
Eα,α

(
−
(
t

τ

)α)
, (5.27)

for 0 < α ≤ 1, where τ is a scaling parameter, and the corresponding survival

function φ(t) is,

φ(t) = Eα,1

(
−
(
t

τ

)α)
. (5.28)
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The Laplace transform of the recovery memory kernel, Eq. (5.19), with Mittag-

Leffer distributed ψ(t) is given by,

L{KR(t)} =
L{ψ(t)}
L{φ(t)} = s1−ατ−α, (5.29)

subsequently, a convolution with the recovery memory kernel can be written as,

∫ t

0

KR(t− t′) I(t′)

θ(t′, 0)
dt′ = τ−α 0D1−α

t

(
I(t)

θ(t, 0)

)
. (5.30)

A fractional derivative can be incorporated into the infectivity, if the infective mem-

ory kernel, Eq. (5.16), has a Laplace transform similar to Eq. (5.29). This is

satisfied by taking ρ(t) of the form,

ρ(t) =
1

φ(t)

tβ−1

τβ
Eα,β

(
−
(
t

τ

)α)
, (5.31)

where φ(t) is defined in Eq. (5.28). As we require ρ(t) ≥ 0, we must constrain α

and β such that 0 < α ≤ β ≤ 1. This constraint is easily verifiable for β = α as ρ(t)

can be reduced to,

ρ(t) =
1

φ(t)

tα−1

τα
Eα,α

(
−
(
t

τ

)α)
=
ψ(t)

φ(t)
, (5.32)

where ψ(t), as defined in Eq. (5.27), and φ(t) are both positive functions. It is also

possible to express Eq. (5.31) using fractional derivatives as,

ρ(t) =
τ−β

φ(t)
0D1−β

t φ(t). (5.33)

Using this form, it is clearer to see that the Laplace transform of the infectivity

memory kernel becomes,

L{KI(t)} =
L{ρ(t)φ(t)}
L{φ(t)} =

τ−βs1−βL{φ(t)}
L{φ(t)} = s1−βτ−β. (5.34)
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Using the relation between the Riemann-Liouville fractional derivative and it’s

Laplace transform, Eq. (2.59), we are able to express the first integral of Eq. (5.25)

as, ∫ t

0

KI(t− t′)
I(t′)

θ(t′, 0)
dt′ = τ−β 0D1−β

t

(
I(t)

θ(t, 0)

)
. (5.35)

Substituting Eqs. (5.35) and (5.30) into the master equations Eqs. (5.24), (5.25)

and (5.26) yields the fractional-order infectivity and recovery SIR model,

dS(t)

dt
= λ(t)− ω(t)S(t)θ(t, 0)

τβ
0D1−β

t

(
I(t)

θ(t, 0)

)
− γ(t)S(t), (5.36)

dI(t)

dt
=
ω(t)S(t)θ(t, 0)

τβ
0D1−β

t

(
I(t)

θ(t, 0)

)
− θ(t, 0)

τα
0D1−α

t

(
I(t)

θ(t, 0)

)
− γ(t)I(t),

(5.37)

dR(t)

dt
=
θ(t, 0)

τα
0D1−α

t

(
I(t)

θ(t, 0)

)
− γ(t)R(t). (5.38)

5.4 Reduction to Classic and Fractional Recovery SIR Models

Both the classic SIR and fractional recovery model are special cases of our derived

Eqs. (5.36), (5.37) and (5.38). In this Section we consider the parameters required

for the classic and fractional recovery SIR and how they relate to the generalised

fractional model we have derived above. The classic SIR model can be obtained by

taking constant functions for the birth, death and time dependent infectivity rates,

i.e. λ(t) = λ, γ(t) = γ and ω(t) = ω, respectively and taking the limit as α, β → 1

. Noting that the limit,

lim
α→1

0D1−α
t

(
I(t)

θ(t, 0)

)
=

I(t)

θ(t, 0)
, (5.39)
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we obtain the classic SIR equations,

dS(t)

dt
= λ− ω

τ
S(t)I(t)− γS(t), (5.40)

dI(t)

dt
=
ω

τ
S(t)I(t)− 1

τ
I(t)− γI(t), (5.41)

dR(t)

dt
=

1

τ
I(t)− γR(t). (5.42)

By considering the relationship between the fractional exponents α and β and

Eqs. (5.28) and (5.33), we gain insight into the underlying stochastic process of the

classic SIR model. For α = 1, the waiting time function, Eq. (5.28) reduces to an

exponential function,

φ(t) = e−
t
τ . (5.43)

Taking the limit β → 1 the age of infection dependent infectivity, Eq. (5.33) becomes

a constant,

ρ(t) = lim
β→1

τ−β

φ(t)
0D1−β

t φ(t) =
1

τ
. (5.44)

Note that this limit is independent of the form of φ(t).

In a similar fashion we obtain the fractional recovery SIR model [21] by taking

the limit β → 1, whilst leaving 0 < α ≤ 1. Making use of the limit in Eq. (5.39)

and the functional form of ρ(t) from Eq. (5.44), we obtain,

dS(t)

dt
= λ(t)− ω

τ
S(t)I(t)− γ(t)S(t), (5.45)

dI(t)

dt
=
ω

τ
S(t)I(t)− θ(t, 0)

τα
0D1−α

t

(
I(t)

θ(t, 0)

)
− γ(t)I(t), (5.46)

dR(t)

dt
=
θ(t, 0)

τα
0D1−α

t

(
I(t)

θ(t, 0)

)
− γ(t)R(t). (5.47)

While the fractional recovery SIR model can be obtained from the general frac-

tional infectivity and fractional recovery SIR model, we are unable to obtain the

fractional infectivity SIR model [20]. The fractional infectivity SIR model requires

α = 1 and 0 < β < 1, hence β < α violating our non-negativity conditions for ρ(t).
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A different form of ρ(t) was considered in [20]. The form of the fractional infectiv-

ity in [20] could not readily be generalized to include a fractional recovery. Thus

the model here with both fractional recovery with fractional infectivity provides

an alternate form of fractional infectivity. The choice of which type of fractional

infectivity model should be used could only be decided by comparisons with data.

5.5 Equilibrium State Analysis

The set of fractional-order infectivity and recovery SIR Eqs. (5.36), (5.37) and

(5.38) are a non-autonomous dynamical system due to both the history dependence

of the fractional derivative and the time dependence of the parameters. To find

the equilibrium states we will simplify the model by taking all time dependent

parameters to be constants, i.e. λ(t) = λ, γ(t) = γ and ω(t) = ω. Hence the

simplified master equations become,

dS(t)

dt
= λ− ωS(t)θ(t, 0)

τβ
0D1−β

t

(
I(t)

θ(t, 0)

)
− γS(t), (5.48)

dI(t)

dt
=
ωS(t)θ(t, 0)

τβ
0D1−β

t

(
I(t)

θ(t, 0)

)
− θ(t, 0)

τα
0D1−α

t

(
I(t)

θ(t, 0)

)
− γI(t), (5.49)

dR(t)

dt
=
θ(t, 0)

τα
0D1−α

t

(
I(t)

θ(t, 0)

)
− γR(t). (5.50)

The constant recovery rate allows us to write Eq. (5.6) as,

θ(t, 0) = e−γt. (5.51)

For an equilibrium state, (S∗, I∗, R∗), to exist the following limits must exist,

lim
t→∞

S(t) = S∗, lim
t→∞

I(t) = I∗, lim
t→∞

R(t) = R∗. (5.52)
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Taking the limit as t→∞ Eqs. (5.48), (5.49) and (5.50), reduce to,

0 = λ− lim
t→∞

ωτ−βS(t)e−γt 0D1−β
t

(
eγtI(t)

)
− γS∗, (5.53)

0 = lim
t→∞

ωτ−βS(t)e−γt 0D1−β
t

(
eγtI(t)

)
− lim

t→∞
e−γtτ−α 0D1−α

t

(
eγtI(t)

)
− γI∗, (5.54)

0 = lim
t→∞

e−γtτ−α 0D1−α
t

(
eγtI(t)

)
− γR∗. (5.55)

We use the result of [21] to evaluate the limit,

lim
t→∞

e−γt 0D1−α
t

(
eγtI(t)

)
= γ1−αI∗. (5.56)

The remaining limit can be split into,

lim
t→∞

S(t)e−γt 0D1−β
t

(
eγtI(t)

)
=
(

lim
t→∞

S(t)
)(

lim
t→∞

e−γt 0D1−β
t

(
eγtI(t)

))
. (5.57)

Trivially we have limt→∞ S(t) = S∗, hence,

lim
t→∞

S(t)e−γt 0D1−β
t

(
eγtI(t)

)
= γ1−βS∗I∗. (5.58)

Substituting Eq. (5.58) into Eqs. (5.53), (5.54) and (5.55) yields,

0 = λ− ωτ−βγ1−βS∗I∗ − γS∗, (5.59)

0 = ωτ−βγ1−βS∗I∗ − τ−αγ1−αI∗ − γI∗, (5.60)

0 = τ−αγ1−αI∗ − γR∗. (5.61)

These equations permit two distinct equilibrium states, a disease free state,

S∗ =
λ

γ
, I∗ = 0, R∗ = 0, (5.62)
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and an endemic state,

S∗ =
(τγ)−α + 1

ω(τγ)−β
, I∗ =

λ

γ
(
(τγ)−α + 1

) − 1

ω(τγ)−β
,

R∗ = (τγ)−α

(
λ

γ
(
(τγ)−α + 1

) − 1

ω(τγ)−β

)
.

(5.63)

For all valid values of the parameters the disease free state will give non-negative

populations and hence be physically obtainable. The same is not true of the endemic

state, which is only physically obtainable if,

λω

(τγ)−α + 1
> τβγβ+1. (5.64)

In the case where α = β = 1 the equilibrium states recover the equilibrium

states of the standard SIR ODE model with vital dynamics. We expect that the

endemic state will be asymptotically stable when it is physically obtainable in a

similar manner to the endemic state for the fractional recovery SIR model [21].

5.5.1 Basic Reproduction Number

It is also possible to calculate the basic reproduction number for this model. This is

defined as the expected number of individuals who will become infected from a single

infectious individual in an otherwise uninfected population. This can be calculated

from,

R0 =

∫ ∞
0

ωNθ(t, 0)

τβ
0D1−β

t

(
I0(t)

θ(t, 0)

)
, (5.65)

where N is the total equilibrium population. From Eq. (5.9), with i(−t, 0) = δ(−t),
we have,

I0(t) = e−γtEα,1

(
−
(
t

τ

)α)
. (5.66)

It is then left to solve,

R0 =

∫ ∞
0

ωNe−γt

τβ
0D1−β

t

(
Eα,1

(
−
(
t

τ

)α))
. (5.67)
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The fractional derivative of the Mittag-Leffler function is well known and hence this

can be simplified to,

R0 =

∫ ∞
0

ωNe−γt

τβ
tβ−1Eα,β

(
−
(
t

τ

)α)
. (5.68)

This integral is now in a standard form and has solution [58],

R0 =
ωN

τβ

(
γα−β

γα + τ−α

)
. (5.69)

We can also rewrite the existence criterion for the endemic steady state, Eq. (5.64),

in terms of R0 by noting that the equilibrium population is N = λ
γ
, giving,

R0 > 1. (5.70)

5.6 Summary

In this Chapter we have derived a fractional infectivity and recovery model using

a stochastic process. The fractional derivatives arise as a consequence of taking

an age-of-infection dependent infectivity and recovery to be power-law distributed.

In doing so we have shown how to incorporate fractional derivatives into the model

without violating the physicality of the parameters of the model. Under appropriate

limits we are able to simplify this generalised fractional model to the fractional

recovery and classic SIR models, however the fractional infectivity SIR model can’t

be recovered. We have shown the conditions under which an endemic steady state

exists. The model and it’s parameters are well posed and physical, however the

fractional derivatives originated from power-law assumptions, and these assumptions

need to be tested by fitting to data.
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Chapter 6

Discretisation of the Fractional Recovery SIR Model

6.1 Introduction

This Chapter follows the discretisation of the fractional recovery SIR published in

[21]. Starting with a discrete time stochastic process formulation of the fractional re-

covery SIR model we derive a numerical method for solving the governing fractional

order differential equations. The numerical method is related to the discrete time

stochastic process method that was introduced to solve the fractional Fokker-Planck

equation [12]. We have implemented the numerical scheme to investigate the effects

of changes in the fractional-order exponent on the qualitative behaviour of solu-

tions. The numerical solutions converge to the calculated equilibrium states of the

fractional recovery SIR model, when the parameters are constants. In Section 6.2

a stable numerical scheme for solving the fractional recovery SIR model is derived

from a discrete time formulation of the stochastic process. Numerical solutions are

investigated in Section 6.3 and in Section 6.4 the discrete time formulation is shown

to converge, under a continuous time limit, to the continuous time formulation of

Chapter 2.

6.2 SIR as a Discrete Time Random Walk

There are numerous numerical methods that have been developed for solving

fractional-order differential equations [115, 121, 41] and many of these methods

could be adapted to the system under consideration here. However recently we
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showed that in the case where the fractional-order derivatives have been derived

from CTRWs it is useful to reformulate the problem using DTRWs and then use

this formulation as the basis of a numerical method [13]. The advantage of bas-

ing the numerical method on a discrete time stochastic process is that the derived

explicit numerical method is easy to implement and is also inherently stable.

6.2.1 Discrete Time Random Walk

We consider a discrete time random walk where the walking particle is an individual

that will transition though the S, I, and R, compartments. In order to obtain

a useful numerical scheme from this we need the discrete time process to limit

to the continuum process as the time step, ∆t, goes to zero. This necessitates a

slight modification to the transitions that were considered in the continuum case.

Individuals are born into the susceptible compartment with a birth rate λ(t) so that

the number of individuals being born on the nth time step, between time t and

t+∆t, is equal to Λ(n) = λ(t)∆t. The probability that an individual will die and be

removed from consideration on the nth time step is γ(n). Susceptible individuals who

come in contact with an infected individual may become infected. The probability

of an infected individual coming in contact and infecting a susceptible individual in

the nth time step is ω(n).

The recovery of infected individuals is assumed to be dependent on the number

of time steps since they entered the infectious compartment. The individual is

assumed to wait in the infectious compartment with a probability of “jumping”

that is dependent on the time step. When a transition event occurs there are two

possible things that can happen to the individual, they will either move to the

recovered compartment or re-enter the infectious compartment with the transition

probability, dependent on the time step, being reset. If the individual was infected

before the first time step they will always transition to the recovered compartment.

This self jump modification is required to ensure appropriate scaling as the size of

the time step tends to zero. The probability of transitioning to the R compartment,
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given a jump occurred, is denoted by r. The probability of jumping on the nth step,

conditional on not having jumped in the first (n− 1) steps, is denoted by µ(n).

From this it follows that the probability flux entering the I compartment on the

nth time step can be written as

Q+
I (n) =

n−1∑
k=−∞

ω(n)S(n− 1)φ(n− 1− k)θ(n− 1, k)Q+
I (k)

+ (1− r)
n−1∑
k=1

µ(n− k)φ(n− 1− k)θ(n, k)Q+
I (k).

(6.1)

In the above equation, φ(n− k) is the probability of not jumping for (n− k) steps

and θ(n, k) is the probability that an individual who entered the I compartment on

the kth step has survived the death process up to the nth step. If we assume that

we have an initial distribution of infectious individuals at the 0th time step, then we

can infer that the flux at earlier times is given by,

Q+
I (n) =

i(−n, 0)

θ(0,−n)φ(−n)
∀n ≤ 0. (6.2)

Here i(n, 0) is the number of individuals at time step 0 who have been infected since

time step n, with n ≤ 0. This allows us to write the flux for n > 0 as

Q+
I (n) =ω(n)S(n− 1)

n−1∑
k=1

φ(n− 1− k)θ(n− 1, k)Q+
I (k)

+ (1− r)
n−1∑
k=1

µ(n− k)φ(n− 1− k)θ(n, k)Q+
I (k)

+ ω(n)S(n− 1)θ(n− 1, 0)
0∑

k=−∞

φ(n− 1− k)
i(−k, 0)

φ(−k)
.

(6.3)

We can easily see that

φ(n− k) =
n−k∏
j=0

(1− µ(j)), (6.4)
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and

θ(n, k) =
n∏
j=k

(1− γ(j)). (6.5)

The number of individuals in the I compartment on the nth time step is

I(n) =
n∑
k=1

φ(n− k)θ(n, k)Q+
I (k) + I0(n). (6.6)

where,

I0(n) = θ(n, 0)
0∑

k=−∞

φ(n− k)
i(−k, 0)

φ(−k)
. (6.7)

Subtracting I(n− 1) from each side of Eq. (6.6) gives,

I(n)− I(n− 1) =Q+
I (n) +

n−1∑
k=1

(φ(n− k)θ(n, k)− φ(n− 1− k)θ(n− 1, k))Q+
I (k)

+ I0(n)− I0(n− 1),

(6.8)

and substituting Eq. (6.3) into the right hand side of Eq. (6.8) and using Eq.(6.6)

gives,

I(n)− I(n− 1) =ω(n)S(n− 1)I(n− 1)) + I0(n)− I0(n− 1)

+ (1− r)
n−1∑
k=1

µ(n− k)φ(n− 1− k)θ(n, k)Q+
I (k)

+
n−1∑
k=1

(φ(n− k)θ(n, k)− φ(n− 1− k)θ(n− 1, k))Q+
I (k)

(6.9)

Noting that,

φ(n− k)θ(n, k)− φ(n− 1− k)θ(n− 1, k) =− γ(n)φ(n− 1− k)θ(n− 1, k)

− µ(n− k)φ(n− 1− k)θ(n, k).

(6.10)
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we get,

I(n)− I(n− 1) =ω(n)S(n− 1)I(n− 1)− γ(n)(I(n− 1)− I0(n− 1))

+I0(n)− I0(n− 1)− r
n−1∑
k=1

µ(n− k)φ(n− 1− k)θ(n, k)Q+
I (k).

(6.11)

To simplify further we mirror the derivation in the CTRW approach, using the

semi-group property of the death survival function, and using discrete Z-transform

methods to replace the memory kernels. The Z-transform form n to z of Y (n) is

defined by [71],

Z[Y (n)|z] =
∞∑
n=0

Y (n)z−n. (6.12)

First we use the result

θ(n, 0) = θ(n, k)θ(k, 0), (6.13)

in Eq. (6.11) to write

I(n)−I(n− 1) = ω(n)S(n− 1)I(n− 1) + I0(n)− I0(n− 1)

− γ(n)(I(n− 1)− I0(n− 1))− rθ(n, 0)
n−1∑
k=1

µ(n− k)φ(n− 1− k)
Q+
I (k)

θ(k, 0)
.

(6.14)

and we use the same result in Eq. (6.6) to write

I(n)− I0(n)

θ(n, 0)
=

n∑
k=1

φ(n− k)
Q+
I (k)

θ(k, 0)
. (6.15)

Finally, we need to express the sum
∑n−1

k=1 µ(n − k)φ(n − 1 − k)
Q+
I (k)

θ(k,0)
, in terms of

I(n) so we take the Z-transform of Eq. (6.15), and use the convolution property of

Z-transforms to give,

Z
[
I(n)− I0(n)

θ(n, 0)
|z
]

= Z [φ(n)| z]Z
[
Q+
I (n)

θ(n, 0)
|z
]
. (6.16)
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We can now write

n−1∑
k=0

µ(n− k)φ(n− 1− k)
Q+
I (k)

θ(k, 0)
=

n−1∑
k=0

κ(n− 1− k)
I(k)− I0(k)

θ(k, 0)
, (6.17)

where,

κ(n) = Z−1

[Z [µ(n)φ(n− 1)|z]

Z [φ(n)|z]

∣∣∣∣n] . (6.18)

The discrete time generalised master equation for an arbitrary waiting time dis-

tribution can then finally be found by substituting Eq. (6.17) into Eq. (6.14) to

give,

I(n)− I(n− 1) =ω(n)S(n− 1)I(n− 1)− γ(n)(I(n− 1)− I0(n− 1))

+ I0(n)− I0(n− 1)− rθ(n, 0)
n−1∑
k=1

κ(n− k)
I(k)− I0(k)

θ(k, 0)
.

(6.19)

The master equations for the other compartments can be found by again considering

a flux balance so that,

S(n)− S(n− 1) =Λ(n)− ω(n)S(n− 1)I(n− 1)− γ(n)S(n− 1), (6.20)

R(n)−R(n− 1) =rθ(n, 0)
n−1∑
k=1

κ(n− k)
I(k)− I0(k)

θ(k, 0)
(6.21)

+ I0(n)− I0(n− 1) + γ(n)I0(n− 1)− γ(n)R(n− 1).

6.2.2 Discrete Time Fractional Recovery SIR Model

The continuous time fractional recovery SIR model was obtained by considering

Mittag-Leffler waiting time densities in the CTRW formulation. In the DTRW

formulation a discrete time fractional recovery SIR model is obtained by considering

a Sibuya(α) waiting time distribution [139, 13]. In this case the probability of

jumping on the nth time step, conditional on not having jumped on the previous
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n− 1 time steps, is given by

µ(n) =

 0, n = 0,

α
n
, n > 0,

(6.22)

and the jump survival probability is given by

φ(n) =
Γ(1− α + n)

Γ(n+ 1)Γ(1− α)
. (6.23)

It is a simple matter to obtain the Z-transforms from n to z

Z [φ(n)|z] =

(
z − 1

z

)α−1

(6.24)

and

Z [µ(n)φ(n− 1)|z] =
∞∑
n=0

µ(n)φ(n− 1)z−n

=
∞∑
n=1

µ(n)φ(n− 1)z−n

= 1−
(
z − 1

z

)α
.

(6.25)

Now using Eq. (6.18) we have

κ(n) = Z−1
[
(1− z−1)1−α − (1− z−1)|n

]
(6.26)

and then after taking the inverse Z-transform we obtain the fractional memory kernel

κ(n) = δ1,n +
Γ(n− 1 + α)

Γ(α− 1)Γ(n+ 1)
. (6.27)

This memory kernel can be calculated recursively by noting that for n ≥ 3,

κ(n) =

(
1 +

α− 2

n

)
κ(n− 1). (6.28)
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The first two values are simply κ(2) = α
2
(α− 1)and κ(1) = α.

The number of initially infected individuals left at the nth time step, I0(n), is

found from Eq. (6.7) for the case 0 < α < 1,

I0(n) = θ(n, 0)
0∑

k=−∞

Γ(1− k)Γ(1− k + n− α)

Γ(1− k + n)Γ(1− k − α)
i(−k, 0). (6.29)

In the case where the initially infected individuals were all infected at time zero this

will simplify. Taking i(−k, 0) = i0δk,0 where i0 is a constant and δk,0 is a Kronecker

Delta function, we find,

I0(n) = θ(n, 0)
Γ(1 + n− α)

Γ(1 + n)Γ(1− α)
i0. (6.30)

Again this may be also expressed recursively,

I0(n) =
(

1− α

n

)
I0(n− 1), (6.31)

with the initial condition, I0(0) = i0.

When α = 1, φ(n) = 0, for all n > 0, as such care has to be taken with the

definition of I0(n). In this case the only physically permitted initial condition is

that the initially infected individuals were all infected at time zero. Hence, when

α = 1, I0(n) = 0 for n > 0, and I0(0) = i0.

The discrete time fractional recovery SIR model is obtained by using the memory

kernel, Eq. (6.27), in Eqs. (6.19), (6.20), and (6.21).

In Appendix B we show that the discrete time fractional recovery SIR model

equations limit to the fractional recovery SIR model equations by identifying t = n∆t

and taking the limit ∆t→ 0 and r → 0, with

lim
∆t,r→0

r

∆tα
= µ. (6.32)
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This justifies our use of the explicit discrete time model equations as a numerical

method for solving the continuous time fractional recovery SIR model.

6.2.3 Equivalence Between The Discrete and Continuous Parameters

As the discrete fractional recovery SIR governing equations, Eqs. (6.20), (6.19),

and (6.21) with Eq. (6.27), limit to the continuous time fractional recovery SIR

model equations we can approximate the solution of the continuous time equations

with the solution to the discrete time equations. Given a set of parameters for the

continuous time equations we need to identify corresponding values of the parameters

in the discrete time equations. The continuous time fractional recovery SIR model

is parameterised by three functions, (λ(t), ω(t), γ(t)), and two constants (α, µ).

The discrete time fractional recovery SIR model is parameterised by three functions

(Λ(n), ω(n), γ(n)), and three constants (α, r, ∆t). Assuming a given time step

∆t, the correspondence between the continuous time t and the discrete time n is

given by t = n∆t. The expected number of births in a time step is related to the

continuous time birth rate by,

Λ(n) = ∆tλ(nδt). (6.33)

The probability of an individual becoming infected in a time step is related to the

continuous time infection rate by,

ω(n) = 1− exp

(
−
∫ (n+1)∆t

nδt

ω(t′) dt′

)
. (6.34)

We can treat the death probability in a similar fashion,

γ(n) = 1− exp

(
−
∫ (n+1)∆t

nδt

γ(t′) dt′

)
. (6.35)
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This definition of the death probability ensures that the discrete survival function,

θ(n,m) is equal to the continuous time survival function evaluated at nδt mδt, i.e.

θ(n,m) = exp

(
−
∫ n∆t

m∆t

γ(t′) dt′
)
. (6.36)

The discrete anomalous exponent, α, is unchanged from the continuous case. The

remaining parameter in the discrete model, r, is obtained from,

r = µ∆tα, (6.37)

which is consistent with Eq. (6.32). Note that r is a probability and as such is

bound in the interval [0, 1]. Thus given the parameters µ and α from the continuous

time model, Eq. (6.37) constrains ∆t as follows,

∆t <

(
1

µ

) 1
α

. (6.38)

Given that Eqs. (6.20), (6.19), and (6.21) are explicit difference equations if we

know S(k), I(k), and R(k), for 1 < k < n, then we can calculate S(n), I(n), and

R(n). In this manner we have a simple numerical method that approximates the

solution of the continuous time fractional recovery SIR model by simply noting that

for t = n∆t, S(t) ≈ S(n), I(t) ≈ I(n), and R(t) ≈ R(n).

6.3 Example

We consider the fractional recovery SIR model, Eqs. (2.61), (2.62), and (2.63), with

the following parameters, λ(t) = 0.1, ω(t) = 0.02, γ(t) = 0.001, µ = 1, and a range

of α ∈ (0, 1]. We also take a delta function initial condition at t = 0 for the infected

population, i(t, 0) = 0.5δ(t). The initial recovered population is taken to be zero,

R(0) = 0, and the initial population in the susceptible compartment is taken so that

the total population is at the equilibrium level of 100, i.e. S(0) = 99.5. With these

parameter values, the system has two possible steady states, the disease free steady
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Figure 6.1: The endemic steady state in the fractional recovery SIR model plotted
as a function of α for susceptibles (solid line) and infecteds (dashed line). The
Parameters were λ = 0.1, ω = 0.02, γ = 0.001.

state given by Eq. (2.84) and the endemic steady state given by Eq. (2.85). The

endemic steady state for susceptibles and infecteds are plotted as a function of α in

Fig. 6.1.

