
Deep learning based stereo matching on a small dataset

Author:
Wu, Rongcheng

Publication Date:
2021

DOI:
https://doi.org/10.26190/unsworks/1982

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/100072 in https://
unsworks.unsw.edu.au on 2024-04-23

http://dx.doi.org/https://doi.org/10.26190/unsworks/1982
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/100072
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Deep learning based stereo matching on

a small dataset

Rongcheng Wu

A thesis in fulfilment of the requirements for the degree of

Master of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

October 2021

Thesis Title and Abstract

Originality, Copyright and Authenticity Statements

Inclusion of Publications Statement

Abstract

Deep learning (DL) has been used in many computer vision tasks including stereo match-
ing. However, DL is data hungry, and a large number of highly accurate real-world training
images for stereo matching is too expensive to acquire in practice. The majority of studies
rely on large simulated datasets during training, which inevitably results in domain shift
problems that are commonly compensated by fine-tuning. This work proposes a recur-
sive 3D convolutional neural network (CNN) to improve the accuracy of DL based stereo
matching that is suitable for real-world scenarios with a small set of available images,
without having to use a large simulated dataset and without fine-tuning. In addition,
we propose a novel scale-invariant feature transform (SIFT) based adaptive window for
matching cost computation that is a crucial step in the stereo matching pipeline to enhance
accuracy. Extensive end-to-end comparative experiments demonstrate the superiority of
the proposed recursive 3D CNN and SIFT based adaptive windows. Our work achieves
effective generalization corroborated by training solely on the indoor Middlebury Stereo
2014 dataset and validating on outdoor KITTI 2012 and KITTI 2015 datasets. As a com-
parison, our bad-4.0-error is 24.2 that is on par with the AANet (CVPR2020) method
according to the publicly evaluated report from the Middlebury Stereo Evaluation Bench-
mark.

iii

Acknowledgement

Throughout the research and writing of this dissertation, I have received a great deal of
support and assistance.

I would first like to thank my supervisor, Professor Changming Sun, whose expertise
was invaluable in formulating the research questions and methodology. Also, Professor
Changming Sun and Professor Arcot Sowmya help me a lot with my paper and thesis
writing.

I would also like to acknowledge Commonwealth Scientific and Industrial Research Or-
ganisation (CSIRO) and UNSW, which provide me great working places with energetic
researchers.

In addition, I would like to thank my parents for their wise counsel and funding. Finally,
I could not have completed this dissertation without the support of my friend, Mingzhe
Wang, who provided stimulating discussions as well as happy distractions to rest my mind
outside of my research.

iv

Publications Arising from Thesis

List of Publications

• Rongcheng Wu, Changming Sun, Zhaoying Liu, Arcot Sowmya. Deep learning based
stereo cost aggregation on a small dataset, Accepted, DICTA 2021.

v

Contents

Abstract iii

Acknowledgement iv

Publications Arising from Thesis v

Contents vi

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Environment Setup . 2

1.3 Challenges . 5

1.3.1 Traditional Algorithm . 5

1.3.2 Deep Learning . 9

1.4 Contributions . 12

1.4.1 Window Size . 13

1.4.2 Large Training Dataset Requirement 13

1.4.3 Generalisation . 14

vi

1.4.4 Robustness . 14

1.4.5 Speed and Memory Consumption . 14

1.4.6 Confidence Measurement . 15

1.5 Thesis Organisation . 15

2 Literature Review 16

2.1 Cost Computation . 16

2.1.1 Traditional Cost Computation . 17

2.1.2 Deep Learning Based Cost Computation 18

2.2 Cost Aggregation . 20

2.2.1 Traditional Matching Cost Aggregation 21

2.2.2 Deep Learning Based Cost Aggregation 23

2.3 Disparity Computation . 26

2.4 Confidence Measurement . 26

2.4.1 Left-Right Consistency Check . 27

2.4.2 Confidence from a Single Raw Disparity Map 28

2.4.3 Confidence Map from Matching Densities 28

2.4.4 Combining Multiple Estimators . 28

2.5 Domain Adaptation and Transfer Learning 29

2.5.1 Adaptation by Fine-Tuning . 29

2.5.2 Adaptation by Data Transformation 30

2.6 Datasets . 31

2.7 Handling High-Resolution Images . 32

2.8 Training Procedures . 32

2.9 Framework . 34

2.10 Current Popular Tricks . 35

vii

2.10.1 Mixed Precision Training . 36

2.10.2 Pruning . 36

2.10.3 Knowledge Distillation . 37

2.11 Fully Convolutional Networks (FCN) . 37

2.12 Summary . 39

3 Cost Computation 40

3.1 Matching Cost Computation . 41

3.2 Combining with Other Cues . 44

3.3 Experiments . 45

3.3.1 Datasets and Evaluation Metrics . 45

3.3.2 Implementation Details . 46

3.3.3 Window Size: Maximum . 46

3.3.4 Regular Windows Size: Average . 47

3.3.5 Application on Other Cost Compution Methods 48

3.3.6 Combining with Other Cues . 50

3.4 Summary . 51

4 Few Shot Stereo Matching 52

4.1 Proposed Methods . 53

4.1.1 Cost Volume . 54

4.1.2 Cost Aggregation . 56

4.1.3 Loss Function . 61

4.2 Confidence Measurement . 62

4.2.1 Confidence Estimation . 62

4.3 Experiment . 64

viii

4.3.1 Datasets and Evaluation Metrics . 64

4.3.2 Implementation Details . 65

4.3.3 Results and Analysis . 65

4.3.4 Result on KITTI 2012 Dataset . 66

4.3.5 Results on Middlebury Stereo 2014 Dataset 67

4.3.6 Benchmark Results . 67

4.3.7 Benchmark Results from Middlebury Stereo 2014 67

4.3.8 Benchmark Results from KITTI Datasets 69

4.3.9 Ablation Experiments . 70

4.3.10 Fine Tuned Results . 72

4.3.11 Robustness . 72

4.3.12 Generalisation . 74

4.3.13 Interpretability . 75

4.3.14 Confidence Measurement . 78

4.4 Remarks . 80

5 Conclusion 82

5.1 Thesis Contributions . 83

5.1.1 Adaptation Cost Computation . 83

5.1.2 Few-shot Cost Aggregation . 83

5.1.3 Reducing Memory and Time Requirement 83

5.1.4 Confidence Measurement . 84

5.2 Limitations and Future Work . 84

5.2.1 Reducing Training Data Size . 84

5.2.2 Improving the Compression Ratio 85

5.2.3 Improving Accuracy Using Complex Structures 85

ix

5.3 Concluding Remarks . 85

Supplementary Materials 86

References 89

x

List of Figures

1.1 Camera model. 3

1.2 An example of disparity. The red box and red line are the pixels from the
left image, and the yellow box and yellow line are the corresponding points
on the right image. The disparity is shown as a green dotted line. 4

1.3 An example of textureless areas [1]. 6

1.4 An example of specular reflection areas [1]. 6

1.5 An example of repeated patterns [1]. 7

1.6 An example of foreshortening [1]. 7

1.7 An example of occlusions [1]. 8

1.8 An example of different lighting conditions [1]. 8

1.9 Examples of different results with different windows sizes. 9

2.1 Deep learning based cost computation [2]. 19

2.2 Computational graph. The blue blocks are the input tensors of different
sizes, and the green block is the output tensor. The gray blocks are different
types of operators. 34

2.3 Example of U-Net [3]. 38

3.1 Details of proposed SIFT-Census. 41

3.2 Details of Census bit string. Pixels with value less than the centre pixel are
set to 0. Otherwise, they are set to 1. 42

3.3 SIFT-Census example. 48

xi

3.4 SIFT-SSD example. 49

3.5 Combined example. After combination, noise in the textureless areas is
reduced, however some mismatched areas still remain. 50

4.1 Our few shot pipeline follows the four steps pipeline of stereo matching. . . 54

4.2 Recurrent 3D CNN uses the same block to handle inputs of different steps. 55

4.3 Details of the confidence measurement method. The confidence map is
obtained by comparing the two disparity maps from the first channel output
and indexed from the raw cost matrix. 63

4.4 Results on the Middlebury Stereo 2014 test set based on the proposed 11-
shot model. No ground-truth was provided by the Middlebury Stereo 2014
test set on benchmark. 66

4.5 KITTI 2012 examples. The main errors are in the sky areas, which are out
of the disparity range of the training set. 68

4.6 Results from the non-recurrent and recurrent model tested with different
computation methods. 72

4.7 Results from the MPI Sintel dataset. The proposed 11-shot model trained
on the Middlebury Stereo 2014 dataset was directly tested on the MPI Sintel
dataset. 74

4.8 (a) left image (b) right image (c) first feature map (d) second feature map
(e) third feature map (f) final output of 11-shot model. 76

4.9 Confidence measurement example, dark points are error / low confidence
points. 79

xii

List of Tables

3.1 Accuracy comparison of Census and SIFT-Census. 46

3.2 Accuracy of Census and SIFT-Census compared on same average window
size. 47

3.3 Accuracy comparison of SSD and SIFT-SSD on same average window size. . 48

3.4 Accuracy comparison of SSD and SIFT-SSD on same maximum window size. 48

4.1 Percentage of pixel error less than 2.0 on the Middlebury Stereo 2014 dataset
and less than 3.0 on the KITTI 2012 dataset, with recursion and non-
recursion structures. 65

4.2 Leaderboard of Middlebury Stereo 2014 dataset. 67

4.3 Leaderboard of KITTI 2015. 67

4.4 Leaderboard from Middlebury Stereo 2014 on bad-4.0-error. 68

4.5 Leaderboard from KITTI 2015 after fine-tuning. 72

1 The detail of the recurrent structured 3D block. 88

xiii

Abbreviations

BFC Best Fit with Coalescing

CNN Convolutional Neural Network

CRF Conditional Random Field

DL Deep Learning

FCN Fully Convolutional Networks

LGA Local Guided Aggregation

MRF Markov Random Field

PBCP Patch Based Confidence Prediction

SAD Sum of Absolute Difference

SGA Semi Global Aggregation

SGM Semi Global Matching

SIFT Scale Invariant Feature Transform

SSD Sum of Squared Difference

xiv

Chapter 1

Introduction

With the popularity of deep learning within the computer vision area, many challenging

problems from the past have become solvable. However, after a few years of deep learning

applied to computer vision problems, many tasks have not been properly solved. To

overcome bottlenecks in 3D vision problems, 3D information providing richer information

could be useful. Recovering depth information from one or a few images is an essential

prerequisite of 3D vision, and this is the main focus of this thesis.

In this chapter, the background and motivation are first discussed. After that, the camera

model and its issues are outlined. Finally, the thesis contributions are listed and thesis

organization is described.

1.1 Background and Motivation

There are two main methods to measure depth from images: the active and the passive

approach. Most active methods rely on sending energy out, such as LiDAR [4, 5] or

structured light [1]. Although these sensors can measure depth accurately, some drawbacks

are apparent. Firstly, the cost of those sensors is high. Secondly, the lifespan of those

1

CHAPTER 1. INTRODUCTION

sensors can be short. In the passive approach, stereo matching and monocular depth

estimation are the two most popular methods. However, most monocular depth estimation

models based on deep learning rely heavily on the model fitting ability, which leads to

model performance dropping significantly in the presence of domain shifts. For example,

a monocular depth estimation model trained on an indoor dataset often fails on an outdoor

dataset. Inspired by human binocular vision, the use of two cameras to simulate the eyes

is another approach. Compared with a monocular system, the binocular system provides a

triangle relationship for each 3D point. Therefore, stereo matching is often used to obtain

depth, which only needs two cameras.

1.2 Environment Setup

Before introducing the details of the stereo matching algorithm, the setup of stereo cam-

eras is introduced. For the traditional stereo camera setup, two cameras with the same

parameters are placed on the same line and in the same plane. The baseline of the two

cameras is the distance between the two cameras. Even if the cameras placed on the same

line and plane can reduce mismatch between the left and right images, the viewing angle

between the two cameras also highly affects the matching process. In order to reduce the

searching space, the orientation of the two cameras are often set to be the same. Given

pixels on the left image in the ideal state, the matching point is only found on the same

row in the right image.

In Figure 1.1 the camera setup is shown. Given the left camera and right cameras with

the same parameters, the gap between the two cameras is the baseline. This work will

focus on the situation when the stereo image pairs are calibrated and rectified. Given a

point in the real world, the gap between the left image pixel and the right image pixel for

this point is the disparity. The distance between the 3D point and the two cameras is the

depth. In general, the disparity will change with depth. In equations (1.1) and (1.2), a

2

1.2. ENVIRONMENT SETUP

Figure 1.1: Camera model.

simple trigonometric formula that describes the relationship between depth and disparity

is provided:
d

b
= f

z
(1.1)

z = bf

d
(1.2)

where d is the disparity, f is the focal length, b is the baseline and z is depth. Clearly, the

depth can be obtained from the disparity with the specific camera parameters. Therefore,

recovering the depth from two images can be viewed as the problem of finding the correct

disparity value. In order to find the disparity value, finding the correct matches between

these two images is a necessary step.

Each pixel on the left image usually has a corresponding pixel on the right image. After

the corresponding pixel is obtained, the disparity value is the position gap between the

3

CHAPTER 1. INTRODUCTION

Left image

Right image

disparity
disparity

Left image

Right image

disparity
disparity

Figure 1.2: An example of disparity. The red box and red line are the pixels from the
left image, and the yellow box and yellow line are the corresponding points on the right
image. The disparity is shown as a green dotted line.

4

1.3. CHALLENGES

left and right corresponding pixels.

An example of disparity and the corresponding points is shown in Figure 1.2.

1.3 Challenges

In this part, the challenging issues of traditional stereo and deep learning based stereo

matching models will be introduced.

1.3.1 Traditional Algorithm

Generally, the pipeline of stereo matching consists of four steps: matching cost computa-

tion, cost aggregation, disparity computation and refinement [6].

In traditional stereo matching, the matching cost computation step determines the quality

of the final result. Even though the cost aggregation and refinement can reduce errors on

the raw disparity map, these two steps still rely on the correct matching result from the

cost computation step.

The main issue in the cost computation part is the mismatching. Seven main reasons

cause mismatching, including textureless areas, specular reflection areas, foreshortening,

occlusions, light changes, repeated patterns and window size.

1. Textureless areas: The reason the textureless areas leading to mismatching is that

multiple positions may have the same matching cost values, because all aggregation

algorithms are based on one assumption: areas of the same texture only have a

very low probability of appearing. Hence, when textureless areas contain a larger

number of pixels with the same matching cost values at different positions, the

5

CHAPTER 1. INTRODUCTION

Figure 1.3: An example of textureless areas [1].

aggregation step will fail on the textureless areas. In Figure 1.3 an example of

matching textureless areas is shown.

Figure 1.4: An example of specular reflection areas [1].

2. Specular reflection areas: Reflective surfaces violate the Lambertian assumption,

which means that the brightness is the same regardless of the observer’s angle of

view. In other words, specular reflection areas make the observed colour of a surface

point dependent on the viewpoint. Hence, different viewpoints between the left and

right cameras lead to different textures on specular reflection areas. In Figure 1.4

an example of specular reflection areas is shown.

3. Repeated patterns: Repeated patterns leading to mismatching are similar to

textureless areas: multiple similar matching cost values appear at different positions.

However, repeated areas can be handled by texture segmentation. Therefore, many

6

1.3. CHALLENGES

Figure 1.5: An example of repeated patterns [1].

works [7, 8] use segmentation to solve this problem. In Figure 1.5 an example of

repeated patterns is shown.

Figure 1.6: An example of foreshortening [1].

item Foreshortening: Similar to specular reflection areas, mismatching led by

foreshortening is due to change of viewpoint. Different from specular reflection areas

which lead to different lighting conditions, foreshortening causes shape changes. In

Figure 1.6 an example of foreshortening is shown.

4. Occlusions: The occlusion problem is due to objects in front blocking objects be-

hind. Therefore, for blocked areas, the correct matching points between the left

and right images cannot be found. However, occluded areas can be handled in the

post-processing steps, which are named “left-right consistency check (LRC)”. The

LRC compares points on the left disparity map with the corresponding points on

7

CHAPTER 1. INTRODUCTION

Figure 1.7: An example of occlusions [1].

the right disparity map. Pixels are considered to be occluded points when the point

difference between the left and right disparity map is larger than a threshold. In

Figure 1.7 an example of occlusions is shown.

Figure 1.8: An example of different lighting conditions [1].

5. Lighting conditions: One of the factors leading to mismatching is different lighting

conditions. Stereo matching methods rely on natural light in the environment to

collect images. Due to changes in lighting angles and light intensity, the brightness

difference between two images may be relatively large. In Figure 1.8 an example of

different lighting conditions is shown.

6. Window size: For the cost computation step, the most common method is the

window based method. For each pixel p in an image, a patch centred at p is used

8

1.3. CHALLENGES

Left image GT Small Windows Size Large Windows Size

Figure 1.9: Examples of different results with different windows sizes.

to search for the correct match in the other image. Most window-based cost com-

putation methods employ a fixed window size to search for the correct match for

each pixel. However, it is non-trivial to identify an optimal window size. A small

window can have less smoothing effects and better retaining of object details but

incur mismatches on textureless areas.

