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Research has demonstrated that instruction that relies heavily on worked 

examples is more effective for novices as opposed to instruction consisting of 

problem-solving. However, excessive guidance for expert learners may reduce 

their performance. 

 

This study investigated optimal degrees of guidance using geometry 

worked examples. Three conditions were used. In the Theorem & Step Guidance 

condition, students were told the steps to find each angle, the measure of the 

angle, and the theorem used to justify the answer. In the Step Guidance condition, 

learners were told the sequence of steps needed to reach the answer, but not told 

the theorem required to make a step. The problem solving condition required 

learners to solve problems with no guidance. 

 

It was hypothesized that by using Step Guidance, a new concept could be 

more readily incorporated into existing knowledge held in long-term memory 

compared to a Problem Solving approach or a Theorem & Step Guidance 

approach. Problem Solving would impose the heavy cognitive load associated 

with problem solving search while providing information concerning well-known 

theorems would be redundant. In other words, as long recognised by cognitive 

load theory, most students need to learn to recognise problem states and the 



x

moves associated with those states and this information is provided by Step 

Guidance without additional, redundant information.  

 

A series of geometry instruction experiments supported these hypotheses. 

The results of these experiments revealed that for students who already 

understand the relevant theorems, learning to solve problems primarily consists of 

learning to recognise problem states and their associated moves. Information 

concerning theorems only should be provided if students have yet to learn and 

automatise theorem schemas. 
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1.1 Introduction 
 

“Human cognitive architecture is peculiar” (Sweller, 2003, p.215). It 

consists of a working memory that has limitations when dealing with novel 

material, but can process intricate and extensive material that has been previously 

learned and stored in long-term memory. Massive amounts of information are 

stored in long-term memory in schematic form. Long-term memory is associated 

with working memory in the sense that it directs or misdirects the way working 

memory processes material. These two systems along with a sensory memory 

system are at the core of our cognitive activities that can be very simple or 

extremely complex (Sweller, 2003).  

 

Cognitive load theory (CLT) is basically concerned with how humans 

process information and the instructional consequences that follow. During 

complex tasks incorporating extensive information, learners may be overwhelmed 

with many elements. Learning cannot take place if learners cannot process all the 

information and the interactions of the elements presented. The theory suggests 

that only when the conditions of learning are aligned with human cognitive 
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architecture does learning take place efficiently (Paas, Tuovinen, Tabbers, & Van 

Gerven, 2003; Paas, Renkl, & Sweller, 2004; Paas, Renkl, & Sweller, 2003; 

Sweller, 1988, 1999). 

 

Our ultimate goal as educators is to help learners to deal with complex 

tasks, facilitate the acquisition of skills, and become proficient experts. This is 

achievable through appropriate instructional designs. Based on recent studies in 

the field of cognitive science we are more aware now of how we process 

information. This research has been conducted since the 1970s and focused on 

cognitive structures and their relations. Moreover, it has led to knowledge of 

human cognitive architecture (Sweller, 2004).  

 

 

1.2 Working Memory 
 

Cognitive load theory focuses on the critical relations between working 

memory load and instructional design. It suggests that our cognitive architecture 

includes as one of its critical components, working memory which is the structure 

that is used to hold and process information we are provided with (Baddeley, 

1992; Ericsson & Kintsch, 1995). Working memory is related to consciousness. 

We are only conscious of what is held in working memory and nowhere else. On 

one hand, working memory has limited capacity when dealing with novel 

material, but on the other hand it can process intricate formerly learned 

information (Sweller, 1999).  
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The most important two features of working memory are its limited 

capacity, as indicated by Miller (1956) and its limited duration, discussed by 

Peterson and Peterson (1959). Material that is learned well and understood does 

not suffer from either of these limitations (Ericsson & Kintsch, 1995).  

 

Information enters working memory via two routes: from long term 

memory if it has been previously learned or from sensory memory if it is new 

(Sweller, 2004). How to process the information in working memory depends on 

the source and this leads to instructional design issues. Based on what Peterson 

and Peterson (1959) found, when learners are presented with new information, 

instruction has to be designed to compensate for the limited duration of working 

memory otherwise it will be lost within seconds. In addition, according to Miller 

(1956), working memory can hold between 5 and 9 elements of novel unfamiliar 

information, or even less depending on the nature of processing (e.g., if some 

information must be contrasted or combined) (Sweller, 2004). Instruction also 

should take this limitation into account. 

 

Information that enters working memory from long-term memory has 

different characteristics to information entering working memory from the 

environment. There are no known limits for the amount of information that 

working memory can process if it comes from long-term memory. Sweller (2004) 

gives an example of the word restaurant that is stored in long-term memory. The 

information related to this word includes food, the building, service, tables, chairs 
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etc. All can be moved from long-term memory to working memory without 

overloading it and processed as a single element. 

 

 

1.3 Long-Term Memory 
 

It is common knowledge that we all possess a long term-memory since we 

are able to recall things learned a long time ago. Its importance to cognitive 

functioning has been clarified in the last few decades. De Groot (1965) studied 

long-term memory in higher cognitive functioning. He showed that expert chess 

players rely on previously learned moves when encountering similar conditions 

and configurations in new games. They store those moves in long-term memory 

and this is how they defeat beginner or weekend players. He found that the skills 

of master chess players have nothing to do with thinking ahead and considering 

more moves than beginner players. Upon giving less able players a few seconds 

to reproduce a board configuration taken from a real game, they did not perform 

as well as master players who could usually place most pieces correctly. 

  

Knowledge of a large number of moves that are stored in long-term 

memory as schemas changes the characteristics of working memory. Chase and 

Simon (1973) confirmed that the difference between experts and novices was not 

in their working memory capacity, since the board recall results were the same for 

novices and experts when random configurations were used. Simon and Gilmartin 

(1973) estimated that chess grand masters could learn up to 100,000 
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configurations. Consequently, they can reproduce configurations that they are 

familiar with but they do not perform any better than beginner players when 

dealing with unfamiliar, random configurations. This knowledge of moves is 

stored in long-term memory after years of practice leading to high levels of 

expertise. It might be the only learnable factor contributing to differences in 

levels of skill among players (Ericsson & Charness, 1994).  

 

The same results have been obtained in other complex tasks. Egan and 

Schwartz (1979) displayed electronic wiring diagrams for a short period of time 

to expert and beginner electronic technicians who were asked to reproduce the 

same diagrams. The performance of expert technicians was better than that of the 

novice. However, upon repeating the experiment using random diagrams, the 

difference faded. Chiesi, Spilich, and Voss (1979) provided students with some 

prose about baseball. Learners with some knowledge of baseball performed better 

at recalling details of baseball games than those with less knowledge.      

 

These experiments and studies have shown that the difference between 

expert problem solvers and beginners is not knowledge of refined strategies, but 

exposure to and knowledge of a huge number of different problem states and their 

associated moves (Sweller, 1999). Long-term memory allows us to solve 

problems, perceive, and think efficiently. Deliberate practice and rehearsal lead to 

high levels of intellectual performance (Ericsson & Charness, 1994).  
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The above characteristics of human cognitive architecture have significant 

implications for instructional design issues. Unlimited amounts of complex 

information can be stored in the human cognitive system. Long-term memory can 

store very complex, intricate procedures and facts. Human cognitive skills do not 

come only from the ability to perform complex reasoning activities in working 

memory but from stored knowledge in long-term memory. The finding that 

working memory has limited capacity and duration suggests that humans are able 

to deal with intricate reasoning only when the information they are presented with 

includes elements that are stored in long-term memory. Only then can they 

perform well. As a result, instructional designs that require learners to engage in 

complex reasoning processes that deal with unfamiliar elements are ineffective 

(Sweller, van Merriënboer, & Paas, 1998). 

 

 

1.4 Schemas 
 

When information is stored in long term memory, it is categorized 

according to how it is going to be used in schematic form (Chi, Glaser, & Rees, 

1982). By definition a schema is a cognitive structure that allows us to consider 

several elements as a single element that is categorized according to how it will 

be used (Sweller, 1999).  When one sees a tree, one immediately perceives it as a 

tree even though each tree is different from every other tree in colour, number, 

shape, branches. A tree schema, stored in long-term memory, allows us to 

categorize this information according to how it is used and treated as a single 
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element (Sweller, van Merriënboer, & Paas, 1998). The learning process and 

outcomes are defined by schemas. Our ability to read is possible because of the 

enormous number of schemas stored in long-term memory. Regardless of the text, 

we can recognize an infinite variety of shapes as the letter ‘a’. Combinations of 

letters that form different words and combination of words that form phrases and 

letters are stored in higher-order schemas. Consequently when we read, we can 

ignore all the other details and focus on the meaning (Sweller, 1999). 

 

Only since the 1980s have schemas become important to modern 

cognitive theory and in particular to problem solving theories. Due to the studies 

conducted by Larkin, McDermott, Simon, and Simon (1980), and Chi, Glaser, 

and Rees (1982) who suggested that schemas provide learners with the ability to 

sort out many elements of information as one element that needs less working 

memory capacity when being dealt with, thus diminishing the load on working 

memory. The role of schemas in expert problem solving has become evident. 

Tens of thousands of schemas permit expert problem solvers to recognize certain 

problem situations in relation to suitable moves. Hence schema theory suggests 

that in order to be skilled in any domain, one has to acquire specific schemas and 

store them in long-term memory. The tens of thousands of configurations stored 

in the form of schemas in long-term memory allow chess masters to defeat novice 

players upon recalling problem states and the corresponding moves (De Groot, 

1965). The same mechanism applies to all areas of expertise (Sweller, 1999).  

  



8

Decreasing the load on working memory is another essential function for 

schemas, in addition to storing and organizing information. In spite of the fact 

that working memory has a limited capacity in the sense that the number of 

elements that can be process is limited, the size, complexity, and sophistication is 

not (Sweller 2004). Stored schemas may include a huge amount of information. 

The restaurant schema mentioned previously is a good example. It is held as a 

single entity, but it includes wide knowledge, everything from food to the 

structure of a building. Though the number of elements (or schemas) that working 

memory can process is limited, there are no limits on the size of an element. As a 

result, the two functions of schemas can be summarized as the storage and 

organization of information and a decrease of working memory load.  

 

 

1.5 Automation  
 

Information can be processed consciously or automatically. Conscious 

processing of information has the characteristics described previously. However, 

automatic processing circumvents working memory (Schneider & Shiffrin, 1977; 

Shiffrin & Schneider, 1977). With practice, knowledge may become automated 

and less conscious effort is required for information to be processed. A clear 

example is related to reading text. When reading, a competent reader does not 

consider the individual letters that make up the text. Processing letters becomes 

automated in childhood. However, processing each letter consciously is essential 
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when young children are learning to read (Sweller, van Merriënboer, & Paas, 

1998).  

 

Thus, automation has the same consequence for working memory as 

schema acquisition; they both reduce the load on working memory. Kotovsky, 

Hayes and Simon (1985) indicated that when rules are memorized to the extent 

that they can be repeated easily, then problem solution becomes easier since the 

rules are not processed consciously and planning a solution takes place in what is 

now a working memory with a reduced load. When rules are not automated, effort 

is exerted in working memory to recall them and reaching solutions becomes 

difficult (Sweller, van Merriënboer, & Paas, 1998). The experiments conducted 

by Kotovsky, Hayes, and Simon (1985) reflected the essential role of automation 

in problem solving. 

 

Working memory capacity increases when a learner has a more automated 

schema. For example, when the schemas related to letters, words, and phrases are 

automated, the capacity of working memory is used to comprehend the text. In 

contrast, less proficient readers whose schemas are not fully automated, may be 

able to read the text fluently but they may not comprehend the text fully because 

they do not have enough working memory capacity to derive meaning from it 

(Sweller, van Merriënboer, & Paas, 1998). This implies that instructional designs 

should not just focus on the construction of schemas and storing of information, 

but also on the automation of these schemas that leads to problem solving (van 

Merriënboer, 1997).  
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To sum up, a powerful long-term memory, a limited working memory, 

and learning mechanisms that involve schema construction and automation are 

the constituents of our cognitive system (Sweller, van Merriënboer, & Paas, 

1998).  

 

However, in order to understand the way by which human cognition 

handles different types of information, we need to classify knowledge into broad 

categories that have different evolutionary characteristics. Each category of 

knowledge may be attained, systematized and saved in specific ways and involve 

different learning processes. We need to know how we handle different categories 

of knowledge in order to understand which features of human cognition are 

important when devising instructional procedures (Sweller, Ayres, & Kalyuga, 

2011). 

 

 

1.6 Biologically Primary and Biologically Secondary Knowledge 
 

Geary’s (2002, 2007a, 2007b, 2008: see also Sweller, 2008) evolutionary 

description of educational psychology proposes that working memory limitations 

may be crucial when dealing with new information that we have not evolved to 

acquire easily and rapidly (biologically secondary knowledge) though it may be 

important culturally. However, these limitations have less significance when 

acquiring new information which our brain has evolved to acquire in an 

automated and implicit way (biologically primary knowledge). 
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Sweller (2009) explains that humans acquire primary knowledge without 

awareness and with no direct instruction since they have evolved to attain that 

knowledge. Taking part in a functioning society is all that is required to acquire 

those skills. Primary knowledge includes basic skills such as generic problem 

solving strategies. It is easy for us to gain extensive biologically primary 

knowledge independently without the help of some kind of educational milieu 

and with no apparent working memory load.                                                             

                             

Some examples that reflect our capacity to acquire knowledge on our own 

without the need for direct and clear teaching is our ability to recognise people 

(e.g., Bentin, Deouell, & Soroker, 1999) and the skill of learning to articulate 

(e.g., Kuhl, 2000). Just by being integrated within a listening/ speaking society, 

we learn to speak quickly without being aware of this and with no effort. Since 

humans have evolved to process biologically primary knowledge in a mostly 

unconscious manner, the limitations of working memory do not apply to 

processing this type of knowledge. 

 

Biologically secondary knowledge has emerged relatively recently, with 

insufficient time for humans to have developed primary modular structures for 

dealing with this kind of information. Humans have not evolved to attain 

biologically secondary type of knowledge in an implicit and unconscious way. 

Biologically secondary knowledge is acquired with conscious effort as opposed to 

biologically primary knowledge. Learning biologically secondary knowledge 

usually needs instruction, since this information has not been biologically 
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programmed. Direct and clear instruction is considered as a replacement for the 

biological programming which is present when dealing with information that we 

have evolved to acquire (Sweller, 2009).         

 

According to Sweller (2008), Geary’s differentiation between biologically 

primary knowledge and biologically secondary knowledge represents an 

exceptional development in our discipline. Geary’s theory provides answers to 

some issues having insightful instructional implications. For example, it has been 

proposed in some learning and instruction theories that learners must construct 

their own knowledge without getting extensive help from others. Indeed, 

according to Geary, we humans acquire a huge bulk of information without direct 

instruction. We learn to form our lips, tongue, breath, and voice and simply utter 

sounds by just being part of a community that listens and speaks. One can 

compare the ease with which we attain information outside the context of a 

learning environment to the difficulty we often face within a learning 

environment. The logical reason could be attributed to the unsuitable instructions 

used to teach learners. It could be suggested that if educational institutions used 

the same procedures that we are exposed to in the external world, then education 

would be easy and fast. However, evidence does not support this view.  

 

Geary’s distinction between biologically primary and biologically 

secondary knowledge provides a rationale. This differentiation between different 

types of knowledge explains that learners are motivated to learn biologically 

primary information without explicit instruction. It also clarified why learning is 
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achieved effortlessly and effectively. On the other hand, some information needs 

external motivation and its acquisition is assisted by clear and direct instruction. 

Our failure to distinguish between these two types of information has led to the 

misconception that biologically secondary knowledge can be attained by 

immersion in the same way we attain biologically primary knowledge. When 

learners deal with biologically secondary knowledge, they lack the motivation 

and the genetically inspired ability to understand information on their own. They 

need the motivation and the external instructions which are not required when 

dealing with biologically primary knowledge. Thus, Sweller (2008) explains that 

cognitive load theory applies only to biologically secondary knowledge that is 

usually taught in educational institutions. The evolutionary human cognitive 

architecture (Sweller, 2003, 2004; Sweller & Sweller, 2006) around which 

cognitive load theory revolves, pertains to the knowledge that is dealt with in 

educational institutions rather than the knowledge that is addressed by our 

biologically primary systems. 

 

 

1.7 Human Cognitive Architecture 
 

The human cognitive architecture discussed in Sections 1.2 to 1.5 above 

applies only to biologically secondary knowledge. That architecture has been 

unified by relating it further to biological evolution. Sweller (2009) explains that 

our cognitive system has developed to deal with information in the same way 

evolution by natural selection processes information. The two are considered 
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examples of systems that process information naturally. For that reason, the 

familiar procedures of evolutionary biology can be employed in order to know 

more about human cognition which is often considered as an information 

processing system while evolutionary biology is usually not analysed in terms of 

information processing.  

Below are the five principles that govern both evolution by natural 

selection and human cognition. 

 

1.7.1 Information store principle  
 

This principle deals with the huge information stock that is essential to the 

performance of both evolutionary biology and human cognition. With respect to 

human cognition, long-term memory supplies us with that stock of information, 

while a genome serves that purpose in the case of evolution by natural selection 

(Sweller, 2009). 