To find the numerical approximation for this situation we solve the discrete

equations, Eqs. (6.20), (6.19), and (6.21). For a given ∆t, the discrete parameters

are taken to be Λ(n) = 0.1∆t, ω(n) = 1−exp(−0.02∆t), γ(n) = 1−exp(−0.001∆t),

and r = ∆tα. The initial conditions are implemented by taking S(0) = 99.5, R(0) =

0, and i(−k, 0) = 0.5δ0,k.

In Fig. 6.2 we show plots of S(t) and I(t) versus time for α = 0.3, 0.5, 0.7, 0.9 with

initial conditions S(0) = 99.5, I(0) = 0.5, R(0) = 0. The number of susceptibles falls

sharply over short times before rising slowly towards a steady state at later times.

The number of infecteds rises to a maximum in the short time regime before declining

slowly back towards a long time steady state. It can be seen that the peak level of

infection and the long time levels of infection are both increased with decreasing α.

For values of α very close to one the numerical solutions show an oscillatory

approach towards the steady state. This can be seen in Fig. 6.3 for α = 0.99, 0.999,
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Figure 6.2: Plots of S(t) and I(t) versus time in the fractional recovery SIR model
with α = 0.3, 0.5, 0.7, 0.9. The arrow indicates the direction of increasing α. The
other parameters are λ = 0.1, ω = 0.02, γ = 0.001. The model was solved using the
DTRW method with ∆t = 0.05.

and 1. The oscillations are suppressed as α is decreased.

6.4 Limit To Continuous Time

The discrete time fractional recovery SIR model can be shown to limit to the frac-

tional recovery SIR model by identifying t = n∆t and taking the limit ∆t→ 0 with

r/∆tα finite. The continuous time equations can be obtained from the discrete time

equations using Z-star transform methods. The Z-star transform of Y (n) is given

by

Z∗[Y (n)|s,∆t] =
∞∑
n=0

Y (n)e−ns∆t (6.39)
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Figure 6.3: Plot of susceptible versus time, after the initial relaxation time, for
α = 1 (solid line), α = 0.999 (dotted line) and α = 0.99 (dashed line). The other
parameters are λ = 0.1, ω = 0.02, γ = 0.001, and ∆t = 0.05.

It follows that

∆tZ∗[Y (n)|s,∆t] =
∞∑
n=0

Y (n)e−ns∆t∆t

=
∞∑
n=0

Ỹ (n∆t)e−ns∆t∆t,

(6.40)

where we have introduced Ỹ (t) as a function defined over a continuous variable t.

We can now take the inverse Laplace transform from s to t

L−1
s

[
∆tZ∗[Y (n)|s,∆t]

∣∣∣∣∣t
]

=
∞∑
n=0

Ỹ (n∆t)δ(t− n∆t)∆t (6.41)

where δ(t) is the Dirac delta function. Here, and in the following, we use the notation

L−1
s

[
Y (s)

∣∣∣∣∣t
]

to denote the inverse Laplace transform from s to t and we use the

notation Lt
[
Y (t)

∣∣∣∣∣s
]

to denote the Laplace transform from t to s.

It is useful to define the function

Ỹ (t|∆t) =
∞∑
n=0

Ỹ (n∆t)δ(t− n∆t)∆t. (6.42)

101



In a similar fashion we have

L−1
s

[
∆tZ∗[Y (n− 1)|s,∆t]

∣∣∣∣∣t
]

=
∞∑
n=0

Ỹ (n∆t)δ(t− (n+ 1)∆t)∆t

=
∞∑
n=0

Ỹ ((n− 1)∆t)δ(t− n∆t)∆t

= Ỹ (t−∆t|∆t).

(6.43)

Note that, with t′ = n∆t, in Eq. (6.42), we have

lim
∆t→0

Ỹ (t|∆t) = lim
∆t→0

∞∑
n=0

Ỹ (n∆t)δ(t− n∆t)∆t

=

∫ ∞
0

Ỹ (t′)δ(t− t′) dt′

= Ỹ (t).

(6.44)

This formally identifies

Ỹ (t) = lim
∆t→0

L−1
s

[
∆tZ∗[Y (n)|s,∆t]

∣∣∣∣∣t
]
, (6.45)

provided that the limit exists.

We further note the product rule

lim
∆t→0

∞∑
n=0

X̃(n∆t)Ỹ (n∆t)δ(t− n∆t)∆t

=

(
lim

∆t→0

∞∑
n=0

X̃(n∆t)δ(t− n∆t)∆t

)(
lim

∆t→0

∞∑
n=0

Ỹ (n∆t)δ(t− n∆t)∆t

)
,

(6.46)

which equates to X̃(t)Ỹ (t) in each case, with t′ = n∆t, provided that both X̃(t)

and Ỹ (t) exist.
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We now take the inverse Laplace transform of the Z-star transform of Eq. (6.19)

and multiply by ∆t
∆t

to write

∞∑
n=0

Ĩ(n∆t)− Ĩ((n− 1)∆t)

∆t
δ(t− n∆t)∆t

=
∞∑
n=0

ω̃(n∆t)

∆t
S̃((n− 1)∆t)Ĩ((n− 1)∆t)δ(t− n∆t)∆t

− r

∆t

∞∑
n=0

θ̃(n∆t, 0)

(
n−1∑
k=0

κ̃((n− k)∆t)
Ĩ(k∆t)− Ĩ0(kδt)

θ̃(k∆t, 0)

)
δ(t− n∆t)∆t

−
∞∑
n=0

γ̃(n∆t)

∆t

(
Ĩ((n− 1)∆t)− Ĩ0((n− 1)δt)

)
δ(t− n∆t)∆t

+
∞∑
n=0

Ĩ0(n∆t)− Ĩ0((n− 1)∆t)

∆t
δ(t− n∆t)∆t.

(6.47)

We now take the continuous time limit of Eq. (6.47) using t′ = n∆t and the

product rule in Eq. (6.46), to obtain

∫ ∞
0

(
lim

∆t→0

Ĩ(t′)− Ĩ(t′ −∆t)

∆t

)
δ(t− t′) dt′ =∫ ∞

0

ω̂(t′)S̃(t′)Ĩ(t′)δ(t− t′) dt′

−
(∫ ∞

0

θ̃(t′, 0)δ(t− t′) dt′
)(

lim
∆t→0

r

∆t

∞∑
n=0

(
n−1∑
k=0

κ̃((n− k)∆t)
Ĩ(k∆t)− Ĩ0(k∆t)

θ̃(k∆t, 0)

)

×δ(t− n∆t)∆t)−
∫ ∞

0

γ̂(t′)
(
Ĩ(t′)− Ĩ0(t′)

)
δ(t− t′) dt′

+

∫ ∞
0

(
lim

∆t→0

Ĩ0(t′)− Ĩ0(t′ −∆t)

∆t

)
δ(t− t′) dt′

(6.48)

where we have defined continuous time rate parameters

ω̂(t′) = lim
∆t→0

ω̃(n∆t)

∆t
, (6.49)
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and

γ̂(t′) = lim
∆t→0

γ̃(n∆t)

∆t
. (6.50)

Equation (6.48) simplifies further to

dĨ(t)

dt
= ω̂(t)S̃(t)Ĩ(t)− γ̂(t)

(
Ĩ(t)− Ĩ0(t)

)
+
dĨ0(t)

dt

− θ̃(t, 0)

(
lim

∆t→0

r

∆t

∞∑
n=0

(
n−1∑
k=0

κ̃((n− k)∆t)
Ĩ(k∆t)− Ĩ0(k∆t)

θ̃(k∆t, 0)

)
δ(t− n∆t)∆t

)
.

(6.51)

The further reduction of this equation depends on the specific form of the memory

kernel κ(n). In the case of a jump at each time step the memory kernel is,

κ(n) = δn,1. (6.52)

In this case we can perform the sum over k explicitly in Eq. (6.51) to arrive at

dĨ(t)

dt
= ω̂(t)S̃(t)Ĩ(t)− γ̂(t)

(
Ĩ(t)− Ĩ0(t)

)
+
dĨ0(t)

dt

− θ̃(t, 0)

(
lim

∆t→0

r

∆t

∞∑
n=0

Ĩ((n− 1)∆t)− Ĩ0((n− 1)∆t)

θ̃((n− 1)∆t, 0)
δ(t− n∆t)∆t

)
.

(6.53)

In order for the continuous time limit of the above equation to exist we define

µ = lim
∆t→0

r

∆t
. (6.54)

Note that r is a free parameter in the range [0, 1] and hence µ is only well defined

in this limit if we take r to be a function of ∆t. With this definition of µ we can

now perform the limit δt→ 0 to obtain the continuous time equation,

dĨ(t)

dt
= ω̂(t)S̃(t)Ĩ(t)− µ(Ĩ(t)− Ĩ0(t))− γ̂(t)(Ĩ(t)− Ĩ0(t)) +

dĨ0(t)

dt
. (6.55)
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This further simplifies to

dĨ

dt
= ω̂(t)S̃(t)Ĩ(t)− µĨ(t)− γ̂(t)Ĩ(t). (6.56)

Equation (6.56) recovers the corresponding equation in the classic SIR model.

We now consider the continuous time limit of Eq. (6.51) with the Sibuya memory

kernel, given by Eq. (6.18). First we simplify the double sum in Eq. (6.51) using

Laplace transforms and Z-transforms as follows:

lim
∆t→0

r

∆t

∞∑
n=0

(
n−1∑
k=0

κ̃((n− k)∆t)
Ĩ(k∆t)− Ĩ0(k∆t)

θ̃(k∆t, 0)

)
δ(t− n∆t)∆t

= L−1
s

[
Lt
[

lim
∆t→0

r

∆t

∞∑
n=0

(
n−1∑
k=0

κ̃((n− k)∆t)
Ĩ(k∆t)− Ĩ0(k∆t)

θ̃(k∆t, 0)

)
δ(t− n∆t)∆t

∣∣∣∣∣s
] ∣∣∣∣∣t
]

= L−1
s

[
lim

∆t→0

r

∆t

∞∑
n=0

(
n−1∑
k=0

κ̃((n− k)∆t)
Ĩ(k∆t)− Ĩ0(k∆t)

θ̃(k∆t, 0)

)
e−sn∆t∆t

∣∣∣∣∣t
]

= L−1
s

[
lim

∆t→0

r

∆t
Z∗[

n−1∑
k=0

κ(n− k)
I(k)− I0(k)

θ(k, 0)
|s,∆t]∆t

∣∣∣∣∣t
]

= L−1
s

[
lim

∆t→0

r

∆t
Z∗[κ(n)|s,∆t]Z∗[I(n)− I0(k)

θ(n, 0)
|s,∆t]∆t

∣∣∣∣∣t
]
.

(6.57)

The last line in the above follows from the convolution theorem for Z-star transforms.

To proceed further we use the Z-transform of the Sibuya memory kernel in Eq.

(6.26) to write

Z∗[κ(n)|s,∆t] =
[
((1− e−s∆t)1−α − (1− e−s∆t))

]
(6.58)

≈ (s∆t)1−α + o(s∆t). (6.59)
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The result in Eq. (6.57) can now be written as

lim
∆t→0

r

∆t

∞∑
n=0

(
n−1∑
k=0

κ̃((n− k)∆t)
Ĩ(k∆t)− Ĩ0(k∆t)

θ̃(k∆t, 0)

)
δ(t− n∆t)∆t

= L−1
s

[
lim

∆t→0

r

∆tα
s1−α

∞∑
n=0

Ĩ(n∆t)− Ĩ0(n∆t)

θ̃(n∆t, 0)
e−sn∆t∆t

∣∣∣∣∣t
]

= µL−1
s

[
s1−α

∫ ∞
0

Ĩ(t)− Ĩ0(t)

θ̃(t, 0)
e−st dt

∣∣∣∣∣t
]

= µL−1
s

[
s1−αLt

[
Ĩ(t)− Ĩ0(t)

θ̃(t, 0)

∣∣∣∣∣s
] ∣∣∣∣∣t
]
,

(6.60)

where

µ = lim
∆t→0

r

∆tα
. (6.61)

Finally we substitute the result of Eq. (6.60) into Eq. (6.51), and use the known

result [121]

Lt
[

0D
1−α
t Y (t)

∣∣∣∣∣s
]

= s1−αLt
[
Y (t)

∣∣∣∣∣s
]

(6.62)

to invert the Laplace transform and obtain

dĨ(t)

dt
= ˆ̃ω(t)S̃(t)Ĩ(t)−µ ˆ̃θ(t, 0) 0D

1−α
t

(
Ĩ(t)− Ĩ0(t)

ˆ̃θ(t, 0)

)
− ˆ̃γ(t)

(
Ĩ(t)− Ĩ0(t)

)
+
dĨ0(t)

dt
.

(6.63)

Equation (6.63) recovers the continuous time fractional recovery SIR model equation.

Note that in order for the continuous time limit of the fractional recovery SIR

model equation to exist we defined,

µ = lim
∆t→0

r

∆tα
, (6.64)

which requires r ∈ [0, 1] to be a function of ∆t. This is important for numerical

simulations based on this DTRW method where we take r = µ∆tα and then the

requirement that r ∈ [0, 1] places restrictions on ∆t for given α and µ.
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6.5 Summary

We have derived a discrete time fractional recovery model that limits to the contin-

uous time fractional-order model as the time step goes to zero. The discrete time

model was itself derived from a stochastic process and we have used this model to

provide a stable numerical solver for the continuous time model. Our numerical

solutions based on this discrete model show that the prevalence of infection and the

peak levels of infection are both elevated by the fractional-order derivative as it is

varied further away from the integer order derivative in the classic SIR model.
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Chapter 7

Discretisation of the Fractional General Compartment Model

7.1 Introduction

The work in this Chapter follows the publication [19]. We have introduced an ap-

proach for finding solutions of fractional order compartment models that also pro-

vides further insight into stochastic modelling. Our approach is based on using the

correspondence between continuous time, and discrete time, stochastic processes.

The fractional order compartment models of the type derived form a continuous

time stochastic process in Chapter 3 can also be derived from a corresponding dis-

crete time stochastic process. The discrete master equations, for the discrete time

stochastic process can be used in turn to formulate stable numerical schemes that

can easily be implemented to obtain approximate solutions for the continuous time

fractional order compartment models. One of the purposes of this text is to draw

attention to, and develop connections between, discrete time stochastic processes

and numerical schemes.

The remainder of this Chapter is organized as follows. The governing evolution

equation of a discrete time stochastic process for a single compartment is given in

Section 7.2. A general compartment model can easily be formed from the compo-

sition of any number of single compartments. The only constraint that we place

on the compartment models is that there is a single non-Markovian removal pro-

cess for each compartment. This restriction is required in order to obtain fractional

derivatives in the continuous time limit.
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In Section 7.3 we show that the governing equations for the discrete time stochas-

tic process will, in the limit of small time steps, approach the governing equation

for a fractional order compartment model. This correspondence provides the basis

for utilising the discrete time process as an approximation for the continuous time

compartment model. In previous work [13, 9], the governing discrete time evolu-

tion equations were used directly to provide a difference equation approximation to

the fractional order partial differential equations. This was possible as the partic-

ular choice of waiting time distributions led to an expression for the discrete time

memory kernel that was amenable to simplification through Z-transforms. Here we

consider choices of waiting time distributions where this simplification cannot be

carried out. Instead, we track both the population in each compartment, as well as

the flux between the compartments at each time step. By tracking the fluxes we

obviate the need to perform the inverse Z-transformations required to calculate the

memory kernel.

The single compartment model is extended to multiple compartments in Section

7.4, where we show that the multi compartment system can be considered via a flux

matrix. The implementation of the numerical scheme for an arbitrary fractional

order compartment model is given in Section 7.5. A general example is considered

to illustrate how to construct both the fractional order compartment model PDE’s

as well as the numerical scheme for their solution.

In Section 7.6, particular examples are given to illustrate the use of the scheme.

Examples are chosen for their tractability, so we can compare the method to exact

solutions, and for their ability to demonstrate the variety of uses of compartment

models.

7.2 Discrete Derivation

A general compartment model can be analyzed and solved by separating the struc-

ture into several single compartments [14]. As such we will develop our stochastic
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process by considering the dynamics of a single compartment, before combining

multiple single compartments into a full compartment model.

We begin by considering an ensemble of particles that enter the compartment,

wait for a random number of time steps, drawn from a probability distribution, and

then leave. In general the expected number of particles in the compartment after n

time steps, X(n), can be calculated as,

X(n) =
n∑
k=0

Ξ(n, k)Q(k), (7.1)

where Q(k) is the flux of entering particles on the kth time step, and Ξ(n, k) is the

probability that a particle that entered the compartment on the kth time step has

survived until the nth time step.

Considering the case where we have two independent processes that describe the

waiting time, we may write the survival function, Ξ(n, k) as the product of each

processes survival functions,

Ξ(n, k) = Θ(n, k)Φ(n, k). (7.2)

In order to obtain a fractional order compartment model we will take one of our

processes to be Markovian, with survival function Θ(n, k), and the other to be non-

Markovian with survival function Φ(n, k). The Markovian survival function will

obey a semi-group property such that,

Θ(n, k) = Θ(n,m)Θ(m, k), (7.3)

with integers n > m > k. The non-Markovian process is assumed to only depend

on the amount of time that a particle has spent in the compartment, and as such

we may write its survival function as,

Φ(n, k) = Φ(n− k) (7.4)
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The expected flux of particles in the compartment can be written as,

X(n)−X(n−1) =
n∑
k=0

Θ(n, k)Φ(n−k)Q(k)−
n−1∑
k=0

Θ(n−1, k)Φ(n−1−k)Q(k). (7.5)

This in turn can be rewritten as,

X(n)−X(n− 1) =Q(n)−
n−1∑
k=0

Φ(n− 1− k)(Θ(n− 1, k)−Θ(n, k))Q(k)

−
n−1∑
k=0

Θ(n, k)Ψ(n− k)Q(k),

(7.6)

where the flux leaving the compartment has been split into a Markovin and a non-

Markovain component, we have defined,

Ψ(n) = Φ(n− 1)− Φ(n), (7.7)

and used the fact that Θ(n, n) = 1, and Φ(0) = 1. Using the semi-group property,

Eq. (7.3) this can be written,

X(n)−X(n− 1) =Q(n)− (1−Θ(n, n− 1))
n−1∑
k=0

Θ(n− 1, k)Φ(n− 1− k)Q(k)

−
n−1∑
k=0

Θ(n, k)Ψ(n− k)Q(k).

(7.8)

It should be noted that the decomposition from Eq. (7.5) to Eq. (7.6) is not unique

and the choice made is equivalent to requiring that a particle survive the Markovian

process before it may leave due to the non-Markovian process. The alternate choice,

or having the particle survive the non-Markovian process before leaving due to the

Markovian process, could be made which would give a different form of Eq. (7.6).

This choice should be considered as part of the definition of our overall stochastic

process.
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Equation (7.6) can be further simplified using Eq. (7.1) to give,

X(n)−X(n−1) = Q(n)−(1−Θ(n, n−1))X(n−1)−
n−1∑
k=0

Θ(n, k)Ψ(n−k)Q(k). (7.9)

The last sum may be expressed as a convolution by noting the semi-group property

of the Markov survival function, and taking Ψ(0) = 0, so that,

X(n)−X(n− 1) = Q(n)− (1−Θ(n, n− 1))X(n− 1)−Θ(n, 0)
n∑
k=0

Ψ(n−k)
Q(k)

Θ(k, 0)
.

(7.10)

We can further simplify this equation by considering the Z-transform of the discrete

convolution on the right hand side. Firstly from Eqs. (7.1), (7.2) and (7.3) we have,

X(n)

Θ(n, 0)
=

n∑
k=0

Φ(n− k)
Q(k)

Θ(k, 0)
. (7.11)

Taking the Z-transform of this equation then gives,

Z
{
X(n)

Θ(n, 0)

}
= Z {Φ(n)}Z

{
Q(n)

Θ(n, 0)

}
. (7.12)

Taking the Z-transform of the convolution in Eq. (7.10) similarly gives,

Z
{

n∑
k=0

Ψ(n− k)
Q(k)

Θ(k, 0)

}
= Z {Ψ(n)}Z

{
Q(n)

Θ(n, 0)

}
. (7.13)

Combining these results we see that,

n∑
k=0

Ψ(n− k)
Q(k)

Θ(k, 0)
=

n∑
k=0

K(n− k)
X(k)

Θ(k, 0)
, (7.14)

where the memory kernel K is defined by its Z-transform,

Z {K(n)} =
Z {Ψ(n)}
Z {Φ(n)} . (7.15)
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We can then write the master equation for the discrete time evolution of the prob-

ability as,

X(n)−X(n−1) = Q(n)− (1−Θ(n, n−1))X(n−1)−Θ(n, 0)
n∑
k=0

K(n−k)
X(k)

Θ(k, 0)
.

(7.16)

7.3 Continuum Limits

The continuum limit of the discrete time master equation, Eq. (7.16), will be ob-

tained by considering the limit as the time step size is decreased to zero. To begin

we assume a form for the waiting time distribution by assuming that there exists

a continuous time waiting time survival function, φ(t). Taking a lattice spacing ∆t

we define our discrete time waiting time survival function as,

Φ(n) = φ∆t(n∆t) = φ(n∆t), (7.17)

where φ∆t is a function over a continuous time such that at the points t = n∆t

it agrees with the discrete time function. Away from these points we will assume

that the function is continuous via some form of interpolation. From the survival

function we can find the discrete time probability mass function

Ψ(n) = ψ∆t(n∆t) = φ((n− 1)∆t)− φ(n∆t). (7.18)

Furthermore, we can note that in the limit ∆t→ 0, such that t = n∆t we have,

lim
∆t→0

ψ∆t(n∆t)

∆t
= −dφ(t)

dt
= ψ(t), (7.19)

where ψ(t) is the probability density associated with the continuous time survival

function. The semi-group property of the Markovian survival function can be pre-

served in the continuous time limit by assuming that there exists a time dependent
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hazard rate, µ(t), such that,

Θ(n,m) = θ∆t(n∆t,m∆t) = exp

(
−
∫ n∆t

m∆t

µ(s)ds

)
. (7.20)

For the evolving probability function over discrete time we will associate a continuous

time function, parameterised by ∆t, such that at the points t = n∆t we have,

x∆t(n∆t) = X(n), (7.21)

and the continuous function is interpolated between these points.

We will also assume that there is a continuous time flux, such that,

q∆t(n∆t) =
Q(n)

∆t
(7.22)

To look at the continuous time limit of the discrete equation it is easiest to work

from Eq. (7.10). We begin by casting the equation in terms of the newly defined

continuous time functions,

x∆t(n∆t)−x∆t((n− 1)∆t) = −e−
∫ n∆t
0 µ(s)ds

n∑
k=0

∆t2
ψ∆t ((n− k)∆t)

∆t

q∆t(k∆t)

e−
∫ k∆t
0 µ(s)ds

−
(

1− e−
∫ n∆t
(n−1)∆t µ(s)ds

)
x∆t((n− 1)∆t) + q∆t(n∆t)∆t.

(7.23)

Setting t = n∆t and expanding the right hand side of this equation about ∆t = 0,

whilst noting that,

n∑
k=0

∆t2
ψ∆t ((n− k)∆t)

∆t

q∆t(k∆t)

e−
∫ k∆t
0 µ(s)ds

=

∫ t

0

∆t
ψ∆t (t− t′)

∆t

q∆t(t
′)

e−
∫ t′
0 µ(s)ds

dt′ +O(∆t3)

= ∆t

∫ t

0

ψ (t− t′) q(t′)

e−
∫ t′
0 µ(s)ds

dt′ +O(∆t2)

(7.24)
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then gives,

x∆t(t)− x∆t(t−∆t) =q(t)∆t− µ(t)x(t)∆t

− e−
∫ t
0 µ(s)ds∆t

∫ t

0

ψ (t− t′) q(t′)

e−
∫ t′
0 µ(s)ds

dt′ +O(∆t2).
(7.25)

Here we have defined the continuous time limits of q∆t and x∆t(n∆t) such that,

lim
∆t→0

q∆t(t) = q0(t) = q(t), and, (7.26)

lim
∆t→0

x∆t(n∆t) = x0(t) = x(t). (7.27)

We now divide both sides of Eq. (7.25) by ∆t and take the limit ∆t → 0 to arrive

at the limit equation,

dx(t)

dt
= q(t)− µ(t)x(t)− e−

∫ t
0 µ(s)ds

∫ t

0

ψ(t− t′) q(t′)

e−
∫ t′
0 µ(s)ds

dt′. (7.28)

To obtain the continuous time master equation we will rewrite the convolution in

Eq. (7.28) via the use of Laplace transforms. Firstly, the continuous time limit of

Eq. (7.1) is,

x(t)e
∫ t
0 µ(s)ds =

∫ t

0

φ(t− t′)q(t′)e
∫ t′
0 µ(s)dsdt′. (7.29)

Similarly to the discrete time case the Laplace transform of this equation can be

used to show that,

∫ t

0

ψ(t− t′) q(t′)

e−
∫ t′
0 µ(s)ds

dt′ =

∫ t

0

K(t− t′) x(t′)

e−
∫ t′
0 µ(s)ds

dt′, (7.30)

where the memory kernel K is defined via its Laplace transform,

L{K(t)} =
L{ψ(t)}
L {φ(t)} . (7.31)
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This then leads to the continuous time master equation,

dx(t)

dt
= q(t)− µ(t)x(t)− e−

∫ t
0 µ(s)ds

∫ t

0

K(t− t′) x(t′)

e−
∫ t′
0 µ(s)ds

dt′. (7.32)

This equation is identical to the master equation derived in Angstmann et al. [14]

for the case of a general compartment model. Given a Mittag-Leffler waiting time

distribution, we have,

∫ t

0

K(t− t′) x(t′)

e−
∫ t′
0 µ(s)ds

dt′ = τ−α 0D1−α
t

(
x(t′)

e−
∫ t′
0 µ(s)ds

)
. (7.33)

and the general master equation becomes,

dx(t)

dt
= q(t)− µ(t)x(t)− τ−αe−

∫ t
0 µ(s)ds

0D1−α
t

(
x(t′)

e−
∫ t′
0 µ(s)ds

)
, (7.34)

which is the general form of the evolution equation for a fractional order compart-

ment model.

7.3.1 Error Analysis

The continuous time limit given above serves to show that the approximation of

the continuous time equations by the discrete time stochastic process is convergent.

Further to this it would be ideal to have some idea about the accuracy of the

approximation. We define the L1 error in our approximation as,

ε∆t(t) = |x(t)− x∆t(t)|. (7.35)

In order to see how this scales with ∆t we integrate Eq. (7.28) from t−∆t to t,

x(t)− x(t−∆t) =

∫ t

t−∆t

q(u)du−
∫ t

t−∆t

µ(u)x(u)du

−
∫ t

t−∆t

e−
∫ u
0 µ(s)ds

∫ u

0

ψ(u− t′) q(t′)

e−
∫ t′
0 µ(s)ds

dt′du.