Different window sizes in the matching cost computation step result in different raw

disparity maps. In general, small windows are usually not large enough to gather

sufficient information to distinguish between wrong matches and correct matches,

while a large window can reduce noise in textureless areas but lose details on match-

ing. Therefore, it is challenging to choose an optimal window size. Therefore, fixed

windows are not suitable for various scenes. In Figure 1.9 examples of different

results with different window sizes are shown.

1.3.2 Deep Learning

Deep learning (DL) has been used in many computer vision tasks and dominates many

competition leaderboards. However, applying those deep learning models in a production

environment is still a challenging mission. The main reasons preventing deep learning

models from being widely applicable in the real world include: large training dataset

requirements, generalisation issues, robustness issues and time and memory consumption.

These are discussed now.

9

CHAPTER 1. INTRODUCTION

1. Large training dataset requirement: A recent consensus is that a deep learning

model requires a more extensive training set to overcome the overfitting problem. In

addition, training set size is also related to the model generation process. However,

the cost of labeling the data is expensive in some applications. Stereo matching is one

such application which requires pixel-level labeling. Even though depth sensors have

become cheaper in recent years, manually correcting the errors on the depth map

from sensors is unavoidable. Therefore, the lack of high accuracy labeled data is a

bottleneck to applying deep learning based stereo matching in the real world. Unlike

most deep learning models that rely on large training datasets, few-shot learning,

which aims to gain enough generalization on a limited number of the training sets,

could solve mitigate this limitation.

2. Generalisation: An ideal model should perform well even if the data domain or

scenes are different from the training data. Unfortunately, most deep learning models

still suffer from the domain adaptation problem. This means that the model per-

formance decreases when the test data domain is different from the training data.

Nowadays, the most popular method to solve the domain adaptation problem is

fine-tuning. Although fine-tuning or retraining on a new domain data can improve

model performance, fine-tuning cannot actually solve the generalisation problem in

the production environment where data could come from various domains, and the

cost to label the data is huge.

Although many deep learning models have very high performance on the stereo

matching task, one of the main issues that prevent their application in the real

world is due to domain shift. In order to obtain enough training data to train a deep

neural network, most works use simulated datasets to train those models. After those

models are trained on a simulated dataset, fine-tuning or retraining is performed on

a specified dataset. Although fine-tuning can considerably improve performance, it

also requires data with ground-truth in the new environment. In some cases, it is

difficult and even impossible to obtain enough data with ground truth.

10

1.3. CHALLENGES

In particular, stereo matching is an essential step in 3D reconstruction. Developing

a few-shot DL-based stereo matching model will pave the way for 3D reconstruction

with minimal supervision. Therefore, compared with improved accuracy on some

datasets, using fewer training data to gain a more robust performance in the new

domain is more important.

3. Robustness: In recent years, many works have shown that some of the popular

deep learning models are fragile. One of the examples is the adversarial model [9–12],

where even a small amount of noise can lead to the model collapsing. Hence, low

robustness is a major factor preventing deep learning models from being widely used

in some areas.

In particular, the cost aggregation step should adapt various cost computation meth-

ods without retraining or fine-tuning. In other words, an ideal model should be ro-

bust enough to be applicable everywhere without additional training. Unfortunately,

most deep learning based cost aggregation models cannot achieve stable performance

on various cost computation methods. Those cost aggregation methods cannot be

applied to cost computation methods different from the method used for training.

For example, in Section 4.3.11, the accuracy of the aggregation model trained on the

input data from Census decreases on the input data from sum of absolute differences

(SAD) or sum of squared differences (SSD) cost computation methods.

4. Time and Memory Consumption: With improved model accuracy, deeper and

larger models are used to improve their accuracy tested on some popular datasets.

Most deep learning textbooks indicate that a large model will lead to overfitting and

performance reduction. However, recent research as well as this research show that a

larger and deeper model always has better generalisation. One example from recent

research is Double Descent [13], which shows that with the model size increasing,

performance initially becomes worse and then becomes better.

Many deep learning models are successfully used on platforms with high computing

11

CHAPTER 1. INTRODUCTION

power in recent years, such as auto-driving cars with powerful GPUs. However, ex-

ecuting a high-performance deep learning model on mobile devices and edge devices

is still a challenging mission. One of the critical factors is that the state-of-the-

art (SOTA) models always have huge memory and time requirements. Hence, the

Double Descent phenomenon explains why the increase of accuracy is always much

slower than the increase in model size. Therefore, methods to reduce the time and

memory consumption of SOTA models without sacrificing accuracy is a hot research

topic.

In this work, a deeper and larger model is trained for stereo matching. The 3D

convolution operation in the 3D convolution neural network is the most expensive

in terms of time and memory consumption in the cost aggregation step. Because

3D convolution is widely used on the cost aggregation step, those models cannot be

deployed on edge devices. Therefore, reducing memory and time consumption is a

valuable research topic in the stereo matching area.

1.4 Contributions

Stereo matching takes two images and outputs their disparity map. Deep learning has

been utilised [14–16] for stereo matching due to its super performance. Generally, the

pipeline of stereo matching consists of four steps: matching cost computation, cost aggre-

gation, disparity computation, and refinement [6]. Among them, cost computation and

aggregation are the two most critical steps and are the main focus of this study. Based

on the issues and challenges discussed in Section 1.3, our contributions are listed in this

section.

12

1.4. CONTRIBUTIONS

1.4.1 Window Size

To address the window size issue, instead of tediously and manually selecting a suitable

window size, a matching cost computation method using an adaptive window size is pro-

posed by taking advantage of the scale-invariant feature transform (SIFT) [17] matching

points as cues. The experimental results show that the propsoed adaptation of the cost

computation method improves accuracy on the raw disparity map and reduces time con-

sumption on the cost computation steps.

Compared with large fixed windows, the proposed adaptive windows method retains more

details. Compared with small fixed windows, the proposed adaptive windows method re-

duces noise in textureless areas. The adaptive windows method is combined with Census

and sum of squared difference (SSD), leading to almost 3% and 2% performance improve-

ment respectively, compared with the regular Census and SSD.

1.4.2 Large Training Dataset Requirement

In order to overcome the drawbacks of relying on a large dataset during training, a new

structure for 3D CNN is proposed, which only needs a few images for training. Comprehen-

sive experimental results confirm the efficiency of the two proposed methods. Specifically,

in end-to-end comparative experiments with no more than 11 images used for training,

the recurrent 3D CNN provides a conservative 11% accuracy improvement. The overall

performance was evaluated on the Middlebury Stereo Evaluation Benchmark1, and the

corresponding report shows that the proposed method achieved a bad-4.0-error of 24.2

which is on par with the AANet (CVPR2020) method.

In addition, a comparative experiment showed that the accuracy gap between the proposed

model and other models increases with the decrease in size of the training set. The

1the proposed method is named R3DCNN in the submission to the public benchmark
at https://vision.middlebury.edu/stereo/eval3/.

13

https://vision.middlebury.edu/stereo/eval3/

CHAPTER 1. INTRODUCTION

proposed R3DCNN achieves around 70% bad-4.0-error accuracy in the one-shot setting,

which is 24% higher than the regular 3D U-Net [18].

1.4.3 Generalisation

To address the second limitation due to generalisation, a recurrent 3D CNN structure is

constructively used to enable training with only a few training images, providing better

generalisation ability and obviating the cumbersomeness of both large (simulated/real)

datasets and fine-tuning.

1.4.4 Robustness

Th proposed recurrent 3D CNN not only improves generalisation but also improves the

robustness. In one experiment, the propsoed cost aggregation model was trained on one

particular cost computation method but directly tested on other data generated from

other cost computation methods. The propsoed model maintains stable performance on

the new data, while the regular 3D CNN failed in this experiment.

1.4.5 Speed and Memory Consumption

Different types of tasks always rely on different types of networks, which consist of differ-

ent types of operations. The types of input data of different tasks are also significantly

different.

Decomposing slow and high memory usage operations within deep networks into a set of

lightweight operations could efficiently reduce memory and time consumption.

Input data is another aspect that is easily overlooked. often, input data is redundant and

compressible. One example is the cost volume from stereo matching. Only some values on

14

1.5. THESIS ORGANISATION

the volume provide useful information. Unfortunately, most SOTA models are sensitive

to changes in the distribution of input data. Therefore, one option to reduce memory

consumption is to find a method to reduce input data without significant accuracy decrease

during testing. Another way is to design a model that is not sensitive to changes in the

distribution led by data reduction. This thesis proposes a novel data reduction method

that combines these two methods and is introduced in Section 4.1.2.3.

1.4.6 Confidence Measurement

Measuring the error of the disparity map is helpful in the post-processing step. Therefore,

a confidence measurement method is proposed, based on the aggregation model. The prop-

soed confidence measurement method in Section 4.2 does not require additional training

and achieves around 75% accuracy.

1.5 Thesis Organisation

In Chapter 1 the background and the main contributions were presented. In Chapter 2

previous work on stereo matching is reviewed. In Chapter 3 the focus is on the first contri-

bution: cost computation with adaptive windows. In Chapter 4 the main contribution on

few-shot cost aggregation is described. The final contribution is confidence measurement,

which is introduced in Section 4.2. Finally, the conclusion and future work are given in

Chapter 5.

15

CHAPTER 2. LITERATURE REVIEW

Chapter 2

Literature Review

This chapter presents relevant background on stereo matching. The four-step pipeline of

stereo matching is introduced, including the traditional algorithms and those based on

deep learning. In addition, a summary of the framework and current popular approaches

to reduce memory and time consumption of deep learning models are provided.

2.1 Cost Computation

As the first step of stereo matching pipeline, cost computation affects the final result

significantly. Cost computation aims to find the similarity score between pixels in the left

and right images. Usually, the score used to measure similarity is the matching cost.

The cost computation for stereo matching is expressed as:

C(x, y) = cost(L(x, y), R(x− d, y)) (2.1)

where L is the left image, R is the right image, C is the cost of matching the two pixels in

the left and right image patches centred at (x, y) and (x− d, y) respectively, d represents

the disparity value, and “cost” is the cost function.

16

2.1. COST COMPUTATION

There are two types of algorithms to compute the cost value for an image pair. The first

type are traditional algorithms, and most of those use low-level features of image patches

to measure the dissimilarity, such as the sum of absolute difference (SAD) [19], sum of

squared difference (SSD) [20], Census [21] or their combinations (AD-Census) [22]. The

second type of cost computation methods are deep learning-based methods. Most of those

methods replace hand-crafted features with learned features [23–25].

2.1.1 Traditional Cost Computation

The most straightforward cost computation method is to directly slide the left image over

the right image and compare pixel values. However, this simple method leads to mis-

matches caused by noise or illumination changes. Therefore, some window-based methods

use a pixel’s surrounding pixels to obtain the cost value.

Some popular cost functions are listed below:

SAD: ∑
(i,j)∈W

|L(x+ i, y + j)−R(x+ i+ d, y + j)| (2.2)

The idea of SAD is to compute the pixel value difference between the two windows in left

and right images.

SSD: ∑
(i,j)∈W

(L(x+ i, y + j)−R(x+ i+ d, y + j))2 (2.3)

compared to SAD, SSD replaces the L1 loss with L2 loss.

Zero-mean SAD:

∑
(i,j)∈W

∣∣∣L(x+ i, y + j)− L̄(x+ i, y + j)−R(x+ i+ d, y + j) + R̄(x+ i+ d, y + j)
∣∣∣
(2.4)

17

CHAPTER 2. LITERATURE REVIEW

Locally scaled SAD:

∑
(i,j)∈W

∣∣∣∣∣L(i, j)− L̄(x+ i, y + j)
R̄(x+ i+ d, y + j)

R(x+ i+ d, y + j)
∣∣∣∣∣ (2.5)

Normalized Cross Correlation (NCC):∑
(i,j)∈W L(x+ i, y + j) ·R(x+ i+ d, y + j)

2
√∑

(i,j)∈W L2(x+ i, y + j) ·
∑

(i,j)∈W R2(x+ i+ d, y + j)
(2.6)

where L is the first image and R the second image in the image set. i is the row index of

the image, and j is the column index of the image. W is the matching window. d is the

disparity.

Census:

The Census [21] method uses the pixels surrounding a centre pixel of the matching windows

to generate a binary string. For the values in the binary string, a pixel value less than

the centre pixel is set to 1. Otherwise, it is set to 0. After the bit string is obtained,

a Hamming distance is used to compute the similarity score between the left and right

patches. The Census method is robust to illumination changes. Moreover, the binary

string also contains location information, making the Census method more sensitive than

the methods based on the sum of values of the matching windows such as SAD and SSD.

2.1.2 Deep Learning Based Cost Computation

Deep learning based cost computation takes left and right images as the input of a convo-

lutional neural network and outputs a similarity score, as illustrated in Figure 2.1. Most

deep learning based models handle the matching problem as a regression problem with L1

or L2 loss. Three main types of models are listed below.

1. Two branch model [23, 26, 27]: This model uses two independent branches to

handle the left and right image patches. These networks concatenate the outputs of

18

2.1. COST COMPUTATION

CNN CNN

Left patch Right patch

fully-connected network

Score

CNN CNN

Left patch Right patch

fully-connected network

Score

(a) Two Branch Network

CNN CNN

fully-connected network

Score

shared
weight

Left patch Right patchLeft patch Right patch

CNN CNN

fully-connected network

Score

shared
weight

Left patch Right patch

(b) Siamese Network

CNN

Left patch
Right patch

fully-connected network

Score

CNN

Left patch
Right patch

fully-connected network

Score

(c) Two-channel Network

Figure 2.1: Deep learning based cost computation [2].

the two branches and feed it to a fully connected network in the final layer to obtain

a similarity score. The structure of this model is shown in Figure 2.1a.

(a) The Siamese model [14,28,29]: This type of network uses the same structure

and same weights in both branches of the network. Each of the branches takes

one of the image patches as input. After the output of each branch is obtained,

the outputs are concatenated, flattened, and fed into a fully connected neural

network. This type of model is shown in Figure 2.1b.

(b) Two-channel model [24]: The two-channel model uses a single branch to

handle two patches by concatenating the two one-channel patches into a two-

channel tensor, which is different from the two branch models that handle each

patch in an independent branch. This type of model is shown in Figure 2.1c.

In order to achieve better results, three main extensions of the baseline model struc-

ture are used to replace the basic convolutional neural network with ResNet [30] in

order to use skip connections between different layers.

19

CHAPTER 2. LITERATURE REVIEW

2. Learning multiscale features: These methods add more branches to handle dif-

ferent sizes of input patches. Zagoruyko and Komodakis [24] proposed a two-branch

siamese network. The outputs of all branches are combined at a fully connected

neural network to estimate the similarity score. Moreover, similar to Zagoruyko and

Komodakis’s work, Chen et al. [29] apply two different fully connected networks on

every two branches.

3. Reducing the number of forwarding passes: For each image, computing the

similarity score for all pixels is computationally expensive. The most common ap-

proach applies the sliding windows method for each possible disparity for each pixel

in the left image. Because the sliding windows are highly parallelizable and over-

lapped, Luo et al. [14] propose a method to reduce the time complexity by taking

the row of the possible matching areas as input and computing the similarity score

of all possible disparities as output. Therefore, the output of Luo et al.’s method is

a disparity vector instead of a disparity value.

4. Enlarging the receptive field: Spatial pyramid pooling (SPP) [31] applies differ-

ent max-pooling groups with different sizes of the spatial bin. Using SPP, a convolu-

tional neural network with spatial pyramid pooling enlarges the receptive field and

adjusts the different input sizes into a fixed-size output. Another approach [32] is to

replace convolutions with dilated convolutions, which extends the receptive field but

does not increase computational costs by filling in zero’s in the convolution filters.

2.2 Cost Aggregation

Once the matching cost computation step is completed, a raw cost matrix is obtained.

However, mismatches arise frequently due to textureless areas, repetitive patterns and

occlusions. Cost aggregation is widely applied to reduce the mismatches and improve the

accuracy of the final result. This section introduces two types of aggregation methods:

20

2.2. COST AGGREGATION

the traditional methods and deep learning methods.

2.2.1 Traditional Matching Cost Aggregation

Traditional matching cost aggregation methods are based on the assumption of smooth-

ness: disparity should change continuously. Therefore, if the disparity of some points

changes drastically, those points are highly likely to be mismatched points. Semi-global

matching (SGM) [33] is the most balanced method between time consumption and accu-

racy.

Searching for the correct matches on the raw cost matrix is an NP-hard problem. SGM

uses dynamic programming to minimize the energy function, which avoids huge time

consumption.

The energy function is shown below:

E(d) = Edata (d) + Esmooth (d) (2.7)

where d is the disparity value.

Generally, the energy function consists of two parts: the data and the smooth parts. The

first part is the cost value on the raw cost matrix. The second part is the function that

gives a higher value to discontinuous disparity points.

There are two functions in Esmooth of the SGM energy function: the penalty of the disparity

gaps that equal 1 and the penalty of the disparity gaps larger than 1. The details of the

smooth part are shown below:

Esmooth =
∑

q∈Np

P1 T [|Dp −Dq| = 1] +
∑

q∈Np

P2 T [|Dp −Dq| > 1] (2.8)

where P1 and P2 are the weights of two penalty terms, where P2 should be significantly

greater than P1, which allows the small change caused by continuous and curved surfaces.

21

CHAPTER 2. LITERATURE REVIEW

T is the probability distribution of the corresponding intensities. Np is the neighbourhood

of p. D is the disparity map.