 
 

1.7.2 Borrowing and reorganising principle  
  
 

Most information in the information store is acquired by borrowing and 

reorganizing information from different stores. Evolutionary biology makes use 

of sexual reproduction by a method that requires reorganization. As for the 

information in long-term memory, it is mostly acquired from other people by 

replicating what we hear or read. Information is moved and reorganized based on 
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information that is previously held in long-term memory before the new 

information is stored (Sweller, 2009).                                                                        

      

1.7.3 Randomness as genesis principle 
 
 

New information is not generated by the borrowing principle except insofar as 

reorganisation occurs, but rather by the randomness as genesis principle (Sweller, 

2006). This principle is the driving force of creativity according to evolutionary 

biology. Discrepancies between genomes can be attributed to changes in genetic 

material that happen haphazardly. However, the method is not just a haphazard 

mutation method. It is a random generate-and-test method (Sweller, 2009). The 

efficiency of a random novel genetic code is examined. Information that is useful 

is kept, while useless information is discarded. The same applies to long-term 

memory. Information that is not acquired according to the borrowing and 

reorganizing principle is haphazardly generated while solving problems. When 

we are attempting to solve a problem we resort to our schemas that are stored.  

When these schemas are not available, we either do not succeed in solving the 

problem or new alternatives are produced by using a haphazard generate-and-test 

method which involves keeping successful moves and discarding failed ones. 

This principle explains the origin of novel information (Sweller, 2006).                 
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 1.7.4 The narrow limits of change principle 
 

Due to the randomness element of the randomness as genesis principle, 

the production of novel information is slow because the addition of large amounts 

of random information to an information store is likely to destroy its 

effectiveness. In evolutionary biology, effective changes in genetic material occur 

slowly and over a long period of time. As for human cognition, the limitations in 

capacity and duration of working memory apply only to new information 

(Sweller, 2006).      

 
 

1.7.5 The environmental organising and linking principle 
 
 

When information is organized in the information store, the limits that are 

related to the narrow limits of change principle vanish. Large amounts of 

information, whether genetic or cognitive, may be used to organize and connect to 

the environment. For that reason, there are no limits when working memory has 

to deal with organized information from long-term memory thus allowing us to 

relate to our environment. There is no reason why information, whether in long-

term memory or a genome, to be limited since it has been tested previously for 

efficiency. Thus, this principle allows us to interact and function in our society 

and environment (Sweller, 2006).       
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1.8 Summary  
 

According to Sweller (2006), the above principles are the foundation for 

cognitive load theory. The role of instruction according to the above principles is 

to acquire information that is functional in the long-term memory store. He also 

suggests that learning takes place by the borrowing principle, and as a result, the 

main role of instruction is to focus on how written, spoken and diagrammatic 

information should be offered to learners. He adds that giving attention to 

methods that focus on discovery and inquiry are not effective due to the 

randomness as genesis principle. When structuring information, we should keep 

in mind the narrow limits of change principle which relates to the limits of 

working memory. Finally, when information is organized via the environmental 

organizing and linking principle in long-term memory, it becomes the foundation 

of our interaction with the environment. Instructional effects that have been 

generated by cognitive load theory take into account these principles.     

 

From a scientific angle, Geary’s conceptualization is interesting, yet 

serious from an instructional design angle. Knowledge can be separated into 

biologically primary knowledge which humans acquire through evolutionary 

mechanisms and biologically secondary knowledge that is crucial for reasons 

related to culture.  

 

The most important implication of the above theoretical outline of 

cognitive load theory is the need to develop instructional strategies that take the 
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limited capacity of our working memory into consideration. Even though working 

memory limitations might be serious when dealing with new information that is 

related to culture that humans cannot attain on their own (i.e., biologically 

secondary knowledge), these limitations have less effect when attaining new 

information which the human brain has evolved to process (i.e., biologically 

primary knowledge).  

 

Because human cognition can be described as a natural information 

processing system, the five principles discussed in this chapter provide an outline 

of human cognitive architecture. Cognitive load theory is an instructional theory 

that makes use of this cognitive architecture (Sweller et al., 2011). 
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2.1 Introduction 
 

The cognitive architecture discussed in chapter one is essential when 

designing instruction. Sweller et al. (2011) explained that according to what we 

know about human cognitive architecture, we can decide on categories of 

instruction that are expected to be efficient. They suggested that since general 

learning and problem solving are part of biologically primary knowledge that is 

acquired at a young age and cannot be taught at a later stage in life, then school-

based learning may be limited to knowledge that is specific to certain domains 

that is not acquired automatically as biologically primary knowledge. They also 

suggested that based on the architecture explained in the previous chapter, the 

knowledge that is related to specific domains is most efficiently acquired from 

other people, therefore direct, clear, and explicit instruction should be used via the 

borrowing and reorganizing principle.  

 

The limitations of working memory have to be kept in mind when 

designing instruction for learners to obtain new information. Therefore, 

information has to be presented in a way that reduces processing that is not 
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needed for learning. Hence, cognitive load theory revolves around methods that 

ensure that new information is presented to learners in a way that diminishes this 

unneeded load and at the same time, increases the features of cognitive load that 

result in learning. This chapter discusses the categories of cognitive load that 

might be imposed by instructional procedures along with some cognitive load 

effects.  

 

 

2.2 Element Interactivity 
 

Changes in performance occur after learning and practicing due to 

changes in the schemas that are stored in long-term memory. After schema 

acquisition and automation, a learner is able to move the schemas that incorporate 

many elements from long-term memory to working memory allowing him or her 

to perform better and with minimal effort (Sweller, 1999).   However, we need to 

take the material to be learned into account. Some material is difficult to learn 

while other material can be learned easily. Sweller (2003) proposed that all 

information can be placed on a continuum based on the degree of element 

interactivity. Elements that do not interact are found at one extreme, and each 

element can be learned individually and independently of other elements. As a 

result, cognitive load is low. On the other hand, elements that need to interact 

with other elements in order for understanding to occur are found on the other 

extreme of the continuum. Consequently, cognitive load is high. 
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Sweller et al., (2011) defined interacting elements as those that are 

processed at the same time in working memory since they are related. Anything 

that is processed or must be processed is an element. Elements are typically 

schemas. Almost all schemas consist of sub-schemas or sub-elements. Before a 

schema is acquired, its sub-elements must be dealt with in working memory as 

separate elements. Later when these sub-elements are acquired and integrated into 

a schema, this schema is then considered as a single element in working memory. 

As a result, working memory load is diminished when different lower-level 

schemas are processed into a smaller number of higher-level schemas. 

    

Element interactivity of some material is low since elements can be 

learned one at a time and so the load imposed by the nature of the material 

(intrinsic cognitive load) is low. This type of material does not need a lot of 

working memory resources. On the other hand, some materials contain elements 

that cannot be learned separately. This type of material has high element 

interactivity and may impose a high intrinsic cognitive load. In this case, more 

working memory resources are needed until the elements are incorporated into 

schemas (Sweller et al., 2011).   

 

Intrinsic cognitive load (Sweller 1994; Sweller & Chandler 1994) is 

associated with the level of difficulty of the material to be learned and the 

information to be comprehended. Regardless of the manner by which it is given to 

the learners or the type of activities they might participate in order to maximize 

learning, intrinsic cognitive load is stable and cannot be changed except by 
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altering the level of knowledge of the learner or the whole assignment itself 

(Sweller, 2010).  The interaction between the type of material to be learned and 

the expertise of the learners determines intrinsic cognitive load through element 

interactivity.  

 

Consider this example: d
c

ba
=

+  solve for a. For a beginner algebra 

learner, each symbol is a separate element that needs to be dealt with and learned 

at the same time in order to solve the equation. If compared to learning the 

chemical symbols, this equation has a higher element interactivity and it imposes 

a heavier cognitive load than learning the symbols though it might be more 

difficult to learn the symbols since there are many symbols. For example, one can 

learn that the symbol of iron is Fe, and that Cu is the symbol for copper. Learning 

these two symbols or any other symbol does not impose a heavy cognitive load 

since the elements here do not interact with each other. They can be learned in 

isolation. Consequently, the algebraic equation imposes a higher intrinsic 

cognitive load.   

 

The manner in which the material is presented (extraneous cognitive load) 

is also related to element interactivity. Various instructional procedures need 

learners to deal with a narrow number of elements at the same time. In this case, 

element interactivity is not high along with extraneous cognitive load. However, 

when instructional procedures need learners to deal with several elements at the 

same time, then element interactivity is high along with extraneous cognitive 
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load. For example, if a learner has to solve a problem such as cba =+  and the 

solution is not found in long-term memory, he/she is likely to use a means-end 

strategy. He/she has to simultaneously consider the problem state cba =+ , the 

goal state (a being the subject of the equation), extract the difference between the 

current state and the goal state ( b+  is found on the left side of the equation and 

should be removed) and finally to find rules that can be employed to eliminate the 

differences between the current state and the goal state (subtracting b  from both 

sides of the equation). A learner is unlikely to find this solution if he/she does not 

consider all these elements. Using such a strategy entails high element 

interactivity which involves several interacting elements (Sweller et al., 2011).  

 

Germane cognitive load can also be defined in relation to intrinsic 

cognitive load. It is defined as the load that is not imposed by the material to be 

learned but rather refers to the working memory resources which are devoted to 

relevant or germane information that is needed for learning. Consequently, 

germane cognitive load is also linked to element interactivity. Hence, the different 

effects of cognitive load theory can be explained based on the concept of element 

interactivity (Sweller, 2010).    

 

 

2.3 Understanding and Rote Learning  
 

Sweller (2003) defined understanding as the processing of all elements 

that interact at the same time in working memory. When elements of a certain 
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task are processed individually, in isolation, and without learning relations 

between them, the result is rote memory. When learning by rote, only one element 

or just a very few are processed at the same time. Sweller (1999) explained that if 

a student is presented with a problem such as c
b
a

=  solve for a, he/she might 

learn that in order to solve it he/she has to move the denominator to the right-hand 

side resulting in cba ×= . However, if this is all he/she learned, then the result is 

learning by rote. The student has to learn that all problems of such a type are 

solved by multiplying both sides of the equation by the denominator, cancelling 

the denominator on the left side and thus moving it to the right side. The student 

has to realize that the problem is not solved just by moving the denominator to the 

right side of the equation. Learning by rote is changed to learning by 

understanding when the student relates the process of multiplying and cancelling 

the denominator on the left side to the strategy of moving it to the right side. 

However, the consequence for learning by understanding is an increase in 

working memory load due to an increase in the number of elements that must be 

processed. There are few elements involved in moving a denominator on the left 

hand side to the numerator on the right hand side of an equation. More elements 

are involved if the student learns how to multiply and cancel on the left hand side. 

 

In conclusion, the level of difficulty in learning material with low element 

interactivity depends on the number of elements, though understanding them is 

easy due to the absence of interaction between the elements. As for the 

understanding of material with high element interactivity, the elements need to be 
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processed and held at the same time in working memory which has limitations in 

capacity and duration. Therefore, if the element interactivity of information is 

high, learning with understanding (rather than just rote learning) is not an easy 

task.  

 

However, working memory load depends not just on the characteristics of 

the material learned, but also on the characteristics of the student. Many elements 

for one learner might be a single element for another learner. If a learner acquires 

an intricate complicated schema in a certain area, it acts as one unit of 

information that encapsulates many other elements. If another learner has to 

process the same material in the absence of relevant schemas, then each element 

of the material along with its interaction is dealt with individually in working 

memory resulting in a heavy load on working memory. Therefore, actual element 

interactivity is determined by the interaction between the material and the learner. 

 

Sweller (2003) suggested that in order for working memory to deal with 

many interacting elements simultaneously, it would have had to evolve into a 

larger structure. However, this did not happen, of course. As a result, when 

humans are presented with material of high element interactivity, they are not 

able to understand it. Rote learning becomes the only option. What our cognitive 

architecture tends to do in this case is integrate the new information that is high in 

element interactivity within a schema and deal with it as a single element in 

working memory, thus circumventing the limitation of working memory. This 
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occurs after extensive learning over a long period of time. This is what is meant 

by learning through schema acquisition and automation. 

 

 

2.4 Altering Intrinsic Cognitive Load and Element Interactivity  
 

According to Sweller (2006c), there are two ways to decrease intrinsic 

cognitive load. The first one is to manipulate the material to be learned, and the 

second by schema acquisition and automation. Pollock, Chandler, and Sweller 

(2002) suggested manipulating the material through what is called the isolated-

interactive elements procedure which involves presenting the material to the 

learners as separate elements to learn at the initial phase of instruction followed 

by the fully interactive elements at the subsequent phase.  They conducted a two 

phase experiment in which two groups were used. In the first phase the isolated-

interacting elements group studied isolated elements instructions and the second 

phase involved interacting elements. The second group, the interacting elements 

only group, was given instructions that involved interacting elements during both 

phases. The results showed that the performance of the isolated-interacting 

elements instruction group was better than that of the interacting elements only 

group since the cognitive load imposed by this method of instruction was lower. 

The assumption was that in the first phase, the isolated-interacting elements group 

did not completely comprehend the difficult concept presented to them; however, 

the basic schemas were acquired. The students may have acquired some of the 

necessary elements without processing in working memory all interacting 



27

elements that are needed in order to understand the material. Afterwards, learning 

the interactions between these elements was achieved in the second phase. On the 

other hand, the interacting elements may have surpassed learner working memory 

capacity in the case of the interacting elements only group resulting in decreased 

learning at either the first or the second phase. 

 

Sweller and his associates (Clarke, Ayres, & Sweller, 2005; Sweller, 

2006c) also proposed teaching material of high element interactivity in separate 

elements and later working on the interaction between them. The same method 

was used by Ayres (2006) in algebra. The result was that the material to be 

learned imposed a decreased cognitive load when it was presented to learners in 

isolation while the load increased if the elements of the same material were given 

at the same time. However, Ayres also found that learners with more knowledge 

of the subject did not perform as well if the elements were separated. He 

explained this as a result of a reduction in germane cognitive load which affected 

schema acquisition (see the section below on germane cognitive load).  

 

 

2.5 Extraneous Cognitive Load and Element Interactivity 
 

As indicated above, another source for cognitive load other than the 

intrinsic quality of the material is the way in which the material is presented to the 

learner; in other words, the instructional design (Paas, Renkl, & Sweller, 2003). 
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Suboptimal instructional procedures may impose an extraneous cognitive load 

(Sweller, 2010). 

 

Beckmann (2010) states that while in respect to intrinsic cognitive load, 

element interactivity is a critical factor, until recently, little attempt has been 

made to relate element interactivity to extraneous cognitive load (Sweller, 2010).   

 
Sweller (2010) proposed that element interactivity is also behind 

extraneous cognitive load. The suggestion is that when element interactivity is 

decreased with no change to what has to be learned then the load is extraneous. 

However, if element interactivity is changed by changing what has to be learned, 

then the load is intrinsic (Beckmann, 2010). Schnotz and Kurschner (2007) 

provided an example that if the objective of a certain task is to understand the 

ideas in text which contains jargon, then the load is extraneous. However, if the 

objective is to learn the jargon, then the load is intrinsic. As a result, the same 

material can impose both intrinsic and extraneous cognitive load depending on 

the objective.  

 

Sweller (2010) concluded that element interactivity underlies not just 

intrinsic cognitive load, but also extraneous and germane cognitive load (which 

will be discussed later). He elaborated that instructional procedures that aim at 

making learning easier all focus on decreasing the elements that must be learned 

at the same time. Many cognitive load effects (also discussed below) indicate in a 
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very clear-cut way the elements that interact and that are required in order for the 

learners to process information. 

 

Many conventional instructional procedures impose an extraneous load 

since they do not take into consideration the structure of information nor 

cognitive architecture. Paas, Renkl, and Sweller, (2003) provided an example of 

extraneous cognitive load. When learners are asked to search for references or 

locate something without suggesting where to search, this inflicts a heavy 

extraneous cognitive load. This is due to the fact that working memory is used for 

procedures that are not related to schema acquisition and automation.  

 

Efficient learning consists of the construction of automated schemas held 

in long-term memory. Sweller (1999) suggested that when a student learns that 

the sum of the interior angles of a triangle is °180  and vertically opposite angles 

are equal, a worked example can be provided to show how to find the value of 

unknown angles using these theorems. If then the student is provided with a lot of 

practice problems, a schema is acquired that tells the student that regardless of the 

triangle and the size of the angles, they always add up to °180 . These schemas 

can be moved back to working memory after being stored in long-term memory 

whenever they are needed. However, at this point, automation may not yet have 

fully taken place. The learner must recall the relations between the interior angles 

of a triangle and that their sum is °180 . If a learner needs to put effort into 

remembering the characteristics of a theorem, then this activity needs working 
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memory resources. Thus, the resources available to use the theorem to solve 

problems will be reduced.  

 

Sweller (1999) continued that if a problem is presented to a learner which 

involves two theorems, the sum of interior angles of a triangle equals °180  and 

vertically opposite angles are equal, then solving it depends on the knowledge-

base of the learner. The schemas may have been acquired which permit the 

learner to identify and isolate the interior angles of a triangle keeping in mind that 

regardless of the size of the angles, they always add up to °180 . These schemas 

may be present in long-term memory and can be moved to working memory 

when needed. If the learner is highly knowledgeable in this area, then the 

previously learned schemas produce the moves smoothly and effortlessly.  

