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ABSTRACT 

The aim of this research is to develop methods for modal and structural identification 

of linear vibrating structures in the time domain. 

Two methods for the modal identification of a vibrating structure are developed on 

the basis of the ARMAX model (auto-regressive and moving average model with the 

control excitation) of a linear damped dynamic structural system. 

The first method, called direct method in this thesis, uses the time domain response 

data in the case of free vibration test, or the time domain excitation and response data 

in the case of forced vibration test, to identify the coefficient matrices of the 

ARMAX model. The modal parameters, such as mode shapes, natural frequencies 

and damping ratios, are then computed from the identified coefficient matrices. 

The second method, called indirect method in this thesis, is also developed from the 

ARMAX model of a vibrating structure. This method identifies the mode shapes 

separately from the identification of natural frequencies and damping ratios. The 

natural frequencies and damping ratios are identified using a univariate ARMAX 

model of the vibrating structure. Once the transfer function of the univariate 

ARMAX model is estimated from test data, the zeros of the transfer function are 

used to determine the natural frequencies and damping ratios of the vibrating 

structure. The impulse response function matrices of the vibrating structure are 

identified from a multiple variate ARMAX model. These impulse function matrices 

are used with the identified frequencies and damping ratios to compute the mode 

shapes. 
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Some practical methods are also developed for hammer impact vibration tests, single 

shaker vibration tests and multiple shaker vibration tests based on Z-transformation. 

In contrast with the conventional frequency domain methods, which usually require 

the performance of Fourier or Laplace transformation, these methods use the time 

domain test data directly to identify the modal parameters of the vibrating structure 

without really performing Z-transformation. 

These methods can be applied in the free vibration modal tests or the forced 

vibration modal tests. They can be used with either the deterministic excitation 

signal or the random excitation signal. Since the time domain data is directly used, 

the instrumentation is much simpler compared with the frequency domain methods. 

The closely spaced frequencies can be identified by the present methods in this 

thesis. The direct method is a general modal identification method in the time 

domain and can be reduced to most specific time domain modal identification 

methods under specific sets of conditions. 

As an applications of the modal identification, a method is developed to identify the 

structural parameters of a vibrating structure with non-proportional damping using 

the complex modal parameters. The method is the generalization and improvement 

of the Automated Model Improvement (AMI) method. The method can identify the 

structural parameters directly using normal or complex modal parameters while most 

present methods for structural parameter identification use the normal modal 

parameters. Since the modal parameters obtained from a modal test for the vibrating 

structure with nonproportional damping is complex, the method is therefore suitable 

to the use of the modal testing data. 

The procedure followed in this thesis mainly is the theoretical development and 
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verification of the developed methods using computer simulation tests. The 

laboratory test investigation was also carried out. 

In order to further verify the developed methods and investigate their application in 

the laboratory environment, laboratory tests of a steel cantilevered beam and a steel 

high rise building model were conducted. Practical procedures are suggested for the 

application of the developed methods in the laboratory testing. Some important 

aspects for modal identification testing and analysis of test data, such as, excitation 

signals, the measurement of excitations and responses, instrumentation of modal 

testing, the determination of the degrees of freedom contained in the test data, the 

decision of the sampling rate, the identification of observation noise are discussed 

and some useful techniques are suggested for dealing with these important aspects. 
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INTRODUCTION 

"The time has come", the Walrus said "To talk of many 

things: of shoes - and ships - and sealing wax - of 

cabbages and Kings - of why the sea is boiling hot -

and whether pigs have wings" 

-L. Carroll 

§ 1.1 BACKGROUND OF THE RESEARCH 

Some projects studying different facets of the offshore structures have been 

continuing over the last five years in the School of Civil Engineering at The 

University of New South Wales. These projects are 
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1. System identification for offshore structures; 

2. Mechanics of the response of tubular members to collisions; 

3. Nonlinear analysis of offshore platforms; 

4. Lifting and laying of offshore pipelines 

5. Mechanics of spanning in submarine pipelines. 

Brief descriptions of these works can be found in a paper by Irvine (1986) in which a 

portrait of the general aspects concerning the resources available and the 

coordination of research work in the area of offshore engineering in Australia is also 

given. 

The continuous efforts made in these past years in offshore engineering research by a 

group of researchers in the School of Civil Engineering at The University of New 

South Wales have in general achieved most of the prescribed goals. The research 

findings are expected to be eventually applied in practical, user-oriented systems or 

codes of practice in the future. 

Research into the numerous problems inherent in offshore engineering is important 

to the oil and gas industry, especially in Australia. It is estimated the about 80% of 

the total oil and gas reserves in Australia are deposited under the sea bed on the 

continental shelf or margin. A well-established network for coordinated research 

work, conducted by both academic institutions and industry, would therefore form a 

sound basis for providing technical support for future explorations of oil and gas 

deposits, and for the efficient maintenance of existing structures in Australia. 
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The continental margins, located on the slopes between the continental shelf breaks 

and the edges of the continental rises, usually lie between 200m and 3500m in water 

depth, and may include sediments of shallow water origin subsequently depressed 

into deeper water as a result of marginal subsidence. To design a structure, for 

instance a jacket platform, in a water depth of this order to withstand the continuous 

environmentally hazardous conditions is quite a formidable task. To quote an 

example, one of the tallest deep-water platforms to date is the Cognac Platform 

standing 385m tall in the Gulf of Mexico in a water depth of 312m. Designers of 

these types of platforms have to consider a large number of factors in order to cater 

for the potentially hazardous situations jeopardizing both the lives of workers on the 

platform and the structure itself. 

Nevertheless, accidents, due to both human errors and acts of nature, do occur in 

many instances. One of the worst accidents was that of the semi-submersible 

platform "Alexander L. Kielland" in the North sea. In the early evening of March 27, 

1980, one of the five legs of Kielland broke off with "an almighty crack", as one 

worker recalled. The platform began to quiver and rig tilted steeply. The wind caught 

the tilting deck, pushing the rig over much faster than expected. The accident 

resulted in a death toll of 123 out of a total of 212 persons working on the platform. 

The cause of the accident was believed to be due to a three inch crack in a weld, 

covered with paint. The crack was reported to be present well before the rig was even 

launched. The flaw was aggravated by the characteristic growth due to fatigue 

loading during platform operation until the metal fmally broke apart. 

This accident clearly demonstrated the high risk of accident characteristics inherent 

in offshore operations. Amongst the other causes, the change of structural behavior 

in offshore structures may be significant due to the change of structural parameters, 
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which is caused by member damage, marine growth or other reasons. It is important 

that the vibration levels encountered in service or operation be anticipated and 

brought under control so that some measures could be taken to prevent the disasters. 

Therefore, it is necessary to determine the change of the structural parameters from 

time to time in order to provide a thorough and precise knowledge of the dynamic 

characteristics for the anticipation of dynamic behavior and the vibration control. 

Determination of the structural parameters, i.e. the system identification, will meet 

these needs. 

The system identification can be carried out using either direct measurements of 

excitation and response, or more often using modal data from tests. Hence, 

identification of the modal parameters of a vibrating structure is important. 

The primary motivation of the present research is to develop useful methods which 

can be applied to modal and structural identification problems associated with 

offshore structures. The methods can be used directly with time domain data without 

transformation of this data to the frequency domain. Whilst actual offshore structures 

possess some nonlinear behavior, the present work has been limited to the 

assumption of linearity. The present work has concentrated on the analytical tools in 

linear structures with general damping. In this thesis, therefore, the presentation is in 

a way general enough to meet this purpose. Throughout the thesis, full derivations 

are usually given and all applications illustrated by simple examples, though not 

necessarily of offshore structures. 
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§ 1.2 INTRODUCTION TO SYSTEM IDENTIFICATION 

There are two types of problems in structural dynamics: direct problem and inverse 

problem as shown in Fig. 1.1. 

STRUCI'URAL 
PROBLEM 

I 

DIRECT INVERSE 
PROBLEM PROBLEM 

I I 
DESIGN SYSTEM 

STRUCI'URAL PROBLEM INPUT 
IDENTIFICATION 

ANALYSIS 
GIVEN: IDENTIFICATION GIVEN: 

GIVEN: design GIVEN: actual 
structural excitation 

description, 
excitation, structure 

actual 
excitation 

design response 
response 

SOUGHT 
response SOUGHT: 

SOUGHT: SOUGHT: excitation 
response 

structure structural 
parameters 

Fig. 1.1 Classification of Problems in Structural Dynamics 

The structural analysis is the direct problem. With the dynamic analysis, the 

dynamic behavior of novel and complicated structures has to be investigated by 

structural analysis based on a structure envisaged often only by engineering 

drawings. Starting from a physical model, and neglecting all physical effects which 

may not appear relevant to the problem under consideration, a mathematical model 

has to be built up using some mathematical expression. In almost every case it has to 
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be simplified compared to the physical model. The parameter values of the model 

have to be determined within limitations. With this mathematical model, and taking 

into account the loadings, the dynamic structural response can be predicted. 

Structural analysis results therefore in a parametric computational model. Its 

accuracy depends on the influence of the introduced simplifications and assumptions. 

If the structure to be investigated is novel and experiences of comparable structures 

are not available, the errors of the predicted results are largely unknown. The results 

may be useful for investigations but some doubts must exist in proving the 

qualification of the structure. Structural engineers are familiar with this Direct 

Problem, since it is generally adopted practice to calculate and compare these 

responses with acceptable response levels to satisfy safety and comfort requirements. 

This method of analysis is relatively advanced and sophisticated at present. 

However, the usefulness of such analytical solutions is limited by the degree of 

realistic representation of the mathematical models to adequately represent the 

physical structure. 

The inverse problem includes the design problem, the excitation identification 

problem, and the system identification problem. The first two inverse problems will 

not discussed in this dissertation although they are very important components of 

design and analysis. The third problem - system identification - involves the 

determination of the mathematical model and structural parameters, or determination 

of structural parameters on the basis of assumed mathematical description. The 

system identification of a vibrating structure requires using the measured data from 

structural response to known or unknown disturbances in a vibration test. 

An example of the identification of vibrating structures may be illustrated by a 

building as shown in Fig. 1.2. 
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BUILDING 
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MOVEMENT 

Introduction 

ANALYTICAL 
MODEL 

ACCELEROMETERS 

ANALYTICAL 
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t 
COMPARE 

t 

IDENTIFIED 
MODE SHAPES 

Fig. 1.2 Foundational problem in system identification 
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The building could undergo imposed vibration. The imposed excitation and the 

response to the excitation are measured. At the same time a theoretical model could 

be proposed and its response to the imposed vibration is predicted using the 

theoretical model. The measured and predicted responses are then compared. If the 

theoretical model can adequately describe the structure, the predicted response would 

coincide with the measured response. When these comparisons do not agree with 

each other within given tolerance, the parameters or equations of the analytical 

model does not describe the structure adequately and needs to be changed in order to 

improve the comparison. The equations and parameters thus identified could be 

taken as a better description of the system. 

These inverse problems have always been of interest to structural engineers. 

However, in the past, because of limitations of instrumentation costs, measuring 

capabilities and computer capabilities, it has not been possible to satisfactorily solve 

this kind of inverse problem. In the recent years, with the simultaneous decrease in 

instrumentation costs and the increase of response-measuring capabilities and the 

development of computer hardware and software it has become possible to acquire 

and process the necessary test data to obtain necessary information of a vibrating 

system and the identification of parameters of a vibrating system becomes feasible. 

Methods for identification of a vibrating structure may be classified into two groups. 

The frrst group of the methods use the excitation and response data to directly 

identify the structural parameters. The second group of methods use the modal 

parameter obtained from the modal test to indirectly identify the structural 

parameters. The second group of methods are more often used. Therefore, to 

accurately determine modal parameters is essential for the identification of structural 

parameters. In addition to that the results obtained from modal identification may be 
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applied in identification of the mathematical model of a vibrating structure, the 

identified modal model itself can be applied in many circumstances. For example, 

• A theoretical model such as finite element model can be validated by comparison 

of the identified modal parameters with the theoretical modal values. The 

validated theoretical model can then be used for predicting the response of the 

structure to some complex excitation. For example, prediction of the modal 

spectral response to the ground shaking caused by earthquake requires modal 

parameters of a structure. If the theoretical model is validated by modal test, it 

can be further used in the modal spectral and other analysis as necessary. In 

engineering practice, if major modes of vibration of a structure can be validated 

by modal tests, the validity of the theoretical model representing the structure can 

be assured and the model can be further used in other stages of analysis. For this 

application, accurate estimates of natural frequencies of the major modes are 

necessary, but accurate mode shape data are not essential although the correlation 

of the mode shapes from modal test with those from theoretical model is still 

required. Usually, it is impossible to predict the damping of each mode at the 

theoretical modeling stage and hence there is nothing with which to compare 

identified modal damping from the tests. However, this measured damping can 

be incorporated into the theoretical model to predict specific response levels. For 

example, in predicting the response of a structure to the earthquake ground 

shaking using modal spectral method, different response spectra will be used 

according to the damping of the structure. 

• In addition to the use of identified structural model in vibration control, the 

modal model identified from testing can be incorporated with the modal control 

of structural vibration. One of requirements for good control performance is to 

have an accurate modal description of the structure. In particular, the active 
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modal control utilizes the response of the structure in feedback in order to 

modify the eigenvalues and eigenvectors of the structure and this requires quick 

and accurate modal identification. 

• In many instances, complete structures are frequently very complex. Methods 

have thus been developed to permit this kind of structures to be broken down into 

their components, or substructures, with much of the analysis being carried out 

on the components. The whole structure will then be assembled in terms of the 

individual components. One main advantage of the method is that it can combine 

substructures or components from different resources, both from theoretical or 

experimental studies. In particular, when some substructures are very difficult to 

be mathematically modeled, the modal test can provide the necessary 

information for these components. 

• Modifications to a structure may be carried out because of design alterations for 

operational reasons and in this case it will generally be necessary to ensure the 

modification would not create any inappropriate changes in dynamic behavior of 

the structure. In some other cases, it is desirable to change some natural 

frequencies or to add some damping to avoid a resonance without introducing 

new unwanted effects. Sometimes the modification procedures involve relatively 

minor changes to the original one, in order to fme tune a structure's dynamics, 

and this situation can relax the data requirements somewhat. However, there are 

a large number of possible modifications which may meet the requirement of the 

small change. Hence it is necessary to determine which of the modifications 

would be the most effective for the desired change. A sensitivity analysis based 

on the identified modal model of the original structure can be used in this aspect. 
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• The model produced by a modal test can be applied to response prediction and 

force determination. For the response prediction, a set of measurements is 

performed under relatively simple excitation conditions and this measured data is 

analyzed appropriately to derive a model for the structure. The prediction of the 

structure's response to more complicated excitation, based on the model obtained 

from the modal test, can then be made. In case of determination of excitation 

force, the measured responses are used together with a mathematical description 

of the structure in order to deduce the excitation forces. This process can be very 

sensitive to the accuracy of the model used for the structure and so it is often 

necessary for the model itself to be derived from modal test before it can be used 

in determination of the excitation forces. 

The normal procedure for the modal identification consists of three steps: (a) to 

measure response and/or excitation data, (b) to analyze the measured data and then 

(c) to derive a modal model of the structure. Accordingly, in the modal identification 

problem there are three main aspects. First, the fundamental theory of a vibrating 

structure is essential for the the development of the various identification methods 

and experimental techniques. Second, the accurate experimental techniques are very 

important to provide necessary and precise test data for the modal identification. 

Third, the methods for identification of modal parameters, i.e., methods for 

processing the test data, play a significant role to obtain the modal parameters. 

This research is designed to mainly deal with the third aspect. Some methods for 

modal identification, which can be used with time domain data, are developed. The 

relationships between excitations, initial conditions and responses in the time domain 

will be derived. On the basis of these relationships, some methods for the modal 

identification are developed. The proposed methods consist of two groups: the frrst 
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group of methods will be developed using the ARMAX model of a vibrating 

structure which describes the relationship between excitations and responses in the 

time domain. The second group of methods will be developed using a Z

transfonnation which is the transformation of a discrete time signal as a power 

series in z-1 coefficients of which are the amplitudes of the discrete-time signals. 

The application of proposed methods in laboratory experiments for modal 

identification will also be investigated. Further, a method for identification of 

structural parameters of vibrating structures using modal data is developed, which 

can also be considered as an application of modal identification. 

§ 1.3 OBJECTIVES AND SCOPE 

The main objectives of this thesis are detailed in the following. They are listed 

approximately in order in which they are dealt with in this thesis. 

1. to study various models representing the dynamics of a vibrating structure in 

the frequency domain and the time domain. 

2. to investigate relationships between the various models and to establish the 

bases for the development of the proposed methods for modal identification. 

3. to develop the ARMAX model of a vibrating structure and to investigate the 

relationship between the coefficient matrices of the ARMAX model and modal 

parameters of the vibrating structure. 

4. to develop methods for modal identification on the basis of the ARMAX 

model of a vibrating structure. 
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5. to study techniques for detection of the excessive modes caused by observation 

noise. 

6. to investigate methods for the determination of the degrees of freedom of a 

vibrating structure in a test. 

7. to develop methods for the modal identification using Z-transformation. 

8. to present a technique for extraction of mode shapes from Z-transfer function 

of a vibrating structure. 

9. to explore the application of the proposed methods to laboratory testing and to 

discuss the practice of modal experiments. 

10. to investigate methods for identification of structural parameters using modal 

test data. 

Although not all the structures or systems encountered in practice will be linear, this 

thesis is based on the assumption of linearity of structures and this has two main 

implications: 

1. that doubling the magnitude of the excitation force would simply result in a 

doubling of the response, 

2. that if two or more excitation patterns are applied simultaneously then the 

response thus produced will be equal to the sum of the responses caused by 

each excitation individually. 

§ 1.4 LAYOUT OF THESIS 

Since the review of the research topics involves the fundamental theory of vibrating 
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structures, Chapter 2 will discuss the general theory of vibrating structures and this 

will provide an overall view on the various models of a vibrating structure and the 

relationships between these models. The structural model in configuration space and 

in the state space will be introduced. The modal model of vibrating structures in 

several cases will be derived. The relationship of structural model and modal model 

in the state space will be discussed and this will play an important role in the 

identification of structural parameters using modal test data. In this chapter, the 

relationship of the modal model and response model of the vibrating structures will 

also be derived. The relationship will provide the basis for the development of 

methods for the modal identification using the excitation and response data in the 

time domain. 

Chapter 3 will review modal identification methods and more attentions will be paid 

to the time domain methods. A variety of methods for modal identification will be 

discussed, and the basic principles and implementations will be described. The 

advantages and disadvantages of these methods will also be discussed. 

Chapter 4 will be devoted to the development of two methods for modal 

identification using an ARMAX model. The ARMAX model describes the 

relationship between excitations and responses of vibrating structures in terms of the 

discrete time series. The proposed methods will identify the coefficient matrices of 

the ARMAX model, and the modal parameters of vibrating structures will be 

determined through the relationship between the coefficient matrices and the modal 

parameters. 

In chapter 5, the discrete response and excitation signals in the time domain will be 

studied from another point of view. Use will be made of Z-transformation in discrete 
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time domain to replace the Laplace-transformation in continuous time domain. 

Methods for modal identification will be developed on the basis of Z-transformation. 

One necessary and important ingredient of modal identification is the modal testing. 

In real modal testing, the basic measurement system, excitation methods used in a 

test and various aspects related to the modal testing are necessary for the success of 

modal identification. In chapter 6, the application and experimental procedures will 

be discussed with relation to structures tested in the laboratory. 

An important application of modal identification is to verify and correct or adjust the 

analytical model. The procedure of the correction and adjustment of the analytical 

model is called structural identification. Chapter 7 will tackle the structural 

identification problem. A method using modal test data will be developed for the 

identification of structural system with non-proportional damping. 

General conclusions and recommendations for future developments are given in 

Chapter 8. 

Complete computer program listings will not be given in the thesis. An extensive list 

of bibliography is included at the end of this thesis. 
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Chapter 2 

LINEAR DAMPED 

VIBRATING STRUCTURES 

The purpose of the present course is the deepening and 

development of dijjiculties underlying contemporary 

theory. 

-A. A. Blasov 

§ 2.1 GENERAL CONSIDERATION 

Theoretical fundamentals of a vibrating structure are very important in the structure 

system identification. Before tackling the system identification problem, it is 

appropriate in this chapter to briefly study the theoretical fundamentals which will 

provide an overall view on the various models of a vibrating structure and the 

relationships between these models. Foss (1958) derived the basic modal model for 
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vibrating structures using a first-order state variable representation of the structural 

parameter model for classical normal modes analysis. His derivation is well known 

and extensively used, for example, by Meirovitch (1967) and Ewins (1984). 

Development using state variable formulations different from Foss's were given by 

Beliveau (1977, 1979) and Brandon (1984). Richardson (1974) used Laplace 

Transformations of the structural model and analyzed the resulting second-order 

algebraic matrix equation to derive the modal model. Vigneron (1986) developed 

the natural modes and modal model for an elastic structure with linear viscous 

damping, via a formulation that is comparable to that of the classical normal modes 

formulation of the undamped case. In this chapter, attempts will be made to present 

the fundamentals of vibrating structures in a manner which are suitable for study of 

modal identification in this thesis. 

Generally, the vibration of a vibrating structure is described in terms of structural 

parameters, i.e., its mass, stiffness and damping properties. This description is 

mathematically in the form of partial differential equations for continuous vibrating 

structures, or in the form of ordinary differential equations for discrete or discretized 

vibrating structure systems. This description is called the structural model of the 

vibrating structure. 

Once the structural model is established, a modal analysis is usually performed to 

yield another description of the vibrating structure's behavior in terms of modal 

parameters of the structure, i.e., a set of natural frequencies with corresponding 

vibration mode shapes and modal damping factors. This description is referred to as 

a modal model of the vibrating structure. This model describes the various behavior 

of the structure under natural vibration, i.e., without external forcing or excitation, 

and hence the modal analysis is also known as free vibration analysis. 
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One of the main aims of the structural analysis is to predict the responses of the 

structure to the possible external excitations. The response analysis will be able to 

predict exact theoretical responses of how the structure will vibrate under given 

excitation conditions and especially, the amplitudes of vibration. Without doubt, this 

will be determined not only by the structure's inherent properties but also by the 

nature and magnitude of the imposed excitation. The response description is called 

the response model of the vibrating structure, which usually consists of two parts: 

the response caused by the initial conditions, i.e., general solution, and the response 

caused by the external excitation, i.e., particular solution. The response model may 

be classified into two groups: frequency domain response in terms of response 

spectra and time domain response in terms of displacements, velocities or 

accelerations. Using the latter group of data to identify the modal and structural 

parameters of a vibrating structure is the main concern of this thesis. 

The analysis procedure described above can be summarized in Fig. 2.2-1. 

structural modal response 
model model model 

Fig. 2.2-1 Analysis procedure 

As mentioned in the introduction, the analysis is classified as the direct problem in 

structural dynamics, while the structural system identification procedure is one of 

inverse problems in structiral dymanics. The system identification procedure can be 

illustrated in Fig. 2.2-2. As shown, the identification route is in the reverse direction 

of the analysis route. 
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Jre::el •I :=J ·1•='1 
Fig. 2.2-2 Identification procedure 

Since damping is very important for the damped linear vibrating structure, some 

aspects of the damping are to be discussed next. There are many mathematical 

models representing damping. The most important type of damping in vibration 

study is linear viscous damping. According to this model the damping takes the form 

of a force proportional in magnitude to the velocity and acting in the direction 

opposite to the direction of the velocity. Coulomb damping also gives rise to a force 

opposing the motion, but, in contrast with viscous damping, it has a constant 

magnitude. This damping is also referred to as dry friction. Another widely used 

model is structural damping. It is associated with internal energy dissipation due to 

the hysteresis effect in cyclic stress, for which reason it is also called hysteresis 

damping. Without loss of generality, the chapter will describe the theoretical 

fundamentals with consideration of linear viscous damping. 

It is well known that the coupled equations of motion describing an undamped 

multi-degree-of-freedom structure can be uncoupled by means of modal analysis, 

which uses a linear transformation to express the equations of motion in terms of 

different set of coordinates, the principal coordinates. The linear transformation is 

represented in matrix form by the normal modal matrix, obtained from the 

eigenvalue problem associated with the undamped structure. In some special cases 

the normal modal matrix can also be used successfully to uncouple the equations of 

motion of a linear viscously damped structure. Unfortunately, this is not always 

possible. The general case of viscous damping can however be treated by 

transforming a set of n ordinary differential equations of second order into a set of 2n 
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ordinary differential equations of first order, i.e., state variable representations. The 

eigenvalues and eigenvectors associated with the latter set of equations are, for the 

case with which this thesis is primarily concerned, complex quantities. 

§ 2-2 is devoted to the formulation of the equations of motion of the vibrating 

structure in the configuration space and in the state space by invoking the Lagrangian 

equation. The modal model of the structure for several cases will then be discussed 

in § 2-3. The relationship between the modal parameters and structural parameters 

will be briefly investigated. § 2-4 will deal with the response model in the various 

cases. Finally,§ 2-5 summurizes the various models discussd in this chapter. 

§ 2.2 STRUCTURAL MODEL 

This section will discuss the structural model of a linear viscously damped vibrating 

structure. The motion of a vibrating structure can be described by a set of variables. 

The minimum number of independent variables required to fully describe the motion 

of a discrete or discretized structure is referred to as the number of degrees of 

freedom of the structure. These variables are called coordinates. Usually, these 

coordinates represent physical quantities, but at times they represent more abstract 

quantities, such as coefficients of a series. Hence they are known as generalized 

coordinates. 

The motion of an n-degree-of-freedom structure can be fully described by n 

generalized coordinates Yi(t) (i = 1, 2, ···, n). The system kinetic energy has the 

form 

1 n n •. 
T = -l: l:mijYiYj 

2 i=lj=l 
(2.2-1) 
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where the coefficients mij are symmetric inertia or mass coefficients and Yi are 

generalized velocities. The kinetic energy, in Eqn. (2.2-1 ), is a positive definite 

quadratic expression. Similarly, the potential energy can be written in the form 

1 n n 
T = 21: l:kijYiYi 

i=lj=l 

(2.2-2) 

where the coefficients kij are symmetric stiffness coefficients. The potential energy 

is a positive definite expression when the system is positive defmite. 

The system Lagrangian will then be 

L=T-V (2.2-3) 

Another important class of forces is that consisting of viscous damping forces. The 

damping forces depend on the generalized velocities Yi and are assumed to be 

obtained from the quadratic function 

1 n n •• 
Q = 21: .:EcijYiYi 

i=lj=l 

(2.2-4) 

which is called the dissipation function initially named by Lord Rayleigh. The 

coefficients Cij' called damping coefficients, are generally constant and they are 

symmetric, Cij = Cji· The remaining forces, not falling into any of the above 

categories are denoted by /; and assumed to be derivable from the virtual work 

expression 
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n 
aw = l:fiay; (2.2-5) 

i=l 

where Sy; are the generalized virtual displacements. The generalized forces .fi 

generally depend on time but not on displacements or velocities. 

With all these definitions in mind, the equations of motion of the vibrating structure 

take the form of Lagrange's equations 

(2.2-6) 

The solution of Eqn. (2.2-6) consists of functions of the n generalized coordinates 

Y;(t) (i = 1, 2, ···, n). 

These n generalized coordinates do not describe the state of a vibrating structure 

uniquely, and to defme the state uniquely it is necessary to specify also the 

generalized velocities y;(t). If the generalized velocities are used as a set of auxiliary 

variables, then the motion can be described in a 2n-dimensional Euclidean space 

defmed by Yi and Yi and known as the state space. 

In order to obtain the solution of Eqn. (2.2-6) in the configuration space, Eqns. (2.2-

1) through (2.2-4) are substituted into Eqn. (2.2-6) leading to a set of n coupled 

ordinary differential equations describing the motion of a linear viscously damped 

structure. These equations can be written in the matrix form 

Moy(t) + Coy(t) + Koy(t) = f(t) (2.2-7) 
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where y(t), y(t) and y(t) are the acceleration, velocity and displacement of the 

vibrating structure; f(t) is the external loading or excitation. Mass matrix M0, 

damping matrix C0 and stiffness matrix Ko are of order n xn and symmetric positive 

for a positive system. 

The solution of Eqn. (2.2-6) in the state space can be obtained by introducing the 

state vector 

XT (t) = {yT (t) YT (t)} (2.2-8) 

as 

M*i(t) + K*x(t) = Df(t) (2.2-9) 

where M* and K* are 2n x2n symmetric matrices with 

[
-Ko 0 l 

M*= 0 Mo (2.2-10) 

and 

(2.2-11) 

and D is a 2n xn matrix with 

(2.2-12) 
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Eqns. (2.2-9) can also be expressed in another form 

x<t> = Ax<t> + Bf(t) (2.2-13) 

where 

(2.2-14) 

and 

(2.2-15) 

Eqn. (2.2-7) represents the structural model of a linear vibrating structure system in 

the configuration space, while Eqn. (2.2-9) or (2.2-13) represents the structural 

model in the state space. 

§ 2.3 MODAL MODEL 

Using linear system theory, a general closed-form solution of Eqn. (2.2-7) can be 

shown to exist However, an attempt to produce the actual numerical solution is 

likely to meet with serious computational difficulties, particularly for a high-order 

system. A convenient method of deriving the solution is by modal analysis, which 

requires the solution of the eigenvalue problem for the system. The solution will 

form the modal model of the vibrating structure. In the following, the modal model 

for various cases will be derived and their properties will be discussed. 
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§ 2.3.1 Undamped Vibrating Structures 

For undamped vibrating structures, Eqn. (2.2-7) reduces to 

Moy(t) + Koy(t) = 0 (2.3-1) 

where Mo and Ko are real symmetric matrices of rank n. Further, Mo is positive 

definite. The solution of Eqn. (2.3-1) has the exponential form 

(2.3-2) 

where co is a constant scalar and+ is a constant n-vector. Substituting Eqn. (2.3-2) 

into Eqn. (2.3-1) and dividing through by e-«Jt yield 

Ko+=AMot (2.3-3) 

with A= -co2 • The problem of determining the constants A for which Eqn. (2.3-3) 

possesses nontrivial solutions + is known as the eigenvalue problem. It is known 

from linear algebraic theory that the necessary and sufficient condition for a set of 

homogeneous algebraic equations to possess a nontrivial solution is that the 

determinant of the coefficients be zero. Hence, 

det(Ko - AMo) = 0 (2.3-4) 

this equation is known as the characteristic equation, or the frequency equation of 

Eqn. (2.3-3). Because Ko and Mo are square matrices of rank n, the characteristic 

determinant represents a polynomial of degree n in A. In general, the solution has n 
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distinct roots Ai (i = 1, 2, ···, n) called characteristic values or eigenvalues. To each 

of these eigenvalues there corresponds a vector cl»i satisfying the equation 

Kocl»i = AiMocl»i (i = 1, 2, ... , n) (2.3-5) 

where 4ti is known as the characteristic vector or eigenvector corresponding to Ai. 

Since Ko and Mo are symmetric and positive defmite, it can be shown that the roots 

of the characteristic equation are real and positive. The roots are denoted 

Ai =-rot, -co~, ... , -ro~. The positive square roots of these values are the natural 

frequencies roi of the structure. The frequencies are arranged in order of increasing 

magnitude such as ro1 ~ CJl2 ~ CJl2 ~ ... ~ron. In general all roi are distinct, although it 

is quite possible that two natural frequencies possess the same value. The 

eigenvectors 4ti represent the mode shapes of the undamped vibrating structure. 

Mode shapes 4ti and natural frequencies roi form the modal model of a undamped 

vibrating structure. 

The eigenvalue problem in Eqn. (2.3-3) is in terms of two real symmetric matrices. 

The eigenvalue problem can also be transformed into standard form of an eigenvalue 

problem in terms of a single real symmetric matrix. In fact, because Mo is a positive 

deflnite real symmetric matrix, it can be decomposed into 

(2.3-6) 

where Q is a real nonsingular matrix. Introducing Eqn. (2.3-6) into Eqn. (2.3-3) 

(2.3-7) 
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Considering the linear transformation 

(2.3-8) 

where Q-1 exists because Q is nonsingular. Substituting Eqn. (2.3-8) into Eqn. (2.3-

7) yields the eigenvalue problem in standard form 

(2.3-9) 

with 

(2.3-10) 

being a real symmetric matrix, which is positive definite if Ko is positive definite. 

Hence, the eigenvalue problems in Eqns. (2.3-3) and (2.3-9) can be regarded as being 

equivalent. Whereas both eigenvalue problems yield the same eigenvalues A.;, the 

eigenvectors are not the same but related by Eqn. (2.3-8). 

The eigenvectors of the eigenvalue problem in Eqn. (2.3-9) have the following 

important property: The two eigenvectors corresponding to distinct eigenvalues are 

orthogonaL This statement can be shown by considering two eigenvectors 1C; and Kj 

corresponding to the distinct eigenvalues Ai and Aj, so that 

AoK·='\·K· l A, l (2.3-11) 

(2.3-12) 
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Premultiply Eqn. (2.3-11) by x:f, postmultiply the transpose ofEqn. (2.3-12) by K;, 

subtract one result from the other, recall A'{; = Ao and write 

(2.3-13) 

But the eigenvalues are distinct, AfF-Aj, so that Eqn (2.3-13) is satisfied if and only if 

(2.3-14) 

Considering Eqn. (2.3-8), the following orthogonal property of the eigenvectors +i 
about Mo for the eigenvalue problem in Eqn. (2.3-3), is obtained 

(2.3-15) 

The matrix Mo plays the role of a weighting matrix. Premultiply both sides of Eqn. 

(2.3-3) by +f, postmultiply its both sides by +i 

(2.3-16) 

Hence, for instance, the orthogonality condition can also be written 

(2.3-17) 

When i = j the products in Eqns. (2.3-15) and (2.3-16) are not zero, but yield mass 

and stiffness coefficients 

(2.3-18) 
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k .. = +rKo"'· " l ,., • (2.3-19) 

As mentioned above, the eigenvectors are not uniquely determined but can be 

normalized uniquely. Hence, the eigenvectors can be normalized such as 

(2.3-20) 

(2.3-21) 

The following orthogonality properties will then hold 

«17Mo4t=l (2.3-22) 

(2.3-23) 

where A is a diagonal matrix with Ai being its diagonal elements, and 4l is the 

eigenvector matrix with the +i being its i-th column. The orthogonality relationships 

(2.3-22) and (2.3-23) will play an important role in the structure system 

identification. 

§ 2.3.2 Damped Vibrating Structures 

A viscously damped structure can be described by recalling the Eqn. (2.2-7) 

Moy(t) + Coy(t) + Koy(t) = f(t). (2.3-24) 

Consider the free vibration case, f(t) = 0, by assuming a solution of the homogeneous 



Chapter 2 Linear Damped Vibrating Structures 2-15 

set of equations in the form 

(2.3-25) 

so that a set of n homogeneous algebraic equations representing the eigenvalue 

problem is obtained 

[ A.2Mo + A.Co + Ko lei»= [p(A.)]cj» = 0 (2.3-26) 

where [p(A.)] is a square matrix as a function of A.. Eqn. (2.3-26) has a nontrivial 

solution only if the determinant of the coefficients is zero, 

I [ p(A.) ] I = 0. (2.3-27) 

This is the characteristic equation or determinant equation of order 2n in A. of matrix 

[ p(A.) ]. The roots of the characteristic equation can be real, purely imaginary, or 

complex. If the roots are real they must be negative, which corresponds to an 

overdamped structure for which an aperiodic decaying motion is obtained. If the 

roots are complex they must appear in pairs of complex conjugates with a negative 

real part such as 

A.= -11co ± ico~l-r? (2.3-28) 

and the corresponding modal columns c1» must also be complex conjugates. A pair of 

complex conjugate modes multiplied by the corresponding time-dependent 

exponential functions can be combined to obtain a damped oscillatory motion. This 

is the case in which the structure is underdamped. For an undamped structure, purely 
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imaginary roots will be obtained in pairs of complex conjugates. But the eigenvector 

c1» in Eqn. (2.3-25) are not orthogonal about any one of matrices Mo. Co and Ko. 

However, the orthogonality property for the state representation of a damped 

structure can be derived similarly to the undamped case. Recall the state 

representation Eqn. (2.2-9) 

M* x(t) + K* x(t) = Df(t). (2.3-29) 

Consider the corresponding homogeneous equation to Eqn. (2.3-29) 

M*x(t) + K*x(t) = o. (2.3-30a) 

Assume the solution of the form x(t) = eAI'If, the eigenvalue problem is then 

obtained as 

'\. * * AM 'IJ+ K 'IJ=O (2.3-30) 

where M* and K* are symmetric matrices as shown in Eqns. (2.2-10) and (2.2-11), 

*T * *T * andsoM =M andK =K. 

Because matrices M* and K* are not positive defmite, the problem cannot be 

reduced to one in terms of a single real symmetric matrix. However, since the 

original eigenvalue problem is in terms of symmetric matrices M* and K*, it 

possesses certain properties which are not shared by an eigenvalue problem in terms 

of general non-symmetric matrices. In particular, the eigenvectors Vi corresponding 

to the eigenvalues A.i are orthogonal with respect to both matrices M* and K*. To 

prove this two solutions with distinct eigenvalues are written in the form 
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'\ * * "'iM Vi + K Vi = 0 (2.3-31) 

'\ * * "'iM 'Vi + K Vi = 0. (2.3-32) 

Premultiplying Eqn. (2.3-31) by VJ and Eqn. (2.3-32) by Vl yields 

'\ T * T * "'i'ViM Vi +ViK Vi =0 (2.3-33) 

and 

'\ T * T * 1\.·llf· M \If·+ \If· K llf· = 0 'JT' TJ T' TJ • (2.3-34) 

Subtracting the transpose of Eqn. (2.3-34) from Eqn. (2.3-33) the following is 

obtained 

(2.3-35) 

Since eigenvalues are distinct, A.r:J:A.i, from Eqn. (2.3-35) the orthogonal relationships 

are obtained 

T * ViM Vi =0, A.r:J:A.i, i, j = 1, 2, ···, 2n (2.3-36) 

and it follows from Eqn. (2.3-33) that 

A.r::J:A.i, i, j, = 1, 2, ···, 2n. (2.3-37) 

The eigenvectors Vi can be normalized by setting 
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T * 'IIi M 'IIi= 1, i = 1, 2, ···, 2n (2.3-38) 

so that, if 'I'= ['lf1 '1'2 ••• '1'2nl represents the square matrix of the normalized 

eigenvectors, then Eqns. (2.3-36) and (2.3-37) can be combined into 

(2.3-39) 

from which it follows automatically that 

(2.3-40) 

where the A is the diagonal matrix of the eigenvalues. Because the eigenvalues are 

distinct, the eigenvectors 'IIi are independent. Eqns. (2.3-39) and (2.3-40) will play a 

very important role in the system identification of a vibrating structure with general 

damping. Further, Eqn. (2.3-30) can be reduced to the form 

(2.3-41) 

where, assuming M* is nonsingular, 

(2.3-42) 

Hence, the eigenvalue problem (2.3-30) and (2.3-41) have the same eigenvectors 'IIi 

and the same eigenvalues A,. By assuming y= r::::} and substituting this 

expression and Eqns. (2.2-10) and (2.2-11) into Eqn. (2.3-30), the lower part of 
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expansion ofEqn. (2.3-30) yields 

A.Mo-.,<2> + Co-.<2> + Ko-.<1> = 0. (2.3-43) 

It can be seen, by comparison Eqn. (2.3-43) with Eqn. (2.3-26), -.<1> = + and 

v<2> = A.c!J, so that the eigenvectors 1fi can relate to the eigenvectors fi by the 

following equation 

(2.3-44) 

Once eigenvectors 'l'i are obtained, eigenvectors cl»i, i.e. mode shapes of the vibrating 

structure, can be extracted from this relationship. Eigenvalues Ai are expressed in 

terms of natural frequencies roi and damping ratios 1li as Eqn. (2.3-28). 

As previously mentioned in the case of undamped structures, the amplitude of the 

eigenvector is arbitrary, and the modes are determined within a multiplicative 

constant For a damped structure not only the amplitude but also the phase angle is 

arbitrary. From Eqn. (2.3-44), the ratios of the magnitudes of corresponding 

complex elements of both the upper and lower part of an eigenvector are the same 

and the difference in phase angles of the corresponding complex elements are equal 

to each other. This can be illustrated in Fig. 2.3-1. 

For the i-th eigenvector the following relations must hold 

IVri I 
I...,.·· I TJI 

IV<r+n)i I = - = const 
l'lf(i+n)i I 

(2.3-45) 
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and 

(2.3-46) 

where I 'l'ri I is the magnitude and 6, is the phase angle of the nh element of the ith 

eigenvector Vi. 

Im 

I 'l'v+n)i I = I A.i I lfl»ii I 

IVri I = l+ri I I"'"·· I = 1+··1 
TJ& )& 

Re 

Fig. 2.3-1 Magnitude and Phase of the Elements of Eigenvector 

The complex mode can be normalized and this means removing the arbitrariness 

both from the magnitudes and phase angles of the complex elements of the 

eigenvector Vi. 
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§ 2.4 RESPONSE MODEL 

For the structural and modal identification, it is important to explicitly express the 

responses in terms of modal parameters and excitations. This expression is called 

response model of the linear structure. The response model may be described in the 

time domain or frequency domain. Three types of time domain response model: 

impulse response, free response and forced response are discussed in this section. 

Frequency domain response of undamped and damped structure is also introduced. 

§ 2.4.1 Impulse Response Model 

Impulse response is a very basic concept in the vibrating structure analysis. It 

describes the relationship between the excitation and response and is very explicit 

and attractive computationally. 

For convenience, scalar excitation and scalar response is to be discussed first and the 

results will be extended to the case of multiple excitation and multiple response. 

Before proceeding with the derivation of the impulse response, it is necessary to 

introduce the unit impulse, or Dirac's delta function. The mathematical definition of 

the unit impulse is 

co 

B(t - 't) = 0, for t :¢: 't and J B(t - 't)dt = 1 (2.4-1) 

and the unit impulse has units time -l . 