(7.36)
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Taking the series expansion of the right hand side about ∆t = 0 then gives,

x(t)− x(t−∆t) =q(t)∆t− µ(t)x(t)∆t

− e−
∫ t
0 µ(s)ds∆t

∫ t

0

ψ(t− t′) q(t′)

e−
∫ t′
0 µ(s)ds

dt′ +O(∆t2).
(7.37)

From Eqs. (7.25) and (7.37) we then find,

ε∆t(t) = |x(t−∆t)− x∆t(t−∆t) +O(∆t2)|. (7.38)

Hence,

ε∆t(t) ≤ ε∆t(t−∆t) +O(∆t2). (7.39)

As we have fixed t = n∆t, we can recursively use this to write,

ε∆t(t) ≤ ε∆t(0) + nO(∆t2). (7.40)

Finally noting that our initial condition is exact, and hence ε∆t(0) = 0, and that n

scales with 1
∆t

, we find the error bound by a term of order ∆t,

ε∆t(t) ≤ O(∆t). (7.41)

7.3.2 Stability

In the above subSection we showed that the discrete time process will converge to

the continuous time process, and we identified the rate of that convergence. It still

remains to be shown that the discrete time process well approximates the continuous

time process at some non-infinitesimal ∆t. To achieve this we will examine the

stability of the approximation. The approximation of the continuous time solution

by the discrete time solution will be considered stable if the error remains bounded

as t→∞.
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Due to the construction of the continuous time equations from a stochastic pro-

cess, see Angstmann et al [14], the solution must always remain positive, and hence

x(t) ≥ 0 for all t. This is also true for the discrete time solution and is readily

seen from Eq. (7.1). First note that 0 ≤ Ξ(n, k) ≤ 1 as it is a probability, and

Q(k) > 0 by construction. From this we see that X(n) ≥ 0 for all n as it is a sum of

non-negative numbers, and then by it definition x∆t(t) ≥ 0. From Eq. (7.35) then

we see that,

ε∆t(t) ≤ x(t) + x∆t(t), (7.42)

and ε∆t only diverges if either x∆t or x diverge.

Considering the case where we have no additional flux entering the compartment

after some time, i.e. Q(m) = 0 for all m greater then some number n. In this case

x∆t(m∆t), the solution to the discrete time equations, is a decreasing sequence for

all m > n. This can be seen from Eq. (7.10), where under these conditions all the

terms on the right hand side are negative. Given that x∆t is both decreasing and

bound non-negative we know that it must be approaching some limit, i.e.,

lim
m→∞

x∆t(m∆t) = L, (7.43)

where the value of L may be dependent on the initial conditions. As such we see

that the error is bounded and therefore the solution is stable. Further to this we

say that the approximation is unconditionally stable as this stability is independent

of the time step size, ∆t. The general case of Q(m) > 0 is more nuanced as the

continuous solution may itself diverge, and this needs to be considered on a case by

case basis.

7.4 Multiple Compartments

Thus far we have been concerned about the dynamics of a single compartment. Most

compartment models involve a sequence of compartments and as such we need to be

able to solve a system of multiple compartments. In an M compartment model each
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compartment will have its own survival function, Ξi. In addition to this we define an

adjacency flux matrix, of size (M + 1)× (M + 1), as Q(n) = Qi,j(n) to describe the

flux from compartment i to compartment j at time n. The additional dimension

of Q(n) allows us to capture flux moving in and out of the model that does not

originate or terminate in any compartment. The total flux out of compartment i is

then the sum over the ith row of Q(n) and similarly the total flux into compartment

i is the sum over the ith column of Q(n).

Using this notation for the flux and waiting time survival function we may then

explicitly define the dynamics of the mass for compartment i using a generalisation

of Eq. (7.1),

Xi(n) =
n∑
k=0

Ξi(n, k)
M+1∑
l=1

Ql,i(k). (7.44)

Similar to Eq. (7.2) we will assume that the survival functions, Ξi are separable into

Markovian and non-Markovian survival functions. Further to this we will assume

that the Markovian survival function can be separated into survival functions for

each Markovian outflow such that,

Ξi(n, k) =
M+1∏
j=1

Θi,j(n, k)Φi,j(n− k). (7.45)

Here Θi,j is the Markovian survival function for the process in compartment i that

will send mass to compartment j, and Φi,j is the non-Markov survival function for

the process from i to j. Note that we are restricted to a single non-Markov outflow

for each compartment, and so Φi,j(n− k) = 1 for all other compartments.

Further to this we can write Eq. (7.6), in terms of the elements of Q highlighting

its form as a flux balance equation,

Xi(n) = Xi(n− 1) +
M+1∑
l=1

Ql,i(n)︸ ︷︷ ︸
flux into Xi

−
M+1∑
l=1

Qi,l(n)︸ ︷︷ ︸
flux out of Xi

. (7.46)
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The flux out of the compartment, in terms of the overall survival functions, can be

written,

M+1∑
l=1

Qi,l(n) =
n−1∑
k=0

(
M+1∏
j=1

Θi,j(n− 1, k)Φi,j(n− 1− k)−
M+1∏
j=1

Θi,j(n, k)Φi,j(n− k)

)

×
(
M+1∑
l=1

Ql,i(k)

)
(7.47)

The decomposition of the right hand side into a sum in order to identify the individ-

ual Qi,l from the right hand side is again not unique and will depend on a ordering

or the removal processes. Assuming that a particle may only leave the compartment

due to Markov process i if it has first survived all Markov processes j, such that

j < i, and that any non-Markov removal process will alway be considered after the

Markov processes, we may write,

Qi,l(n) =
n−1∑
k=0

(
M+1∏
j=1

Θi,j(n− 1, k)Φi,j(n− 1− k)

)
(1−Θi,l(n, n− 1))

l−1∏
j=1

Θi,j(n, n− 1)

×
(
M+1∑
h=1

Qh,i(k)

)
+

n−1∑
k=0

M+1∏
j=1

Θi,j(n, k) (Φi,l(n− 1− k)− Φi,l(n− k))

(
M+1∑
h=1

Qh,i(k)

)
(7.48)

In going from Eq. (7.47) to Eq. (7.48) it has been assumed that Φi,l(n) = 1 for all but

one l, i.e. there is at most one non-Markovain transition out of each compartment.

This is also a requirement so that the continuous time limit will contain fractional

derivatives. In the cases where the mass leaving one compartment arrives into

another compartment unchanged, then Q(n) is symmetric and can be recursively

constructed via Eq. (7.48). In other cases the flux into the compartments will need

to be constructed from the model itself, but Eq. (7.48) will still hold true for the

flux out of a compartment. An example of an asymmetric system is provided in

Section 7.6.2.
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7.5 Implementation

Here we will demonstrate how the discrete time stochastic process can be used as a

numerical scheme to solve a fractional-order compartment model. From Eq. (7.44)

it is clear that if we know the matrix Q at all times then we can easily calculate

the solution of the fractional order model. The flux, Q, may itself be found via

recursion from Eq. (7.48) or similar. The process of constructing this numerical

scheme from a given set of equations or block diagram is clearly illustrated by way

of example. We will consider the diagram shown in Figure 7.1 and the associated

system of equations,

dx1

dt
= λ(t)︸︷︷︸

flux entering system

+

(
τ−α2

2 θ2(t) 0D1−α2
t

(
x2(t)

θ2(t)

)
+ β2(t)x2(t)

)
︸ ︷︷ ︸

flux in from 2

(7.49)

−
(
τ−α1

1 θ1(t) 0D1−α1
t

(
x1(t)

θ1(t)

)
+ β1(t)x1(t)

)
︸ ︷︷ ︸

flux out from 1 to 2

,

dx2

dt
=

(
τ−α1

1 θ1(t) 0D1−α1
t

(
x1(t)

θ1(t)

)
+ β1(t)x1(t)

)
︸ ︷︷ ︸

flux in from 1

(7.50)

−
(
τ−α2

2 θ2(t) 0D1−α2
t

(
x2(t)

θ2(t)

)
+ β2(t)x2(t)

)
︸ ︷︷ ︸

flux out from 2 to 1

− µ(t)x2(t)︸ ︷︷ ︸
flux leaving system

.

Here, θ1(t) = exp
(
−
∫ t

0
β1(τ)dτ

)
, and θ2(t) = exp

(
−
∫ t

0
β2(τ) + µ(τ)dτ

)
. We note

that these equations may be nonlinear as λ, β1, β2, and µ, are arbitrary time de-

pendent variables and may depend on x1 and x2 themselves. These equations will

be subject to initial conditions such that x1(0) = a, and x2(0) = b.

The numerical scheme comprises two major parts. To obtain an approximation

for x1(t) and x2(t), we will first calculate Q(m) for all m < n such that t = n∆t.

Following this we will calculate X1 and X2 via Eq. (7.44) and use these to form

our approximation. To do this we will need to relate the discrete parameters and

probabilities to the known parameters given in the continuous time equations. The
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1 2λ(t)
β1

β2

μ

τ1,α1

τ2,α2

Figure 7.1: Box diagram for the case considered in the implementation Section. The
solid arrows indicate a Markovian transition from one compartment to another with
a rate parameter indicated above the arrow. Arrows originating or terminating on
no compartment indicate transitions in and out of the system respectively. Dashed
arrow indicate a non-Markovian transition with the first parameter above the arrow
being a time scale and the second parameter being the exponent.

discrete time process is completely described by the survival functions and incoming

flux. Considering compartment 1 the Markov survival function is,

Θ1,2(n,m) = exp

(
−
∫ n∆t

m∆t

β1(τ)dτ

)
, (7.51)

and the non-Markov survival function is,

Φ1,2(n) = Eα1,1

(
−
(
n∆t

τ1

)α1
)
. (7.52)

Note that this non-Markov survival function is chosen so that in the limit ∆t → 0

we will recover the Mittag-Leffler survival function, Eq. (3.39), that leads to the

fractional derivative appearing in the continuum equations. The discrete time flux

entering compartment 1 from outside the system can be found from,

Q3,1(n) =

∫ n∆t

(n−1)∆t

λ(τ)dτ + aδn,0. (7.53)

where δn,0 is a Kronecker Delta function and the term aδn,0 is used to establish the

initial condition. In compartment 2 we have two Markovian out processes and one
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non-Markov out process. The Markov survival functions are,

Θ2,1(n,m) = exp

(
−
∫ n∆t

m∆t

β2(τ)dτ

)
, (7.54)

and

Θ2,3(n,m) = exp

(
−
∫ n∆t

m∆t

µ(τ)dτ

)
. (7.55)

The non-Markov survival function is

Φ2,1(n) = Eα2,1

(
−
(
n∆t

τ2

)α2
)
. (7.56)

Compartment 2 does not have any flux entering from outside the system and so the

flux Q3,2 will only incoporate the initial condition,

Q3,2(n) = bδn,0. (7.57)

The flux matrix that we wish to compute then is,

Q(n) =


0 Q1,2 0

Q2,1 0 Q2,3

Q3,1 Q3,2 0

 . (7.58)

We know Q3,1 via Eq. (7.53) and Q3,2 via Eq. (7.57), leaving only three matrix

elements that must be calculated recursively. Starting with the flux entering com-

partment 1 from compartment 2 we have, from Eq.(7.48),

Q2,1(n) =
n−1∑
k=0

Θ2,1(n, k)Θ2,3(n, k)(Φ2,1(n− 1− k)− Φ2,1(n− k))(Q1,2(k) +Q3,2(k))

+
n−1∑
k=0

Θ2,1(n− 1, k)Θ2,3(n− 1, k)Φ2,1(n− 1− k)(1−Θ2,1(n, n− 1))(Q1,2(k) +Q3,2(k)).

(7.59)
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Similarly, using Eq. (7.48), we find the flux entering compartment 2 from com-

partment 1,

Q1,2(n) =
n−1∑
k=0

Θ1,2(n− 1, k)Φ1,2(n− 1− k)(1−Θ1,2(n, n− 1))(Q2,1(k) +Q3,1(k))

+
n−1∑
k=0

Θ1,2(n, k)(Φ1,2(n− 1− k)− Φ1,2(n− k))(Q2,1(k) +Q3,1(k)).

(7.60)

Lastly, using Eq. (7.48), the flux leaving the system from compartment 2 is,

Q2,3(n) =
n−1∑
k=0

Θ2,1(n, k)Θ2,3(n− 1, k)Φ2,1(n− 1− k)(1−Θ2,3(n, n− 1))

×(Q1,2(k) +Q3,2(k)).

(7.61)

Finally, to obtain the approximation we use Eq. (7.46),

x1∆t(n∆t) = X1(n) = X1(n− 1) +Q2,1(n) +Q3,1(n)−Q1,2(n), (7.62)

x2∆t(n∆t) = X2(n) = X2(n− 1) +Q1,2(n) +Q3,2(n)−Q2,1(n)−Q2,3(n). (7.63)

7.6 Examples

Here we consider a collection of examples that have been chosen for their tractability,

enabling us to make comparisons with exact solutions. The fractional derivative in

all these examples ensures that the evolution has a dependence on the entire history,

and thus includes a non-local memory effect.

7.6.1 A Single Compartment Model for Chromium Poisoning

We consider a one-compartment model describing the clearance of chromium in

mice considered in Subsection 3.4.2 [14]. This compartment model comprises of a

single compartment that has an initial dose of chromium, c0, that exits out of the

compartment via a non-Markovian process, see Figure 7.2.
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The amount of chromium in the compartment, c(t), changes according to the

fractional order DE,

dc

dt
= −τα 0D

1−α
t c(t), (7.64)

where τ is a time scale and α the exponent, subject to the initial condition c(0) = c0.

The exact solution to Eq. (7.64) is given by,

c(t) = c0Eα,1 (− (τt)α) . (7.65)

Using our discrete time stochastic process this governing equation can be ap-

proximated by its discrete time analog. As outlined in Section 7.5, we will come

about this approximation by considering the flux for the system. As there is a single

compartment we will consider a two dimensional flux matrix,

Q =

 0 Q1,2

Q2,1 0

 , (7.66)

where Q2,1(n) is the flux into the compartment and Q1,2 is the flux out of the

compartment. The only flux into the compartment, Q(k), is the initial dosage and

hence we may write,

Q2,1(n) = c0δn,0, (7.67)

c τ,α

Figure 7.2: A one compartment model for the clearance of chromium. There is
a single non-Markovian transition out of the compartment with time scale τ and
exponent α.
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where δn,0 is the Kronecker delta function and c0 is the initial dosage concentration.

The non-Markovian survival function is given by

Φ1,2(n) = Eα,1 (− (τn∆t)α) , (7.68)

and there are no Markovian processes. Hence, from Eq. (7.48), we can write,

Q1,2(n) =
n−1∑
k=0

(Φ1,2(n− 1− k)− Φ1,2(n− k))(Q2,1(k)). (7.69)

Substituting Eq. (7.67) into this gives,

Q1,2(n) = c0(Φ1,2(n− 1)− Φ1,2(n)), (7.70)

for n ≥ 1. Finally our approximation for the solution is found from Eq. (7.46),

c∆t(n∆t) = X1(n) = X1(n− 1)− c0(Φ1,2(n− 1)− Φ1,2(n)), (7.71)

for n ≥ 1 and X(0) = c0. This recursive relation can be solved to give,

c∆t(n∆t) = X1(n) = c0Eα,1 (− (τn∆t)α) . (7.72)

Hence in this case our numerical approximation gives the exact solution at discrete

points, t = n∆t.

7.6.2 Two Compartment Model for in Host HIV Dynamics

HIV has been the subject of numerous mathematical models, typically aiming to

describe the population dynamics of the virus itself and the CD4+ T cells, targeted

by the virus [119]. We consider a simplistic two-compartment model describing these

dynamics in the case of a combined antiretroviral therapy with 100% efficacy, leading

to no replenishment of the infected T-cells from uninfected cells. This model has
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been considered in it’s continuum in Subsection 3.4.3 [14]. The model is governed

by

dI

dt
= −δαI 0D1−α

t I, (7.73)

and

dV

dt
= NδαI 0D1−α

t I − δV V, (7.74)

where I denotes the number of infected CD4+ T cells and V the number of HIV

virons, subject to the initial conditions,

I(0) = I0, (7.75)

V (0) = V0. (7.76)

The solution of these equations is given by [14],

I(t) = I0Eα,1 (−(δIt)
α) . (7.77)

V (t) =e−δV tI0N

([
1− eδV tEα,1 (−(δIt)

α)
]

+ δV

∫ t

0

eδV sEα,1 (−(δIs)
α) ds

)
+ V0e

−δV t
(7.78)

In representing this as a compartment model, we consider three compartments,

with I is taken to be the first compartment, V to be the second, and a third dummy

compartment for outflows an initial inflows. This is illustrated schematically in

Figure 7.3).

The flux matrix Q(n) for this example is given by

Q =


0 0 Q1,3

0 0 Q2,3

Q3,1 Q3,2 0

 . (7.79)
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The flux into the I compartment from the dummy compartment is used to give the

initial condition such that,

Q3,1(n) = I0δn,0, (7.80)

From the model we see that the flux into the V compartment from the dummy

compartment is a multiple of the flux out of the I compartment into the dummy

compartment, plus our initial condition term. Hence we can write,

Q3,2(n) = NQ1,3(n) + V0δn,0. (7.81)

This just leaves the flux out of each compartment into the dummy compartment.

A single non-Markov process removes particles from the I compartment, from Eq.

(7.48) we can therefore write,

Q1,3(n) =
n−1∑
k=0

(Φ1,3(n− 1− k)− Φ1,3(n− k))(Q3,1(k)), (7.82)

with

Φ1,3(n) = Eα,1 (− (δIn∆t)α) . (7.83)

V

I δI ,α

λ δV
-1

Figure 7.3: Diagram for the HIV model. Here the Infected cells die with a non-
Markovian transition. The virions grow proportionally to the death of the Infected
cells, such that λ = NδαI 0D1−α

t I, and themselves are cleared via a Markov transition.
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Using Eq. (7.80), this becomes,

Q1,3(n) = I0(Φ1,3(n− 1)− Φ1,3(n)), (7.84)

and Eq. (7.81) becomes,

Q3,2(n) = NI0(Φ1,3(n− 1)− Φ1,3(n)) + V0δn,0. (7.85)

Lastly we have the flux from the V compartment to the dummy compartment, which

again can be found from Eq. (7.48),

Q2,3(n) =
n−1∑
k=0

(Θ2,3(n− 1, k)−Θ2,3(n− k))Q3,2(k). (7.86)

Here the Markovian survival function can be constructed from the continuous time

parameters such that,

Θ2,3(n,m) = exp

(
−
∫ n∆t

m∆t

δV dτ

)
. (7.87)

Our approximation can then be found by considering Eq. (7.46),

I∆t(n∆t) = X1(n) = X1(n− 1) +Q3,1(n)−Q1,3(n), (7.88)

V∆t(n∆t) = X2(n) = X2(n− 1) +Q3,2(n)−Q2,3(n). (7.89)

Again, we can note that the recursion equation for I∆t(n∆t), can be solved so that,

I∆t(n∆t) = I0Eα,1 (− (δIn∆t)α) , (7.90)

and our numerical approximation gives the exact solution for I(t) at discrete points,

t = n∆t. However the numerical approximation for V (t) will not be exact.
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Figure 7.4: Left: Comparison of approximate DTRW solution for I compartment
(◦) and V compartment (�) against exact solutions (solid line). Right: L1 error in
approximate DTRW solution for I compartment (◦) and V compartment (�). Plots
are given on the domain t ∈ [0, 4], with α = 0.7 and ∆t = 1/8.

Figure 7.4 illustrates a comparison between the exact solution and the numerical

solution obtained by the present method with V0 = 0, I0 = 1, δI = 1, δV = 1,

∆t = 1/8 and α = 0.7. A coarse grid has been taken to exaggerate the difference

between these solutions in the V (t) compartment. The error shown in Figure 7.4 is

problem specific and will grow or shrink depending on the problem dynamics. In

Figure 7.5 the L1 error in the numerical approximation of V (t) has been plotted as

a function of ∆t, with V0 = 0, I0 = 1, δI = 1, δV = 1. Since our numerical solution

is evaluated at discrete points, n∆t, we choose the evaluation time (t = 0.4) such

that t is an integer number of ∆t steps. For Figure 7.5 we used ∆t = 0.4/2j for

j = 0, 1, . . . , 9. The error for three values of α have been plotted and all show the

linear relationship as expected by Eq. (7.41).

7.6.3 Two Compartment Model with Fractional Feedback

We now consider a two compartment model with a non-Markovian feedback loop,

as seen in Figure 7.6. This dynamic is captured by,

dx

dt
= δα 0D1−α

t (y − x) (7.91)

dy

dt
= δα 0D1−α

t (x− y) (7.92)
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Figure 7.5: Plot of the convergence of the L1 error for the numerical approximation
of the concentration in the V compartment at t = 0.4 over ∆t for α = 0.1 (◦),
α = 0.5 (�) and α = 0.9 (�).

with initial conditions x(0) = x0 and y(0) = y0. The exact solution for this

system is given by,

x(t) =
1

2
((x0 − y0)Eα,1(−2δαtα) + x0 + y0) (7.93)

y(t) =
1

2
((y0 − x0)Eα,1(−2δαtα) + x0 + y0) (7.94)

The numerical approximation will again be constructed by considering the flux

out of each compartment. Identifying compartment x as 1, and y as 2, the flux

matrix for the DTRW is,

Q =


0 Q1,2 0

Q2,1 0 0

Q3,1 Q3,2 0

 . (7.95)
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The flux from the dummy compartment to each of the other two compartment

encodes the initial condition so that,

Q3,1(n) = x0δn,0, (7.96)

and

Q3,2(n) = y0δn,0. (7.97)

The other two fluxes are both due to non-Markovian processes and there are no

Markovian processes present. As such we can use Eq. (7.48) to write,

Q1,2(n) =
n−1∑
k=0

(Φ1,2(n− 1− k)− Φ1,2(n− k)) (Q2,1(k) +Q3,1(k)), (7.98)

and

Q2,1(n) =
n−1∑
k=0

(Φ2,1(n− 1− k)− Φ2,1(n− k)) (Q1,2(k) +Q3,2(k)). (7.99)

Comparison with the continuous time equations give the non-Markkov survival func-

tions as,

Φ1,2(n) = Φ2,1(n) = Eα,1 (− (δn∆t)α) . (7.100)

The numerical approximation can then be constructed from Eq. (7.46) giving,

x∆t(n∆t) = X1(n) = X1(n− 1) +Q3,1(n) +Q2,1(n)−Q1,2(n) (7.101)

y∆t(n∆t) = X2(n) = X2(n− 1) +Q3,2(n) +Q1,2(n)−Q2,1(n) (7.102)

We numerically consider the above system subject to x0 = 1 and y0 = 0. Figure

7.7 illustrates a comparison between the exact solution and the numerical solution

obtained by the present method with ∆t = 1/8, δ = 1, and α = 0.7. We again choose

a coarse grid to exaggerate the difference between these solutions in the x(t) and

y(t) compartments. Due to the symmetry of the problem the errors in the x(t) and
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Figure 7.6: Diagram for two compartment fractional feedback loop. In this case
there are identical non-Markovian transitions between each of the compartments
and no Markovian transitions.
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Figure 7.7: Left: Comparison of approximate DTRW solution for x compartment
(◦) and y compartment (�) against exact solutions (solid line). Right: L1 error in
approximate DTRW solution for x compartment (◦) and y compartment (�). Plots
are given on the domain t ∈ [0, 4], with α = 0.7 and ∆t = 1/8.

y(t) solutions are identical. Figure 7.8 plots the L1 error of the solution as a function

of ∆t for a range of α values. Once again the slope of the curve indicates that Eq.

(7.41) holds. We note that the analysis conducted in Section 7.3.2, specifically Eq.

(7.41), provides asymptotic behaviour of the error as ∆t → 0. As such the errors

reported in Figure 7.8 deviate from the theoretical bounds for large ∆t.

7.7 Summary

We have developed a new numerical method for solving a class of coupled fractional

order differential equations that arise in modelling with compartment models. This

method, developed by considering an underlying stochastic process, is robust and

easy to implement. The method is unconditionally stable, in the sense that ar-

bitrarily large time steps can be taken, which is advantageous at small α values
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Figure 7.8: Plot of the convergence of the L1 error for the numerical approximation
of the concentration in the x compartment at t = 0.4 over ∆t for α = 0.1 (◦),
α = 0.5 (�) and α = 0.9 (�). Note that due to the symmetry of the problem the L1

error for the x compartment is equal to the L1 error for the y compartment.

where more traditional methods, such as finite difference methods based on the

Grünwald-Letnikov derivative become unstable with larger time steps [134]. Exam-

ples of various compartment models were considered. In each case the results are in

agreement with our analysis.

The procedure for obtaining a numerical method that we have developed can be

applied when there is a known underlying stochastic process for the fractional DEs.

It is interesting to speculate if more general fractional DEs could be derived from a

stochastic process in which case the procedure could be applied more generally. As

an example we recently derived a fractional advection equation, without diffusion,

from a stochastic process [18], featured in the following Chapter. Another interesting

area to pursue is that different stochastic processes may limit to the same fractional

DEs [11, 18] and thus would produce distinct numerical schemes. It therefore may be
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possible to find a more optimal numerical scheme by considering different stochastic

processes.
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Part II

Fractional-Order PDE Models
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Chapter 8

Fractional Advection Equation without Diffusion

8.1 Introduction

This Chapter moves away from the ODE space of the first Part of this thesis and

presents a derivation for a fractional-order PDE. We have derived a time fractional

partial differential advection equation by considering an advective limit in the gen-

eralized master equations for CTRWs on a one dimensional lattice with power-law

distributed waiting times. This follows the publication [18]. We have also de-

rived the generalized master equations for corresponding DTRWs which limit to the

same fractional advection equation and we use these master equations as a basis

for obtaining numerical approximations to the solutions of the fractional advection

equation.

The remainder of this chapter is as follows: In Section 8.2 we derive the gener-

alized master equations for CTRWs on a one-dimensional lattice, with a power-law

waiting time density and with two different jump length densities - a two-sided den-

sity, and a one-sided density. We derive a fractional Fokker-Planck equation from

the diffusive limit of the master equation, and a fractional generalized advection

equation from an advective limit of the master equation. In Section 8.3 we derive

the generalized master equations for DTRWs on a one-dimensional lattice with a

power-law waiting time probability mass function and with two different jump length

densities. We show that the fractional generalized advection equation is recovered
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in an advective limit. In Section 8.4 we consider two different numerical approxima-

tions for the solution of the fractional advection equation, one based on the DTRW

master equation with a two-sided jump length density and the other based on the

DTRW master equation with a one-sided jump length density. This is illustrated

with an example. We conclude with a summary in Section 8.5.

8.2 The Master Equation of a CTRW

The CTRW on a one-dimensional lattice is a stochastic process in which a particle

resides on a lattice site for some random amount of time, drawn from a waiting time

probability density function, before jumping to a site on the lattice governed by a

jump length probability density. The stochastic CTRW process has been widely

employed in derivations of fractional Fokker-Planck type equations [28, 142, 61, 7,

11]. There are two fundamental steps in these derivations. The first is the derivation

of the generalized master equation that governs the time evolution of the probability

density for the location of the particle. The second is taking the diffusive limit of

the generalized master equation to obtain a partial differential equation.

For completeness, we revisit the derivation of the generalized master equation.

We also include the consideration of two different jump length densities; a two-sided

density, and a one-sided density. We then consider different limits to fractional

partial differential equations; a diffusive limit and an advective limit.