The simplest way to minimize the energy function is to enumerate every possible dispar-

ity value of each pixel. However, that is unacceptable due to time costs. Searching for

the correct matching on the raw cost matrix is an NP-hard problem. One of the possi-

ble solutions is to apply dynamic programming on each row or line. However, using only

dynamic programming on each row does not exploit the information between rows. There-

fore, SGM does aggregation by using 4-16 paths dynamic programming, which combines

the different path and row information to produce better accuracy. In many cases, 4-way

dynamic programming is the most popular because programming of more than 4 paths

increases accuracy slightly but increases the complexity significantly. The formululation

of the dynamic programming problem is below:

Lr(p, d) = C(p, d) + min

Lr(p− r, d)

Lr(p− r, d− 1) + P1

Lr(p− r, d+ 1) + P1

mini Lr(p− r, i) + P2

−min

i
Lr(p− r, i) (2.9)

where path Lr is traversed in the direction r. The basic idea of dynamic programming is

to combine the current cost value C(p, d) with the lower cost of the surrounding pixels of

two types: the disparity gap which equals one and that which is larger than one.

Other methods of aggregation are based on Markov random fields (MRF) and conditional

random fields (CRF). Knöbelreiter et al. [34] introduced hybrid CNN-CRF, which com-

putes the matching term by using CNN. After the matching term is obtained, it is used

as a unary term of a CRF module, and another CNN computes the weight between each

nodes in CRF. Knöbelreiter et al.’s method achieves a competitive result, with reduced

number of parameters compared with other methods.

22

2.2. COST AGGREGATION

2.2.2 Deep Learning Based Cost Aggregation

There is no doubt that traditional algorithms can perform aggregation. But deep learning

methods achieve high performance for aggregation. Using the 3D convolutional neural

networks to aggregate the cost matrix is the most popular method. The 3D convolutional

neural networks accept dimensions including the spatial and disparity dimensions, which

significantly improves the accuracy of the final result. Khamis et al. [35] use 3D convo-

lutions to regularise the cost matrix. They first estimate a low-resolution disparity map

and then progressively improve the resolution of the disparity map using residual learning.

The purpose of the low-to-high resolution method is to reduce the memory requirements.

Building the cost volume is the step that consumes most of the time and memory. Chabra

et al. [36] propose a method to use 3D dilated convolutions instead of the normal 3D

convolutions. It reduces the computation time while capturing a wider context.

Because of the huge time and memory consumption, some works [37–40] use 2D con-

volutional neural networks instead of 3D CNN. The idea of these works is to use 2D

convolutional networks to produce another 3D matrix. However, this approach also ig-

nores the information from the disparity dimension and therefore suffers performance loss.

Researchers have tried combining the depth direction via a gated recurrent unit (GRU)

to overcome this drawback. Yao et al. [41] propose a method that uses GRU on the depth

direction and 2D CNN on the spatial dimensions and turns the 3D cost matrix into a

sequential 2D cost map. Yao et al.’s method reduces memory consumption significantly

from 15GB to around 5GB, making it possible to handle high resolution images.

2.2.2.1 4D Cost Matrix

Compared with the 3D cost matrix, the 4D cost matrix adds the dimension of features

[15, 42–46]. Therefore, the similarity measure of the 4D cost matrix is learned by the

neural network instead of using hand-crafted similarity measure methods. There are two

23

CHAPTER 2. LITERATURE REVIEW

main approaches to construct the 4D cost matrix. The first is to compute the difference

between the left and right features [42]. The second is to concatenate the left and right

features ([43], [15], [45], [46]). Based on the 4D cost matrix, Chen et al. [15] construct the

4D cost matrix, PSMNet, with the shape 2 × channel × disparityrange × width × high.

The first half of the channel are the left features, and the other half are the right features.

Given a disparity d, the first half of the channel keeps the left feature index ranging from

d to the end. The remaining half of the channel keeps the right feature index ranging from

0 to d.

The 4D cost matrix contains more information than the 3D cost matrix. Although the

richer information in the 4D cost matrix can produce results with higher accuracy, a larger

and deeper network is required to handle the 4D cost matrix due to a lack of information

about the feature similarities.

Because the 4D cost matrix can be viewed as containing multiple channels of the 3D

matrix, most works use the various structures of 3D CNN to aggregate the matching

cost. U-Net [3] is a popular convolutional network in 2D image segmentation based on

an encoder-decoder architecture with 2D convolutions and skip connections. Some works

also extend 2D U-Net into 3D U-Net to aggregate the 4D cost matrix ([43]). One way

to improve the accuracy of aggregation is to enlarge the receptive field of the U-Net. Like

Kendall et al.([43]), Zhong et al. [45] also introduce residual connections in U-Net, which

enlarges the receptive field without increasing the computational cost. Also, Kendall et

al. [43] aggregate the cost volume step by step with four subsampling layers, making it

possible to enlarge the field of view of context. Other works focus on extracting multiscale

information. Wu et al. [46] aggregate 4D cost volumes into a 3D cost volume using a 3D

multi-cost aggregation module, which groups the small scale volume with the larger scale

volume using upsampling. After that, these volumes are fused by the 3D feature fusion

module.

Inspired by the traditional cost aggregation algorithm, the semi-global matching (SGM)

24

2.2. COST AGGREGATION

technique has been combined with the deep learning methods. Not using the traditional

SGM, which aggregates the cost matrix by using 4-8 paths dynamic programming to select

the neighbour cost to minimize the energy function, Yu et al. [47] propose a method where

two branch networks combine the SGM ideas with deep learning. One branch uses 2D

CNN to handle the left image to produce the guidance (confidence) maps Wi. Another

branch of the network is a 3D CNN which takes the 4D cost matrix as input and outputs

the 3D cost matrix Ci. In the last step, the final output is produced as Ci ·Wi.

2.2.2.2 Reducing the 4D Cost Matrix Resource Requirement

With the huge memory and time consumption of 3D convolution network, some works

focus on enhancing the speed and reducing the memory requirements. There are three

main approaches: (1) reducing the size of the 3D convolutional layer; (2) refining the cost

matrix and disparity map from low resolution to high resolution; (3) compressing the 4D

cost matrix.

(1) Reducing the size of the 3D convolutional layer: One of the works focusing on reducing

the size of the network is GANet by Zhang et al. [48]. It replaces the 3D convolutional

layer with a semi-global aggregation (SGA) layer, which replaces the manually defined

parameters with learnable weights. At the end of the network, the local guided aggregation

(LGA) layer is applied to refine the small structures and edges. The SGA and LGA layers

reduce the number of costly 3D convolutions and significantly improves the accuracy of

matching textureless areas.

(2) Refining the cost matrix and disparity map from low resolution to high resolution:

Instead of directly handling the full size of the input image, some works first reduce the

size of the 4D cost matrix to obtain a low-resolution disparity map and then upsample and

refine by using encoder-decoder networks. For example, PSM-Net by Chang and Chen [15]

first estimates a low-resolution 4D cost volume and then regularises and upsamples it by

25

CHAPTER 2. LITERATURE REVIEW

using an encoder-decoder 3D block.

Also, Wang et al. [49] introduce AnyNet, which builds the low-resolution 4D cost volume

by using low-resolution 2D features. This approach learns the residuals from the lower

level to produce the higher resolution cost volume. As a result, this network can return

the intermediate disparities to reduce memory and time consumption.

(3) Cost matrix compression: The cost matrix consumes most of the memory in many

stereo matching networks. Therefore, Tulyakov et al. [50] compress the left and right

features and then concatenate them to produce a smaller cost matrix. This method

reduces memory consumption without sacrificing accuracy.

2.3 Disparity Computation

The most direct way to compute the disparity from a 3D cost matrix is to use pixel-wise

argmin, which selects the disparity or the depth level index of the minimum cost value

as the disparity. However, argmin can only produce integer disparity values. Therefore

some researchers [35, 43, 51, 52] have used a soft-argmin method to replace the argmin

method to achieve subpixel results.

The soft-argmin operator works well on unimodal and symmetric distributions. Once

this assumption is broken, it often results in an over-smoothed result. Chen et al. [53]

only apply the weighted average operation in areas with maximum probability to address

these issues.

2.4 Confidence Measurement

Detecting wrong values in the disparity map is meaningful. In tasks such as autonomous

driving or medical imaging, even a small number of errors can lead to serious consequences.

26

2.4. CONFIDENCE MEASUREMENT

Therefore, many researchers have focussed on confidence or uncertainty maps and on

removing errors. The confidence map can also be incorporated at the aggregation step

[54–56]. One example is Seki et al. [55], who combine the confidence map with semi-global

matching (SGM). Unlike Seki et al., Gidaris et al. [56] detect and replace the error with a

neighbouring pixel on the cost matrix by using a confidence map before passing it to an

aggregation network.

Most recent works are based on supervised learning [57–62], which directly takes the cost

matrix as an input of the network and produces the confidence map as output.

2.4.1 Left-Right Consistency Check

The left-right consistency check is the most popular way to measure confidence. The idea

is to estimate disparity maps twice based on both the left image and the right image as

references. The confidence map or error map can be produced by calculating the differences

between left and right disparity maps. This method can detect the occlusion areas which

are visible in one view but not in the other.

Some works [54, 55] try to combine left-right consistency check with deep learning. Seki

et al. [55] propose a two-channel patch-based network which is a patch-based confidence

prediction (PBCP) network. The PBCP network takes two-channel feature patches as

input. The first channel enhances the differences within one channel by computing the

difference between the centre of the left disparity patch and the surrounding pixels. The

output of the PBCP is labelled per pixel to indicate whether the pixel is correct or not.

The two methods mentioned above [54,55] both treat the left-right consistency check as an

independent step. Some works combine the left-right consistency check with aggregation

or disparity estimation. For example, Jie et al. [54] use two parallel convolutional LSTM

networks to compute the left and right confidence maps, which is concatenated with cost

volumes and handled by the 3D LSTM step by step.

27

CHAPTER 2. LITERATURE REVIEW

2.4.2 Confidence from a Single Raw Disparity Map

The normal left-right consistency check has to estimate the disparity maps twice on the

left and right images, which increases time consumption. Hence, some works focus on

estimating confidence maps on single images. Shaked and Wolf [63] directly use a two-

layer fully connected network to predict the confidence map, which is supervised by the

gap between the dynamically changing output and the ground truth. Instead of taking

the whole image as input, Poggi and Mattoccia [60] decomposed the large image into

different 9 × 9 patches and fed them into a CNN to predict confidence. Similar to Poggi

and Mattoccia, Zhang et al. [52] use pixel-wise left-right consistency check instead of the

label for supervision, and only need the left disparity map as input on inference.

2.4.3 Confidence Map from Matching Densities

There are two other methods to obtain the confidence map, both local and global. The

local methods mainly focus on local consistency, in which the disparity value within one

object surface is identified. Seki et al. [55] use the consistency of neighbouring pixels as

the first channel input to CNN. Tosi et al. [64] introduce LGCNet to utilise the output of

the two networks and concatenate the initial disparity map with the reference image as

input.

2.4.4 Combining Multiple Estimators

Besides using the disparity map and reference image as cues to predict disparity maps,

a combination of multiple outputs from the different models is able to achieve a better

result. Haeusler et al. [57] use Random Forests [65] to handle 23 confidence maps and

achieve a better result than any other confidence map in the pool. Similar to Haeusler et

al., Batsos et al. [62] combine four different cost computation methods to generate a more

28

2.5. DOMAIN ADAPTATION AND TRANSFER LEARNING

accurate cost matrix. In addition, Poggi and Mattoccia [60] train an ensemble regression

trees classifier to compute the confidence map.

2.5 Domain Adaptation and Transfer Learning

Generalisation is said to be achieved when the deep learning model performs stably on a

new domain in which the scenes are significantly different from the images used during

training. Domain shift occurs when the training data distribution is different from the test

data distribution. For example, the difference between the indoor and outdoor datasets

or between synthetic and real datasets is a domain difference. In addition, the domain

difference between training and test data is not the only one that leads to domain shift.

The camera setting is also an important factor that may lead to domain shift. An example

of camera parameters leading to domain shift is the disparity range. When the model is

trained on a small disparity range and then applied to test data with a much larger

disparity range, the pixels out of the disparity range of the training set will be missing in

the output.

There are two main approaches to address the domain bias issue: adaptation by fine-tuning

and adaptation by data transformation.

2.5.1 Adaptation by Fine-Tuning

Although active depth sensors can provide ground truth in many areas, labelling is not easy

to do. Therefore, the most challenging part of fine-tuning is the acquisition of sufficient

labels in the target domain. Some works [66, 67] rely on traditional stereo matching

methods to obtain ground truth disparity labels. Also, to reduce errors from off-the-

shelf stereo algorithms, these works combine the SOTA confidence measurement methods

to detect and remove the errors produced by the existing stereo matching methods. In

29

CHAPTER 2. LITERATURE REVIEW

addition, recent works show that using only sparse ground truth can also achieve fine-

tuning. For instance, DispNet [37] uses very sparse ground truth to fine-tune their model.

Instead of labelled data, self-supervised methods and weakly supervised methods may be

applied for fine-tuning, such as works by Godard et al. [68], Zhou et al. [69], Zhang et

al. [70] and Poggi et al. [71].

The offline fine-tuning methods discussed so far suffer from a significant common drawback:

fine-tuning is required each time the model is applied to a new domain. Hence, many

researchers have developed online adaptation techniques. Tonioni et al. [72] convert the

fine-tuning to a continuing learning problem, which upgrades the model weight frame by

frame in the real environment. In addition, they also propose a lightweight network, which

trains the different parts of the whole network independently. This method enhances model

execution speed and achieves 25 fps in the fine-tuning step. Similarly, Zhong et al. [73]

train a different random initialization deep network online, which leverages the temporal

information by using LSTM in their model during prediction.

2.5.2 Adaptation by Data Transformation

Dta transformation methods have been used [74, 75] to adapt the model instead of re-

training the model to adapt to a new domain. Atapour-Abarghoue et al. [74] propose

a two-step pipeline to transform synthetic data to real-world data. The first step is to

directly use the synthetic data to train a depth estimation network. The second step is to

train a network to transform synthetic images to real-world style images. Similarly, Zheng

et al. [75] transform synthetic images to real-world style.

30

2.6. DATASETS

2.6 Datasets

Some popular stereo matching datasets arte now discussed. These datasets can be divided

into two categories based on the domain: simulated and real-world datasets. Based on

the scenes, they are divided into indoor scenes and outdoor scenes. In this section, the

influence of the domain gap is also discussed.

1. Simulated datasets: To obtain sufficient training data to feed data-hungry deep

learning models, some works use game engines to acquire a large number of stereo

pairs with ground truth, such as FlyingThings3D [37] and MPI datasets [76]. The

benefit of simulated datasets includes the low cost of obtaining extensive data. How-

ever, synthetic data containing varied real-world appearances may lead to lower

performance of the models on real-world datasets.

2. Real-world datasets: There are two popular real-world datasets: Middlebury

Stereo 2014 [1] and KITTI 2012/2015 [4, 5]. The Middlebury Stereo 2014 dataset

was collected using structured light, and the KITTI 2012/2015 dataset was collected

using LiDAR. The dataset sizes are also different. The former contains only 10

images for training, while the latter contains 200 images.

3. Indoor and outdoor scenes: Different from the simulated datasets, real-world

datasets contain two main types of scenes: indoor and outdoor scenes. One of the

differences between indoor and outdoor datasets is the disparity range. The outputs

of far and close objects often collapse when a model trained on an indoor dataset is

tested on an outdoor dataset. Although some works have a large range of disparity,

the models often perform well within the disparity range of the training dataset but

collapse on image points that are outside the disparity range of the training datasets

of extremely low data size.

31

CHAPTER 2. LITERATURE REVIEW

2.7 Handling High-Resolution Images

Limited by GPU memory, most current deep learning-based works use low resolution

images. In order to handle high-resolution images, some works use bottom-up techniques

that operate in a sliding window style approach. Bottom-up techniques decompose large

image pairs into small patches. After that, those small patches are used to train the

model to obtain the refined result for each small patch. Finally, the patch-level results are

merged into a larger output image of the same size as the input image using voting. Lee

et al. [77] enhance the bottom-up techniques with a fusion network that operates in the

Fourier domain to handle different patch sizes.

Split-and-merge methods reduce the memory requirements significantly. However, the

bottom-up techniques trade speed for memory. They need to handle different areas of the

input multiple times, which increases processing time.

2.8 Training Procedures

Unlike other computer vision tasks without clear mathematical constraints, stereo match-

ing has clear geometric constraints, and can achieve acceptable results with fewer training

data. Two types of training procedures will be introduced in this section: supervised

learning and unsupervised learning.

1. Supervised learning: Supervised learning uses labels to guide model training.

In order to avoid the unbalanced data problem, some patch matching networks

randomly collect the same number of negative and positive samples for training

[24,29,78]. In addition, data augmentation is widely used in computer vision areas.

Rotating or flipping patches is a standard method to enhance the performance of

the patch matching networks. Supervised learning is a powerful method to build a

32

2.8. TRAINING PROCEDURES

high-performance network. It also requires a large number of data sampled. With

the decreasing cost of depth sensors, many datasets also have ground truth by using

different types of depth sensors. However, the depth map from the depth sensors

may also contain noise and wrong areas. For example, the KITTI 2012 dataset does

not have depth values for reflection areas.