The unit impulse is depicted in Fig. 2.4-1 in the form of a thin rectangle of 

infinitesimal width e and height 1 I e. In the limit, as e approaches zero, the width 
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S(t-t) 

1 - - - - - - - - .- area = 1 
£ 

Fig. 2.4-1 Unit Impulse 

t 
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tends to zero while height tends to infinity in a way that the area under the curve 

remains constant and equal to unity. Actually, the shape of the delta function is 

immaterial as the width is very thin and the area is equal to unity. In fact, the delta 

function should really resemble a 'spike'. Note that the unit impulse defmed by Eqn. 

(2.4-1) is applied at t = 't. A unit impulse applied at t = 0 is denoted by S(t). 

The impulse response, denoted by h(t), is defmed as the response of a structure to a 

unit impulse applied at t=O. 

t 

y(t) = jh(t-t)S('t)d't = h(t). 
0 

(2.4-2) 

The impulse response embodies all the structure characteristics including modal 

characteristics, so that it provides a way for the modal identification. The impulse 

response is not merely a convenient method of describing the structure 

characteristics but is also a useful method for evaluation of the response, as it 

permits the synthesis of the response to any arbitrary excitation. The relationship 

between the impulse response function, excitation and response can be depicted by 
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the diagram shown in Fig. 2.4-2. 

_ ........ fi......_.(t)'---,..~ h(t) y(t) 

Fig. 2.4-2 Impulse Response Model Diagram 

Assume that a linear structure is subjected to the arbitrary excitation l(t) and 

consider a thin rectangular area of width At and height I( t), as shown in Fig. 2.4-3. 

I (t) 

I (t) 

Fig. 2.4-3 Impulse Response 

This particular increment of area can be regarded as an impulse of magnitude I( t) 

applied at t = t, so that the contribution to the structure response attributable to this 

excitation is simply 

Ay(t, t) = l(t)h(t-t)At (2.4-3) 

where h(t-t) is the impulse response function delayed by t = t. The response can 

therefore be approximated by a collection of corresponding impulse response, or 



Chapter 2 Linear Damped Vibrating Structures 2-24 

y(t)::: 1:/(t)h(t--t)~t. (2.4-4) 
't 

The response can be rendered exact by letting ~t--+0 and replacing the summation by 

integration, so as to obtain 

t 

y(t) = J /(t)h(t--t)dt (2.4-5) 
-oo 

which is known as the convolution integral. It should be pointed out that Eqn. (2.4-5) 

represents only the response to the excitation f(t ). The response to any possible 

initial excitation must be evaluated separately and added to it. The convolution 

integral is symmetric in f(t) and h(t). Indeed, it is not difficult to show that the 

integral can also be written in the form 

t 

y(t) = J /(t--t)h(t)dt. (2.4-6) 
-oo 

If a structure has n excitation stations and n response stations, and the initial 

condition is zero, the impulse response model in Eqn. (2.4-6) can extended to 

t 

y(t) = f H(t--t)f(t)dt 
-oo 

where 

H(t--t) = 

h 11 (t--t) h 12 (t--t) ··· h ln (t--t) 

h21 (t--t) h22(t--t) ... h2n(t--t) 

(2.4-7) 

(2.4-8) 
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and h;j(t--t) is the response at time t at the ith response station due to impulse 

function applied at time t at the jth excitation station, the excitation at other stations 

being identically zero. Equivalently, h;j(t--t) is the impulse response between the jth 

excitation station and ith response station. Hence H is called the impulse response 

matrix of the vibrating structure. 

§ 2.4.2 Time Domain Free Response Model 

A structure in a static equilibrium state would not vibrate until some external 

excitation is imposed on it. But if a structure is not in an equilibrium state, it may 

vibrate. The non-equilibrium state is called the initial condition, which could be 

initial displacements, velocities or accelerations, or any of their combinations. The 

response model to the initial condition is known as free response model. The free 

response model of undamped vibrating strctures can be obtained by recalling Eqn. 

(2.3-2) and (2.3-3). In the case of an undamped structure, Eqn. (2.3-2) is used to 

derive the free responses. Each eigenvalue A.; corresponds two exponents, 

ro; = ±v-A.; and so Eqn. (2.3-2) admits solutions of the form 

y;(t) = (a;e .,J-A.;t + b;e -.,J-A.;t )cl»;, i = 1, 2, ... , n (2.4-9) 

which are often referred to as eigen solutions, where a; and b; are constant. Because 

the structure under consideration is linear, the general solution of Eqn. (2.3-3) is a 

linear combination of the eigen solutions, or 

n .,p:;i -..p:;i 
y(t) = 1: (a;e • + b;e >+; (2.4-10) 

i=l 
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where the constants a; and b; depend on the initial conditions y(O) and y(O). This 

solution must be real. For nonzero eigenvalues, therefore, ro; :# 0, a; and b; must be 

complex conjugates and the solutions reduce to 

n iro;t - -iro;t 
y(t) = I: (a;e + a;e >+; (2.4-11) 

i=l 

where a; is the complex conjugate of a;. 

In the case of a damped structure, Eqn. (2.3-3) is used to obtain the free responses. 

As mentioned in § 2.3, a constituent solution of free vibration is 

x;(t) = eA.;
1
'f;, i= 1, 2, ···, 2n. 

Because of linearity of the structure, the solution of Eqn. (2.3-3) is 

2n A.;t 
x(t) = I:e 'Vi 

i=l 

(2.4-12) 

(2.4-13) 

The free vibration response expressions (2.4-12) and (2.4-13) imply the relationships 

between the free response time history, and eigenvalues A.; and eigenvectors +; or 'l'i. 

§ 2.4.3 Time Domain Forced Response Model 

In order to obtain the time domain forced response, Eqn. (2.2-13) is used. The 

solution of Eqn. (2.2-13) with A and B as constant matrices can be obtained in 

analogy to the method used in the scalar case by first obtaining the homogeneous 

solution, then the particular solution, and finally adding both together. The 
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homogeneous component of Eqn. (2.2-13) is 

i(t) = Ax(t), x(O) = x(t=O) (2.4-14) 

and a suggested solution of 

x(t) = exp[At]x(O) (2.4-15) 

where exp[At] is the exponential function of the matrix At defmed by the Taylor 

series 

00 (Ad 
exp(At) = I: . 

1 
• 

i ::::0 l • 

Defining the derivative of a function, 

d
d exp[At] =lim h

1 
(exp[A(t+h)]-exp[At]) 

t h--+0 

= lim exp[At] (exp[Ah]-1). 
h--+0 h 

Applying the series expansion for exp[Ah] yields 

d 
dt exp[At] = exp[At]A = Aexp[At] 

Thus if the right-hand side of Eqn. (2.4-15) is differentiated, 

(2.4-16) 

(2.4-17) 

(2.4-18) 
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d -(exp[At]x(O)) = Aexp[At]x(O) = Ax(t). 
dt 

(2.4-19) 

and Eqn. (2.4-15) is seen to be the homogeneous solution of Eqn. (2.2-13). 

For notational simplicity, it is written 

T(t, to)= exp[A(t-to)], (2.4-20) 

where T(t, to) is called the state transition matrix. When to= 0, 

T(t) = exp[At] (2.4-21) 

and the homogeneous solution in Eqn. (2.4-15) is as 

x(t) = T(t)x(O). (2.4-22) 

From the equations derived above, it is relatively easy to show the following 

properties of the state transition matrix: 

r 1(t) = T(-t), (2.4-23) 

T(O) =I (2.4-24) 

and 

(2.4-25) 
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The complete solution can therefore be derived as follows. It can be seen that 

T(t) = AT(t) (2.4-26) 

Postmultiplying both sides of this equation by 1 1 (t) yields 

T(t)11 (t) =A. (2.4-27) 

Thus 

A= T(t)T-1(t) = T(t)T(-t). (2.4-28) 

But noting 1 1(t)T(t) =I and differentiating both sides of the equation with respect 

tot, 

. 
A= -T(t)T(-t). (2.4-29) 

Substituting Eqn. (2.4-29) into Eqn. (2.2-13) yields 

i:(t) = Ax(t) + Bf(t) = -T(t)T(-t)x(t) + Bf(t) (2.4-30) 

Premultiplying by T(-t) and noting that T(-t)T(t) = T(O) =I yields 

T(-t)i:(t) + T(-t)x(t) = T(-t)Bf(t) (2.4-31) 

The left-hand side ofEqn. (2.4-31) is a perfect differential. Therefore, 
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! (T(-t)x(t)) = T(-t)Bf(t) 

and integrating gives 

t 

T(-t)x(t) = JT(-'t)Bf('t)d't + T(O)x(O) 
0 

This can now be premultiplied by T(t) to yield, with T(O) =I, 

t 

x(t) = T(t)x(O) + JT(t-'t)Bf('t)d't 
0 

2-30 

(2.4-32) 

(2.4-33) 

(2.4-34) 

Eqn. (2.4-34) represents the solution of Eqn. (2.2-13), which consists of two parts: 

the response due to initial condition of the structure T(t)x(O) and the response due to 

t 

external excitation JT(t-'t)Bf('t)d't. This permits the calculation of the state x(t) and 
0 

hence the response y(t) at any timet, given the initial condition x(O), the excitation 

function f(t) and , of course, the matrices A and B. 

§ 2.4.4 Discrete Time Response Model 

The measurements in the modal test are digital signals which are not continuous in 

the time domain and since most identification algorithms are conveniently 

implemented on digital computers, it is appropriate to defme discrete time structure 

models and investigate the response models in the discrete time domain. 

The basic difference to be used here between the continuous time and discrete time 

formulations is simply stated. In the continuous time domain all variables such as 



Chapter 2 Linear Damped Vibrating Structures 2-31 

x(t) and f(t) are continuous in the sense of being specified for all values of the 

variable t; in the discrete time domain x(t) and f(t) are assumed to be known or 

specified only at certain discrete values of t. 

The discrete time signals are frequently generated through the process of sampling 

the functions f(t) and y(t) of continuous time. A model for the process of sampling 

the function of continuous time, for example,f(t), is shown in Fig. 2.4-4. 

f(t) 

Fig. 2.4-4 Sampling Process 

The sampler switch is thought of as closing instantaneously at time instants t = tk 

and being open otherwise. At the output terminal of the sampler, the number f(t 0 ), 

j(t1), ··· will appear at the time instants to , t 1, ···.In this manner the function of the 

continuous time has been converted into a sequence of numbers. Fig. 2.4-5 illustrates 

a typical function f(t) and sequence of numbers generated when f(t) is sampled. 

time 

Fig. 2.4-5 Example of Sampling 

The sampling process most frequently used in applications, particularly in this thesis, 
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is one in which the sampling switch closes every T seconds. This is called equally 

spaced sampling and will be illustrated as shown in Fig. 2.4-6. 

f(t) f(kT) 

Fig. 2.4-6 Model of process of equally spaced samping 

In this case the signal picking up interval At is fixed, 

tk+l- tk =At= T, (2.4-35) 

where Tis called the sampling period and is constant for any k, thus 

tk =kT, (2.4-36) 

since to is taken to be zero. 

Consider next the solution of the continuous time response model as given by Eqn. 

(2.4-34), 

t 

x(t) = T(t)x(O) + jT(t-t)Bf(t)dt 
0 

(2.4-37) 

H t=T and if f(t) is assumed to be held constant and equal to f(O) over the time 

period t=O to t=T, then it follows that 

T 

x(T) = T(T)x(O) + [jT(T -t)Bdt]f(O) 
0 

(2.4-38) 
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Assuming 

T 

A(T) = £JT(T -'t)dt]B 
0 

Linear Damped Vibrating Structures 

with B being constant, then 

x(T) = T(T)x(O) + A(T)f(O). 

2-33 

(2.4-39) 

(2.4-40) 

Eqn. (2.4-40) thus yields the value of the state variable x(T) at time t=T. If the entire 

procedure is repeated from t=T to t=2T using a constant value of f(T) and the time 

over which the integration is performed is the same length as the the previous step, 

then 

x(2T) = T(T)x(T) + A(T)f(T) (2.4-41) 

Continuing the entire process 

x((k + 1 )T) = T(T)x(kT) + A(T)f(kT) (k = 0, 1, 2, ···) (2.4-42) 

In simpler terms 

x(k+1)=T(T)x(k)+A(T)f(k) (k=O, 1, 2, ···) (2.4-43) 

This equation may be used recursively to generate x(1), x(2), ···. Using the simple 

nomenclature that T(T) = T= constant matrix and that A(T) =A= constant matrix, 

then 



Chapter 2 Linear Damped Vibrating Structures 

x(k+l) = Tx(k) + Af(k) 

x(k+2) =Tx(k+l) +M(k+l) 

= T2x(k) + TAf(k) + Af(k+l) 

x(k+3) =T3x(k) + T2Af(k) + TAf(k+l) + Af(k+2) 

and 

x(k+i) = Tix(k) + i:,E Ti-l-l L\f(k+i). 
1=0 
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(2.4-44a) 

This equation shows how the state variable x(k+i) after i sampling periods, is 

predicted on the basis of the state x(k) and sequence of inputs 

f(k), f(k+l), ··, f(k+i-1). From the above, the free response model of the strcuture 

can also be represented by 

x(k+l) =Tx(k) or (2.4-44b) 

§ 2.4.5 Frequency Response Model 

For the convenience of reviewing the modal identification methods in the frequency 

domain, frequency response model is briefly discussed in this section. The 

frequency response function of a vibrating structure is related to its modal 

parameters the and this constitutes the basis for identification of modal parameters 

from the frequency response data. The case where the vibrating structure is excited 

sinusoidally by a set of forces having the same frequency co, but with various 
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amplitudes and phases is considered here to derive the frequency response model. 

Undamped Structures 

For an undamped structure, the equation of motion in Eqn. (2.2-7) becomes 

Moy(t) + Koy(t) = f(t). (2.4-45) 

Taking Fourier transformation of both sides of Eqn. (2.4-45) yields 

(2.4-46) 

where y(co) and f(co) are Fourier transformations of y(t) and f(t), respectively, and 

+oo 

y(co) = J y(t)e-irotdt 

+oo 

f(co) = f f(t)e-imtdt. 

Rearranging to solve for the unknown responses 

(2.4-47) 

and which may be written as 

y(co) = H(co)f(co) (2.4-48) 
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where H(co) is the n xn frequency response function matrix for the structure. This 

expression can be written as 

H(co)= 

h 11 (co) h 12 (co) ··· h ln(CO) 

h21 (co) h22(co) ··· h2n(co) 
(2.4-49) 

and h;j(CO) is the response at frequency co at the ith station due to an excitation 

applied at the jth station, the excitation at other stations being identically zero. Eqn. 

(2.4-48) is called the frequency response model. The frequency response model can 

be depicted by a diagram shown in Fig. 2.4-7. 

__ ti~(co~)_,.!lloll H(ro) y(co) 

Fig. 2.4-7 Frequency Response Model Diagram 

The general element in the frequency response function matrix, H(co), is defmed as 

follows: 

Yj(CO) 
hjk(co)= fk(co), when fm(CO)=O and m = 1,···, n#:k. (2.4-50) 

It is clearly possible to determine values of the elements of H(co) at any frequency of 

interest simply by substituting the appropriate values of co into Eqn. (2.4-48). 

However, it does not reveal the relationship between the frequency response function 

and modal parameters. For this and other reasons an alternative means of deriving 
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the frequency response function parameters is used which makes use of the modal 

properties for the structure. 

Returning to Eqn. (2.4-47) 

(2.4-51) 

Premultipling both sides by ff)T and postmultipling both sides by ff) to obtain 

(2.4-52) 

or 

(2.4-53) 

which gives 

(2.4-54) 

It is clear from this equation that the frequency response function matrix H(ro) is 

symmetric and this will be recognized as the principle of reciprocity which applies to 

many structural characteristics. Its implications in this situation are that 

_ Yj(W) _ _ Yk(ro) 
hjk(ro)- fk(ro) - hkj(ro)- fj(ro) . (2.4-55) 

Eqn. (2.4-54) can be used to calculate any individual frequency response function 

parameter hjk(ro) by the following formula 
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n .t. · .t.k n A ,,_ 
h . ( ) = ~ r't'J r't' = ~ r }"' 

jk (J) ,LI 2 2 ,LI 2 2 . 
r=l IDr - (J) r=l IDr - m 

(2.4-56) 

rA jk is referred to as a modal constant of the structure. 

Damped Structures 

In the case of damped structure, taking Laplace transform of Eqn. (2.4-34) and 

considering T(t) = exp[At] 

i(s) = [sl- Ar1x(O) + [sl- Ar1Bf(s) 

where the circumflex "' denotes the Laplace transform of a variable and 

+co 

i(s) = J x(t)e-s1dt 
0 

and 

+co 

f(s) = J f(t)e-stdt. 
0 

(2.4-57) 

(2.4-58) 

(2.4-59) 

Substituting Eqns. (2.2-14) and (2.2-15) into Eqn. (2.4-57) and assuming x(O) = 0 

* * 1 "' i(s) = [sM - K r Df(s). (2.4-60) 

That is 
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(2.4-61) 

Considering the orthogonal properties in Eqns. (2.3-39) and (2.3-40) yields 

(2.4-62) 

,. [y(s)l 
Since x(s) = ~ , assuming x(O) = 0, 

y(s) 

(2.4-63) 

or 

(2.4-64) 

where 

C= [I 0] (2.4-65) 

and 

(2.4-66) 

Hence the transfer function matrix is 

H(s) = C[sl- Ar1B (2.4-67) 

or 
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(2.4-68) 

and 

y(s) = H(s )f(s ). (2.4-69) 

Taking s = i co, the frequency response function matrix is 

H(co) = C'P[i col- Ar1 'PTD. (2.4-70) 

The element of the transfer function matrix hjk may then be written as 

2n \If. \Ilk 2n A 'k 
h ( ) _ ~ rTJ ry, +n _ ~ r 1 
jkCO-~. '\ -~. '\. 

r=l l co-1\.r r=l l co-1\.r 
(2.4-71) 

Eqns. (2.4-56) and (2.4-71) describe the relationships between the modal parameters 

of a vibrating structure and its frequency response functions. 

Fig. 2.4-8 shows a typical frequency response function. Since the frequency response 

function is complex, the figure indicates its magnitutes. 
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Fig. 2.4-8 Frequency Response Function ( Magnitude ) 
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Corresponding real and imaginary parts of the frequency response function are 

depicted in Figs. 2.4-9 and 2.4-10. 

frequency response 
(real) 

0.4 

0 

l-/ v 
/ 

v 0 -v ----

0.2 

-0.2 

-0.40 2.5 5 7.5 10 12.5 15 17.5 20 

frequency( radl s) 

Fig. 2.4-9 Real Part of Frequency Response Function 
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The phase of the frequency response function is also shown in Fig. 2.4-11. 
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The frequency response can also be considered as the Laplace transform of the 

impulse response of the linear vibrating structure. Taking Laplace transforms on 

both sides of impulse response in Eqn. (2.4-45) and considering the convolution 

theorem of Laplace transform, 
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00 00 t 

Jy(t)e-stdt = f< J H(t-t)f('t)d't)e-stdt. (2.4-72) 
0 0 --oo 

That is 

y(s) = H(s )f(s ). (2.4-73) 

Hence the impulse response matrix H(t) is the inverse Laplace transform of the 

transfer function matrix H(s) and 

H(t) = Cexp[At]B (2.4-74) 

or 

H(t) = C'l'exp[At]'I'TD. (2.4-75) 

The element of the impulse response function matrix is 

(2.4-76) 

Eqns. (2.4-74) or (2.4-75) and (2.4-76) will play important roles in the time domain 

modal identification. 

§ 2.5 SUMMARY 

This chapter discusses the general theory of vibrating structures and develops the 

structural model, modal model and response model of a linear vibrating structure. 
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These models form the theoretical fundamentals of the structural and modal 

identification of the vibrating structure. They will be referred in the later chapters 

and hence are listed as follows. 

1. Structural model: 

In configurational form 

Moy(t) + Coy(t) + Koy(t) = f(t). (2.5-1) 

In state variable representation, 

M*x(t) + K*x(t) = Df(t) (2.5-2) 

or 

x(t) = Ax(t) + Bf(t). (2.5-3) 

2. Modal model: 

For undamped structure 

Kot=A.Mot (2.5-4) 

with A. = -af. co is the natural frequency and + represents the mode shapes of the 

vibrating structure. 

For damped structure configurational representation 
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(2.5-5) 

state representation 

(2.5-6) 

or 

(2.5-7) 

A. is the complex eigenvalue of the linear vibrating structure and may be expressed in 

terms of natural frequency co and damping ratio 'Tl of the structure as 

(2.5-8) 

• is the complex mode shape of the structure and is related to the eigenvector V of 

Eqn. (2.5-6) by 

(2.5-9) 

Important orthogonal relationship 

Following important orthogonal relationships will also often be used in this thesis. 

For undamped structure 

(2.5-10) 
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and 

4¥'Ko4t=A. (2.5-11) 

For damped structure 

(2.5-12) 

and 

(2.5-13) 

3. Response model 

Response model may be expressed in frequency domain or time domain. 

Frequency domain response model 

For undamped structure 

y(co) = H(co)f(co) (2.5-14) 

and the frequency response matrix is 

(2.5-15) 

In element form it will be 
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n "'· "'k n A,. 
h . ( ) = ~ r't' 1 r't' = ~ r l"-

jk co ~ 2 2 ~ 2 __ 2 . 
r=l CO, - CO r=l COr - w-

(2.5-16) 

Fordmnpedsttucnue 

y(s) = H(s )f(s) (2.5-17) 

or 

y(co) = H(co)f(co) (2.5-18) 

and the transfer function matrix is 

(2.5-19) 

and the frequency response function matrix is 

(2.5-20) 

The element of the frequency response function matrix, hjk(co), may then be written 

as 

_ 2n rAjk 
hjk(co)- 1: . ~ . 

r=l l(()-,"r 
(2.5-21) 



Chapter 2 Linear Damped Vibrating Structures 

Time Domain Response Model 

Impulse response model 

t 

y(t) = I H(t-t)f('t)d't 
-oo 

where 

H(t-'t) = 

h 11 (t-'t) h 12 (t-t) ··· h tn(t-'t) 

h2t (t-t) h22(t-t) ... h2n(t-'t) 
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(2.5-22) 

(2.5-23) 

The impulse response function matrix can be expressed in terms of modal parameters 

of the structure. 

H(t) = ClJ'exp[At]'PTD. (2.5-24) 

The element of the impulse response function matrix is 

(2.5-25) 
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Time domain free response model 

Free response can be expressed as 

2n ~t 
x(t) = I,e ·'IIi· 

i=l 

Time domain Forced response model 

Forced response can be expressed in continuous time domain as 

t 

x(t) = T(t)x(O) + jT(t-'t)Bf(t)d't, 
0 

in the discrete or discretized time domain 

x(k+l) = T(T)x(k) + A(T)f(k) (k = 0, 1, 2, ···) 

or 

x(k+i) = Tix(k) + i~ Ti-l-l Af(k+i). 
l=O 
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(2.5-26) 

(2.5-27) 

(2.5-28) 

(2.5-29) 
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Chapter 3 

A REVIEW OF 

MODAL IDENTIFICATION 

§ 3.1 GENERAL VIEW 

By a fiction as remarkable as any to be found in law, 

what has once been published, even though it be in the 

Russian language, is spoken of as known, and it is too 

often forgotten that the rediscovery in the library may 

be a more difficult and uncertain process than the first 

discovery in the laboratory. 

-Lord Rayleigh 

In many cases, the excessive vibration causes hazardous situations for human lives 

and structures and is one of main sources of design limitation. There is an even 

wider set of structures for which vibration is directly related to performance, either 
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by virtue of causing temporary malfunction during excessive motion or by creating 

disturbance or discomfort. Therefore, it is important that the vibration levels 

encountered in service or operation be anticipated and brought under satisfactory 

control. Besides, the structural integrity is required for structures even under 

extreme loading such as strong wave and earthquake loadings and hence it is 

essential to know the dynamic properties of structures. However, because the 

complexity of structures, the limitation of knowledge and experience of the designer 

as well as the likely variation during manufacture and construction, the analytical 

dynamic model may not represent the actual structural dynamic model adequately. 

The above mentioned vibration problem may not be solved satisfactorily by using 

the analytical dynamic model. Therefore, identification of the modal parameters of a 

vibrating structure, such as natural frequencies, damping ratios and mode shapes, and 

the structural parameters such as mass, stiffness and damping contribution is 

desirable. In addition to the direct identification of the structure's mass, stiffness and 

damping distributions using excitation and response data, modal parameters 

identified in the vibration tests can be used for indirect identification of structural 

parameters. Further, the modal identification can provide a better understanding the 

dynamic behavior of a structure. These identified modal parameters such as natural 

frequencies, damping ratios and mode shapes are directly related to the structure's 

physical parameters and are very useful in applications such as response predictions, 

input load identification, trouble shooting excessive vibrations, stability analyses and 

control system design, verification and/or modification of analytical dynamic 

models, structural integrity monitoring and incipient failure detection, among others, 

as mentioned in Chapter 1. 

Although methods for modal identification have been attracting researchers' 

attentions, its principles are not new. A significant breakthrough occurred in modal 



Chapter 3 Review of Modal Identification 3-3 

identification, when Kennedy and Pancu (1947) published a paper presenting a 

method for modal identification, which was a major leap in analytic power. They 

suggested that the comparison of real vs imaginary parts of the frequency response 

provided far more discrimination than observation of magnitude. The method could 

be applied in accurate detennination of natural frequencies and damping levels in 

aircraft structures and was not out-dated until the rapid advance of measurement and 

analysis techniques in the 1960s. Bishop and Gladwell (1963) described the state of 

theory of single degree of freedom approximation testing which, at that time, was 

considerably in advance of its practical implementation. Since then, the principle has 

been refined by Skingle (1966) who proposed the use of correlation to separate 

desired modal response from interference during rapid sweeps. Smith and Woods 

(1972) introduced the concept of local and overall energy for discrimination and 

refined global frequency and damping estimation. Sloane and McKeever (1975) 

improved discrimination of closely coupled modes by converting frequency response 

data along the jro axis to pole location in the s-plane, with a numerical Laplace 

transform making it possible to distinguish resonances in two dimensions instead of 

only one. McKenzie (1974) reported successful Laplace transform modal analysis of 

a flexural beam in preparation for B-1 flight tests. 

Many advantages can be listed about these methods. They are economical since only 

one shaker is need. They are fairly straightforward and almost automatic test 

procedures. Most of the art is confined to the analysis stage which means 

improvements in the techniques seldom require expensive changes or additions to 

the test laboratory or equipment. As resonant frequencies get closer to each other, 

however, analytic and/or curve fitting techniques become more difficult since modes 

are allowed to superimpose in arbitrary combination. 



Chapter 3 Review of Modal Identification 3-4 

Another type of method was first introduced by Lewis and Wrisley (1950) who 

suggested a technique with multiple shakers. With this method, a forcing vector is 

generated in such a fashion as to excite a normal mode of the structure. Since the 

structure is being excited into a single mode, the amplitude of the vibration measured 

at the various test points on the structure is a measure of modal coefficients. In such 

a test, paquneter identification often is not required. The method is a relatively non

analytical approach to the interpretation of measured data, but demands more user 

attention and experience than today's computer-assisted automation for the same 

task. 

By 1970 there had been major advances in transducers, electronics, digital analyzers 

and computers. These provided strong tools for establishing more advanced methods 

in modal identification. Many versions of multiple degree of freedom methods in 

frequency domain were developed to deal with situations of extremely light damping 

and very heavy damping (Klosterman, 1971; Richardson, 1974; Ramsey, 1975; 

Allemang, 1980; Brown, 1977; Ewins, 1982). 

On one hand, most frequency domain methods are relatively easy to use and 

visualize, and in many cases reliable. On the other hand, the limitation of these 

methods is that they are not capable of identifying the very closely spaced 

frequencies. The reason for the limitation is essentially modal interference and hence 

some individual modes and natural frequencies cannot be observed separately. 

Although some multiple degree of freedom methods in the frequency domain have 

been introduced to deal with modal interference, they have the disadvantage that it 

must be determined in advance whether special attention is required. To avoid the 

limitation with frequency domain analysis, some time domain methods for modal 

identification have also been developed since the later 1960s because the computer, 
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particularly desk-top computer, has been advanced and the system theory has been 

developed and applied to the modal identification area. 

The pioneers for the time domain method of modal identification are Spitznogle el al 

(1971). They used the Prony method with 4n pieces of information to determine the 

4n unknowns. Their method is referred to as the Complex Exponential algorithm. It 

is a very simple technique to implement and has the advantage of fitting most 

individual measurements, however it computes different eigenvalues for each 

measurement and this has limited its applicability for modal measurements. This 

technique is also rather sensitive to noise since it has no inherent smoothing. For 

single measurements it works very well, and it appears to be generally useful for 

single-input and single-output system. 

Gersch and Luo (1972) introduced an ARMA model to represent a vibrating 

structure system for modal identification. The random response of the structure to a 

white noise excitation was used to estimate the coefficients of the ARMA model by 

means of a two stage least squares estimation algorithm. The coefficients were then 

applied to compute the natural frequency and damping ratio. The coefficients of the 

ARMA model were also estimated using maximum likelyhood estimation method by 

Gersch, Nielsen and Akaite (1973). The method was extended to the case of multiple 

response observations by Gersch and Yonemoto (1977) and later by Pandit and Wu 

(1983). This method had potential as a promising procedure, however, it was 

confined in the identification of natural frequency and damping ratio. Another 

disadvantage is that only white noise was considered. This is not always realistic and 

is not applicable in the cases of the other types of excitations. Wang and Fang 

(1986) further improved Gersch's method by application of the method into 

identification of mode shapes. Unfortunately, the limitation that only white noise 
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excitation can be used still remained and observation noise was not considered in the 

identification procedure. 

Ibrahim and Mikulcik (1973) developed a time domain method to use free decay 

response data for the modal identification. That is the so-called Ibrahim Time 

Domain (lTD) method. The concept of an oversized response model was introduced. 

Conversion of the identification to a eigenvalue problem is also an important feature 

of the method and "Modal Confidence Factors" were used to separate the structural 

modes and computational modes. The liD method has been successfully used in 

some applications of aerospace testing. However, this method can only be used with 

free decay vibration data. 

The Poly Reference time domain method was introduced by Void et al (1977). The 

algorithm was aimed at reduction of computation requirements in order to bring time 

domain modal identification to on-site applications using small computers. This 

algorithm also uses free decay responses obtained from inverse FFT of the transfer 

functions. This takes advantage of the possible averaging of the FFT function, thus 

reducing the noise levels in the computed time functions. Such reduction in noise 

levels will require smaller identification models and, in turn, less computer storage 

and execution time. To conserve memory, only the eigenvalues are computed. The 

mode shapes are then calculated from the free response model in Eqn. (2.5-26) by 

use of the classical least squares method. Because the transfer functions are 

transformed from the time domain response by FFf, and this method uses the 

inverse FFT of the transfer function, the response data are transformed twice. Errors 

arising from such transformations need to be investigated. For the same reason, 

effects of leakage and frequency resolution on the identification results should also 

be studied. 
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luang and Pappa (1985) presented the Eigensystem Realization Algorithm for the 

modal parameter identification and system model reduction. Their method uses 

singular value decomposition of a block matrix of the impulse response or free decay 

responses. Two accuracy indicators, i.e., the modal amplitude coherence and modal 

phase collinearity, were developed to quantify the structural and noise modes. An 

oversized identification model is also used. However, this method needs much more 

computer storage and execution time. Like the lTD method and Poly Reference 

algorithm, the method cannot deal with general excitation and response data. 

Leuridan et al. (1985) developed the Direct Parameter Model Identification method. 

They used a difference equation as the discrete time representation for a multiple 

dimension system. In form, the difference equation representation is similar to the 

ARMA model, however, while the MA part of ARMA model represents the 

unknown random noise, the input part of the difference equation represents the 

known control input. The coefficient matrices of the difference equation are 

estimated using the least squares estimate method. On the basis of the impulse 

response function, the relationship of these coefficient matrices to the modal 

parameters of the dynamic structure were established. Consequently, the modal 

parameters are calculated through this relationship. 

Hoshiya and Saito (1984) included the parameters to be identified as an additional 

state vector using Kalman extended filter to identify these parameters. A weight was 

used to accelerate the processing and an objecting function was introduced to 

minimize the difference between observations and corresponding estimates. This is 

an iterative algorithm and identified parameters can be improved as the new state is 

estimated using the measured data. The order of the vibrating structure must, 

however, be known in advance. This is usually unrealistic. 
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The different methods associated with modal identification as mentioned above are 

further reviewed in detail in the remainder of this chapter. The basic principles and 

implementation are described and the advantages and disadvantages of these 

methods discussed. § 3.2 is devoted to the single degree of freedom methods in the 

frequency domain. In § 3.3, the multiple degree of freedom methods in the frequency 

domain are introduced. In the§ 3.4, the variety of time domain methods are further 

discussed. 

§ 3.2 SINGLE DEGREE OF FREEDOM METHODS IN FREQUENCY 

DOMAIN 

In the frequency domain, most methods for identification of modal parameters 

consist of two parts: ( 1) identification of eigenvalues, from which natural frequencies 

and damping ratios can be determined; (2) identification of eigenvectors, from which 

the modal coefficients can be determined. The solution for the eigenvalues from 

measured frequency response information is mathematically a nonlinear process 

which, in general, greatly complicates the parameter identification schemes. 

The single degree of freedom modal identification methods surveyed in this section 

were historically used with swept sine testing techniques utilizing analog data 

analysis equipment. With the advent of mini-computer systems it is possible to 

measure frequency response information and computationally determine the modal 

parameters simultaneously. As a result of this improved computational capability, a 

large number of computational algorithms has been developed for computing modal 

information. Particularly, the advent of the dual channel Fast Fourier Transformation 

analyzer made these methods much easier to implement. In this sections each 

method will be reviewed as to its implementation, advantages and disadvantages. 
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Amplitude Response 

The simplest method for modal identification in the frequency domain is the peak

amplitude method. The implementation of this method is as follows. 

(a) The natural frequency is identified using the frequency response function plot, as 

shown in Fig. 3.2-1, and the frequency of maximum response is taken as the natural 

frequency of each mode( co,). 

(b) The damping can be estimated by a number of different techniques, the most 

common one is the half power points. The half power points can be determined by 

the frequency bandwidth Aco for a response level of I h (co) I 1-fi. The damping of the 

mode can be calculated as 

~r = 2(co; -co~) :::: 2Aco 
co~ co, 

(3.2-la) 

(c) An estimation of the modal coefficient of the mode can be obtained by assuming 

that the total response in this resonant region is attributed to a single term of the 

general frequency response function series such as 

I ,A I = 2~,co, I h(co,) I (3.2-lb) 
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Fig. 3.2-1 Frequency Response Function 

This method works adequately for structures whose frequency response functions 

exhibit well separated modes which are not so lightly-damped that accurate 

measurements at resonance are difficult to obtain but which, on the other hand, are 

not so heavily damped that the response at a resonance is strongly influenced by 

more than one mode. Apart from its simplicity, the advantage of this method is that 

a minimum amount of equipment can be used. If the structure is excited with a sine 

wave at the frequency of the resonance being investigated and the resulting response 

is filtered to eliminate any harmonic distortion then a simple voltmeter can be used 

to measure the modal coefficient. An oscilloscope can be used to determine the 

phase. 

The main disadvantages are that the estimates of both damping and modal coefficient 

depend heavily on the accuracy of the maximum frequency response function level. 
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This is not however, a quantity which is readily measured with great accuracy, since 

most of the errors in measurement are concentrated around the resonant frequencies. 

The second disadvantage is that the single-mode assumption is not strictly applicable 

in many cases. Even with well-separated modes, it is often found that the 

neighboring modes do contribute a noticeable amount to the total response at the 

resonance of the mode being analyzed. 

Circle Fit 

Kennedy and Pancu(1947) developed the first version of the approach for the Circle 

Fit method for the structure with hysteretic damping characteristics. Klosterman 

(1971) further developed this method. As is later shown, the method can be 

extended to viscous damping cases and can also be extended to include complex 

modes by using Eqn. (2.4-71) with the following assumptions 

1. The modes are only weakly coupled in the range where one mode is 

predominant. The contribution of lower and higher modes can be 

approximated by a complex constant (R + i/). 

2. The structure is relatively lightly damped. 

The frequency response of the structure in the frequency range where the r-th mode 

is predominant can be obtained from Eqn. (2.4-71) as 

(3.2-2) 

where R + il includes the contribution of the term associated with the conjugated 

eigenvalue. rodr is the damped natural frequency and rodr = ror V1 -112 • It can be 



Chapter3 Review of Modal Identification 3-12 

proved that the real part and imaginary part of the frequency response hjk(ro) form a 

circle. The following relations can be obtained from Eqn. (3.2-2) 

- u,.r ro + V·•-(ro- ro'dr) 
Re(h·k(ro)) =R + r 1"-":Jr r r l"-

1 (ro- ro'dr)2 + (,,ro,)2 
(3.2-3) 

and 

(3.2-4) 

Hence 

(3.2-5) 

The contribution of one dominant mode to general response is then represented in the 

Argand plane as a circle, as shown in Fig. 3.2-2. The coordinates of the center is 

(3.2-6) 

and the diameter is 

d = ~,uJk + ,vJk 
,,ro, 

(3.2-7) 

The complex modal coefficient expands or reduces the diameter and rotates the circle 
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in the Argand plane. On the other hand, the complex constant (R + if) will translate 

the center of the circle in the Argand plane, as shown in Fig. 3.2-2 . 

... 
lm(h) 

... 
\ Re(h) 

Fig. 3.2-2 Characteristics of Kennedy-Pancu Circle Fit 

Using the least squares Circle Fit algorithm, a circle can be interactively fitted to the 

measured frequency response data at the designated natural frequency. The 

resonance frequency is determined by the sweep rate of the phase angle as a function 

of frequency. Where the rate reaches its maximum is the location of the resonance 

frequency. The damping ratio, as well as modal amplitude and phase, is defined by 

the location, diameter, and orientation of the circle. 

This method is capable of separating coupled modes, but the solution may diverge 

and give very poor answers. The method is also fast and can be used to obtain 

complex modes but in order to get best possible results, should be used iteratively. 
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§ 3.3 MULTIPLE DEGREE OF FREEDOM METHODS IN FREQUENCY 

DOMAIN 

The methods for single degree of freedom are straightforward and easy to 

implement. There are many cases however, where they cannot be applied to or do 

not give satisfactory results. The typical case is that modes are coupled and the 

single mode approximation is unreasonable. Very light damping may also cause 

inaccurate measurements at resonance. Therefore, methods for multiple degrees of 

freedom have been developed. There are many algorithms available for this task and 

are not described in this section individually. Instead, the different methods of 

frequency domain multiple curve fitting will be distinguished and their 

implementation will be explained. Eqn. (2.4-71) may act as the basis for 

development of a multiple degree of freedom method of modal identification. 

Continuous structures have an infinite number of degrees of freedom but, in general, 

only a finite number of modes can be used to describe the dynamic behavior of 

structures. The theoretical number of degrees of freedom can be reduced by using a 

finite frequency range ifa, !b). Consequently, the frequency response function can 

be broken into three partial sums, each covering the modal contribution 

corresponding to modes located in the frequency range (0, fa), ifa, !b), ifb, oo), as 

shown in Fig. 3.3-1. 

In this case, Eqn. (2.4-71) can be rewritten as 

* Yi(ro) yik rb ,Aik ,A ik 
hjk(ro) = =- 2 + 1: ( (" ~ ) + . * ) + Zik 

fk(ro) (J) r=r, zro-~~,, (zro-A.,) 
(3.3-1) 
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where 

r a = lower mode index of the frequency range of interest, 

rb = upper mode index of the frequency range of interest, 

Yjk = inertia restraint, and 

Zjk =residual flexibility. 

3-15 

The coefficients rAjb rAjb A.,., A.;, Yjk and Zjk need to be estimated using the 

measured frequency response data h'jl(rol). 

Frequency Band 
of Interest 

Fig. 3.3-1 Typical Frequency Response Measurement 

The criterion is to minimize the error functional between the theoretical and 

experimental values of the frequency responses such as 

N 
min[.'r, llh'jl(ro1)-hjk(ro1)11]. (3.3-2) 

1=1 

A weighting factor w1 may be included in the criterion and 

N 
min[.'r, I I wl(h'jl(roz)- hjk(O>z)) I I] (3.3-3) 

1=1 
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If the derivatives of the error functional with respect to the unknowns are set to zero, 

a set of equations may be obtained to determine the abovementioned unknown 

parameters. The set of equations is nonlinear in Ar and A.; and cannot be solved 

directly by a linear least squares method. Therefore, algorithms have been developed 

to meet these needs. Mainly, there are two different procedures. The first procedure 

starts with fixed values of A.,. and A.; that are obtained from other methods and 

remain unchanged throughout the procedure, the unknown modal coefficients 

rAjk and rAjt. inertia restraint Yjk and residual flexibility Zjk are estimated by a 

linear least squares method. The second way is that an iterative least squares solution 

for all modal parameters is applied. These two ways may be described in more 

details as follows. 

Linear Squares Estimation for Eigenvectors 

When the eigenvalues are identified by other methods, the set of equations will be 

linear in the eigenvector and least squares estimation method can be used. Care has 

to be taken with weighting factors. The type of weighting depends on the 

characteristics of the measurements. For very lightly damped data , it is desirable to 

weight the off-resonance data because the amplitude is sharply peaked at the 

resonance and hence the most significant errors due to leakage and nonlinearity will 

occur at or near the resonances. Data near weak resonances may be more heavily 

weighted to help extract those modes. Areas of low coherence between excitation 

and response should be weighted very lightly. 

To include local modes in those measurements where they are active, is essential. A 

local mode is a mode for which the modal displacement is nearly zero at all points on 

the structure except in a very small region. Because the eigenvalues are fixed in the 

estimation processing, the more accurate the eigenvalues are, the more accurately 
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will the eigenvectors be obtained. 