 

In contrast, a student who is presented with this problem for the first time 

(meaning he had not acquired the schemas related to this) must go through 

problem solving search different from the schema-based strategy used with the 

previous learner. The first step is to recognize the goal of the problem: Find a 

value for an exterior angle. The second goal is to find a theorem that will provide 

a value for the goal. The student in this case does not know of any theorem that 

can provide him with this value and has to find another angle that can be 

connected to the goal angle by a theorem and can act as a subgoal. Consequently, 

a value for the goal can be obtained if a value for the subgoal is known. Once the 

student discovers that the goal angle (the exterior angle) can be connected to the 

interior angle (the subgoal angle) by the vertically opposite angles theorem, the 
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answer is found. In order for this realization to take place, the student has to 

conduct a new search. The search for the value of the subgoal (the interior angle) 

must replace searching for the value of the goal (exterior angle). Knowledgeable 

students will use the theorem of the interior angles of a triangle adding up to 

°180 . Thus the value of the subgoal is found followed by a value of the goal 

using the theorem that the vertically opposite angles are equal. The problem is 

hence solved.  This strategy is called means-end analysis in which a learner needs 

to find a subgoal (a vertically opposite angle in the case of the problem at hand) 

related to a goal (interior angle, the value of which needs to be found). This 

strategy must be distinguished from a schema-based strategy. The latter tells the 

learner the solution while the former requires some search. Though the means-end 

strategy is helpful in problem solving, it is not related to learning and schema 

construction. Moreover, the heavy load that it imposes by this method hinders 

learning. Consequently, instructional alternatives to problem solving are required. 

The best designs are those that allow working memory resources to be allotted to 

schema acquisition and automation instead of other extraneous activities (Sweller, 

1998). 

 

When high intrinsic and high extraneous cognitive load are combined, 

working memory may be significantly overloaded, and hence learning may not 

take place. Since intrinsic cognitive load cannot be modified for a given learning 

task, it is important to design instruction in a way that reduces extraneous 

cognitive load. However, if the intrinsic cognitive load is low because of low 

element interactivity, suboptimal instructional procedures that result in a high 
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extraneous cognitive load may not be as harmful since the total cognitive load 

may be still within the limits of working memory. For example, if students are 

presented with material that requires them to mentally integrate texts and 

diagrams in a low intrinsic cognitive environment, the result may not be adverse 

since the load is within the limits of working memory capacity.  

 

 

2.6 Germane Cognitive Load  
 

Germane cognitive load is also explained in terms of element interactivity 

but under different conditions than intrinsic and extraneous cognitive load. Both 

the presentation of the material to be learned and the material itself, affect 

extraneous and intrinsic cognitive load, respectively. Germane cognitive load, on 

the other hand, is affected by the features of the learner. It has to do with the 

resources of working memory that are assigned to handling the intrinsic load. 

Germane load does not impose a source of load in itself. Germane cognitive load 

becomes high when extraneous load is low and intrinsic load is high since the 

learner has to dedicate significant working memory resources to deal with the 

material at hand. When extraneous load is intensified, germane load in turn is 

diminished since the learner uses the resources of her/his working memory to 

handle the extraneous load that is imposed by the instructional procedures instead 

of handling the intrinsic material. In conclusion, germane load is directly related 

to the resources of the working memory that are dedicated to the elements that 

interact together and which influence the intrinsic load. When the learners 
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dedicate more resources to dealing with extraneous load, fewer resources will be 

free to deal with the intrinsic load resulting in reduced learning (Sweller, 2010).      

 

As a result, germane cognitive load and learning is boosted when 

instruction is structured in a way to permit the resources of the working memory 

to handle the element interactivity related to intrinsic cognitive load. However, 

when instruction necessitates learners to dedicate working memory resources to 

handling elements associated with extraneous load, fewer resources will be free to 

handle intrinsic load and hence, germane cognitive load will be lower (Sweller, 

2011).   

 

Sweller (2010) suggests that the benefit of this formulation is that it gets 

rid of potential contradictions. In experimental situations, we can only measure 

alterations in overall cognitive load rather than separate types of it. It has also 

been suggested that both extraneous and germane cognitive load are 

complementary. When extraneous cognitive load diminishes, the assumption is 

that germane load increases. Nevertheless, the question that needs to be posed is 

why does overall cognitive load change if germane load makes up for extraneous 

load? The current formulation resolves this contradiction. What determines total 

cognitive load is both intrinsic and extraneous load. If one alters and the other 

stays stable, overall cognitive load alters. For example, overall cognitive load 

increases when extraneous cognitive load goes up. At the same time, germane 

cognitive load decreases since working memory resources must be used to deal 

with extraneous rather than intrinsic cognitive load. As a result, less resources are 
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available for dealing with intrinsic cognitive load. The complementarity between 

germane and extraneous cognitive load is explained in this manner as overall 

cognitive load changes.  

 

 

2.8 Instructional Design Effects  
 

Cognitive load theory clarifies the learning results by looking into the 

effectiveness and restrictions of human cognitive architecture and developing 

principles and instructions based on our understanding of the human brain (Paas, 

Renkl, & Sweller, 2003).   

 

CLT proposes that attention needs to be paid to the effects of learning 

materials and instruction on cognitive processes. Designers must take into 

account intrinsic load (imposed by the material itself), germane load (the working 

memory resources needed), and extraneous load (the quality of the material and 

how it is presented) when designing activities and presenting material (Sweller, 

2010). Based on recent advances of CLT, there are several application procedures 

suggested. Each procedure is a result of a cognitive load effect which shows that 

the instructional procedure that is based on cognitive load theory principles makes 

learning or problem solving easier if weighed against traditional procedures 

(Sweller et al., 2011). These effects are stable relationships between instructional 

procedures, learner characteristics and learning outcomes (Kalyuga, 2009b, 

pp.43). Several of these effects represent instructional methods for reducing 
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extraneous cognitive load. Those directly related to the studies of this thesis will 

be briefly discussed in the following sections. 

 

 

2.8.1 The Worked Example Effect  
 

This effect takes place when students do not gain knowledge from solving 

problems as much as they do from studying a worked example related to the same 

problem (Cooper & Sweller, 1987). A worked example is a problem and its 

solution presented to students. Its solution is presented step-by-step in order to 

teach students the solution techniques (Cooper & Sweller, 1987; Sweller, 1989; 

Sweller & Cooper, 1985). It is suggested that schema acquisition is superior when 

worked examples are used instead of problem-solving methods. It was observed 

that the more worked examples are used the better and more efficient is the 

performance of learners (Cooper & Sweller, 1987; Sweller & Cooper, 1985). Zhu 

and Simon (1987) stated that not only do worked example decrease the time 

needed for students to learn but they also aid in schema acquisition and 

automation if they are well structured.  

 

It has already been stated that extraneous load does not impede learning 

when the material has a low intrinsic load, but when the material is high in 

intrinsic load, it is essential in this case to diminish extraneous load so that 

learning is not affected (Van Merriënboer & Sweller, 2005). Using worked 

examples is an efficient way of diminishing the extraneous load since learners can 
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allocate all working memory capacity to studying the worked-out solution, and 

hence construct the necessary schema related to such problems in long-term 

memory (Sweller, 2004). The remaining cognitive capacity may be used in other 

activities that add to the learning and transfer performance.  

 

Sweller (2010) explained that learners solving problems must deal with a 

large number of interacting elements in order to use a means-end strategy. 

However, learners using worked examples only consider a problem state and the 

move that takes them to the next state. In this case, the search for other problem 

states and moves which is typical of problem solving and which is characterized 

by a large number of interacting elements is eliminated thus diminishing 

extraneous cognitive load.  Only the interacting elements that are related to each 

problem state and its linked move remain when dealing with a worked example. 

However, this comprises intrinsic rather than extraneous cognitive load on the 

condition that no extraneous elements are included in the design of the worked 

example. If the resources of working memory are allocated to dealing with each 

problem state and the moves related to it instead of a large number of potential 

moves, germane cognitive load is increased compared to problem solvers who 

must allocate resources to a large number of interacting elements related to 

potential but inappropriate moves.    

 

Research has indicated that learning from worked examples is more 

efficient than problem solving especially in the early phases of learning. The 

theory presented focuses on an analysis of the various types of cognitive load and 
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the alterations that take place during the different phases of skill acquisition. As a 

result, a fading procedure is proposed in which problem-solving elements are 

consecutively integrated with worked examples till learners are capable of solving 

problems on their own (Renkl & Atkinson, 2003).  

 

Cooper (1998) also states that cognitive load is low when studying worked 

examples since students may focus on only two problem states at a time and the 

transformation (rule operator) that relates them. He also suggested that an 

effective technique when presenting worked examples could be to provide them 

to students with similar conventional problems in an alternating pattern. In this 

way, students study the example carefully since they are not permitted to go back 

to it once they begin solving the related problem. As a result, students’ attention is 

directed to the type of the problem and the related solution steps. In addition, in 

this way, they can also know if they learned the method or not based on their 

success in solving the problem. 

 

A study was conducted by Atkinson and Renkl (2004) to test whether the 

fading procedure is more efficient than learning by problem pairs. It was 

conducted in two classrooms of a physics lesson (electricity). In one classroom, 

an example-problem was given. There were four tasks in the fading group. The 

first one was a worked out-example. In the second, the last solution step was 

removed.  For the third task, the last two steps were removed (backward fading of 

solution steps). In the final task, all three steps were omitted and a to-be-solved 
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problem was given to the learners. The results showed that the fading group 

performed better than the example-problem pairs group.  

 

This study was followed by two further experiments. In the first one, 

students were given either the fading or the example-problem condition. A 

forward fading procedure was used in this study (i.e. the first solution step was 

removed, then the second, etc.). The result was that near but not far transfer 

performance was enhanced since during the learning stage, a lower number of 

mistakes was made.  

 

In the second experiment, similar conditions were used with respect to 

example-problem pairs and forward fading. Moreover, the condition of backward 

fading was used in order to compare the two types of fading procedures. The 

students were given the same number of problems in the forward fading, 

backward fading, or the example-problem condition. The same results were 

obtained on near transfer but what was also noticed was the positive result on far 

transfer favouring the backward fading condition.  

 

Two essential suggestions can be made. First, increasing problem solving 

during learning and acquisition is possible since intrinsic load decreases gradually 

due to schema construction and automation. The second suggestion is that in 

contrast to the early stages of acquisition, when learners acquire understanding, 

activities that need learners to generate self-explanations become extraneous since 

cognitive resources are devoted to knowledge that has already been acquired thus 
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leading to a redundancy effect. Self-explanations and worked examples become 

extraneous and problem-solving germane after schemas have been acquired.  

 

Therefore, attention has to be paid to what the particular goal is. The 

conclusion is that problem solving should be introduced after examples are 

studied. Then, an example is given and one worked example step is eliminated. 

After that, the number of worked example steps that are eliminated are increased 

gradually until just the problem to be solved is left. A study was conducted in 

order to test the effectiveness of this fading procedure. The implications were that 

the positive effects that fading had on learning verify the expertise reversal effect 

(discussed below), (Renkl & Atkinson, 2003). 

 

According to Sweller (2003) the worked example procedure proved to be 

efficient for almost all classes of problems. Experiments showed that learners 

who were presented with a large number of worked examples learned more than 

those who were presented with the same number of problems to solve (Carroll, 

1994; Cooper & Sweller, 1987).  

 

 

2.8.2 The Split-Attention Effect 
 

Some worked examples do not take into consideration the limitations of working 

memory by, for example, requiring learners to split their attention between many 

sources of information (Sweller, 2003). Some of the materials that are given to 
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learners may include a picture and written information above, below or to one 

side. Such instruction may lead to a split in attention if the learner has to mentally 

integrate both sources in order to process and comprehend the material. Relating 

to one source only will impede understanding (Cooper, 1998). A good example 

might be a geometry worked example with diagrams and texts. A learner cannot 

get meaning from either if he/she separately analyses them. He/she has to 

integrate both. This kind of integration needs working memory resources since 

learners have to locate referents that may not be obvious when learning geometry. 

 

Instructional materials are often designed with a split-attention layout, and 

this adds to the extraneous cognitive load if weighed against layouts that are 

physically incorporated. Sweller (2010) provided the example of a geometry 

worked example having a diagram with a list of steps under the diagram leading 

to the solution of the problem. If one of the steps suggest that, Angle ABC = 

Angle XYZ, students have to locate the two angles. The interacting elements 

related to Angle ABC are the statement “Angle ABC” and almost all the angles 

on the diagram. The student must go over all the angles till he/she locates the 

correct one. In order not to check angles that have been checked before, he or she 

needs to keep in mind the ones he or she checked before. The same applies to 

Angle XYZ. When the student locates both, he or she has to work on proving why 

they are equal. This process entails extraneous cognitive load.  

 

Sweller (2010) suggested that extraneous cognitive load related to 

searching for the angle should be removed. This could be done by incorporating 
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the statement “Angle ABC = Angle XYZ” within the diagram. It should be put in 

a suitable place on the diagram instead of below the diagram. It can also be done 

by making use of arrows to reduce the search.  

 

If this technique is used, the students only have to check the angles that 

are needed instead of a list of angles. Consequently, element interactivity related 

to extraneous load is diminished.  

 

Sweller, Chandler, Tierney, and Cooper (1990) demonstrated that 

incorporating text into diagrams aids learning. Two groups of students were 

involved in these experiments. The first group was given separate text and 

diagrams while the other group was given the same problem in which the text was 

incorporated into diagrams. The experiment was divided into two stages. During 

the first stage, students were given either the conventional or the modified 

instruction and they were allowed to use up as much time as needed to understand 

it. The second stage was the assessment stage. The results showed that the group 

that was presented with the incorporated information performed better in both 

stages. They spent less time to understand the material which suggests a lower 

cognitive load due to the incorporated material which in turn made learning easier 

since they performed better than the other group on the later tests. Presenting the 

solution on the diagram facilitates learning and gets rid of split attention since 

learners are presented with only one source of information.  
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However, this effect is not just related to texts and diagrams. It is present 

whenever there are multiple sources of information that learners have to make use 

of at the same time. This includes two or more sources of textual information. 

Chandler and Sweller (1992) demonstrated this effect with the traditional format 

of educational psychology research papers in which the outcomes of the 

experiments and the discussions are conventionally presented in separate sections 

even though readers have to refer to both in order to comprehend the results 

thoroughly. The split attention was reduced when the results and the discussion 

were integrated into a single entity.  

 

Chandler and Sweller (1996) described a split-attention situation created 

by referring to software and a hardcopy of a manual in order to understand how 

the software functions. The best alternative is not to use the computer when 

learning but rather to refer to diagrams in the manual. Chandler and Sweller 

(1996) found that learners who first studied the manual without the presence of a 

computer did better than those who simultaneously used both the computer and 

the hardcopy manual.  

 

Taking into consideration the split attention effect in the experimental 

design used in this thesis, multiple sources of information were replaced with a 

single integrated source (e.g., marking equal angles on the figure rather than 

saying “angle ABC= angle XYZ”) in order to reduce the extraneous cognitive 

load. The details of the experimental design will be discussed in Chapter 5. 
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2.8.3 The Redundancy Effect  
 

The redundancy effect may occur when learners can understand in 

isolation multiple sources of information without mentally integrating them 

(Sweller et al., 2011). When a diagram can be understood without the need of 

written or spoken text that simply redescribes it, including such texts is an 

example of redundancy.   

 

Leahy, Chandler, and Sweller (2003) conducted an experiment in which a 

temperature outline (a diagram) was made self-explanatory by integrating it with 

part of the text and given to one group. The other group was presented with the 

same material along with audio instructions. Since the diagram was self-

explanatory, the audio text was redundant. Attending to redundant information 

increases cognitive load and affects the performance of the students. Thus, the 

performance of the first group was superior to that of the second group.    

 

The split attention effect occurs only when integration of dissimilar 

sources is needed in order for learners to understand the information. However, 

when a diagram can be understood and provides the information needed for the 

learner, including text that only repeats the information presented in the diagram 

will be ineffective. The text in this case is redundant. Removing the text may 

boost learning (Sweller, 2003).  
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Integrating sources that are redundant increases cognitive load as opposed 

to integrating sources that cannot be understood separately. Chandler and Sweller 

(1991) used a diagram that represents the blood circulation in the human body to 

show that integrating the text with the diagram is not important for understanding, 

Integration in this case is redundant since the diagram can be understood 

separately, without the text. As a result, if a learner realizes that the integrated 

text is redundant and decides to ignore it, cognitive load is low. However, if he or 

she decides to study both sources and mentally integrate them, cognitive load is 

high.  

 

Chandler and Sweller (1991) conducted several experiments investigating 

the redundancy effect. The results of the first experiment aimed at comparing 

conventional instructions with integrated instruction showed that integrated 

instructional formats were significantly better than conventional split-source 

formats. The latter needed mental integrations that resulted in learners’ attention 

being misdirected and created a heavy cognitive load. As a result, less cognitive 

resources were available for learners to make use of and acquire the knowledge 

needed. On the other hand, integrated instructions decreased cognitive load and 

permitted learners to focus on acquiring knowledge of the material at hand which 

continued to positively affect their performance over a period of time. The second 

experiment compared conventional instructions with integrated instructions in 

areas that did not really require integration of sources in order for learning to take 

place. The results of the experiment were different from those of Experiment 1. 

Integration did not prove to be useful. The third experiment demonstrated that 
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learning was hampered when novice learners were instructed to mentally integrate 

redundant textual information with diagrams that were self-explanatory since 

their attention and cognitive resources were unnecessarily directed to this task. 

Removing the redundant information enhanced learning and performance.   

 

This hypothesis was tested in another experiment. The group that was 

presented with a diagram only performed the best. This group spent the least time 

to process the instructions which favoured the reduced cognitive load hypothesis. 

