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Australia 
 
 
Abstract 
 
This paper describes a new multiaxial model for predicting creep lives of structures. The model 
hypothesises that the creep damage is proportional to the creep internal energy density absorbed by 
the material. The authors argue that the model is the most appropriate for characterizing gross creep 
damage from a macroscopic point of view because it takes into accounts both the multiaxial internal 
deformation and loading. The verification and application of the model are demonstrated by 
applying it to various notched bars for which the experimental data are available. The results show 
that the proposed model is capable of predicting creep lives of the structures conservatively. 
 
 
1. Introduction 
 
There are many engineering structures that operate at sufficiently high temperatures to be 
subjected to creep damage. The basic creep deformation and failure mechanism have been 
previously outlined by many researchers (see for example Milne et al, 2003). The 
microstructural damages highlight the fact that failure is generally by cavity nucleation and 
growth; dislocation creep is the main mechanism with microstructural features such as sub-grain 
formation and growth, new phase formation, such as the Z phase, coarsening and leading to the 
dissolution of the MX phase. This leads to the removal of pinning precipitates which can allow 
local heterogeneous sub-grain growth, weakening due to this growth and also to the dissolution 
of the MX. These features lead to the earlier formation of tertiary creep and reduced life. 
 
From macroscopic point of view, there are several creep damage models, which include the 
Robinson’s life fraction rule (Robinson, 1952), strain fraction rule (Milne et al, 2003), 
continuum damage model (Kachanov, 1958 and Rabotnov, 1969) and Omega parameter (Prager, 
2000). The limitations of the above-mentioned models have been discussed in Zarrabi and Ng, 
2006 and for the sake of brevity they are not described here. It is suffice to state that the above-
listed models are either too complex for pragmatic applications and/or the required material data 
are not readily available and/or they do not result in conservative life predictions for at least 
some cases. Zarrabi and Ng, 2006 have proposed a creep damage model based on total internal 
energy density and tertiary creep behaviour. This paper modifies this model and combines it with 
the artificial neural network. 
 
2. An artificial neural network model for predicting creep life 
 
Although the extension of proposed model to the cases where there is elastic-creep-plastic 
deformation is straightforward, this paper concentrates on elastic-creep damages. However, note 
that provided an engineering structure is designed correctly, any plastic deformation is limited to 
the stress concentration regions and should be relatively small. Also, it is assumed that: (i) the 
creep damage induced in the material is proportion to the creep internal energy density input to 
the material and (ii) for the purpose of determining the creep life, the actual (multi-axial) creep 



damage in the structure may be converted into a hypothetical uniaxial case in such a way that the 
creep life of the structure is equivalent to creep life of the uniaxial component. The later 
assumption is similar to the concept of equivalent stress for the purpose of predicting the onset 
of plastic deformation and yielding. The proposed model then follows the following procedure. 
 
The first step is to compute the creep internal energy density ( cW ) as a function of time ( t )for the 
structure. If analytical solutions are not available, this can be achieved using a numerical method 
such as the finite element method (FEM): 
 

)(tfW cc =                       (1) 
 
Having computed numerical values of cW  for various time points, instead of usual curve-fitting 
approach, this paper will use ANN to obtain cf  in equation (1). When data are assumed to fit a 
mathematical distribution, we are adding information that helps us to model the available data. 
This, however, may be misleading if we have chosen the wrong distribution. An ANN consists of a 
training stage and a prediction stage. ANN models the data that are presented to it during the 
training stage without assuming a particular distribution. After the network is trained it is used to 
predict cW  using t . 
 
ANN has a parallel processing architecture that is composed of many non-linear computational 
elements (neurons). It is naturally suited to tackle complex and non-linear problems. The elements 
or neurons in ANN are arranged in patterns reminiscent of biological brain cells. The present 
investigation uses a back propagation, feed forward ANN with input, hidden, and output layers 
(Zarrabi, 2006). In operation, ANN learns a predefined set of input-output example pairs by using a 
two-phase propagate-adapt cycle. As mentioned before, the development of ANN consists of two 
stages, viz., a learning and a prediction stages. During the learning stage, first, the inputs are 
supplied to the input layer where they are acted upon by input transfer functions, weights and biases 
at each neuron; then they propagate through hidden and output layers. At hidden and output layers 
the variables are acted upon by the corresponding transform functions, weights, and biases. Biases 
are normally set to unity for all three layers. At the output layer, the variables are combined to 
produce an output. This output is then compared with the desired output (Computed cW  from FEM) 
and an error signal ( ER ) is computed. ER  is then minimized with respects to weights and the 
process is iterated until ER  is less than a desired value. The final weights are used in the 
predication stage to compute the desired output variable. Before the training of the network both 
input and output variables (V ) are normalized within the range 0–1 using: 
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where nV  is the normalized value of the variable V , maxV  is the maximum value of the variable 
and minV  is the minimum value of the variable. 
 