Linearized Least Squares Algorithm 

There are many cases that the eigenvalues cannot be obtained accurately by other 

frequency domain methods and they are allowed to change in the different 

measurement positions. The Gauss-Newton procedure may be used to linearize the 

estimation process. The frequency response function is expanded into a Taylor series 

and the higher-order terms are neglected, assuming that the changes in the 

parameters from their initial values will be small. The expansion is 

(3.3-4) 

where eo is the vector of initial values of the modal parameters and ~ei is the change 

in the i-th parameter. 

The error functional to be minimized is 

(3.3-5) 

By setting the derivatives of the functional with respect to ei to zero, a set of linear 

equations for the values of ~ei are obtained. These are solved at each iteration step, 

and the vector of initial values is updated, 

(3.3-6) 

This processing is continued until the estimation satisfies some criteria. The 
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iteration procedure is devised so that any of the eigenvalues can be fixed and the 

remaining parameters iterated. If any mode starts to diverge, it can be fixed at the 

initial value or dropped from the list of eigenvalues. The most common form of 

divergence is for one mode to start to diverge. If this is allowed to continue, the 

whole process will diverge. The disadvantage of the method is that a very good set 

of initial values are needed and that measurement should have minimum distortion 

due to measurement errors. 

The curve fitting method can also be applied to single mode approximation. In the 

case of single mode approximation, it is assumed near the resonance, the effect of all 

other modes could be represented by a constant. Thus the frequency response 

function may be written as 

* rb ,Aik ,Aik 
+ l: ( . '} + . * ) + Zjk· 

r"#- r=r (liD- '\or) (liD- A.,) 
I 4 

(3.3-7) 

If reasonably good estimates for the coefficients of the "second" term are obtained by 

other methods, for instance, the method described in § 3.2, then the assumption is not 

necessary because it can computed for each frequency. 

When a set of measurement data hjfc( ro) near the resonance of ro,; is available, a true 

single degree of freedom behavior can be adjusted as 

* r.Ajk ,.Ajk 
I + I = h'f'(ro)-

(iro-A..) ("-A.*) Jk r1 liD r; 

* yik rb ,A ik ,A ik 
[- ,.,2 + l: ( (" -A. ) + . * ) + Zik]. 

u.1 r¢r- r=r liD r (lro-A.,) 
I 4 

(3.3-8) 
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The methods described in§ 3.2 may be used to obtain better estimates to the modal 

parameters for mode r. The procedure can be repeated iteratively for all the modes in 

the range of interest as many times as is necessary to obtain convergence to 

acceptable answers. In the case of strong coupling, the enhancement can be 

significant. 

§ 3.4 TIME DOMAIN MODAL IDENTIFICATION METHODS 

As mentioned in the general review, the frequency domain methods have the 

limitation that they cannot identify the very closely spaced modes, and they suffer 

from coupling of the modes which often occurs when the dampings are very heavy. 

To overcome these disadvantages, on one hand, the frequency domain methods have 

been used to attempt and overcome this problem. On the other hand, the time domain 

methods have developed rapidly because of computer advances. These time domain 

methods use time domain response data, or excitation and response data together to 

identify modal parameters. In contrast with the frequency domain methods, the 

emphasis of the time domain methods is more concentrated on the extraction 

computational procedures. The main time domain modal identification methods 

developed recently are discussed as follows. 

Complex Exponential Algorithm 

The time domain data for the complex exponential algorithm is a set of impulse 

response functions of a vibrating structure system. As indicated in Eqn. (2.5-25), the 

element of impulse response function matrix can be written as 

(3.4-1) 
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where Ar are the eigenvalues related to natural frequencies and damping ratios of a 

vibrating structure. rAjk are the modal constants for the nh mode and t is the 

sampling time point. The basic equation for the complex exponential algorithm 

derived from the Prony method is 

'1N 
"'£arhjk(r) = 0 (3.4-2) 
r=O 

where a'lN = 1 and ar for r = 0, 1, ···, 2N are to be determined. 

Rearranging Eqn. (3.4-2) and collecting the impulse response functions for 

t = 0, 1, 2, ···, 4N -1, the full set of equations for the unknown ar are obtained 

" Ha=-b 

where 

H= 

a= 

and 

.. hjk(2N-1) 

.. hjk(2N) 

(3.4-3) 

(3.4-4) 

(3.4-5) 
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" h= 

hjk(2N) 

hjk(2N+1) 
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(3.4-6) 

This equation can be solved directly to determine the values of ao, ah ···, a2N-l 

which are substituted into the polynomial equation to compute the poles ai 

(3.4-7) 

The equation is solved for the poles ai which are used to compute the natural 

frequencies and damping ratios by equation ai = eA.; LV. 

Finally, the modal constants 1Aik• 2Ajkt ... , 2NAjk can be calculated by the following 

equation 

VA=h (3.4-8) 

where 

1 1 .. 1 

(ll <l2 .. fl']N 

V= ay a~ .. ak (3.4-9) 

2N-1 
(ll 

2N-1 
(l2 .. (l~-1 

1Ajk 

2Ajk 

A= 3Aik (3.4-10) 

2NAjk 
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and 

hj~c(O) 

hj~c(1) 

h = hj~c(2) 
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(3.4-11) 

To use this algorithm, it is necessary to have a set of impulse response data as 

indicated in Eqns. (3.4-4), (3.4-6) and (3.4-11) and the expected number of modes 

contained in these data. The advantage of the complex exponential method is that 

the nonlinear solution for the eigenvalues is obtained in a straightforward manner. 

The modal coefficients can be directly determined, as the case with frequency 

domain methods, when the eigenvalues are estimated. 

The number of modes contained in the impulse data can be determined by computing 

the rank of the coefficient matrix used in calculating parameters ar. Theoretically, 

when the specified number of modes exceeds the actual number of modes the matrix 

will be singular. However, because noise exists, the matrix will not be singular even 

though the specified number of modes exceeds the number of modes in the data. 

Hence, judgement must be used as to how the determinant of the matrix should be to 

zero. Despite this limitation, the procedure is a very useful one. 

A further method to determine the number of modes is to use different segments of 

the impulse response to compute the mode constants. The variance between the 

computed modal constants can be used to distinguish the true modes from noise, or 

computational, modes. 

The main disadvantage of this method is that a new set of eigenvalues is obtained for 
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every measurement, while in theory, the eigenvalues are the global properties of the 

structure. Any one of these sets will fit the data to close limits. From a plot of curve 

fit data, it may not be possible to distinguish the difference between the computed 

eigenvalues. Further, since the impulse response is the inverse Fourier 

transformation of the frequency response, the truncation of the frequency response 

may cause the distortion error in the impulse response data. It is also rather sensitive 

to noise since it has no inherent smoothing. 

In order to overcome some shortcomings of the method, a least squares estimate 

version was developed. In this version, more measurements are taken into account in 

the computing process. Hence, Eqn. (3.4-3) can be solved by any least squares 

estimate method. When coefficients a t. a 2, ... , a 2N _1 are computed, a set of 

impulse response functions at more time points is used and the least squares estimate 

method is also applied to Eqn. (3.4-8) to determine the modal constants 

tAik• 2Aik• ... , 2NAjk· 

The main advantage of this version is that it has the least squares elimination of 

noise and weighting can be associated with the least squares estimate. All of the 

measurements or any combination of measurements can be used to determine 

overall system modes by this version. In general, this version does a very good job 

of generating a set of eigenvalues for a structure. However, a different exciter 

position may generate a different set of eigenvalues and eigenvectors. 

Ibrahim Time Domain Method 

The Ibrahim Time Domain Method (lTD) uses free decay response as basic data to 

identify the modal parameters of a vibrating structure system. With consideration of 

measurement noise, the free decay response functions are linear combinations of the 
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modal parameters of the structure as shown in Eqn. (2.5-26) 

2n 'A;t 
y(t) = I:e ·'IIi+ w(t) (3.4-12) 

i=l 

where the "''i is the complex mode shape and Ai is the eigenvalue which is related to 

the natural frequency and damping ratio of the vibrating structure under 

consideration, w(t) is the noise associated with the measurements . 

.... 
In the lTD algorithm, two systems response matrices 4l and 4l are formed such that 

fb= 

and 

.... 
fb= 

t(tt) Yt(t2) ·· Yt(t2r) 

Y2(t1) Y2(t2) ·· Y2r(t2r) 
='PA 

Yt(tt+Mt) Yt(t2+&1) •· Yt(t2r+At1) 

Y2(tt+Att) Y2(t2+&1) ·· Y2r(t2r+&1) 

(3.4-13) 

.... 
='PA (3.4-14) 

where r >nand Yi(tj) is the free decay response of the i-th measurement at time ti 
.... 

which is composed of n structural modes and their conjugates. Matrix 'P has the 

column vectors of 'Vi = e A;llt 1 'IIi. 

The two response matrices are then used in the equation 
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A 

Aflt=flt (3.4-15) 

to solve for A. When A is obtained, the eigenvalue problem 

(3.4-16) 

is then solved where the eigenvector V is the modal vector of the structure and the 

eigenvalue a can be related to the structure's eigenvalues A. by an exponential 

function a= e Mt 1 
• Finally the Mode Confidence Factors are computed and used to 

separate structural modes from noise, or computational, modes arising from use of an 

oversized identification model. 

Poly Reference Method 

The Poly Reference method also implements free decay responses but such 

responses are obtained from inverse FFf of the transfer functions. This algorithm 

was chosen to take advantage of the possible averaging of the FFf functions, thus 

reducing the noise levels in the computed time functions. Such reduction in noise 

level will require smaller identification models than the lTD method and, in turn, 

less computer storage and execution time. To conserve memory, only the 

eigenvalues are used to be computed from which the natural frequency and damping 

ratio are determined. The mode shape is calculated from the basic free decay 

response function in Eqn. (2.5-26) by a least squares estimation method. The 

polyreference method consists of the following steps. 
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1. The basic equation for the polyreference method is 

p 
~B(s)F(exp(At)f-s = 0. (3.4-17) 
s=l 

In order to obtain the estimation of B(i), the following equation is formed 

where 

Yi(p-1) Yi(p) 

Yi(p-2) Yi(p-1) ··· 

(3.4-18) 

(3.4-19) 

Ti = (3.4-20) 

Yi(O) Yi(1) 

and 

B = [8(1) 8(2) ··· B(p)]. (3.4-21) 

The equation is usually overdetermined and thus its least squares solution can 

be obtained for B(i). 

2. To determine the natural frequency and damping ratio, Eqn. (3.4-17) is 

multiplied by ei, the vector of all zeros except for a one in position i to obtain 

[ fB(s)af-s]Fi =0 
s=O 

(3.4-22) 

where ai = el..tt is the ith diagonal element of exp(At), and Fi is the ith row of 

F. 
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3. A solution of the equation 

p 
I:B(s)af-s = 0 (3.4-23) 

s=O 

detennines ai. These ai obtained are then substituted into Eqn. (3.4-22) and a 

complete set of mutually orthogonal vectors Fi can be found by solving Eqn. 

(3.4-22). 

4. The natural frequency and damping ratio can be computed using the relation 

'A.;t 
ai =e . 

5. The mode shapes then can be found by solving the equation 

(3.4-24) 

where Xi(O) is the system state variable at time zero. 

FFI' algorithm transfers the time domain records into frequency domain data and 

these spectra are used to compute frequency response function. In the polyreference 

method, the frequency function is transformed back to the time domain. Errors 

arising from such transformation need to be investigated. Effects of leakage and 

frequency resolution on the identified results should also be studied. 
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Eigensystem Realization Algorithm 

The Eigensystem Realization Algorithm was developed on the basis of the principles 

of minimal realization theory introduced by Ho and Kalman (1965). The basic 

formulation of the method is started with the state representation of a finite

dimensional, discrete time, linear, time-invariant vibrating structure as represented in 

Eqn. (2.5-28) 

x(k+l) =Tx(k) + Af(k) (3.4-25) 

and observation equation 

y(k) = Cx(k). (3.4-26) 

Two special solutions to the state variable are the impulse response function 

Q(k) = CTk-1 A (3.4-27) 

and the initial state condition response 

(3.4-28) 

The minimal system realization is that when measurements y(k) are obtained, a set 

of constant matrices, [T A C], are constructed in terms of y(k) such that the 

identities of Eqn. (3.4-27) hold, and the order of T is a minimum. 

The algorithm commences by forming the following r xs block matrix 

Q(k) ··· Q(k+ts-1) 

QU1+k) QU1+k+t1) ··· QU1+k+ts-1> 
H,8 (k) = (3.4-29) 

QU,-1+k) QUr-1+k+t1) ··· QU,-1+k+ts-1) 
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From the state representation and observation equations, 

(3.4-30) 

with 

c 
c'ril 

Vr= (3.4-31) 

c'ri•-1 

and 

(3.4-32) 

V7 and Wi are the observability and controllability matrices, respectively. 

The implementation of the method is as follows. 

1. Factorize the block data matrix for k=l using singular value decomposition 

(3.4-33) 

where the columns of PN and A'{; are orthonormal and DN is diagonal 
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dt ... 0 0 0 

0 ... dn 0 0 
DN= 0 0 dn+l 0 (3.4-34) 

0 0 0 dN 

with monotonically non-increasing d; ( i=l, 2, ···, N) 

(3.4-35) 

2. DN is replaced by a diagonal matrix Dn that differs from DN only by 

truncation on dn+ 1, ···, dN. Correspondingly, matrices P n and An are obtained 

by deleting the last N-n columns of PN and AN, respectively. The matrix 

P nDnA~ is the closest one to H(O) in the sense of maximal signal to noise 

ratio. 

3. The reduced order realization of dimension n can be constructed by 

..!_ _..!_ 

Tk = Dn2 P~H(k)AnDn 2 , (3.4-36) 

(3.4-37) 

and 

(3.4-38) 
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where E~1 = [lm 0] and E~1 = [lp 0] with Im and lp being identity 

matrices of order m, and p and 0 a null matrix of appropriate dimensions. 

The advantage of this method is that it permits the inclusion of only good and 

stringently measured signals without losing capability. The usefulness of this 

capability is the potential to minimize the distortion of the identified parameters 

caused by noise. Apart from this, a judicious choice of data and their proper 

arrangement in the block matrix H(O) can also be used to minimize the 

computational requirements of the method. These efforts could substantially reduce 

the order of the matrix for a numerically large problem. 

Direct Parameter Model Identification Method 

The Direct Parameter Model Identification Method was developed by J. M. Leuridan 

et al. ( 1985). This method starts with a higher order matrix differential equation 

describing the forced response of a linear viscous damped vibrating structure 

f(t) represents the force excitation at the ni excitation locations and y(t) the response, 

in the presence of random uncorrelated noise, at the n0 response locations. The 

matrices Di and Qi have appropriate dimensions. 

Eqn. (3.4-39) is then discretized to yield the following difference equation 

(3.4-40) 
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Eqn. (3.4-40) is rewritten as 

XC=F+W (3.4-41) 

where 

cr =[Co C1 •·• C2n-tl (3.4-42) 

with 

C; = [A;+1 B;], (3.4-43) 

z"" Zn,+1 •• z n, 

xr= 
zrlfJ-1 Zn, •• Zn,-1 

(3.4-44) 

ZrlfJ-2n+1 Zn,-2n •· Zn,-2n+1 

with 

. _ {Yi-1} 
z,- f· ' 

' 
(3.4-45) 

(3.4-46) 

and 

(3.4-47) 
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The coefficient matrices C; can be estimated by any least squares estimate method 

from measurements f; and Yi using Eqn. (3.4-41). When impulse response function 

data are used, the following equation is used to represent the impulse response 

[zi-A]E(z)G(z) = B(z) 

with 

A1 A2 ·· A2n 

I 0 ·· 0 
A= 0 I ·· 0 

0 0 ·· I 

E(z)= B(z) = (At)-1 

I 0 

The mode shapes and eigenvalues can be computed as follows 

A 'I'= 'I'Z 

and the mode participated coefficients can be obtained as 

cl»i = lim (z-1 l'r1B(z) I;). 
Z-+Z; 

On the basis of the above theory, the implementation of the method is 

(3.4-48) 

(3.4-49) 

(3.4-50) 

(3.4-51) 

(3.4-52) 
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1. Determine the rank r of sampled correlation matrix Ryy (0) by a singular value 

decomposition such as 

R,,<o> = usur. (3.4-53) 

2. Using original or enhanced data sequences to estimate the coefficients 

matrices A; and B;. The enhanced data sequences H~ may be transformed 

from original data Hk as 

(3.4-54) 

where U, is the first rrows of matrix U. 

3. The modal parameters are calculated from the estimated matrices by Eqns. 

(3.4-47), (3.4-51) and (3.4-52). 

4. Structural modes are separated from the noise and computation modes by 

inspection of damping values, maximum residues and validity of reciprocity. 

Extended Kalman Filter - Weighted Global Iteration Procedure 

The basic algorithm for this procedure is a recursive process for estimating the 

optimal state of the structure, and the identified modal parameters are included in the 

state variable. The procedure may be summarized as follows. 

A general vibrating structure can be described by 

x(t) = f(x, t) + w(t) (3.4-55) 

with observation at time t = k!lt, 
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y(k) = Cx(k) + v(k) 

where 

x(k) = state vector at t = kilt 

y(k) = observation vector at t =kilt; 

v(k) = observation noise vector; 

w(t) = system noise vector and 

C = matrix associated with the observation. 

3-35 

(3.4-56) 

Then, the state vector x(k+l) and its error covariance matrix P(k+l) at time 

t = (k+l)At can be estimated recursively in light of y(k) as follows; 

(k+l)M 

i<k+l)=x<k>+ f r<i<i>. t)dt+K(k)[y(k)-ci<k>l 
kilt 

where the Kalman gain matrix K(k) is 

and 

P(k+ 1) = T(k)[l- K(k)C]P(k)TT (k) + V w· 

The state transition matrix T(k) can be evaluated approximately by 

CJ((x, t) 
T(k):::: I+ At[ :l lx=i(k)· 

ux· J 

(3.4-57) 

(3.4-58) 

(3.4-59) 

(3.4-60) 
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The extended Kalman fllter algorithm starts with the initial conditions, 

i(to) and P(to). to obtain i(t8 ) and P(t8 ). Then x(to) and P(to) are replaced by 

i(t8 ) and P(t8 ) and multiplied by a weight, W, and the algorithm is iterated until the 

values become stable. The stability and convergency of the estimated parameters are 

also estimated by the nature of the objective function, 9. The objective function is 

defmedas 

and 

- 1 N 
p = N "£'Yi 

where 

i=l 

s = number of sampling points of observations, 

N = dimension of observation vector y(k ), 

Xi = the ith component of the state vector iand 

Yi = the ith component of observation vector y. 

(3.4-61) 

(3.4-62) 

(3.4-63) 

The method can be used for the case of nonlinear structures and heavily corrupted 

observation data. The convergence for a nonlinear-hysteretic restoring force model 

was reported to be good by Hoshiya and Saito (1984). However, the degree of 

freedom of the structure being excited has to be decided in advance so that the 

Kalman fllter performs well. The reasonably accurate initial estimates of the modal 
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parameters are essential for the method. Weight matrix W is important for 

accelerating the estimation process and reaching a stable state. To determine the 

weight matrix W requires, however, the user's judgement and experience. 

Time Series Methods 

Time series methods for modal identification have been studied by many researchers. 

The basic idea is that the discrete time series sequence of uniformly spaced samples 

of a scalar white noise excited stationary linear differential equation can be 

represented as an auto-regressive and moving average model. That is, the model such 

as 

2n 2n 
.r, CliYt-i = .r, Pier-i , exo=Po=l (3.4-64) 
i :::() i :::() 

can represent an n-degree of freedom structural system that is representable by a set 

of ordinary differential equations excited by a vector white noise force. 

In Eqn. (3.4-64) the coefficients a1 , ... , a2n are the coefficients of a characteristic 

polynomial of the discrete time system. They are related to the damping and natural 

frequencies Tli and mi j = 1, ... , n of the structural system by 

2n 2n . n * .r, Clj~ _, = .r, (~ - ~i )(~ - ~i ) (3.4-65) 
i=O i=l 

and 

(3.4-66) 
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where the ~i are the eigenvalues of the structure. 

The two stage least squares procedures are used to estimate the 2n AR and 2n MA 

parameters for the ARMA model, a~o ... , <l2n. JJ~o ... , 132,. The ARMA model can 

be written 

y=X8+e 

with 

y= 

X= 

Y2n+l 

Y2n+2 

-y2n 

-Y2n+l 

-Y2n+N-1 

.... 

e= 

.. -yl 

e2n+l 

e2n+2 

-e2n 
.. -y2 -e2n+l 

.. -Yn -e2n+N-1 

.. -el 

.. -e2 

.. -en 

The estimate 8, of 8, can be written as 

(3.4-67) 

(3.4-68) 

(3.4-69a) 

(3.4-69b) 
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(3.4-70) 

The covariances Cyy(k), Cee(k), Cye(k) and Cey(k) are required for the solution of 

Eqn. (3.4-70). The value of Cyy(k) for the observation data with noise may be 

written Cyy(k) = Cyy(k) + cr~ak. That is, the influence of the noise variation only 

changes the value of Cyy(k) in the Cyy(O) term. 

As the first least squares stage, a "long" but finite AR time series model 

approximation to the Yt data in the ARMA model can be written in the form 

(3.4-71) 

The values of 0'~ and ai, i = 1, ···, p may be computed by solving the linear set of 

Yule-Walker equations 

(3.4-72) 

and 

The coefficients of the impulse response model corresponding to the "long" AR 

model satisfy the recursive formula 

(3.4-73) 
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with ho = 1 and h; = 0 fori < 0. 

Finally, the Oye(k) will be calculated by 

(3.4-74) 

with hk = 0 fork < 0. 

For the white noise excitation, Cee(k) = a;ak. Since a; is computed in fitting the 

"long" AR model in Eqn. (3.4-71), Cey(k) = Cye(-k) is available from Eqn. (3.4-47) 

and Cyy(k) is given, all the information required for the computation of the ARMA 

parameters a;, 13;, (i = 1, ···, 2n) in the second least squares stage can thus be 

computed via the first least squares stage. 

As the second least squares stage, these covariances will be used in Eqn. (3.4-67) to 

estimate the parameters a1, ···, <X7.n, 131, ···, f32n. 
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Chapter 4 

MODAL IDENTIFICATION 

OF VIBRATING STRUCTURES 

§ 4.1 INTRODUCTION 

One service mathematics has rendered the human race; 

it has put common sense back where it belongs, on the 

topmost shelf next to the dusty cannister labeled 

"discarded nonsense". 

E. T.Bell 

This chapter investigates the modal identification of a linear damped vibrating 

structure using response and/or excitation data in the time domain. The basic 

equations for the theoretical modal analysis with consideration of nonproportional 
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damping are Eqns. (2.3-26) and (2.3-28) 

(4.1-1) 

and 

(4.1-2) 

In the modal analysis, the matrices Mo. Co and Ko are used to calculate the 

eigenvalues and eigenvectors and thus the natural frequencies ro; and damping ratios 

TJ;. In the modal identification, the matrices Mo. Co and Ko are not known. The 

modal parameters of the structure have to be identified from vibration test data in 

terms of responses y(t) of the structure and excitations f(t). For the task of modal 

identification, models describing the relationship of excitations, initial conditions 

and responses of the structure are needed. As mentioned in chapter 3, the use of 

different descriptions of the motion of the structure will lead to different methods of 

the modal identification. In this study, use is made of the ARMAX model 

(autoregressive and moving average with control excitation model) of a vibrating 

structure for the modal identification in the time domain. The ARMAX model may 

be represented by the following equation 

y(k) + G3 y(k-1) + ··· + Gty(k-s) 

= Rmf(k-1) + ··· + Rtf(k-m) + e(k) + Spe(k-1) + ··· + Ste(t-p) (4.1-3) 

This model describes the relationship of excitation f(k ), response y(k) and noise e(k) 

in the time domain and thus may be used for the modal identification in the time 

domain. Using the ARMAX model to identify the modal parameters of a vibrating 
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structure consists of two main steps. First, the coefficient matrices Gi are determined 

using observed responses y(k) and/or excitations f(k) in the time domain. Second, 

the modal parameters are extracted through the relationship of these matrices Gi with 

the modal parameters. Matrices Gi may be estimated by numerical estimation 

methods using test data. For the different situation, different numerical method 

should be used. In this chapter, the least squares estimation method is used to 

illustrate the calculation of matrices Gi. The major part of this chapter is devoted to 

establishing the relationships between the ARMAX model and other models of a 

vibrating structure and to develop two new methods for the modal identification 

based on these relationships. 

The first method uses the estimated matrices Gi from the ARMAX model to form 

the following matrix 

0 I ... 0 

0 0 ... 0 

G= .. (4.1-4) 

0 0 . .. I 

Gs Gs-1 ... Gt 

The eigenvalue problem of the matrix G is solved and the modal parameters of the 

vibrating structure are derived from the eigenvalues and eigenvectors of the matrix 

G. 

The second method is also based on the ARMAX model of a vibrating structure. 

The mode shapes are identified separately from identification of the natural 

frequencies and damping ratios. The natural frequencies and damping ratios are 

identified through the transfer function of a univariate ARMAX model of the 

vibrating structure. Once the coefficients Gi of the univariate ARMAX model of the 
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vibrating structure are determined, the transfer function of the ARMAX model is 

obtained as 

(4.1-5) 

The zeros of the transfer function are used to calculate the natural frequencies and 

damping ratios of the vibrating structure. The impulse response function matrix 

sequence is obtained from the multivariate ARMAX model. The mode shapes of the 

vibrating structure are derived from the impulse response function matrices with the 

identified natural frequencies and damping ratios. For the different character of 

excitations, the impulse response matrices may be obtained form different 

formulations describing the relationship of the impulse response function matrices 

with the coefficient matrices of the corresponding model of the vibrating structure. 

For convenience, the frrst method is called the direct method, while the second 

method is referred to as the indirect method in this thesis. Some types of excitation 

techniques, including controlled deterministic excitation, controlled random 

excitation and random ambient excitation, can be used with the both methods. Both 

methods are also suitable to the free decay response data, which is often used in the 

free vibration modal testing. 

The main advantages of both direct and indirect methods are as follows 

1. They are very flexible and may be used with free decay response test, control 

excitation test and ambient excitation test. Either deterministic or stochastic 

excitations may be used. 

2. The computation time may be saved, in particular, for the direct method. 
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3. The direct method is a general method and can be reduced to most present 

modal identification methods in the time domain. 

4. Closely spaced frequencies can be identified. 

The organization of this chapter is as follows. In § 4-2, an ARMAX model of a linear 

vibrating structure is developed from the response model of the structure in the time 

domain. The relationship of the coefficient matrices of the ARMAX model to the 

state transition matrix and output matrix of the structure is derived. § 4-3 is devoted 

to the development of the direct method for modal identification. The relationship 

between the eigen parameters of the structure and coefficient matrices of the 

ARMAX model is derived. This relationship forms the basis on which the modal 

parameters of the structure are identified. In § 4-4 the sampling impulse response 

model of a vibrating structure is introduced. The indirect method for modal 

identification is developed in § 4.5. The relationship between the eigenvalues of the 

structure and zeros of the transfer function of the ARMAX model is derived. The 

relationship of an AR model of the vibrating structure and its sampling impulse 

response model is also developed. The coefficient matrices of the AR model are 

identified using time domain data. These coefficient matrices are then used for the 

calculation of the impulse function matrices which are in turn used with the 

identified frequencies and damping ratios to determine the mode shapes of the 

vibrating structure. One of difficulties in modal identification is that the number of 

the modes of a vibrating structure which are excited in a test are not known in 

advance. § 4-6 discusses the methods for determination of the number of the modes 

being excited in a test from the observation data. In addition, some aspects related to 

the application of the proposed methods are also discussed. In § 4-7 numerical 

examples are presented to illustrate the implementation and usefulness of both 

developed methods. Finally, in§ 4-8, a short summary is presented. 
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§ 4.2 ARMAX MODEL OF A DAMPED VIBRATING STRUCTURE 

§ 4.2.1 Background 

In order to identify the modal parameters of a linear damped vibrating structure 

using its ARMAX model, the ARMAX model needs fli'St to be derived. The forced 

response model of a vibrating structure expressed in Eqn. (2.4-34) is used to achieve 

this goal. Generally excitation between the sampling intervals is unknown, therefore 

to calculate the integral in Eqn. (2.4-34) some approximations must be used. In this 

account the simplest assumption used is that the excitations remain constant during 

the interval, having a value between f(kt) and f((k+l)t) 

f(kt+t) =mf((k+l)t) + (1-m)f(kt) 09n<l 

Inserting m = 0 in the above equation 

f(kT +t) = f(kT) 

and Eqn. (2.4-44) can then be used and rewritten for the convenience of derivation 

x(k+l) = Tx(k) + Af(k) 

x(k+i) = Tix(k) + i~Ti-l-l Af(k+l) 
1=0 

(4.2-la) 

(4.2-lb) 

where x(k) is a 2n state vector of the vibrating structure, f(k) is a p excitation vector, 

and T(t) is a 2nx2n state transition matrix of the vibrating structure. 

T(t) = exp(At) and A(t) is a 2n xp matrix with 
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t 

A(t) = jT(t-t)Bd't 
0 
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where A is the system matrix of the vibrating structure and B is the input matrix 

(4.2-lc) 

When the excitations are generated by digital generator, the above assumption about 

the excitation is accurate. The other kind of approximation of excitation can also be 

used. It is noted that the different approximations of the excitation does not affect 

the identification of modal parameters. 

In practice, not all the state variables can be measured. Thus a measurement equation 

describing the relationship between measured responses and state variables is 

introduced. It is assumed that the first r displacements of the structure are measured 

and that the measurement is subject to measurement noise that also affects the 

measurements. It is assumed such effects can be lumped into an additive term n(k) at 

the output 

y(k) = Cx(k) + n(k) (4.2-2) 

where y(k) is the measured response, y(k) e R 7
, and n(k) is the measurement noise, 

n(k)eR 7 at time t = kT. The noise n(k) is assumed to be independent of x(k) and 

have zero mean E[n(t)] = 0 and finite covariance matrix E [n(t)nT (t-j)]=VB1f~O. V 

is an r xr real positive definite matrix, and Btj is the Kronecker symbol. Both x and 

n(k) are unmeasurable. The measurement matrix C is an r (mu 2n matrix and has the 

rankofr 
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C=[IO] (4.2-3) 

where I is a r xr unit matrix and 0 is an r x(2n -r) null matrix. 

There are many sources and causes for the noise term in Eqn. (4.2-2). Basically they 

are measurement noise because the sensors that measure the signals are subject to 

noise or drift 

Uncontrollable excitation that the structure is subject to is signals that have the 

character of excitation, but not controllable by the user, for example the ambient 

excitation to buildings. This uncontrollable excitation occurs in an unpredictable 

manner. The noise may in some case be separately measurable, but in the typical 

situation they are not noticeable only via their effect on the observed output. The 

assumption that the noise enters additively to the output implies some restriction. 

There is possibility that at times the measurements of input to the structure may also 

be noise corrupted. In such cases, the measured excitation values are regarded as the 

actual excitation, and their deviations from the true stimuli will be propagated 

through the structure and lumped into disturbance n(k ). 

A further assumption is that the vibrating structure is completely observable and 

controllable. The conditions are that the observability matrix 

c 
CT 

L2n= CT2 

has the rank of 2n and that the controllability matrix has the rank of 2n 

(4.2-4) 



Chapter4 Modal Identification of Vibrating Structures 4-9 

M2n = [ A TA ··· T2n-lA ]. (4.2-5) 

§ 4.2.2 Free Response Case 

It is convenient to assume first that the structure is freely vibrating and that there is 

no observation noise. The corresponding free response expression and observation 

equation are 

x(k + 1) = Tx(k) and y(k) = Cx(k) 

In this case, a 2n vector of augmented observations is defmed as 

y(k+l) 
y(k+2) 

y(s)= 

y(k+s) 

with rxs = 2n. 

The above free response and noise-free measurement expressions are inserted into 

this vector to obtain 

y(k+l) 
y(k+2) 

y(s) = = 

y(k+s) 

In a similar fashion, 

CT 

CT2 

x(k) = LTx(k), 

c 
CT 

(4.2-6) 
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y(k+2) CT2 

y(k+3) CT3 

x(k) = LT2x(k) y(s+l)= = (4.2-7) 

y(k+s+l) CTs+1 

Since L is nonsingular, its inverse exists. Replacing I by L - 1 L, y(s + 1) can be 

expressed in terms of y(s) 

y(s+l) = LT2x(k) = LTL-1LTx(k) = LTL-1y(s) (4.2-8) 
- -

Bydefming 

(4.2-9) 

Eqn. ( 4.2-8) becomes 

y(s+l) = Gy(s) (4.2-10) 
- -

It is important to note, regardless ofT, matrix G has the form 

0 I ... 0 

0 0 ... 0 

G= (4.2-11) 

0 0 ... I 

Gs Gs-1 ... G1 

This can be directly proved from the definition of the matrix G in Eqn. ( 4.2-9) 
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c c 
CT CT 

G=LTL-1 = T 

Eqn. ( 4.2-12) can be rewritten as 

G=LTL-1 = 

By assuming 

D= 

c 
CT 

E=c~-~ 

and 

F=C11, 

c cr1 

CT c 
I 

CTs-t CTs-2 

Eqn. (4.2-13) can be written as 

-1 

-1 

4-11 

(4.2-12) 

(4.2-13) 

(4.2-14) 

(4.2-16) 

(4.2-17) 
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(4.2-17) 

Letting 

[Fl-1 D = [ F_l D-1 ] , (4.2-18) 

then 

(4.2-19) 

That is 

(4.2-20) 

and 

(4.2-21) 

Substituting Eqn. (4.2-18) into Eqn. (4.2-17) and considering Eqns. (4.2-20) and 

(4.2-21) yield 

(4.2-22) 

That is 
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0 I ... 0 

[0 I l 0 0 ... 0 

G- - .. .. 
- EF_t ED_t -

0 0 ... I 

Gs Gs-1 ··· Gt 

Introducing the observation noise, Eqns. (4.2-6) and (4.2-7) are rewritten as 

y(s) = LTx(k) + !!(s) 

and 

y(s+l) = LT2x(k) + !!(s+l) 

with 

n(k+l) 
n(k+2) 

!!(S) = 

n(k+s) 

and !!(s+l) = 

Thus Eqn. (4.2-10) becomes 

y(s+l) = Gy(s) + !!(s+l)- G!!(s) 
- -

In matrix form, Eqn. (4.2-27) is written 

n(k+2) 
n(k+3) 

n(k+s+l) 

4-13 

(4.2-23) 

(4.2-24) 

(4.2-25) 

(4.2-26) 

(4.2-27) 



Chapter4 Modal Identification of Vibrating Structures 4-14 

y(k+2) 0 I ... 0 y(k+1) n(k+2) 

y(k+3) 0 0 ... 0 y(k+2) n(k+3) 

= + 
y(k+s) 0 0 ... I y(k+s-1) n(k+s) 

y(k+s+1) Gs Gs-1 ··· G1 y(k+s) n(k+s+1) 

0 I ... 0 n(k+1) 

0 0 ... 0 n(k+2) 

- .. .. (4.2-28) 

0 0 ... I n(k+s-1) 

Gs Gs-1 ... G1 n(k+s) 

Expanding the equation and extracting the last row yield 

y(k+s+1) = G8 y(k+1) + ··· + G1y(k+s) 

+ n(k+s+1)- G8 n(k+1)- ···- G1n(k+s) (4.2-29a) 

Without loss of generality, k can be assumed to be zero and hence 

y(s+1) = G8 y(1) + ··· + Gty(s) + n(s+1)- G8 n(1)- ···- Gtn(s) (4.2-29b) 

Generally, Eqn. (4.2-29b) can be written as 

y(k+s+1) = G8 y(k+1) + ··· + Gty(k+s) 

+ n(k+s+1) + S8 n(k+1) + ··· + S1n(k+s) (4.2-30a) 

or dropping k 

y(s+1) = G8 y(1) + ··· + Gty(s) + n(s+1) + S8 n(1) + ··· + Stn(s) (4.2-30b) 
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This model is called the auto-regressive and moving average (ARMA) model of the 

vibrating structure. 

Assuming 

e(s+l) = n(s+l) + Stn(s) + ··· + Ssn(l) (4.2-31) 

then Eqn. (4.2-30b) can be written in more compact form 

y(s+l) = G1y(s) + ··· + Gsy(l) + e(s+l) = Gy + e(s+l) (4.2-32) 

where 

The form in Eqn. (4.2-32) is not convenient for using different groups of data and 

can be transformed into the following form by the Kronecker multiplication and 

column operation on matrices 

y(s+l) = yT (s)O + e(s+l) (4.2-33) 

where Y (s) is a (2n xr) x r matrix 

[
y(l)l 

Y(s)= : ®I, 
y(s) 

(4.2-34) 

and 0 e R2nxr, 0 =column [ Gs Gs-1 ··· Gt ] 
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The operator ® is the Kronecker multiplication of matrices and the operator column 

indicates the column operation on a matrix. The details of their definition may be 

referred to Appendix 4A. 

§ 4.2.3 Forced Response Case 

When control forces or ambient disturbances are applied to the vibrating structure, 

the forced response model of the structure in Eqns. (4.2-la) and (4.2-lb) is used 

directly to derive the ARMAX model of the vibrating structure for modal 

identification. To this end, it is convenient to assume the system is noise free and 

only control forces are applied to it. Thus the following augmented vectors are 

obtained 

y(s+l)=[ yT(k+2) r(k+3) ··· yT(k+s+l) l, 

!(s) = [ fT (k+l) f (k+2) ··· f (k+s) ]T, 

(4.2-35) 

where y(i)eR 7
, f(i)eRP, y(s)eRsxr and !(s)eRsxp. 

Considering Eqns. (4.2-la) and (4.2-2) y(s) and y(s+l) may be expressed as 
- -

y(s) = LTx(k) + Q!(s-1) (4.2-36) 

where Q is an (s xr) x (s xp) lower triangular matrix 
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CA 0 ··· 0 

CTA CA ··· 0 
Q= (4.2-37) 

CT'-1 A CT'-2 A ··· CA 

and 

[
f(k)l 

!(s+l) = LT2x(k) + D !_(s) (4.2-38) 

where D is an (s xr) x ( (s + 1 )xp) matrix 

CTA CA 0 ··· 0 

CT2A CTA CA ··· 0 
D= =[ LTA Q] (4.2-39) 

with (L TA) being an (s xr) x p matrix 

LTA= (4.2-40) 

CT'A 

The relationship between augmented vectors y(s+l) and y(s) can be derived as 
- -

follows 
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y(s+1) = LT2x(k) + LTAf(k) +Qf(s) 

= LTITx(k) + LTAf(k) + Qf(s) 

4-18 

(4.2-41) 

Since the observability matrix L is nonsingular, I is to be replaced by L - 1 L and Eqn. 

(4.2-41) becomes 

y(s+1) = LTL-1LTx(k) + LTAf(k) + Qf(s) 

= GLTx(k) + LTM(k) + Qf(s) 

where G = LTL-1 as defmed in Eqn. (4.2-9). From Eqn. (4.2-36) 

LTx(k) = y(s)- Qf(s-1) 

Inserting Eqn. (4.2-43) into Eqn. (4.2-42) yields 

y(s+1) = Gy(s)- GQf(s-1) + LTM(k) + Qf(s) 
- -

= Gy(s)- GQf(s-1) + GLAf(k) + Qf(s) 

= Gy(s)- G(Qf(s-1)- LAf(k)) + Qf(s) 

(4.2-42) 

(4.2-43) 

(4.2-44) 

The expression Qf(s-1)-LAf(k) in the parenthesis of the second term of Eqn. (4.2-

44) can be written 

CA 0 ... 0 f(k) CA 0 ··· 0 f(k) 
CTA CA ... 0 f(k+1) CTA 0 ··· 0 f(k+1) 

CT8
-

1 A 0 ··· CA f(k+s-1) 
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= 

0 0 
0 CA 

0 
CA 
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... 0 

... 0 
f(k) 
f(k+l) 

0 CTs-2A CTs-3 A ··· CA f(k+s-1) 

0 
CA 

0 
CA 

... 0 0 

... 0 0 
f(k+l) 
f(k+2) 

4-19 

= ~~~ 

CTs-2A CTs-3A ··· CA 0 f(k+s) 

The coefficient of the second term ofEqn. (4.2-44) can then be written as 

G 

= 

= 

0 
CA 

0 
CA 

... 0 0 

... 0 0 

CTs-3 A CTs-4 A ··· 0 0 

CTs-2 A CTs-3 A ··· CA 0 

0 I ... 0 0 
0 0 ... 0 CA 
.. .. 

0 ... 0 

CA ... 0 

0 0 ... I CTs-3 A CTs-4 A ··· 0 

0 
0 

0 
Gs Gs-1 ... G1 CTs-2 A c~-3 A ··· CA 0 

CA 
CTA 

0 
CA 

... 0 

... 0 
0 
0 

CTs-2 CTs-3 A ··· CA 0 
s-1 s-2 
:EGiCTs-i-1A :EGiCTs-i-2A ··· G1CA 0 
j=1 j=l 

(4.2-46) 

Combining the coefficient expressed in Eqn. ( 4.2-46) and that of the third term 
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expressed in Eqn. (4.2-37), Eqn.(4.2-44) becomes 

y(s+l) = Gy(s) + R!(s) (4.2-47) 
- -

where R is an (s xr) x (s xp) matrix 

0 0 ... 0 

R= 0 0 ... 0 (4.2-48) 

with R; being r xp matrix and 

R1= CA 

. i-1 . 
R; = CT'-1 A- l: GiCTi-J-1 A for i = 1, 2, ···, s. 

j=1 

Expanding Eqn. ( 4.2-47) and considering the last row of the expansion, an ARX 

model of the linear vibrating structure is obtained 

y(k+s+l) = G9 t(k+1) + ··· + G1y(k+s) + R9 f(k+1) + ··· + R1f(k+s) (4.2-49) 

for s = 1, 2, ···, N. 