The findings showed that when sources did not need to be integrated in order to 

be comprehensible, a redundant source might require removal. Instruction time 

was diminished by simply eliminating insignificant sources of information. 

Moreover, learning was improved. Similar results were obtained when conducting 

experiments in different domains.  

 

One might think that adding redundant information should not have any 

negative consequence. However, such information inflicts an extraneous load 

since processing the redundant information and connecting it to the other sources 

requires the use of working memory resources. The learner might discover the 

redundancy only when it is too late (Sweller, 2003). 
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2.8.4 The Expertise Reversal Effect  
 

Kalyuga, Ayres, Chandler, and Sweller (2003) suggested that when the 

material given to learners is new to them, the available working memory capacity 

is very limited. When learners become more knowledgeable in the domain, 

working memory restrictions are decreased because schemas are constructed and 

stored in long-term memory. Instructional techniques are developed in order to 

make schema acquisition and automation easier. However, the effectiveness of 

many instructional design effects may reverse once learners develop expertise. 

This is referred to as the expertise reversal effect.  

 

It has already been mentioned that when novel material is given to 

learners, it is processed in working memory that is very limited in capacity. 

However, when schemas stored in long-term memory are activated, the 

limitations of working memory could be lifted. All the above instructional 

principles aimed at decreasing working memory load and hence making schema 

construction and automation easier. Nevertheless, learner’s expertise contributes 

to the efficiency of these practices. Instructional principles that are good for 

inexperienced learners may not be as effective when used with experienced 

learners. On the contrary, they might have negative implications (Kalyuga, Ayres, 

Chandler, & Sweller, 2003). Kalyuga, Chandler, and Sweller (1998) provided 

evidence for this in an experiment that demonstrated the split-attention effect 

using novices. With an increase in expertise, the difference in students’ 

performance was first reduced and then reversed when they were presented with 
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separate or integrated formats. It is more efficient for experts to be given the 

sources of information separately with no integration. The split attention effect 

was transformed into a redundancy effect. Learning was better achieved in the 

case of expert learners when only a diagram was given instead of a diagram and 

text.  A group of beginning learners were only given diagrams with no text. They 

did not do well since the text was important to these learners in order to 

understand the diagram. After some time of practicing in the required domain, 

their level of expertise increased and the importance of the text diminished since 

schemas were constructed and took over from the text which became redundant 

and imposed an extraneous cognitive load. Other experiments in different areas 

obtained the same results. Cognitive load effects vanished and then reversed with 

increased expertise.  

 

The degree to which schemas are taken into working memory in order to 

deal with the information presented is affected by the level of expertise of the 

learner in a specific domain. Learners who do not have experience need the 

guidance that related schemas in long-term memory otherwise offer. Therefore, 

including guidance in the instructions replaces the missing schemas and might 

lead to schema construction and at the same time, diminishes the load on working 

memory (Sweller, 1999; Sweller et al., 1998). However, if instructions do not 

offer the needed guidance, problem-solving search occurs, but it imposes a heavy 

load on working memory (Kalyuga et al., 2003).  
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On the other hand, learners who have some level of expertise in a certain 

domain, bring in their schemas while dealing with a specific problem. They are in 

no need of any kind of guidance in the instruction. However, if guidance is 

offered and cannot be ignored, it may cause a redundancy effect. Extraneous 

cognitive load may be imposed on working memory even if the learner is aware 

of its redundancy and manages to ignore it as much as possible. Therefore, it is 

better to reduce instructional guidance offered to learners who are experienced. 

Consequently, instructional guidance that is important for learners who are 

inexperienced and which leads to better performance when compared to the 

performance of learners who are not offered instructional guidance might reflect 

negatively on those who are experienced and are offered the same guidance 

(Kalyuga, et al., 2003).       

 

In another study, the relations between levels of learner knowledge in a 

certain field and levels of guidance in instructions were explored. The group 

consisted of mechanical trade apprentices who did not have any experience and 

were given worked examples to study or problems to solve. It was shown that the 

worked examples were more beneficial for the inexperienced apprentices and 

their performance was superior to those who solved problems. The higher the 

level of experience was, the more redundant worked examples became and better 

problem solving proved to be (Kalyuga, Chandler, Tuovinen, & Sweller, 2001).  

 

Sweller (2010) stated that the expertise reversal effect relied on the 

condition of interacting elements. When learners are novices, intrinsic load is 
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imposed by the interacting elements since these elements are important for 

understanding. When students’ expertise increases, these same elements are 

redundant and impose an extraneous cognitive load since they are not important 

anymore for understanding. For example, for understanding, it might be important 

for a novice to study problem solutions or read statements related to diagrams. 

The elements that interact here are related to learning and thus make up intrinsic 

load.  When working memory resources are allocated to the same elements, 

germane cognitive load is increased. The same elements that were once intrinsic 

to learning become extraneous once the expertise of learners is increased. Thus, 

these elements should be removed. In conclusion, the level of learner expertise 

affects the type of load imposed.   

 

Taking into account the expertise reversal effect, the experimental design 

of this study was intended to test the amount of guidance needed in geometry 

problem solving for novice as well as expert learners. Later chapters will discuss 

the best instructional design for each. 

 

 

2.9 Summary 
 

Learners have an advantage when studying worked examples rather than 

solving problems resulting in the worked example effect. Currently, the 

evolutionary approach in cognitive load theory highlights the borrowing and 
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reorganizing principle which provides basis for the worked example effect 

(Sweller et al., 2011). 

 

There are many reasons why the split-attention effect is significant. 

Information that must be processed concurrently should be given to the learners 

without spatial or temporal separation. This effect explains why the worked 

example effect sometimes does not occur. Worked examples should be presented 

in a way that does not impose extraneous cognitive load. Finally, the split-

attention effect flows directly from cognitive load theory. When learners have to 

keep information in working memory in order to search for referents, an 

extraneous cognitive load is imposed (Sweller et al., 2011). 

 

The results of many experiments show that presenting information in 

more than one form may hinder rather than improve learning. From a cognitive 

load perspective, when learners are given the same information but in different 

forms such as auditory and written forms, they have to find the relations between 

them and in this case, a heavy extraneous load is imposed on working memory 

which affects learning. The concept of redundant information relies on the level 

of learner’s expertise. Information that is important for novices might be 

redundant for experts imposing an extraneous cognitive load and leading to the 

expertise reversal effect (Sweller et al., 2011).  

 

Based on evidence from studies conducted within a cognitive load 

perspective, procedures that work well for novice learners may inhibit learning 
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for experts. Thus the expertise reversal effect suggests that novice learners have 

to be provided with information that enhances learning while more expert learners 

may find this information redundant and learning is inhibited since they have to 

find connections between elements of information presented to them and what 

they already know. However, in the case of novice learners, instructions have to 

make up for the lack of learners’ knowledge (Sweller et al., 2011).  

  

 Cognitive load theory is applied best in domains having challenging 

content. The implication is that extraneous cognitive load has to be minimal when 

designing instruction in order to allow learning to take place effectively. The next 

chapter discusses why students find it difficult to use their prior knowledge while 

solving geometry problems and how this knowledge is built and acquired along 

with its application during problem solving. 
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3.1 Issues in Teaching Geometry 
 

Mathematics education has been engaged with Euclidean geometry and 

geometric proof from the time of the Greeks up to twentieth century Western 

culture. A major part of learning mathematics in secondary schools is related to 

Euclidean geometry and the proofs that support it. However, towards the last part 

of the twentieth century, many school mathematics curricula stopped focusing on 

both Euclidean geometry and proof (e.g., van Dormolen, 1977). Healy and Hoyles 

(1999) stated that “Proof is at the heart of mathematical thinking, and deductive 

reasoning, which underpins the process of proving, exemplifies the distinction 

between mathematics and the empirical sciences (p. 1)”.  

  

Research shows that students often do not comprehend the reason behind 

mathematical proof, and they establish their own understanding based on practical 

evidence. Geometry is one of the mathematical areas that students find difficult to 

learn (Senk, 1985). Healy and Hoyles (1999) also demonstrated that many 

students have a poor understanding of mathematical proof. Other studies have 
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examined the specific difficulties which students experience with proof. Some 

studies have focused on students’ understanding of the concept of proof (for 

example, Galbraith, 1981; de Villiers, 1991) whereas others (for example, Duval, 

1991) have looked at students’ difficulty with construction of proofs, in particular 

deductive proofs. 

  

Students’ concept of mathematical proof and the difficulties they face in 

constructing proofs are both related to students’ cognitive readiness. The learners’ 

cognitive readiness for mathematical proof is indirectly suggested in the sequence 

of mathematical reasoning skills. The existence of hierarchical levels of geometry 

understanding was proposed by Pierre van Hiele (1959, 1984) and Dina van 

Hiele-Geldof (1957, 1984), who suggested that students progress sequentially 

from a simple identification level to a more deductive level. Table 1 lists the van 

Hiele levels (levels 1-4).  

 

 Evidence for this progressive chain of geometry learning is 

strengthened by studies based on Hiele’s theory, however, it has also been 

proposed that these levels are not disconnected but rather students can move 

from one level to another depending on the concepts taught (Usiskin, 1982; 

Fuys, Geddes, & Tischler, 1988). The emphasis on class inclusion as a signifier 

of Level 3 thinking has also been questioned (for example, Pegg, 1992), since 

it appears that understanding of this concept depends on the learning 

environment and is not a natural part of students’ progress in geometry. 
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Table 1 Description of Van Hiele Levels 1-4 
 

 Level               Description 

     

     1  Shapes are recognized by their visual appearance alone. 

     2   One or more properties of a geometric shape are recognised. 

     3 Relationships between properties are recognized, with simple steps 

of deductive reasoning. The concept of class inclusion is 

understood. 

4 The significance of deductive reasoning and the concept of 

necessary and sufficient conditions are understood. 

 

 

 

It has also been suggested that a progressive chain model of mathematical 

development where diagrams are the means by which visualisation and 

symbolism intermingle results in the need for definitions and proofs. The 

argument is that the cognitive reconstruction, which is needed to shift from 

diagrams to formal proof requires a certain degree of cognitive development 

(Tall, 1995). 

 

In addition to the diagrams, verbal information is involved when a 

geometry proof problem is presented to students. Also, such presentations usually 

include physical movements indicating the parts of the diagram related to the 
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problem at hand. Students have to view, listen, and make notes of the lecture. As 

a result, different elements of the instruction have to be integrated within the 

learner's working memory (Sweller, 1998). This integration process imposes 

cognitive load and may affect students’ learning. Many experiments have 

indicated that significant problems in geometry learning are caused by the lack of 

thorough understanding of the problem, symbols, and proofs that are based only 

on visual elements (e.g., Chazan, 1993; Healy & Hoyles, 2000), and the lack of 

the necessary knowledge needed to complete the proofs. Duval (1998) and Healy 

and Hoyles (1998) noted that instruction in numerical operations and algebra are 

easier than those in geometry that involve tasks that are demanding for teachers 

and students alike.  

 

Consequently, providing a good and solid basis in the early years of 

education, which includes not only practical evidence but also basic steps of 

deductive reasoning is crucial for students’ readiness for formal proof. Hoyles 

(1998) suggested that it is essential to take into consideration how proof is 

presented to students. Therefore, presented instructions should be designed to 

assist students in comprehending geometry proofs and theorems considering the 

processing limitations of human cognitive architecture. 
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3.2 The Role of Geometry Schemas in Problem Solving 
 

The poor use of prior knowledge when solving problems in geometry 

could be one of the reasons for students’ difficulties in learning this domain. The 

understanding of the role of prior knowledge that students use when trying to 

solve problems has become an important focus of research studies (e.g., Byers & 

Erlwanger, 1985; Lester, 1994). The outcomes of these studies show that 

succeeding in problem solving is greatly dependent on the relations that students 

make between elements of mathematical knowledge (Chinnappan, 1998). 

Consequently, if we need to understand why students find it difficult to use their 

prior knowledge while solving geometry problems, we have to focus on how this 

knowledge is built and acquired along with its application during problem solving 

(Board of Senior Secondary Studies, 1995). Resnick and Ford (1981) pointed out 

that the failure of students to trigger and apply what they had previously learned 

was due to their poor mathematical knowledge.     

 

Researchers in this domain are concerned with the relations students make 

between dissimilar mathematical concepts while integrating them into significant 

wholes and structures. This is what constitutes mathematical knowledge, and it 

not only makes students relate previously learned material to new problems, but 

also determines how the information should be used to search for a problem 

solution (Alexander & Judy, 1988; Prawat, 1989; Lawson & Chinnappan, 1994). 

(see also Chinnappan 1998). 
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The manner in which mathematical knowledge is stored in long-term 

memory determines how well students are able to activate it. If we use this notion 

in the field of geometry, it means that we have to focus on the geometric 

knowledge structures that students retrieve while solving a problem, to what 

degree they use them, and how efficient the use is (Chinnappan, 1998). 

 

The quality and function of mathematical knowledge that students make 

use of while attempting to solve problems was discussed by Mayer (1975), 

Kintsch and Greeno (1985), and Halford (1993). They referred to schemas and 

mental models when examining the geometry knowledge used by students when 

solving problems. Chinnappan (1998) defined a schema as a group of basic 

notions, the connections between these notions, and the manner and timing of 

using them. Thus, the mathematical notions that students understand are classified 

into schemas that form the knowledge base for dealing with later mathematical 

problems. The term schema has also been used in a similar context by Nesher and 

Herschkovitz (1994) when studying students’ work while solving word problems. 

As students think about and try practicing what they have learnt, their 

mathematical schemas are changed through a process of construction and 

reconstruction leading to altering their mathematical schemas. According to 

Sweller (1989), the manner in which they sort and manipulate problems is 

affected by how complex these schemas are.   

 

Chinnappan (1998) stated that to know more about how geometric 

information is structured one should take into consideration a schema theorem, 
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which suggests a geometric schema that could develop gradually around a 

geometric form.  He gives an example of the right-angled triangle schema (RTS). 

Ideas, notions and information are constructed in relation to the central part of the 

RTS which is the right-angled triangle. One section of the RTS is Pythagoras’ 

theorem, which deals with the lengths of the sides of a triangle. Another example 

is the sameness of the base angles if the triangle is a right isosceles triangle (45 

degrees each). This knowledge, along with their own experiences aid students in 

working with problems involving right-angled triangles. Thus, the RTS system 

would include not just the geometric shape but the knowledge and aspects that 

relate to right-angled triangles. 

  

 

3.3 Features of Geometric Schemas  
 

Organisation and spread are two major features of geometric schemas 

(Chinnappan, 1998). Organisation deals with the network of ideas while spread 

deals with the size of the network. The greater the extent of organisation and 

spread, the more complex the geometric schema is. However, knowledge of the 

organisation and spread of schemas may not be sufficient to yield a solution to a 

given problem. Chinnappan (1998) stated that studying mental models related to a 

problem helps researchers know more about how students incorporate geometric 

schemas while trying to find a solution to a problem. Halford (1993) suggested 

that mental models are depictions which are active when a student is in the 

process of solving a problem. During this phase, mental models elicit cognitive 
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procedures that involve reasoning and making decisions related to what schemas 

should be triggered and the manner in which knowledge should be used while 

trying to find a solution to a particular problem. According to English and 

Halford (1995), the mental models that students should be helped to build must 

deal with the crucial connections between mathematical schemas that have been 

learned before and parts of a problem to be solved. 

  

Chinnappan (1998) conducted a study in which he used both structures, 

schemas and mental models, to study how students use their knowledge when 

solving a plane Euclidean geometry problem. The purpose of the study was to 

identify the schemas used when solving a geometric problem, find out the 

frequency of activation, and come up with a clear picture of the nature of the 

mental models students deploy and/or build when solving problems. The study 

took into consideration levels of learner prior knowledge by distinguishing low 

and high achievers. Chinnappan assumed that more complicated geometric 

schemas would be stimulated and used more often by high achievers along with 

mental models that show better organised knowledge of the problem at hand if 

compared to low achievers.  

 

The experiment showed that the high achievers used more geometric 

schemas than the low achievers while solving problems. Another result of the 

analysis was that the schemas of high achievers were more often stimulated than 

those of the low achievers.  A third feature of the analysis of the students’ records 

showed that the geometric schemas used by the high achieving students were 
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more complicated and diverse than those used by low achieving peers. The 

analysis provides evidence for the premise that the schemas used by high 

achievers are not only more frequent than those used by their low achieving 

counterparts, but they are also more sophisticated in quality.   

 

As for the mental models built by activating geometric schemas during 

problem solving, it was suggested that both high and low achievers would engage 

in this activity. A careful study of students’ solutions revealed that a systematic 

examination of the problem was conducted by high achievers. However, 

Chinnappan reported that 60 percent of the low achievers’ attempts to reach 

solutions required some kind of direction when solving a problem. The study also 

reported two cases of high achievers who were able to make use of a novel way of 

solving a problem which entailed the activation of triangle schemas. In contrast, 

low achievers did not invent novel procedures. Chinnappan explained the 

disparity between the two groups’ employment and launch of the geometric 

schemas by their different approaches to problem solving. The high achievers 

dealt with the structural aspects of the problem and succeeded in structuring 

mental models that expressed the relationship between the givens and the 

objectives of the problems. After that, the students looked for the related 

geometric schemas in their memories to reduce the gap between the givens and 

objectives. The low achievers did not delve deeply into the features of the 

problem and could not identify the relations between the essential aspects of the 

problem and their own geometric schemas.   
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Chinnappan’s study emphasized the importance of organising information 

in chunks or schemas to acquire better insight into when and how to use the 

information efficiently while solving problems. The mental models created 

provide evidence for this insight. 