To begin, we consider a one-dimensional lattice with sites denoted by xi where

i ∈ N. The flux of probability of the particle entering the lattice site xi at time t,

after having taken n jumps can be defined recursively by,

qn+1(xi, t) =
∑
j

∫ t

0

Ψ(xi, t|xj, t′)qn(xj, t
′)dt′, (8.1)

where Ψ(xi, t|xj, t′) is the transition probability density for a particle that arrived

at lattice site xj at time t′ to jump to lattice site xi at time t. As Ψ is independent
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of n, the number of jumps taken, we may write the flux entering lattice site xi,

unconditional on n, as,

q(xi, t) =
∞∑
n=0

qn(xi, t). (8.2)

The flux entering the lattice site xi after any number of steps can then by written

recursively as,

q(xi, t) = q0(xi, t) +
∑
j

∫ t

0

Ψ(xi, t|xj, t′)q(xj, t′)dt′. (8.3)

In the following we suppose that Ψ is separable such that,

Ψ(xi, t|xj, t′) = λ(xi, t|xj)ψ(t− t′). (8.4)

Here ψ is a waiting time density that governs how long the particle will stay at the

site, and λ a jump length density that governs the length of the jump. The jump

length density is normalised such that,

∑
i

λ(xi, t|xj) = 1, (8.5)

and the waiting time density is normalised as,

∫ ∞
0

ψ(t)dt = 1. (8.6)

In the case where the particle begins at a lattice site, x0, at time t = 0, the

initial flux condition will be a product of a Kronecker and a Dirac delta functions,

i.e. q0(xi, t) = δxi,x0δ(t). Other initial conditions have been considered recently in

[24]. For the subsequent derivation, we split the flux into the discontinuous and

differentiable components, i.e.,

q(xi, t) = δxi,x0δ(t) + q+(xi, t), (8.7)
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where the differentiable component is given by,

q+(xi, t) =
∑
j

∫ t

0

λ(xi, t|xj)ψ(t− t′)q(xj, t′)dt′. (8.8)

The master equation governs the evolution of the probability density, ρ(xi, t),

for the position of the particle. This probability density is related to the flux, via

ρ(xi, t) =

∫ t

0

Φ(t− t′)q(xi, t′)dt′, (8.9)

where Φ is the survival function associated with the waiting time density. The

survival function can be computed from the waiting time density,

Φ(t) = 1−
∫ t

0

ψ(t′)dt′. (8.10)

To obtain the master equation we first differentiate Eq. (8.9) to give,

∂ρ(xi, t)

∂t
= q+(xi, t)−

∫ t

0

ψ(t− t′)q(xi, t′)dt′,

=
∑
j

∫ t

0

λ(xi, t|xj)ψ(t− t′)q(xj, t′)dt′ −
∫ t

0

ψ(t− t′)q(xi, t′)dt′.
(8.11)

It remains to express the right hand side of this equation in terms of ρ. This can be

achieved by introducing a memory kernel K(t) with the property that

∫ t

0

ψ(t− t′)q(xi, t′)dt′ =
∫ t

0

K(t− t′)ρ(x, t′)dt′. (8.12)

An explicit representation of the memory kernel can be obtained using Laplace

transform methods. We use the notation

Lt{g(x, t)} =

∫ ∞
0

e−stg(x, t)dt. (8.13)
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for the Laplace transform from t to s and L−1
s as the inverse Laplace transform from

s to t. We now take the Laplace transforms of Eq. (8.9) and of Eq. (8.12) using the

convolution theorem, and we combine the results to obtain the Laplace transform

of the memory kernel,

Lt{K(t)} =
Lt{ψ(t)}
Lt{Φ(t)} (8.14)

and then the memory kernel is given by,

K(t) = L−1
s

{Lt{ψ(t)}
Lt{Φ(t)}

}
, (8.15)

The master equation for the CTRW is now simply found by substituting Eq.

(8.12) into Eq. (8.11). This yields

∂ρ(xi, t)

∂t
=
∑
j

λ(xi, t|xj)
∫ t

0

K(t− t′)ρ(xj, t
′)dt′ −

∫ t

0

K(t− t′)ρ(xi, t
′)dt′,

=
∑
j

(
λ(xi, t|xj)− δxi,xj

) ∫ t

0

K(t− t′)ρ(xj, t
′)dt′.

(8.16)

8.2.1 Mittag-Leffler Waiting Time Density and Fractional Derivatives

The master equation derived above is valid for any waiting time density. If a heavy

tailed waiting time density is chosen, then the master equation may be expressed

with fractional-order derivatives [67, 106]. Again we consider a Mittag-Leffler wait-

ing time density with the survival function,

Φ(t) = Eα

(
−
(
t

τ

)α)
, (8.17)

where Eα is a one parameter Mittag-Leffler function defined by,

Eα(t) =
∞∑
k=0

tk

Γ(αk + 1)
. (8.18)
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The memory kernel corresponding to the Mittag-Leffler waiting time density is,

K(t) = L−1
s

{
s1−α

τα

}
. (8.19)

This memory kernel allows us to write,

∫ t

0

K(xi, t− t′)ρ(xi, t
′)dt′ = L−1

s {Lt{K(xi, t)}Lt{ρ(xi, t)}} ,

= L−1
s

{
s1−α

τα
Lt{ρ(xi, t)}

}
.

(8.20)

As discussed in Section 2.3, the inverse Laplace transform can be carried out, re-

sulting in a time fractional-order derivative. For 0 < α < 1, we have,

∫ t

0

K(xi, t− t′)ρ(xi, t
′)dt′ =

1

τα
0D1−α

t ρ(x, t). (8.21)

Substituting the relation in Eq. (8.21) into Eq. (8.16), gives the master equation

for a CTRW with Mittag-Leffler distributed waiting times,

∂ρ(x, t)

∂t
=
∑
x′

(λ(x, t|x′)− δx,x′) τ−α 0D1−α
t ρ(x′, t). (8.22)

We show below that depending on the choice of jump length density, and the

particular limit in which it is considered, this master equation can be the basis for

the fractional Fokker-Planck equation as well as the fractional advection equation.

8.2.2 Two-Sided Jump Length Density

Firstly, we will consider a two-sided biased nearest neighbour jump length density,

λ(xi, t|xj) = pr(xj, t)δxj ,xi−1
+ pl(xj, t)δxj ,xi+1

, (8.23)
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where pr(xi, t), and pl(xi, t), are the probability to jump to the right, and left, from

site xi given that the jump occurs at time t. Substituting this into Eq. (8.22) gives,

∂ρ(xi, t)

∂t
=
pr(xi−1, t)

τα
0D1−α

t ρ(xi−1, t) +
pl(xi+1, t)

τα
0D1−α

t ρ(xi+1, t)

− 1

τα
0D1−α

t ρ(xi, t).

(8.24)

It is convenient to exploit the normalisation condition pr(xi, t)+pl(xi, t) = 1 and

write,

pr(xi, t) =
1

2
+

1

2
f(xi, t), and pl(xi, t) =

1

2
− 1

2
f(xi, t), (8.25)

where f(xi, t) = pr(xi, t)− pl(xi, t). Equation (8.24) can now be written as,

∂ρ(xi, t)

∂t
=

1

2τα
0D1−α

t ρ(xi−1, t) +
1

2τα
0D1−α

t ρ(xi+1, t)

− 1

τα
0D1−α

t ρ(xi, t) +
f(xi−1, t)

2τα
0D1−α

t ρ(xi−1, t)−
f(xi+1, t)

2τα
0D1−α

t ρ(xi+1, t).

(8.26)

In order to obtain a spatially continuous equation we will consider limits such

that the lattice spacing, ∆x, goes to zero. In Eq. (8.26), we write xi = x and

xi±1 = x±∆x, giving,

∂ρ(x, t)

∂t
=

1

2τα
0D1−α

t ρ(x−∆x, t) +
1

2τα
0D1−α

t ρ(x+ ∆x, t)

− 1

τα
0D1−α

t ρ(x, t) +
f(x−∆x, t)

2τα
0D1−α

t ρ(x−∆x, t)− f(x+ ∆x, t)

2τα
0D1−α

t ρ(x+ ∆x, t).

(8.27)

Prior to considering limits as ∆x→ 0, we take the Taylor expansion of the terms in

Eq. (8.26), about ∆x = 0. This gives,

∂ρ(x, t)

∂t
= − ∂

∂x

(
f(x, t) 0D1−α

t ρ(x, t)
) ∆x

τα
+

∂2

∂x2

(
0D1−α

t ρ(x, t)
) ∆x2

2τα
+O(∆x3).

(8.28)

There are two ways in which we can take the limit ∆x → 0 in Eq. (8.28) in which

the terms remain finite.

145



8.2.2.1 Diffusive Limit

A diffusive limit is taken by considering the case where both the lattice spacing, ∆x,

and the waiting time scale, τ , are taken to zero such that the limit,

Dα = lim
∆x,τ→0

∆x2

2τα
, (8.29)

exists. In order for the first term on the right hand side of Eq. (8.28) to remain

finite under such a limit, we let f(x, t) scale with ∆x and be O(∆x). Using Eq.

(8.29) and introducing another function,

F (x, t) = lim
∆x→0

f(x, t)

∆x
, (8.30)

we can take the limit ∆x→ 0 in Eq. (8.28) to arrive at the fractional Fokker-Planck

equation,

∂ρ(x, t)

∂t
= −2Dα

∂

∂x

(
F (x, t) 0D1−α

t ρ(x, t)
)

+Dα
∂2

∂x2

(
0D1−α

t ρ(x, t)
)
. (8.31)

8.2.2.2 Advective Limit

An advective limit can be taken by considering the case where, f(x, t) has no ∆x

dependence and the lattice spacing, ∆x, and the waiting time scale, τ , are taken to

zero such that the limit,

Cα = lim
∆x,τ→0

∆x

τα
, (8.32)

exists. In this case, in the limit ∆x → 0, we arrive at the fractional generalised

advection equation,

∂ρ(x, t)

∂t
= − ∂

∂x

(
v(x, t) 0D1−α

t ρ(x, t)
)
, (8.33)

where v(x, t) = Cαf(x, t) is interpreted as the advective velocity. As f(x, t) is bound

between [−1, 1] the advective velocity is bound between [−Cα, Cα].
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8.2.3 One-Sided jump length density

An alternative approach to arrive at a fractional generalised advection equation

from a CTRW master equation is by considering a one-sided jump length density.

Without loss of generality we consider a right-moving random walk with jump length

density given by,

λ(xi, t|xj) = ps(xj, t)δxj ,xi + pr(xj, t)δxj ,xi−1
. (8.34)

Here ps(xi, t) is the probability to jump back to the same site at xi given that a

jump occurs at time t. Substituting this jump length density into Eq. (8.22) gives,

∂ρ(xi, t)

∂t
=
pr(xi−1, t)

τα
0D1−α

t ρ(xi−1, t)−
pr(xi, t)

τα
0D1−α

t ρ(xi, t). (8.35)

As in the case of the two sided jump length density, in order to take the continuous

limit we write xi = x and xi−1 = x−∆x,

∂ρ(x, t)

∂t
=
pr(x−∆x, t)

τα
0D1−α

t ρ(x−∆x, t)− pr(x, t)

τα
0D1−α

t ρ(x, t), (8.36)

where we have made use of the normalisation pr(x, t) + ps(x, t) = 1.

Taking a Taylor expansion with respect to ∆x, around ∆x = 0 of the terms on

the right hand side of Eq. (8.36), we have,

∂ρ(x, t)

∂t
=− ∂

∂x

(
pr(x, t) 0D1−α

t ρ(x, t)
) ∆x

τα

+
∂2

∂x2

(
pr(x, t) 0D1−α

t ρ(x, t)
) ∆x2

2τα
+O

(
∆x3

)
.

(8.37)

Here, in contrast to the two-sided jump length density, we are only able to take an

advective limit. This is due to the appearance of pr in the first two terms on the

right hand side of Eq. (8.37), so that any scaling of pr with ∆x would be redundant.
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8.2.3.1 Advective Limit

In a similar manner to the advective limit taken with the two-sided jump length

density, we again take a limit as ∆x and τ go to zero such that Cα exists. This

yields,

∂ρ(x, t)

∂t
= − ∂

∂x

(
u(x, t) 0D1−α

t ρ(x, t)
)
, (8.38)

where,

u(x, t) = Cαpr(x, t), (8.39)

and u(x, t) is bound between zero and Cα.

We note that in the advective limit, both the one- and two-sided jump length

densities, yield an equivalent fractional generalised advection equation. However,

the one-sided jump length density is unable to produce a fractional Fokker-Planck

equation as the diffusive limit of the generalised master equation does not exist

except in the most trivial case.

8.3 Discrete Formulation

In this section we derive a discrete time form of the time-fractional advection equa-

tion. We show that this discrete scheme limits to the time-fractional partial differ-

ential equation derived in Section 8.2 and go on to illustrate how the discrete form

may be used as a numerical scheme for simulating the equation’s dynamics.

We begin by considering the motion of a particle on an arbitrary lattice

{. . . , xi−1, xi, xi+1, . . .} at some discrete time n ∈ N. We define a transition probabil-

ity distribution, Ψ(xj, n|xi,m), which dictates the probability of the particle moving

from site xi at time m to site xj at a later time n. We assume that the transition

probability distribution is separable into independent waiting time, ψ(n−m), and

jump, λ(xj, n|xi), distributions such that,

Ψ(xj, n|xi,m) = λ(xj, n|xi)ψ(n−m). (8.40)
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The probability distribution functions are normalised so that,

∞∑
n=0

ψ(n) = 1 (8.41)

and
j=L∑
j=−L

λ(xj, n|xi) = 1. (8.42)

The flux of probability of the particle entering the lattice site xi at time step n

having taken w jumps can be recursively defined as

Qw+1(xi, n) =
∑
j

n−1∑
n=0

Ψ(xi, n|xj,m)Qw(xj,m). (8.43)

As Ψ is independent of the number of jumps taken we may write the total probability

flux as,

Q(xi, n) =
∞∑
w=0

Qw(xi, n). (8.44)

Summing over w on both side of Eq. (8.43) then gives,

Q(xi, n) = Q0(xi, n) +
∑
j

n−1∑
n=0

Ψ(xi, n|xj,m)Q(xj,m), (8.45)

where Q0(xi, n) is the initial condition term, for example when the particle begins

at lattice site x0 at n = 0 then Q0(xi, n) = δxi,x0δn,0. The probability of waiting

from time m to n without jumping is given by,

Φ(n−m) = 1−
n−m∑
k=0

ψ(k), (8.46)

and hence the probability of a particle being at a site xi after the nth time step is,

X(xi, n) =
n∑

m=0

Φ(n−m)Q(xi,m). (8.47)
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This can be interpreted as the collection of probability mass that has jumped to a

site xi at all previous time steps and not jumped away by time step n. Implicitly,

we have X(xi, n) = 0 for n < 0 from our taken initial condition.

Subtracting X(xi, n− 1) from each side of Eq. (8.47) gives,

X(xi, n)−X(xi, n− 1) = Q(xi, n)−
n−1∑
m=0

ψ(n−m)Q(xi,m). (8.48)

Substituting Eq. (8.45) into Eq. (8.48), we obtain,

X(xi, n)−X(xi, n− 1) = Q0(xi, n) +
∑
j

λ(xi, n|xj)
n−1∑
n=0

ψ(n−m)Q(xj,m)

−
n−1∑
m=0

ψ(n−m)Q(xi,m). (8.49)

We now seek a memory kernel through which we may obtain the generalised

master equation (GME). In an analogous fashion to the CTRW, we begin by taking

the single sided Z-transform, defined by

Ŷ (z) = Zn{Y (n)} =
∞∑
n=0

Y (n)z−n, (8.50)

of Eq. (8.47) which yields

X̂(xi, z) = Φ̂(z)Q̂(xi, z). (8.51)

We define a discrete memory kernel as

K̂(z) =
ψ̂(z)

Φ̂(z)
, (8.52)

noting that K(0) = 0. Through the inverse Z-transform we may now arrive at the

relation
n−1∑
m=0

ψ(n−m)Q(x,m) =
n−1∑
m=0

K(n−m)X(x,m). (8.53)
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This result is readily verified by taking the Z-transform of both sides and using Eqs.

(8.51) and (8.52). Using this result we may write Eq. (8.49) in terms of probability

mass X(xi, n) which gives the GME,

X(xi, n)−X(xi, n− 1) =
∑
xj

(
λ(xi, n|xj)− δxi,xj

) n−1∑
m=0

K(n−m)X(xj,m), (8.54)

for n > 0 and assuming that the particle began at n = 0.

8.3.1 Sibuya Waiting Time Distribution

The above master equation is valid for any discrete waiting time density. In order to

obtain fractional-order time derivatives in the limit we will need to consider a heavy

tailed waiting time density. We will consider Sibuya distributed waiting times [139],

whose probability mass function is given by,

ψ(n) =
α

n

n−1∏
k=1

(1− α

k
). (8.55)

The survival function is,

φ(n) =
n−1∏
k=1

(1− α

k
). (8.56)

It is straight forward to write down the memory kernel for the Sibuya distribution

from Eq. (8.52). First noting that,

Zn{ψ(n)} = 1− (1− z−1)α, (8.57)

and

Zn{φ(n)} = (1− z−1)α−1, (8.58)

we find

K(n) = δ1,n +
n∏
k=1

(
1− 2− α

k

)
, (8.59)

for n > 0, and K(0) = 0.
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8.3.2 Two-sided jump distribution

In a similar manner to the continuous time case we will first consider a two-sided

biased nearest neighbour jump length density,

λ(xi, n|xj) = pr(xj, n)δxj ,xi−1
+ pl(xj, n)δxj ,xi+1

. (8.60)

where pr(xi, n) and pl(xi, n) are the probabilities to jump to the right and left from

site xi given that the jump occurs on time step n. Substituting this into Eq. (8.54),

together with Eq. (8.59), gives for n > 0,

X(xi, n) =pr(xi−1, n)

(
X(xi−1, n− 1) +

n−1∑
m=0

n−m∏
k=1

(
1− 2− α

k

)
X(xi−1,m)

)

+ pl(xi+1, n)

(
X(xi+1, n− 1) +

n−1∑
m=0

n−m∏
k=1

(
1− 2− α

k

)
X(xi+1,m)

)

−
n−1∑
m=0

n−m∏
k=1

(
1− 2− α

k

)
X(xi,m).

(8.61)

The diffusive limit of this master equation is a fractional Fokker-Planck equation,

for details see [13, 9]. As such we will examine the advective limit.

8.3.2.1 Advective Limit

Unlike the continuous time case, the continuum limits are difficult to calculate di-

rectly. As such we will follow the method outlined in [9] and approach the limits

via Z- and Laplace transforms.

We associate a function in continuous space and time to our discrete space and

time functions via the limit of a Z-star transform. The unilateral Z-star transform

from n to s also depends on a scale parameter ∆t, and is defined by,

Z∗n {Y (xi, n)} =
∞∑
n=0

Y (xi, n)e−n∆ts. (8.62)
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We will also make use of a bilateral Z-star transform over the spatial lattice. With

a lattice spacing of ∆x, such that xi = i∆x, from xi to q this transform is defined

by,

Z∗i {Y (xi, n)} =
∞∑

i=−∞

Y (i∆x, n)e−i∆xq. (8.63)

For an arbitrary function, Y (xi, n), in discrete time and space we define the

continuous limit of the function as,

y(x, t) = lim
∆x→0,∆t→0

∆x∆tL−1
q

{
L−1
s {Z∗i {Z∗n {Y (xi, n)}}}

}
. (8.64)

Under this process it can be shown [9] that the continuous limit of the product of

two discrete functions is the product of the continuous limits, i.e.,

y1(x, t)y2(x, t) = lim
∆x→0,∆t→0

∆x∆tL−1
q

{
L−1
s {Z∗i {Z∗n {Y1(xi, n)Y2(xi, n)}}}

}
.

(8.65)

The shift relations for the Z-star transforms are,

Z∗n {Y (xi, n− k)} = e−k∆tsZ∗n {Y (xi, n)} , (8.66)

Z∗i {Y (xi−k, n)} = e−k∆xqZ∗n {Y (xi, n)} . (8.67)

It is convenient to adopt the notation,

Ŷ∆(q, s) = Z∗i {Z∗n {Y (xi, n)}} . (8.68)

In the same manner as the continuous time case we define the function,

F (xi, n) = pr(xi, n)− pl(xi, n). (8.69)
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This allows us to write the master equation, Eq. (8.54) as,

X(xi, n)−X(xi, n− 1)−Q0(xi, n) =
1

2

n−1∑
m=0

K(n−m)X(xi−1,m)

+
1

2

n−1∑
m=0

K(n−m)X(xi+1,m)− 1

2

n−1∑
m=0

K(n−m)X(xi,m)

+
F (xi−1, n)

2

n−1∑
m=0

K(n−m)X(xi−1,m)− F (xi+1, n)

2

n−1∑
m=0

K(n−m)X(xi+1,m).

(8.70)

Taking the Z-star transform of this equation then gives,

(1− e−s∆t)X̂∆(q, s)− Q̂0(q, s) =
1

2

(
e−q∆x + eq∆x − 2

)
K̂∆(s)X̂∆(q, s)

+ (e−q∆x − eq∆x)Z∗i

{
Z∗n

{
F (xi, n)

2

n−1∑
m=0

K(n−m)X(xi,m)

}}
(8.71)

Multiplying the left hand side by ∆x∆t
∆t

and the right hand side by ∆x2∆t
∆x∆t

and taking

the inverse Laplace transforms we will arrive at our continuous time and space limit.

All limits will be considered such that t = n∆t, x = i∆x, and,

Cα = lim
∆t,∆x→0

∆x

∆tα
. (8.72)

Firstly the limit for the left hand side is easily calculated,

lim
∆x,∆t→0

∆x∆tLs
{
Lq
{

(1− e−s∆t)X̂∆(q, s)− Q̂0∆(q, s)

∆t

}}
=
∂u(x, t)

∂t
, (8.73)

where we have defined,

u(x, t) = lim
∆x→0,∆t→0

∆x∆tL−1
q

{
L−1
s {Z∗i {Z∗n {X(xi, n)}}}

}
, (8.74)

154



and used the fact that,

lim
∆x,∆t→0

∆x∆t

∆t
Ls {Lq {Z∗i {Z∗n {Q0(xi, n)}}}} = u(x, 0). (8.75)

The next limit we need to consider is also straightforward to calculate,

lim
∆x,∆t→0

Ls
{
Lq
{

∆x2∆t1
2

(
e−q∆x + eq∆x − 2

)
K̂∆(s)X̂∆(q, s)

∆x∆t

}}
= 0. (8.76)

It should be noted that under a diffusive limit this would be non-zero and contribute

the second order spatial derivative.

Lastly we need to calculate,

W = lim
∆x,∆t→0

∆x2∆t

∆t
Ls
{
Lq
{(

e−q∆x − eq∆x
2∆x

)
Z∗i

{
Z∗n

{
F (xi, n)

×
n−1∑
m=0

K(n−m)X(xi,m)

}}}}
.

(8.77)

Which is equivalent to,

W = − ∂

∂x

(
lim

∆x,∆t→0

∆x2∆t

∆t
Ls
{
Lq
{
Z∗i

{
Z∗n

{
F (xi, n)

n−1∑
m=0

K(n−m)X(xi,m)

}}}})
.

(8.78)

Making use of the property given in Eq. (8.65), and the definition from Eq. (8.72),

this can be written as,

W = − ∂

∂x

(
f(x, t) lim

∆x,∆t→0

∆x∆t

∆t1−α
Ls
{
Lq
{
Z∗i

{
Z∗n

{
n−1∑
m=0

K(n−m)X(xi,m)

}}}})
.

(8.79)

where we have defined,

f(x, t) = lim
∆x→0,∆t→0

Cα∆x∆tL−1
q

{
L−1
s {Z∗i {Z∗n {F (xi, n)}}}

}
. (8.80)
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The Z-star transform of the Sibuya memory kernel, Eq. (8.59), is,

Z∗n {K(n)} =
(
1− e−s∆t

)1−α −
(
1− e−s∆t

)
= (s∆t)1−α +O(∆t). (8.81)

Using this in Eq. (8.79) gives,

W = − ∂

∂x

(
f(x, t) lim

∆x,∆t→0

∆x∆t

∆t1−α
Ls
{
Lq
{((

1− e−s∆t
)1−α −

(
1− e−s∆t

))
X̂∆(q, s)

}})
.

(8.82)

Finally taking the limit and noting the Laplace transform of the Riemann-Liouville

fractional derivative, Eq. (2.59) we arrive at,

W = − ∂

∂x

(
f(x, t) 0D1−α

t (u(x, t))
)
. (8.83)

From this we see that the advective continuum limit of the master equation with

Sibuya waiting times is,

∂u(x, t)

∂t
= − ∂

∂x

(
f(x, t) 0D1−α

t (u(x, t))
)
. (8.84)

This is identical to the advective continuum limit of the CTRW master equation

with Mittag-Leffler distributed waiting times.

8.3.3 One-sided jump distribution

Again similar to the continuous time case we will consider a right moving one sided

jump length density given by,

λ(xi, n|xj) = pr(xj, n)δxj ,xi−1
+ ps(xj, n)δxj ,xi , (8.85)

where ps(xi, n) is the probability of a length zero jump back to the same site given

that the jump occurs on time step n. Substituting this into Eq. (8.54), together
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with Eq. (8.59), gives for n > 0,

X(xi, n) =pr(xi−1, n)

(
X(xi−1, n− 1) +

n−1∑
m=0

n−m∏
k=1

(
1− 2− α

k

)
X(xi−1,m)

)

− pr(xi, n)

(
X(xi, n− 1) +

n−1∑
m=0

n−m∏
k=1

(
1− 2− α

k

)
X(xi,m)

)

+X(xi, n− 1) +Q0(xi, n).

(8.86)

In the same manner as the two-sided jump distribution we can find the continuum

limit of this master equation by first considering the Z-transform,

(1−e−s∆t)X̂∆(q, s)−Q̂0∆(q, s) = (e−q∆x−1)Z∗n

{
Z∗i

{
pr(xi, n)

n−1∑
m=0

K(m− n)X(xi,m)

}}
.

(8.87)

Multiplying the left hand side by ∆x∆t
∆t

and the right hand side by ∆x2∆t
∆x∆t

, the ad-

vective continuum limit is found by taking the inverse Laplace transform of the

equation and the limit as ∆x and ∆t go to zero such that Eq. (8.72) holds, with

x = i∆x, and t = n∆t. The limit of the left hand side is again straight forward,

lim
∆x,∆t→0

∆x∆tLs
{
Lq
{

(1− e−s∆t)X̂∆(q, s)− Q̂0∆(q, s)

∆t

}}
=
∂u(x, t)

∂t
, (8.88)

again using Eqs. (8.74) and (8.75). Using the same method as for the two-sided

jump distribution, the limit for the right hand side can also be found,

lim
∆,∆t→0

Lt
{
Lx
{

∆x2∆t

∆x∆t
(e−q∆x − 1)Z∗n

{
Z∗i

{
pr(xi, n)

n−1∑
m=0

K(m− n)X(xi,m)

}}}}
= − ∂

∂x

(
f(x, t) 0D1−α

t (u(x, t))
)
,

(8.89)
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where,

f(x, t) = lim
∆x→0,∆t→0

Cα∆x∆tL−1
q

{
L−1
s {Z∗i {Z∗n {pr(xi, n)}}}

}
. (8.90)

Hence the advective continuum limit of the DTRW with a one-sided jump distribu-

tion and Sibyua distributed waiting times is,

∂u(x, t)

∂t
= − ∂

∂x

(
f(x, t) 0D1−α

t (u(x, t))
)
, (8.91)

which is identical to both the CTRW and the two-sided jump distribution cases.