Shifting the observation starting time to k = 0, k is eliminated and the ARX model in 

Eqn. ( 4.2-49) is thus rewritten as 

y(s+1) = G9 y(1) + ··· + G1y(s) + R9f(1) + ··· + R1f(s) (4.2-50) 

for s= 1, 2, ···,N. 
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When the observation noise is included, the following model can be derived in a 

similar way to the case of free response 

y(s+1) = G8 y(1) + ··· + G1y(s) + R8 f(1) + ··· + R1f(s) + e(s+1). (4.2-51) 

In matrix form 

y(s + 1) = Qz(s) + e(s + 1) (4.2-52) 

where 

and 

Eqn. (4.2-52) is not convenient form to use for different group of data and may be 

transformed into the following form by the Kronecker multiplication and column 

operation 

y(s+1) = zT(s)8 + e(s+1) (4.2-53) 

where Z(s) is a (2nx(r+p)) x rmatrix 
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y(l) 

y(s) 
Z(s) = z(s) ® Ir = f(l) ® Ir 

f(s) 

and 8 e R2nx(r+p), 8 =column [ Gs ··· G1 Rs ··· R1 ] 

§ 4.3 MODAL IDENTIFICATION- THE DIRECT METHOD 

In this section, the direct method for modal identification is developed. This method 

solves the eigenvalue problem of the matrix G expressed in Eqn. (4.2-11) to 

determine the modal parameters of a vibrating structure. Hence the relationship of 

the eigen parameters of the matrix G and modal parameters of the vibrating structure 

is needed to be established, and in the first part of this section this relationship is 

derived. In the second part of the section the direct method for modal identification 

is developed. In the third part of this section the estimation of matrix G is discussed. 

In the last part of this section, the method is summarized in flow charts. 

§ 4.3.1 Relationship of Matrix G and Modal Parameters 

The derivation of the relationship of matrix G and modal parameters of a vibrating 

structure consists of three steps: (1) to establish the relationship between the 

eigenvalues and eigenvectors of the system matrix A and the modal parameters of 

the vibrating structure; (2) to establish the relationship between the state transition 

matrix T and the eigenvalues and eigenvectors of the system matrix A; (3) to derive 

the relationship between the eigenvalues and eigenvectors of matrix G and the modal 

parameters of the vibrating structure. 
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1. Relationship of Eigen Parameters of Matrix A and Modal Parameters of a 

Vibrating Structure 

By letting 'P and A be eigenvector matrix and eigenvalue matrix of the system 

matrix A, 

A'P='PA, (4.3-1) 

in which 

A.t 0 

~ 
A= (4.3-2) 

0 "-2n 

and 

'P = [ '1'1 '1'2 ... '1'2n ] (4.3-2.b) 

with A.i and 'l'i are the ith eigenvalue and eigenvector of the system matrix A, 

respectively. 

It has been shown in chapter 2 that the eigenvalue matrix A and eigenvector matrix 

'P may be related to the eigenvalues A.i and eigenvectors +i of the vibrating structure 

described 

(4.3-3) 

4t is the matrix with eigenvectors fi being its column vectors. A is the matrix with 

the eigenvalues Ai being its diagonal elements. 



Cbapter4 Modal Identification of Vibrating Structures 4-24 

2. Relationship between State Transition Matrix T and Eigen Parameters of 

Matrix A 

To determine the relationship of the state transition matrix T to the eigenvalue 

matrix A, and eigenvector matrix 'Y of the system matrix A, the transformation of 

variables are defined as 

x(t) = 'l'z(t). (4.3-4) 

Substituting this relationship into Eqn. (2.3-13) yields 

'l'z(t) =A 'l'z(t) + Bf(t) (4.3-5) 

and 

z(t) = v-1 A'l'z(t) + 'r1Bf(t). (4.3-6) 

Similar to the solution of Eqn. (2.2-13), the solution of equation (4.3-6) can be 

written as 

t 

z(t) = exp('Y-1 A'l't)z(O) + fexp('Y-1 A'Y(t- 't))'l'-1 Bf('t)d't. 
0 

From equation (4.3-1) 

(4.3-7) 

(4.3-8) 
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Hence 

t 

z(t) = exp(At)z(O) + Jexp(A(t- t))'r1 Bf(t)dt. 
0 

Expanding exp(At) in the exponential series gives 

(A.1 t)2 

2! 
[A1t ··· 0 ··· 0 l 

exp(At) =I+ 0 ··· Ait ··· 0 + 0 

0 ... 0 ... "-2nt 

0 

l
e~1 

••• 0 ··· 0 l 
= 0 ··· e'"'1 

••• 0 
1 

• 

0 ··· 0 ··· e~ 

0 

(A.it)2 

2! 

0 

Considering transformation defmed in equation (4.3-4), 

t 

x(t) = 'Pexp(At)'P-1x(O) + f'Pexp(A(t- t))'P-1 Bf(t)dt. 
0 

4-25 

(4.3-9) 

0 

0 +··· 

("-2nt)2 

2! 

(4.3-10) 

(4.3-11) 

By comparison of Eqn. (4.3-11) with Eqn. (2.4-34), the relationship of the state 

transition matrix T to the eigenvalue matrix A and eigenvectors 'I' of the system 

matrix A is established as 

T(t) = 'Pexp(At)'P-1 (4.3-12a) 
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Since matrix exp(At) is diagonal, the eigenvalue problem of the state transition 

matrix T(t) is 

T(t)'l' = 'Pexp(At) (4.3-12b) 

It means that the state transition matrix T(t) has the eigenvalues e'Att and the same 

eigenvectors as the system matrix A. 

3. Relationship of Eigen Parameters of Matrix G and Eigen Parameters of System 

Matrix A 

From Eqn. (4.2-9) G = L TL - 1, 

c c 
CT CT 

G = T. (4.3-13) 

CT<s-1) CT<s-1) 

Combining Eqn. (4.3-12) with Eqn. (4.3-13), and considering '1'-1 being 

nonsingular, the relationship of the matrix G to the eigenvalue matrix A and 

eigenvector matrix 'I' of the system matrix A can be expressed as 

C'l' 
C'l' exp (At) 

G 

C'l' exp ((s -1 )At) 

= 

C'l' 

(4.3-14) 
C'l'e.xp (At) 

e.xp(At). 

C'l'e.xp ((s-l)At) 

Since exp(At) is diagonal, Eqn. (4.3-14) represents an eigenvalue problem of matrix 

G. 
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§ 4.3.2 Modal Identification 

Eqn. (4.3-14) is the basis of the direct method for modal identification. It represents 

an eigenvalue problem for matrix G. The eigenvalues of matrix G are the same as 

those of the state transition matrix T in Eqn. ( 4.3-12b ). Since C is an r x2n matrix 

with the first r columns forming a unit matrix and 'I' is the eigenvector matrix of the 

system matrix A, the top sub-matrix C'l' of the eigenvector matrix in Eqn. (4.3-14) 

has the columns which are the vectors with the first r elements of the eigenvectors 'IIi 

of the system matrix A. 

By considering the relationship of the eigen parameters of the system matrix A to the 

modal parameters of the vibrating structure in Eqn. (4.3-3), the top sub-matrix C'l' 

represents the frrst r elements of the eigenvector +i of the vibrating structure. When 

the number of measurement stations is the same as the order of the vibrating 

structure, Eqn. (4.3-14) is reduced to 

(4.3-15) 

The upper halves of the eigenvectors of the matrix G are the eigenvectors of the 

vibrating structure. The eigenvalues of the matrix G are e 'A.;T, from which the 

eigenvalues A.i, and then natural frequencies mi and damping ratios Tti of the 

vibrating structure can be calculated. To this end, the eigenvalues e 'A.,T are 

symbolically written as 

"·T (--n.m. ± i'•'-""1--n~ )T CJ.i =e"'i =e 'II J ""'' 'II • (4.3-16) 

Thus 
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(4.3-17) 

and 

(4.3-18) 

The natural frequencies and damping factors can be determined as follows, 

(4.3-19) 

and 

'lli= (4.3-20) 

The relationship of the eigenvalue problem of matrix G to the eigen parameters of 

the vibrating structure can also be proved using matrix similarity theory as follows. 

From Eqn. (4.2-9) 

G=LTL-1 . (4.3-21) 

The matrices G and T are called similar and the relationship between G and T is 

called that of similarity. The characteristic equation of G is 
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lai-GI = lai-LTL-1 1 =0. (4.3-22) 

By replacing I by LL - 1 and factorizing inside the determinant sign: 

IL(ai-T)L-1 1 =0. (4.3-23) 

This equation can be further simplified as 

IL(ai-T)L - 1 1 = ILIIai-TIIL-1 1 = lai-TI =0 (4.3-24) 

since IL - 1 1 = 1 I IL I. This shows the characteristic equations (4.3-22) and (4.3-24) 

of G and T are identical and matrices G and T have the same eigenvalues. 

Furthermore, if Vi are the eigenvectors ofT then 

(4.3-26) 

This shows that the eigenvectors of G are L Vi, for i = 1, 2, ···, 2n and is coincident 

with the result in Eqn. (4.3-14). 

Once matrix G is found, the modal parameters of the vibrating structure can be 

extracted as indicated. 

§ 4.3.3 Estimation of Matrix G 

As previously discussed, the estimate of matrix G becomes very important for the 

modal identification of a vibrating structure and hence is briefly discussed in this 

section. There are some numerical estimation methods which can be used to 

evaluate the matrix G, however in this section the least squares estimate method is 
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used to develop two algorithms for estimation of matrix G. The first algorithm uses 

the ARMAX model in Eqn. (4.2-53). The second algorithm uses the model in Eqn. 

(4.2-47). 

Considering the frrst proposed algorithm, taking the observation at time 

t = 1, 2, ···, N and assuming that the response and excitation data are recorded from 

t = 0, i.e., k = 0, Eqn. (4.2-53) becomes 

y(N) = Z(N)8 + e(N) (4.3-27) 

where y(N) e Rr><N, e(N) e Rr><N and 

Z(N) is an (rxN) x (2nx(r+p)) matrix and 

Z(N) = [ Z(s) Z(s+1) ··· Z(s+N-1) ]T 

8 e R2nx(r+p) and 8 =column[ Gs Gs-1 · · · G1 Rs Rs-1 · · · R1 ]. 

... 
When the ordinary least squares estimate method is applied, the estimate 8 of 8 in 

the least squares sense is 

(4.3-28) 

The flow chart for the modal identification can then be summarized as follows. 
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Table 4.3-1 Flow Chart for the First Algorithm 

Form observation matrices and vectors 

y(N) = [yT(s+l) yT(s+2) ··· yT(s+N)t 

z(s)=[y(l) •· yT(s) fT(l) ·· fT(s)]T 

Z(s) = z(s )®Ir 

Z(N) = [Z(s) Z(s+l) ··· Z(s+N-l)]T 

... 

Estimate the matrices G s ••• G1 

0 = (Z(NlZ(N))-1Z(Nl y(N) 

0 = column[Gs Gs-1 ···G1 Rs Rs-1 ···Rd 

Fonn matrix G 

0 I ... 0 . 

0 0 ... 0 
G= ... . .. . .. ... 

0 0 ... I 

Gs Gs-1 ... G1 

t 
Solve eigenvalue problem of matrix G 

G(L'I') = a(L..,) 

t 
Extract the complex mode shapes 

•=cv 

' Extract the natmal frequency co and damping ratio 'Tl 
1 *) -'Tl·CO·=-ln (a·a· 

' ' 2T ' ' 

CO(~l- 'Tlt = -tan-1 I ' ~ I or -(1t- tan-1 I ' ~ I), for ai +a; < 0 
I fa--a~'[ I la--a~l l 
T I ai + ai I T I ai + ai I 

coi = "'(-'TliCOi)2 + (roi"'l - 'Tl~ )2 
1-'TliCOi I 

'Tli= 
COi 

4-31 
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The second algorithm can be directly developed from Eqn. (4.2-47), which is 

rewritten as 

y(s+l) = zT(s)8 + !(s+l) (4.3-29) 

where Z(s) is a (2nx(2n+sxp)) x 2n matrix 

[
y(s)l 

Z(s) = !<s) ® l2n (4.3-30) 

8 E R2nx(2n+rxp) 

8 = column [ G R ] . (4.3-31) 

Combining the observation at k = 1, 2, ···, N yields 

y(N) = Z(N)8 + !(N) (4.3-32) 

where 

y(N)=[ yT(s+l) y(s+2) ··· yT(s+N) ]T 
- - - -

and 
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Z(N) = [ Z(s) Z(s+l) ··· Z(s+N-1) f 

with N indicating the number of time data points. 

When the least squares parameter estimation method is used 

0 = (ZT (N)Z(N)r1 zT (N)y(N) . (4.3-33) 

In this case, the whole matrix G is estimated directly, while only the lower part of 

mathix G is estimated in the above algorithm. This algorithm is similar to the 

algorithm of the lTD method. In this algorithm matrix Z(n) consists of excitation 

and response data in the time domain, while in the lTD method this matrix consists 

of only free decay response data. If free decay response data is used with this 

algorithm, this algorithm will reduce to the algorithm of the lTD method. 

The following scheme for this algorithm can then be obtained as in Table 4.3-2. 

§ 4.4 SAMPLING IMPULSE RESPONSE 

As mentioned in chapter 2, a linear damped vibrating structure can be described by 

its impulse response model in terms of impulse response function H( 't) as follows 

00 

y(t) = I H('t)f(t-t)d't . 
't={) 

(4.4-1) 

Knowing H( 't) from 't = 0 to oo and knowing f(s) for s < t, the corresponding 

response y(s) for s < t can consequently be computed for any excitation. The 

impulse response is thus a complete characterization of the structure. 
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Table 4.3-2 Flow Chart for the Second Algorithm 

Form observab.on matrices and vectors 

y(N) = [yT(s+1) T(s+2) ·•• T(s+N)]T 

z(s)= [T(1) .. T(S) rT(1) .. tT(s)f 

Z(s) = z(s )®l2n 

Z(N) = [Z(s) Z(s+1) ... Z(s+N-1)]T 

Estimate the matrices G 

... 
8 = column[G R] 

Solve eigenvalue problem of matrix G 
G(L1f) = a(L1f) 

Extract the complex mode shapes 
+= C'lf 

Extract the natural frequency 0> and damping mtio 11 
1 *) _, ·m·=-ln (a·a · 

•u ' 2T ' ' 

1 I a.-a! I [ 1 I a.-a! I l 
O>(..J1-11t = Ttan-1 I ' ~I or T(1t- tan-1 1 ' ~I), for ai +a; < 0 

I ai + ai I I ai + ai I 

l-11iO>i I 
roi = v<-11imi>2 + <m('h - 11

2,. >2 11i = 
O>i 

4-34 
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In the typical data-acquisition mode- discrete time form, the y(t) can be observed at 

the sampling instants tk = kT, k = 1, 2, ··· 

00 
y(kT) = f H('t)f(kT -'t)d't . 

'C=() 

(4.4-2) 

The interval T is called the sampling interval. It is, of course, also possible to 

consider the situation where the sampling instants are not equally spread. Most 

often, in the computer or digital equipment control applications, the excitation signal 

f(t) is kept constant between the sampling instants: 

f(t) = fk, kT S t < (k+ 1 )T . (4.4-3) 

This is mostly done for practical implementation reasons, but it will also greatly 

simplify the analysis of the impulse response. Substituting Eqn. (4.4-3) into Eqn. 

(4.4-2) yields 

00 
y(kT) = f H('t)f(kT-'t)d't 

'C=() 

where 

00 rr 
= L f H('t)f(kT-t)d't 

1=1 't=(I-1)T 

00[ rr l 00 = :r, f H('t)d'tfk-1 = !,Hr(l)fk-1 
1=1 't=(I-1)T l=l 

(4.4-4) 
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li 

HT(l) = f H(t)dt . 
't=(l-l)T 

4-36 

(4.4-5) 

The expression in Eqn. (4.4-4) indicates the response at the sampling instants. Note 

that no approximation is involved in the excitation subject to the condition in Eqn. 

(4.4-3), and that it is sufficient to know the sequence HT(1) from 1=1 to oo in order to 

compute the response to the excitation. The relationship in Eqn. (4.4-4) describes a 

sampled-data model , and the matrix sequence HT(1) from 1=1 to oo is called the 

impulse response matrices of the structure. 

Even if the excitation is not piecewise constant and subject to the condition in Eqn. 

(4.4-3), the representation in Eqn. (4.4-4) might still be a reasonable approximation, 

provided f(t) does not change too much during a sampling interval. 

For convenience, Eqn. (4.4-4) is rewritten as 

00 

y(t) = :E H(k)f(t-k), t=O, 1, 2, ···, with H(O) =I (4.4-6) 
k=l 

When the excitation f(t) is the uncontrolled signal, the ARX model in Eqn. (4.2-50) 

becomes an AR model. By introducing a forward shift operator z and matrix 

polynomials 

s . 
G(z)=l- :EGiz-', (4.4-7) 

i=l 

s . 
R(z) = :ERiz-', and (4.4-8) 

i=l 
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H(z) =I+ l;H;z-i, 
i=I 
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(4.4-9) 

the AR model in Eqn. (4.2-50) and impulse response model in Eqn. (4.4-6) of the 

vibrating structure can be written as 

G(z)y(k) = R(z)f(k) (4.4-10) 

and 

y(k) = H(z )f(k) (4.4-lla) 

or 

y(k) = H(z )f(k )+e(k) (4.4-llb) 

where the measurement noise e(k) is involved. 

Premultiplying both sides ofEqn. (4.4-10) by R-1(z), 

R-1(z)G(z)y(k) = f(k). (4.4-12) 

co 

By defining D(z) = R-1(z)G(z) =I- l;D;z-i, Eqn. (4.4-12) can be written as 
i=I 

D(z)y(k) = f(k). (4.4-13) 

Premultiplying both sides ofEqn. (4.4-lla) by D(z), 
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D(z )y(k) = D(z )H(z )f(k) . (4.4-14) 

Comparing Eqn. (4.4-13) with Eqn. (4.4-14) yields 

D(z )H(z) =I. (4.4-15) 

By the convolution theorem, the time domain equivalent expression of Eqn. (4.4-15) 

is 

-}:DiHk-i = Iab (4.4-16) 
i:::Q 

where ak is the Kronecker symbol. By considering Ho = I and directly evaluating 

Eqn. ( 4.4-16), the following recursive time domain relations are obtained for 

calculation of impulse response function matrix sequence Hk from the coefficient 

matrix sequence Di of an AR model. 

-Ho=I, Hk = -}:DiHk-i fork= 1, 2, , .... (4.4-17) 
i=l 

Once Di are estimated from the AR model, the impulse response function Hk can be 

evaluated from the above recursive formulae. Note, since Hk = 0 for k < 0, the sum 

in Eqn. ( 4.4-17) requires less than k terms for the computation. The impulse 

response model in Eqn. (4.4-11) and AR model in Eqn. (4.4-13) of a vibrating 

structure contain an infmite number of parameters. In practice, however, only a 

finite number of measured data will be available for the estimation of a finite number 

of parameters. By assuming their orders are M, H(z) in Eqn. (4.4-11) and D(z) in 

Eqn. (4.4-13) can rewritten as 
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M . M . 
H(z)=l+ I:H;z-' and D(z)=l- I:D;z-'. (4.4-18) 

i=l i=l 

Therefore the estimation of the impulse response function is reduced to the 

estimation of the coefficient matrices of the AR model in Eqn. (4.4-13). 

When the measurement noise is included, Eqn. ( 4.4-11 b) becomes 

y(k) = H(z)f(k) + e(k). (4.4-19) 

Correspondingly, Eqn. (4.4-13) can be written as 

D(z)y(k) = f(k) + D(z)e(k). (4.4-20) 

Similar procedures can be applied to Eqn. (4.4-20). 

§ 4.5 INDIRECT METHOD FOR MODAL IDENTIFICATION 

The indirect method for modal identification is presented in this section. This 

method consists of four main steps. 

(i) estimation of the coefficient matrices of the AR model in Eqn. (4.4-13). 

(ii) calculation of the impulse response function matrices from the estimated 

coefficient matrices of the AR model. 

(iii) identification of the eigenvalues of the vibrating structure. 

(iv) identification of the eigenvectors of the vibrating structure from the impulse 

response function matrices and eigenvalues. 
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§ 4.5.1 Estimation of Coefficient Matrices of AR Model 

For the different excitations, different methods should be used to estimate the 

coefficient matrices of the AR model. Three cases of excitation are considered for 

the determination of the AR model: white noise excitation, general random 

excitation and control deterministic excitation. 

1. White Noise Excitation 

Some excitation such as ambient excitation can be considered as a white noise 

sequence. Assuming excitation f(k) is a multivariate white noise sequence 

independent of the response y(k) with zero mean and covariance matrix oaij' the 

coefficient matrix sequence D(k) of the AR model may then be estimated by 

solution of the Yule-Walker equation. Since the observation error e(k) is white 

noise, D(z )e(k) can be expressed as another white noise sequence 

D(z)e(k) = e(k). (4.5-1) 

The AR model in Eqn. (4.4-20) may then be written as 

D(z )y(k) = w(k ), w(k) = f(k) + e(k ), (4.5-2) 

where w(k) is a white noise sequence. The solution is achieved by postmultiplying 

Eqn. (4.5-2) with yT (k-j) and taking the ensemble average to obtain the important 

recursive relation for the correlation matrix Rk 

M 
Rk = :£DiRk-i' 

j=l 

(4.5-3) 
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where Rk = E [y(k) y (k-j)], for k = 1, 2, .. , M 

Eqn. (4.5-3) can be expressed in more compact block matrix form 

R=RD (4.5-4) 

where 

Ro R1 ... ~-1 

Rf Ro ... RM-2 
R= (4.5-5) 

RL-1 RL-2 .. Ro 

D= and (4.5-6) 

R= (4.5-7) 

Matrix R is positive definite, its inverse exists and the estimate of matrix D is 

(4.5-8) 
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(4.5-9) 

In estimation, Eqn. (4.5-4) is usually not used, instead the Levinson algorithm is 

used since it is a fast algorithm and easy to use. The Levinson algorithm can be 

derived as follows, Eqn. (4.5-4) can be expressed as 

Ro R1 ... RM-1 nr R1 

Rf Ro ... RM-2 n¥ R2 
= (4.5-10) 

Rl't-1 Rl't-2 .. Ro nM RM 

Eqn. ( 4.5-10) can be rewritten as 

-Ro -R1 ... -RM I 
M 

-Rf Ro ... RM-1 nr 0 

-RI Rf ... RM-2 n¥ = 0 (4.5-11) 

-Rl't Rl't-1 Ro nM 0 

Since Rf = Ri, the last M rows and M columns of Eqn. ( 4.5-11) are identical to Eqn. 

(4.5-10), while the first row is a definition ofVn. 

Suppose that Eqn. (4.5-11) has been solved for Df'/ and a solution for a higher order 

model in Eqn. (4.5-2) with order M + 1 is sought. The estimates for Df+1 will then be 

defmed analogously to Eqn. ( 4.5-11 ). To fmd this, it is noted 
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-Ro -R1 ... -RM -RM+1 I VM 
-Rf Ro ... RM-1 RM Df 0 

= (4.5-12) 

-Rl't Rl't-1 Ro R1 D~ 0 

-RM+1 RM Rf Ro 0 OM 

Here the first M + 1 rows are identical to Eqn. ( 4.5-11 ), while the last row is a 

definition of OM. The defmition of D~+1 
looks quite like Eqn. (4.5-12), the only 

difference being that all but the frrst row of the right side should be zero. A 

moment's reflection on Eqn. (4.5-12) shows that it can be written as 

-Ro -R1 ... -RM -RM+1 0 OM 
-Rf Ro ... RM-1 RM D~ 0 

= (4.5-13) 

-RL RM-1 Ro R1 nf 0 

-RM+1 RM Rf Ro I VM 

By postmultiplying Eqn. (4.5-13) by PM=-Vk}-Chf and adding to Eqn. (4.5-12) 

yields 

-Ro -R1 .. -RM -RM+1 I M+ChfPM 
-Rf Ro .. RM-1 RM Df+D~PM 0 

= (4.5-14) 

-RM RM-1 .. Ro R1 Di1+DfPM 0 

-RI't+1 RL .. Rf Ro PM 0 

This is the defining relationship for D~+1 • Hence 
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" 
VM+l =VM+<lMPM, 

" 1 PM=-VM- <!M, 

M T" T <1M= l: (RM+l-k) Dk- RM+l · 
k=l 

forM= 1, 2, ... 

Starting with the initial conditions 

and 

· · · htfi ani n" M+tfr n" M 1t 1s strmg orw to compute k om k • 

2. General Random Excitation 

4-44 

(4.5-15) 

(4.5-16) 

In general, a random excitation is not a white noise sequence, hence the AR model in 

Eqn. (4.4-20) is not directly estimated by Levinson algorithm. In this case, the 

impulse response function matrix may be evaluated from the coefficient matrices of 

another modified AR model. 

The following proper finite order impulse response model may be used in this case to 

approximate the infmite model in Eqn. ( 4.4-11 b) with sufficient accuracy. 

s . 
y(k)=H(z)f(k)+e(k), H(z)=l+ l:H;z-', (4.5-17) 

i=l 

where e(k) is an r-variate measurement noise sequence which is assumed to have a 

rational spectral density, and hence may be whitened by multivariate auto-regressive 
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form 

s . 
e(k)=Ft(z)e(k)+wt(k), Ft(z)= .EFilz-'. (4.5-18) 

i=l 

Fit are r x r coefficient matrices and w1 (k) is an rx1 white noise sequence with zero 

mean and covariance matrix .Ot. 

The excitation is assumed to be given by an AR model as 

s . 
f(k) = F2(z)f(k) + w2(k), F2(z) = l:Fi2z-'. (4.5-19) 

i=l 

where Fi2 arep xp coefficient matrices and w2(k) is anpx1 white noise sequence 

with zero mean and covariance matrix ~. representing the measurement noise for 

f(k). 

Introducing augmented vectors 

[
y(k)l [w1 (k)l [e(k)l 

q(k)= f(k) ' w(k)= w2(k) ' l;(k)= f(k) ' (4.5-20) 

Eqns. (4.5-17), (4.5-18) and (4.5-19) can be assembled into 

[
0 H(z)l rl (z) 0 l q(k) = 0 0 q(k) + l;(k) and l;(k) = 0 F

2
(z) l;(k) + w(k). (4.5-21) 

[nt o] 
The covariance matrix of w(k) is then .0 = 0 02 . 
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{ 
~~(z) 0 l} 

Premultiplying both sides ofEqn. (4.5-21) by I- l 0 F
2
(z) , 

~~ (z) [1- F1 (z)]H(z)l 
q(k) = l 0 F2(z) q(k) + w(k). (4.5-22) 

Defining 

_ [F1(z) [1-Fl(z)]H(z)]- q -i 
D(z)- O F ( ) - l:Diz , 

2 z i=l 
(4.5-23) 

Eqn. (4.5-22) reduces to an AR model 

q 
q(k) = l:Diq(k-i) + w(k). (4.5-24) 

i=l 

Since q(k) is measured, the coefficient matrix sequence Di of the AR model in Eqn. 

(4.5-24) can be estimated by following the same procedure as in the case of white 

noise excitation, as discussed in the preceding section. Once the coefficient matrix 

sequence Di is estimated, the impulse response function matrix sequence may be 

calculated using Eqn. (4.5-23). To this end, the matrix Di is partitioned 

~ill Di12] D·-
'- i21 Di22 ' 

(4.5-25) 

and compared with Eqn. (4.5-23), 
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(4.5-26) 

From Eqn. (4.5-26), the following recursive formulae is obtained 

(4.5-27) 

Eqn. (4.5-27) can also be written in element form such as 

s s 
hij(k) = di,j+s(k) + l: l: dim(l)hmj(k-1). (4.5-28) 

l=l m=l 

As a result, the relationship in Eqn. (4.5-24) can be used to estimate the coefficient 

matrix sequence Di and the recursive formulae Eqns. (4.5-27) or (4.5-28) may be 

used to calculate the impulse response function matrix sequence Hi. 

3. Control Excitation 

In the case of control excitation and white noise observation error, the impulse 

response model with a finite number of parameters in Eqn. ( 4.5-17) can be used 

directly with the least squares estimate algorithm to determine the impulse functions 

Hi. However, if the observation error is not white noise but has rational spectral 

density , the noise may be whitened as an AR process 

s . 
e(k) = C(z)e(k) + e(k), C(z) = l:Ciz-'. (4.5-29) 

i=l 

Hence, e(k) = (1- C(z))e(k). The transfer function I-C(z) implies the whitening 

filter for e(k ). Premultiplying this function on both sides of Eqn. ( 4.5-17) yields 
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y(k) = C(z)y(k) + B(z)f(k) + e(k), (4.5-30) 

m+s . 
B(z) = (1- C(z))H(z) = :r, Biz-' with Do= 0. 

i:::(} 

The least squares estimate can be applied to Eqn. (4.5-30) to obtain Bi and Ci and 

the estimate Hi can be computed by using the following relation 

A A A i-1 A A 

Hi= Bi + Ci + l:C1Hi-1• i~. 
1=1 

§ 4.5.2 Identification of Natural Frequency and Damping Ratio 

(4.5-31) 

In § 4.3, an eigenvalue problem of matrix G was introduced for the modal 

identification 

(4.5-32) 

The characteristic equation of matrix G is 

det(al- G)= 0 (4.5-33) 

Considering the structure of matrix Gin Eqn. (4.2-11) 

0 I ... 0 

0 0 ... 0 

G= (4.5-34) 

0 0 ... I 

Gs Gs-1 ... G1 

Eqn. (4.5-33) may be expanded as 
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s . 
det(l -_l;a-'Gi) = 0. (4.5-35) 

i=l 

When there is one measurement station, the observation matrix C takes the form 

c = [ 1 0 0 ... 0 ], (4.5-36) 

and the expansion in Eqn. (4.5-35) becomes 

2n • 
1- I:a-'Gi =0. (4.5-37) 

1 

On the other hand, the roots of the determinant of matrix polynomial G(z) are 

defmed as the poles of the ARMA model. The characteristic equation of matrix 

polynomial G(z) is 

s . 
det(l- I:Giz-') = 0. (4.5-38) 

i=l 

By comparison of Eqns. (4.5-35) and (4.5-38), the poles z of the ARMA model are 

equal to the eigenvalues a of matrix G. The eigenvalues of matrix G can therefore 

be determined by the poles of the ARMA model. Once the eigenvalue a is 

identified, the eigenvalue of the vibrating structure can be calculated by equation 

eAT= a. Assuming the order of the determinant of G(z) is 2n, then det(G(z)) can be 

expanded as 

(4.5-39) 



Chapter4 Modal Identification of Vibrating Structures 4-50 

From Eqn. (4.5-37) the det(G(z)) in Eqn. (4.5-39) is identical to the characteristic 

polynomial of the following matrix 

0 1 0 0 

G= 0 0 0 1 (4.5-40) 

G2n G2n-1 : G2 G t 

This means that det(G(z)) is the determinant of the transfer function of a univariate 

ARMA model of the vibrating structure. In the case of white noise random 

excitation and white noise observation error, the univariate ARMA model can be 

written as 

G(z)y(k) =F(z)u(k), (4.5-41) 

where 

2n . 2n . 
G(z) = 1-l:Giz-' and F(z) = 1 + l:Fiz_,. (4.5-42) 

i=l i=l 

u(k) is a white noise process, the sum of white noise excitation and white noise 

measurement error. 

Postmultiplying both sides of Eqn. (4.5-41) by y(k-t) and taking the expectation for 

k = 2n+1, 2n+2, ... , 2n+N and N>2n yields 
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Ry(2n) Ry(2n-1) ··· Ry(l) Gl Ry(2n+l) 

Ry(2n+l) Ry(2n) •·• Ry(2) G2 Ry(2n+2) 
= (4.5-43) 

Ry(2n+N-1) Ry(2n+N-2) ··· Ry(N) G2n Ry(2n+N) 

whereR,(t) is the covariance function of the actual measurementy(k) and the actual 

estimate of Ry('t), based on N measurement data, can be calculated as 

A 1 N+'t-1 
Ry(t) = N 1: y (k)y(k-t). 

k=r 
(4.5-44) 

In short form, Eqn. 4.5-43 becomes 

Rg=r. (4.5-45) 

The least squares estimate of the AR part g is then obtained 

(4.5-46) 

In the case of control excitation f (k) and white noise error w(k), det(G(z)) 

corresponds to the following univariate ARMA model 

2n . 
G(z)y(k) = E(z)f (k) + w(k), E (z) = I:Eiz-'. (4.5-47) 

i=l 

Assuming Assuming 
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+(k) = [y(k-1) y(k-2) ·· y(k-2n)l (k-1)1 (k-2) .. l(k-2n)t, (4.5-48) 

Eqn. (4.5-47) in short form is 

y(k) = +T(k)8 + w(k). (4.5-49) 

The least square estimate of the vector 8 is 

(4.5-50) 

where the 4nx4n matrix R and the 4n-dimensional column vector r are 

[

A A ] A R,R,, N 
R = A A = j_ l: +<k>+T (k), 

Rty Rt N k=l 

A 1 N 
r = N l: +(k)y(k). 

k=l 
(4.5-51) 

The entries of :R, and r will be of form 

A 1 N 
R;j = N ~y(k-i)y(k-j), 1~, j~n 

k=l 

(4.5-52) 

and similar sums of I (k-i)'/ (k-j) or I (k-i)·y (k-j) are used for the other entries 
A 

of R. That is, they consist of the estimate of the correlation functions of y (k) and 

l(k). 

The error of the estimate is 

.. 1 N 
8-0=R-1 N ~·(k)w(k). 

k=l 
(4.5-53) 
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When w(k) is a white noise sequence of independent random variables with zero 

mean values, then w(k) does not depend on events up to time k-1, and hence 

E ( +<k )w (k)) = 0. E ( +<k >+T (k)) = R is positive definite and thus nonsingular. The 
.... 

estimate 8 therefore converges to 8 as N tends to infinity. 

Care needs to be exercised when the observation noise is not white. In this case, the 

least squares estimate will not converge to the true values of Gi and Ei. To deal with 

this problem, by assuming the observation noise has a rational spectral density, the 

noise can then be expressed by an AR process of order, say, r, 

D (z)w(k) = e (k) (4.5-54) 

where e (k) is a white noise sequence. 

Premultiplying both sides ofEqn. (4.5-47) by D (z) yields 

D (z)G (z)y (k) =D (z)E(z)f (k)+e(k). (4.5-55) 

The least squares estimate algorithm can applied to Eqn. (4.5-55) to obtain estimates 

D (z )G (z) and D (z )E (z ), and are consistent since e (k) is white. However, 

D (z )G (z) is of order 2n +r and thus has 2n +r roots, of which r roots belong to the 

AR process D (z) of the colored noise. Since D (z )G (z) and D (z )E (z) have a 

common factor D (z) of order r, they haver common roots. The roots of D (z)E (z) 

are therefore also to be calculated and compared with those of D (z )G (z ). When 

some zeros of both parts are equal to each other, they are considered as roots of the 

noise AR part D (z) and can be eliminated. Since exact "equality" is not a realistic 

comparison, then, when the values of some roots of the two groups are almost equal 

to each other, they may be expected to belong to excessive modes rather than the 
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actual structural modes and thus can be eliminated. The remaining roots of D (z )G (z) 

will belong to G (z) and be taken as the poles of the ARMA model of the vibrating 

structure. 

For the free decay response data, a procedure similar to the case of white noise 

excitation and white noise observation error may be derived when the free decay 

response measurement errors can be considered as white noise sequence. 

As previously mentioned in § 4.3, the eigenvalues of matrix G have the form of 

e 'A.;T, from which the eigenvalues, or natural frequencies, and critical damping factors 

of the original structure can be calculated by Eqns. (4.3-16) to (4.3-20). 

§ 4.5.3 Identification of Eigenvectors 

Sampling is performed in the discrete time, a linear vibrating structure's response to 

any excitation has the Z-domain relationship 

y(z) = H(z)f(z) (4.5-56) 

where y(z) and f(z) are the Z-transform of the response and excitation sequences 

respectively. H(z) is the system transfer function and can be expressed by the poles 

e 'A.;M and residue matrix U i such as 

2n ui 
H(z) = L A-rM -1 , 

i=ll- e z 
(4.5-57) 

where matrix Ui = 'l'i''Vt with A.i and 'IIi being the eigenvalues and eigenvectors of 

the original structure, which are in general, complex. From discrete-time system 

theory, the corresponding impulse response function matrix sequence is the inverse 

Z-transform of the system transfer function, that is; 
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2n A.;At k 2n k 
Hk = ~U;(e ) = ~U;(a;) , (4.5-58) 

i=l i=l 

which, when extended to the full data set of N samples, gives 

Ho = U1 + U2 + ·· + U2n 

H1 = a1 U1 + <X2U2 + ·· + <X2,nU2n 
(4.5-59) 

Eqn. (4.5-59) can be used to estimate residue matrix U;. In practice, only one 

column of each residue matrix needs to be identified and only one column of the 

impulse response function matrices for the different time instants is required for 

identification. The k-th column of matrices H; and U; is then considered and from 

Eqn. (4.5-59) 

H=ur, (4.5-60) 

where 

1 al a~ .. al{ 

1<X2 a~ .. a~ 
r= (4.5-61) 

1 a2n a~ .. a'tn 

H = [ h~ hf ··· h~ ] (4.5-62a) 

and 
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U = [ ui u~ ··· ut, ]. (4.5-62b) 

The least square estimate of U is obtained as 

(4.5-63) 

From the estimated residue ~~~ = YiVik• the eigenvector of the vibrating structure 

corresponding to the eigenvalue Aj is .. i = u~llj!ik with Vik = ~. 

§ 4.6 SOME ASPECTS OF APPLICATION 

§ 4.6.1 Determination of the Order of the Test Structure 

Although it is known that the measured responses come from a linear vibrating 

structure, neither the parameters nor the degrees of freedom of the structure being 

excited are known. The ftrst step for processing the identification of the modal 

parameters of a vibrating structure therefore is to determine the degrees of freedom 

of the structure being excited, which is equivalent to the rank of the response 

measurement matrix. 

In order to achieve this goal, the following measurement matrix is formed 

y(l) y(2) 

y(2) y(3) 
Q(s)= 

··· y(s-1) 
... y(s) 

y(N) y(N+l) ··· y(N+s-2) 

(4.6-1) 

There are three methods to be recommended for determination of the degrees of 

freedom of the structure by use of the measurement matrix. The ftrst method is to 
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successively calculate the detenninant of the matrix based on the properties of the 

matrixQTQ, 

(4.6-2) 

-r-
where k represents the momentary order of matrix Q Q and m the exact order of the 

structure excited in the test. This can be done by successively calculating the 

detenninant of matrix QT Q by assuming k degrees of freedom with k = 1, 2, ···,until 

the determinant of the matrix becomes zero at k = m + 1. Then the real order of the 

structure will be m. Care should be taken about so called "zero". Exact zero is not a 

reasonable test, instead a near zero test should be performed by choosing a tolerance 

e close to absolute precision of the number of the calculation. The determinant ratio 

can be calculated as 

DV(k) = det(QT (k)Q(k)) I det(QT (k+1)Q(k+1)) (4.6-3) 

for succeeding orders k = 1, 2, 3, ···. If the value of the determinant ratio DV(k) 

shows a distinct increase compared with previous value DV(k-1), the value of k 

corresponds approximately to the real order m. 

The second method is to perform the singular-value decomposition of matrix QT Q 

such as 

(4.6-4) 

Sis a diagonal matrix with the singular values si in monotonic decreasing order and 

U is a orthogonal matrix. 



Chapter4 Modal Identification of Vibrating Structures 4-58 

For a tolerance e, if 

(4.6-5) 

-r-
the rank of matrix Q Q will be m. The tolerance should be somewhat larger than the 

relative precision of the numbers of the calculation. 

The third method is to perform an orthogonal-triangular decomposition. By 
-r-

permuting the columns of Q Q, the diagonal elements of R can be arranged to be 

monotonically decreasing, i.e., there is a permutation matrix P such that 

(4.6-6) 

U is an orthogonal matrix and R is an upper triangular matrix with diagonal 
-r-

elements rn2=r222=···2=rpp~· If Q Q is of rank m, a sharp break after rmm can be 

expected, that is, 

r mm > rii when i > m . (4.6-7) 

While the frrst two methods can detect well-defined rank of matrix QT Q, the third 

method may be conservative for determining the rank of matrix QT Q. 

§ 4.6.2 The Number of Measurement Stations 

The number of measurement stations depends on the purpose of a test, the degrees of 

freedom to be excited and accuracy requirement. From the above discussion and 

Eqns. (4.2-11) and (4.3-14), if only the frequencies and damping ratios need to be 

identified, a single measurement station with adequate time point data will be 
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enough for the identification. In this case, the matrix G becomes 

0 1 .. 0 0 

G= 0 0 .. 1 0 (4.6-8) 

0 0 .. 0 1 

G2n G2n-1 .. G2 Gt 

whose characteristic polynomial is 

2n · n A. T A.*T 
~G;a2n-• = ll(a-e 1 ) (a-e 1 ) (4.6-9) 
i=O j=l 

with G 0 = 1 and * representing the conjugate of a complex number. 

It can also be seen from equation ( 4.3-14) that in order to identify the eigenvectors of 

a test structure, at least two measurement stations are required. However, in this case 

only two co-ordinates of each eigenvector can be identified. If more coordinates of 

each eigenvector are required to be identified, more measurement stations should be 

arranged. An alternative method is to arrange two measurement stations at each time 

and one measurement station is flxed in a series of tests as the reference measuring 

points. Other measurement stations can move each time in the series of tests. 

§ 4.6.3 Numerical Computing 

Matrix zT (N)Z(N) in Eqns. (4.3-28) and (4.3-33) may be ill-conditioned, in 
.. 

particular when its dimension is high. There exists a method to flnd 9 that is much 

better numerically behaved. The so called "square-root flltering algorithms" are 

recommended for use in the least squares estimation. 