2. Unsupervised learning (zero-shot learning): When labelled data cannot be ob-

tained, the constraints in stereo matching [68] can be used to train a patch matching

network. There are five constraints in stereo matching: the epipolar constraint, the

disparity range constraint, the uniqueness constraint, the continuity (smoothness)

constraint and the ordering constraint. With these five constraints, multi-instance

learning is suitable to be applied to unsupervised learning. For example, epipolar

constraints may be used to build the training set. With the epipolar constraint, all

patches not centred at the same row on the right image can be seen as a negative

example.

3. Semi-supervised learning: Although the unsupervised method can avoid relying

on large quantities of ground truth depth data, the accuracy of those models is lower

than the supervised models. To keep the balance between the number of labeled data

and accuracy, some of the work tries to reduce the amount of manual labeling. The

semi-supervised learning methods are generally based on confidence, which provides

the information to remove the incorrect disparity for training. Tonioni et al [66].

propose a confidence-guided loss to reduce the impact of that unreliable disparity.

The confidence map from Tonioni et al. is based on the traditional stereo matching

algorithm. Kuznietsov et al. [79] also propose a method based on photo-consistent

dense depth to gain reliable disparity. Unlike Tonioni et al. and Kuznietsov et al.,

Chen et al. [80] used an iterative method to collect the reliable disparity from the

network’s output. The confidence map from Chen et al. is based on the left-right

consistent check on each iteration.

33

CHAPTER 2. LITERATURE REVIEW

 (1, 10, 12, 12)

ReluBackward0

NativeBatchNormBackward

MkldnnConvolutionBackward

MkldnnConvolutionBackward

AccumulateGrad

 (6, 1, 5, 5)

AccumulateGrad

 (10, 6, 5, 5)

AccumulateGrad

 (10)

AccumulateGrad

 (10)

Figure 2.2: Computational graph. The blue blocks are the input tensors of different sizes,
and the green block is the output tensor. The gray blocks are different types of operators.

2.9 Framework

Before considering how to optimise model quality, it is necessary to understand the pipeline

of the popular deep learning framework. The two major components are tensors and op-

erators. The tensor is a multi-dimensional array of numerical values, and the operator is a

mathematical operation. The deep learning framework provides high-level programming

interfaces and operators for users to build a deep learning model. After the model is com-

piled, the framework will create computation graphs consisting of tensors and operators.

Dependency is represented by the edges between the operators and tensors. In Figure 2.2

an example of a computation graph is shown.

34

2.10. CURRENT POPULAR TRICKS

In order to optimize memory in more detail, the computation graphs should be analysed.

Three main factors affect the maximum memory used during training: the size of different

types of tensors and operators, the lifecycle of the tensors and memory block management.

Gao et al. [81] and Albert et al. [82] provide two methods to estimate memory consumption.

As Gao et al. [81] indicate, there are two key points to conssider: release policy labels and

dependencies. One of the release policy labels is RELEASE_ON_EXIT, which means the

tensor cannot be released until the model ends. As for the dependencies, the tensors and

operators cannot be released if they rely upon the other operators. Finally, memory block

management is based on the best-fit with coalescing (BFC) algorithm, which consists of

three steps. The first step is searching for the first free block larger than the required size.

If a suitable free block is available, the required memory block is allocated from this free

block, and the remaining free space will become a new free block. If a suitable free block

is unavailable, the required block will be added to the tail of the memory block list. In

order to enhance search speed, the free blocks are managed by a linked list. The linked

list is a collection of free blocks whose block sizes are larger than a predefined and ordered

bin size.

By a combination of the three steps while traversing the computational graph, memory

changes can be estimated without actually running the model. In addition, this result

provides an entry point for the current research through detailed analysis of the compu-

tational graph from the deep learning framework.

2.10 Current Popular Tricks

In this section, some popular tricks to reduce time and memory consumption are intro-

duced.

35

CHAPTER 2. LITERATURE REVIEW

2.10.1 Mixed Precision Training

Directly using half-precision to train a deep learning model will lead to significant decrease

in accuracy. Therefore, a popular method is to mix the half-precision FP16 and and the

full F32 tensor during training. Micikevicius et al. [83] show details of the mixed-precision

training method in a modern framework. Three main approaches are used for mixed-

precision training of the deep learning model: the FP32 master copy of weights, loss

scaling and arithmetic precision.

The FP32 master copy of weights is maintained and updated with the weight gradient

during the optimizer step. The copy of weights increases the memory requirement, however

the need for FP32 master weights is not universal. Compared with full precision training,

in the mixed-precision training the copy of the master weights still reduces the memory

requirement. In addition, the master copy of weights relieves the problem that updates

(weight gradients multiplied by the learning rate) become too small to be represented in

FP16.

Loss scaling is the scaling up of gradients, which will shift values to occupy a more

representable range and preserve values otherwise to zero value.

Arithmetic precision is a guideline for choosing suitable precision for operations. Ac-

cording to Micikevicius et al. [83], large reductions (sums across elements of a vector)

should be carried out in FP32 but loaded by the FP16.

2.10.2 Pruning

Pruning is a model optimization technique that eliminates unnecessary weight tensor val-

ues to reduce memory and time consumption. In this section, four main types of pruning

methods are reviewed: magnitude-based weight pruning, the impact of loss, reconstruction

ability of feature output and other methods.

36

2.11. FULLY CONVOLUTIONAL NETWORKS (FCN)

Magnitude-based weight pruning is based on the assumption that a larger value is on the

weight tensor or the output feature. There are many classical works using this method

([84], [85]).

The impact of loss method observes the impact of the loss to determine the importance

of parameters. Two recent works [86,87] use this method.

Reconstruction ability of feature output considers the quality of the reconstruction which

attempts to minimize the reconstruction error of the feature output by the network after

clipping. The cropped information is not very important if the current layer is pure and

does not affect the subsequent output. Two recent works [88,89] use this method.

2.10.3 Knowledge Distillation

Knowledge distillation is the abstraction of a complex model using a learned mapping of

inputs to outputs, and is achieved using a Teacher-Student model. In general, the teacher

model is larger and the student model is smaller. The basic idea is to use the output of

the teacher model to supervise the learning of a student model. The assumption is that

the output of the teacher model contains the correct label and the similarity information

between categories, which provide richer information for student training. In Hinton et

al.’s [90] work, the student model learns almost the same generalisation as the teacher

model, even though it is smaller. In addition, the knowledge distillation method can

transfer the information from multiple teacher models into one student to improve the

latter’s generalisation.

2.11 Fully Convolutional Networks (FCN)

In this work, the proposed network is based on a encoder-decoder structure and fully con-

volutional networks (FCN) [91]. Hence, the current encoder-decoder structured networks

37

CHAPTER 2. LITERATURE REVIEW

and FCN are introduced in this section.

The motivation of the FCN is to solve per-pixel tasks. Unlike in recognition tasks, the

stereo matching task requires to output the same size as the input image instead of a

one-hot vector. Long et al. [91] first introduced the FCN structure, which replaces the

fully connected layer with a convolution layer in the output layer. After that, different

types of FCN have been applied to other areas.

Encoder-Decoder is a model framework, and does not refer to a specific algorithm. Under

this framework, different algorithms may be used to solve different tasks. First, an encoder

converts the input sequence into a dense vector of fixed dimension, and the decoder stage

generates the target translation from this activation state. Because this work only uses

the encoder-decoder CNN, the popular encoder-decoder network used in computer vision

areas is discussed.

Figure 2.3: Example of U-Net [3].

38

2.12. SUMMARY

The standard U-Net [3] is a fully convolutional network with the encoder-decoder struc-

ture. It consists of three major parts: encoder, decoder and skip connection. The encoder

part, except for the convolution layer, is used for extracting features. Four pooling layers

are used to reduce the tensor’s size. In addition, four transposed convolution layers are

used to recover the size of the tensor from the encoder layers. The skip connections be-

tween the encoders and decoders also prevent vanishing gradient problem. Because U-Net

has achieved great success in many areas, some of the works have focussed on turning 2D

U-Net into a 3D U-Net. The first work is from Cciccek et al. [18], who modifed 2D U-Net

into 3D U-Net following the same structure of the 2D U-Net.

2.12 Summary

According to our contribution, some of the works related to our contribution and ex-

periment are introduced in this chapter. The traditional and deep learning based cost

computation is introduced in Section 2.1, which corresponds to our adaptive cost compu-

tation methods in Chapter 3. After that, the works focus on our major contribution to the

cost aggregation step are reviewed in Section 2.2. Next, disparity computation and con-

fidence measurement are introduced in Section 2.3 and Section 2.4. Section 2.5 reviewed

domain adaption and transfer learning which are related to our Chapter 4. Finally, some

datasets, framework, tricks and Fully Convolutional Network related to our experiment

are reviewed in Section 2.6, Section 2.9, Section 2.10 and Section 2.11.

39

CHAPTER 3. COST COMPUTATION

Chapter 3

Cost Computation

In the cost computation, it is non-trivial to identify an optimal window size. A small

window can have less smoothing effects while better retaining object details but incur

mismatches on textureless areas. Small windows are usually not large enough to gather

sufficient information to distinguish between wrong matches and correct matches, while a

large window can reduce noise in textureless areas but lose details on matching. Therefore,

it is challenging to predetermine the optimized window size.

Compared to the traditional fixed windows methods, our adaptive window matching

method (SIFT-Census) can reduce mismatches on textureless areas and avoid the over

smoothing problem on small objects.In this chapter, a novel adaptive window matching

method is introduced.

The proposed adaptive window matching is based on the idea that large matching win-

dows can deal with textureless areas better, while smaller matching windows are more

suitable for textured regions. Cues that indicate the location of richly textured areas and

textureless areas are used. One of the assumptions is that richer textures are on areas

surrounded by more interesting points. In contrast, an area far away from interesting

points has lesser texture in that area. In addition, to improve the accuracy of the raw

40

3.1. MATCHING COST COMPUTATION

disparity map, other cues are combined with the proposed method and are discussed in

this chapter.

Experiments show that the propsoed adaptive window matching method outperforms fixed

window methods. Particularly, when two challenging areas with textureless and small

object areas appear in an image simultaneously, the proposed method can achieve higher

accuracy.

3.1 Matching Cost Computation

Obtain Size Map
from Left Image

Obtain Matching
Windows Size

Census

Right
Image

Left
Image

Obtain Matching Point from
SIFT Remove Mismatching Points

 Raw Cost
Matrix

Figure 3.1: Details of proposed SIFT-Census.

41

CHAPTER 3. COST COMPUTATION

A new approach named SIFT-Census is proposed, which combines SIFT features and the

Census matching method. SIFT-Census is a census-based approach with adaptive window

sizes, which uses the matching points based on SIFT as a cue to adjust the size of the

matching windows.

Before details of SIFT-Census are discussed, the Census transform is first introduced.

Census transform is a pixel-wise image operation that associates a binary strong with each

pixel of a grayscale image. The idea of Census transform is to generate a bit string for

each pixel by comparing the centre pixel pc with a surrounding pixel p′. If the surrounding

pixel p′ is greater than the centre pixel pc, the bit on this pixel is set to 1, otherwise, it is

set to 0. Details of the Census string are shown in Figure 3.2. The formula of the Census

bit string is defined as:

ξ
(
pc, p

′) =

 0 if pc > p′

1 if pc ≤ p′
(3.1)

70 75 55

65 60 128

60 55 45

70 75 55

65 60 128

60 55 45

1 1 0

1 X 1

0 0 0

1 1 0

1 X 1

0 0 0

11011000
Bit stringBit string

Figure 3.2: Details of Census bit string. Pixels with value less than the centre pixel are
set to 0. Otherwise, they are set to 1.

After the pixel-wise Census string is obtained, the Census string of the right image is

compared with that of the left image according to different disparity levels. To compare

the Census strings the Hamming distance is used, which counts the number of different

bit values on the left and right Census strings and divides it by the length of the string.

Using Census as the cost computing method in stereo matching can achieve high perfor-

mance and easy parallelisation, facilitating computation on some edge devices.

As shown in Figure 3.1, the first step is to obtain a set of SIFT matching points between

42

3.1. MATCHING COST COMPUTATION

the left and right images. Because both the left and right images have been rectified,

the matching points pml and pmr in the left and right images from the SIFT matching

operation should be on the same row, which means that the correct matching points should

have the same y coordinate. The second step is to remove those matching points with

different y coordinates. The third step is to compute the size map. For each pixel p on

the left image, the value of pd on the size map is given by:

pd = avg(top3(dis(p, pml))) (3.2)

where dis is the point to point distance, top3 is the function that selects the top three

shortest distance points, and avg is the average function.

A mapping function is designed to map pd in the size map into size d of the Census

matching windows. In the final step, for each pixel at location (x, y), the Census matching

windows with adaptive sizes are used to obtain the cost value. Here d is given by:

d = sb + pd/f (3.3)

where sb is the size of the base window of the Census matching windows and f is the scale

factor.

The window size is an essential hyperparameter to assure the quality of the matching

result, especially in textureless areas. Due to a lack of information on textureless areas, it

is possible to obtain the same cost value at different positions, leading to mismatches. One

of the possible solutions is to utilise larger matching windows to capture more information

rather than small window sizes.

However, large windows could lead to over smoothing in fully textured areas and on object

boundaries. Therefore, to achieve a better matching result, the size of the matching

windows should be adjusted dynamically.

For dynamic size adjustment of the matching window, cues are required to indicate whether

43

CHAPTER 3. COST COMPUTATION

an area is fully textured or not. One of the cues are the matching points from SIFT

obtained with a brute-force matcher. After removing mismatched points from the brute-

force matcher, compared with those pixels located on the fully textured areas, matching

points on the textureless areas always have a larger distance between them.

Compared to fixed window size methods, the proposed SIFT-Census method can dynam-

ically adjust the window sizes. When the centres of the matching windows are located

on textureless areas, the window sizes will be enlarged to reduce mismatching. When the

centres of the matching windows are located on fully textured areas, small windows will

be applied to retain more object details. For example, in Figure 3.1, the value d is directly

used on the size map as the matching window size.

It is noted that the propsoed adaptive matching window method can be used in Census as

well as in other windows based matching methods. In this chapter, other matching cost

computation methods combined with the proposed method are also discussed.

3.2 Combining with Other Cues

Although SIFT-Census significantly reduces mismatches, some noise still exists due to

noisy or challenging areas in images. In order to minimize the noise, one possible solution

is to combine the SIFT-Census with other cues. Inspired by AD-Census [22], SIFT-Census

is combined with other cost computation methods.

The first step of a combination algorithm is to normalise the cost volume MO from other

methods:

MOnorm = MO −MOmin
MOmax −MOmin

(3.4)

where MOmin is the least cost value in the other cost matrix, MOmax is the largest value

and MOnorm is the normalized cost volume from other cost computation methods.

44

3.3. EXPERIMENTS

After MOnorm is obtained, it is combined with the raw cost volume using point-wise

addition:

M ′com = MOnorm +M ′c (3.5)

After combination, the new cost volume is in the range of 0-2. To obtain the initial

disparity map, Argmin is applied to the new cost matrix:

Dcom = Argmin(M ′com) (3.6)

3.3 Experiments

To show the effectiveness of the proposed adaptive matching windows size method, SIFT-

Census is compared with traditional Census with regular as well as large matching window

size. The first experiment is designed to compare SIFT-Census with Census on the exact

maximum matching window sizes, by using the maximum matching window size as the

controlled variable. The third experiment uses large matching windows to show the ad-

vantage of keeping the edge and small object sharp. The second experiment uses average

matching window size as the controlled variable in the regular window size part, in order

to compare SIFT-Census with Census on the same average matching window sizes. In this

part of the experiment, the matching windows of regular Census and SIFT-Census will be

set to the same average and maximum value.

3.3.1 Datasets and Evaluation Metrics

The Middlebury Stereo 2014 dataset discussed in section 2.6 is a high-accuracy dataset

for indoor scenarios. The hyperparameters sb and f will be adjusted to achieve different

average and maximum matching window sizes. During testing, the pixel gap greater than

2.0 between the ground truth and the raw disparity is considered to be a mismatched

pixel.

45

CHAPTER 3. COST COMPUTATION

3.3.2 Implementation Details

Implementation was within Python 3.7 environment. The SIFT implementation in Open-

CV 3.4.2 Python version was used to obtain the SIFT matching points. Multiprocessing

was applied in all parts of the implementation, including obtaining the window sizes and

Census transformation. In addition, Numba, a library to accelerate Python code, was also

widely adopted to further speed up computations.

3.3.3 Window Size: Maximum

In this experiment, SIFT-Census is compared with the ordinary Census, and the size of

the base window is set to 7×7. In Table 3.1 the accuracies achieved by Census and SIFT-

Census are shown, with different parameters on the training set from the Middlebury

Stereo 2014 dataset.

The largest window size from SIFT-Census is selected as the fixed matching window size

for Census for fair comparison. As can be seen, SIFT-Census produces more accurate

results than the Census, even with smaller average matching window sizes than those of

Census.

Max window size Census SIFT-Census
39*39 0.610 0.624
43*43 0.601 0.631
45*45 0.607 0.610
61*61 0.564 0.620

Table 3.1: Accuracy comparison of Census and SIFT-Census.