8.4 Numerical Approximations

Whilst we have shown that both choices of jump distribution share a limit, we are

often interested in how close to the limit we are for some non-zero lattice spacing.

This is particularly true for the discrete time and space processes that could be used

to obtain numerical approximations.

8.4.1 Exact Solution

In order to compare how close each of the master equations is to the limit we need

an exact solution to which we can compare. Here we consider the solution u(x, t) to

the fractional advection equation

∂u

∂t
= − 0D

1−α
t

∂u

∂t
(8.92)

with the periodic boundaries

u(1, t) = u(−1, t) (8.93)

and initial condition

u(x, 0) = 1− cosπx. (8.94)
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We seek a separable solution of the form

u(x, t) = X(x)T (t) (8.95)

which leads to the ordinary differential equations

X ′(x) = λX(x) (8.96)

and

T ′(t) = −λ 0D
1−α
t T (t). (8.97)

The solution to the spatial part is trivially found to be

X(x) = eλx (8.98)

with eigenvalues

λ = ±nπi n ∈ N. (8.99)

To find the solution to the temporal part we take the Laplace transform of Eq.

(8.97) and solve for

T̂ (s) =
T (0)sα−1

sα + λ
(8.100)

where T̂ (s) denotes the Laplace transform from t to s of T (t). It is a simple matter

to invert Eq. (8.100) arriving at

T (t) = T (0)Eα(λtα). (8.101)

The zero eigenvalue results in a constant solution, and then, using the results in

Eqs. (8.95), (8.98), (8.101), (8.99), the general solution is the linear superposition

u(x, t) = C0 +
∞∑
n=1

Ane
inπxEα(−inπtα) +Bne

−inπxEα(inπtα). (8.102)
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The constants An and Bn need to be chosen in such a way that the solution u(x, t)

is real valued. To arrive at the real solution we first introduce the two-parameter

Mittag-Leffler function [58]

Eα,β(z) =
∞∑
k=0

zk

Γ(β + αk)
. (8.103)

It is now straightforward, using elementary manipulations on the expressions in Eq.

(8.18) and Eq. (8.103), to show that

Eα(±inπtα) = E2α(−n2π2t2α)± inπtαE2α,1+α(−n2π2t2α). (8.104)

We now subsititute the above identity, Eq. (8.104), together with Euler’s formula

e±inπt
α

= cos(nπtα)± i sin(nπtα),

into Eq. (8.102), and combine terms to write

u(x, t) = C0 +
∞∑
n=1

an
[
cos(nπx)E2α(−n2π2t2α) + sin(nπx)nπtαE2α,1+α(−n2π2t2α)

]
−
∞∑
n=1

bn
[
cos(nπx)nπtαE2α,1+α(−n2π2t2α)− sin(nπx)E2α(−n2π2t2α)

]
(8.105)

where an = An + Bn and bn = i(An − Bn) are real valued arbitrary constants to

be determined by the initial conditions. Using the initial conditions in Eq. (8.94)

we find C0 = 1, a1 = −1, b1 = 0 and an = 0, bn = 0 for n ≥ 2. Thus we have the

solution

u(x, t) = 1− cos(πx)E2α(−π2t2α)− sin(πx)πtαE2α+1,α(−π2t2α) (8.106)
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8.4.2 Comparison

The construction of the DTRW master equation in discrete time and space makes

it particularly amenable for numerical approximations. Equations (8.61) and (8.86)

can both be used to iterate the probability density forward in time. All that is re-

quired is the appropriate selection of parameters such that the advective continuum

limit of the master equations matches the exact solution derived above. For the

two-sided jump distribution we need values for pr(x, t), pl(x, t), ∆x, and ∆t. From

Eqs. (8.69), (8.72), and (8.80), we see that we need to set,

∆t =

(
∆x

Cα

) 1
α

, (8.107)

and,

pr(x, t) =
1

2

(
1

Cα
+ 1

)
. (8.108)

Note that here we are using Cα and ∆x as free parameters, and setting the value of

pl through the relationship, pr + pl = 1. The constraint that 0 < pr < 1 therefore

also constrains the choice of Cα such that Cα > 1 and ∆x > ∆tα.

Similarly for the one-sided jump distribution we need a values for pr(x, t), ∆x,

and ∆t. From Eqs. (8.72), and(8.90), we see that we need to set,

∆t =

(
∆x

Cα

) 1
α

, (8.109)

and,

pr(x, t) =
1

Cα
. (8.110)

To compare the distance that each DTRW is from the exact solution we will use

a L∞ norm and define the distance from the exact solution, for a given ∆x and ∆t

at t = n∆t, by,

L∞(X, u) = max({|X(xi, n)− u(i∆x, t)|}i), (8.111)
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Figure 8.1: Left, Plot of the exact solution, together with the one-sided jump
distribution DTRW (red circles) and the two-sided jump distribution DTRW (blue
squares). Right, the difference between the exact solution and the one-sided jump
distribution DTRW (red circles) and the two-sided jump distribution DTRW (blue
squares). Here α = 1

2
, Cα = 2, and ∆x = 2
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√
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i.e. the absolute value of the maximum difference between the DTRW and the exact

solutions.

In Figure 8.1 a plot of the solution for each of the DTRWs is given, as well as

a plot of the difference between each solution and the exact solution. This clearly

shows that the one-sided jump distribution results in a DTRW master equations

whose solution is closer to the exact solution.

In Figure 8.2, we show how the distance from the exact solution scales with time

and ∆x for both the DTRWs. Again from this figure it is clear that the one-sided

jump distribution produces a solution that is closer to the exact solution across all

time and for all values of ∆x.

8.5 Summary

The Chapter highlights the practicality of considering continuous time, and discrete

time, random walks, and their limit processes, in deriving fractional-order PDEs.

Solutions of fractional-order PDEs that are derived in this way are guaranteed to

be positive and finite. Moreover the corresponding master equations from the dis-

crete time random walk formulations can be interpreted as stable finite difference

approximations to the solutions. In this Chapter we considered the fractional ad-

vection equation that is obtained in the advective limit from the generalized master
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Figure 8.2: Left, L∞ scaling time for the the one-sided jump distribution DTRW
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2
63

. Right, L∞ vs ∆x for the one-sided jump distribution DTRW (red circles) and
the two-sided jump distribution DTRW (blue squares) at t = 1
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and

Cα = 2.

equations of CTRWs and DTRWs, with power-law distributed waiting times, and

with two different types of jump densities. In particular we considered a two-sided

jump density where the particle could jump in either direction on the lattice and

we considered a one-sided jump density where the particle could not jump along

one direction. We arrived at the same fractional advection equation in each case,

even though the generalized master equations were different. The fact that the

master equations for different CTRWs, or different DTRWs may limit to the same

fractional-order partial differential equation, provides evidence of the robustness of

the limiting partial differential equation as a valid mathematical model. On the

other hand, the different master equations provide different choices on a DTRW

based numerical scheme, as presented in the previous Chapter, for approximating

the solution of the fractional advection equation.
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Chapter 9

Time-Fractional Geometric Brownian Motion

9.1 Introduction

Many processes are geometrically scaled, with the process dynamics scaling with

current values. This type of dynamics has been applied in numerous fields, including,

as an example, the modelling of financial assets where returns are taken proportional

to the current asset values. A particular stochastic process with geometric scaling

is geometric Brownian motion. This Markovian process underlies many models,

including the Black-Scholes option pricing framework [31].

Brownian motion can be derived as the diffusion limit of a CTRW with a Marko-

vian exponential waiting time density. The CTRW is a stochastic process that tracks

the position of a particle in time. The particle waits at some position for a random

time, governed by the waiting time probability density function, before jumping a

distance, governed by a jump length density, to a new location. CTRWs have been

used as models in finance [123, 77, 132, 103, 100, 110], physics [111, 80, 67, 106],

and biology [150, 68]. By taking a power-law tailed waiting time density, where the

first moment diverges, the diffusion limit of the CTRW provides a stochastic model

for anomalous diffusion where the mean squared displacement scales as a sub-linear

power-law in time [106]. This stochastic model for subdiffusion is often referred

to as fractional diffusion. Fractional diffusion is distinct from fractional Brownian

motion. The latter is a Brownian motion with correlated noise [98].
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In direct applications of CTRWs to finance it has generally been considered

that the random walk involves the logarithm of the price of a financial issue. The

logarithm of the price at a given time can be represented as a sum of log-returns at

different trade times and the waiting time density governs the waiting time between

trades [132, 103]. In this interpretation a waiting time density with a power-law

decay, ∼ t−1−α, with 0 < α < 1, results in sub-linear power-law scaling, ∼ tα, of the

mean squared logarithm of the price. In our analysis below, for a CTRW leading

to fractional geometric Brownian motion, we find that a waiting time density with

this power-law decay results in sub-linear power-law scaling, ∼ tα, of the logarithm

of the price.

In previous work, the effects of a force have been incorporated into CTRWs

using biased jump length densities [28, 142, 61, 11]. The force can be introduced

in this way through the assumption that the equilibrium distribution of particles

subject to a conservative force is the Boltzmann distribution. The jump bias can

also be defined as a difference between Boltzmann factors and, to lowest order in the

lattice spacing, this is proportional to the force [61]. The diffusion limit of CTRWs

with biased jump length densities and power-law waiting times leads to fractional

Fokker-Planck equations [28, 142, 61, 11].

Typically, CTRWs are considered where the length of the jumps are indepen-

dent of the position of the particle. In the analysis here we consider a multiplicative

jump length density in which the jump length is proportional to the particle’s cur-

rent position. This naturally leads to the consideration of the process on a geometric

lattice, where the position of neighbouring lattice sites differs by some multiplica-

tive constant. The lattice effect is not prominent in the generalised master equation

describing the CTRW, but care needs to be taken, with the implementation of

the diffusion limit and the formulation of the bias consistent with a steady state

Boltzmann distribution, to obtain the reduction to a Fokker-Planck equation. The

diffusion limit of the CTRW with a power-law waiting time density and biased near-

est neighbour steps on the geometric lattice leads to a time-fractional geometric
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Fokker-Planck equation with spatially dependent diffusivity, and an additional ad-

vection term. If the bias is consistent with the force from a logarithmic potential,

the fractional geometric Fokker-Planck equation reduces to the governing equation

of a geometric Brownian motion as the anomalous exponent is taken to one. Hence

the diffusion limit of the CTRW with a power-law waiting time density, and a multi-

plicative jump length density biased by a logarithmic potential, defines a fractional

geometric Brownian motion, also referred to as subdiffusive geometric Brownian

motion [94].

Formally, Magdziarz [94] introduced subdiffusive geometric Brownian motion,

Zα(t), as geometric Brownian motion, Z(t), subordinated by an inverse α-stable

subordinator Sα(t), i.e., Zα(t) = Z(Sα(t)). In earlier work it had been shown that

subdiffusive Brownian motion, ie., a Brownian motion in which the mean square

displacement grows as a sub-linear power-law in time, can be obtained from Brow-

nian motion subordinated by an inverse α-stable subordinator [106]. The governing

evolution equation for the probability density function of a Brownian motion, or a

geometric Brownian motion, subordinated by an inverse α-stable subordinator can

readily be obtained using Laplace transform methods.

In geometric Brownian Motion the mean squared displacement grows as an ex-

ponential function in time, and in subdiffusive Brownian motion the mean squared

displacement grows as a Mittag-Leffler function with time. For geometric processes,

however, it is more insightful to consider the behaviour of the expectation of the log-

arithm of the position of the particle rather then the mean squared displacement. In

finance this would be considered to be the expected logarithmic return. In the case

of a geometric Brownian motion the expected logarithmic return grows linearly in

time. Here we find that the expected logarithmic return of the geometric fractional

diffusion grows as a sub-linear power-law in time, analogous to the mean square

displacement scaling in anomalous sub-diffusion.
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In section 9.2 we obtain the generalized master equation for a CTRW on a geo-

metric lattice with nearest neighbour biased jumps. In the special case of Mittag-

Leffler distributed waiting times, a waiting time density with a power-law tail, the

generalised master equation becomes a fractional order differential equation. In sec-

tion 9.3 we consider the diffusion limit of this generalized master equation. This

limit involves the lattice spacing going to zero, and a characteristic waiting time

going to zero, but at different rates to avoid singularities. The bias probabilities

are dependent on the lattice spacing parameter so that the diffusion limit is depen-

dent on the formulation of these probabilities. We consider a formulation that is

consistent with a Boltzmann distribution for the steady state. The diffusion limit

of the master equation for the CTRW on the geometric lattice with biased nearest

neighbour jumps, and Mittag-Leffler distributed waiting times result is a fractional

geometric Fokker-Planck equation. In section 9.4 we show that if the bias is consis-

tent with a force from a logarithmic potential the diffusion limit provides a fractional

generalisation of geometric Brownian motion previously identified through subordi-

nation methods as subdiffusive geometric Brownian motion [94]. In section 9.5 we

calculate the moments, and the logarithmic moments, of this fractional geometric

Brownian motion. We find that the logarithmic moments scale as a power-law in

time. Finally in section 9.6 we provide a summary and discussion, and we have

included an appendix showing how the fractional geometric Fokker-Planck equation

can be obtained from the fractional Fokker-Planck equation with an appropriate

change of variables and the introduction of an effective potential.

9.2 Generalized Master Equations for CTRWs on a Geometric

Lattice

We consider a CTRW on a lattice xi with a separable transition density,

Ψ(xi, t|xj, t′) = λ(xi, t, xj)ψ(t− t′), (9.1)
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representing the probability density for a particle located at xj at time t′ to transition

to xi at time t. Here, λ(xi, t, xj) is the probability density for a particle to jump

from xj to xi at time t and ψ(t, t′) is the probability density for waiting from time t′

to time t before jumping. The time dependence in the jump length density enables

the inclusion of a time dependent bias, or time dependent force. The jump length

density and the waiting time density are normalised as follows;

∑
i

λ(xi, t, xj) = 1, (9.2)

and ∫ ∞
0

ψ(t)dt = 1. (9.3)

The generalised master equation for this CTRW, with a delta function initial con-

dition, is given by [7]

∂

∂t
ρ(xi, t) =

∑
j

λ(xi, t, xj)

∫ t

0

K(t− t′)ρ(xj, t
′)dt′ −

∫ t

0

K(t− t′)ρ(xi, t
′)dt′, (9.4)

where ρ(xi, t) is the probability of finding the particle at site xi at time t. In this

equation K(t) is a memory kernel defined by

K(t) = L−1
s

{Lt {ψ(t)}
Lt {φ(t)}

}
, (9.5)

where Lt represents a Laplace transform from t to s, and L−1
s an inverse Laplace

transform from s to t, and φ(t) is the survival function defined as

φ(t) =

∫ ∞
t

ψ(t′)dt′. (9.6)

If we consider a geometric lattice of points, xi ∈ (0,∞), such that, xi = U i for some

parameter U > 1 then the master equation governs the evolution of the probability

density function for a CTRW on a geometric lattice.
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9.2.1 Multiplicative Jump Length Density

A CTRW with a multiplicative jump length density can now be constructed by

considering nearest neighbour steps on the geometric lattice. The jump length

density in this case is proportional to the current position of the particle. On this

geometric lattice if a particle is at position xi the nearest neighbour to the right is

xi+1 = Uxi and the nearest neighbour to the left is xi−1 = xi
U

. The biased nearest

neighbour jump probability density, to jump from site xj to xi, on this lattice is

then,

λ(xi, t, xj) = pr(xj, t)δ[i− j − 1] + pl(xj, t)δ[i− j + 1]

= pr(xj, t)δ[xi − Uxj] + pl(xj, t)δ
[
xi −

xj
U

]
,

(9.7)

where δ[z] is a Kronecker delta function, such that δ[z] = 1 for z = 0 and δ[z] = 0,

for z 6= 0. The bias is introduced through pr(xj, t), the probability of a jump to the

right from the lattice site xj at time t, and pl(xj, t), the probability of a jump to the

left from lattice site xj at time t. The bias probabilities are normalised through

pl(xj, t) + pr(xj, t) = 1. (9.8)

Note that the lattice spacing is not a fixed constant on the geometric lattice. In

the analysis below we consider a diffusion limit with the lattice spacing approaching

zero. In the geometric lattice the lattice spacing is zero if U = 1. It is convenient to

define U = 1 + u, in which case the diffusion limit on the geometric lattice requires

the limit u→ 0. We we can rewrite λ(xi, t, xj) as,

λ(xi, t, xj) = pr(xj, t)δ[xi − (1 + u)xj] + pl(xj, t)δ
[
xi − (1 + u)−1xj

]
. (9.9)

The generalised master equation for a CTRW with biased nearest neighbour jumps

on a geometric lattice can be found by substituting Eq. (9.9) into Eq. (9.4). The
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result is

∂

∂t
ρ(xi, t) =

∫ t

0

K(t− t′)pr(
xi

1 + u
, t)ρ(

xi
1 + u

, t′)dt′

+

∫ t

0

K(t− t′)p`((1 + u)xi, t)ρ((1 + u)xi, t
′)dt′

−
∫ t

0

K(t− t′)ρ(xi, t
′)dt′. (9.10)

9.2.2 Power-Law Waiting Time Density

We now consider the special case of a Mittag-Leffler distributed waiting time, with

time scale τ and scaling exponent α,

ψ(t) = t1+ατEα,α (−τtα) , (9.11)

with 0 < α < 1. The corresponding survival function is given by,

φ(t) = Eα,1 (−τtα) , (9.12)

and the memory kernel can be written as,

K(t) = L−1
s

{
τ−αs1−α} . (9.13)

Evaluating the inverse Laplace transform leads to the introduction of fraction deriva-

tives. Explicitly,

∫ t

0

K(t− t′)ρ(xi, t
′)dt′ = τ−α 0D1−α

t (ρ(xi, t)) . (9.14)

The generalised master equation for biased nearest neighbour jumps, and Mittag-

Leffler distributed waiting times on the geometric lattice, Eq. (9.10), can now be
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written as a fractional order differential equation,

∂

∂t
ρ(xi, t) =pr

(
(1 + u)−1xi, t

)
τ−α 0D1−α

t

(
ρ
(
(1 + u)−1xi, t

))
+ pl((1 + u)xi, t)τ

−α
0D1−α

t (ρ((1 + u)xi, t))− τ−α 0D1−α
t (ρ(xi, t)) .

(9.15)

9.3 Diffusion Limit Fractional Fokker-Planck Equations

In this section we consider the diffusion limit of the master equation, Eq. (9.15).

In this limit we are seeking the evolution equation for a space and time continuous

probability density function. The diffusion limit involves taking the characteristic

time τ → 0, and the lattice spacing parameter u → 0, at controlled rates to avoid

singularities. The bias probabilities are dependent on the lattice spacing parameter

and thus they need to be treated in a consistent way.

We begin by embedding the discrete space probability density function ρ(xi, t),

into a space continuous function, ρu(x, t), that is parameterised by u. The function

ρu(x, t) is defined to be equal to ρ(xi, t), at all points x = xi. The space continuous

function ρu(x, t) is not a probability density. However we can defined a probability

density function S(x, t) from ρu(x, t) by considering the normalisation of ρ(xi, t).

Starting with the normalisation

∞∑
i=−∞

ρ(xi, t) = 1, (9.16)

and introducing a space dependent lattice spacing ∆xi = uxi, we can write

∞∑
i=−∞

ρu(xi, t)

uxi
∆xi = 1, (9.17)

so that provided the limits exist,

lim
∆xi→0

∞∑
i=−∞

(
lim
u→0

ρu(xi, t)

uxi

)
∆xi = 1. (9.18)
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We now define

fu(x, t) =
ρu(x, t)

ux
, (9.19)

and then Eq. (9.18) expresses the normalisation

∫ ∞
0

f(x, t) dx = 1, (9.20)

where

f(x, t) = lim
u→0

fu(x, t). (9.21)

Rewriting the master equation, Eq. (9.15) in terms of the probability density

function fu gives,

∂

∂t
fu(xi, t) = pr

(
(1 + u)−1xi, t

)
τ−α(1 + u)−1

0D1−α
t

(
fu
(
(1 + u)−1xi, t

))
+ pl((1 + u)xi, t)(1 + u)τ−α 0D1−α

t (fu((1 + u)xi, t))− τ−α 0D1−α
t (fu(xi, t)) .

(9.22)

A Fokker-Planck equation will be found as the diffusion limit of this equation

as u → 0, and τ → 0. This limit will depend on the form taken for the bias jump

probabilities. We consider definite forms for pr(x, t) and p`(x, t) in the next section.

9.3.1 Diffusion Limit

It is convenient to express the difference between the right and left jump probabilities

in terms of a bias function, and so we define,

Bu(xi, t) = pr(xi, t)− pl(xi, t). (9.23)
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This bias function has an implicit dependence on the scale parameter u. We may

rewrite Eq. (9.22) in terms of the bias function,

∂

∂t
fu(xi, t) =

1

2
τ−α(1 + u)−1

0D1−α
t

(
fu
(
(1 + u)−1xi, t

))
+

1

2
(1 + u)τ−α 0D1−α

t (fu((1 + u)xi, t))− τ−α 0D1−α
t (fu(xi, t))

+Bu((1 + u)−1xi, t)τ
−α(1 + u)−1

0D1−α
t

(
fu
(
(1 + u)−1xi, t

))
−Bu((1 + u)xi, t)(1 + u)τ−α 0D1−α

t (fu((1 + u)xi, t)) .

(9.24)

Taking xi = x, performing a Taylor expansion around u = 0, we can write,

∂

∂t
f(x, t) =

u2

2τα
∂

∂x

(
x(1 + 2B0(x, t)− 4b0(x, t)) 0D1−α

t (f(x, t))

+ x2 ∂

∂x
0D1−α

t (f(x, t))

)
− 2u

τα
∂

∂x

(
xB0(x, t) 0D1−α

t (f(x, t))
)

+O(u3),
(9.25)

where

B0(x, t) = lim
u→0

Bu(x, t) (9.26)

and

b0(x, t) = lim
u→0

∂

∂u
Bu(x, t). (9.27)

The diffusion limit is found by taking the limit u→ 0 and τ → 0, such that,

lim
u,τ→0

u2

2τα
= Dα. (9.28)

In order for the diffusion limit of Eq. (9.25) to exist we require B0(x, t) = 0, and

taking the limit gives,

∂

∂t
f(x, t) = Dα

∂

∂x

(
x(1− 4b0(x, t)) 0D1−α

t (f(x, t)) + x2 ∂

∂x
0D1−α

t (f(x, t))

)
.

(9.29)
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If the bias function does not depend on time then we can re-write Eq. (9.29) as

follows:

0Dαt f(x, t) = Dα
∂

∂x

(
x(1− 4b0(x)) (f(x, t)) + x2 ∂

∂x
(f(x, t))

)
. (9.30)

The asymptotic long time steady state for a conservative system acted on by a

stationary potential V (x) is the Boltzmann distribution,

lim
t→∞

f(x, t) = f̄(x) ∝ e−βV (x), (9.31)

where β is a parameter. If we substitute this steady state solution into Eq.(9.30),

and consider the long time limit where the left hand side of the equation is zero,

then we obtain an explicit expression relating the potential to the bias, viz;

V (x) =

∫ x

a

1− 4b0(z)

βz
dz. (9.32)

where a is an arbitrary constant. From the identification

F (x, t) = −∂V (x, t)

∂x
. (9.33)

we have the corresponding relation between the force F (x) and the bias, viz;

F (x) =
4b0(x)− 1

βx
. (9.34)

Thus in the case were the force does not depend on time we can write Eq. (9.29) as

∂f(x, t)

∂t
= Dα

∂

∂x

(
x2 ∂

∂x
0D1−α

t f(x, t)− βx2F (x) 0D1−α
t f(x, t)

)
(9.35)

If the bias function depends explicitly on time we can generalize the expression in

Eq. (9.34) to define

b0(x, t) =
1

4
(1 + βxF (x, t)) (9.36)
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and then Eq.(9.29) becomes

∂f(x, t)

∂t
= Dα

∂

∂x

(
x2 ∂

∂x
0D1−α

t f(x, t)− βx2F (x, t) 0D1−α
t f(x, t)

)
. (9.37)

This equation is the fractional geometric Fokker-Planck equation for a particle sub-

ject to a space and time dependent force. In contrast to the standard fractional

Fokker-Planck equation with space- and time- dependent forcing [61] we see a spa-

tially dependent diffusivity and an additional spatial dependence on a force.

9.4 Fractional Geometric Brownian Motion

In this section we show that a fractional geometric Brownian motion can be defined

from the fractional geometric Fokker-Planck equation with a force

F (x) = − v

βx
. (9.38)

This force can be derived from a logarithmic potential

V (x) =
v

β
lnx, (9.39)

where v is an arbitrary parameter and v = 0 corresponds to the case with no force.

Substituting the force, defined by Eq. (9.38), into Eq. (9.37) we arrive at

∂

∂t
f(x, t) =

∂

∂x

(
x2 ∂

∂x
Dα 0D1−α

t f(x, t)

)
+

∂

∂x

(
vxDα 0D1−α

t f(x, t)
)
. (9.40)

If we set α = 1, v = 2− µ
D1

and D1 = σ2

2
then Eq.(9.40) reduces to

∂

∂t
f =

x2σ2

2

∂2f

∂x2
+ (σ2 − µ)f + (2σ2 − µ)x

∂f

∂x
, (9.41)
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which is the Fokker-Planck equation for geometric Brownian motion. With the

initial condition ω(x, 0) = δ(x− 1), this has the solution,

f(x, t) =
1√

2πtσx
exp

(
−(ln(x)− (µ− σ2

2
)t)2

2σ2t

)
. (9.42)

Geometric Brownian motion has been widely used in financial mathematics as the

stochastic process for modelling the price of an asset Xt assuming that percentage

changes are independent and identically distributed. Geometric Brownian motion

satisfies the stochastic differential equation

dXt = µXt + σXtdWt, (9.43)

where Wt is a Brownian motion. In financial applications, µ is the percentage

drift and σ is the percentage volatility. We could equivalently write the stochastic

differential equation as

dXt = (2− v)D1Xtdt+
√

2D1XtdWt, (9.44)

which relates it back to the force defined in Eq. (9.38).