From Eqns. (4.3-28) and (4.3-33), it can be seen that only half of the number of the 
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parameters in Eqn. (4.3-28) compared with that of Eqn. (4.3-33), need to be 

estimated. This is one of the computation advantages of the direct method. In 

addition to this, the matrix for the eigenvalue problem in Eqn. (4.3-14) is a 

Hessenberg matrix, the eigenvalue problem of which is much easier to solve than 

that of the lTD method and computation time can be reduced in the solution of the 

eigenvalue problem of matrix G. 

§ 4.6.4 Sampling Rate 

The sampling rate will be dealt with in Chapter 6 in detail. However, for 

completeness, it is briefly discussed in this section. Through simple manipulations 

of trigonometric formulas, the sampling rate Is should satisfy the following 

relationship 

2 
fs > ( k+1 )/max (4.6-10) 

where f max is the maximum frequency and can be identified by the sampling rate fs, 

whilst k is determined according to the range of frequencies considered. For the 

range of 0 to f max' k = 0. For the range off min > 0 to f max' k = 0, 1, · · · , p and 

P < f !v_~ min • A frequency IN= fs 12 is called Nyquist frequency. The 

information about frequencies higher than the Nyquist frequency will be lost. 

When f max is excessively high, the whole range of ( 0- f max) requires an extremely 

high sampling rate which may present practical difficulties. In this case, there are 

two methods recommended to solve the problem. The first method is to divide the 

whole range of frequencies into some sub-range band. This approach allows smaller 

sampling rates to be used for each frequency band. Each frequency band must be 
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studied using response information which contains only frequency components in the 

range of interest (through filtering or other means). The second solution is to use a 

high recording speed tape recorder to record the signals and then play them back at a 

lower speed during the digitization process. The ratio of two speeds is used later as a 

correction factor to obtain the actual structural frequencies. 

§ 4.6.5 Relationships of the Direct Method with Other Time Domain Methods 

The direct method is a very general method, which can be reduced to some other 

time domain methods under certain circumstances. As mentioned in § 4.4, generally 

the response of a vibrating structure can be expressed in terms of the convolution 

product of the impulse function of the system and the excitations such as 

-
y(t) = JH(t)f(t- t)dt. (4.6-11) 

0 

H(t)is the impulse function matrix of the structure and H(O) =I without loss of 

generality, y(k) is the response vector and f(k) is the excitation vector. In discrete 

time form, Eqn. (4.6-11) can be written as 

-y(k) = l:Hif(k-i). (4.6-12) 
i=O 

The response takes a weighted sum of previous excitation measurements and the 

relationship (4.6-12) is the impulse response model of the vibrating structure. 

On the other hand, assuming the excitations are applied to the structure until time 

i = m, the ARX model in Eqn. (4.2-50) becomes 
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k-1 m 
y(k) = I: G;y(k- i) + :!:R;f(k-i). (4.6-13) 

i=l i=l 

By using the backward shift operator z, Eqns. (4.6-12) and (4.6-13) may be written 

as 

y(k) = H(z )f(k) 

and 

G(z )y(k) = R(z )f(k ). 

where 

00 

H(z) =I+ I: H;zi, 
i=l 

k-1 
G(z) =I- I: G;z; 

i=l 

and 

m . 
R(z) = I: R;z'. 

i=l 

From these two equations, 

G(z )H(z) = R(z ). 

(4.6-14) 

(4.6-15) 

(4.6-16) 

(4.6-17) 

(4.6-18) 

(4.6-19) 

Comparing the terms with the same power of z in both sides ofEqn. (4.6-19) yields 

G(z)Hj =0 for j > m. (4.6-20) 

On recalling Eqn. (4.6-17) and the definition of backward shift operator z, Eqn. (4.6-
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20) can be rewritten as 

(4.6-21) 

Eqn. (4.6-21) is the fundamental equation for the Poly Reference Time Domain 

method. When the parameters in Eqn. (4.6-21) are scalars, this equation becomes the 

fundamental equation for the Least Square Complex Exponential method. 

When only free decay vibration data is used in the modal identification, Eqn. (4.2-

47) will readily reduce to 

y(s + 1) = Gy(s) (4.6-22) 
- -

which is the fundamental equation of the lTD method. 

When one measurement station is used for identification of the natural frequencies 

and damping ratios, the ARMA model in Eqn. (4.2-30) will readily reduce to a 

univariate model, which is the fundamental of the mathematical model method. 

§ 4.7 NUMERICAL EXAMPLES 

This section is devoted to the illustration of the implementation and effectiveness of 

the methods presented in this chapter. The examples consist of two parts. The first 

part of this section is designed to demonstrate the direct method and is constituted by 

three simulated examples. In the second part of this section, two simple examples 

are used to illustrate the usefulness of the indirect method. 

§ 4. 7.1 Examples for the Direct Method 

Three simulated experiments are used to illustrate the application and accuracy of the 
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direct method. The advantage of using the simulated experiments is that they can test 

the effectiveness of a method under controlled conditions. In the simulated 

experiment, a mathematical model of a structure is given and dynamic responses of 

the structure in the time domain are determined using conventional dynamic 

analytical methods. Eigenvectors, natural frequencies and damping ratios are 

identified from the excitation and response data. The eigenvectors, natural 

frequencies and damping ratios are calculated from the original mathematical model 

as the "exact" values. The identified modal parameters are then compared with those 

"exact" values to illustrate the effectiveness of the method. 

The first example shown in Fig. 4.7-1 is a typical spring-mass-damper system with 

three degrees of freedom. This example is designed to illustrate the power of the 

direct method to identify very closely spaced frequencies and highly damping ratios 

using forced vibration data. 

Fig. 4.7-1 Mass-Spring-Damper System of 3-Dof 

The three cases in this example are considered for well spaced natural frequencies, 

very closely spaced natural frequencies and a highly damped structure, respectively. 

The structural parameters of these three cases are listed in Table 4.7-1. The forced 

vibration data is used in the identification. A sampling interval of 0.55sec was used 

and 100 samples were recorded. In order to illustrate the process of the identification 
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of modal parameters, case 1 of this example proceeds in detail. 

Table 4.7-1 Structure Parameters of the Three DOF 
of Spring-Mass-Damper System 

M K 
25 0 0 251 -1 0 0.8 

CASE1 0 25 0 -1 5 -4 -0.1 
0 0 25 0 -4 254 0 

25 0 0 300 -100 0 0.8 
CASE2 0 25 0 -100 300 -200 -0.1 

0 0 25 0 -200 350 0 

25 0 0 300 -100 0 80 
CASE3 0 25 0 -100 300 -200 -10 

0 0 25 0 -200 350 0 

For case 1, the general mass matrix is 

-251.0 1.0 0.0 0.0 0.0 0.0 
1.0 -5.0 4.0 0.0 0.0 0.0 

r-K OJ 0.0 4.0 -254.0 0.0 0.0 0.0 
M*= 0 M = 0.0 0.0 0.0 25.0 0.0 0.0 

0.0 0.0 0.0 0.0 25.0 0.0 
0.0 0.0 0.0 0.0 0.0 25.0 

The general stiffness matrix is 

0.0 0.0 0.0 251.0 -1.0 0.0 
0.0 0.0 0.0 -1.0 5.0 -4.0 

, [0 Kl 0.0 0.0 0.0 0.0 -4.0 254.0 
K = K C = 251.0 -1.0 0.0 0.8 -o.1 0.0 

-1.0 5.0 -4.0 -o.1 0.2 -o.1 
0.0 -4.0 254.0 0.0 -o.1 0.8 

The system matrix is then 

4-65 

c 
-0.1 0 
0.2 -0.1 

-0.1 0.8 

-0.1 0 
0.2 -0.1 

-0.1 0.8 

-10 0 
90 -80 

-80 100 
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•-t * [-K o]-1 
[ 0 Kl [ 0 I] A=-M K =- 0 M K C = -~1K -M-1C 

0.00 0.00 0.00 1.00 0.00 0.00 
0.00 0.00 0.00 0.00 1.00 0.00 
0.00 0.00 0.00 0.00 0.00 1.00 

= -10.04 0.04 0.00 -o.032 0.004 0.00 
0.04 -o.20 0.16 o.004 -o.oos 0.004 
0.00 0.16 -10.16 0.00 0.004 -o.032 

The eigenvalue problem of the matrix A is solved 

The eigenvalues are 

A.1. "'r =-o.oo39±i0.444 

"-2. A.i = 0.0160±i3.169 

"-3· A.; =-Q.Ol61±i3.188 

and eigenvectors are 

1.000+i0.000 l.OOO+iO.OOO l.OOO+iO.OOO l.OOO+iO.OOO l.OOO+iO.OOO l.OOO+iO. 
245.7+i10.65 245.7-i10.65 -o.004+i0.001 -o.004-i0.001 -2.787-i0.880 -2.787+i0.880 

'I'= 3.947+i0.131 3.947-i0.131 -o.005+i0.002 -o.005-i0.002 168.5+i67.00 168.5-i67.00 
-o.004-i0.444 -o.004+i0.444 -o.016-i3.169 -o.016+i3.169 -o.016-i3.188 -o.016+i3.188 

3.766-i109.2 3.766+i 109.2 0.004+i0.013 0.004-i0.013 -2.761+i8.900 -2.761-i8.900 
0.043-i1.754 0.043+i1.754 0.007+i0.016 0.007-i0.016 210.9-i538.1 210.9+i538.1 

The exact frequencies and damping ratios are 

* ro1, ro1 = 0.444rad !sec 

4-66 
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~. ro; = 3.169radlsec 

O>J, ro; = 3.188rad/sec 

111. 11 r = o.oo8832 

112· 11; = 0.005055 

113. 11; = 0.005038 

The sampling interval is 0.55 sec and the system state transition matrix T is 

T = 'Pexp(AT)'P-1 

~.1646+00 0.4594-02 0.3137-{)4 0.3082+00 0.1405-DZ 0.5066--05 
0.3685-DZ 0.9701-tOO 0.1752-Q1 0.1405-D2 0.5433+00 0.4230-D2 
0.287Q-04 0.1837-Q1 -Q.1747+00 0.9249-05 0.4229-DZ 0.3058+00 

= -0.3095+01 0.1205-01 0.1732-()3 -0.1745+00 0.5816-DZ 0.3685--04 
0.7628-DZ -o.1079+00 0.4396-Q1 0.5816-DZ 0.9657+00 0.1956-Q1 
0.1060-03 0.4809-01 -o.3107+01 0.3859-Q4 0.1956-01 -o.1845+00 

The input force f(t) is simulated by 

N 
fl(jllt) = ..ff:I: [SfJ,(illro)llro]112cos(ijllrollt+'lfi) 

i=l 

4-67 

(4.7-1) 

where l = 1, 2 and 3; StJ,(ro) is one-sided spectral density of fl(t), 'lfi is statistically 

independent random phase angles uniformly distributed between 0 and 27t, and N is 

the number of data points. The input spectra that are used for simulation are shown 

in Fig. 4.7-2. 
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0 1 2 3 4 
ro (radlsec) 

Fig. 4.7-2 Spectra of Input Excitations 

Hence the excitation in the time domain calculated by Eqn. 4. 7-1 using the spectra 

shown in Fig. 4.7-2, and 

'''- 2m2 
2 _m -u )4 y, a -v,- +--

StJ;(ro) = ~e co g 

where a= 0.0081, a= 0.74, g=32.6, and roo= -:fs· 

For the three spectra Sttf1 , StJ2 and S1313, Yt = 15, Y2 =50 and Y3 = 70 respectively. 

In this study, the frequency interval is Aro=0.02rad/sec, the time interval is 

At = 0.55sec and the number N is 2000. The excitation in the three stations for the 

first 40 seconds is obtained and shown as in Fig 4.7-3. 
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Fig. 4.7-3 Excitation History in Time Domain 
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The excitation in time domain will in turn be used for calculating the response of the 

three degree of freedom system. The responses are calculated by the state transition 

method and checked by the numerical intergration method. The time histories of 

response of three measurement stations to the three excitation points for the first 10 

seconds are shown in Fig 4.7-4 

These excitations and responses are used to estimate the coefficients of ARMAX 

model of the structure. Three different measurements are arranged: 1. three 

measurement stations, 2. two measurement stations, 3. single measurement station. 
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Fig. 4. 7-4 Time Histories of Response of Three Measurement Stations 

From the estimated results, matrix G for calculations of the identified eigenvalues 

and eigenvectors may be formed as follows 

1. For three measurement stations 

0.00+0 0.00+0 0.00+0 0.10+1 0.00+0 0.00+0 

0.00+0 0.00+0 0.00+0 0.00+0 0.10+1 0.00+0 

0.00+0 0.00+0 0.00+0 0.00+0 0.00+0 0.10+1 

-o.98+0 -o.17-2 0.25-5 -Q.34+0 0.11-1 0.71-4 
-o.29-2 -1.00+0 -o.29-2 0.87-2 0.19+1 0.36-1 
-o.29-4 -o.17-2 -o.98+0 0.57-4 0.38-1 -Q.36+0 

2. For two measurement stations 

0.00+0 0.00+0 0.10+1 0.00+0 0.00+0 0.00+0 

0.00+0 0.00+0 0.00+0 0.10+1 0.00+0 0.00+0 

0.00+0 0.00+0 0.00+0 0.00+0 0.10+1 0.00+0 

0.00+0 0.00+0 0.00+0 0.00+0 0.00+0 0.10+1 
0.80+1 -Q.18+1 0.18+1 -o.65+0 0.78+1 -o.18+1 
0.28+2 -o.61+1 0.97+1 -Q.32+1 0.27+2 -o.66+1 

3. For single measurement station 
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0.00+0 0.10+1 0.00+0 0.00+0 0.00+0 0. 

0.00+0 0.00+0 0.10+1 0.00+0 0.00+0 0.00+0 

0.00+0 0.00+0 0.00+0 0.10+1 0.00+0 0.00+0 

0.00+0 0.00+0 0.00+0 0.00+0 0.10+ 1 0.00+0 

0.00+0 0.00+0 0.00+0 0.00+0 0.00+0 0.10+1 

-o.79+0 0.96+0 -o.16+1 0.25+1 -o.16+1 0.13+1 

The eigenvalue problem of matrix G can be solved 

The eigenvalues and eigenvectors obtained for cases with different number of 

measurement stations are as follows 

1. For three measurement stations, the eigenvalues are 

a.1o a~= 0.9682±i0.2413 

«l2· a.i = -o.1799±i0.9746 

a.3, a.3 =-D.1696±i0.9766 

and eigenvectors are 

1.000-t-i 0.000 1.000-t-i 0.000 1.000-t-i 0.000 1.000-t-i 0.000 1.000-t-i 0.000 1.000-t-i 0. 
245.7+i10.65 245.7-i10.65 -2.769-i0.865 -2.769+i0.865 -o.004+i0.001 -o.004-i0.001 
3.947+i0.132 3.947-i0.132 167.4+i66.02 167.4-i66.02 -o.005+i0.001 -o.005-i0.001 

'I'= 0.968-i0.241 0.968+i0.241 -o.18D-i0.975 -o.180+i0.975 -o.17D-i0.977 -o.17D-i0.977 
240.5-i 48.98 240.5+i 48.98 -Q.345+i 2.855 -o.345-i 2.855 0.002+i 0.0037 0.002-i 0.0037 
3.854-i 0.825 3.854+i 0.825 34.23-i 175.0 34.23+i 175.0 0.002+i 0.004 0.002-i 0.004 

The identified eigenvalues are 
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A.t, A.r = -o.0039±i0.4441 

~.A.; =-Q.0160±i3.1690 

A.3, A.; =-Q.0161±i3.1880 

The identified frequencies are 

C.Ot = 0.444radlsec 

0>2 = 3.169radlsec 

COJ = 3.188radlsec 

The identified damping ratios are 

111 = 0.008832 

112 = 0.005055 

113 = 0.005038 

2. For two measurement stations, the eigenvalues are 

al, ar = 0.9595±i0.2216 

<l2. ai = -o.l696±i0.9766 

a3 , a3 =-Q.l799±i0.9747 

and eigenvectors are 

4-72 
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l.OOO+i 0.000 l.OOO+i 0.000 l.OOO+i 0.000 l.OOO+i 0.000 l.OOO+i 0.000 l.OOO+i 0.000 
3.955+i O.t22 3.955-i O.t22 -0.007+i o.oot -0.007-i o.oot t66.0+i 74.34 t66.0-i 74.34 

'P = 0.960-i0.222 0.960+i0.222 -O.t70-i0.977 -o.t70+i0.977 -O.t80-i0.975 -O.t80+i0.975 
3.822-i0.759 3.822+i0.759 0.00t+i0.007 0.001-i0.007 42.60+i t75.2 42.60-i t75.2 
0.872-i0.425 0.872+i0.425 0.925+i0.33t 0.925-i0.33t -0.9t8-i0.35t -0.9t8+i0.35t 
3.498-i t.575 3.498+i t.575 0.006-i0.003 0.006+i0.003 -t78.4-i10.0t -t78.4+i tO.Ol 

The identified eigenvalues are 

At. A.r = -o.o280±i0.4126 

~. A.i = -o.0160±i3.1690 

A.3, A.i = -o.0161±i3.1880 

The identified frequencies are 

COt= 0.414rad/sec 

~ = 3.169radlsec 

0>.3 = 3.188rad/sec 

The identified damping ratios are 

Tlt = 0.06768 

112 = 0.00505 

Tl3 = 0.00504 

3. For one measurement station 

The obtained eigenvalues are 

al, ar = 0.9682±i0.2413 

4-73 
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ll2. a; =-D.1418±i0.8843 

a 3, a;= -o.1800±i0.9747 

The identified eigenvalues are 

A1. A.r = -o.oo39±i0.4441 

~. A.; = -o.2004±i 3.1450 

A.3, A.; = -o.0161±i3.1880 

The identified frequencies are 

ro1 = 0.441radlsec 

ro:z = 3.151rad/sec 

C0:3 = 3.188radlsec 

The identified damping ratios are 

111 = 0.00883 

112 =0.0636 

113 = 0.00506 

4-74 

The comparison of the identified results with the different number of measurement 

stations for case 1 is shown in Table 4.7-2. 

From Table 4.7-2, it can be seen that the frequencies may be identified with good 

accuracy for the different number of measurement stations. The damping ratios are 

not identified so well as the frequencies. 



Table 4. 7-2 Comparison of Identified Results for Different Measurement Stations 

Three Degrees of Freedom System 

Frequency (rad/sec) Damping Ratio 

Mode First Mode Second Mode Third Mode First Mode Second Mode 

Exact Value 0.4441 3.169 3.188 0.008832 0.005055 

Three Measuring Stations 0.4441 3.169 3.188 0.008832 0.005055 

Two Measuring Stations 0.4136 3.169 3.188 0.06768 0.005053 

One Measuring Station 0.4441 3.151 3.188 0.00883 0.0636 

Third Mode 

0.005038 

0.005038 

0.005044 

0.005063 

~ 

!" ;-... .. 
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Table 4.7-3 Identified Results for the System of Three Degree of Freedom 

Frequency ( rad/sec) Damping ratio Mode 

Original Identified Original Identified Original Identified 

1 1 

mode 1 0.4441 0.4435 0.0088 0.0088 0.2457+3±0.1065+2 0.2457 +3±0.1063+2 

0.3947+1±0.1314+0 0.3947+ 1±0.1316t0 

1 1 

CASE 1 mode2 3.169 3.169 0.0051 0.0051 -0.3986-2±0.1217-2 -0.3996-2±0.1226-2 

-0.5189-2±0.2050-2 -0.4520-2±0.1288-2 

1 1 

mode3 3.188 3.188 0.0050 0.0050 -0.2787+ 1±0.8800+0 -0.2769+ 1±0.8653+0 

0.1684+3±0.6698+2 0.1674+3±0.6601+2 

1 1 

model 1.946 1.946 0.3480-2 0.3475-2 0.2053+ 1±0.4987 -2 0.2053+ 1±0.4985-2 

0.1608+0±0.1848-3 0.1508+ 1±0.1869-3 

1 1 

CASE2 mode2 3.521 3.521 0.4563-2 0.4562-2 -0.9921-1±0.2336-3 -0.9921-1±0.2344-3 

-0.4951 +0±0.1531-3 0.4951+0±0.1552-3 

1 1 

mode3 4.671 4.671 0.2818-2 0.2871-2 -0.2454+ 1±0.1808-1 -0.2454+ 1±0.1808-1 

0.2512+1±0.4126-2 0.2512+ 1±0.4128-2 

1 1 

model 2.002 1.996 0.1830 0.1843 0.2013+ 1±0.8489+0 0.2002+ 1±0.8425+0 

0.1623+1±0.9140+0 0.1612+ 1±0.9083+0 

1 1 

CASE3 mode2 3.497 3.496 0.4515 0.4511 -0.6461-1±0.6301-1 -0.6538-1±0.6307 -1 

-0.2209+0±0.2748+0 -0.2218+0±0.2759+0 

1 1 
mode3 4.570 4.565 0.1559 0.7550 -0.3607+ 1±0.4073+ 1 -0.5397+0±0.4041 + 1 

0.5680+0±0.4401 + 1 0.7483+0±0.4350+ 1 
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The details for other two cases are similar. The identified results for the all three 

cases are shown in Table 4.7-3. The identified modal parameters given in this table 

indicate the direct method is capable of identification of the natural frequencies, 

damping ratios and eigenvectors with good accuracy even when the frequencies are 

very closely spaced and the damping of the system is heavy. 

The second example is a marine riser with five clamps as shown in Fig. 4.7-5. 

tT 

t 
10.6m 

+ 13.2m 

t 
25m 

cross section 

25.5m 

l_ 

Fig. 4. 7-5 Marine Riser 
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In this example, free decay vibration data will be used to identify the modal 

parameters of the marine riser. Thirty two normal modes were calculated by the 

finite element method. The first eight modes were used to generate a set of free 

decay response data. In order to illustrate the capability of identification of closely 

spaced frequencies, the frequencies calculated by finite element method are not used. 

Instead, the frequencies are arbitrarily assigned as 12, 12.5, 40, 48, 56, 72, 100 and 

114Hz with damping factor 0.02 for all modes. 

Since the calculated modes are normal instead of complex, the following formula is 

used to compute the free decay response data. 

In practical observation, noise is inevitable, a set of random white noise of 15% 

RMS of the noise to signal ratio was added to simulate an actual situation. The free 

decay responses without noise and with noise are shown in Figs. 4. 7-6 and 4. 7-7. 

Twenty four simulated measurement stations were arranged equally spaced along the 

riser. Sampling frequency was taken as 150Hz and 450 samples were recorded, 

corresponding to a recording of 3 seconds. 
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0.00 0.75 1.50 2.25 3.0 
time (sec) 

Fig. 4. 7-6 Free Decay Responses Without Noise 

0.00 0.75 1.50 2.25 3.0 
time (sec) 

Fig. 4.7-7 Free Decay Responses With Noise 

The corresponding Nyquist frequency is 150/2 =75Hz and the information about 

frequencies higher than 75 Hz is thus lost by sampling. When analyzing the free 

decay response data it will be assumed that the modal parameters which generate the 

data are not known. The measurement data matrix Q was formed according to Eqn. 

(4.6-1). The rank of the matrix QT Q was found to be six and six modes were 

identified. The identified modal parameters are given in Table 4.7-4. 
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Table 4.7-4 Identification Results for the Marine Riser 
for Six Modes, 25% Noise and 24 Degrees of Freedom 

MODE FREQUENCY DAMPING MSCC WITH INPUT MODE No 
RATIO 

No. % 1 2 3 4 5 6 
1 12.06 1.87 100 0 0 0 0 0 
2 12.53 2.12 3 100 0 0 0 0 
3 39.93 2.11 0 0 100 0 0 0 
4 48.09 1.82 0 0 0 100 0 0 
5 55.87 2.06 0 2 0 0 100 0 

24 1 

The called "Mode Shape Correlation Constant" (MSCC) was used to access the 

accuracy of identified mode shapes. The following equation is used to compute the 

MSCC 

where 

fa is the assumed input mode: 

fb is the identified mode; 

* means the conjugate transpose of a vector. 

I I indicates the magnitude. 

The accuracy of identified frequencies and damping factors were qualified by direct 

comparison. It is observed that the natural frequencies, damping ratios and 

eigenvectors were identified with reasonable accuracy even when the frequencies are 

very closely spaced. 

The third example is a simulated fixed ended beam with impulse response data 

being used to identify the natural frequencies, damping ratios and mode shapes. The 
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impulse responses are generated according to the following equation 

The modes shapes of the beam used in generation of the impulse response data are 

given by 

where 

and 

1 
anl = (n + 4)1t. 

The calculated frequencies were not used in generation of the impulse response data. 

Instead, the frequencies of the beam were assigned as 9, 25, 49, 81, 121, 169Hz with 

damping factors of 0.02 for all modes. 

Fourteen measurement stations, equally spaced along the beam, are used with two 

sets of test data. The first set of response data is evaluated from the first four modes 

of the beam while the second set of response data is calculated from the first six 

modes. In order to simulate an actual test, a set of randomly generated noise was 
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imposed on the response data to get two sets of measurements with 20% and 15% 

RMS of the noise to signal ratio respectively. Sampling frequencies of 200Hz and 

350Hz were used and 150 and 200 samples have been recorded, respectively .. 

The identified frequencies and damping ratios, and MSCC of each mode are listed in 

Tables 4.7-5 and 4.7-6 for the four and six modes response cases respectively. The 

results indicate the frequencies are identified with good accuracy, damping ratios are 

identified with errors smaller than noise to signal ratios and the identified mode 

shapes have reasonable accuracy. 

MODE 

No. 

1 
2 
3 
4 

MODE 

No. 

1 
2 
3 
4 
5 
6 

Table 4. 7-5 Identification Results of Beam for Four Modes 
30% Noise and 15 Degrees of Freedom 

FREQUENCY DAMPING RATIO MSCC WITH INPUT MODE No 

(Hz) (%) 1 2 3 

9.0212 1.86 100 0 0 
25.0412 2.16 0 100 0 
49.1360 2.07 0 0 100 
81.1267 1.92 3 0 0 

Table 4.7-6 Identification Results for the Beam for Six Modes 
20% Noise and 15 Degrees of Freedom 

4 

0 
0 
0 

100 

FREQUENCY DAMPING RATIO MSCC WITH INPUT MODE No 

(Hz) (%) 1 2 3 4 5 

8.9761 1.89 100 0 0 0 0 
25.0626 2.18 0 100 0 0 0 
49.2783 2.09 0 0 100 0 0 
81.3849 1.87 0 0 0 100 0 
122.0356 1.89 0 2 0 0 100 

6 

0 
0 
0 
0 
0 

170.1217 2.04 0 0 3 0 0 100 

§ 4. 7.2 Examples for the Indirect Method 

In this part, two digital simulation examples are used to investigate the efficiency 
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and accuracy of the indirect method. The first example is a three degrees of freedom 

structure, with structural parameters obtained from a tall building with two 

horizontal displacements and a torsional displacement being considered. The mass, 

stiffness and damping matrices are respectively given as follows, 

[ 

0.1650+06 0.0000+00 -o.1486+07] 
M0 = 0.0000+00 0.1650+06 0.1486+07 , 

-o.1486+07 0.1486+07 0.3567+08 

[ 

0.220+06 0.000+00 -o.225+07] 
C0 = 0.000+00 0.220+06 -Q.225+07 , 

-o.225+07 -o.225+07 0.330+08 

[ 

0.416750+09 0.000000+00 -Q.330066+10] 
Ko = 0.000000+00 0.416750+09 0.330066+10 . 

-o.330066+ 10 0.330066+ 10 0.852170+ 11 

These structural parameters are used to calculate the "exact" modal parameters and to 

generate the response data to a pseudo random excitation. The simulated response 

data are then used to identify the modal parameters by the indirect method. The 

identified modal parameters are compared with the "exact" ones to illustrate the 

efficiency and accuracy. 

The structure is considered to have non-proportional damping and hence its mode 

shapes are complex. The natural frequency of the twist motion is also very close to 

one of the flexural frequencies. 

The excitation used for generation of the response is a three variate pseudo random 

white noise process with different covariance matrices in the different trials. These 
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excitations are applied to three "points" of the structure. The response data are 

calculated by mode superposition method. Numerical integration is also used to 

verify the response data. The verified response data are considered as "measured" 

responses. These data are then used with the indirect method to identify the natural 

frequencies, damping ratios and complex modes. 

The sampling frequency of 50 Hz was used and 1200 samples were recorded. In 

order to obtain the stationary steady response data, the first 200 samples were 

discarded. The average identified modal parameters of 11 trials are shown in the 

Table 4.7-9. 

The second example is a system with two degrees of freedom, whose mass, damping 

and stiffness matrices are 

[
80 0 l 

Mo= 0 400' 

[
150 -89] 

Co= -89 600' 

[ 
30000 - 30000] 

Ko = -30000 100000 . 

The excitation sequence is a univariate white noise with different covariance 

matrices for different trials. The excitation was applied to a point of the system. 



TABLE 4.7-9.- Comparison of Identified Results to the Exact Modal Parameters of3 DOF System 

Frequency (Hz) Damping Factor Mode Shape 

Mode Exact Identified Exact Identified Exact Identified 

1 1 
Mode 1 7.708+0 7.698+0 0.5664-2 0.5522-2 -1.0195+1±i0.1052+0 -1.0322+0±i0.1073+0 

0.0928+0±i0.0025+0 0.0986+0±i0.0028+0 

1 1 
Mode2 7.999+0 7.976+0 0.1327-1 0.1524-1 -0.8110+0±i0.3173+0 -0.8275+0±i0.3194+0 

O.OOOO+O±iO.OOOO+O O.OOOO+O±iO.OOOO+O 

1 1 
Mode3 10.044+0 10.020+0 0.6734-1 0.6655-1 -0.6123+0±il.0281 +() --0.6147+0±il.0314+0 

-0.1294+0±i0.0819+0 -0.1306+0±i0.0835+0 

n 
! 
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Observation errors for the response were added as a chi-squared sequence. The 

average noise to signal ratio was taken 15% RMS. The sampling rate was 20 Hz and 

1400 sample were recorded. The frrst 300 samples were not used in order to obtain 

the stationary response data. Since the observation errors were not white noise, an 

excessive eigenvalue was observed from the AR part of the univariate ARMA model 

of the system. This excessive eigenvalue was found by comparing the zeros of the 

AR part with those of the MA part. A zero of the AR part had almost the same value 

as one of the zeros of the MA part and thus this zero was considered to be excessive. 

This excessive mode may be caused by the non-white noise observation errors and 

hence is eliminated. Table 4.7-10 shows the comparison of the zeros of the AR and 

MA parts. The identified average results of five trials are listed in Table 4. 7-11. 

It is observed that the the natural frequencies, damping ratios and complex modes of 

the two examples were identified with adequate accuracy, even when two of the 

natural frequencies are very close to each other in the first example. 

Table 4. 7-10. - Zeros of AR and MA Parts 

ARPart 
(1) 

9.885-1 ±i 2.063-1 
9.521-1 ±i 3.481-1 

-3.372+1 ±i 5.364-1 

MAPart 
(2) 

10.723-1 ±i 4.372-1 
2.384+1 

-3.371+1 ±i 5.359-1 



Table 4.7-11- Comparison of Identified Results to the Exact Modal Parameters of 2 DOF System 

Frequency (Hz) Damping Factor Mode Shape 

Mode Exact Identified Exact Identified Exact Identified 

1 1 

Model 1.839+0 1.967+0 0.5001-1 0.4744-1 0.6439+0±i0.8668-4 0.6227+0±i0.7885-4 

1 1 

Mode2 3.528+0 3.349+0 0.5005-1 0.3897-1 -0.3106+0±i0.8021-4 -0.2976+0±i0.7803-4 

n 
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§ 4.8 SUMMARY 

Two time domain methods for modal identification of vibrating structures are 

developed in this chapter. The direct method is a general method which can use free 

response data, impulse response function and forced excitation and response data in 

time domain. This method can deal with deterministic and random vibration test. 

Under certain circumstances, the method may be reduced to the least squares 

complex exponential method, Polyreference Time Domain method, Ibrahim Time 

Domain method or time series method. The indirect method is able to deal with 

random vibration test, particularly, for the ambient vibration tests, in which the 

response may be treated as white noise random process. The indirect method also is 

able to fmd the false poles caused by the test noise or measurement errors. 

For both direct and indirect methods, an improved modal model of a vibrating 

structure, including the highly coupled and closely spread modes, can be identified 

with satisfactory accuracy. 
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APPENDIX 4A KRONECKER PRODUCT AND COLUMN OPERATOR 

FORA MATRIX 

The Kronecker product of an mxn matrix A=[aij] and a pxr matrix B=[bijl is 

defmedas 

A®B= 

This is an (m xp )x(n xr) matrix. 

anB a12B ••• a1nB 

a21B a22B ··· a2nB 
(4A.l) 

The operator "column" is defined as the operation to form a column vector out of a 

matrix by stacking its columns on top of each other 

bl 

b2 
column B= 

where W is the jth column of B. 

(4A.2) 
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Chapter 5 

MODAL IDENTIFICATION 

USING Z-TRANSFORMATION 

§ 5.1 INTRODUCTION 

The full area of ignorance is not mapped: We are at 

present only exploring its fringes. 

-JD.Bernal 

The Fourier transformation is usually used with frequency domain methods for 

modal identification when the structure is considered as a continuous time system. 

The traditional way of performing a frequency analysis, however, is to pass the 

signal through a system consisting of fllter, detector and recorder (or display). A 

digital fllter is a calculation device which receives a sequence of digital value at its 
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input, operates on each sample in a defmed manner, and outputs a sample of each 

input. The digital frequency analysis technique in common use, viz., FFf analysis, 

involves a direct evaluation of estimates of Fourier Transformation. The FFf 

algorithm is an efficient way of calculating so-called Discrete Fourier 

Transformation which is a discrete, finite approximation to the Fourier 

Transformation. In essence, therefore, frequency domain modal identification 

methods are discrete methods. In a practical vibration test, the measured data is 

generally sampled at discrete time instants. Most time domain methods use these 

discrete signals as basic data set for identification of modal parameters of a vibrating 

structure through a computer, which is also a discrete system, and only treats digital 

signals rather than continuous signals. Time domain methods are also essentially 

discrete modal identification methods. The Z-transformation is a transformation of a 

discrete-time signal defined as a power series in z-1 whose coefficients are the 

amplitudes of the discrete-time signals. Therefore the Z-transformation is suitable 

for the analysis of practical vibration test data and the identification of modal 

parameters of tested structures. 

In this chapter the Z-transfer function of the vibrating structure is used to derive an 

auto-regressive and moving average (ARMA) model of the structure. The 

relationship between the eigenvalues of the structure and poles of the ARMA model 

is derived on the basis that the eigenvalues of the structure can then be determined 

through the identification of the poles of the ARMA model. A multivariate ARMA 

model is used with a multiple input and multiple output vibration test to identify the 

mode shapes as well as the natural frequencies and damping ratios. As will be 

discussed, the method can also be applied to the single point excitation modal testing 

and multiple shaker excitation modal testing. 
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§ 5.2 introduces the basic concept of the Z-transfonnation. The Z-transfer function of 

vibrating structures is discussed in § 5.3. Estimation of the Z-transfer function using 

response and excitation data in the time domain is tackled in § 5.4. The univariate 

and multivariate models are also discussed, respectively. § 5.5 is devoted to the 

derivation of technique for determination of modal parameters from the Z-transfer 

function of vibrating structures. Several numerical examples are given in § 5.6 to 

illustrate the implementation and effectiveness of the method. § 5.7 concludes this 

chapter with discussions of numerical computation and conclusions. 

§ 5.2 Z-TRANSFORMATION 

The Z-transformation of a discrete-time signal I (n) which is identically zero for 

negative discrete time is defined as a power series in z -t whose coefficients are the 

amplitudes of the discrete-time signal. That is, 

A .,:' '1' .,:' 12\ .,:' 13\ 00 

Z[f (k)] = l(z) =I (0) + ~ + ~ + J...J.ti. + ··· = "'£1 (k)z-k 
z z2 z3 k=O 

(5.2-1) 

The sampled sequence {I (n )} is called the generating sequence of the Z-

transformation. 

The following four significant properties of Z-transformation are related to the 

present study of the modal determination. 

1. Linearity Property 

If a sequence I (k) is a linear combination of two other sequences, that is 
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f (k) =aft (k) + bf2(k) for k = 0, 1, 2, ··· 

where a and b are constants, 

then 

A A A 

/(z) =aft (z) + b/2(z) 

where 
A A A 

/(z)=Z[f(k)], ft(z)=Zlft(k)] and /2(z)=Z[f2(k)] 

2. Right-Shifting Property 

If j(z) = Z[f(k)] = if(k)z-k, then 
k=O 

A 

Z[f(k-m)] = z-mf(z) 

3. Left-Shifting Property 

A m-1 
Z[f(k+m)]=zmf(z)- ~f(k)zm-k 

k=O 

4. Convolution-Summation Property 

5-4 

(5.2-2) 

(5.2-3) 

(5.2-4) 

(5.2-5) 

The excitation and response can be related to one another through the 

convolution summation 

y(k) = H(O)f(k) + H(1)f(k-1) + H(2)f(k-2) + ··· (5.2-6) 

where H(i) is the impulse response function matrix sequence of the vibrating 

structure, y(i) and f(i) are the response and excitation vectors respectively. 

The Z-transformation of the response is then equal to the product of the Z-
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transformations of the excitation and the impulse response matrix sequence, 

that is, 

y(z) = H(z )f(z) (5.2-7) 

The Z-transformation provides a bridge between continuous- and discrete-time signal 
... 

processing because the Laplace transformation f(s) of an ideal impulse sampled 
... 

signal f(t) is related to the Z-transfonn f(z) of the discrete-time signal f(Kl') by the 

transformation z = esT. This transformation maps the left half plane in the complex 

s-plane into the unit circle in the complex z-plane, as shown in Fig. 5.2-1. The 

interior of the unit circle, the unit circle, and the exterior of the unit circle in the z-

plane have the similar meaning for discrete-time signals as the left half s·plane, jro 

axis, and right s-plane for continuous-time signal. Here j indicates the imaginary 

unit. 

jro 

s=<J+jco 

jv 

z=u+jv 

Fig. 5.2-1. Mapping induced by z =esT 



Chapter 5 Modal Identification Using Z-Transformation S-6 

§ 5.3 Z-TRANSFER FUNCTION OF A VIBRATING STRUCTURE 

As discussed in chapter 2, A vibrating structure can be described in discrete form by 

x(k+1) = Tx(k) + M(k), (5.3-1) 

y(k) = Cx(k) (5.3-2) 

where f(t) is assumed to be constant within the sampling interval 0 ~ t ~ T, Hence, 

T 

A= A('t) = jT(T- 't)Bd't =constant matrix. 
0 

Eqn. (5.3-1) can also be considered as the state-space relationship of the vibrating 

structure in discrete time form. Taking the Z-transformation on each side of Eqns. 

(5.3-1) and (5.3-2) gives 

zi(z)- zx(O) = Ti(z) + Af(z) (5.3-3) 

y(z) = Ci(z ). (5.3-4) 

Rearranging the terms of Eqn. (5.3-3) and premultiplying both sides of the equation 

by the inverse of matrix [ zl- T] yields an expression for Z-transformation of the 

state vector x(k) given by 

i(z) = z[ zl- T r 1x(O) + [ zl- T r 1 Af(z). (5.3-5) 

On the other hand, from Eqn. (5.3-1) 



Chapter 5 Modal Identification Using Z-Transformation 

k-1 
x(k) = Tkx(O) + 1; Tk-1-i AfU). 

j=O 

k-1 
= T(k)x(O) + 1; T(k-1-j)AfU). 

j=O 

5-7 

(5.3-6) 

According to the convolution-summation property of the Z-transform, by comparing 

Eqn. (5.3-5) with Eqn. (5.3-6) and assuming the initial condition x(O) = 0, the Z

transform of the transition matrix T(k) is given by 

Z[T(k)] = [ zl- Tr1 (5.3-7) 

When matrix A is not defective (for example, the eigenvalues Ai are distinct,) 

T(k) ='I' exp[AkT] '1'-1 and its Z-transformation is 

Z[T(k)] ='I' zl[zl- exp[AT]r1 v-1 (5.3-8) 

From Eqn. (5.3-7) and Eqn. (5.3-8) 

(5.3-9) 

When the initial condition x(O) = 0 , From Eqns. (5.3-4) and (5.3-5), 

y(z) = C[zl- Tr1 Af(z). (5.3-10) 

Denoting the Z-transfer function matrix of the vibrating structure by H(z ), then 

y(z) = H(z )f(z ). (5.3-11) 
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Comparing this equation with Eqn. (5.3-10), the Z-transfer function matrix is given 

by 

H(z) = C[zl- Tr1A= C'l'[l- z-1exp[ATJr1'1'-1A. 

From the previously defined values of A, and state transition matrix T(t), 

T 

A= f'l'exp [A(T --t)]'l'-1 Bd-t = 'I'E'I'-1 B 
0 

where E is a diagonal matrix and 

E = diag[eil = diag[ AiT -1] 

(5.3-12) 

(5.3-13) 

It has been shown in chapter 2 that the eigenvector matrix satisfies the following 

relationship 

[
-Ko 0 l 

'I'T 0 Mo 'I' = I. (5.3-14) 

Substituting Eqn. (5.3-14) into Eqn.(5.3-13) yields 

(5.3-15) 

It is known that the eigenvector 'IIi can also be related to the eigenvector cl»i of the 

original vibration equation 
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M 0 y(t) + C0 y(t) + Ko1J(t) = f(t) (5.3-16) 

by the expression 

(5.3-17) 

From Eqn. (5.3-12) and Eqn. (5.3-15), 

(5.3-18) 

Likewise by substituting Eqns. (5.3-15) and (5.3-17) into Eqn. (5.3-18), 

2n Ai 
H(z) = l: 1 -1 A;T • 

i=l - z e 
(5.3-19) 

Ai is an nxn matrix called the modal constant matrix and Ai = eiA.i•i•f· Since any 

linear combination of the eigenvectors corresponding to the eigenvalue Ai, is also an 

eigenvector corresponding to Ai. If the modal constant matrix Ai is written as 

(5.3-20) 

..!.. ..!.. 
where Ki = e? A.? •i• then x:i also is the eigenvector of the i-th mode of the vibrating 

structure. The eigenvalue of the vibrating structure and its modal constant matrix 

can then be determined by the Z-transfer function of the structure, as discussed next. 