Clearly, combining Census with the proposed adaptive window size matching method, ie

SIFT-Census, leads to better accuracy on the same maximum matching size. SIFT-Census

is slightly better when the window size is less than 39x39, however it can significantly

outperform Census when the matching window size is larger than 43x43. For example,

46

3.3. EXPERIMENTS

SIFT-Census obtains an improvement of 0.03 when the maximum matching window size

is 43 ∗ 43, and the improvement is even more noticeable for window size 61 ∗ 61.

The underlying reason for the performance gap between Census and SIFT-Census when

using large matching window sizes is that the average window size of SIFT-Census is

significantly smaller than that of regular Census. In spite of this, the proposed adaptive

windows method (SIFT-Census) is better than fixed-matching windows.

3.3.4 Regular Windows Size: Average

Here, the experimental setup is identical to that of Section 3.3.3: the same base window

size and matching algorithm are used, except that the maximum matching window size is

replaced with the average window size. An accuracy comparison appears in Table 3.2.

Average window size Census SIFT-Census
7*7 0.316 0.316
11*11 0.425 0.469
13*13 0.454 0.489
15*15 0.476 0.491

Table 3.2: Accuracy of Census and SIFT-Census compared on same average window size.

As clearly shown in Table 3.3, the proposed method SIFT-Census produces better perfor-

mance than regular Census for the same average window size. Specifically, both models

obtain the same accuracy with small window size 7 ∗ 7 as they have the same matching

window size. When the average window size is increased to 11 ∗ 11, SIFT-Census outper-

forms regular Census by 4%. The improvements of SIFT-Census over regular Census for

average window sizes 13 ∗ 13 and 15 ∗ 15 are 3.5% and 2%, respectively.

To summarise, the main reason for the improvement is that for the same average window

size, SIFT-census allocates larger windows on textureless areas and smaller ones on richly

textured areas so that the accuracy on both textureless areas and detailed areas improve.

47

CHAPTER 3. COST COMPUTATION

Census SIFT-CensusGTLeft image

Figure 3.3: SIFT-Census example.

3.3.5 Application on Other Cost Compution Methods

In this section, our third experiment applies our adaptive windows method with other

cost computation methods. The proposed adaptive windows method can be used not only

in the Census transformation but also in other windows-based matching methods. The

Sum of Squared Differences (SSD) is selected as the cost computation method to replace

Census in this experiment. The comparison results are in Tables 3.3 and 3.4.

Average window size SSD SIFT-SSD
11*11 0.60 0.62
13*13 0.62 0.64
15*15 0.63 0.65
35*35 0.63 0.63

Table 3.3: Accuracy comparison of SSD and SIFT-SSD on same average window size.

Maximum window size SSD SIFT-SSD
25*25 0.55 0.68
37*37 0.60 0.66
39*39 0.59 0.67
45*45 0.56 0.65

Table 3.4: Accuracy comparison of SSD and SIFT-SSD on same maximum window size.

48

3.3. EXPERIMENTS

As can been seen from Tables 3.3, equipping SSD with the proposed adaptive windows

matching method achieves better accuracy on the same average window size in general.

Yet, the improvements are comparatively subtle. For example, the accuracy boosts are

between 0 to 0.02 across different average window sizes. In addition, accuracy remains

similar when increasing the average window size for both SSD and SIFT-SSD.

Similarly, SIFT-SSD was also tested on large window size and the results are shown in

Table 3.4. The following observations may be made. Firstly, in general the enhancement

of SIFT on SSD is larger than that on Census. Secondly, the performance of SSD and

SIFT-SSD drop when the maximum window sizes are larger than 37*37 and 39*39 respec-

tively. Thirdly, SIFT-SSD obtains the best performance at maximum window size 25*25,

outperforming regular SSD by 0.15. The improvements at other maximum window sizes

range from 0.06 to 0.09. This ascertains the effectiveness of the proposed approach.

Even though the accuracy enhancement is not significant when using large window sizes,

there are some noticeable differences in small objects and edge details. Some examples are

shown in Figure 3.4 where the matching window size is set to 35*35. Clearly, SIFT-SSD

provides a sharper raw disparity map with the same accuracy as regular SSD. Significant

differences can be found in two areas, including the chair and wheel. A reasonable ex-

planation for this observation is that the sizes of the matching windows from SIFT-SSD

are not evenly distributed. The matching windows around the rich textured areas like the

chair and the wheel are smaller than those in less textured areas, which is beneficial as

smaller matching windows sizes can avoid information losses on these areas.

SIFT-SSDSSDLeft image GT

Figure 3.4: SIFT-SSD example.

49

CHAPTER 3. COST COMPUTATION

3.3.6 Combining with Other Cues

In this section, the best results from SIFT-Census are combined with SIFT-SSD. Specifi-

cally, the SIFT-SSD with an average window size of 15*15 is adopted, and its normalized

results are integrated with SIFT-Census.

As expected, better accuracy is obtained by combining the benefits of both methods. A

major improvement of the combination is that it can reduce discrete noise as shown in

Figure 3.5.

In Figure 3.5, noise in the initial disparity map is reduced after combining the results from

SIFT-Census with SIFT-SSD. On the Motorcycle image, before the combination there are

some mismatched points caused by the texture edge on the map, however it is significantly

reduced after combination.

Combination SIFT-SSD SIFT-Census

R
ecycle

Ted
d

y
M

o
to

rcycle

Left Image

Figure 3.5: Combined example. After combination, noise in the textureless areas is re-
duced, however some mismatched areas still remain.

On textureless areas, the combination of SIFT-Census and SIFT-SSD also achieves a

notable improvement. One of the examples is Teddy, which has large areas of a textureless

wall, and SIFT-Census has reduced some mismatched points in the textureless regions.

50

3.4. SUMMARY

There are some remaining mismatched points on the textureless wall. Similarly, SIFT-

SSD also has a large mismatched region on the book. After combination, noise on the

textureless book is reduced, but some mismatching areas still remain.

3.4 Summary

In this chapter, an adaptive windows cost computation method has been proposed. Af-

ter introducing the details of this approach, it was applied to regular Census and SSD,

and experiments conducted on benchmark datasets. Experiments show that the adaptive

matching windows method can boost the performance of both Census and SSD. Finally,

a combination of SIFT-Census and SIFT-SSD was explored and results demonstrate im-

proved performance over single SIFT-Census or SIFT-SSD alone.

51

CHAPTER 4. FEW SHOT STEREO MATCHING

Chapter 4

Few-Shot Stereo Matching

Pre-training a model on a simulated dataset and fine-tuning it on target datasets is a pop-

ular paradigm in training deep learning stereo matching models. Although this approach

to domain adaptation can alleviate the problem of data paucity, it requires labels in the

new domain, which is not always obtainable at low cost, especially in production environ-

ments. Therefore, methods to develop a generalisable model that requires less training

data are urgently needed.

To enhance model robustness and generalisation capability, recurrent 3D convolutional

networks (recurrent 3D CNN) may be utilised. It has to notice that the recurrent 3D

convolutional networks [92] are different from our work with the same name. The main

idea of recurrent 3D CNN is to transfer the aggregate step to the step-by-step selecting

stage. This idea force the model to extract more generalized features by adding restrictions.

In This chapter, we propose one of our contributions: recurrent 3D convolutional networks,

which achieve competitive results using the few shot setting. In addition, our recurrent

3D convolutional networks keep stable performance on data from the different domains

without any fine-tuning and retaining.

52

4.1. PROPOSED METHODS

Unlike common methods [15,48] which directly aggregate the 3D cost matrix, in this work

the input of the recurrent 3D CNN is the output of the previous layer. This step-by-step

method increases the complexity of the model to obtain the final result using unrelated

features. Also, in each step the aggregation process is decomposed into two goals. The

first goal is to select the correct cost value from the cost matrix. Because some challenging

areas will cause the same cost value to appear at different disparity levels, the second goal

is to select the correct disparity based on the selected cost value from the first goal. This

reduces the errors at those positions due to multiple correct cost values.

In this chapter, the pipeline of our few shot stereo matching is introduced in Section

4.1. Firstly, the details of transferring the regular cost volume into our two-channel cost

volume are proposed in Section 4.1.1. Secondly, in Section 4.1.2, we propose our few

shot cost aggregation methods with three components: recurrent Structure 3D CNN,

recurrent structure 3D block, Compression Layer. Thirdly, our confidence measurement

is introduced in Section 4.2.

In the experiment section, we firstly show the result from KITTI 2012 dataset and Mid-

dlebury Stereo 2014 dataset in Section 4.3.4 and Section 4.3.5. After that, we submit our

result to the Middlebury Stereo 2014 and KITTI 2015 dataset benchmark. The bench-

mark result is shown in Section 4.3.7 and Section 4.3.8. Next, the ablation experiments

to verify each component in our few shot pipelines are in Section 4.3.9, and the fine-tuned

result is in Section 4.3.10. In addition, four metrics: robustness, generalisation, and inter-

pretability, are presented in Section 4.3.11, Section 4.3.12 and Section 4.3.13. Finally, our

confidence measurement result is shown in Section 4.3.14.

4.1 Proposed Methods

In this section, the pipeline and details of the two main contributions are outlined. Our

pipeline is shown in Figure 4.1.

53

CHAPTER 4. FEW SHOT STEREO MATCHING

Recurrent 3D CNN

Right Image

Left Image

Cost Matrix Index Matrix

Crop

SIFT-Census

Final OutputFinal OutputFinal OutputDisparity MapDisparity Map

Pooling

Compression
Layer

Pooling

Compression
Layer

Cost Matrix PatchCost Matrix Patch

Figure 4.1: Our few shot pipeline follows the four steps pipeline of stereo matching.

In the first step, the matching cost computation method with adaptive windows proposed

in Section 3.1 is used to obtain the 3D cost volume Mc. After Mc is computed, an index

volume Mi with the same size as Mc is concatenated with the cost volume Mc to form a

new two-channel 3D volumeMI . The third step is to decompose the cost volumeMI into a

block consisting of two patches from different channels cp. Then cp is fed into a compression

layer to adjust the size of the depth dimension. Finally, cp is fed into arecurrent 3D CNN

to obtain a two-channel output, where the second channel is the disparity map.

4.1.1 Cost Volume

To adapt different cost computation methods to the recurrent 3D CNN, two rules are

proposed to build the cost volume Mc and input volume MI . The cost volume Mc is

obtained by inverting the raw cost volume M ′c. Given a raw cost volume M ′c, the formula

54

4.1. PROPOSED METHODS

Recursion 3D block

Shared weight

Recursion 3D blockRecursion 3D block

Step nStep n

Recursion 3D blockRecursion 3D block

Step n+1Step n+1Step…Step…

Step n-1Step n-1Step n-1

Figure 4.2: Recurrent 3D CNN uses the same block to handle inputs of different steps.

for building cost volume Mc is:

Mc = 1−M ′c/max(M ′c) (4.1)

where M ′c is the raw cost volume from any cost computation method and max() is the

max value in the raw cost volume M ′c. M ′c/max(M ′c) is a normalisation step and 1 −

M ′c/max(M ′c) transforms the minimum value into the maximum value.

In order to retain the correct matches in 3D CNN with max pooling, the proposed rule

for building a raw cost volume is different from the regular cost volume, where the index

of min-cost value is the correct disparity. The proposed cost volume takes the index on

the disparity value with the max value of the cost as the correct disparity. The value in

the raw cost volume should be normalized to a value between 0 and 1.

After the raw cost volume is obtained, in order to avoid the ambiguity of the index of the

corresponding value in the raw cost volume, an index volume Mi with the same shape

55

CHAPTER 4. FEW SHOT STEREO MATCHING

(D,W,H) as M ′c is created by following this rule:

Mi(d, x, y) = d,∀d ∈ {0, . . . , D},

x ∈ {0, . . . ,W}

y ∈ {0, . . . ,H}

(4.2)

In the final step, the raw cost volume and index volume are concatenated together to form

a two-channel cost volume MI .

MI =< Mc,Mi > (4.3)

where MI is the input volume of our recurrent 3D CNN.

After cost volumeMI is obtained, the cost volumeMI of the left image is decomposed into

different patches cp. The sliding windows strategy is applied to the decomposition step.

The two-channel cost volume MI is divided into different patches cp of size (D, 128, 128)

of both channels according to the hyper-parameters of step length and window shape.

4.1.2 Cost Aggregation

In the pipeline, the cost aggregation step consists of two-components: recurrent 3D CNN

and compression layer. Before the cost volume patch cp is fed into the recurrent 3D CNN

block, one option is to apply a compression layer to reduce GPU memory consumption

and speed up inference. Therefore, a compression layer is discussed in Section 4.1.2.3.

4.1.2.1 Recurrent Structure 3D CNN

The structure of the recurrent 3D CNN is shown in Figure 4.2. The recurrent 3D CNN

relieves the overfitting problem by decomposing the aggregation method into different

56

4.1. PROPOSED METHODS

steps. In each step, the same block is used to handle different inputs from previous steps,

and each step relies on the output from the previous step. The structure for recurrent 3D

CNNs is as follows:

Oi = recurrent_block(Oi−1),

Oi−1 = recurrent_block(Oi−2),
...

O1 = recurrent_block(input),

∀i ∈ {0, . . . , logfactor D}

(4.4)

where Oi is the output of the recurrent 3D CNN block, recurrent_block is a recurrent 3D

CNN block, the input is the cost volume patch cp and the shape of the output from stepi

is (D/factor,H,W), where factor is the scaling factor used to reduce D. Usually, factor

should make sure that the size of each channel in the final output is (1, 128, 128).

A recurrent 3D CNN may be used to avoid overfitting, instead of just one CNN. Although

dividing the cost volume into different patches can alleviate the overfitting problem to an

extent, it still exists when using a small amount of training data. The main reason for

this is that the neural network uses some unrelated features from the training data to map

the result directly. The recurrent 3D CNN uses different inputs from the previous outputs

to address this problem. In addition, the recurrent 3D CNN has two goals. The first is

to select the correct cost value on the cost volume. The second goal is to recover the

disparity. The second goal relies on the first, which also relieves the overfitting problem.

The formula of the output of the recursion 3D CNN block is defined as follows:

O =< OC1, OC2 > (4.5)

where the final output O is a two-channel 3D volume, OC1 is the output from the first

channel and OC2 is the output from the second channel. The output from the first channel

57

CHAPTER 4. FEW SHOT STEREO MATCHING

is the selected cost volume, which is the remaining matching cost value of the first channel

in the previous input, and the second channel is the index of the corresponding matching

cost value of the first output channel.

The details of the recurrent 3D block are listed in Table 1. The base structure of the

recurrent 3D CNN block is an encoder-decoder structure, where the layers only reduce

the sizes of W and H. In the final layer of the recurrent 3D CNN block, the size of the

convolution kernel and stride on the D dimension is factor.

Although fine-tuning is the most popular method to deploy a pre-trained stereo matching

model in a new environment, there are cases where fine-tuning is not applicable when

most of the data is unlabelled. Furthermore, fine-tuning is only helpful for input with

one fine-tuned distribution, which means that the model needs to be fine-tuned again if

the distribution of input data changes, leading to increased cost and reduced robustness.

However, the excellent performance of fine-tuning on a target input domain shows that

deep learning models can utilise some familiar cues to improve disparity results on different

domains, and particularly cues from an input domain causing overfitting and reducing the

robustness. Therefore, to reduce high training data requirement and enhance robustness,

a possible solution is to use the critical and practical cues to recover the disparity from

the cost matrix.

To this end, a recurrent 3D CNN is proposed in this work, which improves model robust-

ness in two ways. Firstly, the final goal is decomposed into a few different goals handled by

the same block. In each step, the input data is compressed by the same block. Therefore,

the same block is used to handle various steps of input, enabling the network to extract

more general features. Secondly, the disparity map is obtained via two steps that are

dependent on each other. Specifically, the first step is to recover the corrected cost value

from the cost matrix, and the second step is to recover the disparity value according to the

cost value from the first step. The purpose of the second step is to reduce ambiguity. In

the ideal cost matrix, the corrected disparity would only correspond to a single cost value.

58

4.1. PROPOSED METHODS

However in practice, multiple cost values correspond to the disparity due to textureless

areas or noise. In the experiments, the accuracy decreases by almost 15% when only using

the cost value to recover the disparity,compared with the second channel of output from

our recurrent 3D CNN.

In Section 4.3.9.1, an experiment is conducted based on the assumption that if a model

extracts more general features and the test data is slightly different, the model with less

accuracy decrease on the test data would extract more general features.

The behavior of the proposed recurrent block is similar to searching the indices of the

optimal values on the first input channel to obtain the corresponding values in the second

channel with the indices.

4.1.2.2 Recurrent Structure 3D Block

In this section, the details of the proposed recurrent structure 3D block are introduced.

The basic structure of the recurrent structure 3D block is an encoder-decoder structure.

The recurrent structure 3D block transfers 2D U-Net into the 3D version with skip con-

nection. In the experiment, in order to speed up convergence and improve accuracy, an

instance normalization layer is integrated into the block. The reason to use instance nor-

malization instead of the more popular batch normalization is that the same block is used

to handle the inputs of different steps whose distribution varies.

In the last layer of the block, a 3D convolution layer is added to reduce the depth dimension

of the 3D output matrix. Different compress ratios are selected on the output layer

according to the input 3D matrix shapes and layers. The first half of the block is the

encoder part. In this part, the first 3D convolution layer followed by an activation function

accepts a two-channel 3D matrix as input. After that, the instance normalization layer

is used following the pooling layer, which only reduces the width and height of the 3D

matrix.