The generalized Fokker-Planck equation, Eq. (9.40), is the Fokker-Planck equa-

tion for a fractional geometric Brownian motion. The solution of Eq. (9.40), can be

simply related to the solution of Eq. (9.41) using time subordination [94]. Explic-

itly, it is easy to verify using Laplace transform methods (see, e.g., the appendices

in [94, 84]), that the solution of Eq. (9.40) is given by

f(x, t) =

∫ ∞
0

f ?(x, τ)φ(τ, t) dt (9.45)

where f ?(x, t) is the solution of Eq. (9.41) and φ(τ, t) has the Laplace transform

φ̂(τ, s) =

∫ ∞
0

φ(τ, t)s−st dt = sα−1e−τs
α

. (9.46)
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9.5 Moments

In this section we consider the moments and logarithmic moments of the fractional

geometric Brownian motion. We begin by considering expressions for the moments

of the fractional geometric Fokker-Planck equation, Eq. (9.37). The nth moment is

defined as,

〈xn(t)〉 =

∫ ∞
0

xnf(x, t)dx. (9.47)

To check that the equation is conservative we begin by considering the zeroth mo-

ment. Integrating both sides of Eq. (9.37) with respect to x, and integrating we

find,

d〈x0(t)〉
dt

= 0, (9.48)

provided that
∫∞

0
S(x, t)dx exists. Hence the zeroth moment is conserved as ex-

pected. The first moment, or mean, is found by first multiplying both sides of Eq.

(9.37) by x and then integrating over x, this gives,

d〈x(t)〉
dt

= 2Dα 0D1−α
t (〈x(t)〉) + βDα

∫ ∞
0

x2F (x, t) 0D1−α
t (f(x, t)) dx. (9.49)

In general the integro-differential equation that governs the evolution of the nth

moment is,

d〈xn(t)〉
dt

= n(n+ 1)Dα 0D1−α
t (〈xn(t)〉) + nβDα

∫ ∞
0

xn+1F (x, t) 0D1−α
t (f(x, t)) dx.

(9.50)

This fractional integro-differential equation simplifies for fractional geometric Brow-

nian motion.

We have also considered the log-moments of the fractional geometric Fokker-

Planck equation, Eq.(9.37). The nth log-moment is defined as,

〈(ln(x(t)))n〉 =

∫ ∞
0

(ln(x(t)))nf(x, t)dx. (9.51)
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If x represents the price of an asset then the first log-moment is the expected logarith-

mic return. Similar to the moment calculations we multiply Eq. (9.37) by (ln(x))n

and integrate with respect to x, this leads to the evolution of the nth log-moment

to be governed by,

d〈(ln(x(t)))n〉
dt

=n(n− 1)Dα 0D1−α
t

(
〈(ln(x(t)))n−2〉

)
+ nDα 0D1−α

t

(
〈(ln(x(t)))n−1〉

)
+ nβDα

∫ ∞
0

(ln(x))n−1xF (x, t) 0D1−α
t (f(x, t)) dx.

(9.52)

Again, this fractional integro-differential equation simplifies for fractional geometric

Brownian motion.

9.5.1 Fractional Geometric Brownian Motion Moments

In section 9.4 we showed that the probability density function for a fractional ge-

ometric Brownian motion is governed by the fractional geometric Fokker-Planck

equation with the force, Eq. (9.38), derived form a logarithmic potential. We now

substitute the expression for the force, Eq. (9.38), into Eq. (9.50) to obtain the

moments for the fractional geometric Brownian motion. This yields,

d〈xn(t)〉
dt

= (n(n+ 1)− nv)Dα 0D1−α
t (〈xn(t)〉) . (9.53)

With the given initial condition, the solution of Eq. (9.53) is a Mittag-Leffler func-

tion,

〈xn(t)〉 = Eα ((n(n+ 1)− nv)Dαt
α) . (9.54)

From this it is easy to see that the mean will be,

〈x(t)〉 = Eα ((2− v)Dαt
α) . (9.55)
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Next we can consider the log-moments. Using the force from the logarithmic

potential, Eq. (9.52) becomes,

d〈(ln(x(t)))n〉
dt

= n(n− 1)Dα 0D1−α
t

(
〈(ln(x(t)))n−2〉

)
+ n(1− v)Dα 0D1−α

t

(
〈(ln(x(t)))n−1〉

) (9.56)

For n = 1 this simplifies to,

d〈(ln(x(t)))〉
dt

= (1− v)
Dα

Γ(α)
tα−1, (9.57)

where we have used the following property of a Riemann-Liouville fractional deriva-

tive,

0D1−α
t (1) =

tα−1

Γ(α)
. (9.58)

Using our initial conditions we can see that, 〈(ln(x(0)))〉 = 0, and so Eq. (9.57) has

the solution,

〈(ln(x(t)))〉 =
(1− v)Dα

Γ(1 + α)
tα (9.59)

Note that for geometric Brownian motion, α = 1, the log moment scales linearly

with time whereas for fractional geometric Brownian motion the log moment scales

as a sub-linear power-law in time. This is analogous to the sub-linear power-law

scaling of the mean square displacement in anomalous subdiffusion [106].

9.6 Summary

In this Chapter we have considered the CTRW on a geometric lattice, with biased

jumps related to a force and, in the case of a power-law tailed waiting time den-

sity, the diffusion limit results in a fractional geometric Fokker-Planck equation. In

carrying out the diffusion limit we considered the relation between the bias and a

force derived from a potential. Our approach has been to consider the relationship

that emerges by requiring the steady state solution, if it exists, to be the Boltzmann

distribution.
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We have further shown that if the force is obtained from a logarithmic poten-

tial then the corresponding geometric fractional Fokker-Planck equation governs the

evolution of the probability density function for a fractional, or subdiffusive, geo-

metric Brownian motion. We have obtained expressions for the moments, and the

logarithmic moments, of the subdiffusive geometric Brownian motion. One of the

signature properties of the subdiffusive geometric Brownian motion is that the log

moment was shown to scale as a sublinear power-law in time.
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Chapter 10

Anomalous Diffusion on an Arbitrarily Growing Domain

10.1 Introduction

A wide range of important physical phenomena involve transport in expanding,

and contracting, domains. Fundamental examples include, the diffusion of proteins

within growing cells, the interactions of cells in a growing organism, and diffusion in

an expanding universe. The governing equations for reaction diffusion on growing

domains and related studies of pattern formation have been considered in a series of

publications, see for example, [36, 113, 37, 26, 153, 155, 140, 157]. Domain growth

has been shown to be fundamentally important to the development of patterns [81].

In this Chapter we derive the equation for anomalous diffusion occurring on an

arbitrarily growing domain. This follows the derivation in [23]. We start with the

underlying stochastic process of a CTRW to derive master equations for subdiffu-

sive transport in a growing domain. In our derivation we first consider a mapping

between a given position x on the domain at time t = 0 and the position that it

evolves to, y, on the growing domain at a later time t. With this mapping we then

transform the CTRW from the coordinates on the growing domain to a non-growing

fixed domain. An auxiliary master equation for the evolution of the density on the

fixed domain is derived. The auxiliary master equation is constructed so that the

value of the density at a given x and t equates to the probability density on the

growing domain for y and t. The diffusion limit of the master equation is taken to

produce a fractional diffusion equation on both the fixed and growing domains.
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Our approach enables us to model subdiffusive transport of particles on arbi-

trarily growing domains, and the solution of the auxiliary master equation on the

fixed domain could be used as the basis for numerical simulations of subdiffusive

transport on growing domains. The equations we derive on the growing domain

can be interpreted phenomenologically as a reaction sub-diffusion process with an

additional advective term. In this context, the reaction represents the dilution of

the concentration due to the growing domain. The remainder of this Chapter is or-

ganised as follows. In Section 10.2 we establish the mapping between the arbitrarily

growing domain and the initial fixed domain. In Section 10.3 we derive the master

equation on the initial domain and map it onto growing domain of interest.

10.2 Mapping

We wish to construct a mapping between a location on the initial fixed domain,

x ∈ [0, L0], to the corresponding location at some later time t, on the growing

domain y ∈ [0, L(t)]. To characterise how the domain is changing in time we begin

by partitioning the domain [0, L0] into m cells of width δx = 1
m

. The ith partition

begins at position xi = iδx. As the domain grows, the width of the partitions,

now denoted by δyi(t) will have grown with the domain and formed a partition of

[0, L(t)]. Note that whilst the initial cell widths were constant this is no longer the

case in the growing domain, i.e. δyi is a function of both the initial position xi and

time. The mapping is defined through a growth function, µ(xi, t), via,

1

δyi

dδyi
dt

= µ(xi, t). (10.1)

Explicitly it can be shown that the mapping g(x, t) from a position in the fixed

domain, x, to a corresponding position on the growing domain, y, is given by,

y = lim
n→∞

n∑
i=1

δyi =

∫ x

0

exp

(∫ t

0

µ(z, s)ds

)
dz = g(x, t). (10.2)
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This is illustrated schematically in Figure 10.1. Note that, g(0, t) = 0 and the initial

condition, y = g(x, 0) = x for all x ∈ [0, L0], places a physical restriction on the

mapping between y and x. For future notational convenience we will denote the

spatial derivative of g(x, t) as ν∗(x, t), so that,

ν∗(x, t) =
∂g(x, t)

∂x
= e

∫ t
0 µ(x,s)ds, (10.3)

and the time derivative as,

η∗(x, t) =
∂g(x, t)

∂t
=

∫ x

0

µ(z, t)e
∫ t
0 µ(z,s)dsdz. (10.4)

As the mapping is invertible, so that x = g−1(y, t), these can be expressed on the

growing domain, giving,

ν(y, t) = ν∗(g−1(y, t), t), (10.5)

and

η(y, t) = η∗(g−1(y, t), t). (10.6)

0 L0

0 L(t)yi

xi

T
im
e

δx

δy(x,t)

Figure 10.1: Schematic representation of the growth of the domain and the mapping
of an interval in the initial domain to a corresponding interval at some later time t.
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It should also be noted that if we consider the growth of a small interval in the

initial domain (x, x + δx), then the width of the interval at some later time, in the

limit of small δx can be written as,

δy(x, t) = e
∫ t
0 µ(x,s)dsδx. (10.7)

10.3 Master Equation

We now consider a CTRW on a growing domain, such that a particle will jump to

a location, wait for some time, and then jump to a new location. We will assume

that the waiting time and jump length densities are independent. The waiting time

probability density for a particle that arrived at a location at time t′ to jump at

time t will be denoted by ψ(t − t′), where t − t′ is the amount of time that the

particle waited. The jump length density for a particle that is at a location z′ to

jump to location z at time t is denoted by λ(z|z′, t). In the following we consider a

CTRW on the growing domain z = y and an auxiliary CTRW on the fixed domain

z = x. In taking the diffusion limit we will restrict ourselves to fixed length jumps

on the growing domain, ∆y, where the particle may jump either left or right. The

corresponding jumps in the auxiliary CTRW on the initial fixed domain will therefore

have lengths that change in both time and space as the domain grows.

For a particle undergoing a CTRW on the growing domain, we let ρ(y, t)δy(x, t)

denote the probability of finding the particle in the region (y, y + δy(x, t)), in the

time (t, t+ δt) for a small δy(x, t). Thus ρ(y, t) is the probability density of finding

the particle, which we can express as follows,

ρ(g(x, t), t)δy(x, t) =

∫ t

0

Φ(t− t′)q(g(x, t′), t′)δy(x, t′)dt′, (10.8)

where Φ(t − t′) is the survival function associated with the waiting time density

ψ(t− t′). The inbound flux, q(g(x, t), t), is defined such that the probability of the

particle entering the region (y, y + δy(x, t)) in the time (t, t+ δt), given y = g(x, t),
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is q(g(x, t), t)δy(x, t)δt. This equation states that for a particle to be in the region,

it must have previously arrived in the region and not jumped away.

Equation (10.8) can be simplified by using Eq. (10.7),

ρ(g(x, t), t)e
∫ t
0 µ(x,s)ds =

∫ t

0

Φ(t− t′)q(g(x, t′), t′)e
∫ t′
0 µ(x,s)dsdt′. (10.9)

To transform the evolution equation to a master equation it is necessary to replace

the explicit dependence on q(g(x, t), t) with a dependence on ρ(g(x, t, ), t). The

growth of the domain requires us to utilise non-standard techniques to achieve this.

As the region is moving and growing this is most easily expressed by mapping the

required functions back to the fixed x domain. The formulation of the CTRW on

the fixed domain will be referred to as an auxiliary CTRW.

To formulate the auxiliary CTRW on the fixed domain, we relate the associated

densities to densities on the growing domain, such that,

ρ(y, t) = ρ(g(x, t), t) = ρ∗(x, t), q(g(x, t), t) = q∗(x, t). (10.10)

Here we use a star to denote a function associated with the auxiliary process on the

fixed domain. Hence we can write the auxiliary form of Eq. (10.9) as,

ρ∗(x, t)e
∫ t
0 µ(x,s)ds =

∫ t

0

Φ(t− t′)q∗(x, t′)e
∫ t′
0 µ(x,s)dsdt′. (10.11)

Note that this left hand side, ρ∗(x, t)e
∫ t
0 µ(x,s)ds, is a conserved probability density.

Differentiating Eq. (10.11) with respect to time and simplifying, we arrive at an

evolution equation for the probability density,

∂ρ∗(x, t)

∂t
= q∗(x, t)−

∫ t

0

ψ(t− t′)e−
∫ t
t′ µ(x,s)dsq∗(x, t′)dt′ − µ(x, t)ρ∗(x, t). (10.12)

In this equation the second term on the right hand side is the flux out of the

neighbourhood around x in the time interval around t, while the third term is the
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reduction in concentration of particles, around x around t, due to the growth of the

domain. Explicitly we define the flux out as,

i∗(x, t) =

∫ t

0

ψ(t− t′)q∗(x, t′)e−
∫ t
t′ µ(x,s)dsdt′. (10.13)

In this equation the incoming flux, q∗(x, t), can itself be expressed in terms of the

flux out resulting in the relation,

q∗(x, t) =

∫ L(0)

0

λ(x|x′, t)i∗(x′, t)dx′, (10.14)

where λ(x|x′, t) is the jump probability density, where a particle at x′ jumps to x,

at time t.

Using Eq. (10.14), noting the semi-group property of the exponential function,

we can rewrite Eq. (10.12) and using Laplace transform methods, we can express

the evolution equation for the auxiliary CTRW as the auxiliary master equation,

∂ρ∗(x, t)

∂t
=

∫ L(0)

0

λ(x|x′, t)
∫ t

0

K(t− t′)ρ∗(x′, t′)e−
∫ t
t′ µ(x′,s)dsdt′dx′

−
∫ t

0

K(t− t′)ρ∗(x, t′)e−
∫ t
t′ µ(x,s)dsdt′ − µ(x, t)ρ∗(x, t).

(10.15)

In this equation, the memory kernel, K(t), is defined by,

Lt{K(t)} =
Lt{ψ(t)}
Lt{Φ(t)} , (10.16)

where Lt denotes a Laplace transform with respect to time.

The master equation, Eq. (10.15), has been derived for arbitrary waiting time

and jump densities. To obtain a diffusion limit of the master equation we will

require specific forms for these densities. We wish to consider the case of a fixed

jump length on the growing domain, where the particle will jump either right or

left with equal probability. In this case the jump length for the auxiliary master

188



equation will change with both space and time. The jump probability density can

therefore be written as,

λ(x|x′, t) =
1

2

(
δ(x− x′ − ε+) + δ(x− x′ + ε−)

)
, (10.17)

where δ(x) is the Dirac delta function, and ε+ and ε− are time and space dependent.

To relate the ε’s to the fixed jump length, ∆y, we note that from Eq. (10.2) we

have,

∆y =

∫ x

x−ε+
e
∫ t
0 µ(z,s)dsdz, (10.18)

∆y =

∫ x+ε−

x

e
∫ t
0 µ(z,s)dsdz. (10.19)

Using the relations from Eqs. (10.18) and (10.19), we perform a Taylor expansion

of Eq. (10.15) with the jump distribution given by, Eq. (10.17) around ∆y = 0 to

arrive at,

∂ρ∗(x, t)

∂t
=

∆y2e−2
∫ t
0 µ(x,s)ds

2

((
∂2

∂x2

∫ t

0

K(t− t′)ρ∗(x, t′)e−
∫ t
t′ µ(x,s)dsdt′

)
−
(∫ t

0

∂µ(x, s)

∂x
ds

)(
∂

∂x

∫ t

0

K(t− t′)ρ∗(x, t′)e−
∫ t
t′ µ(x,s)dsdt′

))
− µ(x, t)ρ∗(x, t) +O(∆y3).

(10.20)

To consider subdiffusion on a growing domain we now take a heavy tailed Mittag-

Leffler waiting time density, given by,

ψ(t) =
tα−1

τα
Eα,α

(
−
(
t

τ

)α)
, (10.21)

with 0 < α < 1 and τ > 0. The memory kernel of a Mittag-Leffler probability

density can be calculated from the inverse Laplace transform of Eq. (10.16),

K(t) = L−1
s

{
s1−α

τα

}
. (10.22)
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Recall that the Riemann-Liouville fractional derivative of order 1− α is defined

as,

0D1−α
t (f(t)) =

1

Γ(α)

d

dt

∫ t

0

f(t′)(t− t′)α−1dt′. (10.23)

As we are considering smooth real valued functions, the initial condition term in the

Laplace transform of the Riemann-Liouville fractional derivative will be zero [89],

so that,

Lt
{

0D1−α
t (f(t))

}
= s1−αLt {f(t)} . (10.24)

Using Mittag-Leffler distributed waiting times the auxiliary master equation on

the fixed domain, Eq. (10.20), becomes,

∂ρ∗(x, t)

∂t
=

∆y2e−2
∫ t
0 µ(x,s)ds

2τα

 ∂2

∂x2

 0D1−α
t

(
ρ∗(x, t)e

∫ t
0 µ(x,s)ds

)
e
∫ t
0 µ(x,s)ds


−
(∫ t

0

∂µ(x, s)

∂x
ds

)
∂

∂x

 0D1−α
t

(
ρ∗(x, t)e

∫ t
0 µ(x,s)ds

)
e
∫ t
0 µ(x,s)ds


− µ(x, t)ρ∗(x, t) +O(∆y3).

(10.25)

The fractional diffusion limit is one in which the length and time scales are taken

to zero, such that,

Dα = lim
∆y,τ→0

∆y2

2τα
, (10.26)

exists. The fractional diffusion limit of Eq. (10.25) is,

∂ρ∗(x, t)

∂t
= Dαe

−2
∫ t
0 µ(x,s)ds

 ∂2

∂x2

 0D1−α
t

(
ρ∗(x, t)e

∫ t
0 µ(x,s)ds

)
e
∫ t
0 µ(x,s)ds


−
(∫ t

0

∂µ(x, s)

∂x
ds

)
∂

∂x

 0D1−α
t

(
ρ∗(x, t)e

∫ t
0 µ(x,s)ds

)
e
∫ t
0 µ(x,s)ds

− µ(x, t)ρ∗(x, t).

(10.27)

This is the auxiliary fractional diffusion equation defined on the fixed domain. Note

that, apart from the advective type term, this is the same form as a fractional re-
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action subdiffusion equation [7], with the additional feature of a space and time

dependent diffusivity. In writing the equation in terms of the growing domain coor-

dinates the diffusivity will be constant.

Boundary conditions may be implemented by considering different jump length

densities near the boundary. Explicitly, a zero flux boundary will be implemented

by taking,

λ(x|x′, t) = δ(x− x′ + ε−), (10.28)

for x ∈ [L(0)− ε−, L(0)] and,

λ(x|x′, t) = δ(x− x′ − ε+), (10.29)

for x ∈ [0, ε+]. This jump density guarantees that there is no flux across the bound-

ary, and in the diffusive limit the master equation at the boundary point will be

consistent with the master equation in the bulk.

Using the jump length density for the left boundary, Eq. (10.29), and taking a

Taylor expansion around ∆y = 0, the master equation, Eq. (10.15), becomes,

∂ρ∗(x, t)

∂t
= ∆ye−

∫ t
0 µ(x,s)ds ∂

∂x

(∫ t

0

K(t− t′)ρ∗(x, t′)e−
∫ t
t′ µ(x,s)dsdt′

)
+

∆y2e−2
∫ t
0 µ(x,s)ds

2

((
∂2

∂x2

∫ t

0

K(t− t′)ρ∗(x, t′)e−
∫ t
t′ µ(x,s)dsdt′

)
−
(∫ t

0

∂µ(x, s)

∂x
ds

)(
∂

∂x

∫ t

0

K(t− t′)ρ∗(x, t′)e−
∫ t
t′ µ(x,s)dsdt′

))
− µ(x, t)ρ∗(x, t) +O(∆y3).

(10.30)

for x ∈ [0, ε+]. The difference between this equation and the bulk result is the

occurrence of a first order spatial derivative. With the Mittag-Leffler waiting time

density in order for the diffusion limit, Eq. (10.26) to exist, we require the first order
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spatial derivative term to be,

∂

∂x

 0D1−α
t

(
ρ∗(x, t)e

∫ t
0 µ(x,s)ds

)
e
∫ t
0 µ(x,s)ds

∣∣∣∣∣∣
x=0

= 0, (10.31)

only holding at the boundary point as ∆y → 0. This zero flux boundary condition

is equivalent to the zero flux boundary derived for fractional reaction subdiffusion

equations [10]. The derivation for the right hand side of the boundary results in an

equivalent condition.

The fractional diffusion equation can be found by mapping the auxiliary equa-

tion, Eq. (10.27), to the growing domain. Using the mapping y = g(x, t), with Eqs.

(10.5) and (10.6), we perform a change of variables and find,

∂ρ(y, t)

∂t
=Dα

∂2

∂y2

(
1

ν(y, t)
g
0C1−α

t (ρ(y, t)ν(y, t))

)
− η(y, t)

∂ρ(y, t)

∂y

−
(
∂ν(y, t)

∂t

)
1

ν(y, t)
ρ(y, t).

(10.32)

Here we have defined a new comoving fractional derivative, g
0C1−α

t , which operates

along the curve, y = g(x, t), for a fixed x. Formally this is defined as,

g
0C1−α

t f(y, t) =
1

Γ(α)

∂

∂t

∫ t

0

f(g(g−1(y, t), t′), t′)(t− t′)α−1dt′. (10.33)

Informally, the history of the function is not integrated over a fixed value of y

but rather along the trajectory of the point in the domain as it grows. As with the

Riemann-Liouville fractional derivative, the co-moving fractional derivative becomes

the identity operator in the limit as α→ 1. We note that,

g
0C1−α

t (ρ(y, t)ν(y, t)) = 0D1−α
t (ρ∗(x, t)ν∗(x, t)) . (10.34)

The physical understanding of Eq. (10.32) is that the third term on the right

hand side is a dilution factor due to the growing domain, the second term is an
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advection factor due to the growing domain and the first term is a fractional diffusion

term modified to take into account both the growth and dilution. The boundary

condition, Eq. (10.31), on the growing domain is,

∂

∂y

( g
0C1−α

t (ρ(y, t)ν(y, t))

ν(y, t)

)∣∣∣∣
y=0,L(t)

= 0. (10.35)

We note that when α→ 1 this boundary condition is independent of the rate of the

domain growth and is simplified to,

∂ρ(y, t)

∂y

∣∣∣∣
y=0,L(t)

= 0, (10.36)

on the growing domain.

It should also be noted that,

d

dt

∫ L(t)

0

ρ(y, t)dy = 0. (10.37)

This can be seen by integrating Eq. (10.32) over the growing domain and using the

boundary conditions given by Eq. (10.35).

As a specific example, we consider a constant growth rate in which the mapping

between the original and growing domain is defined by Eq. (10.2),

µ(x, t) = r, and g(x, t) = xert, (10.38)

where r ∈ R. Using this we can simplify the master equation on the growing domain,

Eq. (10.32), and it becomes,

∂ρ(y, t)

∂t
= Dα

∂2

∂y2

(
e−rt g0C1−α

t

(
ρ(y, t)ert

))
− ry∂ρ(y, t)

∂y
− rρ(y, t), (10.39)

with boundary conditions given by Eq. (10.35). This can be considered a simple

model for diffusion of transmembrane proteins, such as potassium channels [99], that
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are anomalously diffusing in the plasma membrane of a uniformly growing cell, for

example during the G1 phase of growth of budding yeast [101]. In the case as α→ 1,

we recover the expected equation for diffusion on a uniformly growing domain, see

Murray [113].

10.4 Summary

In this Chapter we have derived evolution equations that describe subdiffusive trans-

port on a growing domain. Equation (10.27) describes the transport on a rescaled

fixed domain whilst Eq. (10.32) describes the same process on the growing domain.

The evolution equation on the growing domain required the definition of a new frac-

tional order differential operator that follows the domain growth, Eq. (10.33). Our

work provides the essential first step for modelling physical applications involving

subdiffusion on growing domains. This model can be extended in numerous ways;

including reactions through birth and death processes, including forces using biased

CTRWs, and generalising to higher dimensions using a multidimensional growth

function and multidimensional CTRWs.
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Part III

Other Published Work on

Discretisation Methods
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Chapter 11

Piecewise Fractional ODE Method

11.1 Introduction

This Chapter follows the derivation in [16]. In the following we consider an initial

value fractional-order ODE (frODE) of the form,

CDα0,tx(t) = f(x(t)), x(0) = x0, (11.1)

where CDα0,t is a Caputo fractional derivative with 0 < α < 1 and f(x(t)) is

potentially a nonlinear vector field. Extending the work of El-Sayed and others

[49, 5, 69, 135, 47, 48, 51, 50] we provide a correct derivation of the difference equa-

tion approximation to Eq. (11.1) based on a piecewise approximation. This results

in an increasing order difference equation which captures the memory effect of the

frODE. This is achieved by a piecewise constant approximation of the vector field,

resulting in a one parameter family of integrable frODEs that limit to the original

frODE. The integrable frODEs have a closed form solution that can be discretised to

provide a difference equation that approximates the solution of the original frODE.

Furthermore, we show that this method may be implemented with an non-uniform

time step. An example is presented that shows the difference equation correctly

captures the dynamics of a specific frODE.
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11.2 Fractional Derivatives

The properties of fractional derivatives were summarised in Chapter 1 but we have

made further remarks here for convenience. There exist multiple types of fractional

derivatives, here we will focus on frODEs involving Caputo derivatives. A Caputo

fractional derivative is defined by [34],

CDα0,tx(t) =
1

Γ(1− α)

∫ t

0

(t− t′)−αdx(t′)

dt′
dt′, (11.2)

for 0 < α < 1. The Riemann-Liouiville fractional derivative is defined by,

RLDα0,tx(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− t′)−αx(t′)dt′, (11.3)

for 0 < α < 1. We can transform a Caputo derivative to a Riemann-Liouville

through the following relation [89];

RLDα0,t(x(t)− x(0)) = CDα0,tx(t), (11.4)

hence the two are equivalent when x(0) = 0.

Fractional derivatives can be easily expressed in Laplace space and we will make

use of this form. The Laplace transform of the Caputo fractional derivative is,

Lt{CDα0,tx(t)} = sαLt{x(t)} − sα−1x(0). (11.5)

The Grünwald-Letnikov derivative is defined by,

GLDα0,tx(t) = lim
δt→0

1

δtα

∞∑
m=0

(−1)m

 α

m

x(t−mδt). (11.6)

If x(t) ∈ C0 and 0 < α ≤ 1, then this is equivalent to the Riemann-Liouville

derivative. Grünwald-Letnikov derivatives have long been used as a basis of methods

for discretising Riemann-Liouville frODEs [121, 27].
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11.3 Problems with First Order Approximations to frODEs

The approach taken by El-Sayed and others [49, 5, 69, 135, 47, 48, 51, 50] when

applied to the fractional equation, Eq. (11.1), results in a discrete first order equation

of the form,

x((n+ 1)δt) = x(nδt) +
δtα

Γ(1 + α)
f(x(nδt)). (11.7)

We can use a simple convergence argument to demonstrate that this first order

difference equation can not capture the dynamics of a fractional order differential

equation.