From matrix theory, 
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[zi-Tr
1 

= det[z!-T] adj[zi-T]. (5.3-21) 

The detenninant of the 2n x2n matrix [zl- T] is a polynomial of degree 2n in 

complex variable z, 

(5.3-22) 

where d; is the coefficient of the polynomial while the adjoint matrix of [zl- T] is a 

polynomial matrix and may be expressed as 

(5.3-23) 

G; is the 2nx2n coefficient matrix of the polynomial matrix. It follows that from 

Eqns. (5.3-12) and (5.3-21) the Z-transfer function of the vibrating structure can be 

expressed as 

H(z) = Cadj[zl- T]A 
det[zi-T] 

or (5.3-24a) 

(5.3-24b) 

where H; is n xn matrix and H; = CG;A, which implies the assumption that D is an 

nxnmatrix. 

A procedure for the estimation of the Z-transfer function of a vibrating structure can 

then be derived from Eqn. (5.3-24). 
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§ 5.4 ESTIMATE OF THE Z-TRANSFER FUNCTION 

From Eqns. (5.3-11) and (5.3-24) 

y(z)(1 + d1z-1 + d2z-2 + ··· + d2nz-2n) 

= (H1z-1 + H2z-2 + H3z-3 + ··· + H2nz-2n)f(z). (5.4-1) 

Applying the right-shifting property of the Z-transformation and taking the inverse 

transformation ofEqn. (5.4-1) yields the characterizing difference equation 

y(k) + d 1y(k-1) + d2y(k-2) + ··· + d2ny(k-2n) 

= H1f(k-1) + H2f(k-2) + H3f(k-3) + ··· + H2nf(k-2n). (5.4-2) 

This represents an auto-regressive and moving average (ARMA) model and forms 

the basis for the determination of the Z-transfer function matrix. The poles of the 

ARMA model are the poles of the Z-transfer function. 

Several cases for the use of Eqn. (5.4-2) to determine the Z-transfer function matrix 

sequence are discussed as follows. 

§ 5.4.1 Univariate Model 

a. Single Point Excitation and Single Point Response 

When a single excitation point and a single response point are arranged in a vibration 

modal test, only one component of the excitation f(k) and one component of 

response y(k) are measured. In this case, Eqn. (5.4-2) becomes a univariate ARMA 

model. 



Chapter 5 Modal Identification Using Z-Transformation 5-12 

Without loss of generality, assuming the i-th component of the excitation vector and 

the j-th component of response vector are measured at time instant 

k = 2n, 2n+1, ··, N, Eqn. (5.4-2) becomes 

Yi(k) + dlYi(k-1) + d2Yi(k-2) + ··· + d2nYi(k-2n) 

= hfj>.{j(k-1) + hfj>.{j(k-2) + ··· + hfJ">.[j(k-2n). 

Further, by assembling all the measurement data for k = 2n, 2n+1, ···, N, the 

following equation is obtained 

y=QO 

where 

and Q is an (N -2n + 1)x4n matrix 

y(2n-1) y(2n-2) ·· y(O) 
y(2n) y(2n-1) ·· y(1) 

Q= .. 

I (2n-l) I (2n-2) ·· I (0) 
1(2n) 1(2n-1) ·· 1(1) 

y(N-1) y(N-2) ·· y(N-2n) I(N-1) I(N-2) ·· I(N-2n) 

(5.4-3) 

(5.4-4) 

(5.4-5) 

(5.4-6) 

The superscript (k) of h~t> indicates the element belongs to the k-th matrix Hk and 

subscript ji indicates the j-row and i-th column element of the matrix. 
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It is clear that the sampling number N should be larger than 6n -1. The least square 

estimate of the parameter 8 can then be obtained as 

(5.4-7) 

The matrix QT Q and vector QT y may also be assumed to approach asymptotically 

the auto-correlation and cross-correlation matrix, respectively. This will be so for 

responses from stationary random force inputs when the observation period is 

sufficiently long. 

§ 5.4.2 Multivariate Model 

In a practical modal test, the following methods are commonly used. A shaker 

vibrates the tested structure at a single point and responses are measured at multiple 

points. Another method measures the response at a single point as the tested structure 

is successively impacted at multiple points by an impactor or hammer. This section 

discusses the use of the Z-transformation with these test methods to identify the 

modal parameters. Application of the Z-transformation to the multiple excitation and 

multiple response testing is also discussed. 

In order to derive suitable algorithms for the above test methods, the modal constant 

matrix has to be further discussed. From Eqn. (5.3-20), the modal constant matrix of 

the tested structure can be expressed in detail as 
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l l 
: aii • al au a12 · ln 

l l 
: a~i • al a21 a22 . 2n 

Az= 
af1 af2 afi 

l 
a in 

(5.4-8) 

l l • al· • al anl an2 • m • nn 

The matrix Az is symmetric and afi = x:fx:j. Considering x:j or x:f as a constant 

multiplier, either the i-th row or j-th column can be regarded as the 1-th complex 

mode shape of the vibrating structure. The minimum data for deriving the 1-th mode 

shape is therefore one column or one row of the 1-th modal constant matrix. 

Accordingly, one column or one row of the coefficient matrix sequence Hi of the 

ARMA model in Eqn. (5.4-2) is needed to be identified for deriving the mode shape. 

a. Single Point Excitation and Multiple Point Response 

In case of the single point excitation testing, the excitation is applied at a single point 

while the responses are measured at several points on the structure. Accordingly, 

one column, for example the j -th column, of the matrix A1 is estimated. The j-th 

column vector bJi) of matrix Hi replaces matrix Hi itself in Eqn. (5.4-2) and 

excitation vector f(k-i) is correspondingly replaced by its j-th component /j(k-i). 

Eqn. (5.4-2) then becomes 

y(k) + dly(k-1) + d2y(k-2) + ··· + d2ny(k-2n) 

= bJ1>/j(k-1) + bJ2>/j(k-2) + ··· + bJ2n>/j(k-2n) (5.4-9) 

If n response measurement stations are arranged, this vector equation can be 

decoupled into n univariate ARMA models 
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y;(k) + d tY;(k-1) + d2Y;(k-2) + ··· + d2nY;(k-2n) 

= hfj>.{j(k-1) + hfj>.{j(k-2) + ··· + hff'>.{j(k-2n) i = 1, 2, ···, n (5.4-10) 

where i indicates the i-th component of vectors y and h }k>. Being treated in the same 

way as for the univariate ARMA model previously discussed, dt. d2, ···, d2n and 

hfJ>, hfJ>, ···, hff'> for i = 1, ,2, ···, n can be estimated. The final estimate of d; can 

be taken as the average of all the individual estimates and the estimate of h }k) is 

formed from n estimates of hfJ>, hfJ>, ··· , hf]">. 

Another method to simultaneously estimate d; and h; is developed as follows. The 

estimated parameters are formed as; 

(5.4-11) 

h·- [ hm hm ··· h<~> Jr 
l- '1 '1 '1 (5.4-12) 

with hfj> representing the i-th component of the the j-th column vector h}k) of the 

coefficient matrix Hk, and 

d 
-
ht 
-

8= h2 (5.4-13) 

-
hn 

8 is an ((n+1)x2n) x 1 column vector. The measured time domain data are formed 

as; 
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Y;(k) = [y;(k-1) y;(k-2) ··· y;(k-2n) ], 

fj(k) = [.fj(k-1) .fj(k-2) ··· .fj(k-2n)] 

and 

Y1 (k) fj(k) 0 ··· 0 

Y2(k) o ti<k> ··· o 
Q(k)= 

yn,(k) 0 0 ... fj(k) 

5-16 

(5.4-14) 

(5.4-15) 

(5.4-16) 

Q(k) is ann x ((n+1)x2n) matrix. Then Eqn. (5.4-2) may be written in a compact 

form 

y(k) = Q(k)O. (5.4-17) 

Assembling the measurement data at time instant k = 2n, 2n + 1, ···, N, the following 

equation can be obtained 

u=QO, (5.4-18) 

where u is a ((N -2n + 1)xn ))x1 column vector with 

(5.4-19) 

andQ is a ((N-2n+1)xn) x ((n+1)x2n) matrix with 
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Y1 Fj 0 ··· 0 
- -
Y2 0 Fi ··· 0 

Q= ... . 
-

Yn 0 0 ··· Fi 

-
with Yi and Fi being (N -2n + 1) x 2n matrices 

Yi(2n-1) Yi(2n-2) : Yi(O) 

Yi(2n) Yi(2n-1) : Yi(1) 

5-17 

(5.4-20) 

Y; = (5.4-21) 

and 

Yi(N-1) Yi(N-2) : Yi(N-2n) 

'/j(2n-1) Jj(2n-2) : 

Jj(2n) Jj(2n-1) : 

Jj(O) 

Jj(1) 

Jj(N-1) Jj(N-2) : Jj(N-2n) 

The least square estimate of 9 is then 

(5.4-22) 

(5.4-23) 

The number of samples N must be taken such that N~4n + 1 and hence the least 

squares estimates exist. 

b. Multiple Point Excitation and Single Point Response 

In the case of single response testing, the excitation is applied to several points of the 

structure and response is picked up at a single point. Accordingly, one row of the 
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matrix A1 is estimated. The row vector (hy>l of the matrix H; replaces the matrix 

H; itself and the response vector y(k) is replaced by the measured, for example, j-th 

elementyj(k). Eqn. (5.4-2) becomes 

Yi(k) + dlYj(k-1) + d2Yj(k-2) + ··· + d2nYj(k-2n) 

= (h~1>lr<k-1) + (h)2>lr(k-2) + (h~3>lr(k-3) + ··· + (h~2n))Tf(k-2n) (5.4-24a) 

A similar procedure to the case of single excitation test can be applied to estimate 

coefficient d; and row vector (hy>l. 

In impact testing, the excitation is not applied simultaneously and Eqn. (5.4-2) has 

the following form in this case, 

Yj(k) + dlYj(k-1) + d2Yj(k-2) + ··· + d2nYj(k-2n) 

= h~P/i(k-1) + h~~>Ji(k-2) + ··· + hff">fi(k-2n) (5.4-24b) 

This equation represents the impact at i-th station and response at j-th station and is 

similar to Eqn. (5.4-10) and the same procedues can be used. 

c. Multiple Point Excitation and Multiple Point Response 

In the case of multiple point excitation and multiple point response modal testing, a 

univariate ARMA model can be developed for the i-th component of the response 

vector y(k) such as 

Y;(k) + dly;(k-1) + d2Y;(k-2) + ··· + d2nY;(k-2n) 

= (hP>lr<k-1) + (hf2>lr<k-2) + ··· + (hf2n>lr<k-2n) (5.4-25) 

where y;(k) is the i-th component of the response vector y(k) and (hfk>l indicates 
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the i-th row of the coefficient matrix Hk in the ARMA model in Eqn. (5.4-2). The 

procedure for estimation of the coefficient di and coefficient vector (hfk>l can be 

individually performed for every component of the response y(k) as discussed above. 

All the individual estimates of di are averaged and the mean values are taken as the 

estimates of di. All the estimates of (hfk>)T form the modal constant matrix Hk. 

Another procedure can also be developed to estimate di and (hfk))T simultaneously. 

Taking the transpose of both sides ofEqn. (5.4-25) yields 

Yi(k) + dlYi(k-1) + d2Yi(k-2) + ··· + d2nYi(k-2n) 

= fT (k-1)hfl> + f (k-2)hf2> + ··· + f (k-2n)hf2n) 

Assuming 

Yi(2n-1) Yi(2n-2) ··· Yi(O) 

Yi(2n) Yi(2n-1) ··· Yi(1) 

Yi(N-1) Yi(N-2) ··· Yi(N-2n) 

Yi(2n) 

Yi(2n+1) 

f(k) = [ f(k-1l f(k-2l ··· f(k-2nl ] 

(5.4-26) 

(5.4-27) 

where Yi(k) is an (N-2n+1) x 2n matrix, Yi is an (N-2n+1) x 1 column vector and 

f(k) is a 1 x 2n 2 row vector and the estimated parameters 
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d 

•P> 
·~1) 

h(l) 
n dt 

·~2) d2 

9= d= (5.4-28) 

h(2) 
n 

d2n 

•f"> 

h(2n) 
n 

with 0 being a (2nx(n2+1)) x 1 column vector, then the following equation can be 

obtained 

u=QO (5.4-29) 

where u is an ((N -2n + 1)xn) x 1 column vector 

Yt -
Y2 - (5.4-30) u= 

Yn -

andQ is an ((N-2n+1)xn) x (2nx(n2+1)) matrix. 
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-
Yt F ··· 0 

y2 0 ... 0 
Q= ... . (5.4-31) 

-
Yn 0 ... F 

with 

-
f(2n) 
-

- f(2n+l) 
F= (5.4-32) 

-
f(N) 

The least square estimate of 9 is 

(5.4-33) 

The number of samples N should be greater than 2n 2+2n + 1 so that the least squares 

estimates exist. The matrix QT Q and vector QT u in Eqns. (5.4-23) and (5.4-33) may 

be assumed to approach asymptotically the auto-correlation and cross-correlation, 

respectively. This will be true for responses from stationary random force inputs 

when the observation period is theoretically approaching infinite and practically of 

adequate length. 

§ 5.5 DETERMINATION OF MODAL PARAMETERS 

§ 5.5.1 Determination of Natural Frequencies and Damping Ratios 

Once 9 has been estimated, the coefficients di can be determined and substituted into 

the determinant in Eqn. (5.3-22) to equate the determinant with zero and to solve the 

equation. The roots, zi, of the equation are the poles of the ARMA model as well as 
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of the Z-transfer function matrix H(z) of the vibrating structure. It is well known 

that the eigenvalue Ai of a vibrating structure is expressed as 

Ai = -CO(Jli ± j C0('-11-Tl t 
where COi is the natural frequency of the vibrating structure and Tli is its damping 

ratio. j represents the imaginary unit. As noted, zi = e 'A.,T, and since zi are complex, 

it can be written 

. 'l.T -r.,-n.T J·ro,~T 1'0. 
zi = ai + Jbi = er.; = e ........ e ... = cie •. 

where coid is the damped natural frequency of the vibrating structure and 

Hence 

and 

-1 bi 
9i =tan - = COitJT. 

ai 

(5.5-1) 

(5.5-2) 

(5.5-3) 

The natural frequencies and damping ratios can therefore be obtained from the 

following two equations 

-In<ar+bh 
COiTli = 2T (5.5-4) 

and 

(5.5-5) 
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§ 5.5.2 Determination of Mode Shapes 

When either columns or rows of each matrix H; are estimated, the mode shapes can 

be determined. A technique for determination mode shapes is recommended as 

follows. 

From Eqn. (5.3-19) and z; = e'A.sT, Eqn. (5.3-24) can be expanded into a partial 

fraction summation 

2n A; 
H(z) =I: _1 

i=1 1- z z; 
(5.5-6) 

where A; is the modal constant matrix. 

To determine the values of the modal constant matrix, the following procedure is 

recommended. In order to evaluate A 1, it will be expedient to multiply each side of 

Eqn. (5.5-6) by (1- z-1 z1). Then 

(5.5-7) 

Since the relationship is to be true for all values of z, it certainly must hold for z = z 1 

where each term on the right side is zero except A 1• Hence, evaluating the above 

expression at z = z 1 significantly eases the determination of A1 and results in 

(5.5-8) 

It is clear that this procedure can be used in finding the remaining values of the 

modal constant matrix, that is 
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A;= (1 - z-1 Zi)H(z) I z=z; for i = 1, 2, ··· , 2n. (5.5-9) 

The denominator of H(z) in Eqn. (5.3-24b) is factorized into 

(z - z 1 )(z - z 2)···(z - z 2n) and Ai is then calculated using Eqn. (5.5-9) for each poles 

Zi· 

Considering a constant multiplier, any column or row of the matrix Ai will represent 

the i-th mode of the vibrating structure. Similarly, in the case of single point 

excitation modal testing, a column modal shape vector will be determined by the 

following expression 

ai = (1- z-1 z;)h(z) I z=z; for i = 1, 2, ··· , 2n. (5.5-10) 

The case of multiple shaker and one response measuring point modal testing or, 

impact testing, the row modal shape vector can be evaluated in much the same way 

aT= (1- z-1 Zi)hT (z) I z=z; for i = 1, 2, ··· , 2n. (5.5-11) 

§ 5.6 NUMERICAL EXAMPLES 

Some digital computer simulated tests are presented to demonstrate the application 

and efficiency of the present method. The assumed structure is a cantilevered beam 

with mass density of 7.85 t I m3 , elasticity modulus of 200 x Hf MPa and 

dimensions of 14mm x 25mm x 1000mm. The cantilever can be depicted as in Fig. 

5.6-1. 
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1~--------

lOOOmm 

Fig. 5.6-1 Geometry of Cantilever Beam 

The first five modal parameters, including natural frequencies and mode shapes were 

calculated by the finite element method. These calculated modal parameters are 

considered as "exact" values, which are compared with the identified results to assess 

the accuracy of identification. All the modes were assigned the same damping ratio 

of 0.02. 

The excitation signals were treated as accurate without corrupted noise. The 

responses were evaluated by mode superposition method and checked by a numerical 

integration technique. In order to simulate the actual test, some level of corrupted 

noise was added into the responses. 

Two types of simulating vibration tests were performed. The first digital test 

simulated the single point excitation modal test. The excitation point was arranged at 

the tip of the cantilever and six response points were equally spaced from the tip to 

the support as shown in Fig. 5.6-2. The response data were randomly added with 

noise of 15% RMS of the noise to signal ratio. Sampling rate was 1400Hz and 1600 

samples were evaluated. 
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shaker 

lOOOmm -----:Jot 

Fig. 5.6-2 Simulation of Single Shaker Test 

The excitation is simulated by 

N 
fUAt) = ..J2:r, [S.u(iAro)Aro]112cos(ijAroAt + 'lfi) (5.6-1) 

i=l 

S.u(ro) are one-sided spectral density of the excitation f(t); 'l'i is a statistically 

independent random phase angle uniformly distributed between 0 and 27t; and N is 

the number of data points. The spectra of excitation used for simulation is shown in 

Fig. 5.6-3. 

The spectrum is calculated by the following formula 

(5.6-2) 

where a=0.0081, g=32.6, cr=0.74, roo=-45 andy=5.0. 
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S(ro) 

0 2 4 6 
ro (rad/sec) 

Fig. 5.6-3 Spectra of Input Excitations 

The response is computed by means of numerical integration using the assumed 

structural parameters and the simulated excitation, the measurements of response are 

then generated by adding noise to the response, as shown in Figures. 5.6-4 to 5.6-6. 

Displacement 
Response 

Station 1 --
Station 2 ....... . 

-0.35e-7.__ _____ ___..___ _____ __. ______ ___, 

0.0 0.3 0.6 0.9 

Time (sec) 

Fig. 5.6-4 Response History in Time Domain at Station 1 and 2 
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0.35e-7....----------------------, 

Station3 --
Station4 ....... . 

-0.35e-7~-------___J ______ __J. ______ __. 

0.0 0.3 0.6 0.9 

Time (sec) 

Fig. 5.6-5 Response History in Time Domain at Station 3 and 4 

Displacement 
Response 

0.35e-7.....----------------------. 

StationS-
Station 6 ········ 

-0.35e-7L--------...L.-------...l....--------l 
0.0 0.3 0.6 0.9 

time (sec) 

Fig. 5.6-6 Response History in Time Domain at Station 5 and 6 

5-28 

The modal parameters can now be estimated on the basis of the excitation and 

response measurements. 
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The second digital test simulated the single response measurement point and 

multiple impact excitation modal testing. In the test, a response measurement point 

was placed at the tip of the cantilever while six impact positions were arranged along 

the cantilever with equal spaces, as shown in Fig. 5.6-7. 

In practical experiments, the transient excitation can be generated by an impact, 

which may be implemented with a hammer or similar impacting device which is not 

permanently attached to the structure or model. 

14mm 

c::Jl 

J kmm 
Fig. 5.6-7 Simulation of Single Impact Test 

The hammer impact will produce an impulse excitation. The mathematical 

defmition of the unit impulse is 

00 

a<r - t) = o, r :¢: t f a(r - t)dt = 1 (5.6-3) 
-oo 

and the unit impulse has units time-1• The unit impulse excitation can be shown as in 

Fig. 5.6-8. 
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~(t-t) 

l.t---------·r- area= 1 
£ 

Fig. 5.6-8 Unit Impulse 

t 
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The responses to the unit impulse applied to the six stations are shown in Fig. 5.6-9 

to 5.6-14. 

Displacement 
Response 

0.001 

0 

-0.001 

0 0.2 0.4 0.6 0.8 
Time( sec) 

Fig. 5.6-9 Responses to Impact on Station 1 
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0 0.2 0.4 0.6 0.8 
Time( sec) 

Fig. 5.6-10 Responses to Impact on Station 2 

0 0.2 0.4 0.6 0.8 
Time( sec) 

Fig. 5.6-11 Responses to Impact on Station 3 
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0 0.2 0.4 0.6 0.8 
Time( sec) 

Fig. 5.6-12 Responses to Impact on Station 4 

0 0.2 0.4 0.6 0.8 
Time( sec) 

Fig. 5.6-13 Responses to Impact on Station 5 
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Fig. 5.6-14 Responses to Impact on Station 6 
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0.8 

A noise with a level 15% RMS of noise to signal ratio was randomly added to the 

calculated responses. The sampling frequency was 1500 Hz and 1200 samples were 

evaluated. 

All the simulated excitation and response data were used with the corresponding 

method developed in this chapter to determine the modal parameters of the cantilever 

including natural frequencies, damping ratios and mode shapes. The results and 

comparisons with the "exact" modal parameters are shown in Tables 5.6-1 and 5.6-2. 

The accuracies of the frequencies and damping ratios are judged directly. The 

accuracies of the mode shapes are assessed by Mode Shape Correlation Constant, as 

mentioned in chapter 4. The results indicate that the present method can determine 

the modal parameters of a vibrating structure with adequate accuracy. 
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Table 5.6-1 Identified Results by Simulating Single Point Excitation 
and Comparison with the "Exact" Modal Parameters 

MODE FREQUENCY DAMPING RATIO MSCC WITH INPUT MODE 

No 

1 

2 

3 

4 

5 

MODE 

No 

1 

2 

3 

4 

5 

(Hz) (%) No 

Exact Identified Exact Identified 1 2 3 4 

11.39 11.31 0.02 0.031 100 0 4 0 

71.53 72.31 0.02 0.027 0 100 0 0 

200.38 200.32 0.02 0.024 4 0 100 0 

393.15 397.65 0.02 0.040 0 6 0 100 

652.01 656.65 0.02 0.034 0 0 5 0 

Table 5.6-2 Identified Results by Simulating Impact Excitation 

and Comparison with the "Exact" Modal Parameters 

5 

0 

6 

0 

0 

100 

FREQUENCY DAMPING RATIO MSCC WITH INPUT MODE 

(Hz) (%) No 

Exact Identified Exact Identified 1 2 3 4 5 

11.39 11.27 0.02 0.034 100 0 4 2 0 

71.53 71.51 0.02 0.024 0 100 0 0 5 

200.38 200.32 0.02 0.024 4 0 100 2 0 

393.15 398.03 0.02 0.035 0 6 0 100 4 

652.01 657.25 0.02 0.036 0 0 6 0 100 

§ 5.7 DISCUSSIONS AND CONCLUSIONS 
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From the above discussion, it can be seen that in a single excitation and single 

response test only the frequencies and damping ratios can be identified. In order to 

obtain the complex modes, at least two response points should be observed in the 

case of single excitation test or two excitation points should arranged in the case of 

single response test. 

Another important point is that the number of degrees of freedom of a tested 

structure is unknown in advance. It must be determined according to observation 
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data. There are many procedures which have been used, as discussed in§ 4.6. The 

methods recommended in that section may be used with the proposed method in this 

chapter as well. 

The accuracy of identified modal parameters depends on the accuracy of the estimate 

method of the coefficients di and matrices Hi. The estimates of these coefficients 

and matrices are obtained by least squares estimates in Eqns. (5.4-7), (5.4-23) or 

(5.4-33). However, the matrix QQT in these equations may be ill conditioned, in 

particular if its dimension is high. Therefore, the least squares estimation problem is .. 
not necessarily solved in a straightforward manner. There exist methods to find 0 

that are much better numerically behaved, which do not have the normal equations as 

a starting point. This has been extensively studied in other literature on the numerical 

analysis of least squares estimation. The underlying idea in these methods is that the 

matrix QQT is not formed. Instead, an orthonormal transformation is performed on 

the matrix QQr. Consider Eqn. (5.4-7) as an example. Assume T is an 

(N-2n + 1) x 4n orthonormal matrix .i.e, TTT = I. Choose T such that 

QT=[S I 0] (5.7-1) 

where S is a 4n upper triangular matrix. Since T is orthonormal, 

(5.7-2) 

which is a QR factorization of Q. There exist several numerically good methods for 

QR factorization. 

Let 
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yT= [a I b] (5.7-3) 

where a is a lx4n row vector and b is a lx(N-6n+l) row vector. 

The least squares criterion becomes 

(5.7-4) 

which is minimized for 

9S=a (5.7-5) 

giving minimization 

min(l[a I b]-9[S I 0]1 2)= lbl 2 (5.7-6) 

It can be noticed 

(5.7-7) 

The conditioning number of S is thus the square root of conditioning number of 

QQT. Therefore, the linear system (5.7-5) is much better conditioned than its 

counterpart (5.4-7). The described procedure for solving least squares estimation is 

consequently preferred. However, it should also be said that the straightforward 

solution Eqn. (5.4-7) in many cases gives reasonably acceptable accuracy, if the 

dimension of 9 is not too large. 

Estimation of 9 with any of the described methods requires arithmetic operations, for 
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example in Eqn. (5.4-7), proportional to (N-2n+1)(4n)2+(4n)3 • Then no advantage 

is taken of the possible internal structure of Q. Consequently, the individual 

estimation model for the multivariate case in Eqns. (5.4-9) and (5.4-10) or (5.4-24) 

and (5.4-25) are numerically preferred. In the case of single point excitation test, for 

example, when individual estimation model is used, the arithmetic operations are 

proportional to ((N-2n+1)x(4n)2 + (4n)3)xn. However, when multiple simultaneous 

estimation model in Eqn. (5.4-18) is used, it requires arithmetic operations 

proportional to (N-2n+1)x(2n 2+2n)2 + (2n2+2n)3• 

The following conclusions can then be obtained. The application of Z

transformation in the modal identification is investigated in this chapter. The Z

transformation is used to develop an ARMA model with all the coefficients of the 

denominator and numerator of the Z-transfer function of the dynamic structure, as its 

coefficients. The time domain excitation and response data are used to estimate the 

coefficients of the ARMA model and the modal parameters are determined from all 

the coefficients. The Z-transformation can be used in both the single point excitation 

modal testing and multiple excitation - multiple response modal testing to extract the 

modal parameters of a tested vibrating structure. A new technique for derivation of 

mode shapes from Z-transfer function of a vibrating structure is presented. 

Numerical example is given to demonstrate the effectiveness and accuracy of the 

application of Z-transformation in modal identification. 
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LABORATORY TESTING AND 

EXPERIMENTAL TECHNIQUES 

Approach your problems from the right end and start with 

the solutions. Then, perhaps, one day you will find the final 

question. 

- R. H. Van GuZik 

§ 6.1 INTRODUCTION 

The principal reason for developing methods for modal identification is to apply 

these methods in analysis of modal test data to obtain the modal parameters. The 

accuracy of the identified modal parameters depends on both the analysis method 

used and test data obtained. The better the test data is, the more is the acuuracy of the 
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identified modal parameters. It is therefore necessary to use appropriate 

experimental techniques in the modal testing in order to get the best possible data. 

The procedure in applying the identification methods, developed in the preceding 

chapters, to the experimental environment is also important for identification of good 

modal parameters. This chapter is then devoted to the following two main practical 

problems: experimental techniques for the modal test of a vibrating structure, and the 

application of the developed methods in this thesis for modal identification with the 

modal testing. For completeness, some techniques developed by others, which are 

useful for modal testing, are also included in this chapter. 

No excitation signal type is universally applicable to all structural testing situations 

but the majority of cases is optimally covered by transient or random signals. § 6.2 

discusses a number of excitation signals and driving units with their advantages and 

disadvantages described. Accurate measurement of responses is most imponant for 

the success of identification of modal parameter. In § 6.3, the techniques of 

measuring the response are dealt with. Since modal testing is usually conducted 

using electronic equipment, it is difficult to avoid information loss during the test 

because of the incorrect sampling rate used. § 6.4 studies the sampling rate in order 

to minimize these losses. The collected data in an experiment is not always good 

enough for identification algorithms and needs to be pretreated as discussed in§ 6.5. 

When modal parameters of a structure are identified, the number of degrees of 

freedom contained in the test data must be first determined and § 6.6 is devoted to 

the investigation of the methods for assessing this. Before modal testing is 

perfonned, it is necessary to consider the type of excitation signal and determine the 

spectrum bandwidth of the signal most suitable to the structure modal test. Further, 

the techniques of performing the modal testing are also of practical importance and 

are studied in § 6.7. Application of the methods for modal identification in this 
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thesis to the modal tests was conducted in the Laboratory of Structural Engineering 

at The University of New South Wales. § 6.8 concentrates on the description and 

discussion of the tests and results. § 6.9 discusses some special techniques in modal 

testing and a short summary is given in§ 6.10 to conclude this chapter. 

§ 6.2 EXCITATION TECHNIQUES 

In most applications of structure testing, it is necessary to excite the structure with a 

well controlled and measurable excitation. A number of different types of excitation 

signals are available for this testing, each having its own advantages and 

disadvantages. The method of excitation must be simple, economical and practical. 

Moreover, in the present study, the exciter must have a spectral density of excitation 

with sufficiently large components to drive the structure through the whole range of 

the frequencies over which the vibration characteristics of the structure need to be 

identified. In this section, the most common types of excitation techniques will be 

described and discussed. The types of driving unit described here are the impact 

hammer and the shaker. The excitation signals described are (1) impact impulse, (2) 

step, (3) sine, (4) random (5) pseudo-random, and (6) periodic random. 

It should frrst be considered if multi-exciters are needed to drive the structure or if a 

single exciter is sufficient. Multi-exciters were frrst suggested by Lewis and Wrisley 

(1950) to produce a single mode response in a heavily damped structure. Although 

theoretically an infinite number of drivers is required, a limited number must be used 

to drive a real structure. An experimentally iterative process of adjusting the forces 

produced by the exciters is used in the sophisticated technique advocated by Smith 

and Wood (1972) for each specific mode of the structure, as there are needs to be a 

unique force distribution for each mode to be separately excited. Since the present 

study deals with situations in which a number of different modes may be present it is 
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not necessary to use more than a single exciter. This makes the exciting system 

simpler and contributes to more accurate results as an experimental iterative process 

of testing is not involved. 

The second consideration is the choice of the driving unit itself. It is possible to use 

either an impact hammer or a shaker. 

Using a hammer to impact a structure into vibration is a simple method of excitation. 

When the structure is excited by the hammer, energy is transferred to the structure in 

a very short period of time giving a typical input force signal impulse to the structure 

as shown in Fig. 6.2-1. 

Fig. 6.2-1 A Typical Impulse Excitation 

Basically, the shape of this force signal depends upon the type of the hammer tip, 

mass of the hammer and the dynamic characteristics of the structure under 

investigation. The magnitude of the impact is determined by the mass of the 

hammer head and the velocity of the hammer when it hits the structure. The 

frequency range, which is effectively excited by this type of device, is determined by 

the length of the signal which is controlled by the stiffness of the contacting surfaces 

and the mass of the hammer head. There is system resonance at a frequency given by 
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( contact stiffness )112 

hammer head mass 
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(6.2-1) 

Further, it is also difficult to deliver energy into the test structure. The stiffer the 

material of the hammer head, the shorter is the signal and the higher is the frequency 

range covered by the impact. Hence, a set of different hammer tips and heads is used 

to permit the regulation of the frequency range to be encompassed in a test. A 

hammer with a hard head can be used to excite higher frequency modes, whereas a 

hammer with a softer head can be used to concentrate more energy at lower 

frequencies. Similarly, the lighter the head mass the higher the effective frequency 

range. A hammer is a very simple driver and produces the transient impulse 

excitation which is suitable for a wide variety of engineering structures. The method 

for excitation is fast and particularly convenient when testing is conducted in the 

field. However, the bandwidth of the power spectrum of the input force is not easily 

controlled and there is no guarantee that all natural frequencies in the entire range of 

interest are well excited. On the other hand, using a stiffer tip than necessary will 

result in energy being input to vibrations outside the range of interest at the sacrifice 

of those inside that range. The impulse also has a high crest factor (i.e. high 

amplitude but low root mean squares value) which can force some structures into 

non-linearity and is therefore not suitable for non-linear structures. 

According to experience gained in testing at the University of New South Wales, the 

difficulties of applying the hammer impact are: 1. it is difficult to impact the 

structure with the same magnitude, position and orientation at each impact. 2. it 

requires practice to make the impact without multiple impacts or "hammer bounce". 

Electromagnetic shakers are the most common type of exciter, and are formed by a 

coil and magnet assembly which represent the simplest suitable driver for use with 
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the present study. The frequency and amplitude of excitation are controlled 

independently of each other, giving more operational flexibility. The shaker takes 

any input signal from a signal generator required to drive the system and is able to 

input an adequate level of energy throughout the whole range of frequencies of 

interest. The electromagnetic shaker can also be easily used to excite free vibrations. 

Disconnecting the magnetic coil from the exciting circuit provides a time marker for 

the instant at which the excitation force is removed and the structure begins its free 

vibration response. This instant can readily be determined and the recording unit can 

be signaled to begin recording the response signal. 

Care should be exercised about the measurement of the force applied to the structure. 

Although it may appear that the difference between the force generated with shaker 

and that applied to the structure is likely to be small, it must be noted that just near 

resonance very little force is required to produce a large response and what usually 

happens is that without altering the settings on the power amplifier or signal 

generator, there is a marked reduction in the force level at frequencies adjacent to the 

structure's natural frequencies. As a result, the true force applied to the structure 

becomes the difference between the force generated in the exciter and inertia force 

required to move the drive rod and shaker and is, in fact, much smaller than either. 

Consider as an example a plate subject to a vibration test. Where the excitation and 

response are measured at the same point and in the immediate vicinity of the first 

natural frequency of the plate, the plate behaves very similar to a single degree of 

freedom oscillator with an apparent mass of m8 1 and apparent stiffness k8 1· Assume 

the mass of moving parts of the shaker and connection to the structure is mm. If the 

force generated by the shaker is F m and the acceleration of the structure is i, the 

force F 8 applied to the structure will be 
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(6.2-2) 

There is need for a direct measurement of the force applied to the structure as close 

to the surface of the structure as possible in order to obtain a reliable and accurate 

indication of the excitation level. A possible arrangement of force measurement is 

shown in Fig. 6.2-2. 

Structure 

Drive rod 

Shaker 

Fig. 6.2-2 Arrangement of Force Measurement 

Generally, the larger the shaker, the greater the force which may be generated for 

exciting the structure. However, besides the obvious penalty of expense incurred by 

using too large an exciter, there is usually a limitation imposed on the working 

frequency range. 

A shaker can be used with a number of generator signals, such as a step input, step 

relaxation input, sinusoidal input, sweep sinusoidal input, pure random input, 

pseudo-random input, periodic impulse and periodic random excitation. 

A step input has a uniform spectral density over the entire frequency range and is 

theoretically an ideal method to excite all the modes of a structure. However in 
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practice, it is usually unattainable. 

The step relaxation excitation can be used in free vibration test. To generate the step 

relaxation excitation, a lightweight cable is attached to the structure and used to 

preload the system to some allowable force level or deflection. The structure 

vibrates when the cable is severed This method is capable of putting a great deal 

more energy into the structure, especially in the lower modes. 

Sinewave excitation has been the traditional input signal in modal analysis for many 

years and is still widely used. The sinewave can be either stepped or swept through 

the frequency range of interest. The sinusoidal excitation offers some advantages 

over other forms of input. The advantages include (1) the frequency range of the 

excitation, and consequently the response, can readily be controlled, and (2) a large 

amount of energy can be concentrated and input to the structure within the range of 

frequencies required This results in relatively high signal-to-noise ratios. 

Random excitation as shown in Fig. 6.2-3 is a continuous type of signal which never 

repeats itself and whose amplitudes can only be predicted in terms of statistical 

parameters. It can be described in terms of its power spectral density. The main 

characteristic of the random estimates for each recorded data block is that they have 

random amplitudes and random phases. In practice, the random signal is often found 

to be a Gaussian random signal. 
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Fig. 6.2-3 Random Noise Signal 

It is usual for random excitation to be applied through an attached shaker. The 

random signal can provide wide frequency spectra, e.g. a white noise signal has a 

constant power spectral density over the entire frequency range. The random signal 

can be band-limited to the frequency range of interest by filtering and modulating the 

original broad band white noise signal. Thus excitation of frequencies outside this 

band is avoided and a better dynamic range in the analysis can be obtained. Random 

excitation is the best excitation method for non-linear structures. To increase the 

accuracy, an averaging process for the results of different data sets can be carried out 

through repeatedly recording the measurement after each period of excitation. As 

different excitation signals are used in each case, different response records are 

expected according to the instant at which the excitation signal was started and 

stopped. This averaging enables the reduction of non-linear effects, noise, and 

distortion in the measurements by taking an increasing number of averages of the 

results. The disadvantage of this approach is that the signal averaging is needed. In 

addition to this, there may be leakage problems. 

The pseudo-random signal, as indicated in Fig. 6.2-4, is made up of a segment of 

random signal of certain length of period, which is generated for the period of time 

and then repeated, which offers a high level of energy of excitation for the modes 
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affected by the signal and can provide reduction of the noise-to-signal ratio in the 

recorded response. The pseudo-random signal is designed in such a way that each 

frequency component has the same amplitude in the frequency range of interest. The 

phase angle between the different components, however, is random. 

The main advantage in using pseudo-random excitation is that no leakage in the 

analysis occurs, the spectrum can therefore be shaped to only frequencies in the 

range of interest, and hence only a few averages are required. The most serious 

disadvantage of this pseudo-random method of excitation is that if the same repeated 

excitation function is used for every response data record taken, non-linearities and 

distortion cannot be removed from the measurements by ensemble averaging since 

they are excited equally each time and not according to random criteria. 

t 

T T T 

Fig. 6.2-4 Example of a Pseudo-Random Signal 

Periodic random excitation can also be used with the present study. This type of 

excitation, as shown in Fig. 6.2-5, is the combination of pseudo-random and true 

random. 
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In the periodic random process, a pseudo-random excitation is generated and after a 

few cycles, a measurement of the input and the now steady-state response is made. 

A different pseudo-random sequence is then generated, the procedure is repeated and 

the result treated as the second sample in what will develop to be an ensemble of 

random samples. The advantage over the simple random excitation is that due to the 

essential periodic nature of each of the periodic random samples, there are no 

leakage or bias errors in any of the measurements. However, the cost is an increase 

in the measurement time since 213 or 3/4 of the data available is unused while steady 

response conditions are awaited for each new sample. 

§ 6.3 MEASURING THE RESPONSE 

Measuring the response is an important step in the modal testing. It is generally 

necessary to consider and deal with a certain level of noise arising from the 

experimental measurements. 

Different types of transducer are used to measure different structural responses. 

Ammong the other transducer, accelerometers such as those of piezoelectric type can 

be most conveniently used with the present study because of their sensitivity, wide 
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frequency range, small size and ease of mounting on the structure. Accelerometers 

have been used in the field of structural dynamics for a long time, and are well 

developed and easy to use. The response of a very light structure may be affected 

significantly by the mass of an accelerometer or there may even be space restrictions 

which do not pennit the mounting of an accelerometer. In such cases, non-contact 

velocity, displacement or strain transducers, or contacting electrical strain gauges 

may be used instead of accelerometers. However, the accuracy and sensitivity of 

these instruments are much lower than that of accelerometers. 

The correct location and installation of transducers, especially accelerometers, is 

important. There are various means of fixing the transducers to the surface of the test 

structure, some more convenient than others. These fixing methods range from a 

threaded stud, which requires the appropriate modification of the test structure, 

through to various adhesives in conjunction with a stud, to the use of a small magnet 

plate or wax, which is simplest and easiest to use. 

Another consideration when attaching the transducer is the extent of local stiffening 

which is introduced by its addition to the structure. If this is being fiXed to a 

relatively flexible plate-like surface, then there is a distinct possibility that local 

stiffness will be increased considerably. The only solution to this difficulty is to 

move the transducer to the another more substantial part of the structure. 

The connection of the exciter to the structure must be carefully considered. Most 

practical structures have generally complex and multidimensional movements. When 

pushed in one direction, the structure responds not only in that direction but also in 

others. Hence it is possible that it can give rise to a secondary form of excitation if 

the shaker is not correctly connected with the structure. A possible solution to this 

problem is to connect the exciter with the structure by a connecting rod. The 

advantages of such connecting rod are its very high axial stiffness but very low 
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bending stiffness. Hence moment excitation and rotational inertial loading would not 

be induced. Further this connection can protect the shaker and transducer and help 

the positioning of the shaker. 

§ 6.4 CHOICE OF SAMPLING RATE AND PRESAMPLING FILTERS 

Data sampling from a test is performed with electronic equipment-based data

acquisition system. It is inevitable that such sampling leads to information losses, 

and it is therefore important to select proper sampling rate so that these losses are 

minimized. In this section, it is assumed that the sampling is carried out with equal 

sampling intervals. 