59

CHAPTER 4. FEW SHOT STEREO MATCHING

In the decoder part, similar to 2D U-Net, the transport convolution layer is used to enlarge

the width and height dimension of the 3D matrix. Following the transport convolution

layer, a 3D convolution layer accepts the output from the previous encoder layer and the

transport convolution layer to achieve the skip connection.

Detail of the recurrent structure 3D block are shown in Table 1.

4.1.2.3 Compression Layer

For adapting to different resolution images with maximum disparity values, a compression

layer is utlised before passing the patch of the cost volume into the recurrent structure 3D

CNN. The compression layer is defined as follows:

CP = P (K = (td/od, 1, 1), S = (td/od, 1, 1)) (4.6)

where P is the 3D max pooling layer, K is the shape of the pooling kernel, S is the

stride, td is the maximum disparity of the output of the compression layer and od is the

compression ratio.

When deploying the model on a low-resolution image, the value of od needs to be adjusted

to scale the input into the shape of the training data. Because the cost volume uses the

index of the maximum value from the D dimensions as the correct matching index, a

simple resizing method can directly apply pooling on the D dimensions. Simple resizing

can obtain the same result without any additional downsampling methods such as those

used in a Gaussian pyramid. Experiments show that employing the compression layer and

deploying a small image model on larger images only leads to a small drop in accuracy.

Also, directly using the compression layer in the training process can reduce the training

time without losing accuracy.

60

4.1. PROPOSED METHODS

In order to retain the correct output from the model with the compression layer, the final

output OC2 of the original model trained without the compression layer should be scaled

up. The scale-up formula of OC ′2 is given by:

OC ′2 = OC2 ∗ od (4.7)

where the OC ′2 is the scaled new result.

4.1.3 Loss Function

Guidance by the whole ground-truth (GT) disparity maps is imposed on the predicted

disparity maps and the corresponding label disparity cost value in the first channel of the

input cost volume. In addition, the gradient loss between the output and the ground-truth

is added to the loss to obtain a better result on object edges. Therefore, the proposed

loss function consists of the cost value, the disparity and the gradient. In this work, these

three components (cost value, disparity, and gradient) are all supervised by L1 loss. The

proposed loss function is:

CVl(x, y) = Mc(x, y,GT (x, y))

Gradgt = Sobel(GT)

Gradoutput = Sobel(OC2)

Loss = |OC1 − CVl|+ |OC2 −GT |+ |Gradgt −Gradoutput|

(4.8)

where CVl is the volume on cost value selected from the cost volume Mc based on the

ground-truth disparity GT . OC1 is the first channel of the output O, OC2 is the second

channel of the output O and Sobel is the Sobel operator.

The Sobel operator is applied to the ground-truth disparity map and the output disparity

map to obtain the gradient map. In experimental tests, adding the gradient as supervised

information can enhance model performance on edges and reduce the noise in flattened

areas.

61

CHAPTER 4. FEW SHOT STEREO MATCHING

4.2 Confidence Measurement

Although cost aggregation can remove a significant number of errors in the disparity map,

there are still some errors that the aggregation step cannot remove. Therefore, some

confidence measurement methods are employed to detect the points in the disparity map

that have a higher risk of being an outlier. As mentioned in Chapter 2, the most recent

approach to achieve this directly takes the cost matrix as the network input and creates

the confidence map as output. These supervised learning-based confidence measurement

methods perform well but also incur additional computation burdens.

In this work, a new confidence measurement is introduced that does not use any new

networks. The proposed approach achieved 75% accuracy on the confidence measurement

task on the Middlebury Stereo 2014 datasets without additional training with the same

model from Section 4.1.2.

4.2.1 Confidence Estimation

Although the proposed recurrent 3D CNN reduces a large number of errors on the final

result, there are still some remaining. Some of the remaining errors are caused by over

smoothing and occlusion. Therefore, a confidence measurement method is proposed that

does not require additional learning nor increase in computational resources. The basic

idea is to compare the cost value from the first channel with the cost value selected based

on the second channel output. There is a restriction that the good areas should have

only a single cost value in the cost matrix corresponding to the valid matching point

under ideal conditions. If there is another cost value with the same value as the correct

matching point, this pixel is likely located in challenging areas. In addition, textureless

areas should correspond to flattened areas near the valid matching point in the cost matrix,

which means that the error caused by the textureless regions should have the same cost

value. Because the model can detect and handle textureless areas, the remaining error

62

4.2. CONFIDENCE MEASUREMENT

always has a different cost value between the first and second channels. Therefore, when

measuring the difference between the cost values from the first channel output and the

second channel output, larger differences indicate lower confidence. Details of the proposed

confidence measurement method are shown in Figure 4.3.

The first step of the confidence measurement method is to take the two-channel output

from the recurrent 3D CNN as input. The second step is to transfer the second channel

to the disparity map by turning floating point numbers into integer numbers. Then,

the integer disparity map is used as the index to locate the corresponding cost value.

Finally, the corresponding cost value from the second output channel is compared with

the first channel. As discussed, larger differences between these two channels mean lower

confidence.

Final OutputFinal Output Round

Disparity Map

 Raw
Cost

Matrix

Confidence MapConfidence Map

Compare

indexed

Second
Channel Cost

Map

Second
Channel Cost

Map

Figure 4.3: Details of the confidence measurement method. The confidence map is ob-
tained by comparing the two disparity maps from the first channel output and indexed
from the raw cost matrix.

63

CHAPTER 4. FEW SHOT STEREO MATCHING

4.3 Experiment

Three datasets are selected for training and testing the model. In order to test the ability

to deal with cases of extremely small sized training set, no simulated datasets are used for

per-training as is commonly done in other works.

Firstly, the 11-shot model, without any fine-tuning and retraining, was tested on the

Middlebury Stereo 2014 datasets and KITTI 2015 dataset and is compared with SOTA

models which use simulated datasets for pre-training and target datasets for finetuning.

First and foremost, the proposed recurrent structured 3D CNN was compared with the

regular 3D U-Net from 1 to 11 training images to verify the efficacy of the proposed method

on the few-shot setup. Secondly, ablation experiments are performed to show the impact

of each component of the model. Next, the model with compression layers is compared to

one without compression layers. The influence of different compression ratios is also listed.

Finally, the result of a model trained on Middlebury Stereo 2014 datasets and fine-tuned

on three images from the KITTI 2012 dataset is shown.

4.3.1 Datasets and Evaluation Metrics

The model was trained with no more than 11 images from the Middlebury Stereo 2014

datasets [1] and tested on the KITTI 2012 and KITTI 2015 datasets [93] without any fine-

tuning and retraining. The Middlebury Stereo 2014 datasets are high accuracy datasets

on indoor scenarios. Both KITTI 2012 and KITTI 2015 datasets are real-world datasets

in outdoor scenarios, where only sparse ground truths are provided.

64

4.3. EXPERIMENT

4.3.2 Implementation Details

The model was implemented in PyTorch and utilized Adam as the optimizer. Eleven half

resolution images on the Middlebury Stereo 2014 datasets were selected as the training

set. During testing, when the maximum disparity on the 3D cost volume is over 256, a

compression layer was applied on the D-dimensions before being fed into the aggregation

layer. For all the datasets, the SIFT-Census hyperparameter sb was 7 and f was 3 in Eq.

(3.3).

4.3.3 Results and Analysis

First, the results of the model trained on 11 images from the Middlebury Stereo 2014

datasets and directly tested on the KITTI 2012 dataset without any fine-tuning or re-

training are shown. As the results of the KITTI 2012 dataset, even though the model was

trained on indoor scenes, it can still perform with high accuracy on the outdoor dataset.

To validate the effectiveness of each component proposed, controlled experiments were

conducted on the test sets of the Middlebury Stereo 2014 and the KITTI 2012 validation

datasets. Removal of the proposed recurrent structure 3D CNN led to a significant per-

formance drop with the minimal training set. Compared with other models pre-trained

on a large dataset, the training set used was very much smaller.

Training set size Middlebury (recursion) Middlebury (no recursion) KITTI (recursion) KITTI (no recursion)
1 68.93 44.56 65.80 58.73
2 71.08 54.81 74.02 72.36
8 78.01 70.24 78.88 77.65
11 81.25 69.88 92.82 85.96

Table 4.1: Percentage of pixel error less than 2.0 on the Middlebury Stereo 2014 dataset
and less than 3.0 on the KITTI 2012 dataset, with recursion and non-recursion structures.

65

CHAPTER 4. FEW SHOT STEREO MATCHING

4.3.4 Result on KITTI 2012 Dataset

To test its generalisation capability, the model trained on the Middlebury Stereo 2014

dataset was directly tested on the KITTI 2012 dataset without a left-right consistency

check and any post-processing. The accuracies achieved are shown in Table 4.1 and some

examples are shown in Figure 4.5, where the first 3 columns are the best examples and

the last 3 columns are the worst. The major errors from the model on the KITTI 2012

dataset come from the sky areas because the model is only trained on indoor scenes.

Plants DjembePlants Djembe

AustraliaP Bicycle2 LivingroomAustraliaP Bicycle2 Livingroom

Figure 4.4: Results on the Middlebury Stereo 2014 test set based on the proposed 11-
shot model. No ground-truth was provided by the Middlebury Stereo 2014 test set on
benchmark.

66

4.3. EXPERIMENT

Methods bad-4.0-error Rank bad-2.0-error Rank
iResNet [40] 22.1 1 31.7 1
R3DCNN (Proposed) 24.2 2 38.7 3
AANet 25.8 3 31.8 2
SPPSMNet [94] 27.5 4 46.8 4
PSMNet 29.2 5 47.2 5

Table 4.2: Leaderboard of Middlebury Stereo 2014 dataset.

4.3.5 Results on Middlebury Stereo 2014 Dataset

The results from the test set of the Middlebury Stereo 2014 dataset are shown in Figure

4.4, where the model obtains a competitive result even when using a smaller training

dataset.

Error D1-bg (%) D1-fg (%) D1-all (%)
All / All 8.00 26.91 11.15
All / Est 8.00 26.91 11.15
Noc / All 7.20 25.14 10.16
Noc / Est 7.20 25.14 10.16

Table 4.3: Leaderboard of KITTI 2015.

4.3.6 Benchmark Results

For benchmarking, the proposed model trained on 11 images in the Middlebury Stereo

2014 dataset without fine-tuning, was submitted to the Middlebury Stereo 2014 and KITTI

2015 leaderboards, and the details are listed in Tables 4.2 and 4.3.

4.3.7 Benchmark Results from Middlebury Stereo 2014

Details of each test set from Middlebury Stereo 2014 on bad-4.0-error metric are in Table

4.4.

In Table 4.2, the “bad-4.0-error” and “bad-2.0-error” are error pixels whose errors are

67

CHAPTER 4. FEW SHOT STEREO MATCHING

Image name Accuracy Image name Accuracy
Australia 16.9 CrusadeP 42.6
AustraliaP 7.83 Djembe 6.87
Bicycle2 10.7 DjembeL 27.7
Classroom2 28.8 Hoops 36.6
Classroom2E 42.7 Livingroom 23.4
Computer 20.2 Newkuba 24.9
Crusade 45.0 Plants 15.2
Staircase 30.4

Table 4.4: Leaderboard from Middlebury Stereo 2014 on bad-4.0-error.

Result GTLeft

Figure 4.5: KITTI 2012 examples. The main errors are in the sky areas, which are out of
the disparity range of the training set.

greater than 4.0 and 2.0 respectively.

68

4.3. EXPERIMENT

In Table 4.3, D1 is the percentage of stereo disparity outliers in the left images. In

particular, D1-bg is the percentage of outliers averaged only over background regions and

D1-fg is the percentage of outliers averaged only over foreground regions. D1-all is the

percentage of outliers averaged over all ground truth pixels. Also, in the first column,

“All” means that all the labelled pixels are estimated, and “Noc” means that only the

pixels not located in the occluded areas are estimated.

The model submitted to the Middlebury Stereo 2014 benchmark was only trained with

11 images from the Middlebury Stereo 2014 training set, without pre-training on any

simulated datasets. However, most of the deep learning models from the leader-board

use a large simulated dataset for pre-training, including the listed models such as AANet,

GA-Net and PSMNet. According to their work, AANet was pretrained on the Scene Flow

dataset, containing more than 39,000 synthetic sequence stereo frames of 960x540 pixel

resolution. Similarly, GA-Net and PSMNet both used the SceneFlow dataset to pretrain

their models.

As Table 4.2 shows, the proposed few-shot model still achieves a competitive result even

though it is compared with non-few-shot models directly on the Middlebury Stereo 2014

test set. The proposed model achieves a “bad-4.0-error” of 24.2, which slightly outperforms

AANet [16]. In addition, the proposed model is slightly better than PSMNet with “bad-

4.0-error” 5 and outperforms SPPSMNet with “bad-4.0-error” 3.3. It is also noteworthy

that the proposed model under-performs iResNet with “bad-4.0-error” 2.1.

4.3.8 Benchmark Results from KITTI Datasets

The proposed model achieves almost 90% accuracy on all labelled pixels. The major

reason for errors on the KITTI dataset is the disparity range. Major error areas are those

objects with small disparity values, which are smaller than the smallest disparity value

from the Middlebury Stereo 2014 dataset. This is because the model submitted to the

69

CHAPTER 4. FEW SHOT STEREO MATCHING

KITTI leaderboard was only trained on the Middlebury Stereo 2014 dataset without any

fine-tuning. In Section 4.3.10, the accuracy of the model is significantly improved after

using three images from the KITTI 2012 dataset for fine-tuning.

4.3.9 Ablation Experiments

In order to verify the effectiveness of the various model components, some ablation ex-

periments were run on the recurrent 3D CNN and the compression layer, which are are

discussed in this section.

4.3.9.1 Comparison of Non-recurrent vs Recurrent Structure

In order to verify the effectiveness of the proposed recurrent structure in reducing over-

fitting, two models were trained with the same base 3D CNN block structure, with one

model using the recurrent structure and the other not.

To obtain the disparity map from the non-recurrent model, Softmax was used as the

activation function in the last layer of the non-recurrent model. Therefore, given a pixel

on the output matrix of the non-recurrent mode, the probability value of the correct

disparity of this pixel will be the highest. Ideally, the value of the correct disparity on the

disparity dimension will be 1, and 0 otherwise.

As shown in Table 4.1, when the number of training images is extremely small, the pro-

posed recurrent structure can alleviate the overfitting problem. For example, when using

an image for training, the difference of “bad-2.0-error” between the recurrent and non-

recurrent model on the Middlebury Stereo 2014 dataset is 24.367. After adding one more

image for training, the difference is reduced to 16.27. With the number of training im-

ages growing, the accuracy difference between the recurrent and non-recurrent models

decreases. For instance, the difference of training on 8 and 11 images is reduced to 7.77

70

4.3. EXPERIMENT

and 11.371 respectively.

As for the KITTI dataset, the accuracy on it is generally higher than on the Middlebury

Stereo 2014 dataset with the same number of training images. Comparing the proposed

recurrent model with the non-recurrent model on the KITTI dataset, the former is better

than the latter for all numbers of training images. The difference decreases the number of

images for training is increased. For example, the difference is quite large when a single

image is used for training, but the difference is significantly reduced if there is more than

one training image.

The differences in the results on the KITTI dataset and the Middlebury Stereo 2014

dataset are mainly because

1. the scenes in the KITTI dataset are simpler than the Middlebury Stereo 2014 dataset.

In the KITTI dataset, roads occupy the larger portion of the images, which are

easilyhandled by the network

2. the labels of the KITTI dataset were collected using LiDAR, resulting in sparse

ground truth which reduces the difference between the non-recurrent and recurrent

models.

4.3.9.2 Compression Layer vs Non-Compression Layer

To probe the influence of the compression layer, a model was trained without a compression

layer, using 11 quarter resolution images from the Middlebury Stereo 2014 dataset and

tested on half-resolution images with the compression layer.

In the experiment, the model trained without the compression layer has an accuracy of

91.07%, which is nearly 5.17% higher than the model trained directly on half-resolution

images without compression and directly tested with compression.

71

CHAPTER 4. FEW SHOT STEREO MATCHING

4.3.10 Fine Tuned Results

To show the results after fine-tuning on the KITTI dataset, eight images from the KITTI

2012 dataset were used for fine-tuning and trained for 20 epochs, then submitted to the

leaderboard of KITTI 2015. The results are shown in Table 4.5.

Error D1-bg (%) D1-fg (%) D1-all (%)
All / All 4.97 12.90 6.29
All / Est 4.97 12.90 6.29
Noc / All 4.58 11.70 5.75
Noc / Est 4.58 11.70 5.75

Table 4.5: Leaderboard from KITTI 2015 after fine-tuning.

In Table 4.5 a slight improvement is observed after fine-tuning. On the D1-all metric, there

is a 5.53% improvement. As for the D1-bg and D1-fg metrics, there is 3.65% and 13.86%

improvements. The major improvements of the fine-tuning focus on the foreground.

4.3.11 Robustness

Ours

SIFT-SSD

SIFT-
Census

Non-recurrent structure

Left Image GT

Figure 4.6: Results from the non-recurrent and recurrent model tested with different
computation methods.