 

 

3.4 Research in Cognitive Load Aspects of Learning Geometry 
 

3.4.1 Introduction 
 

Cognitive load theory has been employed to examine instructional 

techniques that facilitate schema acquisition and automation. It has been 

suggested that techniques that require students to participate in activities that do 

not aim at schema acquisition and automation are not effective since they require 

cognitive resources that cannot be allocated to learning. When novel problems are 

given to students, they may not be able to make use of already acquired schemas 

to come up with solutions. However, they may solve the problems using a means-

end strategy that is effective in reaching problem goals. Nevertheless, this 

technique is not directly related to schemas and schema acquisition. In order to 

attain a problem solving schema, students should distinguish each problem state 

and learn appropriate moves associated with each state. When using means-ends 

analysis, on the other hand, they must find relations between a problem state and 

the goal state, extract differences between them, and find problem operators that 

affect those differences positively. These cognitive operations must be done at the 
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same time while also bearing in mind any sub-goals. For novice learners, the 

problem states or operators are not likely to be automated and thus must be 

processed consciously in working memory. Such difficult tasks may enforce a 

heavy cognitive load that is not related to schema acquisition and thus may hinder 

learning. Learners who are given geometry problems and who use this strategy 

will not reach their ultimate learning goal which is schema acquisition and 

automation (Sweller, 1994). Instructional techniques that can be used in order to 

substitute conventional problem solving will be discussed below. 

 

 

3.4.2 Worked Examples in Learning Geometry 
 

Tarmizi and Sweller (1988) demonstrated that studying worked examples 

was a more beneficial instructional method than solving problems because the 

provided guidance reduced cognitive load otherwise generated by a means-ends 

strategy involved in problem solving. However, the guidance offered should not 

itself impose extraneous cognitive load due its presentation format. If this 

happens, the benefits of the worked examples and guidance could disappear. Five 

experiments in geometry were conducted to provide evidence for this premise. 

 

Experiment 1 included thirty-three year nine top mathematical students, 

who were not previously exposed to the geometry theorems related to circles but 

would be able to use the explanations and solve the problems given in this field. 

The experiment demonstrated that the means-ends method used by students who 
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were working on conventional problems interfered with learning due to the 

cognitive load that accompanied this method. The use of goal-free problems 

reduced this load and facilitated the acquisition of schemas. Conversely the 

guided-solution group was forced to pay attention to the information on the 

diagram and the text that presented the guidance separately from the diagram, and 

at the same time mentally integrate them. However, the goal-free problems did 

neither require participants to pay attention to integration, nor the employment of 

means-ends analysis. Learning outcomes (as measured by the speed and precision 

of student responses) hence improved for the goal-free problem group. It was 

proposed that the positive implications of guidance were eliminated because of 

the heavy cognitive load that was imposed by the extra material.   

 

Experiment 2 included twenty-four year eight top mathematical students 

who had no experience in circle geometry. This experiment compared the 

outcomes of goal-free problems against those of a guided-solution group. Even 

though less guidance was provided in Experiment 2 than in Experiment 1, the 

results were similar: the goal-free group performed better than the guided-solution 

group proving that incorporating many sources of information imposed a heavy 

cognitive load and negatively affected learning. 

 

Experiment 3 included twenty year nine top mathematical students who 

were not previously exposed to the geometry theorems related to circles. The 

experiment was conducted to compare the efficiency of worked examples and 

problem solving in geometry instruction. Contrary to what Sweller and Cooper 
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(1985) and Cooper and Sweller (1987) found using algebra worked examples, the 

results of Experiment 3 were the same as those of Experiments 1 and 2. It 

demonstrated that the guidance presented to the worked example group did not 

make learning easier; it actually impeded it.  

 

Based on the results of the above experiments, Experiment 4 was 

conducted and it included thirty year nine top mathematical students who were 

not previously exposed to the geometry theorems related to circles but had 

enough background to use the explanations given in order to solve problems in 

this field. The experiment was conducted to demonstrate that providing students 

with geometry worked examples that diminish the requirement to integrate many 

split sources of information should boost the facilitatory effect of worked 

examples. In order to accomplish this, the information that was related to 

guidance was presented at appropriate locations on the geometric figure contrary 

to the split-source format. The results demonstrated that the group that studied the 

modified geometry worked examples in which the textual explanatory material 

was put on the diagram performed better than the other two groups. Extraneous 

cognitive load was reduced because students did not have to allocate additional 

cognitive resources to integrate split sources of information. These results 

matched those of Sweller and Cooper (1985) and Cooper and Sweller (1987).  

 

Experiment 5 replicated the results of Experiment 4 using different tasks, 

thus proving again that using modified formats of geometry worked examples 

reduced cognitive load and improved learner problem solving skills.  
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A conventional succession of instructions may be followed by learners in 

the early phases of learning geometry and trigonometry. For example, when 

learners are introduced to geometry, they learn about parallel line theorems 

(alternate, corresponding, and co-interior) and they start solving simple problems 

that require them to use one theorem at a time. At a later stage, they have to start 

using more than one theorem. Most of these problems are categorised as 

transformation problems (see Greeno, 1978). In these problems the initial state is 

changed into a goal state, and to solve them and find the answer to the goal state, 

learners have to calculate a subgoal or several subgoals. In order to solve these 

transformation problems, backward-working strategies such as means-ends 

analysis might be used by learners (see Mayer, 1983). However, such a strategy 

imposes a high cognitive load since learners have to go back to goals and 

subgoals. An instructional design that has been examined by researchers in 

different fields like trigonometry (Owen & Sweller, 1995) and geometry (Ayres, 

1993) is the employment of no-goal or goal-free problems. By eliminating certain 

goals in a problem and requiring students to figure out all the unknowns instead 

of certain goals, a goal-free context is set and the application of means-end 

analysis is reduced and in turn so is cognitive load (Ayres, 1993).  

 

The two stage transformation problem below needs Pythagoras' Theorem 

to be employed twice in order to be solved. Before figuring out (X), the goal, the 

subgoal (side BC) has to be calculated. A learner might calculate the subgoal 

(BC) first without thinking about (BD) which is working forward. The solution is 

uncomplicated since there are no other sides that need calculations. By applying 
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the rule that says to calculate the side of two adjacent triangles the subgoal will be 

calculated. The outcome of having a simple path to reach a solution is that a 

forward working strategy might be generated by instructional techniques. 

Moreover, backwards-working strategies might also be used since in simple 

solution paths, cognitive load is reduced (Ayres, 1993).    

 

 

Example of a 2-stage Pythagorean Problem 

 

Ayres (1993) designed a study in order to examine the usefulness of no-

goal problems in the field of Pythagoras' Theorem and forward and backward 

strategies. The study included fifty-six girls from grade eight in a Sydney High 

School having average abilities in mathematics. The Theorem of Pythagoras had 

been taught to them and the participants had previously solved problems that need 

a single step. The experiments consisted of two groups of twelve problems each 

containing two unknown sides. The problems were similar to the two-stage 

transformation problem above. The first group of problems was used for the 

acquisition stage while the second was used for testing. In order to figure out 

these two sides, the participants had to employ two applications of Pythagoras 

Theorem and the subgoal (the side which was common to both triangles) had to 
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be found before the goal. During acquisition, the focus of participants in the 

forward working strategy group was directed towards the subgoal first when they 

were required to calculate the first unknown side. Then they were asked to find 

the value of (X) which is the goal. Thus they would work forward once their 

focus was directed towards the subgoal. The backward working group, on the 

other hand, was told that to find (X) they had to calculate an unknown side, and 

they were asked to calculate that side followed by instructions for calculating (X). 

As for the conventional group, participants were asked to calculate (X) for all 

problems. Participants in the final group, the no-goal group, were required to 

calculate all unknown sides and (X) was not referred to. The results showed that 

the no-goal method is quite efficient when working on transformation problems. 

Cognitive load is diminished by eliminating the goal. The results of forward and 

backward working strategies were similar to those of the conventional group.  

 

In another study, different conditions of variability of learning tasks in a 

computer-based environment for geometrical problem solving were examined 

focusing on the effects they had on performance, transfer, and cognitive load 

(Paas & Van Merriënboer, 1994). Four conditions were compared. They included 

low- and high-variability conventional practice problems to be solved followed by 

worked examples. They were compared with a low- and a high-variability worked 

condition, which included worked examples to be studied. The second condition 

included low and high-variability worked examples to be studied. The results 

showed that students who studied worked examples benefited the most from the 

high-variability condition. They required less time and mental effort while 
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practicing and demonstrated better transfer performance compared to students 

who first solved conventional problems followed by studying worked examples.   

 

 

3.5. Summary  
 

Students’ poor use of mathematical knowledge, the manner in which 

geometric knowledge is stored in long-term memory, and how it is activated 

should be considered when discussing why students find it difficult to work on 

generating proofs in geometry. Mental models and schemas are used by students 

when attempting to solve mathematical problems. However, high achievers use 

more geometric schemas that are more complex and more frequently accessed 

than those of low achievers. As the students gather more experience and become 

more expert at solving geometric problems, their performance improves. The 

following chapter will discuss why exposure to worked examples while solving a 

geometric problem is an effective instructional technique since it diminishes 

extraneous cognitive load, thus ensuring that more working memory resources are 

available for activities that facilitate learning and transfer. The chapter will also 

discuss how to optimize the design and delivery of worked examples in order to 

foster learning of geometry problem solving. 
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4.1 Introduction 
 

An essential mathematical activity is demonstrating mathematical proof. 

Therefore, all students should understand not only the skills needed to read and 

construct proofs but also the concepts that are associated with these proofs which 

they find difficult. Though it has been around 100 years ago since Poincare 

(1913) stated that students did not perform well at finding proofs, classroom 

instruction on complex problem-solving skills and on the heuristic skills 

nowadays is still facing this problem (Heal & Hoyles, 1998; Reiss, Klieme, & 

Heinze, 2001). 

  
Proving is a cognitive activity that involves exploring, inducing, and 

deducing the logic needed. It is crucial for a learning environment that focuses on 

proofs to foster heuristic problem-solving processes. Presenting students with 

worked examples that demonstrate finding a proof using heuristic processes can 

provide them with such a learning environment (Hilbert, Renkl, Kessler, & Reiss, 

2008).  However, the effectiveness of worked examples may depend on levels of 
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learner prior knowledge. The following section will examine this issue in more 

detail. 

 

 

4.2 Expertise Reversal Effect  
 

Learners’ prior knowledge is an important factor influencing learning 

processes, and it has to be taken into consideration when designing instruction. 

What is effective for beginning learners might in fact be harmful to expert 

learners. As levels of learner knowledge in a specific domain change, the 

efficiency of instructional methods may reverse. Various instructional materials 

and participants have been used to demonstrate this effect. The implication of this 

effect is that as learners become more experienced in a certain domain, there is a 

need to modify instructional methods and procedures (Kalyuga & Renkl, 2010).  

 

Cognitive load theory explains this interaction between the effectiveness 

of different instructional methods and levels of learner expertise by disparities 

between the organized knowledge base of the learners and provided instructional 

guidance. This disparity might be due to either the fact that instructional 

guidance, in particular at the initial stages of learning, does not compensate for an 

inadequate learner knowledge base or to the overlap between the already existing 

knowledge of advanced learners and the instructional guidance given. When such 

gaps in knowledge exist, in the first case, novice learners have to take on certain 

search practices that might lead to heavy levels of extraneous cognitive load. As 



71

for advanced learners, redundant instructional guidance needs to be assimilated 

and cross-referenced with already existing knowledge structures. This results in 

the consumption of additional cognitive resources. Consequently, instructional 

guidance has to be minimal to permit these learners to make good use of their 

knowledge in an effective way. As a result, instructional guidance that is 

important for novice learners might hamper learning for more experienced 

learners when it interferes with the recovery and use of available knowledge 

structures, especially if redundant explanations cannot be neglected. So, for an 

optimal cognitive load, instructional support for advanced learners has to be 

eliminated when acquisition is in progress while novice learners must be provided 

with essential support (Kalyuga & Renkl, 2010). 

 

Oksa, Kalyuga, and Chandler (2010) conducted a study comparing the 

instructional efficiency of Modern English explanations of parts of plays written 

by Shakespeare integrated within original Elizabethan English Text. The first 

experiment showed that an explanatory notes group reported lower cognitive load 

and performed better on a comprehension post-test than the control group when 

students did not have any prior knowledge of the text. In Experiment 2 the same 

material was given to a group of Shakespearean experts and a reverse effect was 

demonstrated. The control group’s performance was better than the performance 

of the experimental group since the explanation turned out to be redundant for the 

expert participants. Experiment 3 replicated the results of Experiment 1 but with a 

different Shakespearean text. The results showed the advantages of explanatory 

notes. The efficiency of instructions depended on the level of expertise of the 
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learners, thus showing an expertise reversal effect in the text comprehension area. 

Integrated explanatory text was beneficial for low-level knowledge learners. On 

the other hand, for learners who had more advanced and automated knowledge 

structures, the need to process information that was redundant for them may have 

generated an unnecessary working memory load. Thus, guidance could become 

harmful for experienced learners.  

 

Nückles, Hübner, Dümer, and Renkl (2010) conducted another study in a 

non-technical area of journal writing in a developmental psychology courses. 

Journal writing is learner reflection on what has been studied previously. It was 

established previously that instructional support in the form of prompts relevant 

to suitable cognitive and metacognitive strategies could maximize productive, 

germane cognitive load and improve learning.  In Experiment 1, students were 

asked to respond to each weekly session by writing a journal entry for a whole 

term.  The experimental group was given cognitive and metacognitive prompts, 

whereas the control group did not get any prompts. During the first half of the 

term, the experimental group performed better than the control group and used 

more strategies in their writings. However, towards the end of the term, the 

number of cognitive and metacognitive strategies used by the experimental group 

lessened while the number of cognitive strategies used by the control group 

increased. The control group performed better than the experimental group whose 

members were not as stimulated to learn as well as at the beginning of the term.   
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In Experiment 2, the prompts were gradually eliminated to avoid their 

negative consequences. Once the students in the experimental group started using 

the prompted strategies, they were eliminated gradually. As for the control group, 

the prompts were given all the time. The results indicated that the group with the 

fading prompts performed better and used more strategies than the group with 

permanent prompts that used increasingly less cognitive strategies. The results 

thus showed an expertise reversal effect in writing-to-learn. At the start of the 

term the students made good use of the prompts in applying strategies. However, 

as the students became more skilled in writing journals and in applying these 

strategies, the guidance became more redundant and caused an extraneous 

cognitive load hampering the ability of the students to apply the desired 

strategies. The gradual elimination of the prompts as a form of instructional 

guidance with increased student’s skill was more efficient than continuously 

providing the prompts. 

 

Blayney, Kalyuga, and Sweller (2010) investigated the interactions 

between the isolated-interactive element instructional formats and levels of 

learner expertise with undergraduate accounting students in their first year. The 

results obtained showed that the expertise of the learners interacted with 

instructions that provided isolated or interactive elements of information at the 

beginning stages of instruction. The isolated-interactive effect suggests that 

learning could be improved by giving learners elements of information 

sequentially, in isolation at the beginning of tasks instead of presenting this 

information in a fully interactive form. Novice learners gained from this 
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technique. However, more advanced learners did not benefit from it since they 

were not given the chance to make good use of their knowledge base. Since 

becoming an expert is a gradual process, changing instructional formats from 

isolated to interacting elements requires the elimination of intermediate formulas 

slowly. 

 

Based on the results of the previous experiments, it is expected that novice 

learners would benefit from guided instruction that decreases their mostly random 

search for solutions steps. However, for experienced learners, studying detailed 

instructions with guidance and integrating this information with their available 

knowledge that already provides the same information may add to the extraneous 

load. On the other hand, less knowledgeable students would benefit more from 

worked examples that provide them with required guidance rather than from 

problem solving with less guidance.  

 

 

4.3 Some Worked Example Experimental Results 
 

Conventional problems include a given and a goal statement. Worked 

examples, in addition to the given and the goal statement, present the steps 

leading to the required solution. Based on available research, instruction that 

depends on worked examples is more efficient than solving problems, especially 

for novices, because less time and mental effort is usually required (Van Gog, 

Kester, & Paas, 2011). 
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Van Gerven, Paas, van Merriënboer, and Schmidt (2002) compared the 

effect of studying examples on problem solving in elderly and young learners. 

Thirty psychology students were part of the first group of participants. The 

second group included 24 elderly participants. The results showed that worked 

examples were more effective for training the elderly than conventional problems. 

In addition, elderly participants devoted more working memory resources to 

learning when studying worked examples than solving conventional problems.   

 

Bobis, Sweller, and Cooper (1985) conducted a series of five experiments 

to establish the knowledge needed to solve algebra problems and methods to 

accelerate the acquisition of this knowledge. The results of the first experiment 

with Year 9 and 11 secondary school students, and university mathematics 

students, demonstrated that more experienced students had better representations 

of algebraic equations compared to less experienced learners. The following 

experiments focused on the effect of worked examples on the acquisition of the 

knowledge required for effective problem solving. The results showed that 

worked examples needed less time to be processed than solving conventional 

problems. Moreover, the problems that followed the study of worked examples 

were solved faster with less mathematical mistakes. It was also established that 

using example-problem pairs (i.e., solving a similar problem right after studying 

an example) was more effective than studying examples only.  