Suppose that a signal f(t) is sampled with the sampling interval T and 

fk = f(kT), k = 1, 2, ··· (6.4-1) 

By denoting the sampling frequency by COs= 21CIT, then CON= C08 /2 is the Nyquist 

frequency. A signal with frequency higher than CON cannot, when sampled, be 

distinguished from one in the interval [-coN, CON]. It follows from simple 

manipulations with trigonometric formulas that with I co I > coN, there exists a co 

and -CON < CO < CON SO that 

cos( coKT) = cos( coKT) 
k = 0, 1, 2, ... 

sin( coKT) = sin( coKT) 
(6.4-2) 

Consequently, the part of the signal spectrum that corresponds to frequencies higher 

than CON will be interpreted as contributions from lower frequencies. This is the alias 

phenomenon; the frequency appears under an assumed mode. It also means that the 
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spectrum of the sampled signal will be a superposition of different parts of the 

original spectrum: 

00 

CI>T(ro) = ~ Cl>c(ro + rrou) (6.4-3) 

Here 4> c( ro) is the spectrum of the continuous-time spectrum, defmed as 

- lL 
Rc('t) = Ef(t)f(t + 't) = lim L fEf (t)f (t + 't)dt 

L~oo 0 
(6.4-4a) 

00 

Cl>c(ro) = J Rc('t)e-iCiYtd't (6.4-4b) 
-oo 

and CI>T( ro) is the spectrum of the sampled signal 

RT(l·T) = EfJk+l = lim Nl i Ef(kT)f (kT +IT) 
N~oo k=l 

(6.4-Sa) 

00 

CI>T( ro) = T ~ R T(l T)e irolT (6.4-Sb) 
I =-co 

The effect of Eqn. (6.4-3) is called folding: the original spectrum is folded (and 

added) to give the sampled spectrum. 

The information regarding frequencies higher than the Nyquist frequency is thus lost 

by sampling. It is then important not to allow the folding effect to diston the 

component of the spectrum below the Nyquist frequency. This is achieved by a 

presampling filter K(p) 
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fF(t) = K(p )f(t) (6.4-6) 

where pis the differentiation operation. The spectrum of the filtered signal fF(t) will 

therefore, be 

Ideally, K(ico) should have a characteristic so that 

IK(ico)l =1 co:s;;coN 

IK(ico)l =0 CO> CON 

This can be realized only approximately. In the ideal case, 

which means that the signal 

will have a spectrum from Eqn. (6.4-3) 

(6.4-7) 

(6.4-8) 

(6.4-9) 

(6.4-10) 

(6.4-11) 

With the filter in Eqns. (6.4-6) and (6.4-8) a sampled spectrum with no alias effects 

is obtained. Therefore this filter is called an antialiasing filter. Such a filter should be 

applied before sampling if the signal is suspected to have non-negligible energy 

above the Nyquist frequency. 
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A typical situation occurring in data sampling is that the signal consists of a useful 

component and disturbance component, and the spectrum band of the disturbances is 

greater than that of the signal. The sampling rate is then usually chosen so that most 

of the spectrum of useful part is below roN. The antialiasing filter essentially cuts 

away high-frequency noise contributions. 

Consider 

f(t) = p(t) + v(t) (6.4-12) 

where p (t) is the useful signal and v(t) is the noise. Let fll~(ro) be the spectrum of 

v (t). The sampled, prefiltered signal then is 

(6.4-13) 

where the variance of the noise is 

roN 

E(vf)2 = J «<lt (ro+rros)dro (6.4-14) 
-roN 

From this expression it can be seen that the noise effects from the higher frequencies 

are folded into the region [-roN, roN] and are thus contributing to the noise power. 

By eliminating the high-frequency noise by an antialiasing filter, the variance of the 

vf is reduced by the term 

roN 

1: J fll~(ro+rroN)dro = J fll~(ro)dro (6.4-15) 
r~ -roN lrol>roN 
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compared to the condition with no presampling filter. This is a significant noise 

reduction if the noise spectrum has considerable energy above the Nyquist 

frequency. 

If the input is band limited and has no energy above the cutoff frequency coB, all 

useful information in the output also lies below coB. An antialiasing filter with cutoff 

frequency coB and sample with interval T = 1CicoB is then applied with no loss of 

information. If the input is not band limited, the antialiasing filter will destroy useful 

information at the same time as the noise is reduced. If T is so chosen that the 

Nyquist frequency(= the cutoff frequency for the filter) is above the bandwidth of the 

system, the loss of information is not significant. In this case the antialiasing filter 

should be also applied to the input signal. 

If the input is piecewise constant over the sampling interval, the sampled input 

equals the constant value and no presampling filtering should be applied to this 

sequence. The stepwise changes in the process input do, though, contain high 

frequencies that could travel through the process to the output. An antialiasing filter 

applied to the process output could thus distort useful information. There are three 

ways to handle this problem: 

1. Sample fast enough that the process is well damped above the Nyquist 

frequency. The high frequency components in the output that originate from 

input are then insignificant. 

2. Consider the antialiasing output fllter as part of the process and model the 

system from input to filtered output. 

3. Since the antialiasing filter is known, include it as a known part of the model 

and let the predicted output pass through the filter before being used in the 
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identification. 

If the frequency of interest is too high, it may give rise to a practical difficulty of 

sampling with very high sampling rate. Fortunately, there is a way to overcome this 

difficulty. In the case of a high frequency of interest, the whole range of frequencies 

can be divided into some sub-ranges and testing can be carried out for these sub

ranges which may have lower limit greater than zero. 

The minimum sampling rate can be derived as follows. From Eqn. (4.3-18), 

(6.4-16) 

The inverse trigonometric function arc tanx is not single valued, the principal value 

for arc tanx is defmed as 

y =Arc tanx 
1t 1t 

-- <y <-
2 2 

(6.4-17) 

The inverse trigonometric function arc tanx can then be written in terms of its 

principal value as 

y = arc tanx =Arc tanx + K 1t K =012···n ' ' ' ' 
(6.4-18) 

Eqn. ( 6.4-16) can then expressed as 

1 1a-a* 1 
rod= -(Arc tan I * I+K1t) 

T 1a+a 1 
(6.4-19) 
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From Eqn. (6.4-19), for any value of K, the value of damped natural frequency rod 

should have a single value and satisfy the following 

(6.4-20) 

that is 

(6.4-21) 

~ is the sampling rate and denoted as fs and hence the minimum sampling rate 

(fs )min is determined as 

2/max 
(fs )min > K + 

1 
, K = 0, 1, 2, · · ·, L (6.4-22) 

where !s is the sampling rate, f max is the maximum frequency of interest and K an 

integer. 

For K values different from zero, there is a minimum limit on the natural frequency 

which can be determined by 

f 
Kifs)max 

min > 
2 

, K = 0, 1, 2, ···, L (6.4-23) 

where f min is the minimum frequency of interest. 

This yields the maximum value of K which can be used for any band of frequencies 
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of interest (/min, f max) and which is determined by 

Kmax < ~ - ~ . 
Jmax J nun 

/min 
(6.4-24) 

Therefore, there are two alternatives available, if there is a wide range of frequencies 

of interest 

1. The entire range can be covered at once with K = 0. However, this might need 

an excessively high sampling rate and/or an extremely large mathematical 

model size. 

2. The entire range is subdivided into several narrower ranges, each to be covered 

separately by using recorded data which contains frequency contributions 

inside this range only. This approach allows smaller sampling rates to be used 

with each frequency band, and the number of modes included in data will be 

less than if the entire range is used. The resulting mathematical model size will 

be smaller, allowing smaller memory requirements for computation and less 

round-off error in the results. 

In general, it is recommended to use the minimum possible value of K which the 

recording unit can handle. 

For example, if there is a range of frequencies of 0- 3000Hz, the minimum 

sampling rate is 2><3000 = 6000Hz when the range of frequencies is considered as a 

whole. Alternatively, the range of frequencies can be divided into four bands: 

0 - 800Hz, 800 - 1400Hz, 1400- 2200Hz and 2200Hz - 3000Hz. The 

sampling rates for each band can be determined as follows. 



Chapter6 Laboratory Testing and Experimental Techniques 6-21 

For 0 - 800Hz, from Eqn. (6.4-24) the maximum value of K is 

0 
K SL = SOO-O =0 (6.4-25) 

K is then taken to be 0 and the minimum sampling rate is determined from Eqn. 

(6.4-22) 

2X/max 2x800 =1600Hz 
{fs)min > 0+1 1 (6.4-26) 

For the band of 800- 1400Hz, the maximum values of K are determined by 

800 
K SL = 1400 _ SOO = 1.33 (6.4-27) 

then K will take the values of 0 or 1. When K = 1, the minimum sampling 

frequency is 

2x1400 
{fs)min > 

1
+

1 
=1400Hz (6.4-28) 

and from Eqn. (6.4-23) the maximum sampling frequency is 

2x800 
<fs)max > 

1 
=1600Hz (6.4-29) 

Hence the sampling rate should be 

1400Hz <fs <1600Hz (6.4-30) 
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The sampling rates for the remaining bands can be obtained in the similar manner. 

§ 6.5 PRETREATMENT OF TEST DATA 

When the data has been collected from the identification experiment, it is unlikely to 

be in a satisfactory condition for immediate use in identification algorithms. There 

are several possible deficiencies in the data that should be considered 

1. High-frequency disturbances in the data record above the frequency of interest 

of the structure under test. 

2. Drift and offset, and low-frequency-disturbances with a possible periodic 

character. 

It is important therefore to polish the data so as to avoid problems in the 

identification. 

H any high-frequency disturbances are detected, they indicate that the choice of 

sampling rate and presampling filter were not suitable. If, after the test, the sampling 

rate was found to be unnecessarily high, the data must be resampled and a digital 

antialias filter must be applied before the resampling, in the same manner as 

previously discussed. 

Single erroneous or highly disturbed values of the measured data, such as from 

bursts, may have a very substantial influence on the resulting estimate. It is thus 

necessary to protect the estimate from corrupted data. 

§ 6.6 ESTIMATION OF THE ORDER OF THE TESTING STRUCTURE 

The order of a linear structure excited in a test must be determined before the modal 
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parameters can be identified. There are many different ways to estimate the order of 

a test structure based on a preliminary data analysis. Some methods have already 

been discussed in chapters 4 and 5. The following preliminary data analysis 

techniques are often used and hence discussed briefly. 

1. Testing ranks in sample covariance matrices 

2. Correlating variables 

3. Examining the information matrix. 

These are discussed as follows. 

1. Testing ranks in covariance matrices: 

Consider the true structure being described by 

y(t) + aty(t-1) + ··· + any(t-n) = 

btf(t-1) + b2f(t) + ··· + bnf(t-n) + vo(t) 

(6.6-1) 

for some noise sequence [Vo(t)]. Consider also that n is the smallest number 

for which this holds, i.e., n is the true order. As usual, it can be assumed 

Qs(t) = [-y(t-1) ··· -y(t-n)f(t-1) ··· f(t-n)]T (6.6-2) 

Suppose first that Vo(t) = 0, then Eqn. (6.6-1) implies that the matrix 

(6.6-3) 

will be nonsingular for s ~ n and singular for s ~ n + 1. The determinant 

K(s) = det(R8(N)), could thus be used as a test quantity for the model order. 
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For a noise [Vo(t)] present in Eqn. (6.6-1), Eqn. (6.6-2) can still be used with a 

suitable threshold, provided the signal-to-noise ratio is high. If this is not the 

case, the enhanced matrix can be used 

(6.6-4) 

where o2Rv is the estimated influence of Vo(t) on Rs(N). A better 

alternative, when the influence of Vo(t) is not negligible, is to use other 

correlation vectors. If noise sequence [vo(t)] and excitation sequence [f(t)] 

are uncorrelated, 

Cs = [y(t-1)y(t-2) ... y(t-2s)] (6.6-5) 

and 

(6.6-6) 

Eqn. (6.6-6) is nonsingular for s S nand singular for s ~ n+1. Replacing E 

by sample mean gives a usable test quantity. If sequence [Vo(t)] is known to 

be a moving average of order r, so that y (t -r -1) and Vo(t) are uncorrelated, 

ts(t) = Qs(t-r) (6.6-7) 

can be used in Eqn. (6.6-6). 

2. Correlating variables: 

The order-determination problem is to include one more variable in a model 

structure or not. This variable could be y(t-n-1) in Eqn.(6.6-1) or a 

measured possible disturbance variable w(t). In either case, the question is 

whether this new variable can contribute when explaining the response 

variable y (t) and can be measured by the correlation between y (t) and w (t). 
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However, to discount the possible relationship between y (t) and w (t), already 

accounted for by the smaller model structure, the correlation should be 

measured between w (t) and remaining residual £(t, eN)= y (t)- y(t ION). 

3. The information matrix: 

If the order of a test structure is overestimated, global and local identifiability 

will be lost. It means that 

( a) = dy(t I a) 
g t, da 

will not have full rank at a= a* and hence the information matrix 

will be singular. Since the Gauss-Newton search algorithm uses the inverse of 

the information matrix, a natural test quantity to determine the model order 

will be the conditioning number of this matrix. 

Techniques 1 and 2 were recommended in chapter 4. 
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§ 6.7 EXCITATION BANDWIDTH AND ANALYSIS OF TEST DATA 

§ 6.7.1 Excitation Bandwidth Consideration 

Three alternative input-output arrangements have been investigated to assess their 

suitability for the proposed methods in this thesis. 

The first alternative is to excite a structure by a signal which has a sufficiently large 

frequency spectrum of excitation and is filtered so as to excite the structure only 

within the range of interest. 

The second alternative is to generate the excitation signal with the range of interested 

frequencies directly. 

In these two cases, the exciting signal contains all the frequencies of interest, but 

there is no guarantee that only those modes of the structure which have natural 

frequencies within the range will be excited. Due to an impedance mismatch 

between the structure and the exciter, or due to the initial transient excitation, the 

structure may be excited with a spectrum having appreciable amplitudes outside the 

frequency range of interest. 

The third alternative would not filter the excitation signal, instead the response signal 

is filtered to exclude any components outside the range of frequencies of interest. 

This arrangement guarantees both that the excitation covers the frequency range of 

interest and that the response data covers only this range. Preliminary experimental 

work indicated that the third alternative could be best controlled and hence was used 

in the subsequent experimental measurements. 
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§ 6.7.2 Analysis of Test Data 

Mter all the excitation and response data have been recorded, the next step is to 

analyze the test data so that the modal parameters of the tested structure could be 

identified. Usually, the following procedure is necessary to reach the goal. 

1. Using Eqn. (6.4-18), the maximum value of K is determined according to the 

range of frequencies of interest. 

2. The suitable sampling rate will be computed by Eqns. (6.4-16) and (6.4-17) 

using a K value as low as possible. The sampling rate determined in such a 

manner is the best practical value to be used. However, care must be exercised 

in determining the range of interested frequencies. H the range is too large, it 

may require division into some sub-range to lower the sampling rates. 

3. When test data has been collected from the identification experiment, it is 

unlikely to be ready for immediate use in any of the proposed identification 

methods. The data must be checked to determine if there are high-frequency 

disturbances, occasional bursts or drift, offset or low-frequency-disturbances. 

H possible, the data should then be polished. H not, the data must be 

resampled. Meanwhile, a digital antialias filter must be applied before any 

resampling, as discussed in § 6.4. 

4. When the testing data is considered good enough, the order of the tested 

structure must be determined so that the proposed mathematical model of the 

tested structure can be used to identify its modal parameters. 

5. For each method of modal identification, the corresponding matrices required 

by the method are constructed from test data. 
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6. Using an appropriate proposed methods, the modal parameters of the tested 

structure are determined. 

7. Since time domain methods suffer greatly from contamination of the data by 

extraneous noise, it is appropriate to cany out an averaging process in an 

attempt to obtain better results. Taking more and more averages of results may 

reduce noise, distortion and non-linear effects. On the other hand, too many 

averages require more computer time and increase the round-off errors. 

Usually, there are three stages at which the data can be averaged: (1) the data 

obtained after the above step 3, (2) intermediate results which are used to 

compute the eigenvalue and eigenvectors, (3) the resulting eigenvalues and 

eigenvectors. Experience indicates using the averages of the intermediate 

results would give better results. 

§ 6.8 EXPERIMENTAL WORK AND RESULTS 

The experimental work has been conducted in the Structural Engineering Laboratory 

at The University of New South Wales to investigate the application of modal test 

techniques and the proposed methods in this thesis to the laboratory experimental 

environment. This section is devoted to the description of the experimental work and 

the results. Some of experience gained from testing is also mentioned. 

The apparatus used in the experimental work is broadly divided into two main 

separate systems: namely, the excitation system and the data recording system. 

§ 6.8.1 Excitation System 

As discussed in § 6.2, there are two kinds of excitation system used in the test: 
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hammer system and exciter system. The arrangement of the hammer exciting system 

is shown in the block diagram in Fig. 6.8-1. 

Hammer 

! 
Force Structure 

transducer 

! 
Preamplifier 

J 
Analyzer 

J 
Computer 

recording unit 

Fig. 6.8-1 Diagram of Hammer Exciting System in Test 

A hammer of Bruel & Kjaer type 8202 is used to input the impact force on the 

testing structures. The hammer has a force transducer of Bruel & Kjaer type 8200 

built into the tip to register the force input. A tip with the hammer imparts a pulse 

with a broad frequency range to the test structure and a blow from this hammer will 

simultaneously excite all the modes of vibration. The resulting vibrational motion is 

registered by a response pickup accelerometer mounted on the structure. Hammer 
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excitation requires less equipment than any other excitation method; only the 

instrumented hammer and one response accelerometer is needed. The signals picked 

up by the force transducer and accelerometer are transferred by a line drive 

preamplifier for Bruel & Kjaer type 2644 to the analyzer. 

The line-drive preamplifier type 2644 is able to drive very long cables without losses 

and can withstand much more severe environmental conditions than normal 

preamplifiers. The 2644 has two other special benefits: (1) It can be used being 

mounted directly on the top face of accelerometers or force transducers fitted with 

top connectors, and (2) its line-drive power-supply system uses only one coaxial 

cable for power and signal transmission. The amplified signal is then transferred 

into a Bruel & Kjaer analyzer type 2034. The signal is filtered through the filter in 

the analyzer and is transferred to the computer and recorded in the disc as the 

excitation data. 

The second excitation approach used in the tests is an exciter capable of generating 

pseudo-random signal. The excitation system of this kind is shown in Fig. 6.8-2. 

The pseudo-random signal is originally generated by the Bruel & Kjaer analyzer type 

2034 and transferred to a power amplifier type 2706 of Bruel & Kjaer which in turn 

amplifies the signal before transferring it to the exciter of Bruel & Kjaer type 4809. 

The exciter is connected with a Bruel & Kjaer type 8200 force transducer through a 

flexible rod with a force transducer attached to the proper location to be excited on 

the structure. The flexible rod has good stiffness in its axial direction but relatively 

flexible in the other five directions ensuring the driving force from the exciter is 

applied to the structure along the axis of the rod. 
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Exciter 

~ 
Force Structure transducer 

~ 
Preamplifier 

~ 
Analyzer 

~ 
Computer 

recording unit 

Fig. 6.8-2 Diagram of Exciter Exciting System in Test 

However, if the drive rod is made too long, or too flexible, then the rod can begin to 

introduce the effects on its own resonances into the measurements and these can be 

very difficult to extricate from the genuine data. The exciter is indirectly ftxed to the 

ground or solid isolated base. 

The signal generated from the crystal in the accelerometer is transferred into the 

charge amplifier of Bruel & Kjaer 2635 which in turn converts the high impedance 

output from piezoelectric accelerometer to a lower impedance suiting the 

measuring/analyzing equipment. The charge amplifier has additional signal

conditioning facilities, for example, integration to velocity and displacement, 

frequency-band-limiting filters, transducer-sensitivity conditioning, and selectable 
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unified output levels. The signal from the amplifier is transmitted to the analyzer to 

be filtered again, and then transmitted to the computer and recorded in the disc as 

response data. 

§ 6.8.2 Response Measurement System 

The measurement response arrangement which was used for the experimental work 

is shown in the diagram in Fig. 6.8-3. 

Structure 
under test 

l 
Accelerometer 

l 
Charge amplifier 

~ 
Analyzer 

l 
Computer 

recording unit 

Fig. 6.8-3 Diagram of Response Measurement System in Test 

Two types of piezoelectric accelerometers are used: (a) Bruel & Kjaer type 4384 and 

(b) Bruel & Kjaer type 4370. The first type weighs 11 g and has sensitivity of 
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8.35 mV lg which is better for testing light structures where mass loading may be a 

problem. The second type weighs 54 g and has sensitivity of 80 m VI g which is 

suitable for heavier and stiffer structures because of its higher sensitivity. 

Since the signal from the accelerometer is small, it is entered into a charge amplifier 

( Bruel & Kjaer 2635 ). To limit each experimental response data set to the selected 

frequency range, the charge amplifier output signal is processed through a band pass 

filter in the Bruel & Kjaer type 2034 analyzer. Although filtering guarantees that the 

final response signal does not include contributions of the modes outside the range of 

testing, it tends to increase the noise-to-signal ratio of the response. 

Exciter 

~ 
Force Structure transducer 

~ ~ 
Preamplifier Accelerometer 

~ l 
Analyzer Charge amplifier 

~ 
Computer 

recording unit 

Fig. 6.8-4 Diagram of Typical Testing Arrangement 
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The flltered response signal then enters the computer to be recorded as response data 

at the proper sampling rate. 

The complete testing arrangement is diagrammatically shown in Fig. 6.8-4. 

§ 6.8.3 Experimental Procedures 

The experimental setups for hammer impact testing and shaker excitation testing are 

shown in Figs. 6.8-5 and 6.8-6, respectively. 

Fig. 6.8-5 The Equipment Assembly for Hammer Impact Testing 
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Fig. 6.8-6 The Testing Rig for Shaker Excitation Testing 

In case of hammer impact testing, the impact impulse signal is entered into channel 

A of analyzer 2034 through line drive amplifier as time domain excitation. The 

response is picked up by accelerometer and also transferred into channel B of 

analyzer 2034. Both impulse and response signals are filtered by a filter in the 

analyzer and then transferred to computer to be recorded. The computer used for 

these tests was a HP 2000 series PC. 

In case of shaker excitation testing, a pseudo-random signal is generated by the 

analyzer 2034, amplified by the power amplifier 2706 and then input to the shaker. 

The excitation signal from shaker is then applied to the structure. There is a force 

transducer attached to the structure to pick up the excitation. Signals picked up by 

the force transducer are entered into the charge amplifier to be amplified and filtered, 

and then input to the channel A of analyzer 2034. The response signals are picked 

up by the accelerometer, amplified by line drive amplifier, and then input to channel 

B of the analyzer. Both excitation and response signals are filtered in the analyzer by 

a filter and then fed into a computer to be recorded. 
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There are two structural models to be used in the laboratory for modal testing: a 

cantilevered beam, as shown in Fig. 6.8-7, and a 15 storey high rise building model, 

as shown in Fig. 6.8-8. 

Fig. 6.8-7 A Cantilevered Beam Model 

Fig. 6.8-8 A 15 Storey High Rise Building Model 
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The cantilevered beam has widely spaced natural frequencies and very low level of 

damping. The beam is made of steel. The results from both the theoretical solution 

and finite element analysis are available for the comparison with the experimental 

results. The high rise building model has dimensions such that it has closely spaced 

natural frequencies. 

§ 6.8.4 Test Results for the Cantilevered Beam 

Three types of testing were conducted on the cantilevered beam: impact excitation, 

shaker forced excitation, and free decay vibration. For impact testing, a total of 50 

experimental data sets were recorded, for shaker forced excitation testing a total of 

70 experimental data sets were recorded and for the free decay response testing, a 

total of 65 experimental data sets were recorded. All this test data is processed by 

using the proposed methods in chapters 4 and 5. For comparison, all this data is also 

processed by the circle fit method. The dimensions of the cantilevered beam are 

shown in Fig. 6.8-9. 

I 
Fig. 6.8-9 Dimension of the cantilever beam 

In the shaker forced excitation testing, the excitation applied to the cantilever was the 

pseudo random signals generated by an exciter which was located at 10 mm from the 

free end of the cantilever. 
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Seven measurement stations for the responses were arranged along the cantilever 

equally spaced as shown in Fig. 6.8-10. To limit the range of frequencies of interest, 

the accelerometer outputs were flltered to eliminate frequency components higher 

than 800Hz. The sampling rate was 1600Hz. The recording time was 1.5sec and 

2400 samples were recorded. 

The free decay responses were generated after sudden termination of excitation of 

the cantilever. To minimize the bias in the data, the excitation was set to a constant 

value for a reasonable long time before it was terminated. The measurement 

arrangement was the same as in the forced excitation testing. 

12.5mm 

shaker 

c:::Jt 

J~ 
Fig. 6.8-10 Single Shaker Test for the Cantilevered Beam 

The frrst four mode shapes identified by the direct method and circle fit method are 

compared with the fmite element results in Figs. 6.8-11 to 6.8-14. 
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by the Finite Element Method 

by the Direct Method 

by the Circle Fit Method 

Fig. 6.8-11 Comparison of the First Mode 

by the Finite Element Method 

by the Direct Method 

by the Circle Fit Method 

Fig. 6.8-12 Comparison of the Second Mode 
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by the Finite Element Method 

by the Direct Method 

by the Circle Fit Method 

Fig. 6.8-13 Comparison of the Third Mode 

by the Finite Element Method 

by the Direct Method 

by the Circle Fit Method 

Fig. 6.8-14 Comparison of the Fourth Mode 

It can be seen from these figures that the direct method is able to identify the mode 
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shapes as accurately as the circle fit method. The identified results by both methods 

are very close to the results by finite element method. The frequency response 

functions regenerated from the identified modal parameters by both the direct 

method and the circle fit method are presented in Figs. 6.8-15 to 6.8-18. In the 

figures, the dotted lines indicate the regenerated frequency response functions from 

the identified modal parameters by the circle fit method while the solid line indicate 

the regenerated frequency response functions from the modal parameters by the 

direct method. Fig. 6.8-15 shows the magnitudes of the frequency response function, 

while Fig. 6.8-18 gives the phases of the frequency response function. The real part 

of the response function is indicated in Fig. 6.8-16, and the imaginary part of the 

response function is shown in Fig. 6.8-17. These figures indicate that the frequency 

response functions generated from the identified modal parameters by both methods 

are very close to each other. 
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Fig. 6.8-15 Frequency Response Function in Magnitude 
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Fig. 6.8-16 Frequency Response Function (Real) 
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Fig. 6.8-17 Frequency Response Function (Imaginary) 
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Fig. 6.8-18 Frequency Response Function (Phase) 

The arrangement of the excitation stations for the impact testing are shown in Fig. 

6.8-19. An accelerometer is located 10 mm from the tip of the cantilever. 

accelerometer 

900mm 

Fig. 6.8-19 Impact Testing for the Cantilevered Beam 

A sample of the results of the identification test is given in Tables 6.8-1 and 6.8-2. 

Table 6.8-1 shows only the mode shapes identified by the first proposed method in 
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chapter 4. Table 6.8-2 shows the identified frequencies and damping ratios by all the 

proposed methods in chapters 4 and 5. It is observed that all the proposed methods 

can identify frequencies and dampings with reasonable accuracies. For comparison, 

the test results by a frequency method-circle fit are listed in Tables 6.8-1 and 6.8-2, 

too. The pseudo-random signal was used for the forced testing of the beam. The free 

response signal depends on the level of excitation of the cantilever before the 

excitation is removed, as well as on the position of the measurement station. The 

greater the free response signal, the better the results. However, excessive excitation 

may cause structural non-linearities. 

Table 6.8-1 Identified Modes for the Cantilever 

Complex mode Normal Mode 

Direct method Circle tit method FEMmethod 

1.000 1.000 1.000 
Model 0.732+i0.008 0. 709+i0.005 0.862 

0.584+i0.221 0.539+i0.187 0.725 
0.462-i0.063 0.410-i0.028 0.590 

1.000 1.000 1.000 
0.482+i0.010 0.450+i0.007 0.515 

Mode2 0.091+i0.021 0.082+i0.017 0.055 
-0.564+i0.01 0 -0.539+i0.006 -0.336 

1.000 1.000 1.000 
0.094+i0.002 -0.089+i0.015 0.001 

Mode3 -0.676-i0.023 -0.637-i0.015 -0.429 
-0. 778+i0.009 -0. 748+i0.007 -0.684 

1.000 1.000 1.000 
-0.332-i0.021 -0.309-i0.018 -0.095 

Mode4 -0.868-i0.031 -0.837-i0.026 -0.684 
-0.151-i0.002 -0.147-iO.OOl -0.398 

1.000 1.000 1.000 
-0.667-i0.032 -0.647 -i0.027 -0.353 

Mode5 -0.591+i0.005 -0.575+i0.004 -0.623 
0.763+i0.015 0.741+i0.011 0.271 



Table 6.8-2 Identified Frequencies and Damping Ratios for the Cantilever 

Experimental Results 

Mode Direct method Indirect method Impact excitation 

Frequency Damping Frequency Damping Frequency 
(Hz) rauo (Hz) ratio (Hz) 

1 11.03 0.068 11.24 0.071 11.83 

2 71.63 0.016 72.03 0.021 72.12 

3 200.25 0.015 200.42 0.017 200.81 

4 395.75 0.004 396.21 0.006 396.43 

5 652.25 0.002 653.31 0.003 653.52 

Note: 

Direct method is referred as to the first method in chapter 4. 

Indirect method is referred as to the second method in chapter 4. 

Impact excitation is referred as to the method developed in § 5.4-2, a. 

Single exciter is referred as to the method developed in § 5.4-2, b. 

Damping 

ratio 

0.073 

0.022 

0,018 

0.008 

0.003 

Theoretical Results 

Single Exciter Crrcle fit method Analytical Finite element 

Frequency Damping Frequency Damping Frequency Frequency 

(Hz) ratio (Hz) ratio (Hz) (Hz) 

11.13 0.071 11.27 0.069 12.55 12.44 

71.93 0.019 71.51 0.017 79.22 77.85 

199.24 0.014 200.32 0.008 220.06 218.10 

395.85 0.004 398.07 0.004 431.31 427.95 

652.36 0.002 657.25 0.003 712.99 709.67 
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From the testing, it was found that increasing the number of degrees of freedom in 

the mathematical model, by adding extra modes, improves the results for the 

identified modes. It appears that the results for extra modes may include a large the 

effect of the random noise in the data and that the "real" modes appear to come from 

the data with a smaller noise to signal ratio. It is also found that the proposed 

methods are not sensitive to the nodal points. 

The results obtained by placing the accelerometers very close to one of the nodal 

points of an excited mode were analyzed. The natural frequency of that mode can be 

identified but a higher percentage of error was evident. This is because it is difficult 

to place the accelerometer exactly at the nodal point, and that mode still has small 

contribution to the response data. 

§ 6.8.5 Experimental Results fora 15 Storey Building Model 

The 15 storey building tested model was made of steel with dimensions shown in 

Fig. 6.8-20. The model is fixed on the ground. Impact and shaker forced excitation 

testing were performed on this model with pseudo-random signal being used as the 

excitation in the shaker excitation testing. The testing was conducted along the 

planes as shown in Fig. 6.8-20(a) and 20(b). Both bending and torsional modes were 

identified. Since the frequencies of these modes are closely spaced, the response data 

was filtered so that only the desired modes would be included in the response 

signals. Optimal sampling 120Hz was used according to the range of frequencies. 

For impact testing, 50 data sets were taken, while for the shaker forced testing, 70 

data sets were recorded for different conditions of excitation and response 

measurements. The 15 storey building model is a symmetric structure which has 
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almost repeated shear vibration frequencies and very close torsional vibration 

frequency. This fact makes the identification of the frequencies of the model very 

difficult. In order to identify these repeated and very closely spaced frequencies, the 

model is modified to be asymmetric using some studs. The tests were conducted in 

two orthogonal shear vibration directions and the excitation is not applied along the 

symmetric axes. The test data was analyzed by the direct and indirect methods in 

chapter 4 and by the methods developed in chapter 5. The results for the identified 

natural frequencies of the first five modes are listed in Table 6.8-3, and indicate the 

proposed methods can identify very closely spaced frequencies. 

Table 6.8-3 Identified Natural Frequencies of the 15 Storey Building Model 

Identified Frequencies (Hz) 

Direct method Indirect method Impact test Shaker test 

Model 16.27 16.39 16.47 16.32 

Mode2 17.35 17.46 17.62 17.51 

Mode3 17.40 17.59 17.78 17.64 

Mode4 49.38 49.64 49.77 49.59 

Mode5 52.12 52.25 52.37 52.22 

• The impact test means the method developed in chapter 5 using impact test data, 

+ The shaker test means the method developed in chapter 5 using shaker test data. 
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Fig. 6.8-20 Dimensions of the 15 Storeys Building Model 
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§ 6.9 SOME ASPECTS OF MODAL TESTING 

This section is intended to address a few of the common errors in the modal 

identification test. 

§ 6.9.1 Mode Shape Aliasing 

The error of mode shape aliasing is fairly common among some users of modal 

analysis. The term aliasing generally refers to a sampled data phenomena where the 

number of samples is insufficient to accurately describe the data, and the "higher 

frequency" data has not been removed prior to sampling. As the name implies, there 

are too few measurement points on the structure being tested to define an accurate 

shape. Fig. 6.9-1 illustrates the phenomenon on a test of a simply supported beam. 

Assume that there are five measurement stations equally spaced along the beam as 

shown in Fig. 6.9-l(a). In Fig. 6.9-l(b), there are sufficient measurement stations to 

correctly obtain the mode shape of the first mode of the beam. In Fig. 6.9-l(c), the 

solid line indicates the correct third mode while the dashed line indicates the wrong 

third mode because of insufficient measurement stations. In some cases, for a higher 

mode, however, an insufficient number of measurements causes the mode shape to 

appear to be a lower mode and is consequently in error. If only two measurement 

stations are equally spaced along the beam, the third mode would not be identified 

since these station points are the nodes of the third mode. 
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(a) 

(b) 

(c) 

3 stations 

12 stations 

Fig. 6.9-1 Mode Aliasing Phenomenon 

§ 6.9.2 Mode Shapes on Symmetric Structures 

6-50 

If the tested structure is symmetric, it often appears as though the mode shapes 

measured depend on the position of the transducer. It is known, however, that mode 

shapes of linear structures are independent of response or excitation measurement 

locations. The presence of the accelerometer however can create an asymmetrical 

condition in an otherwise symmetric structure, and a node point is usually found to 

pass close to or through the reference location. In cases where the response 

measurement station is moved around the structure and the excitation point is fixed, 

the node point is essentially pulled around the structure with the transducer, and 

some misleading shapes can be generated, depending on the number of 

measurements made around the structure. 
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The above phenomena are because of the fact that there are close spaced or repeated 

frequencies of the structure. This means simply that there are two resonances at 

exactly the same frequency having the same shapes, but the two shapes have their 

axes orthogonal to each other and they can occur often in symmetric structures such 

as the 15 storey building model. 

One method of dealing with this situation experimentally is to make a minor 

modification to the structure, intentionally causing it to be slightly asymmetric so 

that the two resonances will split apart. They will have similar mode shapes and can 

be easily identified by the proposed methods in this thesis even though the two 

frequencies are numerically very close. 

§ 6.9.3 The Force Correction due to Mass of Measuring Instrument 

The force measured by the force transducer is not the .. exact.. force applied to the 

structure due to the mass of the measuring instrument such as hammer or exciter and 

the tip mass of the force transducer. Minor mass correction is required to determine 

the actual excitation. Fig. 6.9-2 shows the correction required. 

Suppose the mass of the tip of the force transducer ism, the mass of the shaker or 

hammer is M and the force measured by the force transducer is F m' the actual force 

applied to the structure can be computed by 

F8 =(m +M)X 

F -F m+M 
s- m M 
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Stru~ Tip mass 

Fm 

Fig. 6.9-2 Correction of the Applied Force 

§ 6.9.4 Calibration 

During the test, the calibration provides the overall sensitivity of the complete 

instrumentation system without examining the performance of individual elements. 

This overall sensitivity can be obtained by a calibration process since an independent 

measurement of the ratio of response and force can be made. By assuming the 

response is acceleration and excitation is force, the ratio of the acceleration and force 

will be -
1
-, a quantity which can readily be measured by independent means. If 

mass 

measurement is performed on a simple rigid mass-like structure, the result will be a 

constant magnitude over the frequency range at a value equal to the reciprocal of the 

mass of the calibration block and this can be accurately determined by weighing. 

A typical calibration block which can be used is shown in Fig. 7.9-3 and the result 

from a calibration measurement, indicating the overall system calibration factor, 

which is then used to convert the measured values of (volts/volt) to those of 

(acceleration/force). 
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Mass Drive Shaker 

Accelerometer Force transducer 

Fig. 6.9-3 Mass Calibration Procedure 

§ 6.10 SUMMARY 

This chapter discusses the modal testing techniques and applications of the proposed 

methods to the modal testing. As well it discusses the importance of using correct 

application techniques to obtain meaningful test data. 

To use the proposed methods one requires excitation and response data, or response 

data only in case of free vibration testing. Digitizing the measured data, with an 

appropriate sampling rate, provides the data set for analysis. Computer analysis of 

the digital data produces the final results in the form of natural frequencies, damping 

ratios and mode shapes for all modes contributing to the measured data. 

A complex structure can be identified in steps by the proposed technique according 

to different range of frequencies of interest. In each step a certain selected band of 

frequencies is covered. The same procedure can be used for identifying high 

frequencies or in situation where data storage capacity is limited. The choice of 

sampling rates can be optimized, depending on the particular experiment. 

The experimental work has established that the proposed methods in this thesis are 
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not sensitive to measurement noise. They are therefore promising methods for 

dynamic structural testing and identification. These methods also preserve the 

advantage of time domain methods by being capable of identifying closely spaced 

frequencies. 
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-Chapter 7---------

IDENTIFICATION OF 

STRUCTURAL PARAMETERS 

§ 7.1 INTRODUCTION 

It isn't that they can't see the solution. It is that they 

can't see the problem. 

G. K. Chestenon 

As discussed in Chapter 1, structural system identification is the process of 

determining parameters in the equations of motion of a structure from test data. For 

identification of structural parameters there are usually two classes of techniques: 

modal techniques and non-modal techniques. Modal techniques use modal test data, 

i.e. frequencies, damping ratios and mode shapes of a vibrating structure to 
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determine its structural parameters. 

The modal parameters can be classified as measurable quantities, since they are 

properties of the structure and not dependent on the analytical formulation. The 

modal parameters, however, as previously discussed, are not directly measurable but 

are identified from response and/or excitation measurements. Using modal test data 

to improve the analytical model of a vibrating structure and hence obtain an 

improved description of a structure is discussed in this chapter. Methods have been 

developed to deal with some form of this identification task, however, the majority 

of these methods deal only with structural systems with no damping or with 

proportional damping. In reality, however, a lot of vibrating structures have 

nonproportional damping. Another deficiency of these methods is that they require 

the measured modes to satisfy the theoretical requirement of orthogonality with 

respect to the mass and stiffness matrices. Such a requirement can only be satisfied 

when the structure has no darning or possesses proportional damping. It is true that 

for simple structures with only small amounts of damping, the measured modes 

(complex modes) are very close to the normal modes. For more complex structures, 

however, complex modes can be very much different from the normal modes. 

Attempts to use these complex modes as normal modes for satisfying the 

orthogonality requirement may lead to adverse effects on the process of 

identification. In particular for structures with non-proportional damping, it is 

extremely difficult to measure normal modes. Measured modes are complex. The 

procedure of using these measured modes directly, for the analysis and identification 

as normal modes, can result in large errors in the off-diagonal terms of the system 

matrices. 

In this chapter, a method is presented to overcome these problems. The method is a 
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direct identification method which can be used to obtain mass, damping and stiffness 

matrices from the measured eigenvalues and eigenvectors. This method is based on 

the minimum of parameter changes, in which the Euclidian norm of all parameter 

changes should be minimized, and uses the measured test values of complex 

eigenvalues and eigenvectors directly, rather than using the complex eigenvectors as 

normal modes. The advantage of the method is to improve mass, stiffness and 

damping matrices simultaneously as well as being capable of assessing the quality of 

test modal data. The method can, therefore, be applied to identification of a 

vibrating structure with general damping. 

As discussed in chapter 2, if complete set of modal vectors, damped natural 

frequencies and damping ratios of a vibrating structure can be obtained from modal 

test, then 

'PTM*'P=I 

'I'TK*'I'=A 

and the structural parameters of the structure can be determined by 

(7.1-1) 

(7.1-2) 

(7.1-3) 

(7.1-4) 

Unfortunately, test modal data is in general incomplete. The number of modes 

obtained from any test is usually less than the number of model degrees of freedom 

of the structure. In order to use the incomplete modal data to identify the structural 
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parameters, the theory of generalized inverse of a rectangular matrix can be applied 

in identification of the structural parameters using this incomplete modal test data. 

Given good test data and a reasonable but not necessarily precise, analytical model, 

the method will yield an improved model which is compatible with the test. The 

basic requirements for the method are a set of measured complex eigenvectors and 

eigenvalues from modal test. 

This chapter is organized as follows. A brief review of the main methods for 

structural identification is given in § 7.2. In § 7.3, the theoretical background is 

briefly introduced so that the proposed method is developed on the basic theory of 

structural dynamics. The proposed method is developed in § 7.4 by minimization of 

an Euclidian norm. § 7.5 is devoted to the application of pseudo-inverse of the 

matrix in the structural identification. Usually not all coordinates of the analytical 

model are measured in a vibration test and the full mode, including the unmeasured 

coordinates, needs to be computed, and this is considered in § 7 .6. In order to 

illustrate the proposed method, two simulated examples are given in § 7.7. The 

discussions in § 7. 7 concentrate on the comparison of the proposed method with 

AMI method. The last section, § 7 .8, will conclude the chapter with some remarks. 

Appendix A gives the defmition of the pseudo inverse of a matrix, while in 

Appendices B and C, the algorithms for computing full modes and pseudo-inverse of 

a matrix are presented. 

§ 7.2 STRUCTURAL IDENTIFICATION METHODS 

There are numerous methods for the structural identification. The common starting 

point for structural identification is the modal survey. Having a set of test modes, 
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some methods can be used with the mode data to identify the structural parameters. 