11.3.1 Convergence

In this subSection we demonstrate that Eq. (11.7) does not converge to Eq. (11.1)

as δt → 0 such that t = nδt. Noting that the solution of Eq. (11.7) is a function

that is only defined over a discrete set of points, we define a function of a continuous

variable yδ(t), such that at the points t = nδt we have yδ(t) = x(nδt). Away from

these points the function yδ(t) is defined as an interpolation whereby the resulting

function is continuous and differentiable. We will assume that such a function will

have a well behaved limit as δt→ 0 so that,

lim
δt→0

yδ(t) = y(t). (11.8)

This limit must exist if Eq. (11.7) is to converge, furthermore if Eq. (11.7) did

converge to Eq. (11.1) then y(t) would be a solution of Eq. (11.1). We will now

show that y(t) is not a solution of Eq. (11.1).

From Eq. (11.7) we see that yδ obeys the relation,

yδ((n+ 1)δt) = yδ(nδt) +
δtα

Γ(1 + α)
f(yδ(nδt)). (11.9)
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Letting t = nδt, we can rearrange Eq. (11.9) to give,

Γ(1 + α)
(yδ(t+ δt)− yδ(t))

δtα
= f(yδ(t)). (11.10)

Taking a Taylor expansion of the function yδ(t) at δt = 0, allows us to express

yδ(t+ δt) = yδ(t) + δty′δ(t) + δt2

2
y′′δ (t) + o(δt2), thus Eq. (11.10) becomes,

Γ(1 + α)
(δty′δ(t) + δt2

2
y′′δ (t) + o(δt2))

δtα
= f(yδ(t)). (11.11)

Finally taking the limit δt → 0 gives f(y(t)) = 0, for 0 < α < 1, and hence y(t)

can not be a solution of Eq. (11.1) except in the trivial case y(t) = 0. It follows

that the discretisation given by Eq. (11.7) does not recover the original continuous

equation, Eq. (11.1), in the limit of small time steps.

As an aside, we note that in the special case α = 1, Eq. (11.11), becomes,

(δty′δ(t) + δt2

2
y′′δ (t) + o(δt2))

δt
= f(yδ(t)), (11.12)

and hence in the limit δt→ 0 this recovers the integer order equation,

dy(t)

dt
= f(y(t)). (11.13)

Thus in this special case of α = 1 the discretisation, Eq. (11.7), does converge to

Eq. (11.1).

A numerical demonstration of the lack of convergence, for 0 < α < 1, is shown

in Figure 11.1. Here we have considered the first order discretisation of the Riccati

equation, Eq. (11.1) with f(x(t)) = 1−x(t)2, and show that it tends to the function

x(t) = 1 for t > 0, as δt → 0. This is consistent with the equation f(x(t)) = 0 as

derived above.
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11.4 Piecewise Constant Integrabilisation

Whilst the final result of the method described in the series of papers [49, 5, 69, 135,

47, 48, 51, 50] is incorrect, the initial approach that has been undertaken has merit.

Here we will consider a correct extension of this approach for the general Caputo

initial value problem given in Eq. (11.1). We will construct a family of equations,

parametrized by δt such that in the limit δt → 0 the family limits to Eq. (11.1).

Each member of the family is an integrable frODE with a closed form solution. We

will refer to this process as an integrablization of Eq. (11.1). Here this is achieved

by replacing the right hand side of the frODE with a piecewise constant function.

Choosing some time step δt, the frODE to solve would become,

CDα0,tx(t) = f

(
x

(
δt

⌊
t

δt

⌋))
. (11.14)

We show below that this is an integrable equation whose solution is trivially ob-

tained. The piecewise constant function is chosen so that in the limit of small δt we

recover the original equation, i.e.

lim
δt→0

f

(
x

(
δt

⌊
t

δt

⌋))
= f(x(t)). (11.15)

Using a unit step function, defined by

u(t) =

 0 t < 0,

1 t ≥ 0,
(11.16)

we can rewrite the right-hand side Eq. (11.14) as a sum, giving

CDα0,tx(t) =
∞∑
m=0

f(x(mδt))(u(t−mδt)− u(t− (m+ 1)δt)). (11.17)

The infinite sum on the right hand side of this equation is convergent as for any

value t the difference between the step functions is 0 for all bar one term. Equation
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(11.17) can be expressed as a sum of single unit step functions,

CDα0,tx(t) = f(x0) +
∞∑
m=1

(f(x(mδt))− f(x((m− 1)δt)))u(t−mδt). (11.18)

The solution of this equation can be found utilising Laplace transforms. The Laplace

transform of Eq. (11.18) yields,

sαL{x(t)} − sα−1x0 = s−1f(x0) + s−1

∞∑
m=1

(f(x(mδt))− f(x((m− 1)δt))) e−smδt,

(11.19)

where x(0) = x0. Rearranging and inverting the Laplace transform gives,

x(t) = x0+
tα

Γ(1 + α)
f(x0)+

∞∑
m=1

(
(t−mδt)α
Γ(1 + α)

(f(x(mδt))− f(x((m− 1)δt)))

)
u(t−mδt).

(11.20)

We note that this is a solution in continuous t. This can be simplified to an nth

order difference equation by setting t = nδt,

x(nδt) = x0 +
(nδt)α

Γ(1 + α)
f(x0) +

n−1∑
m=1

((n−m)δt)α

Γ(1 + α)
(f(x(mδt))− f(x((m− 1)δt))).

(11.21)

This difference equation incorporates the history of the function and as such the

order of the difference equation grows with each time step.

The complexity of arithmetic operations in Eq. (11.21) grows with the iteration

number n. The first two terms accumulate with O(1), however due to the memory

effect for each evaluation of a new time step n, we are required to sum over the

entire history of n−1 terms. Hence the algorithm has O(n2) arithmetic complexity.
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11.5 Limit α→ 1

Here we show that in the limit α→ 1 that Eq. (11.21) will recover the simple Euler

discretisation of an integer order ODE. Taking α = 1, Eq. (11.21), becomes,

x(nδt) = x0 + (nδt)f(x0) +
n−1∑
m=1

((n−m)δt)(f(x(mδt))− f(x((m− 1)δt))). (11.22)

Subtracting x((n− 1)δt) from both sides of this equation then yields.

x(nδt)−x((n− 1)δt) = (nδt− (n− 1)δt)f(x0) +
n−1∑
m=1

((n−m)δt)(f(x(mδt))

− f(x((m− 1)δt)))−
n−2∑
m=1

((n− 1−m)δt)(f(x(mδt))− f(x((m− 1)δt))).

(11.23)

This simplifies to,

x(nδt)− x((n− 1)δt) = δtf(x((n− 1)δt)). (11.24)

This is the Euler discretisation of the ODE,

dx(t)

dt
= f(x). (11.25)

11.6 Convergence

It is easy to confirm that the discretisation given in Eq. (11.21) will limit to the

solution of Eq. (11.1) in the limit as δt → 0. Firstly we note that the solution of

Eq. (11.1) can be found by fractionally integrating both side of the equation giving,

x(t)− x(0) =

∫ t

0

(t− t′)α−1

Γ(α)
f(x(t′))dt′. (11.26)
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Integrating by parts leads to,

x(t) = x(0) +
tαf(x(0))

Γ(1 + α)
+

∫ t

0

(t− t′)α
Γ(1 + α)

d

dt′
f(x(t′))dt′. (11.27)

Now considering Eq. (11.21), we can write,

x(nδt) = x0 +
(nδt)α

Γ(1 + α)
f(x0) +

n−1∑
m=1

δt((n−m)δt)α

Γ(1 + α)

(f(x(mδt))− f(x((m− 1)δt)))

δt
.

(11.28)

Taking the limit δt→ 0 such that t = nδt and t′ = mδt are fixed then one recovers

Eq. (11.27). This shows that the discretisation given in Eq. (11.21) converges to the

solution of Eq. (11.1) in the limit δt → 0. This also shows that the discretisation

could have been derived from a quadrature of Eq. (11.27). This integral form

representation of the method shows that this is related to a fractional order Adams

method [40, 160].

11.7 Fixed Points

It is clear that any fixed points of Eq. (11.1) must also be fixed points of the

discretisation given in Eq. (11.21). A point x∗ is a fixed point of Eq. (11.1)

provided that f(x∗) = 0. Consider the discretised dynamics given by Eq. (11.21)

with an initial condition x0 = x∗. By construction we can see that the trajectory

x(nδt) = x∗ for all n and hence x∗ is also a fixed point of the discretised equation.

We begin by considering the point x(δt). From Eq. (11.21) we have,

x(δt) = x∗ +
(nδt)α

Γ(1 + α)
f(x∗), (11.29)

= x∗. (11.30)

In general for the point x((n+ 1)δt) we will have,

x((n+ 1)δt) = x∗ +
n∑

m=1

((n+ 1−m)δt)α

Γ(1 + α)
(f(x(mδt))− f(x((m− 1)δt))), (11.31)
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and x((n + 1)δt) = x∗ provided that x(mδt) = x∗ for all m ≤ n. Thus, as x(0) =

x(δt) = x∗, we have inductively shown that x(nδt) = x∗ for all n ≥ 0. Hence any

fixed point of Eq. (11.1) must also be a fixed point of Eq. (11.21).

11.7.1 Linear Stability

Next we consider the linear stability of the fixed points. Considering a small initial

displacement away from the fixed point x∗, so that x(0) = x∗ + δx0. We can write

the solution at some later time as x(t) = x∗ + δx(t), and using this Eq. (11.1) can

be written as,

CDα0,tδx(t) = f(x∗ + δx(t)). (11.32)

Performing a Taylor series expansion on the right hand side, with respect to δx

about 0, and retaining the linear term gives,

CDα0,tδx(t) = f ′(x∗)δx(t). (11.33)

This linear equation has a solution of the form,

δx(t) = δx(0)Eα(f ′(x∗)tα). (11.34)

Considering the long term behaviour of this solution if f ′(x∗) > 0 then x(t) → ∞
as t→∞ and we would say that the fixed point x∗ is linearly unstable. Otherwise

the point is linearly stable. Rewriting Eq. (11.14) and linearising gives,

CDα0,tδx(t) = f ′(x∗)δx

(⌊
t

δt

⌋
δt

)
. (11.35)

From Eq. (11.21) we see that this has a solution of,

δx(nδt) = δx(0)+
(nδt)α

Γ(1 + α)
f ′(x∗)δx(0)+

n−1∑
m=1

((n−m)δt)α

Γ(1 + α)
f ′(x∗)(δx(mδt)−δx((m−1)δt)).

(11.36)
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We will say that the fixed points of the discrete dynamics have unchanged linear

stability and are asymptotically stable if f ′(x∗) < 0 implies that x(nδt) → 0 as

n → ∞. Typically this will be expressible as a function of the step size δt. We

can solve Eq. (11.36) with Z-transform techniques. Taking the Z-transform of Eq.

(11.36) and rearranging we find,

Z {δx(nδt)} =
z2δx(0)Γ(1 + α)

(z − 1)(zΓ(1 + α)− δtαf ′(x∗)(z − 1)Z {nα}) , (11.37)

where the Z-transform is defined as,

Z {δx(nδt)} =
∞∑
n=0

z−nδx(nδt). (11.38)

We see that in the case f ′(x∗) > 0, Z {δx(nδt)} has a pole for |z| > 1, and hence

δx(nδt) is unbounded as n→∞. This implies that any fixed point that is unstable

for the continuum dynamics will remain unstable for the discrete dynamics. For

the case f ′(x∗) < 0 we can use the Z-transform generalised final value theorem that

states [56],

lim
n→∞

1

n

n∑
i=0

δx(iδt) = lim
z→1

(1− z)Z {δx(nδt)} . (11.39)

Note that if the sequence δx(nδt) has a limit as n → ∞ then 1
n

∑n
i=0 δx(iδt) will

tend to the limit as n→∞. Performing the limit using Eq. (11.37) we find,

lim
z→1

(1− z)Z {δx(nδt)} = 0, (11.40)

and so,

lim
n→∞

1

n

n∑
i=0

δx(iδt) = 0. (11.41)

This shows that if the sequence of δx(nδt) tends to a limit then that limit is zero,

and hence the discrete fixed point will be stable. Formally it remains to show that
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δx(nδt) does approach a limit as n → ∞, and typically this can be achieved by

considering a sufficiently small time step δt.

11.8 Non-uniform Time Step

One benefit of this approach is the ease of implementing a non-uniform time step.

Non-uniform time steps can be used to concentrate time points around areas of

greater change in the solution and can improve the performance of the method

[90, 92]. The approximation to Eq. (11.1), can be formulated so that the time

steps, {δτ1, δτ2 . . .}, are not uniformly sized. Let the sum of the first i time steps

be represented as τi i.e.

τi =
i∑

j=1

δτj. (11.42)

With the unit step notation the frODE approximation is,

CDα0,tx(t) = f(x0) +
∞∑
m=1

(f(x(τm))− f(x(τm−1)))u(t− τm). (11.43)

Again, the solution can be found using Laplace transform techniques. Following the

same method as above this gives,

x(t) = x0 +
tα

Γ(1 + α)
f(x0) +

∞∑
m=1

(
(t− τm)α

Γ(1 + α)
(f(x(τm))− f(x(τm−1)))

)
u(t− τm).

(11.44)

This leads to a difference equation by setting t = τn,

x(τn) = x0 +
ταn

Γ(1 + α)
f(x0) +

n−1∑
m=1

(τn − τm)α

Γ(1 + α)
(f(x(τm)− f(x((τm−1))). (11.45)

This difference equation reduces to Eq. (11.21) when uniform time steps are taken.
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11.9 Examples

11.9.1 The Fractional Order Ricatti Equation

The fractional order Riccati equation,

CD
α
0,tx(t) = 1− ρ(x(t))2, (11.46)

with the initial condition x(0) = x0 was considered in [49], resulting in the first

order difference equation approximation,

x((n+ 1)δt) = x(nδt) +
δtα

Γ(1 + α)
(1− ρ(x(nδt))2). (11.47)

Our discretisation of Eq. (11.46) can be found from Eq. (11.45),

x(τn) = x0−
ταn

Γ(1 + α)
(1−ρx2

0)−
n−1∑
m=1

(τn − τm)α

Γ(1 + α)
[(1−ρ(x(τm))2)−(1−ρ(x(τm−1))2)].

(11.48)

Taking τn = nδt leads to the fixed time step discretisation of Eq. (11.21). Figure

11.1 shows the results of these two discritization methods with ρ = 1, α = 0.8, and

x0 = 0.5, for δt = 0.1, 0.01, and 0.001. From the figure, we can see that Eq. (11.47)

produces a sequence that is convergent to x(nδt) = 1, i.e. f(x(t)) = 0 for t > 0, as

δt → 0. This is in contrast to the results from Eq. (11.48). We also see that the

results from Eq. (11.48) display a much slower approach to the equilibrium at x = 1

that is characteristic of fractional order differential equations.

11.9.2 Linear Fractional Differential Equation

To show that the discretisation presented here correctly captures the dynamics of

a fractional order differential equation we will consider a simple case with a known

exact solution. Consider the Caputo frODE,

CD
α
0,tx(t) = −cx(t), (11.49)
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Figure 11.1: Comparison between a first order difference approximation Riccati
equation [49], Eq. (11.47) for δt = 0.1, 0.01, 0.001, 0.0001, and 0.00001 (Red), and
the results of the integrablization, Eq. (11.48), for δt = 0.1, 0.01, 0.001, 0.0001
(Blue). The arrows indicate the directions of decreasing δt. The first order discreti-
sation is clearly not converging to the solution of the fractional Riccati equation.

with x(0) = x0. As this is a linear equation the solution is easily found by Laplace

transform methods,

x(t) = x0Eα(−ctα), (11.50)

where Eα(y) is a Mittag-Leffler function.

To check that the discretisation correctly captures the dynamics we will com-

pare the exact solution with discrete points generated by the piecewise constant

integrablization. We will also compare against the standard Grünwald-Letnikov

discretisation of the same equation and a numerical solution found via a predictor

corrector method. The Grünwald-Letnikov discretisation of Eq. (11.49) is given by,

x(nδt) = x0 − cδtαx((n− 1)δt)−
n−1∑
m=1

(−1)m

 α

m

 (x((n−m)δt)− x0) . (11.51)

A more exact approximation can be formed by a predictor corrector method [41].

This involves constructing an approximation from a higher order Adams method

by correcting a lower order prediction. This scheme is easy to implement, although
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it does not result in a simple difference equation in the same manner as the above

method. For details of the scheme see [41].

The difference equation from a piecewise constant integrablization can be found

from Eq. (11.45),

x(τn) = x0 −
c(τn)α

Γ(1 + α)
x0 −

n−1∑
m=1

c(τn − τm)α

Γ(1 + α)
(x(τm)− x(τm−1)). (11.52)

Taking τn = nδt leads to the fixed time step discretisation. As well as a fixed

time step we will consider two cases of non-uniform time steps. In the first case we

will draw a set of τn’s from a uniform distribution such that the expected value of

τn − τn−1 is δt. In the second case we deterministically chose the τn such that the

difference between subsequent τ ’s is an increasing function. Again the time steps

are chosen so that the average value is δt.

We define the error in the approximation xδt(t), with respect to the exact solution

x(t) as,

E(t) = |x(t)− xδt(t)|, (11.53)

Figure shows the results of these discretisations on the time interval [0, 3], where

we have taken, α = 0.5, c = 1, x0 = 1, and δt = 0.25. The residuals are calculated

by taking the difference between the discretisation value and the exact value, i.e.

x(τn)−Eα(−cταn ). For a fixed time step the Grünwald-Letnikov discretisations and

piecewise constant integrablization are similar in their accuracy with the predictor

corrector method providing a much better solution at the same δt. As we would

expect taking a set of τn’s that sample the dynamics more closely at earlier times,

when the solution has a larger gradient, gives a better approximation for small times.

The random sampling time step shows that the discretisation scheme is robust to

the choice of time step.
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Figure 11.2: The Grünwald-Letnikov discretisation (Orange Circles) and the piece-
wise constant integrablization on the time interval [0, 3] (Blue Squares, fixed time
step, Yellow Diamonds, random time steps, and Purple Triangles, non-uniform
spaced time steps) of Eq. (11.49) with α = 0.5, c = 1, x0 = 1, and δt = 0.25.
The left panel shows the solutions, with the exact solution given as a solid black
line, and the right panel shows the difference between the exact solution and the
discritisation.
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Figure 11.3: Left panel: The convergence of the numerical schemes for the linear frac-
tional ODE. The error in the Grünwald-Letnikov discretisation (Blue Circles), the
piecewise constant integrablization (Orange Squares), and the predictor-corrector
method (Green Diamonds) are plotted against the time step δt. The orange and
blue dashed lines have a slope of 1 whilst the green dashed line has a slope of 1.64.
Right Panel: The time evolution of the error in the piecewise constant integrabliza-
tion for the same δt values as the left panel. The arrow indicates the direction of
decreasing δt

11.9.3 A Fractional Duffing Oscillator

We consider an undamped fractional order Duffing oscillator governed by the equa-

tion,

CD
α
0,tx(t) = ax(t)3 + bx(t) + c cos(ωt), (11.54)
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with 1 < α < 2. As the degree of the fractional derivative is greater then one,

we decompose the equation into a set of lower order differential equations. Letting

β = α− 1, and y(t) = dx(t)
dt

, we have

dx(t)

dt
= y(t), (11.55)

CD
β
0,ty(t) = ax(t)3 + bx(t) + c cos(ωt). (11.56)

This set of differential equations now involves a fractional differential equation whose

order is between zero and one, and hence amenable to our integrablization. Using Eq.

(11.45) to discretize the fractional equation, and the standard Euler discretisation

for the integer order equation, for a fixed δt we find,

x(nδt) =x((n− 1)δt) + δty((n− 1)δt) (11.57)

y(nδt) =x′0 +
(nδt)β

Γ(1 + β)
(ax(nδt)3 + bx(nδt) + c cos(ωnδt)) (11.58)

+
n−1∑
m=1

((n−m)δt)β

Γ(1 + β)
(ax(mδt)3 + bx(mδt) + c cos(ωmδt))

−
n−1∑
m=1

((n−m)δt)β

Γ(1 + β)
(ax((m− 1)δt)3 + bx((m− 1)δt) + c cos(ω(m− 1)δt)),

with x(0) = x0. We can also discretize this system using a Grünwald-Letnikov

derivative and the standard Euler discretisation. This gives,

x(nδt) =x((n− 1)δt) + δty((n− 1)δt) (11.59)

y(nδt) =(δt)β(x′0 + ax((n− 1)δt)3 + bx((n− 1)δt) + c cos(ω(n− 1)δt)) (11.60)

−
n−1∑
m=1

(−1)m

 β

m

 (y((n−m)δt)− x′0) ,

with x(0) = x0.

Again we will also consider an approximation found via a predictor corrector

method [41].
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The numerical evaluation of these methods is presented in Figure 11.4, for

α = 1.8, a = −1
2
, b = 1, c = 2, and ω = 1. We see that both the Grünwald

discretisation and the integrablization are similar in accuracy, whilst the predictor-

corrector method results in a much more accurate approximation. As we do not

have an exact solution to compare against, the accuracy of the predictor-corrector

method can be used to give a good approximation for a ground truth solution. With

a small enough time step the approximation from the predictor-corrector has a suf-

ficiently small error so as to be negligible when compared with the errors of all the

methods at larger time steps. For this ground truth solution we will take a time step

of δt = 2.5× 10−5. We define the relative error in the approximation xδt(t) then as,

E(t) = |xGT (t)− xδt(t)|, (11.61)

where xGT is the ground truth approximation.

The approach taken in this example of breaking a frODE whose order is greater

than one into a system of equations can be applied more generally [89]. If an frODE

has an order between k and k + 1 then it can be broken down into a system of k

DEs with order one, and one frODE of order between zero and one.

11.10 Summary

We have demonstrated that the first order discretisations of frODEs based on piece-

wise constant approximations in a series of papers [49, 5, 69, 135, 47, 48, 51, 50]

do not converge to the corresponding frODE in the continuous time limit. The

difference equations, being of first order, cannot capture the dynamics of the origi-

nal frODE. We have presented a correct derivation of an increasing order difference

equation based on a piecewise constant approximation for the vector field of the

frODE. This discretisation method is amenable to non-uniform time steps and can

easily be implemented on nonlinear frODEs, including non-autonomous frODEs.
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Figure 11.4: Left Panel: The error in the discretisation of the fractional Duffing os-
cillator, Eq. (11.54), as a function of δt. The orange squares are the integrablization,
from Eqs. (11.57) and (11.58), the blue circles are the Grünwald-Letnikov discretisa-
tion, given by Eqs. (11.59) and (11.60), and the green diamonds are from a predictor
corrector method. The dashed lines show that the error is scaling with δt for the
integrablization and Grünwald-Letnikov discretisation, and δt2 for the predictor cor-
rector method. Right Panel: The error as a function of time for the integrablization
for the same δt values as the left panel. The arrow indicates decreasing δt.

Whilst the method presented here is less accurate then current state of the art

techniques, such as predictor-corrector type methods [41], it should be possible to

adapt this scheme to obtain high order accuracy. Simply considering a piecewise

polynomial interpolation rather then piecewise constant will give an improvement

without overly complicating the Laplace transform techniques employed. Further-

more, it should be possible to adapt this to a predictor-corrector scheme.
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Chapter 12

Piecewise Fractional PDE Method

12.1 Introduction

The work in this Chapter is based on [17] and introduces a novel method for the so-

lution of nonlinear time-fractional partial differential equations via a semi-analytical

integrabilisation method. This extends the integrabilisation method for fractional

ODEs that the authors introduced in [16]. The integrabilised representation of the

nonlinear fractional PDE is achieved through the construction of a one parameter

family of time-integrable fractional PDEs that is consistent with the original frac-

tional PDE in the limit of this parameter. Each member of this family of fractional

PDEs is amenable to solution via Laplace transform techniques. The solution of

these fractional PDEs and the subsequent discretisation of the solution forms a ba-

sis for a numerical method that may be used to approximate the solution of the

original fractional PDE.

This approach to the construction of a numerical method for a fractional PDE

differs from traditional approaches in that we construct an approximation for the

entire equation rather then any single operator. In fact at no stage do we discretise

the fractional derivative in constructing our method. We show that our method is

somewhat similar to an Adams method, in that it can be seen to be equivalent to a

quadrature of a fractional integral.

In the following we will consider fractional PDEs involving Caputo derivatives,

however the method can readily be extended to other fractional derivatives. We de-
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velop the Piecewise Constant Integrabilisation in Section 12.2 and we have provided

a general convergence result. As a simple application we consider the fractional

heat equation in Section 12.3. Exact solutions for the fractional heat equation are

found considering polynomial initial conditions on an unbounded domain. In this

application we show that the integrabilisation is exact for cubic in space initial con-

ditions, but is only an approximation for higher polynomial order initial conditions.

In Section 12.4 we turn our attention the fractional diffusion-wave equation using

the time integrabilisation with a spectral solution of the spatial derivatives. We also

provide a stability result for the spectral integrabilisation in this application. In

Section 12.5 we show how the integrabilisation behaves for the integer order time

derivative in the non-linear Burgers’ equation. We conclude with summary remarks

in Section 12.6.

12.2 Piecewise Constant Integrabilisation

Here we consider an initial value fractional PDE,

CDα0,tw(x, t) = ρ (x, t, w(x, t)) , (12.1)

for α > 0, where ρ(x, t, w(x, t)) is a function of x, t and a spatial operator on w(x, t).

In order to create piecewise constant integrabilisation of this fractional PDE, we

extend the previously considered piecewise constant method for fractional ODEs

[15]. To begin we replace the right hand side of the fractional PDE, Eq. (12.1), with

a piecewise constant function in t. We choose a δt such that,

CDα0,tw(x, t) = ρ

(
x,

(
δt

⌊
t

δt

⌋)
, w

(
x, δt

⌊
t

δt

⌋))
. (12.2)

As we take the limit of δt→ 0 we recover the original equation, since,

lim
δt→0

ρ

(
x,

(
δt

⌊
t

δt

⌋)
, w

(
x, δt

⌊
t

δt

⌋))
= ρ (x, t, w(x, t)) . (12.3)
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The right hand side of this equation can be rewritten using a unit step function,

defined by,

u(t) =

 0 t < 0,

1 t ≥ 0.
(12.4)

Then the right hand side becomes,

CDα0,tw(x, t) =
∞∑
m=0

ρ (x, (mδt), w(x,mδt)) (u(t−mδt)− u(t− (m+ 1)δt)). (12.5)

By considering a change of limits this can be rewritten as a sum of unit step func-

tions,

CDα0,tw(x, t) = ρ (x, 0, w(x, 0))

+
∞∑
m=1

(ρ (x, (mδt), w(x,mδt))− ρ (x, (m− 1)δt, w(x, (m− 1)δt)))u(t−mδt).