72

4.3. EXPERIMENT

Before introducing the results of the robustness experiments, the experimental setting

is presented. The recurrent structure 3D CNN and non-recurrent structure 3D CNN

trained on SIFT-Census are directly tested on SIFT-SSD without fine-tuning and retrain-

ing. While testing SIFT-SSD, the assumption is that a robustness cost aggregation model

can also perform well on other cost computation methods other than the cost computation

method used for training. SIFT-Census and SIFT-SSD have the same maximum cost value

and cost computation method in the experiments. In addition, the accuracy difference be-

tween SIFT-Census and SIFT-SSD in Section 3.3.4 and Section 3.3.5 is small. Therefore,

a robustness model trained on SIFT-Census only suffers from a small accuracy decrease

when it is directly tested on SIFT-SSD. In these experiments, SIFT-SSD is normalized to

the range of 0 to 1 for each cost value.

Another experiment was designed where both the non-recurrent and recurrent models were

trained with SIFT-Census on the Middlebury Stereo 2014 dataset and directly tested on

the KITTI 2012 dataset with SIFT-SSD. As shown in Figure 4.6, the results from the

recurrent structure model tested on SIFT-SSD are almost identical to that of SIFT-Census,

which has the same cost computation on the training data. In contrast, the non-recurrent

model collapses on different computation methods of the training set.

Through these experiments, it was found that the recurrent structure model extracts more

generalized features to recover the cost matrix disparity. The experiments of the SIFT-

SSD show that 3D CNN with non-recurrent structure is easy to overfit special matching

cost curves from the cost computation method used for training. The overall accuracy

of the raw cost matrix of SIFT-SSD used for testing is higher than that of SIFT-Census,

however SIFT-SSD leads to more noise than SIFT-Census. Therefore, the experiments of

SIFT-SSD show that the recurrent structure model does not overfit any curve shape used

for training.

73

CHAPTER 4. FEW SHOT STEREO MATCHING

Left Image Ours GTPSMNet

Figure 4.7: Results from the MPI Sintel dataset. The proposed 11-shot model trained on
the Middlebury Stereo 2014 dataset was directly tested on the MPI Sintel dataset.

4.3.12 Generalisation

Many stereo matching models based on deep learning do not perform satisfactorily when

the domain is considerably different. In particular, the difference between simulated and

real scenes is the main factor leading to the domain adaptation problem.

In addition, the main reason for the overfitting problem is that the neural network uses

some unrelated features from the training data to map the result directly. Therefore,

there is an assumption that models with better robustness and generalisation capability

can perform better both on real and simulated datasets.

Another experiment was conducted where the proposed 11-shot model trained on the

74

4.3. EXPERIMENT

Middlebury Stereo 2014 dataset was directly tested on the MPI Sintel dataset [76], a

simulated dataset created using scenes from a 3D movie. The results from this experiment

are shown in Figure 4.7. Evidently, the proposed model achieves high accuracy on the

MPI Sintel dataset. However, there are still errors that may be caused by the disparity

range. For example, objects far away from the cameras, such as objects near the sky

areas, have disappeared. As for those pixels within the disparity range, most of them

are correct. Given these observations, it may be conclude that the proposed model has

a better generalisation ability than other models, and it performs more stably in new

domains. Additionally, the assumption that recurrent structures enable extraction of

more generalized features is also justified.

Finally, other methods using our few shot settings are compared with our method. In this

section, PSMNet [15], a representative SOTA model, is trained with 11 images from the

Middlebury Stereo 2014 dataset and directly tested on the MPI Sintel dataset. Our model

gains 83% accuracy on the "bad-1.0-error" with the same setting, which has a performance

improvement of 19% over PSMNet . In order to show more intuitive results, some of the

results from PSMNet are listed in Figure 4.7.

4.3.13 Interpretability

In this section, intermediate results from the trained model are analysed. Specifically, the

feature map from the second last layer is selected. The test set from the Middlebury Stereo

2014 datasets is used. Because the intermediate results are a two-channel 3D matrix, the

second channel (disparity channel) of the 3D matrix is sliced into different 2D channels

according to depth. After the 2D intermediate results are obtained, some of the Values

less than 0 in these feature maps. Therefore, all the 2D feature maps are normalised.

Finally, all the feature maps are transformed into grayscale maps, where lighter pixels

indicate higher values. There are three feature maps for each image. Some examples are

shown in Figure 4.8.

75

CHAPTER 4. FEW SHOT STEREO MATCHING

a
b

c
d

e

AustraliaP Bicycle2 Djembe DjembeL

f

Figure 4.8: (a) left image (b) right image (c) first feature map (d) second feature map (e)
third feature map (f) final output of 11-shot model.

Observing the three feature maps in Figure 4.8, in general before the feature maps are

combined to obtain the final result, it is clear that different feature maps respond differently

76

4.3. EXPERIMENT

to different parts. The first feature map shows the disparity trend, which gives the larger

disparity point a higher response value. The second feature map shows confidence. Unlike

the first feature map, the value of this feature map does not change with distance but gives

a higher response value to the easy-to-match areas. The third feature map distinguishes

the foreground and background, and the value of the foreground areas is significantly

larger than that of the background.

To support these conclusion, multiple examples are shown and analysed. Firstly, the

AustraliaP image is analysed. In the first feature map from the AustraliaP image, most

of the values on the first feature map have the same trend as the final disparity map. The

closer a point is to the camera, the larger its value. In the second feature map, the values

do not change with depth. As the grayscale maps show, some areas have a dark colour,

which means that the value is small. Comparing the left image with the right image,

most of those dark areas correspond to occluded areas, which is one of the challenges for

stereo matching. For example, the dark areas near the iron mesh object and the flower pot

correspond to occluded areas. In the third feature map, the model gives the foreground

areas a large value. In the third feature map of the AustraliaP image, three main areas

receive a large value: the iron mesh object, flowerpot and the background closer to the

camera. The iron mesh object and flower pot can be seen as the foreground areas. For

the background, only those areas closer to the camera are assigned correct values.

On the Bicycle2 image, the first and third feature maps exhibit similar behaviours to

AustraliaP. The text on the second feature map has a larger value than surrounding

points. That is because the word is surrounded by textureless areas, where it is harder

to obtain correct matches compared to text. In addition, by comparing Djembe and

DjembeL images, the second feature map focusses on confidence measurement. In the

second feature map of Djembe, except for the occluded areas, the value of other areas is

higher. On DjembeL, due to the different lighting conditions, some mismatching occurs.

The mismatches correspond to the dark areas in the second feature map of DjembeL.

77

CHAPTER 4. FEW SHOT STEREO MATCHING

To summarise, through comparison with the test set of the Middlebury Stereo 2014

datasets, it is clear that the proposed model decomposes the final result into different

features. Before the final step of gathering all the intermediate results, the experiment

shows that the intermediate result clearly responds more to some cues than others.

4.3.14 Confidence Measurement

In this section, the propsoed method is tested on the Middlebury Stereo 2014 dataset and

no more than 11 images are used for training.

The confidence measurement method is tested. In order to compare the confidence map

with the error map, the point which has a value larger than a 2 times of the mean on the

confidence map is set to 1.

The confidence map from the Middlebury Stereo 2014 test set is now demonstrated. In

the confidence map, brighter pixels mean lower confidences. As Figure 4.9 shows, most of

the lowest confidence areas correspond to wrong areas on the disparity map. To obtain the

accuracy of the confidence map, the error map is compared with the confidence map on

two test set images from the Middlebury Stereo 2014: DjembeL and Pipes, which achieve

around 75% accuracy. During the test phase, the top 20% large values in the confidence

map are considered as the low confidence points. If the difference between the GT and

the final disparity map is larger than 2, it will be considered as an error point in the error

map.

By further inspecting the error map, it was found that one of the major errors in the model

arises from edges. For example, the error map of Bicycle2 shows that the model achieves

high accuracy on flat areas of the foreground and background except for the edges of the

bicycle. Obtaining a high accuracy disparity value on object edges is a challenging part of

the stereo matching problem. The propsoed confidence measurement method, which can

identify most of the mismatching edges, can overcome this problem.

78

4.3. EXPERIMENT

Confidence Map Error MapLeft Image Right Image

P
ip

es
A

rtL
Jad

ep
lan

t
D

jem
b

eL
B

icycle2
A

u
stralia

Figure 4.9: Confidence measurement example, dark points are error / low confidence
points.

Another cause of mismatches is from the occluding areas. There are some popular methods

to detect occluding areas, such as the left-right consistency check. The proposed confidence

measurement method, as an alternative tool, can also point out the occluded areas. Two

examples Pipes and ArtL are shown in Figure 4.9. The major advantages of the proposed

confidence measurement approach are the following:

79

CHAPTER 4. FEW SHOT STEREO MATCHING

1. Compared with the left-right consistency checking methods, the proposed method

does not need to infer the right image repeatedly, therefore computational cost is

reduced

2. the left-right consistency checking methods do not work well with most deep learning

models. The cost matrix based on the right image is slightly different from the cost

matrix used for training, which causes the accuracy of the model trained on the cost

matrix of the left image to drop when directly applied to the cost matrix of the

right image. The decreasing accuracy on the cost matrix of the right image prevents

the traditional left-right consistency checks from being used on deep learning-based

models.

The remaining mismatches are mainly caused by small objects or oversmoothing, which

are also challenging issues in many stereo-matching models. The proposed confidence

measurement method also shows oversmoothing areas. For example, on the error map of

AustraliaP, most of the error comes from the thin and small parts of the iron mesh object.

Therefore, those areas are marked as low confidence areas on the confidence map.

Last but not the least, differing illumination also leads to mismatches. An example of

large area mismatching caused by lighting changes is the DjembeL image. The confidence

map of DjembeL shows three mismatched areas caused by different lighting conditions.

The error map of DjembeL also having three corresponded low confidence areas. Clearly,

the proposed confidence measurement method can detect the errors caused by changes in

illumination.

4.4 Remarks

This chapter introduced a few-shot stereo matching method based on a proposed recurrent

structured 3D network. A method to transfer the regular cost matrix into the adapted in-

80

4.4. REMARKS

put format of the propsoed model was presented. Then, the recurrent structured 3D CNN,

a core innovation of this work, was described in detail. In order to reduce the memory

requirement and enhance efficiency, a compression layer is added to reduce unnecessary

information in the input data. A gradient guided loss function was also introduced as part

of the method.

The experiments show the performance of the proposed method in a few-shot setting.

Competitive results can be obtained on the Middlebury Stereo 2014 and KITTI 2015 test

sets. In addition, results from the benchmark also demonstrate that the proposed few-shot

learning model without any fine-tuning achieves almost the same level of performance as

that of recent deep learning models that are pre-trained using large simulated datasets

and fine-tuned on the target datasets.

Moreover, to verify the efficacy of each component of the model, ablation studies were

conducted. We find that the recurrent structure leads to better performance on small

training sets, and while the compression layer just slightly reduces the model accuracy, it

can also significantly reduce memory usage and computational cost.

Model robustness and interpretability were also discussed. Experiments show that the

proposed model can adapt to different cost computation methods and domains without

requiring retraining or fine-tuning, and the model is able to decompose the final result

into different features.

FInally, a novel confidence measurement method was introduced. Without requiring ad-

ditional training, the propsoed confidence measurement method can still indicate most of

the mismatching areas.

81

CHAPTER 5. CONCLUSION

Chapter 5

Conclusion

This thesis aims to reduce reliance on large amounts of training data of current deep

learning based stereo matching methods. In this thesis, we makes novel contributions to

adaptive cost computation, reduction of memory and time requirements, few-shot cost

aggregation and confidence measurement.

According to our experiment result, the propsoed model was trained with 11 real indoor

images on the benchmark and obtained the same accuracy level compared to non- few-

shot models. In addition, the propsoed aggregation model can adapt to different cost

computation methods, scenes (indoor / outdoor) and domains (simulated / real) without

fine-tuning and retraining.

In Chapter 1, the motivation and challenges are addressed. After that, some recent works,

including the traditional algorithm and deep learning methods, are reviewed in Chapter

2. Our first contribution, adaptive cost computation, is proposed in Chapter 3. The other

contributions, few-shot cost aggregation, confidence measurement, reduction of memory

and time requirements, are introduced in Chapter 4. Finally, we conclude our work and

export the potential improvement methods in Chapter 5.

82

5.1. THESIS CONTRIBUTIONS

5.1 Thesis Contributions

5.1.1 Adaptation Cost Computation

The primary purpose of adaptive? cost computation is to find the right window size

automatically. Generally, a small window has less smoothing effects with better retaining

of object detail, but incurs mismatches on textureless areas. Opposite of small windows,

large windows reduce noise but cause oversmoothing problems. Textureless and richly

textured areas often exist in the same image. The proposed adaptive cost computation

method detects the textures and richly textured areas to automatically adjust window

sizes using SIFT cues. Details of the method were presented in Chapter 3.

5.1.2 Few-shot Cost Aggregation

Overfitting and domain shift are two main barriers to the applicability of SOTA deep

learning models. A new structure of the 3D convolutional network, called recurrent 3D

convolutional network (recurrent 3D CNN), was introduced which reduces the training

set size. In addition, the recurrent 3D CNN shows strong domain adaptation ability. In

experiments, the recurrent 3D CNN trained on a few real indoor data sets could stably

generalize to outdoor and simulated datasets without fine-tuning. Details of the recurrent

3D CNN are described Chapter 4.

5.1.3 Reducing Memory and Time Requirement

Reducing memory consumption and enhancing inference speed are two main research

goals in deep learning-based stereo matching. In this thesis, a simple compression method

combined with the proposed robust model obtained competitive results. Details of the

proposed compression method are in Chapter 4.

83

CHAPTER 5. CONCLUSION

5.1.4 Confidence Measurement

Measurement of low confidence areas provides information for refinement. In addition, the

ideal confidence measurement methods should not increase computational requirements.

In Section 4.2, a confidence measurement method that does not require additional training

and inference is introduced.

5.2 Limitations and Future Work

Although the performance of the proposed model is about the same as that of SOTA deep

learning stereo matching models, there is still much capacity for improvement. Three

main extensions are possible in future research: reducing training data size, improving

compression ratio and improving accuracy while employing more complex structures.

5.2.1 Reducing Training Data Size

In experiments, training data greatly influences the model performance. Disparity range

and object types are two main factors in stereo matching experiments. On disparity range,

deep learning models only produce correct disparity values within the disparity range of

the training set. Although the proposed model achieves competitive results using a limited

number of training data samples, the image scenes still influence model performance during

one-shot learning. For example, using an image only containing flattened areas as the

training setleads to oversmoothing of small objects in the test set. Therefore, using a

training image consisting of flattened areas as well as detailed areas and within a wide

disparity range is likely to improve the performance with lesser training data.

84

5.3. CONCLUDING REMARKS

5.2.2 Improving the Compression Ratio

In experiments, directly using pooling as a compression method significantly reduces mem-

ory and time consumption without sacrificing accuracy. However, more efficient compres-

sion methods may be applied to cost volume, because cost volume only contains one correct

disparity value.

5.2.3 Improving Accuracy Using Complex Structures

The basic recurrent block uses a simple encoder-decoder structure network in the proposed

model. More complex structures may improve model accuracy. One of the potential

structures to explore is the residual connection between each step of the recurrent 3D

convolutional network. Another potential structure is dilated 3D convolution, which can

enlarge receptive fields and reduce computational resources.

5.3 Concluding Remarks

This thesis aims to solve the issues preventing the deep learning based stereo matching

methods applied to the production environment: limited high quality labeled data, gen-

eralisation, and robustness. Our model achieves the competitive result without relying on

the simulated dataset. In addition, our method can adapt the data from different domains

without retraining and fine tuning. Our few shot aggregation methods can adapt differ-

ent cost computation methods. This makes our aggregation method can be plugged and

played in the production environment.

85

APPENDIX . SUPPLEMENTARY MATERIALS

Appendix

Supplementary Materials

Input shape (C ∗D ∗H ∗W) Layer Output shape (C ∗D ∗H ∗W)

2*128*128*128

Conv3D (3,3,3), 1F ,

stride=1,

padding=1

1F*D*128*128

1F*128*128*128

Pooling (1,2,2),

stride (1,2,2),

padding=0

1F*D*64*64

1F*128*64*64

Conv3D (3,3,3), 2F ,

stride=1,

padding=1

2F*D*64*64

2F*128*64*64

Pooling (1,2,2),

stride (1,2,2),

padding=0

2F*D*32*32

2F*128*32*32

Conv3D (3,3,3), 4F ,

stride=1,

padding=1

4F*D*32*32

86

4F*128*32*32

Pooling (1,2,2),

stride (1,2,2),

padding=0

4F*D*16*16

4F*128*16*16

Conv3D (3,3,3), 8F ,

stride=1,

padding=1

8F*D*16*16

8F*128*16*16

Pooling (1,2,2),

stride (1,2,2),

padding=0

8F*D*8*8

8F*128*8*8

Conv3D (3,3,3), 16F ,

stride=1,

padding=1

16F*D*8*8

16F*128*8*8

Pooling (1,2,2),

stride (1,2,2),

padding=0

16F*D*4*4

16F*128*4*4

Conv3D (3,3,3), 32F ,

stride=1,

padding=1

32F*D*8*8

32F*128*4*4

ConvTrans3D (3,3,3), 32F ,

stride=1,

padding=1

32F*D*8*8

(32+16)F*128*8*8

Conv3D (3,3,3), 16F ,

stride=1,

padding=1

16F*D*8*8

16F*128*8*8

ConvTrans3D (3,3,3), 16F ,

stride=1,

padding=1

16F*D*16*16

87

APPENDIX . SUPPLEMENTARY MATERIALS

(16+8)F*128*16*16

Conv3D (3,3,3), 8F ,

stride=1,

padding=1

8F*D*16*16

8F*128*16*16

ConvTrans3D (3,3,3), 8F ,

stride=1,

padding=1

8F*D*32*32

(8+4)F*128*32*32

Conv3D (3,3,3), 4F ,

stride=1,

padding=1

4F*D*32*32

4F*128*32*32

ConvTrans3D (3,3,3), 4F ,

stride=1,

padding=1

4F*D*64*64

(4+2)F*128*64*64

Conv3D (3,3,3), 2F ,

stride=1,

padding=1

2F*D*64*64

2F*128*64*64

ConvTrans3D (3,3,3), 2F ,

stride=1,

padding=1

2F*D*128*128

(2+1)F*128*128*128

Conv3D (3,3,3), 1F ,

stride=1,

padding=1

1F*D*128*128

1F*128*16*16

Conv3D (factor,3,3), 2,

stride (factor,1,1),

padding (0,1,1)

2*D/factor*128*128

Table 1: The detail of the recurrent structured 3D block.