 

Another study was conducted to test the efficiency of three instructional 

procedures that were based on examples (example-problem pairs, problem-
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example pairs, and fading worked examples) in order to teach serial and parallel 

electrical circuit analysis to learners with low or high levels of prior knowledge 

(Reisslein, Atkinson, Seeling, & Reisslein, 2006).  It was shown that learners with 

less prior knowledge gained the most from example-problem pairs. Learners with 

high levels of prior knowledge gained most from problem-example pairs. This 

study supported the expertise reversal effect, which suggested that the 

effectiveness of instructional procedures in example-based learning depended on 

levels of learner prior knowledge. 

 

While studying example-based problems, learners usually face difficulties 

if they are not given enough support and guidance. The result of this would be 

superficial acquisition of problem categories and solution processes. The cause of 

this problem might be that conventional worked examples present problem 

categories and category-specific solution processes in a molar format. In this 

format, problem categories and solution processes are considered as central 

elements of analysis that cannot be separated into parts. Learners might be 

overcome by these difficulties because of the many structural problem 

characteristics and steps in a solution that they must deal with at the same time 

leading to a high intrinsic cognitive load. In order to work out this problem, a 

modular example presentation was created that concentrated on the function of 

single structural problem characteristics and single solution steps (Catrambone, 

1994; Gerjets, Scheiter, & Catrambone, 2004). Gerjets, Scheiter, and Catrambone 

(2006) conducted two experiments to compare traditional molar worked examples 
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that focused on problems and their solution procedures with modular worked 

examples thus reducing intrinsic load.  

 

In Experiment 1, 96 university students of different majors were instructed 

in complex probability concepts. They had studied elementary concepts of 

probability in high school and had little exposure to more complex concepts. The 

results showed that modular worked examples were superior to molar worked 

examples. Learners who studied modular examples required less learning time, 

retrieved less examples, performed better on post-tests, and indicated less 

cognitive load than the learners in the molar examples group. However, there was 

no evidence to support the idea that more instructional explanations benefit 

learners. On the contrary, the more explanations associated with the examples, the 

less efficient they were with no indications of better performance. As for 

cognitive load, detailed examples reduced the effort needed to understand the 

material and enhanced the learners’ feeling of success. The conclusion was that 

though students benefited from modular work-examples, the two groups did not 

benefit from the additional support that was given. The instructional explanations 

might have been redundant for learners in both approaches but the reasons for this 

were different. Learners who studied modular work examples had more cognitive 

resources to use while engaging in self-explaining activities. Even though more 

time was used to study these detailed examples, the effort they exerted was not 

necessary to guarantee their understanding of the underlying principle for the 

solution approach. However, learners who studied molar examples would have 

gained from instructional explanations given, but they abstained from doing this. 
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These students were not able to come up with the explanation of the solution steps 

on their own. Thus instructional explanations might sometimes hamper self-

explanatory activities.  

 
In Experiment 2, 91 students from different majors participated. They 

were all familiar with basic concepts of probability. The purpose of the 

experiment was to investigate the efficiency of asking students to give elaborated 

self-explanatory steps towards the solutions. Every second example was 

substituted with a medium-detailed example and a prompt requiring learners to 

add self-explanations. The suggestion was that self-explanation prompts would 

enhance learning for students who were given modular examples. These 

participants were supposed to have enough cognitive resources to come up with 

the self-explanatory steps. Previously, it was assumed that learners presented with 

molar examples would not have the needed cognitive resources, and so would not 

gain from self-explanation prompts. However, based on the results of the first 

experiment confirming that self-explanations might lessen the effort needed by 

learners to understand the material, self-explanation prompts in molar examples 

may reduce the possibility of illusions of understanding leading to inefficient 

instructional explanations. The assumption was that if students were asked to 

provide self-explanations, they would realize that they did not understand the 

material and as a result, they might put in more effort and time to process the 

examples. Consequently, it was not evident whether the self-explanation prompts 

for molar examples might be inefficient due to the lack of cognitive resources or 
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because they resulted in a greater need to process instructional material (Gerjets et 

al., 2006).  

 

At first it was suggested that instructional explanations might enhance 

learning of molar examples. However, the results of Experiment 1 indicated that 

performance was not enhanced when instructional explanations were used 

whether in molar or modular examples even though learners had the mistaken 

notion that they would understand better if more instructional explanations were 

provided. Instructional explanations may not have been required for both methods 

but for different causes. Learners working with modular examples have sufficient 

resources to engage in self-explanatory tasks on their own which means that they 

do not need instructional explanations. Learners who worked on molar examples 

abstained from studying instructional explanations because they had illusions of 

understanding. It was suggested that if they were encouraged to come up with 

these explanations on their own, then these illusions would be surmounted.  

Experiment two proved this to be wrong. Performance was even worse than 

expected.  Learners dealing with modular examples were obliged to come up with 

self-explanations for materials that they comprehended. These results were in line 

with the redundancy effect discussed earlier which states that learning is 

hampered when learners study materials they already know (Gerjets et al., 2006).   

 

Research that has been conducted has indicated that for novices solving 

problems as an instructional tool is not as efficient as worked examples. The latter 

requires less time and mental effort in order to get to superior transfer which 
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depends on schema acquisition because both the information related to the types 

of problem and the related operators are stored in problem schemata. Thus 

students perform better on transfer problems when they study worked examples. 

They identify the structural characteristics of a problem they have been exposed 

to and they use the solution steps that are related to that problem. However, in 

order for students to join problem operators that were learned earlier and go 

through far transfer and solve problems of different categories, they need to 

understand a procedure. They need to recognize why certain steps are used in a 

certain order along with the principles of the domain. To make it simpler they 

need to recognize why certain structural problems are related to a certain operator 

(Van Gog, Paas, & van Merriënboer, 2004). Thus using Young’s (1983) wording, 

a lot of the worked examples used in earlier research do not permit far transfer 

since they do not foster the increase in mental models that enhance performance, 

learning and logical thinking. Paas and Van Merriënboer (1994) call the examples 

that present the given state, the solution steps, and the goal state as the product 

method. As a result, these examples might be referred to as product-oriented 

worked examples since the reason for choosing and applying the operators is not 

incorporated in a schema for it is not part of the examples. When students are able 

to come up with sufficient interpretations themselves, the information grows into 

their knowledge structures. A process method of worked examples which presents 

to the learners the ‘why’ and ‘how’ information and application of operators 

might have positive effects on students’ understanding and far transfer that are 

supported by the mental models that are a result of such information (Van Gog, 

Paas, & van Merriënboer, 2004). The manner how the solution is reached, i.e. 
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(how) along with (why) it was reached are considered essential since learners 

often asked them when being presented with worked examples (Hoogveld et al., 

2002; Hoogveld et al. 2003). 

 

Van Gog and colleagues (van Gog, Paas, & van Merriënboer, 2006a, 

2006b) developed the concept of process-oriented worked-out examples. The 

difference between them and the conventional worked examples is that they 

include the (how) and the (why). Van Gog et al. (2006a) distinguish between 

recurrent (i.e., algorithmic) and non-recurrent (i.e., heuristic strategies) essential 

skills that make up a complex cognitive skill. Information on (why) should be 

included when learners are presented with recurrent constituent skills. However, 

when heuristic strategies are presented, information on how to apply these 

strategies should be added along with why to apply them in order to enlighten 

learners about the sense of the task. Heuristic examples are a special type of 

worked examples that are associated with problems that do not require students to 

provide the steps towards the solution. Students are supposed to present the 

reason behind the solution given and they should also identify how to investigate 

the problem so as to comprehend the conjecture. After the investigation, a 

heuristic worked out example provides students with an accurate and specific 

proof for the conjecture. The common feature of heuristic examples and process-

oriented examples is the addition of heuristic strategies. As for the difference 

between them, both recurrent and non-recurrent skills are taught in process-

oriented examples while heuristic examples focus on non-recurrent skills (van 

Gog, Paas, & van Merriënboer, 2006a, 2006b).  
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While product-oriented worked examples give only a problem solution, 

process-oriented worked examples provide the students with the underlying 

principle behind the solution which is very important in order to reach efficient 

transfer. A study was conducted in the field of electrical circuit trouble shooting. 

It included 82 students in their fifth year of secondary education. They did not 

have any experience in applying their knowledge of electrical circuits to 

troubleshooting. Before the experiments, they were randomly allocated to four 

conditions corresponding to product-product, process-process, product-process, 

and process-product training sequences. Two sessions of training worked-

examples were given to the students, and each one was followed by a session of 

transfer test problems. However, the study showed that germane cognitive load 

would at first be imposed when studying process-oriented worked examples and 

the result would be better efficiency on the first test than studying product-

oriented worked examples.  However, carrying on with studying process-oriented 

worked-examples imposed an extraneous cognitive load that impeded learning 

and resulted in less efficiency on the second test in comparison with studying 

product-oriented worked examples. The hypothesis was that on the first test, the 

process-process and process-product conditions would score better than the 

product-product and product-process conditions. However, when learners become 

familiar with the solution procedure, processing the additional process-oriented 

information would become redundant and this could affect the effectiveness of 

transfer. Eliminating this information and presenting learners with product-

oriented worked examples would lead to improved effectiveness. This suggests 
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that on the second test, the process-process condition would be less effective. The 

second hypothesis suggested that the process-product condition could be more 

effective than the product-product or the product-process conditions. The results 

confirmed the hypothesis discussed above (van Gog, Paas, & van Merriënboer, 

2008).   

 

Hilbert, Renkl, Kessler, and Reiss (2008) conducted an experiment to test 

the efficiency of heuristic examples in helping learners to enhance their 

knowledge about mathematical skills and analyse the advantages of self-

explanation prompts. It was found that self-explanation prompts were beneficial 

to learners in helping them to attain conceptual knowledge. In addition, it also 

benefited learners’ skills. Another finding was that prompting learners to 

recognize the phases of problem solving was helpful in the acquisition of not only 

proving skills but also conceptual knowledge about the proving process. Finally, 

another result was that the efficiency of heuristic examples was weakened by the 

gaps to be filled in the examples. Studying heuristic examples proved to be more 

beneficial than working with related geometry tasks. It was also found that 

learners who had better conceptual knowledge were more successful in solving 

geometry tasks that required solving. The importance of this study was that it 

demonstrated the efficiency of example-based learning in the acquisition of both 

algorithmic and heuristic knowledge in mathematic.   

 

A quasi-experimental design was used in a study that investigated the 

effects of using worked examples in a primary school mathematics curriculum 
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(Van Loon-Hillen, Van Gog, & Brand-Gruwel, 2010). In this study, a realistic 

instructional setting was used and the study lasted for three weeks. The results did 

not show any significant differences in performance between the worked example 

group and the problem solving group. However, the worked examples group 

required less time to reach the same level of performance. 

 

 

4.4 Summary  
 

Worked examples represent one of the most efficient methods of 

instruction that effectively decrease extraneous cognitive load which permits 

more working memory resources to be allocated to activities that foster learning 

and enhance transfer. However, as students advance through training, the 

effectiveness of worked examples may decline leading to the expertise reversal 

effect. The main implication of this effect for the design of example-based 

learning is that the levels of instructional guidance in examples should be 

appropriately managed. It may involve presenting learners initially with fully 

guided worked examples along with self-explanation guidelines, and then 

gradually removing this guidance as learners become more proficient in the task 

domain. For example, in the successive presentations of examples, the explained 

sub-steps could be gradually replaced with problem-solving questions until 

eventually, students are required to solve novel problems (a fading technique), 

(Renkl, Atkinson, & Große, 2004). 
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In conclusion, research has demonstrated that instruction which relies 

heavily on worked examples is more effective for novice learners as opposed to 

instruction consisting of problem-solving tasks. However, unnecessary 

instructional guidance provided in worked examples might become redundant and 

impose an extraneous cognitive load on more expert learners and thus affect their 

performance.  

 

It has been observed that students find it difficult to transfer knowledge 

even between problems in the same domain. Process approaches and product 

approaches are two different methods that bring about transfer. In traditional 

product-oriented worked examples, solution steps are provided to demonstrate 

how to reach the goal state with no explanation why these problem-solving steps 

are used. In contrast, process-oriented worked examples provide learners with the 

solution steps and strategies (how) and the principles (why) explaining reasons 

behind choosing those steps. 

 

Eliminating search that is not necessary and enhancing schema 

construction are reasons why worked examples are efficient. In order for students 

to succeed in solving problems, they need to identify the structural problem 

features and the category to which a problem belongs, and remember the steps 

related to solving it and reaching a solution. Transfer performance depends on the 

acquisition of specific schemas since the information concerning types of 

problems and their related steps are stored in problem schemas.  
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The purpose of this study was to investigate optimal degrees of guidance 

when using geometry worked examples. Research has demonstrated that 

instruction that relies heavily on worked examples is more effective for novices as 

opposed to instruction consisting of problem-solving. However, excessive 

guidance for expert learners may reduce their performance. Three conditions were 

used: Theorem & Step Guidance; Step Guidance; and Problem Solving. In the 

Theorem & Step Guidance condition, students were provided with both the steps 

necessary to find each angle and the theorem used to justify the step. In the Step 

Guidance condition, learners were presented only with the sequence of steps 

needed to reach the answer without indicating the theorem required to make a 

step. The problem solving condition required learners to solve the problems with 

no guidance.  

 

It was hypothesized that the Problem Solving condition would impose a 

heavy cognitive load associated with search while providing information 

concerning well-known theorems in the Theorem & Step Guidance approach 

would be redundant for experts but might be beneficial for novices. In other 

words, as long recognized by cognitive load theory, most students need to learn to 

recognize problem states and the moves associated with those states and this 

information is provided by Step Guidance without additional redundant 

information. Moreover, information concerning theorems should only be provided 

to students who have yet to learn and automate theorem schemas. 
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5.1 Introduction  
 

The core goal of cognitive load theory is the creation of learning 

environments that make optimal use of cognitive resources and reduce extraneous 

load in order for learning to take place (e.g., Paas, Renkl, & Sweller, 2004; Paas, 

Tuovinen, Tabbers, & van Gerven, 2003). The method of presenting information 

to learners affects the cognitive load they experience when acquiring this 

information. Consequently, it is important to measure cognitive load in order to 

provide empirical evidence that would support a cognitive load-based 

interpretation of results.  

 

It has been proposed that cognitive load is a concept associated with two 

aspects of learner performance on a certain task: mental load and mental effort 

(Paas, Tuovinen, et al., 2003). The cognitive resources that are needed for a 

certain task make up mental load which is a result of how the task is presented in 

terms of its information and structure (Paas, 1992). On the other hand, the 

cognitive resources that are devoted to a certain task make up mental effort (Paas, 

1992; Paas, Tuovinen, et al., 2003). Various suggested cognitive load 
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measurement tools can be classified into objective and subjective measures 

(Brünken, Plass, & Leutner, 2003; Brünken, Seufert, & Paas, 2010; Kalyuga, 

2009b) 

 

 

5.2 Objective Evaluation of Cognitive Load 
 

Objective measures are based on observing the behaviour or performance 

of the learner, or associated physiological signs. These measures are not very 

commonly used when evaluating cognitive load theory within a cognitive load 

framework. Some examples of objective measures are heart-rate variability (Paas 

& van Merriënboer, 1994a) and cognitive papillary response (van Gerven, Paas, 

van Merriënboer, & Schmidt, 2004). The effects of the variation in levels of 

cognitive load on physiological measurements have been usually studied in 

laboratory conditions. Brünken et al. (2003) observed an indirect relation between 

levels of cognitive load and increased heart rate as a result of high stress. Pass and 

van Merriënboer (1994a) did not find a relation between heart-rate measures and 

the changes in levels of cognitive load. Moreover, this method interfered with the 

learning process and was not very convenient in real learning situations.  

 

Another objective but direct option for evaluating cognitive load is the 

dual-task method. It assumes that less cognitive resources that are involved in a 

primary task would result in more available resources thus leading to better 

performance on a secondary task. As a result, quality of performance on a 
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secondary task could be used as an indicator of cognitive load involved in the 

primary learning task. Brünken, Steinbacher, Plass, and Leutner (2002) tested the 

efficiency of a dual-modality learning condition as opposed to a single modality 

condition when studying the human cardiovascular system (primary task). A 

visual-monitoring secondary task was presented alongside the primary task. This 

secondary task involved students acting in response to changes in the colours of 

letters on a screen. Results showed that their response was faster when the 

primary task was presented in a dual-modality audiovisual format than when the 

primary task was presented in a visual-only format. This proved that the modality 

effect was related to the levels of cognitive load that were brought about by the 

method of presenting the materials.  

 

Nevertheless, the dual task method has rarely been used in cognitive load 

research (Paas, Tuoviinen, et al., 2003), though the viability of this method  has 

been established (e.g., Brünken et al., 2003; Chandler & Sweller, 1996; Marcus et 

al., 1996; Sweller, 1988; van Gerven, Paas, van Merriënboer, & Schmidt, 2006). 

The main reason is that this method interferes with the learning processes 

involved in the primary task.   

 

Another way of objective evaluation of cognitive load is based on the 

analysis of learner verbal think-aloud reports collected simultaneously with 

performing the learning task. Learners should be taught and trained on how to 

think aloud prior to the learning task. Moreover, certain questioning skills along 

with careful rubrics for the analyses of the reports are required in order to gather 
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relevant data. These concurrent verbal reports could help in revealing learners’ 

cognitive processes, but they could hinder the learning process itself. As a result, 

they might not be efficient when dealing with high cognitive load conditions 

(Kalyuga, 2009b). 