Having determined cW  as a function of time, to calculate creep life, the expression for the uniaxial 
creep internal energy density ( uW ) is also needed. This expression depends on the creep 
constitutive equation, e.g., for Norton power law: 
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Where σ  is stress, B  is the Norton stress coefficient, n  is the creep stress index and rut  is the 
uniaxial rupture time. Note that the uniaxial relationship between σ  and rut  in equation (3) is also 
known from the uniaxial rupture data so that: 
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Combining equations (3) and (4) results in: 
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Noting the above equations the model is outlined in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 – Algorithm of creep life prediction 

 
 
3. Validation of the model 
 

Assume component life: 
0=rct  & choose suitable small time interval itΔ  

Assume cu WW =  and use equation (3) to calculate rut  

Calculate cW  using ANN (equation (1)) 

Compute: ?1/ == rurc ttFR  

let: ircrc ttt Δ+=  & rctt =  

No 

Yes 

Output creep life of 
component: rct  



Ideally to validate the model presented in Section 2, one should compare the predictions from 
the proposed model with those obtained experimentally for various structures made of various 
materials and subject to various temperatures and multiaxial stress fields. However, high 
temperature creep experiments on anything other than the uniaxial tensile specimens are costly, 
time-consuming and often contaminated with scatter. One relatively convenient way of 
introducing a state of multiaxial stress into otherwise uniaxial tensile specimens is to subject 
circumferentially notched solid bars to a constant tensile force applied in the axial direction of 
the bar. In this way, various stress states can be simulated by changing the circumferential notch 
profile. Kwon et al, 2004 have carried out creep testing using notched bars all made of 
2.25%Cr1%Mo steel tested at 550 o C. The bars were: (1) Bridgman notched bar with the notch 
acuity 5.1/ =ra  where r  was the notched root radius and a  was the radius of the cross-section 
at the notch root , see Figure 2, (2) modified Bridgman I notched bar with 0.5/ =ra , (3) 
modified Bridgman II notched bar with 7.0/ =ra  and (4) modified British Standard notched bar 
with 0.9/ =ra . Note also that for all bars: mmR 38.4=  and mmL 5.12=  (Figure 2). 
 

 
 

Figure 2 – Bridgman notched bar 
 

To obtain the creep internal energy density at the notch root, finite element analysis was 
employed using MSC/NASTRAN, 2006 because of its availability to the authors. The material 
properties used in an analysis were: the modulus of elasticity at the test temperature of 

MPax 610157.0 , 0.9=n  and 1410408.6 −×=B  where these values when used in equations (3) 
and (5) resulted in time in hours and stress in MPa . The uniaxial rupture data at 550 deg C 
described by: 
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where rut  was in hours and σ  was in MPa . The axial traction load applied to each bar in each 
finite element analysis matched those used experimentally by Kwon et al, 2004. Because there are 
no axisymmetric elements for creep analysis brick element were used for the present analysis. To 
this end, a section of the bar subtended by o924.30 =θ  was modelled and a typical mesh is shown 
in Figure 3. Note that because of symmetry only half of the length of the bar was modelled. A 
typical mesh was consisted of about 1,600 brick elements. 

 

 
 

Figure 3 – Finite element mesh for Bridgman notched bar 
 

The computed creep internal energy density as a function of radius at the notch root section for the 
Bridgman notched bar for various time points are shown in Figure 4. As it might be expected the 
highest internal energy densities occurred at the notch root. Similar results were obtained for other 
bars.  
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Figure 4 – Creep internal energy density versus radial distance at the notched section for various 

time points for Bridgman notched bar 
 

Using the computed creep internal energy densities and the model described in Section 2, life of 
each bar was computed and listed in Table 1. Table 1 includes the experimental lives obtained by 
Kwon et al, 2004. 
 

 
Table 1 – Comparison of computed and experimental lives for various notched bars 

 
Bar Experimental Life 

(Hours) 
Computed Life 

(Hours) 
ar /  

Modified British 
Standard 

865 172 9.0 

Modified 
Bridgman I 

1,190 367 5.0 

Bridgman 3,213 1,850 1.5 
Modified 

Bridgman II 
4,439 4,120 0.7 

 
The results listed in Table 1 show that the proposed model can conservatively predict the creep 
lives of the bars. However, as acuity ( ar / ) decreases, i.e., as the damage is concentrated more at 
the notch root, the computed and experimental lives become closer. This might be expected 
because, in order to be conservative, the model deliberately assumes that the damage is 
concentrated at the notch root, which is the case for small acuity values. Whereas in reality and as 
the acuity increases the creep damage redistributes from the notch root and spreads to its 
surrounding area as time progresses resulting higher lives. 



 
 
4. Conclusions 
 
A new model for predicting creep lives of structure was presented. The model assumes the creep 
damage is proportional to the creep internal energy density at most critically loaded region in the 
material. By applying the model to various notched bars for which experimental lives available, it 
was shown that the model can conservatively predicts the creep lives of the bars. 
 
The model has several advantages when compared with other continuum creep damage models. The 
model is based on the exhaustion of the total internal energy in the highly stressed/strained zone in 
the material and therefore it is a true multiaxial model taking into account the contributions from all 
the stress/strain components. This is a measure of total deformation as well as internal loading in 
the component and therefore it should be the most appropriate for characterising gross creep 
damage. In practical terms, the model does not require quantities such as rupture stress, the damage 
parameter and some material parameters that are cumbersome and costly to determine and/or 
employ in practice. Therefore, it should be more practical and should result in more accurate 
predictions for the creep life of components. In addition, the proposed model is relatively simple to 
employ and can be used in conjunction with any commercial finite element code with creep 
analysis capabilities  
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