(12.6)

Equation (12.6) can be solved by using a Laplace transform with respect to time.

Using the Laplace transform definition from Eq. (1.11) we arrive at,

sαL{w(x, t)} −
n−1∑
k=0

sα−k−1w(0,k)(x, 0) = s−1ρ (x, 0, w(x, 0))

+ s−1

∞∑
m=1

(ρ (x, (mδt), w(x,mδt))− ρ (x, (m− 1)δt, w(x, (m− 1)δt))) e−smδt.

(12.7)

Here, we have defined w(i,j)(x0, t0) to be the mixed ith derivative with respect to x

and the jth derivative with repect to t of w(x, t) evaluated at (x0, t0), i.e.,

w(i,j)(x0, t0) =
∂i+jw(x, t)

∂xi∂tj

∣∣∣∣
x=x0,t=t0

. (12.8)
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Rearranging and inverting the Laplace transform gives,

w(x, t) =
n−1∑
k=0

w(0,k)(x, 0)
tk

k!
+ ρ (x, 0, w(x, 0))

tα

Γ(α+ 1)

+
∞∑
m=1

(ρ (x, (mδt), w(x,mδt))− ρ (x, (m− 1)δt, w(x, (m− 1)δt)))
(t−mδt)α
Γ(α+ 1)

u(t−mδt).

(12.9)

This is the exact solution of Eq. (12.2). As such the solution is defined for all time

t.

To obtain a numerical method we must discretise time. Considering the time

points t = lδt the solution becomes,

w(x, lδt) =
n−1∑
k=0

w(0,k)(x, 0)
(lδt)k

k!
+ ρ (x, 0, w(x, 0))

(lδt)α

Γ(α + 1)

+
l−1∑
m=1

(ρ (x, (mδt), w(x,mδt))− ρ (x, (m− 1)δt, w(x, (m− 1)δt)))
((l −m)δt)α

Γ(α + 1)
.

(12.10)

Notice that no information was lost in going from Eq. (12.9) to Eq. (12.10). Know-

ing the solution at the discrete time points, t = lδt, is sufficient to construct the

solution at any other time.

Equation (12.10) forms the basis of our numerical method, although, depending

on the form of the function ρ(x, t, w(x, t)), further spatial discretisation may be

required. In most cases standard finite difference operators may be used to deal

with integer order spatial derivatives. It may also be possible to avoid a spatial

discretisation by finding a spectral solution of the equation. We will look at specific

examples of these different approaches in the examples, but first we obtain a general

convergence result.

12.2.1 Convergence

We check that our discretisation in Eq. (12.10) limits to the solution of Eq. (12.1)

in the limit as δt → 0, by considering the integral of both equations. To begin we
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integrate Eq. (12.1) with respect to t, yielding,

w(x, t)−
n−1∑
k=0

w(0,k)(x, 0)
tk

k!
=

∫ t

0

(t− t′)α−1

Γ(α)
ρ (x, t′, w(x, t′)) dt′. (12.11)

Integrating by parts leads to,

w(x, t) =
n−1∑
k=0

w(0,k)(x, 0)
tk

k!

+
tαρ (x, 0, w(x, 0))

Γ(α + 1)
+

∫ t

0

(t− t′)α
Γ(α + 1)

d

dt′
ρ (x, t′, w(x, t′)) dt′.

(12.12)

Turning to Eq. (12.10), we can express it as,

w(x, lδt) =

n−1∑
k=0

w(0,k)(x, 0)
(lδt)k

k!
+ ρ (x, 0, w(x, 0))

(lδt)α

Γ(α+ 1)

+

l−1∑
m=1

δt((l −m)δt)α

Γ(α+ 1)

(ρ (x, (mδt), w(x,mδt))− ρ (x, (m− 1)δt, w(x, (m− 1)δt)))

δt
.

(12.13)

Taking the limit δt → 0 such that t = lδt and t′ = mδt then one recovers Eq.

(12.12). This shows that the discretisation given in Eq. (12.10) converges to the

solution of Eq. (12.1) in the limit δt → 0. This also shows that the discretisation

could have been derived from a quadrature of Eq. (12.12).

12.3 Fractional Heat Equation

We consider the classic heat equation,

∂

∂t
w(x, t) =

∂2

∂x2
w(x, t), (12.14)

with the first order derivative replaced by a fractional time derivative,

CDα0,tw(x, t) =
∂2

∂x2
w(x, t), (12.15)
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here we have restricted ourselves to 0 < α ≤ 1. The integrablization present above

approximates Eq. (12.15) as,

w(x, lδt) = w(x, 0) + w(2,0)(x, 0)
(lδt)α

Γ(α + 1)

+
l−1∑
m=1

(
w(2,0)(x,mδt)− w(2,0)(x, (m− 1)δt)

) ((l −m)δt)α

Γ(α + 1)
. (12.16)

By considering an initial condition that is polynomial in space on an unbounded

domain we can construct both exact solutions to the fractional heat equation, Eq.

(12.15), and the integrablization, Eq. (12.16).

12.3.1 Integrablization of the Fractional Heat Equation

If we assume an initial condition that is a polynomial in x of degree p without

boundaries, then we may express solutions of Eq. (12.16) without any spatial dis-

cretisation. As the RHS of the equation involves only the function, and second

derivatives of the function, from earlier times, then the polynomial initial condition

ensures that the solution at all later times may be written as a polynomial of degree

p with respect to x so that,

w(x, lδt) =

p∑
i=0

ai(lδt)x
i. (12.17)

Substituting this into Eq. (12.16) then gives,

p∑
i=0

ai(lδt)x
i =

p∑
i=0

ai(0)xi +

p−2∑
i=0

(i+ 1)(i+ 2)ai+2(0)xi
(lδt)α

Γ(α + 1)

+
l−1∑
m=1

(
p−2∑
i=0

(i+ 1)(i+ 2) (ai+2(mδt)− ai+2((m− 1)δt))xi

)
((l −m)δt)α

Γ(α + 1)
. (12.18)
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Matching coefficients leads to equations for the time evolution of each of the poly-

nomial coefficients. The highest two degree coefficients are unchanging in time,

ap(lδt) = ap(0) (12.19)

ap−1(lδt) = ap−1(0) (12.20)

All other coefficients are evolved by the relation,

ai(lδt) = ai(0) + (i+ 1)(i+ 2)ai+2(0)
(lδt)α

Γ(α + 1)

+
l−1∑
m=1

((i+ 1)(i+ 2) (ai+2(mδt)− ai+2((m− 1)δt)))
((l −m)δt)α

Γ(α + 1)
. (12.21)

As an example, we consider an initial condition that is quadratic in x, i.e.

w(x, 0) = a0(0) + a1(0)x + a2(0)x2. For such an initial condition Eq. (12.16 )

has the solution,

w(x, lδt) = a0(0) + 2a2(0)
(lδt)α

Γ(α + 1)
+ a1(0)x+ a2(0)x2. (12.22)

12.3.2 Exact Solution of the Fractional Heat Equation

The procedure used in Section 12.3.1 can be followed in general to obtain exact

solutions to Eq. (12.15) for any initial condition that is a polynomial in x. Again,

in general, given a polynomial initial condition of degree p then the solution at all

times can be written as a polynomial of degree p, i.e.

w(x, t) =

p∑
i=0

ai(t)x
i. (12.23)

The integral form of the solution to the fractional heat equation can be found from

Eq. (12.12),

w(x, t) = w(x, 0) +
tαw(2,0)(x, 0)

Γ(α + 1)
+

∫ t

0

(t− t′)α
Γ(α + 1)

w(2,1)(x, t′)dt′. (12.24)
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Substituting the polynomial representation of the solution into this equation and

then matching coefficients we find that the two highest order coefficients are constant

in time, i.e.

ap(t) = ap(0) (12.25)

ap−1(t) = ap−1(0). (12.26)

We also see that the remaining coefficients are given by the following equation,

ai(t) = ai(0)+
(i+ 1)(i+ 2)ai+2(0)tα

Γ(α + 1)
+

∫ t

0

(t− t′)α
Γ(α + 1)

(i+1)(i+2)a
(1)
i+2(t′)dt′. (12.27)

As the coefficients ap(t) and ap−1(t) are constant in time it is possible to express the

coefficients as polynomials in tα. Explicitly,

ai(t) =

b p−i
2
c∑

j=0

Γ(1 + i+ 2j)ai+2j(0)tjα

Γ(1 + i)Γ(1 + jα)
. (12.28)

From this we can write down the exact solution of the fractional heat equation via

the sum in Eq. (12.23),

w(x, t) =

p∑
i=0

b p−i2
c∑

j=0

Γ(1 + i+ 2j)ai+2j(0)tjα

Γ(1 + i)Γ(1 + jα)

xi. (12.29)

This solution can be checked explicitly by substituting into the fractional heat equa-

tion, Eq. (12.15).

12.3.3 Comparison Between the Exact Solution and the Integrablization of the

Fractional Heat Equation

Returning to the case of a quadratic initial condition it is trivial to see that the

solution of the integrablization, Eq. (12.22), matches the exact solution, Eq. (12.29),

for all t = lδt. For initial conditions that are polynomials in x of degree greater then

three the integrablization solution will not exactly match the solution given in Eq.
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(12.29). The evolution of the highest four polynomial coefficients, i.e. ap(t), ap−1(t),

ap−2(t), and ap−3(t), will always be exact regardless of the order p.

To examine this difference we will consider a numerical example. We take an

initial condition of the polynomial formed from a finite truncation of the Taylor

series expansion of exp(x− x2) about 0, for example for p = 5 this would be

w(x, 0) = 1 + x− x2

2
− 5x3

6
+
x4

24
+

41x5

120
. (12.30)

The exact and integrablization polynomial coefficients were solved under a range of

δt values with α = 0.8. The solutions were compared over the interval x ∈ [−1, 1] by

integrating the absolute value of the difference between the two solutions to produce

an absolute L1 error, E(δt, t). The relative error, R(δt, t), is defined as the absolute

error divided by the integral of the exact solution over x ∈ [−1, 1]. The results are

presented in Figure 12.1. From this figure we see that the error grows unbounded

in time, this is to be expected as the exact solution also grows unbounded in time.

For the case p = 5 we also see a convergence of O(δt).

12.4 Fractional Diffusion-Wave Equation

This example considers the linear diffusion-wave equation, which in the integer order

case is given by,

∂2

∂t2
w(x, t) =

∂2

∂x2
w(x, t). (12.31)

This equation is almost identical to the heat equation, differing only by the order of

the time derivative. We will use a formulation for which Agrawal has provided exact

solutions on a bounded domain [6]. The time fractional version of this equation is

given by

CDα0,tw(x, t) =
∂2

∂x2
w(x, t), (12.32)
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Figure 12.1: The error in the integrablization of the fractional heat equation given
initial conditions given in by a Taylor series of exp(x − x2) about x = 0 of order
p. Top left: The absolute error as a function of δt for p = 6 evaluated at t = 2.
The dashed line is a linear best fit in δt. Top right: The evolution of the absolute
error as a function of time. The arrow indicates decreasing δt. Bottom left: The
time evolution of the absolute error for p = 4, 5, 6, 7, 8, 9, 10, at fixed δt = 1

1000
. The

arrow indicates decreasing p. Bottom right: The time evolution of the relative error
for p = 4, 5, 6, 7, 8, 9, 10, at fixed δt = 1

1000
. The arrow indicates decreasing p.

with 1 < α ≤ 2, subject to the initial conditions

w(x, 0) =


x 0 ≤ x ≤ 1,

2− x 1 ≤ x ≤ 2,

(12.33)

and

w(0,1)(x, 0) = 0. (12.34)

We now impose Dirichlet boundary conditions

w(0, t) = w(2, t) = 0. (12.35)
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Applying the present method yields

w(x, lδt) = w(x, 0) + w(0,1)(x, 0)(lδt) + w(2,0)(x, 0)
(lδt)α

Γ(α + 1)

+
l−1∑
m=1

(
w(2,0)(x,mδt)− w(2,0)(x, (m− 1)δt)

) ((l −m)δt)α

Γ(α + 1)
. (12.36)

12.4.1 Spectral Solution of the Integrablization

As an alternative to the standard finite difference approach we can form a spectral

method by considering the evolution of single Fourier components. As we have

imposed zero value Dirichlet boundary conditions on Eq. (12.32) we will assume

that its solution can be expressed as a sine decomposition on the interval x ∈ [0, 2],

this gives,

w (x, t) =
∞∑
n=0

σn(t) sin
(π

2
nx
)
. (12.37)

This representation makes the calculation of the second derivative in x trivial,

w(2,0) (x, t) =
∞∑
n=0

−σn(t)
(π

2
n
)2

sin
(π

2
nx
)
. (12.38)

Due to the linear nature of Eq. (12.32) we only need to consider the evolution of

a single wave number n. Simplifying Eq. (12.36) with the above assumptions then

gives,

σn(lδt) = σn(0) + σ(1)
n (0)(lδt)−

(π
2
n
)2

σn(0)
(lδt)α

Γ(α + 1)
+

l−1∑
m=1

(σn((m− 1)δt)− σn(mδt))
(π

2
n
)2 ((l −m)δt)α

Γ(α + 1)
.

(12.39)

Any initial condition, f(x), that obeys zero valued Dirichlet boundary conditions

may also be represented by a Fourier sine decomposition,

f(x) =
∞∑
n=0

σn(0) sin
(π

2
nx
)
, (12.40)
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Figure 12.2: The spectral representation of the initial condition for the fractional
wave equation. Left: The spectral representation of the initial condition function,
f(x), for maximum wavenumbers up to n = 1, 5, and 10. The dashed line is the
exact function. Right: The difference between the exact initial condition function
and its spectral representation with maximum wavenumbers up to n = 1, 5, and 10.

where

σn(0) =

∫ 2

0

f(x) sin(
π

2
nx) dx. (12.41)

Any initial conditions imposed on higher order derivatives may be similarly. In our

case, Eq. (12.34) gives the trivial condition σ
(1)
n (0) = 0 .

Thus the fractional wave equation, posed in Eq. (12.32), can be approximated

by evolving a finite set of wave numbers according to Eq. (12.39), subject to the

initial condition given by Eq. (12.41).

The accuracy of the solution will be limited to the accuracy of the representation

of the initial condition. Taking a finite number of wave numbers to represent the

initial condition given in Eq. (12.33) will always result in a loss of information. The

accuracy of the finite Fourier decomposition is captured in Fig. (12.2), illustrating

the qualitative shape of the initial condition and the absolute difference.

12.4.1.1 Stability

For a given δt we observe that the evolution of the solution for a finite number of

wavenumbers is stable. In order to capture higher spatial frequencies a smaller time

step is required. Due to the sum over the past history the standard Fourier stability

analysis is complicated and results in inequalities that are not readily reducible

to easy to interpret conditions. Instead we will consider a different limit found
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by considering the evolution of the solution. We know that the analytic solution

requires that |σn(t)| < |σn(τ)| for all t > τ . Moreover we also know that evolution

should not change the sign of σn(t), i.e. if σn(τ) > 0 then σn(t) > 0 for all t > τ .

Thus if σn(0) > 0 the method will be unstable if σn(lδt) < 0 for any l > 0. This

gives us an instability criteria from Eq. (12.39),

0 > σn(0)−
(πn

2

)2

σn(0)
(lδt)α

Γ(α + 1)
+

l−1∑
m=1

(σn((m− 1)δt)− σn(mδt))
(πn

2

)2 ((l −m)δt)α

Γ(α + 1)
.

(12.42)

If we assume that σn(kδt) > 0 for all 0 ≤ k < l then (σn((m− 1)δt)− σn(mδt)) > 0

for all m > 1. This reduces our instability criteria to the more manageable,

n2π2(lδt)α

4Γ(α + 1)
> 1. (12.43)

If this is not true for any l if it is not true for l = 1. This implies that, given a δt,

our method is unstable for the evolution of the solution of wavenumbers where,

n >

(
4Γ(α + 1)

π2(δt)α

) 1
2

. (12.44)

12.4.2 Comparison Between the Exact Solution and the Spectral Integrablization

We numerically solve the intergablisation to compare with the exact solution. Fol-

lowing Agrawal [6], the exact solution to Eq. (12.32) given the initial conditions by

Eqs. (12.33) and (12.34), subject to the boundary conditions Eq. (12.35), is given

by the infinite series,

we(x, t) =
∞∑
n=1

Eα(−π
2n2

4
tα) sin(

nπ

2
x)

(
8 sin(nπ

2
)− 4 sin(nπ)

n2π2

)
. (12.45)

For the purposes of computation we truncate the series when the terms become

less then 10−9. The spectral integrablization is computed by considering a finite
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Figure 12.3: The error in the spectral solution of the integrablization of the fractional
wave equation given a piecewise linear initial condition. Top left: The absolute error
as a function of δt for a spectral solution at time t = 1 taking wavenumbers up to
n = 5. The dashed line is a linear best fit in δt. Top right: The evolution of the
absolute error as a function of time of a spectral solution taking wavenumbers up to
n = 5. The arrow indicates decreasing δt. Bottom left: The time evolution of the
absolute error for the spectral solution taking wavenumbers up to n = 1, 3, 5, 7, at
fixed δt = 1

1000
. The arrow indicates decreasing maximum wavenumber n. Bottom

right: The difference between the exact solution and the spectral integrablisation
across the domain with n = 5 at t = 1.

truncation of the sum in Eq. (12.37). Each of the required σn(lδt) functions were

computed via Eq. (12.39). We considered the case of α = 3
2

and the results are

presented in Fig. (12.3). Here we can see a linear convergence rate of the solution

as δt→ 0.

12.5 Burgers’ Equations

We now consider the integer order nonlinear Burgers’ equation due to the availability

of an exact solution to which we may compare our numerical scheme. The equation

is given by,

∂w(x, t)

∂t
+ w(x, t)

∂

∂x
w(x, t) = ν

∂2

∂x2
w(x, t). (12.46)

228



In the infinite domain case the Burgers’ equation is satisfied by the following equa-

tion,

w(x, t) = 1 + 2ν tanh (c+ t− x). (12.47)

As we wish to consider a finite domain we implement time dependent Dirichlet

boundary conditions on the domain x ∈ [0, L]. Taking the boundary conditions of

the form,

w(0, t) = 1 + 2ν tanh (c+ t), (12.48)

w(L, t) = 1 + 2ν tanh (c+ t− L), (12.49)

ensures that the infinite domain exact solution, Eq. (12.47), is also a solution for

our finite domain problem. Here we set L = 10, c = 0 and ν = 1/2. Using standard

finite difference approximations to the spatial derivatives, the integrablization, Eq.

(12.10), applied to Brugers’ equation gives,

w(iδx, lδt) = w(iδx, 0) + ρ (iδx, 0, w(iδx, 0)) (lδt)

+
l−1∑
m=1

(ρ (iδx, (mδt), w(x,mδt))− ρ (iδx, (m− 1)δt, w(iδx, (m− 1)δt))) ((l −m)δt),

(12.50)

for 0 < i < L/δx, where

ρ(iδx, lδt, w(iδx, lδt)) =

(
ν

(
w((i+ 1)δx, lδt)− 2w(iδx, lδt) + w((i− 1)δx, lδt)

δx2

)
−w(iδx, lδt)

w((i+ 1)δx, lδt)− w((i− 1)δx, lδt)

2δx

)
. (12.51)

From Eq. (12.50) we can easily see that,

w(iδx, lδt)− w(iδx, (l − 1)δt) = δtρ (iδx, (l − 1)δt, w(iδx, (l − 1)δt)) . (12.52)
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Figure 12.4: The error in the solution of the integrablization of Burgers’ equation.
Left: The absolute error as a function of δt for the solution at time t = 0.5.Right:
The evolution of the L1 error as a function of time with δt = 0.01 and δx = 0.1.

This shows that when α = 1 the sum over the history of the function is not required

and we recover a simple Euler method as a time discretization. For completeness

and in comparison to the non-integer order case we will numerically evaluate this

scheme. The values of δx are chosen so that M = L/δx is an integer. The boundary

conditions are implemented numerically by fixing the value of the numerical function

at the boundaries of the domain. This gives,

w(0, lδt) = 1 + 2ν tanh (c+ lδt), (12.53)

w(Mδx, lδt) = 1 + 2ν tanh (c+ lδt−Mδx). (12.54)

The initial condition is also taken from Eq. (12.47),

w(iδx, 0) = 1 + 2ν tanh (c− iδx). (12.55)

Figure 12.4 illustrates, numerically, the increase in accuracy of the numerical scheme

as δt and δx are decreased. This numerically validates the convergence discussion

given in Section 12.2.1. Figure 12.4 also shows the time evolution of the L1 error,

E(δt, t). The initial increase with time is due to the wave-front passing through the

domain.
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12.6 Summary

We have introduced a new method for enabling the time integration of nonlinear

time-fractional partial differential equations. The method does not provide a dis-

cretisation of the fractional derivative but instead it uses a integrablization of the

fractional PDE.

The method presented in this Chapter is an extension to the work on fractional

ODEs in [15] to fractional PDEs. The introduction of a spatial domain presents a

host of approaches to the solution of the spatially dependent fractional PDE as has

been discussed above. The stability of the proposed scheme is dependent on the

relationship between δt and δx and we note that with a rigorous stability criterion

one could adaptively choose δt, as is done in [15], to reduce the computational time

of the method.

Several numerical examples are given as a means of illustrating the efficacy and

accuracy of the proposed method for linear and nonlinear PDEs and fractional PDEs

on both bounded and unbounded domains. In addition to this a convergence proof

is provided which validates the proposed method.
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Chapter 13

Thesis Summary and Discussion

Over the past few decades there has been increased interest in developing fractional-

order models, both ODE and PDE. This is due to the history effect that fractional-

order derivatives introduce into the system. However without sufficient care ad

hoc fractional-order models can have non-physical parameters or a violation of flux-

balance. By deriving fractional-order models from an underlying stochastic process,

physical fractional-order models can be derived. This thesis presents the derivation

of both fractional-order ODEs and PDEs which can be used as mathematical models.

This body of work has firmly established the use of CTRWs in the development of

fractional-order models.

In Part I we focused on the derivation of fractional-order ODE models. This

began by deriving stochastically consistent fractional SIR models and a more general

fractional-order compartment model and concluded with discrete formulations of our

continuous models, providing a stable numerical scheme to solve the equations. In

doing so, we presented the conditions under which fractional-order derivatives arise.

This is a novel approach to fractional-order ODEs.

Part II was centred around the derivation of fractional-order PDEs. Whilst

these derivations are significant in their own right, they also raise considerations

around underlying stochastic processes. These considerations include; the non-

unique stochastic framework which can result in the same equations; and the differ-

ent ways in which ‘forces’ can be introduced.
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Part III described a novel numerical approach for solving fractional ODEs and

PDEs based on piecewise approximations and integrabilisations.

The use of the CTRW as a stochastic process from which once could derive

physically consistent fractional-order ODEs and fractional-order PDEs was reliant

on the introduction of power-law tailed waiting time densities such as the Mittag-

Leffler density. The use of exponential waiting time densities results in integer order

derivatives.

The key difference between the exponential and Mittag-Leffler distributions is

that the former is memoryless. For the exponential distribution the ‘waiting time’

until the next jump is not dependent on how much time has already elapsed. In

the case of the Mittag-Leffler distribution the longer that one has waited, the longer

one expects to wait. This memory property, the memory of how much time one has

already waited, becomes manifest through a fractional derivative in the governing

evolution equation. The fractional derivative, like an integral, requires the knowledge

of the full history of the solution, but unlike an integral it expresses the time rate

of change of this full history, and it applies different weighting to different parts of

the history.
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[68] F. Höfling and T. Franosch. Anomalous transport in the crowded world of

biological cells. Reports on Progress in Physics, 76(4):046602, 2013.

[69] S. M. Ismail, L. A. Said, A. G. Radwan, A. H. Madian, M. F. Abu-ElYazeed,

and A. M. Soliman. Generalized fractional logistic map suitable for data

encryption. In International Conference on Science and Technology 2015

(TICST), pages 336–341. IEEE, 2015.

[70] J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems.

Siam Review, 35(1):43–79, 1993.

[71] Eliahu Ibrahim Jury. Theory and Application of the Z-transform Method.

Krieger Pub. Co., 1973.

[72] M. Kang and S. W. Lagakos. Statistical methods for panel data from a semi-

Markov process, with application to HPV. Biostatistics, 8(2):252–264, 2006.

[73] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical

theory of epidemics. Proc. Roy. Soc. London Ser. A, 115(772):700–721, 1927.

[74] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical

theory of epidemics. ii. the problem of endemicity. Proc. Roy. Soc. London

Ser. A, 138(834):55–83, 1932.

[75] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical

theory of epidemics. iii. further studies of the problem of endemicity. Proc.

Roy. Soc. London Ser. A, 141(843):94–122, 1933.

241



[76] M. M. Khader. On the numerical solutions for the fractional diffusion equation.

Communications in Nonlinear Science and Numerical Simulation, 16(6):2535–

2542, 2011.

[77] K. Kim and S-M. Yoon. Dynamical behaviour of continuous tick data in

futures exchange market. Fractals, 11:131–136, 2003.

[78] C. R. Kirman, L. L. Aylward, M. Suh, M. A. Harris, C. M. Thompson, L. C.

Haws, D. M. Proctor, S. S. Lin, W. Parker, and S. M. Hays. Physiologically

based pharmacokinetic model for humans orally exposed to chromium. Chem.

Biol. Interact., 204(1):13–27, 2013.

[79] J. Klafter, A. Blumen, and M. F. Shlesinger. Stochastic pathway to anomalous

diffusion. Physical Review A, 35(7):3081, 1987.

[80] J. Klafter and R. Silbey. Derivation of the continuous-time random-walk equa-

tion. Phys. Rev. Lett., 44:55–58, 1980.

[81] Shigeru Kondo and Rihito Asai. A reaction-diffusion wave on the skin of the

marine angelfish Pomacanthus. Nature, 376(6543):765–768, 1995.

[82] T. A. M. Langlands and B. I. Henry. Fractional chemotaxis diffusion equations.

Phys. Rev. E, 81(5):051102, 2010.

[83] T. A. M. Langlands, B. I. Henry, and S. L. Wearne. Anomalous subdiffusion

with multispecies linear reaction dynamics. Phys. Rev. E, 77(2):021111, 2008.

[84] T. A. M. Langlands, B. I. Henry, and S. L. Wearne. Fractional cable equation

models for anomalous electrodiffusion in nerve cells: infinite domain solutions.

J. Math. Biol., 59(6):761–808, 2009.

[85] F. Le Vot, E. Abad, and S. B. Yuste. Continuous-time random-walk model

for anomalous diffusion in expanding media. Physical Review E, 96(3):032117,

2017.

[86] G. W. Leibniz. Letter from Hanover, Germany to G. A. L’Hospital, September

30, 1695. In Leibnizen Mathematische Schriften, volume 2, pages 301–302.

Olms Verlag, Hildesheim, Germany, 1962. First published in 1849.

242



[87] M. Levy and B. Berkowitz. Measurement and analysis of non-Fickian dis-

persion in heterogeneous porous media. J Contam. Hydrol., 64(3):203 – 226,

2003.
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