 

 

5.3 Subjective Evaluation of Cognitive Load  
 

The subjective measures of cognitive load have been commonly used in 

many research studies. The reason behind this is the fact that this method is 

simple to apply, valid, uncomplicated, straightforward, and does not interfere with 

learning. Moreover, its results are highly correlated with more advanced objective 

methods of cognitive load evaluation (Ayres, 2006b; Paas, 1992).  It suggests that 

learners are capable of introspecting their cognitive processes and indicating the 

magnitude of their mental effort on a numerical scale. Paas (1992) used a one-

dimensional 9-point symmetrical category rating scale (Likert-type scale) for 

assessing the learners’ mental effort in different phases of learning and 

performance. Later on and in other studies, different scales were used, such as a 

7-point scale (e.g., Kalyuga et al., 2004; Marcus et al., 1996; Tindall-Ford et al., 

1997) and a 5-point scale (e.g., Halabi, Tuovinen, & Farley, 2005; Salden et al., 

2004).  It should be mentioned that in the majority of studies conducted within a 

cognitive load framework, mental effort was related to instructional tasks  (e.g., 

Marcus et al., 1996) and hardly ever was it related to performance tasks (e.g., 
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Paas & van Merriënboer, 1993) or to both (e.g., Kester, Kirschner, & van 

Merriënboer, 2006; Paas & van Merriënboer, 1994b).  

 

There are a variety of questions that are used to direct learners to scale 

their mental effort. In some studies learners were required to assess their mental 

effort while in others they were asked to assess the difficulty or complexity of the 

tasks presented to them. It was suggested that the more difficult the task was to 

learners the higher mental effort was put in. Nevertheless, it was observed that 

when tasks were very difficult to learners, they would not be stimulated to put in 

the required mental effort, and as a result, the assessment for task complexity 

might not be representative of the mental effort exerted. In addition to this, the 

average numerical value on the scale reflected overall cognitive load and did not 

show the value of any of the separate types (extraneous, intrinsic, or germane) of 

cognitive load, However, such separate measures could be obtained in controlled 

studies by changing one factor of cognitive load while keeping the others fixed 

(e.g., Ayres, 2006; Sweller, 2010). 

 

To assess cognitive load in this thesis, subjective ratings of mental effort 

were used. It is an uncomplicated and useful method which can be employed in 

classroom settings. A 9-point scale was used to detect differences of ratings of 

mental effort. The mental effort ratings of the test performance stages were 

gathered (except for Experiment 1 & 2). The evaluation of task difficulty was 

used since it was difficult for young learners to grasp the notion of mental effort.   
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5.4 Measurement of Instructional Efficiency 
 

For efficiency, both the learning result and learners’ cognitive load are 

essential. A learning condition is considered more useful if it has a higher average 

score on learners’ performance than an alternative condition. On the other hand, 

when two instructional conditions record the same average performance by 

learners, then they would be both considered at the same levels of usefulness. 

However, when mental effort is considered, the learning condition that requires a 

lower level of mental effort is the one with a higher level of instructional 

efficiency. Accordingly, the learning condition that needs more mental effort is 

considered to be less efficient than the one that requires learners to exert less 

mental effort.  

 

Within a cognitive load framework, Paas and van Merriënboer (1993) 

suggested a method for evaluating instructional efficiency. The formula 

2
)( RPE −

=  in which (E) represents the relative efficiency of the instructional 

condition, (P) the standardized z-scores for test performance scores, and (R) the 

ratings of cognitive load related to test tasks. Based on this formula, a learning 

condition would be more efficient when lower subjective ratings of cognitive load 

related to performing test tasks are obtained together with higher performance 

scores. Representing the cognitive load and performance z-scores in a cross of 

axes makes the graphical analysis of the formula simpler by using 2  in the 

denominator (like the following figure). For any point on the graph, relative 
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efficiency can be calculated by determining the distance from this point to the line 

of zero efficiency (P = R; or E = 0). Over this line is the high efficiency area 

(higher performance with comparatively lower cognitive load) with E > 0. Under 

this line is the lower efficiency area (lower performance with higher cognitive 

load) with E < 0 (Paas & van Merriënboer, 1993; van Gog & Paas, 2008). 

Mental Effort

Performance

Low Efficiency

High Efficiency

TSG
E = 0.18

SG
E = 1.24

PS 
E = -1.42

E = 0
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5.5 Objective of the Study  
 

Though research shows that for novices, instructions that depend on 

worked examples are more effective than those that consist of problem solving, 

disproportionate guidance for expert learners may reflect negatively on their 

performance. The purpose of this study is to examine the degree of guidance 

needed in geometry worked examples as levels of expertise change. The next 

chapter discusses the four experiments conducted and the results obtained.  
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6.1 Introduction 
 

This experiment was designed to investigate the effects of varying the 

amount of guidance provided in geometry worked examples. Three conditions 

were used: Theorem & Step Guidance, Step Guidance and a Problem Solving 

condition. The subject area was finding angles that are held between parallel 

lines. In the Step Guidance worked examples, learners were told which angle they 

had to find for each step but not told the theorem they had to use to find the angle. 

Learners were required to ‘complete’ that aspect of the move themselves. In the 

Theorem & Step Guidance worked examples, learners were guided in each step 

and given the theorem behind each move. It was hypothesized that for students 

who knew the relevant theorems, Step Guidance worked examples that described 

the procedure required to solve a problem could be more readily incorporated into 

existing knowledge in long-term memory compared to Problem Solving or a 

Theorem & Step Guidance approach. In the case of a Problem Solving approach, 

the use of a means-ends strategy is likely to impose an extraneous cognitive load. 

In the case of a Theorem & Step Guidance approach, an explanation of the 
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relevant theorem is likely to impose an extraneous cognitive load due to the 

redundancy effect. 

 

 

6.2 Method 
 

6.2.1 Participants 

The participants were 45 Year 8 students attending a private school in Beirut, 

Lebanon. The students were aged between 13 and 14 years, and were all at the 

same Mathematical level, as determined by their class teachers. The grading of 

students by class teachers according to mathematical skills is standard practice 

and is part of the school curriculum in Lebanese schools. These students had not 

been exposed previously to finding angles using properties of parallel lines. 

Students were randomly assigned into three equivalent groups of 15. 

 

6.2.2 Material 
 
For the acquisition phase, three theorems were selected from the parallel lines 

topic that forms part of the mathematics curriculum material suitable for students 

at this stage.  The three theorems were related to finding the angles associated 

with parallel lines. The selected angles were alternate angles, corresponding 

angles and co-interior angles; these angles were formed when parallel lines are 

presented. The figures forming these parallel lines were not previously sighted by 

any students involved in the experiment. The same figures were then reproduced 
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with steps and full solutions including the theorems used or with steps to follow 

with no theorem indicated, or with no solution at all. The reproduced figures were 

identical in size, including angle size, and retained the same angle name, for each 

figure category (see Figures 1 & 2). 

 

The test material included finding angles based on two parallel lines, with 

4 problems similar to the acquisition problems, with exactly the same figure as in 

the acquisition problem, but with a different measure of the given angle, and 3 

transfer problems in which the given angles, the angles to be found, and the 

transversals were in different positions than in the corresponding acquisition 

problems. The test problems can be found in Appendix A. 

 

6.2.3 Procedure  
 

The experiment consisted of a learning phase (25 minutes) and a test phase (35 

minutes). It was conducted over one school session, with each child tested 

individually.  Two days prior to the experiment, a revision session occurred (45 

minutes) to review the prerequisite material needed to conduct the experiment. 

The session was similar for all groups and was given to all the students in order to 

remind them of the geometric terminology used in the experiment (bisector of an 

angle, supplementary angles add up to °180 , complimentary angles add up to 

°90 , parallel lines, transversal, alternate angles, corresponding angles, co-interior 

angles). Participants were informed that they would be given sets of geometric 

figures related to angles formed between parallel lines and a transversal. 
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Participants were also advised that they would be allowed the same fixed time for 

learning. The participants were then randomly assigned to one of the three 

instructional groups. 

During the learning phase, students in each group were presented with 

three pairs of problems. In the Theorem & Step Guidance condition, each pair 

consisted of a worked example followed by an identical problem to solve with 

only a change in the measure of the given angle. For example, students were 

shown a Theorem & Step Guidance example indicating steps to follow in order to 

find the measure of an angle formed by one pair of parallel lines that are cut by a 

transversal, with a related angle that measured 130 . Additionally, students were 

given the reason/theorem used behind each step. Then they were asked to solve an 

identical problem where the related angle had a measure of 140 . None of the 

worked steps were indicated on the paired problem. All problem pairs were 

similar in their content. The set of problems used in the Theorem & Step 

Guidance condition can be found in Appendix B. 

An example of a Theorem & Step Guidance worked example is presented in 

Figure 1. 
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Figure 1. A worked example presented to the Theorem & Step Guidance group.
 

 

In the Step Guidance condition, learners were given the same figure and 

angle measure (130 ) and were provided with the guidance for each step but not 

told the theorem they had to use. Learners were required to ‘complete’ that aspect 

of the move themselves. Then, as was the case for the Theorem & Step Guidance 

group, they were asked to solve the paired problem where the related angle has a 

measure of 140 . The set of problems used in the Step Guidance condition can be 

found in Appendix C. 

An example of the Step Guidance condition is presented in Figure 2.  
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Figure 2. A worked example presented to the Step Guidance group. 
 

 

Participants in the problem solving condition were just given the figure 

showing the parallel lines and the angle that they needed to find without any 

solution information. Then they were asked to solve the same pair problem as the 

other two groups. The set of problems used in the problem solving condition can 

be found in Appendix D. 

Each group studied a set of three problem pairs with each problem 

immediately followed by the next problem presented on a single sheet of paper 

with sufficient space to write a solution. Students were asked to work on the first 
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problem that included finding the size of a certain angle under one of the three 

conditions (Theorem & Step Guidance or Step Guidance or Problem Solving) for 

four minutes and then solve the paired problem. The time needed to solve the 

paired problem was measured up to a maximum of four minutes. Students were 

stopped if they had not solved the paired problem within four minutes. Students 

who finished the paired problem in less than four minutes were asked to review 

their work and wait till the time expired to make sure that all students took the 

same time for each problem. If students gave an incorrect solution they were 

asked to try again within the four-minute time limit. This procedure was followed 

for all problem pairs for all groups. The initial acquisition problem was available 

to students while they were solving the subsequent paired problem. 

A test phase immediately followed the learning phase. It consisted of four 

problems similar to the acquisition phase problems and three transfer problems. 

All testing tasks were administered on an individual basis.  

Since each problem had three solution steps, the test score was determined 

by allocating up to 3 marks for each test problem since there were 4 problems, the 

highest score that participant could achieve in the similar test was 12 points. Half 

a mark was allocated for a correct solution step and half a mark was allocated for 

a correct explanation. Three marks were allocated for a correct task solution step 

with correct explanations. Two marks were allocated if one error occurred in a 

solution step and explanation, and one mark was allocated if two errors occurred 

in solution steps and explanations. The transfer test score was determined using 

the same marking system as the similar test problems, providing a score out of 9 
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for each participant since there were 3 transfer problems, the highest score that 

participant could achieve was 9 points.  

Each problem was provided on a separate sheet of paper. Participants were 

asked to provide written reasoning about their solutions. They were asked to work 

as rapidly and as accurately as possible. Students who finished the test in less than 

the allocated time (35 min), were asked to review their work and wait till the time 

expired to make sure that all students took the same time for each task. No 

feedback was given to participants until the whole experiment was completed. 

The sheets used during the learning phase were not available to participants 

during the test phase.  

 

 

6.3 Results  
 

Variables 
 
The dependent variables under analysis were the similar and transfer test scores.  

The independent variables were instructional designs (Problem Solving condition, 

Step Guidance condition and Theorem & Step Guidance condition).  Means and 

standard deviation are provided in Table 2. 

  

Similar test results  
 
A one-way analysis of variance (ANOVA) indicated a significant difference 

between the experimental conditions on the similar test scores, F (2, 42) = 8.20, 
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MSE = 2.66, p = .001, 2
pη = 0.28. According to a Tukey HSD post-hoc test, the 

Step Guidance condition significantly outperformed the Problem Solving 

condition, p < .001. The Step Guidance condition marginally outperformed the 

Theorem & Step Guidance condition, p = .06. There was no significant difference 

between the Problem Solving condition and Theorem & Step Guidance condition, 

p = .23. (A 0.20 effect size was considered small; 0.40 medium, and 0.60 large. 

These classifications, based on Hattie, 2009, were used through this thesis.). 

 

Transfer test results 

  
An ANOVA indicated a significant difference between the experimental 

conditions on the transfer test scores, F (2, 42) = 21.07, MSE =1.81, p < .001, 

2
pη = 0.50. According to a Tukey HSD post-hoc test, the Step Guidance condition 

significantly outperformed the Problem Solving condition, p < .001. The Theorem 

& Step Guidance condition significantly outperformed the Problem Solving 

condition, p < .001. The Step Guidance condition marginally outperformed the 

Theorem & Step Guidance condition, p = .09. 
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Table 2 Means and Standard Deviations for the Similar and Transfer Test Scores 

for Different Instructional Conditions (Experiment1) 

 
 n = 45 
Instructional Condition  Theorem &  

Step 
Guidance 

Step 
Guidance 

Problem 
Solving 

 

 n = 15 n = 15 n = 15  
Total Scores for Similar Test 

M 8.67 10.07 7.67 

SD 2.13 0.88 1.63 

Total Scores for Transfer Test 

M 4.00 5.07 1.93 

SD 1.65  0.88 1.39 

Note: The maximum score was 12 for the similar test and 9 for the transfer tests. 
 
 
 

 

6.4 Discussion 
 

The results of Experiment 1 showed a significant advantage of the 

Theorem & Step Guidance condition over the Problem Solving condition on 

transfer problems but not on similar problems while the Step Guidance condition 

was more effective than the Problem Solving condition on both similar and 

transfer problems. There was no significant difference between the Theorem & 

Step Guidance condition and the Step Guidance condition on both the similar and 

transfer test, but the means favoured the Step Guidance condition on both tests. 
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The results of the first experiment revealed that learning to solve problems 

primarily consists of learning to recognise problem states and their associated 

moves. It was hypothesized that the performance of the Step Guidance condition 

would be higher than the Theorem & Step Guidance condition, providing an 

example of the redundancy effect due to the presence of unnecessary information 

in the Theorem & Step Guidance condition that imposes an extraneous cognitive 

load. It was also hypothesized that a normal worked example effect (the Theorem 

& Step Guidance and the Step Guidance conditions superior to the Problem 

Solving condition) will be revealed. The results supported this hypothesis. The 

next experiment was conducted to test whether the expertise reversal effect might 

influence these findings. 
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7.1 Introduction 
 

Experiment 1 compared the effectiveness of the Step Guidance, Theorem 

& Step Guidance, and the Problem Solving conditions. The results of the 

experiment supported the effectiveness of both the Step Guidance and the 

Theorem & Step Guidance conditions over the Problem Solving condition. The 

results suggested that under at least some conditions, learning to recognise a 

problem state and its associated moves and learning the relevant theorems are 

important.  

 

The purpose of Experiment 2 was to examine the expertise reversal effect.  

It was hypothesized that more expert learners might perform better under a Step 

Guidance condition as they need to learn to identify problem states and do not 

need to learn the relevant theorem at that stage because it has already been 

learned. Emphasising the theorem might impose an unnecessary extraneous 

cognitive load. It also can be hypothesised that novices might perform best in the 

Theorem & Step Guidance condition, as they may require an emphasis on the 

theorem as well as the solution steps. 
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7.2 Method 
 

7.2.1 Participants  
 
Ninety students from Year 8 of a Lebanese private school participated in this 

study. The students were aged between 13 and 14 years. They were divided into 

two groups: Low achievers and high achievers. The students were chosen 

according to their school Mathematics level. The high achievers were students in 

the highest level of Mathematics Year 8 class at the school and the low achievers 

were students who attended the lowest level of Year 8 Mathematics. Students at 

each ability level were divided randomly into three groups of 15. These students 

had not been exposed previously to finding angles using the properties of parallel 

lines. The researcher depended on the school evaluation of each student’s level of 

achievement in Mathematics, and no prior knowledge test was conducted to test 

the participants’ familiarity with the parallel lines.  

 

7.2.2 Materials and procedure  
 
The same materials and procedure were used as in Experiment 1 with only one 

change in the structure of the Step Guidance condition in order to decrease the 

possibility of a redundancy effect that might be generated by the diagram. The 

Step Guidance problems of Experiment 1 were presented in Figure 2 and the Step 

Guidance problems of Experiment 2 were presented as in Figure 3. The new sets 

of Step Guidance condition problems as used in Experiment 2 are provided in 

Appendix E. When comparing Figures 2 and 3, it may be seen that the 
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requirement for students to provide the relevant reason or theorem when making a 

step was eliminated in Experiment 2. This was done because Step Guidance 

should emphasise the relevant steps and de-emphasise the theorems used to make 

each step in order to reduce the redundancy effect. In addition, the arrows were 

deleted for each step and the word Step was written closer to its associated angle 

in order to reduce a possible split attention effect. As for the test phase, it was also 

the same as in Experiment 1 except for a modification in the marking: 1 mark was 

allocated for a solution step (rather than half) with no marks for an explanation as 

students were not required to give reasons or explanations. The total scores of the 

similar test were out of 12 (the highest score participant could achieve was 12, 

since there were 4 similar test problems) and the total scores of the transfer test 

were out of 9 (the highest score participant could achieve was 9, since there were 

3 transfer test problems). In all other respects, the materials and procedure was 

identical for the two experiments.  