Collins, Hart, Hasselman and Kennedy (1974) developed statistical structural 

identification method using a linear Taylor's series expansion of the modal 

parameters about the prior estimate of the structural parameters. Essentially, this 

method is the Bayesian technique and requires a prior estimate of the structural 

parameters. The modes from modal testing are frequently corrected to enforce 

orthogonality to an analytical mass matrix using a technique such as Gram-Schmidt 

orthogonalization, or the Targoff method (1976). In this method, the analytical mass 

matrix is assumed correct and the corrected modes are taken as linear combinations 

of test modes. Baruch (1978), Berman (1979) and Wei (1980) developed a method 

called by Berman as Automated Model Improvement method which can also be used 

to generate an improved analytical mass and stiffness matrices by minimizing 

changes in a weighted least squares sense. The improved mass and stiffness matrices 

exactly reproduces the measured mode shapes and frequencies. This procedure has 

been applied in many cases with considerable success. A disadvantage of the 

method is that it produces off-tridiagonal elements in both mass and stiffness 

matrices representing the physically unconnected degrees of freedom. Since the 

method reproduces exact test modes regardless of good or corrupted modal data, it 

would not improve the analytical model in the case of heavily corrupted modal data. 

A method was developed by Kabe (1985) to improve the stiffness matrix without 

changing its topology. The method uses the test modes orthogonalized to the analytic 

mass matrix. The disadvantage of the method is that it requires very large 

computational efforts and hence is not applied in practice. 

All these methods tackle the structural identification of the structures without 

consideration of nonproportional damping. 
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Caravani, Watson and Thomson (1977) presented a time domain recursive least 

squares method to identify the general damping. Yun and Shinozuka (1980) used a 

nonlinear Kalman filtering approach to the problem. Beliveau (1976) developed a 

Bayesian method to identify the viscous damping using a modified Newton-Raphson 

scheme and perturbation of eigenvalues and eigenvectors. Hanagud, Meyyappa, 

Cheng and Craig (1984) were tackling the identification of structural system with 

nonproportional damping assuming some or all of the elements of the mass matrix 

are known. All the unknown parameters including mass, stiffness and damping are 

determined by minimizing the Euclidean norm of a matrix that assures the 

satisfaction of the equations of the eigenvalue problem and the appropriate 

orthogonality conditions. The method developed in this chapter while inspired by 

AMI method avoids the disadvantage of reproducing test modes even using heavily 

corrupted modal data. Further, identification of structures with non-proportional 

damping is mainly considered by this method. 

§ 7.3 THEORETICAL BACKGROUND 

As discussed in chapter 2, a dynamic structural system of n degrees of freedom can 

be described by the state equation in the 2n space as follows. 

M*i(t) + K*x(t) = r(t). (7.3-1) 

For the convenience of derivation of the algorithm for identification of structural 

parameters, matrices M* and K* are rearranged as 

* [0 Ml M=Mc (7.3-2) 
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(7.3-3) 

{
p(t)} 

r(t)= 0 . (7.3-4) 

The associated eigenvalue problem becomes 

* " * K v=-"' M V. (7.3-5) 

where 'I' is eigenvector; A. the eigenvalue. 

If the eigenvectors are normalized, the following relationships are held. 

(7.3-6) 

and 

(7.3-7) 

in which 

It is assumed that only m modes are known and lf' is an n xm matrix. A is then an 

mxm diagonal matrix with the eigenvalues Ai being its diagonal. 
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Eqns. (7 .3-5), (7 .3-6) and (7 .3-7) are three basic theoretical relationships which apply 

to linear, general damped structures represented as fmite element models. The 

proposed method in this chapter is based on these three equations. 

§ 7.4 DEVELOPMENT OF THE PROPOSED METHOD 

Minimizing the changes of structural parameters can be obtained mathematically by 

minimization of the Euclidian norm 

• • • • e= IIW(M -MA)WII+IIW(K -KA)WII (7.4-1) 

W is a weighting matrix, M* and K* are the unknown improved matrices and M~ 

and K~ are the given analytical matrices. Minimizing the norm (7.4-1) minimizes 

the relative changes in the elements of the matrices. 

Defming Lagrangian multipliers, 'Xii and ~ii• for each element in Eqn. (7 .3-13) and 

Eqn. (7.3-14), respectively, and introducing 

(7.4-2) 

and 

(7.4-3) 

the following Lagrangian function may be written, 

m m 

8=e+ l: l:(aii+~ij) (7.4-4) 
i = lj = 1 

(7.4-5) 
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and 

(7.4-6) 

which are, in fact, the constraints (7.3-13) and (7.3-14). Differentiating equation 

(7 .4-4) with respect to each element of matrices M* and K* and equating these 

results to 0 will satisfy the minimization of equation (7.4-1), provided the constraints 

(7.3-13) and (7.3-14) are also satisfied. This process results in the matrix equations 

(7.4-7) 

and 

(7.4-8) 

or 

(7.4-9) 

and 

(7.4-10) 

where X and E are square matrices of 'Xii and ~ij , respectively. 

Substituting Eqns. (7.4-9) and (7.4-10) into Eqns. (7.3-11) and (7.3-12) yields the 

solutions for X and E 

(7.4-11) 
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and 

(7.4-12) 

These expressions are then substituted into Eqns. (7 .4-9) and (7 .4-10) to obtain 

(7.4-13) 

and 

(7.4-14) 

where 

(7.4-15) 

(7.4-16) 

(7.4-17) 

If the weighting matrix W is taken such as 

(7.4-18) 

for Eqn. (7.4-13), and 

(7.4-19) 

for Eqn. (7 .4-14 ). Eqns. (7 .4-13) and (7 .4-14) can then be written as 

* * * -1(1 A )A-huTM* M = MA + MA '¥A a - a a T A (7.4-20) 

and 
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* * * -l(A B )B-l'luTK* K = KA + KA 'PB a - a a T A (7.4-21) 

Eqns (7.4-20) and (7.4-21) are easily evaluated expressions for the corrected mass 

matrix, damping matrix and stiffness matrix making them consistent with the 

measured modes. 

§ 7.5 APPLICATION OF PSEUDO-INVERSE OF A MATRIX IN 

STRUCTURAL IDENTIFICATION 

The application of the pseudo-inverse of a matrix in structural system identification 

is discussed in this section. As previously mentioned, a structural model can be 

identified by using modal parameters obtained in a modal test. The procedure for 

identification of structural parameters could be developed for two different cases: 

complete or truncated experimental data. Since the truncated solution can be used for 

a complete system description, only the truncated solution is studied in this section. 

When test data from a structure are experimentally measured, it is impossible to 

obtain a full modal description, i.e., a complete system is one where the number of 

defmed modes equals the number of structural degrees of freedom. The structure has 

an almost-infinite number of degrees of freedom, possible coordinates, and modes of 

vibration. It is, therefore, necessary to make a simplified model using a greatly 

reduced number of measurement points and, usually, an even smaller number of 

modes. Often, only a few modes can be identified in the frequency range of interest. 

When the number of measurement points exceeds the number of measured modes, 

this is called a truncated modal description. The modal matrix is non-square, so the 

ordinary matrix inverse cannot be applied. To deal with this, it is necessary to use a 

special inverse of a rectangular matrix called pseudo-inverse. The properties and 
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method to generate this inverse are given in Appendix 7 .A. The pseudo-inverse is a 

generalized inverse that can deal with non-square or square but singular matrix. The 

structural mass, stiffness, and damping can then be found using truncated modal data 

by use of pseudo-inverse. If the number of measurement stations is less than the 

number of modes, the full "test" modes can be calculated, as will be discussed in § 

7 .6. When the number of degrees of freedom considered exceeds the number of 

modes, the modal matrix also is non-square. 

Assuming that M* and K* are the unknown improved matrices and M~ and K~ are 

the given analytical matrices. It may be written that 

(7.5-1) 

where 

(7.5-2) 

and 

(7.5-3) 

When the pseudo-inverse of the incomplete eigenvector matrix is used, the following 

equation is obtained 

(7.5-4) 

where vr is the pseudo inverse of matrix '1'. 
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The pseudo inverse of matrix 'I' is 

where V is an arbitrary matrix such that 

Rank ('I"TV'I') =Rank ('P) 

Hence, Eqn. (7 .5-4) becomes 

(7.5-5) 

where V is a nonsingular weighting matrix. 

The matrix K* may also be written as 

(7.5-6) 

where 

(7.5-7) 

When the analytical matrix M~ is taken as the arbitrary matrix V, Eqns. (7.5-5) and 

(7 .5-6) become 

* * * -1{1 A )A-huTM* M =MA +MA'I"Aa - ana T A (7.5-8) 
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and 

* * * - 1 (A B )B-1 .uTK* K = KA + KA 'YBa - a a T A (7.5-9) 

Eqns. (7 .5-8) and (7 .5-9) coincide with the formulas of the proposed method in § 7.4 

and hence the same computer algorithm implementation can be used. 

§ 7.6 FULL MODE COMPUTATION 

The above discussions are based on the assumption that the modes over the full 

coordinate system are known. The degrees of freedom measured in a test however, 

may be limited. A method has to be used to transform the limited number of 

measured mode shapes to the mode shapes over the full coordinate system. There are 

methods available for this purpose. One method is to reduce the model to the test 

coordinates, to correct the reduced model, then to perform an "inverse Guyan 

reduction" (1965). Another approach is to use a geometric interpolation method to 

estimate the modal displacements at the unmeasured coordinates. The method used 

here appears as an interpolation method based on the dynamics of the structure, 

rather than the geometry. Since the analytical model is not limited to the degrees of 

freedom measured in a test and may be used to derive the coordinates of modes, the 

relationship between the measured subset and unmeasured subset of a mode shape 

can be written as 

(7.6-1) 

where the 'lfli represents the measured elements and 'lf2i represents the unmeasured 

elements of the i-th mode shape, Ai is the measured eigenvalue and the analytical 
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* * model MA and KA should reasonably represent the structure parameters. 

The method was used by Berman (1979) for calculation of normal mode shapes and 

is extended to the complex field for calculation of complex modes in this chapter. 

From Eqn. (7.6-1) 

(7.6-2) 

Eqn. (7.6-1) can be solved at three levels of approximation. If A.i is considered to be 

so small that it may be ignored, Eqn. (7.6-2) in effect becomes the Guyan's reduction 

(1965). If it is small, but can not be ignored, the series approximation of Kidder 

(1973) could be used. If neither of these options appears reasonable an exact solution 

is performed by solving the simultaneous equations rather than by inverting the 

matrix. 

At the start of the process for improving the analytical model only approximate 

mass, damping and stiffness matrices are known. If these matrices are good 

approximations, 'I'Zi can be expected to be reasonably accurate. In any case, the 

analysis that follows results in corrected mass, damping and stiffness matrices which 

will predict the measured value A. and 'If· 

When the corrected matrices are obtained, an iteration through the above procedure 

is an option to improve the results and converge rapidly for "small" changes. 

§ 7.7 NUMERICAL EXAMPLES 

Two simulated experiments are used to illustrate the application of the present 
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method. The first simple example is a structure of ten degrees of freedom, whose 

mass, stiffness and damping parameters are listed in Tables 7.7-1, 7.7-2 and 7.7-3. 

Thses exact values are used for computing complex modes and data sets of the first 

seven complex modes are used as the modal data for identification of the structural 

parameters of the structure. 

Table 7.7-1 Comparison of Mass Matrix Identification 

2 3 4 5 6 7 8 9 10 

• .15+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .10+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .12+0 .26-1 .14-1 -.16-1 .62-2 .49-2 -.34-2 .97-2 .95-4 -.59-2 

2 • .35+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .25+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .30+0 .30-1 -.16-1 .11-1 .75-2 -.93-2 .36-3 .44-2 .57-2 

3 • .45+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .35+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .39+0 .51-1 .99-2 .16-1 .17-2 .42-3 .47-2 .24-2 

4 • .13+1 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .10+1 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .13+1 .15-1 -.14-1 .14-1 -.13-1 .15-2 .16-2 

5 • .60+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .50+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .57+0 .44-1 -.88-2 .39-2 -.17-1 .12-1 

6 • .65+0 .00+0 .00+0 .00+0 .00+0 

• .50+0 .00+0 .00+0 .00+0 .00+0 

• .58+0 -.65-2 .26-1 -.57-2 .71-2 

7 • .70+0 .00+0 .00+0 .00+0 

• symmetJy .80+0 .00+0 .00+0 .00+0 

• .78+0 -.53-1 .73-2 -.62-2 

8 • .75+0 .00+0 .00+0 

• .10+1 .00+0 .00+0 

• .77+0 -.10-1 -.21-1 

9 • .80+0 .00+0 

• .70+0 .00+0 

• .71+0 -.41-1 

10 • .90+0 

• .75+0 

• .84+0 

• exact value 

• analytical value 

• improved value 

For the convenience of comparison, the identified mass, damping and stiffness 
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matrices are also shown in Tables 7.7-1, 7.7-2 and 7.7-3, respectively. The 

analytical model was assumed. The differences between structural parameters of the 

analytical model and those of the "exact" model range from between 17% to 30%. 

The largest difference introduced is with the mass at the 4-th degree of freedom, 

where a 30% variation is made. 

Table 7.7-2 Comparison of Damping Matrix Identification 

2 3 4 5 6 7 8 9 10 

... .42+2 -.42+2 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .32+2 -.32+2 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .34+2 -.31+2 -.35+0 -.26+1 .89+0 .10t1 -.12+1 .11+1 .16+1 -.21+1 

2 ... .84+2 -.42+2 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .64+2 -.32+2 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .65+2 -.31+2 .26+1 .78+0 -.17+0 -.15+1 .57-1 .12+1 .23+1 

3 ... .84+2 -.42+2 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .64+2 -.32+2 .00+0 .00+0 .00+0 .00+0 .00+0 .00+0 

• .66+2 -.31+2 -.44+1 -.11+1 .49+1 -.22+1 -.67+0 .66+0 

4 ... .84+2 -.42+2 .00+0 .00+0 .00+0 .00+0 .00+0 

• .64+2 -.32+2 .00+0 .00+0 .00+0 .00+0 .00+0 

• .75+2 .36+2 -.34+1 .16+1 -.92+0 .13+1 -.18+1 

5 ... .84+2 -.42+2 .00+0 .00+0 .00+0 .00+0 

• .64+2 -.32+2 .00+0 .00+0 .00+0 .00+0 

• .74+2 .30t2 -.92+1 .34+1 -.37+1 .31+1 

6 ... .84+2 -.42+2 .00+0 .00+0 .00+0 

• .64+2 -.32+2 .00+0 .00+0 .00+0 

• .67+2 -.31+2 -.30t1 .37+1 -.18+1 

7 ... .84+2 -.42+2 .00+0 .00+0 

• symmetry .64+2 -.32+2 .00+0 .00+0 

• .76+2 -.41+2 .46+0 -.17+1 

8 ... .84+2 -.42+2 .00+0 

• .64+2 -.32+2 .00+0 

• .86+2 -.42+2 -.13+1 

9 ... .84+2 -.42+2 

• .64+2 -.32+2 

• .79+2 -.37+2 

10 ... .84+2 

• .64+2 

• .81+2 

... exact value 

• analytical value 

• improved value 

The frrst sub-row of each item represents the "exact" values, which are then used to 
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generate the test eigenvalues and eigenvectors. Some errors are introduced to modify 

the "exact" values to obtain the analytical values, and these are shown in the second 

sub-row of each item. The third sub-row of each item represents the improved 

values by the method presented in this chapter. 

Table 7.7-3 Comparison ofStiftiless Matrix Identification 

2 3 4 5 6 7 8 9 10 

• .73+5 -.73+5 .OOtO .00+0 .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO 

• .64+5 -.64+5 .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO 

• .66+5 -.62+5 -.11+4 -.11+4 .18+4 .41+3 -.18+4 .17+4 .75+3 -.18+4 

2 • .15+6 -.73+5 .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO 

• .13+6 -.64+5 .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO 

• .13+6 -.64+5 -.34+4 .22+4 -.32+4 -.26+4 .19+4 -.86+3 .11+4 

3 • .15+6 -.73+5 .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO 

• .13+6 -.64+5 .OOtO .OOtO .OOtO .OOtO .OOtO .OOtO 

• .14+6 -.62+5 -.81+4 -.49+3 .75+4 -.58+4 -.53+3 .20+4 

4 • .15+6 -.73+5 .OOtO .OOtO .OOtO .OOtO .OOtO 

• .13+6 -.64+5 .OOtO .OOtO .00+0 .OOtO .OOtO 

• .14+6 -.68+5 -.29+4 .15+4 -.10+4 .17+4 -.13+4 

5 • .15+6 -.73+5 .OOtO .OOtO .OOtO .OOtO 

• .13+6 -.64+5 .OOtO .OOtO .OOtO .OOtO 

• .14+6 -.62+5 -.10+5 .68+4 -.36+4 .19+4 

6 • .15+6 -.73+5 .OOtO .OOtO .OOtO 

• .13+6 -.64+5 .OOtO .OOtO .OOtO 

• .14+6 -.61+5 -.46+4 .39+3 .70+3 

7 • .15+6 -.73+5 .OOtO .OOtO 

• symmeuy .13+6 -.64+5 .OOtO .OOtO 

• .14+6 -.71+5 -.27+3 -.35+3 

8 • .15+6 -.73+5 .OOtO 

• .13+6 -.64+5 .OOtO 

• .15+6 -.68+4 -.45+4 

9 • .15+6 -.73+5 

• .13+6 -.64+5 

• .14+6 -.66+5 

10 • .15+6 

• .13+6 

• .15+6 

• exact value 

• analytical value 

• improved value 

The comparisons indicate the method yield reasonable improvement of the analytical 

model. The identified results, however, give full matrices rather than the diagonal or 
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tridiagonal matrices as may be expected. The off-diagonal or off-tridiagonal 

elements are observed to be of an order of magnitude smaller than those of the 

diagonal or tridiagonal elements. 

The improved structural matrices are then used to recalculate the eigenvalues and 

eigenvectors of the structure. The frequency and damping ratio comparisons are 

performed and showed in Table 7.7-4 and 7.7-5. 

Table 7.7-4. Frequency Comparison 

Mode Test Analysis Improved 

1 .8238+2 .5093+2 .8186+2 
2 .1712+3 .1504+3 .1717+3 
3 .2699+3 .2685+3 .2711+3 
4 .3314+3 .3343+3 .3317+3 
5 .4133+3 .3957+3 .4176+3 
6 .5037+3 .4850+3 .4989+3 
7 .5738+3 .5385+3 .5718+3 

RSSERROR 0.409 .000 

Table 7.7-5. Damping Ratio Comparison 

Mode Test Analysis Improved 

1 .9062-2 .1273-1 .9050-2 
2 .4240-1 .3776-1 .4248-1 
3 .7260-1 .6710-1 .7330-1 
4 .9209-1 .8360-1 .9224-1 
5 .1162+0 .9845-1 .1181+0 
6 .1435+0 .1218+0 .1364+0 
7 .1628+0 .1344+0 .1669+0 

RSSERROR 0.516 .003 
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The comparison of the complex mode shape for the first mode is also shown in Table 

7. 7-6. It can be seen that the method results in almost the same modal parameters as 

the "exact" values. 

Table 7.7-6 First Mode Comparison 

Degree of Freedom Test 

1 .2916-1+.2901-li 
2 .2873-1+.2863-li 
3 .2847-1+.2842-li 
4 .2914-1+.2817-li 
5 .2548-1 +.2549-li 
6 .2238-1 +.2239-li 
7 .1878-1+.1880-li 
8 .1467-1+.1469-li 
9 .1010-1+.1012-li 
10 .5165-2+.5178-2i 

Analysis 

.4045-1 + .4045-li 

.4029-1 + .4029-li 

.3955-1 +.3955-li 

.3816-1+.3815-li 

.3508-1 + .3508-li 

.3118-1 +.3118-li 

.2648-1 + .2648-li 

.2083-1 + .2083-li 

.1428-1+.1428-li 

.7255-2+.7255-li 

Improved 

.2824-1 +.2815-1i 

.2913-1 +.2907-li 

.2906-1 + .2907 -li 

.2798-1 + .2800-li 

.2585-1 +.2586-li 

.2242-1 +.2245-li 

.1859-1+.1855-li 

.1464-1 +.1463-li 

.1026-1+.1028-li 

.4943-2+ .4943-2i 

Table 7.7-7 shows the Square Root of Sum Squares (RSS) error of the complex 

mode for the first seven modes. 

Table 7.7-7. Complex Mode RSS Error Comparison 

Mode 

1 
2 
3 
4 
5 
6 
7 

Analysis 

.3936-1 
.1989+0 
.4460+0 
.6681+0 
.8175+0 
.9044+0 
.9512+0 

The RSS error calculation formulas are 

for the frequency 

Improved 

.1856-2 

.1321-2 

.1389-2 

.2127-2 

.2798-2 

.2719-1 

.1732-1 
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[ [ 
. . ]2]1 co' _ co' fJ111Jlysis -

m test . 2 
RSS ERROR= ~ i unproved 

t=l COtest 

in which cd is the frequency of the i-th mode of the system, 

for the damping 

[ [ 
. . ]2]1 r' _ r' fJ111Jlysis -

m ~test ~ . 2 
RSS ERROR = .l: i tmproved 

t=1 ~test 

in which ~i is the damping ratio of the i-th mode of the system, and for the complex 

mode 

[ 
n [ . . . . ] 2] ~ RSS ERROR of mode j = l: .:~ - +'~fJ111Jlysis 

i=l unproved 

in which +ii represents the i-th element of the j-th complex mode of the system. 

Based on this simple numerical test, it can be seen that the present method are 

capable of identifying structure parameters, i.e., mass, damping and stiffness 

matrices, which can reproduce values very close to the original test model data. 

The second example is a pair of rigid girder and flexible girder frames to illustrate 

the proposed method can also be used with normal modes and frequencies. Here, 

assume that a design engineer has analyzed the frame under the rigid girder 

assumption and produced an analytical model. The assumption is made in order to 
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reduce the complex structure to a simple mathematical model. The engineer, 

however, performs a test on the actual structure and consequently the test data is 

affected by the flexibility of the girders. A hypothetical forced vibration test is 

assumed to be performed. 

The rigid frame structure used by the design engineer as the analytical model is 

shown in Fig. 7.7-1. 

245 kg 1m2 

98 kg 1m 2 3.05m 

489kglm2 

98 kg 1m 2 3.05m 

509kglm2 

98 kg 1m 2 4.57m 

Bay@457m 

9.14m 

Fig. 7. 7-1 Frame with Rigid Girders 

The structural parameters of the analytical model with rigid girders are as follows. 

[

22967 0 0] 
M(kg) = 0 21791 0 

0 0 11600 
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[ 

13.17 -7.787 0] 
K(106 N lm) = -7.787 15.570 -7.787 

0 -7.787 7.787 

These parameters are now used with the "experimental modal data" to identify the 

real structural parameters. The analytical modal parameters are computed from the 

analytical structural parameters and shown in Table 7.7-8. 

Table 7.7-8 Modal Parameters of Analytical Model of the Second Example 

Model Mode2 Mode3 

1.0000 1.0000 1.0000 
Mode Shape 1.4781 -0.0988 -2.0841 

1.6565 -1.0299 2.2982 

Circular Frequency (rad/sec) 8.5019 24.6356 35.7777 

Frequency (Hz) 1.3531 3.9209 5.6942 

The experimental modal data are obtained from the real structural parameters of the 

frame with flexible girders, shown as in Fig. 7.7-2. 

The real structural parameters are as follows. 

[

22967 0 0] 
M(kg) = 0 21791 0 

0 0 11600 

[ 

12.73 -7.752 0.386] 
K(106 N lm) = -7.752 14.35 -7.015 

0.386 -7.015 6.629 
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245 kg 1m2 

98 kg 1m 2 3.05m 

489 kg 1m2 

98 kg 1m 2 3.05m 

509 kg 1m2 

98 kg 1m 2 4.57m 

Bay@4.57m 

I~ 9.14m 

Fig. 7.7-2 Frame with Flexible Girders 

The experimental modal data are computed from real structural parameters and 

shown in Table 7.7-9. 

The task is to improve the analytical model, given this experimental modal data. On 

the basis of the above analytical and experimental data, an improved structural model 

is identified by the present method. The identified structural parameters are 

[

22967 0 0] 
M(kg) = 0 21791 0 

0 0 11600 

and 

mailto:Bay@4.57m
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[

12.67 -7.78 0.33] 
K(106 N lm) = -7.78 14.26 -7.32 

0.33 -7.32 6.84 

7-25 

Table 7.7-9 Modal Parameters of Real Model of the Second Example 

Mode 1 Mode2 Mode3 

1.()()()() 1.()()()() 1.()()()() 
Mode Shape 1.5494 -0.0065 -0.1780 

1.7706 -1.1074 1.8074 

Circular Frequency (rad/sec) 7.7139 23.1918 34.4289 

Frequency (Hz) 1.2436 3.6911 5.4795 

The modal parameters reproduced by the improved model are listed in Table 7.7-10 

to compare with analytical and real modal data. It is observed that the comparison of 

the experimental modal data and modal parameters of the improved model are quite 

close to each other. 

The second example shows that the present method can also be used in improving 

the analytical model of structures without consideration of damping. It is observed 

that the improved structural parameters are good enough to describe the real 

structure and can reproduce reasonable modal data in the example. 
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Table 7.7-10 Comparison of Improved, Analytical and Real Modal Parameters 

Analytical Model Real Model Improved Model 

1st Mode 2nd Mode 3m Mode 1st Mode 2nd Mode 3m Mode 1st Mode 2nd Mode 3rdMode 

ct!(raditmlse.:) 8.5019 24.6356 35.7T17 7.7139 23.1918 34.4289 7.4909 23.3684 34.5689 

flllz) 1.3531 3.9209 5.6942 1.2436 3.6911 5A195 1.1763 3.7192 5.5018 

Mode 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Shape 1.4781 -0.0988 -2.0841 1.5494 -0.0065 -1.7797 1.5622 -0.0294 -1.8406 

1.6565 -1.0299 2.2982 1.7706 -1.1074 1.8074 1.7642 -1.0733 1.9395 

§ 7.8 DISCUSSIONS 

The proposed method is based on the minimization of the structural parameter 

changes. From this point of view, it is similar to the Automated Model Improvement 

(AMI) method developed by Berman et al. (1979). The present method, including 

identification of the damping parameters of a structure, is however developed in the 

state space rather than in the configuration space in which AMI method was 

developed. While the AMI method is aimed at identifying the structure without 

damping, the present method focuses on the identification of the structure with non-

proportional damping. 

Only the constraints of orthogonalities are used in the Lagrangian function to 

develop the algorithm of improvement. The constraint of the equation of the eigen 

problem is not imposed in the Lagrangian function. This makes the proposed 

method capable of determining if the measured modal data is contaminated. 
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The proposed method is based on the orthogonality of the complex eigenvectors, 

therefore, if the test eigenvectors is not orthogonal, the test modal data sets would 

not result in a proper structure parameter improvement. In order to illustrate this, the 

"test" modal data has been contaminated to obtain some amount of non-

orthogonality. As expected, they do not yield the improved parameters to reproduce 

the original modal data base as shown in the Tables 7.8-1 and 7.8-2. 

Table 7.8-1 Frequency Comparison by Non-Orthogonal Modal Data 

Mode Test Improved 

1 82.38 62.85 
2 171.2 171.0 
3 269.9 166.9 
4 331.4 323.0 
5 413.3 416.2 
6 503.7 511.7 
7 573.8 553.4 

RSSERROR 0.0057 

The AMI method yields the improvement of mass and stiffness parameters which 

can reproduce the original measured modal data sets, even though the original test 

modal data is severely contaminated. The reason is that in the AMI method the 

constraint of the eigen problem was imposed in the Lagrangian function for 

derivation of the formula to improve the stiffness parameters. The improved mass 

matrix and test modal data sets were used in the constraint. The improved stiffness 

matrix together with the improved mass matrix must satisfy the constraint of the 

eigenvalue problem. Consequently, the improved stiffness and mass matrices will 

produce the test modal data sets exactly by AMI method. At first, this may appear 
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good, however, it may conceal the problem of having used bad measured modal data. 

If the measured modal data is contaminated severely, the "improved structural 

parameters" may actually not be improved but be contaminated. 

Table 7.8-2 Comparison of the First Complex Mode by Non-Orthogonal 
Modal Data 

Degree of Freedom 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

RSSERROR 

Test 

.2333-1 + .2328-li 

.2298-1 + .2291-li 

.2847-1+.2842-li 

.2814-1 +.2817-li 

.2548-1 + .2549-li 

.2238-1 + .2239-li 

.1692-1 +.1692-li 

.1320-1+.1322-li 

.1010-1+.1012-li 

.5165-2+.5148-2i 

Improved 

.3169-1 +.3167-li 

.3346-1+.3346-li 

.297 6-1 + .2972-li 

.3211-1 +.3208-li 

.2732-1 + .2726-li 

.2332-1 +.2332-li 

.2052-1 +.2056-li 

.1360-1 +.1363-li 

.9948-2+ .9935-2i 

.5586-2+.5146-2i 

1.635 

Like the AMI method, the present method, when applied to good modal data base, 

produces a reasonable improvement of the structure parameters, which can in turn 

reproduce quite accurately the original modal base. In addition to this, the method 

can be used to assess the quality of the measured modal data by recalculating the 

structural modal data with the improved structural parameters and comparing the 

recalculated modal data with the original test modal data. If the original test modal 

data can not be reproduced by the improved structural parameters, then original test 

data is unlikely to be orthogonal and hence contains errors. In this case, the present 

method can not be used directly to improve structural parameters of a structure. 
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§ 7.9 SUMMARY 

The present method can yield a good improvement of the structural parameters 

which can reproduce the original test modal data sets, provided the test modal data 

forms a good data base. 

The present method is based on the orthogonality of the test modal data. Therefore, 

if test modal data is not orthogonal, it can not be used directly to improve structural 

parameters. 

If the improved structural parameters do not reproduce original test modal data, the 

original test modal data may be severely contaminated and should not be directly 

used with the present method. 
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APPENDIX 7A- PSEUDO INVERSE OF A MATRIX 

Let A be an n x m matrix of arbitrary rank. The definition of pseudo-inverse, A+ , of 

a matrix A is 

3. (A+A)T =A+ A 

4. (AA+l =AA+ 

where A can be rectangular, or square but singular matrix. 

Properties of pseudo-inverse 

1. the pseudo-inverse is unique 

2. for a non-singular matrix, it reduces to the ordinary inverse 
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APPENDIX 7B • A RECURSIVE ALGORITHM FOR COMPUTING THE 

PSEUDO INVERSE OF A RECTANGULAR MATRIX 

The following is a recursive algorithm for computing the pseudo-inverse of a 

rectangular matrix. Let ak denote the kth column of a given matrix M*, and let M*~: 

denote the sub-matrix consisting of the first k columns and consider A in the 

partitioned form [Ak_1, ak]. To initiate the process, it is necessary to compute At. If 

a1 is a zero vector, take At= 0; otherwise it is necessary to compute At by 

A+ ( T )-1 T 1 = a1a1 a1 

It is necessary to then compute 

and 

If ck :¢:. 0, then set bk = ct 

If ck = 0 it is necessary to find 

Td )-1dTA+ bk = (1 + dk k k k-1 

and 

(7B-l) 

(7B-2) 

(7B-3) 

(7B-4) 
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(7B-5) 

This algorithm can be simply implemented in a computer program. It requires no 

conventional inversion techniques. 
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APPENDIX 7C -NUMERICAL COMPUTATION OF FULL MODE SHAPES 

The solution for the full mode shapes is the most time consuming component in the 

proposed method. For efficiency in computation time, a modified LU decomposition 

algorithm may be used which performs these solutions in 1/8 the storage of the 

ordinary LU decomposition algorithm. The following algorithm is implemented in 

the complex field. 

The decomposition algorithm takes advantage of the symmetry of the equation 

coefficients and forms a lower, diagonal, lower transposed matrix decomposition. 

Consider a symmetric matrix A, which is represented by a product of a lower 

triangular matrix, L, a diagonal matrix D, and the transpose of L. Introducing the D 

matrix, permits the specification of the diagonal elements of L to unity. 

A=LDLT (7C-1) 

or 

n n 
Oij = 1: 1: lik did llj (7C-2) 

k=ll=l 

n 
= l: lik ljk dkk (since d1k = 0, l ::~: k) 

k=l 

min(i,j) 
= l: lik ljk dkk (since lik = 0, k > i and ljk = 0, k > j) 

k=l 
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Since a;i = aii• it is necessary only to work with the lower triangle of matrix A 

j 
a;j = l: hk ljk dkk for i ~ j 

k=1 
(7C-3) 

If it is assumed that all the l's are known up to, but not including column j and all the 

d's are known up to, but not including dii• then 

j j-1 
Ojj = l: lJk dkk = l: lJk dkk + djj (since ljj = 1) 

k=1 k=1 

(7C-4) 

or 

j-1 
d·· =a .. -~ p,_ dkk 'JJ 'JJ .LJ Jr. (7C-5) 

k=1 

where all values on the right hand side are known. 

Also 

j j-1 

aij = l: hk ljk dkk = l: lik ljk dkk + Iii dii for i > j (7C-6a) 
k=1 k=1 

or 

j-1 

l;j = (a;i - l: l;k ljk dkk) I dii (7C-6b) 
k=1 

where all the values on the right hand side are known. 
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Thus, it is possible, using Eqns. (7C-5), (7C-6a) and (7C-6b)) to read one column of 

A at a time and, starting at the diagonal element, compute the corresponding rows 

and columns of L and LT. This process requires all the elements of L, in the lower 

rectangle of L, which intersects the diagonal. The maximum computer storage 

space required is then (n /2)2, where n is the order of the matrix. 

In the actual algorithm, the decomposition is separated into three phases. A work 

area of variable dimensions is set up. The first phase loads as many columns of A as 

will fit in this area and computes the corresponding columns of L, D, LT. The next 

phase loads a column of A and solves for one column of L, D, LT at a time, starting 

at the diagonal. The third phase starts when the work area can hold all the remaining 

rows of A. During this entire process, the work area is continually being 

redimensioned and the rows of L and the rows of L T are written to a sequential file. 

When this process is completed, the solution of the matrix equation Ax = LDLT x = b 

is simply performed as follows 

1. solve for x2, one element at a time from Lx2 = b, where x2 = DLT x (note Lis 

a lower triangular matrix); 

2. solve for x1 from Dx1 = x2, where x1 = LT x. (noteD is a diagonal matrix); 

3. solve for x from LT x = x1, where xis the solution of the original equation 

( note L T is an upper triangular matrix and solution must proceed from bottom 

up). 
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Chapter 8 

§ 8.1 SUMMARY 

Conclusions 8-1 

CONCLUSIONS 

The art of progress is to preserve order amid change, 

and to preserve change amid order. 

-A. N. Whitehead 

In the course of conducting the research work in this thesis, attention has been paid 

to developing some methods for modal and structural identification of vibrating 

structures in the time domain. Each of the methods developed in this thesis is thus 

original and, as well, improvements to previously published methods for tackling the 

same type of identification problem, although strict comparisons in terms of 

computation time and usage of computer storage have not been carried out. In this 
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section a summary is made on these newly developed methods in general terms. 

Theoretical fundamentals of a linear damped vibrating structure generalized in 

chapter 2 can be used to develop modal identification methods. Structural models, 

state models, modal models and response models of a vibrating structure were 

investigated. The relationships between these models were established which provide 

a basis for developing modal identification motheds in the time domain. Particularly, 

relationships between response models in the time domain and various dynamic 

properties of structures establish the basis for determination of various dynamic 

properties using the response data in the case of free vibration testing, or the 

response and excitation data in the case of forced vibration testing in the time 

domain. The modal parameters of the structure may then be computed from these 

identified dynamic properties. 

The ARMAX model of a vibrating structure obtained in chapter 4 was used to 

develop two methods for modal identification in the time domain. The response 

and/or excitation data in the time domain are used to identify the coefficient matrix 

sequence of the ARMAX model. The identified coefficient matrices of the AR part 

are then used to calculate the eigenvalues and eigenvectors of the state model of the 

structure through which the complex mode shapes, natural frequencies and damping 

ratios of the vibrating structure are computed. The difficulties in use of time domain 

modal identification methods such as determination of the number of degrees of 

freedom of the structure being excited in a vibration test, detection of false modes 

caused by observation noise and numerical ill-conditioning of the test data are also 

tackled. Some useful techniques are presented to overcome these difficulties. The 

generality of the direct method was demonstrated by discussion of the reduction of 

the method to some selected methods reviewed in chapter 3. 
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The Fourier transformation is a very useful tool in modal identification in the 

frequency domain. Its counterpart in the time domain, the Z-transformation, can play 

the similar role in modal identification in the time domain. Application of the Z

transformation in modal identification was comprehensively investigated. For 

different vibration test technique, the corresponding method using Z-transformation 

was developed for identification of modal parameters of a vibrating structure. A new 

technique for derivation of mode shapes of a vibrating structure from its Z-transfer 

function matrix sequence was presented. 

Application of the methods presented in this thesis to the actual modal testing is 

studied. Some techniques for treating the measured data were introduced. The 

advantages and disadvantages of different types of excitations, choice of sampling 

rate and presampling filters, estimation of the order of a testing structure and 

determination of excitation bandwidth, were extensively investigated. Practical 

procedures for application of the present methods for modal identification to the 

modal testing are proposed and the results of laboratory experiments on the modal 

test of a cantilevered beam and a 15 storey steel high rise building model were 

presented to verify the developed methods. 

Finally, identification of structural parameters of vibrating structures using modal 

test data was investigated as an extension and application of modal identification. A 

method was developed to identify structural parameters of vibrating structures with 

nonproportional damping. The method can be used to check whether the modal test 

data is contaminated. The application of the pseudo inverse of a matrix in the 

structural system identification was also studied. 
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§ 8.2 CONCLUSIONS 

A substantial portion of the research fmdings described in this thesis results from 

original work by the author. Work of others is indicated and used for completeness in 

the presentation. The main conclusions of this study are summarized as follows. 

• Generalization of the fundamental theory of a vibrating structure for structural 

system identification analysis is the basis for developing various methods of 

modal identification in both the frequency domain and the time domain. 

• Various models representing a vibrating structure and relationships between 

these models are crucial for development of methods for modal identification. 

• The ARMAX model of a vibrating structure can play the role of a bridge for 

identification of modal parameters, and the response and excitation data in the 

time domain. 

• The direct method is a general method for modal identification in the time 

domain, while the indirect method is a flexible method which is suitable for 

different types of excitation and different purposes of testing. 

• The coefficient matrix sequence of the ARMAX model of a vibrating structure 

can be related to the modal parameters of the structure. 

• Once the coefficient matrices of the ARMAX model of a vibrating structure are 

obtained using various numerical methods, the modal parameters of the vibrating 

structure can be computed using the relationship of coefficient matrices of the 

ARMAX model to the modal parameters of the structure. 

• The natural frequencies and damping ratios of a vibrating structure can be 

identified using a univariate ARMAX model of the structure. 
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• The false modes caused by observation noise can be detected by identifying the 

roots of both AR and MA parts of the ARMAX model. 

• The number of degrees of freedom of a structure being excited in modal testing 

can be assessed from the response data. 

• Deterministic or random excitation signals, controlled or uncontrolled excitations 

can be used with the present methods. 

• The methods based on the Z-transformation are very efficient in determination of 

modal parameters of a vibrating structure. 

• Z-transformation plays an important role in modal identification in the time 

domain similar to the role of Fourier transformation in the frequency domain. 

• Various ARMA models which can be used with different type of excitations in 

modal identification are developed on the basis of Z-transformation. 

• Mode shapes of a vibrating structure can be obtained directly from its Z-transfer 

function matrix sequence. 

• The closely spaced frequencies of a vibrating structure can be identified by the 

present methods. 

• Sampling rate largely depends on the frequency range of interest in a modal test. 

• Aliasing phenomena have to be avoided by use of suitable sampling rates and 

appropriate response measurement arrangement. 

• For different structure and different purpose of a modal testing, different 

excitation signal should be used. 



ChapterS Conclusions 8-6 

• Using modal test data, structural parameters of a vibrating structure with 

nonproportional damping can be identified by use of the method developed in 

chapter?. 

• The complex modal data from vibration tests can directly be used with the 

present method. 

• The method for structural identification can also be used to assess if the modal 

test data is contaminated. 

§ 8.3 RECOMMENDATION FOR FUTURE RESEARCH WORK 

In view of the successful development of the theoretical and experimental work 

using the methods presented in this thesis, it is considered that the following work 

may be worth being conducted in future as a continuation of the present efforts. 

• The present research has concentrated on the development of several methods for 

modal and structural identification of a vibrating structure. Although, the 

algorithms have been applied in the laboratory testing, instructive and 

comprehensive packages are needed in order to promote the use of these 

methods. Improvement of these algorithms will also be a good topic for further 

investigation. 

• Many structures, including offshore structures, have some nonlinearity in 

circumstances. Study of modal identification of non-linear structural system is 

still a challenging task for structural engineering circle. 

• One of the aims of performance of modal identification is to obtain the real 

modal parameters and/or structural parameters so that these parameters could be 
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used in the vibration control of the structural system. Investigation of the 

method for modal identification to cooperate with vibration control is a further 

promising topic. 

• Numerical computing in system identification has always been a problem 

causing inaccuracy of identified results. Investigation of suitable numerical 

methods for the present methods would be an interesting and fruitful challenge. 

• As discussed in this thesis, detection of noise contained in the test data before 

identification and identification of the false modes caused by the observation 

noise are very important for determination of correct modes. In this area, there is 

still some research which is required. 

• Further study of application of the present methods in this thesis to the modal 

testing of complex structures in the laboratory and field will be worthwhile. 

• One of the problems with structural system identification is that the zero off

diagonal elements are not identified as zero in the most identification algorithms. 

Hence it is desirable to develop method which can produce zero off-diagonal 

elements of structural matrices in the process of identification with low cost. 
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