88

References

[1] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and

P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,”

in German Conference on Pattern Recognition. Springer, 2014, pp. 31–42.

[2] H. Laga, L. V. Jospin, F. Boussaid, and M. Bennamoun, “A survey on deep learn-

ing techniques for stereo-based depth estimation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2020.

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomed-

ical image segmentation,” in International Conference on Medical Image Computing

and Computer-Assisted Intervention. Springer, 2015, pp. 234–241.

[4] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the

KITTI vision benchmark suite,” in Conference on Computer Vision and Pattern

Recognition (CVPR), 2012.

[5] M. Menze, C. Heipke, and A. Geiger, “Joint 3D estimation of vehicles and scene flow,”

in ISPRS Workshop on Image Sequence Analysis (ISA), 2015.

[6] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms,” International Journal of Computer Vision, vol. 47, no.

1-3, pp. 7–42, 2002.

89

[7] Z. Xiong, J. Zhang, and J. Tian, “Solving the depth of the repeated texture areas

based on the clustering algorithm,” in MIPPR 2015: Automatic Target Recognition

and Navigation, vol. 9812. International Society for Optics and Photonics, 2015, p.

98120O.

[8] G. Saygili, L. Van Der Maaten, and E. A. Hendriks, “Improving segment based stereo

matching using SURF key points,” in 2012 19th IEEE International Conference on

Image Processing. IEEE, 2012, pp. 2973–2976.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-

gus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[10] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural net-

works,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828–841,

2019.

[11] N. Carlini and D. Wagner, “MagNet and “efficient defenses against adversarial at-

tacks” are not robust to adversarial examples,” arXiv preprint arXiv:1711.08478,

2017.

[12] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversar-

ial perturbations,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 1765–1773.

[13] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep double

descent: Where bigger models and more data hurt,” arXiv preprint arXiv:1912.02292,

2019.

[14] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for stereo matching,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 5695–5703.

90

[15] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5410–

5418.

[16] H. Xu and J. Zhang, “AANet: Adaptive aggregation network for efficient stereo

matching,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 1959–1968.

[17] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International

Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[18] Ö. Çiçek, Ahmed, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: learning

dense volumetric segmentation from sparse annotation,” in International Conference

on Medical Image Computing and Computer-assisted Intervention. Springer, 2016,

pp. 424–432.

[19] S. Vassiliadis, E. A. Hakkennes, J. Wong, and G. G. Pechanek, “The sum-absolute-

difference motion estimation accelerator,” in Proceedings. 24th EUROMICRO Con-

ference (Cat. No. 98EX204), vol. 2. IEEE, 1998, pp. 559–566.

[20] M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 353–363, 1993.

[21] R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual

correspondence,” in European Conference on Computer Vision. Springer, 1994, pp.

151–158.

[22] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang, “On building an ac-

curate stereo matching system on graphics hardware,” in 2011 IEEE International

Conference on Computer Vision Workshops (ICCV Workshops). IEEE, 2011, pp.

467–474.

91

[23] J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a convolutional

neural network,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015, pp. 1592–1599.

[24] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via convolu-

tional neural networks,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015, pp. 4353–4361.

[25] H. Park and K. M. Lee, “Look wider to match image patches with convolutional

neural networks,” IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1788–1792,

2016.

[26] J. Zbontar, Y. LeCun et al., “Stereo matching by training a convolutional neural

network to compare image patches.” J. Mach. Learn. Res., vol. 17, no. 1, pp. 2287–

2318, 2016.

[27] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “Matchnet: Unifying

feature and metric learning for patch-based matching,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015, pp. 3279–3286.

[28] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze, “A fast stereo

matching algorithm suitable for embedded real-time systems,” Computer Vision and

Image Understanding, vol. 114, no. 11, pp. 1180–1202, 2010.

[29] Z. Chen, X. Sun, L. Wang, Y. Yu, and C. Huang, “A deep visual correspondence

embedding model for stereo matching costs,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 972–980.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern recognition,

2016, pp. 770–778.

92

[31] K. “He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolu-

tional networks for visual recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[32] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal regression

network for monocular depth estimation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 2002–2011.

[33] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp.

328–341, 2007.

[34] P. Knobelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock, “End-to-end training

of hybrid CNN-CRF models for stereo,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 2339–2348.

[35] S. Khamis, S. Fanello, C. Rhemann, A. Kowdle, J. Valentin, and S. Izadi, “Stere-

oNet: Guided hierarchical refinement for real-time edge-aware depth prediction,” in

Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 573–

590.

[36] R. Chabra, J. Straub, C. Sweeney, R. Newcombe, and H. Fuchs, “StereoDRNet:: Di-

lated residual stereonet,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 11 786–11 795.

[37] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox,

“A large dataset to train convolutional networks for disparity, optical flow, and scene

flow estimation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 4040–4048.

[38] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van

Der Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical flow with convolu-

93

tional networks,” in Proceedings of the IEEE International Conference on Computer

Vision, 2015, pp. 2758–2766.

[39] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, “Cascade residual learning: A

two-stage convolutional neural network for stereo matching,” in Proceedings of the

IEEE International Conference on Computer Vision Workshops, 2017, pp. 887–895.

[40] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou, and J. Zhang,

“Learning for disparity estimation through feature constancy,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2811–2820.

[41] Y. Yao, Z. Luo, S. Li, T. Shen, T. Fang, and L. Quan, “Recurrent mvsNet for high-

resolution multi-view stereo depth inference,” in Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2019, pp. 5525–5534.

[42] G. Yang, J. Manela, M. Happold, and D. Ramanan, “Hierarchical deep stereo match-

ing on high-resolution images,” in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2019, pp. 5515–5524.

[43] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach, and

A. Bry, “End-to-end learning of geometry and context for deep stereo regression,”

in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp.

66–75.

[44] G.-Y. Nie, M.-M. Cheng, Y. Liu, Z. Liang, D.-P. Fan, Y. Liu, and Y. Wang, “Multi-

level context ultra-aggregation for stereo matching,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 3283–3291.

[45] Y. Zhong, Y. Dai, and H. Li, “Self-supervised learning for stereo matching with self-

improving ability,” arXiv preprint arXiv:1709.00930, 2017.

[46] Z. Wu, X. Wu, X. Zhang, S. Wang, and L. Ju, “Semantic stereo matching with

pyramid cost volumes,” in Proceedings of the IEEE/CVF International Conference

on Computer Vision, 2019, pp. 7484–7493.

94

[47] L. Yu, Y. Wang, Y. Wu, and Y. Jia, “Deep stereo matching with explicit cost aggre-

gation sub-architecture,” in Proceedings of the AAAI Conference on Artificial Intel-

ligence, vol. 32, no. 1, 2018.

[48] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr, “GA-Net: Guided aggregation

net for end-to-end stereo matching,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 185–194.

[49] Y. Wang, Z. Lai, G. Huang, B. H. Wang, L. Van Der Maaten, M. Campbell, and

K. Q. Weinberger, “Anytime stereo image depth estimation on mobile devices,” in

2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019,

pp. 5893–5900.

[50] S. Tulyakov, A. Ivanov, and F. Fleuret, “Practical deep stereo (PDS): Toward

applications-friendly deep stereo matching,” arXiv preprint arXiv:1806.01677, 2018.

[51] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, “Deepstereo: Learning to predict

new views from the world’s imagery,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 5515–5524.

[52] Y. Zhang, S. Khamis, C. Rhemann, J. Valentin, A. Kowdle, V. Tankovich, M. Schoen-

berg, S. Izadi, T. Funkhouser, and S. Fanello, “ActivestereoNet: End-to-end self-

supervised learning for active stereo systems,” in Proceedings of the European Con-

ference on Computer Vision (ECCV), September 2018.

[53] C. Chen, X. Chen, and H. Cheng, “On the over-smoothing problem of CNN based

disparity estimation,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2019, pp. 8997–9005.

[54] Z. Jie, P. Wang, Y. Ling, B. Zhao, Y. Wei, J. Feng, and W. Liu, “Left-right compar-

ative recurrent model for stereo matching,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018, pp. 3838–3846.

95

[55] A. Seki and M. Pollefeys, “Patch based confidence prediction for dense disparity map.”

in BMVC, vol. 2, no. 3, 2016, p. 4.

[56] S. Gidaris and N. Komodakis, “Detect, replace, refine: Deep structured prediction

for pixel wise labeling,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017, pp. 5248–5257.

[57] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for confidence mea-

sures in stereo vision,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2013, pp. 305–312.

[58] A. Spyropoulos, N. Komodakis, and P. Mordohai, “Learning to detect ground control

points for improving the accuracy of stereo matching,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 1621–1628.

[59] M.-G. Park and K.-J. Yoon, “Leveraging stereo matching with learning-based con-

fidence measures,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015, pp. 101–109.

[60] M. Poggi and S. Mattoccia, “Learning from scratch a confidence measure.” in BMVC,

2016.

[61] A. S. Wannenwetsch, M. Keuper, and S. Roth, “ProbFlow: Joint optical flow and un-

certainty estimation,” in Proceedings of the IEEE International Conference on Com-

puter Vision, 2017, pp. 1173–1182.

[62] K. Batsos, C. Cai, and P. Mordohai, “CBMV: A coalesced bidirectional matching

volume for disparity estimation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 2060–2069.

[63] A. Shaked and L. Wolf, “Improved stereo matching with constant highway networks

and reflective confidence learning,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017, pp. 4641–4650.

96

[64] F. Tosi, M. Poggi, A. Benincasa, and S. Mattoccia, “Beyond local reasoning for stereo

confidence estimation with deep learning,” in Proceedings of the European Conference

on Computer Vision (ECCV), 2018, pp. 319–334.

[65] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[66] A. Tonioni, M. Poggi, S. Mattoccia, and L. Di Stefano, “Unsupervised adaptation

for deep stereo,” in Proceedings of the IEEE International Conference on Computer

Vision, 2017, pp. 1605–1613.

[67] J. Pang, W. Sun, C. Yang, J. Ren, R. Xiao, J. Zeng, and L. Lin, “Zoom and learn:

Generalizing deep stereo matching to novel domains,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 2070–2079.

[68] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth

estimation with left-right consistency,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 270–279.

[69] X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei, “Towards 3D human pose estimation

in the wild: a weakly-supervised approach,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 398–407.

[70] Z. Zhang, C. Xu, J. Yang, Y. Tai, and L. Chen, “Deep hierarchical guidance and

regularization learning for end-to-end depth estimation,” Pattern Recognition, vol. 83,

pp. 430–442, 2018.

[71] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, “Towards real-time unsupervised

monocular depth estimation on CPU,” in 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 5848–5854.

[72] A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia, and L. D. Stefano, “Real-time self-

adaptive deep stereo,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 195–204.

97

[73] Y. Zhong, H. Li, and Y. Dai, “Open-world stereo video matching with deep RNN,”

in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp.

101–116.

[74] A. Atapour-Abarghouei and T. P. Breckon, “Real-time monocular depth estimation

using synthetic data with domain adaptation via image style transfer,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2800–

2810.

[75] C. Zheng, T.-J. Cham, and J. Cai, “T2Net: Synthetic-to-realistic translation for solv-

ing single-image depth estimation tasks,” in Proceedings of the European Conference

on Computer Vision (ECCV), 2018, pp. 767–783.

[76] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source

movie for optical flow evaluation,” in European Conf. on Computer Vision (ECCV),

ser. Part IV, LNCS 7577, A. Fitzgibbon et al. (Eds.), Ed. Springer-Verlag, Oct.

2012, pp. 611–625.

[77] J.-H. Lee, M. Heo, K.-R. Kim, and C.-S. Kim, “Single-image depth estimation based

on Fourier domain analysis,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 330–339.

[78] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer, “Dis-

criminative learning of deep convolutional feature point descriptors,” in Proceedings

of the IEEE International Conference on Computer Vision, 2015, pp. 118–126.

[79] Y. Kuznietsov, J. Stuckler, and B. Leibe, “Semi-supervised deep learning for monocu-

lar depth map prediction,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 6647–6655.

[80] C. Zhou, H. Zhang, X. Shen, and J. Jia, “Unsupervised learning of stereo matching,”

in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp.

1567–1575.

98

[81] Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin, and M. Yang, “Estimating GPU

memory consumption of deep learning models,” in Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering, 2020, pp. 1342–1352.

[82] E. Albert, S. Genaim, and M. Gómez-Zamalloa, “Parametric inference of memory

requirements for garbage collected languages,” ACM Sigplan Notices, vol. 45, no. 8,

pp. 121–130, 2010.

[83] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg,

M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed precision training,” arXiv

preprint arXiv:1710.03740, 2017.

[84] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient

convNets,” arXiv preprint arXiv:1608.08710, 2016.

[85] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolu-

tional networks through network slimming,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 2736–2744.

[86] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-less-

informative assumption in channel pruning of convolution layers,” arXiv preprint

arXiv:1802.00124, 2018.

[87] N. Lee, T. Ajanthan, and P. H. Torr, “SNIP: Single-shot network pruning based on

connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.

[88] J.-H. Luo, J. Wu, and W. Lin, “ThINet: A filter level pruning method for deep

neural network compression,” in Proceedings of the IEEE International Conference

on Computer Vision, 2017, pp. 5058–5066.

[89] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural

networks,” in Proceedings of the IEEE International Conference on Computer Vision,

2017, pp. 1389–1397.

99

[90] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”

arXiv preprint arXiv:1503.02531, 2015.

[91] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015, pp. 3431–3440.

[92] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz, “Online detection

and classification of dynamic hand gestures with recurrent 3d convolutional neural

network,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 4207–4215.

[93] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the

KITTI vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and

Pattern Recognition. IEEE, 2012, pp. 3354–3361.

[94] F. Yang, Q. Sun, H. Jin, and Z. Zhou, “Superpixel segmentation with fully convolu-

tional networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2020, pp. 13 964–13 973.

100

	Abstract
	Acknowledgement
	Publications Arising from Thesis
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Environment Setup
	Challenges
	Traditional Algorithm
	Deep Learning

	Contributions
	Window Size
	Large Training Dataset Requirement
	Generalisation
	Robustness
	Speed and Memory Consumption
	Confidence Measurement

	Thesis Organisation

	Literature Review
	Cost Computation
	Traditional Cost Computation
	Deep Learning Based Cost Computation

	Cost Aggregation
	Traditional Matching Cost Aggregation
	Deep Learning Based Cost Aggregation

	Disparity Computation
	Confidence Measurement
	Left-Right Consistency Check
	Confidence from a Single Raw Disparity Map
	Confidence Map from Matching Densities
	Combining Multiple Estimators

	Domain Adaptation and Transfer Learning
	Adaptation by Fine-Tuning
	Adaptation by Data Transformation

	Datasets
	Handling High-Resolution Images
	Training Procedures
	Framework
	Current Popular Tricks
	Mixed Precision Training
	Pruning
	Knowledge Distillation

	Fully Convolutional Networks (FCN)
	Summary

	Cost Computation
	Matching Cost Computation
	Combining with Other Cues
	Experiments
	Datasets and Evaluation Metrics
	Implementation Details
	Window Size: Maximum
	Regular Windows Size: Average
	Application on Other Cost Compution Methods
	Combining with Other Cues

	Summary

	Few Shot Stereo Matching
	Proposed Methods
	Cost Volume
	Cost Aggregation
	Loss Function

	Confidence Measurement
	Confidence Estimation

	Experiment
	Datasets and Evaluation Metrics
	Implementation Details
	Results and Analysis
	Result on KITTI 2012 Dataset
	Results on Middlebury Stereo 2014 Dataset
	Benchmark Results
	Benchmark Results from Middlebury Stereo 2014
	Benchmark Results from KITTI Datasets
	Ablation Experiments
	Fine Tuned Results
	Robustness
	Generalisation
	Interpretability
	Confidence Measurement

	Remarks

	Conclusion
	Thesis Contributions
	Adaptation Cost Computation
	Few-shot Cost Aggregation
	Reducing Memory and Time Requirement
	Confidence Measurement

	Limitations and Future Work
	Reducing Training Data Size
	Improving the Compression Ratio
	Improving Accuracy Using Complex Structures

	Concluding Remarks

	Supplementary Materials
	References