 

 



109

 

Figure 3. A worked example presented to the Step Guidance group for 

Experiment 2. 

 

 

 

7.3 Results 
 

Variables 
 
The dependent variables under analysis were the similar and transfer test scores. 

Means and standard deviation are provided in Table 3. The independent variables 

were the instructional design (Theorem & Step Guidance, Step Guidance, or 

Problem Solving) and the level of learner expertise (lower and higher levels). 
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Similar test results 
 
 
A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the scores of the similar test indicated a significant main effect for 

the three instructional conditions, F (2, 84) = 11.07, MSE = 3.63, p < .001, 2
pη = 

0.21. There was no significant main effect for the level of expertise, F (1, 84) = 

1.77, MSE = 3.63, p = .19, 2
pη = 0.02. The interaction between the three 

instructional conditions and the learners’ expertise levels was not significant, F 

(2, 84) = 0.73, MSE = 3.63, p = .49, 2
pη = 0.02, (see Figure 4).  

 

Table 3 Means and Standard Deviations for the Similar and Transfer Test Scores 

for Different Instructional Conditions and Levels Learner Prior Knowledge 

(Experiment 2) 

 
Expertise Level Lower learners 

n = 45 
Higher learner 

n = 45 
Instructional Condition  Theorem &  

Step 
Guidance 

Step 
Guidance 

Problem 
Solving 

 Theorem 
&  

Step 
Guidance 

Step 
Guidance 

Problem 
Solving 

 n = 15 n = 15 n = 15  n = 15 n = 15 n = 15 

Total Scores for Similar Test 

M 8.47 9.53 6.67  8.80 9.60 7.87 

SD 1.64 1.46 1.92  1.37 1.99 2.72 

Total Scores for Transfer Test 

M 3.00 4.00 1.73  3.40 4.33 1.80 

SD 1.25  1.51 1.03  1.35 1.45 1.52 

Note: The maximum score was 12 for the similar test and 9 for the transfer tests. 
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Theorem & Step
Guidance
Step Guidance

Problem Solving

Figure 4. Interaction between instructional format and level of learner expertise 

for overall similar test scores of Experiment 2. 

 
 

 

According to a Tukey HSD post-hoc test, the Step guidance condition 

significantly outperformed the Problem solving condition, p < .001. The Theorem 

& Step Guidance condition significantly outperformed the Problem solving 

condition, p < .05. There was no significant difference between the Step guidance 

and the Theorem & Step Guidance conditions, p = .15. 
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Transfer results 
 
A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the transfer test scores indicated a significant main effect for the 

three instructional conditions, F (2, 84) = 23.52, MSE = 1.86, p < .001, 2
pη = 

0.36. There was a non-significant main effect for the level of expertise, F (1, 84) 

= 0.86, MSE = 1.86, p = .36, 2
pη  = 0.01 There also was a non-significant 

interaction between the three instructional conditions and the learners’ expertise 

levels, F (2, 84) = 0.13, MSE = 1.86, p = .88, 2
pη = 0, (see Figure 5).  

 

According to a Tukey HSD post-hoc test, the Step Guidance condition 

significantly outperformed the Problem Solving condition, p < .001. The Theorem 

& Step Guidance condition significantly outperformed the Problem Solving 

condition, p < .001. The Step Guidance condition significantly outperformed the 

Theorem & Step Guidance condition, p < .05. 
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Theorem & Step
Guidance
Step Guidance

Problem Solving

Figure 5. Interaction between instructional format and level of learner expertise 

for overall transfer scores of Experiment 2. 

 

 

7.4 Discussion 
 

The results revealed significant differences between the experimental 

groups on the similar and transfer scores, while no significant differences were 

obtained between levels of learner expertise. The Step Guidance condition 

significantly outperformed the Problem Solving condition on both similar and 



114

transfer problems. Moreover, the Step Guidance condition significantly 

outperformed the Theorem & Step Guidance condition on transfer problems with 

no difference on this measure using similar problems as there was a ceiling effect 

on one of the similar problems. 72 of the 90 students attained a full mark on this 

question, thus it was eliminated in the next experiment. 

No significant difference was obtained on the expertise factor. A possible 

reason is that students were chosen from the same maths year but divided into low 

achievers and high achievers based only on the school classification of students 

who were placed in either a lower or higher maths class. No prior knowledge test 

was carried out to obtain two groups of learners with distinctively different levels 

of prior knowledge. This reason might explain the absence of differences between 

the two levels of maths ability on the dependent variables. 

A second experiment with a larger N again indicated consistency in the 

results. There was a significant advantage of both Step Guidance and Theorem & 

Step Guidance conditions over the Problem Solving condition, this time on both 

the similar test and transfer problems. Furthermore, in this experiment, the Step 

Guidance condition was superior to the Theorem & Step Guidance condition on 

the transfer although not on the similar problems.  

It was hypothesized that the Step Guidance condition might outperform 

the Theorem & Step Guidance condition providing an example of the redundancy 

effect due to the presence of the theorems that impose an unnecessary extraneous 

cognitive load.  In the case of the transfer problems, the results supported this 

hypothesis.  



115

It was also hypothesized that an interaction might occur revealing an 

expertise reversal effect, but due to the lack of a significant difference between 

different knowledge levels of the students used, an expertise reversal effect failed 

to be obtained. Based on these results, the next experiment was designed to test 

the expertise reversal effect using two different years or grades rather than 

different levels of math classes in the same year. Students in Year 8 and 9 were 

used in the experiment. While Year 8 students had never been exposed to the 

properties of parallel lines held by a transversal, Year 9 students had learnt this 

topic in school. It was expected that the increased difference in levels of expertise 

in Experiment 3 compared to Experiment 2 would yield an increased difference in 

knowledge levels leading to an expertise reversal effect. 
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8.1 Introduction 
 

In Experiment 2, a geometry problem was presented using Theorem & 

Step Guidance, Step Guidance and Problem Solving conditions. The results 

revealed that presenting a geometry worked example using Step Guidance proved 

to be a more efficient instructional method than presenting it in Theorem & Step 

Guidance or Problem Solving conditions. Furthermore, it was demonstrated that 

students performed significantly better on transfer problems, and marginally 

better on similar problems, if the learning phase was presented with a Step 

Guidance condition rather than being presented with Theorem & Step Guidance 

or Problem Solving conditions. Nevertheless, as indicated in the previous chapter, 

Experiment 2 did not yield an expertise reversal effect, possibly because there 

was an insufficient gap between levels of expertise. Thus, Experiment 3 was 

designed to test this possibility.  

 

The purpose of Experiment 3 was to investigate if the redundancy effect 

would apply to more knowledgeable learners with greater mathematical skills and 

exposure to properties of parallel lines. Participants were two groups of students 
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from Year 8 and Year 9.  In this experiment, familiarity with parallel lines was 

assumed to be an important factor determining the knowledge structures available 

in a learner’s long-term memory and, consequently, the effectiveness of a specific 

instructional technique. Therefore, possible interactions between alternative 

instructional techniques and levels of learner expertise using parallel lines were 

investigated. It was hypothesized that Year 8 students will perform better using 

the Theorem & Step Guidance condition and Year 9 students will perform better 

using the Step Guidance condition. As Year 8 students had not been exposed to 

the properties of parallel lines, having the theorem associated with each step 

might improve their understanding of the problem, whereas the presence of the 

theorem for Year 9 students might be redundant, thus imposing an extraneous 

cognitive load that reduces performance. 

 

 

8.2 Method 
 

8.2.1 Participants 
 
The participants were 180 Year 8 students and 180 Year 9 students attending a 

private school in North Sydney, Australia. Year 8 students were aged between 13 

and 14 years, Year 9 students were aged between 14 and 15 years. The students 

from each year were at the same Mathematical level, as determined by their class 

teachers. Students were chosen from the intermediate ability level of each class. 

The grading of students by class teachers according to mathematical skills is 
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standard practice and is part of the school curriculum in Sydney schools. Year 8 

students had not been exposed previously to finding angles using properties of 

parallel lines, but Year 9 students had learnt the properties of parallel lines in 

school. 

Students were randomly assigned into three equivalent groups of 60 with 

one group guided in each step including the angle and the theorem behind each 

move (Theorem & Step Guidance), another group presented with the angle they 

had to find for each step but not the theorem they had to use to find the angle 

(Step Guidance), and the third group learned under Problem Solving conditions. 

 

8.2.2 Material and Procedure  
 
The same material and procedure that was used in Experiment 2 was used again 

in this experiment, except that there was a ceiling effect in one of the similar test 

question in Experiments 1 and 2, thus that problem was eliminated in Experiment 

3. The new sets of questions for Experiment 3 are provided in Appendix F. The 

marking system was also the same as in Experiment 2, except the total similar 

score was out of 9 rather than out of 12 (the highest score that participant could 

achieve was 9, since there were 3 similar test problems) as one problem was 

eliminated because it was too easy. The total transfer score was out of 9 (the 

highest score that participant could achieve was 9, since there were 3 transfer test 

problems) as in the previous experiment. The time for the learning phase 

remained the same as in Experiment 2 (25 minutes). 
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8.2.3 Rating of cognitive load associated with task performance 
 
Immediately after the acquisition phase, each participant was asked to estimate 

how easy or difficult it was to learn the material and answer the questions on a 

nine-point scale by placing an “X” in the space provided related to one of the nine 

numbers (1 being extremely easy, 9 being extremely difficult, (see Appendix G). 

The scores obtained from this rating scale were used as indicators of cognitive 

load associated with the learning tasks. These rating were also used for 

calculating relative instructional efficiency of instructional conditions. 

 

 

 

8.3 Results 
 

Variables 
 
The dependent variables under analysis were similar and transfer test scores 

(Means and standard deviations are provided in Table 4), subjective ratings of 

cognitive load (Means and standard deviations are provided in Table 5), and 

relative instructional efficiency measures, (Means and standard deviations are 

provided in Table 6). The independent variables were instructional design and the 

level of learner expertise. 
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Similar test results 
 
A 2 (Learner Expertise: Year 8 vs. Year 9 students) x 3 (Instructional Design: 

(Theorem & Step Guidance vs. Step Guidance, vs. Problem Solving) analysis of 

variance for the scores of the similar test indicated a significant main effect for 

instructional condition, F (2, 354) = 233.00, MSE = 0.95, p < .001, 2
pη = 0.57. 

There was a significant main effect for the level of expertise, F (1, 354) = 33.40, 

MSE = 0.95, p < .001, 2
pη = 0.09. There also was a significant interaction 

between instructional condition and learner expertise, F (2, 354) = 3.55, MSE = 

0.95, p = .03, 2
pη = 0.02, (see Figure 6). 

 

Table 4  Means and Standard Deviations for the Similar and Transfer Test Scores 

Different Instructional conditions and Levels of Learner Prior Knowledge 

(Experiment 3)  

 

Expertise Level Year 8 
n =180 

Year 9 
n =180 

Instructional Condition  Theorem &  
Step 

Guidance 

Step 
Guidance 

Problem 
Solving 

 Theorem 
&  

Step 
Guidance 

Step 
Guidance 

Problem 
Solving 

 n = 60 n = 60 n = 60  n = 60 n = 60 n = 60 

Total Scores for Similar Test 

M 5.73 6.47 3.97  6.02 7.42 4.52 

SD 1.10 0.93 1.09  0.93 0.81 0.97 

Total Scores for Transfer Test 

M 4.28 5.23 2.30  4.55 6.08 2.72 

SD 1.12 0.87 0.79  1.00 0.81 0.76 

Note: The maximum score was 9 for both the similar and transfer tests. 
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Theorem & Step
Guidance
Step Guidance

Problem Solving

Figure 6. Interaction between instructional format and level of learner expertise 

for overall similar test scores of Experiment 3. 

 
 

Following the significant interaction, a simple effects test for the more 

expert learners (Year 9), demonstrated a significant difference between the Step 

Guidance, and the Theorem & Step Guidance conditions on the similar test, F (1, 

118) = 77.47, MSE = 0.76, p < .001, 2
pη = 0.40. The Step Guidance condition 
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significantly outperformed the Theorem & Step Guidance condition. There also 

was a significant difference between the Theorem & Step Guidance and the 

Problem Solving condition, F (1, 118) = 75.17, MSE = 0.90, p < .001, 2
pη = 0.39. 

The Theorem & Step Guidance condition significantly outperformed the Problem 

Solving condition. 

For the novice learners (Year 8), there was a significant difference 

between the Step Guidance and the Theorem & Step Guidance conditions on the 

similar test, F (1, 118) = 15.52, MSE = 1.04, p < .001, 2
pη = 0.12. The Step 

Guidance condition significantly outperformed the Theorem & Step Guidance 

condition. There also was a significant difference between the Theorem & Step 

Guidance and the Problem Solving condition, F (1, 118) = 77.99, MSE = 1.20, p < 

.001, 2
pη = 0.40. The Theorem & Step Guidance condition significantly 

outperformed the Problem Solving condition.  

Since the pattern of significance for the simple effects tests was identical 

for novices and experts, that pattern cannot be used to indicate why a significant 

interaction was obtained. Instead, the relative effect sizes will be used.  

The effect of the Step Guidance over the Theorem & Step Guidance 

condition for novices was 2
pη = .12, and for experts was 2

pη = .40. Since the 

effect size for experts was larger than the effect size for novices, this difference is 

likely to have contributed to the significant interaction. In contrast, the effect size 

of the Theorem & Step Guidance condition over the Problem Solving condition 

for novices was 2
pη = .40, and for experts was 2

pη = .39. They both have a similar 
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effect size and so these effect size results did not contribute much to the 

explanation of the significant interaction. Accordingly, it can be seen that the 

significant interaction was largely caused by the larger advantage of the Step 

Guidance condition over the Theorem & Step guidance condition for experts 

compared to novices. 

  

Transfer test results  
 
A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the scores of the transfer test indicated a significant main effect for 

the three instructional conditions, F (2, 354) = 375.09, MSE = 0.81, p < .001, 

2
pη = 0.68. There was a significant main effect for the level of expertise, F (1, 

354) = 29.19, MSE = 0.81, p < .001, 2
pη = 0.08. There also was a significant 

interaction between the three instructional conditions and the learners’ expertise 

levels F (2, 354) = 3.42, MSE = 0.81, p = .03, 2
pη = 0.02, (see Figure 7).  
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Theorem & Step
Guidance
Step Guidance

Problem Solving

Figure 7. Interaction between instructional format and level of learner expertise 

for overall transfer scores of Experiment 3. 

 

 

Following the significant interaction, simple effects test for the expert 

learners (Year 9) demonstrated a significant difference between the Step 

Guidance, and the Theorem & Step Guidance conditions for the transfer test, F (1, 

118) = 85.42, MSE = 0.83, p < .001, 2
pη = 0.42. The Step Guidance condition 

significantly outperformed the Theorem & Step Guidance condition. There also 

was a significant difference between the Theorem & Step Guidance and the 
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Problem Solving condition, F (1, 118) = 127.89, MSE = 0.79, p < .001, 2
pη = 

0.52. The Theorem & Step Guidance condition significantly outperformed the 

Problem Solving condition. 

 

For the novice learners (Year 8), there was a significant difference 

between the Step Guidance, and the Theorem & Step Guidance groups for the 

transfer test, F (1, 118) = 27.33, MSE = 0.99, p < .001, 2
pη = 0.19. The Step 

Guidance condition significantly outperformed the Theorem & Step Guidance 

condition. There also was a significant difference between the Theorem & Step 

Guidance and the Problem Solving condition, F (1, 118) = 128.01, MSE = 0.92, p 

< .001, 2
pη = 0.52. The Theorem & Step Guidance condition significantly 

outperformed the Problem Solving condition. 

Similarly to the similar test, the pattern of significance for the simple 

effects tests was identical for novices and experts and so that pattern cannot be 

used to indicate why a significant interaction was obtained. Instead, the relative 

effect sizes will be used.  

The effect of the Step Guidance over the Theorem & Step Guidance 

condition for novices was 2
pη = .19, and for experts was 2

pη = .42. Since the 

effect size for experts was larger than the effect size for novices, this might 

explain the reason behind the significant interaction. As for the effect of the 

Theorem & Step Guidance condition over the Problem Solving condition for 

novices was 2
pη = .52, and for experts was 2

pη = .52. They both have identical 
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effect sizes and so these effect size results do not contribute to an explanation of 

the significant interaction. Rather, the significant interaction was caused by the 

larger advantage of the Step Guidance condition over the Theorem & Step 

guidance condition for experts compared to novices. 

 

Ratings of cognitive load 
 

A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the ratings of cognitive load, indicated a significant main effect for 

the three instructional conditions, F (2, 354) = 271.11, MSE = 1.42, p < .001, 

2
pη = 0.61. There was a significant main effect for the level of expertise, F (1, 

354) = 39.41, MSE = 1.42, p < .001, 2
pη = 0.10. There also was a significant 

interaction between the three instructional conditions and the learners’ expertise 

levels, F (2, 354) = 23.81, MSE = 1.42, p < .001, 2
pη = 0.12 (See Figure 8). 

Means and standard deviations for different instructional conditions and levels of 

prior knowledge are provided in Table 5. 

 

Following the significant interaction a simple effects test for the expert 

learners (Year 9), demonstrated a significant difference between the Step 

Guidance, and the Theorem & Step Guidance conditions for the ratings of 

cognitive load, F (1, 118) = 93.09, MSE = 1.61, p < .001, 2
pη = 0.44. The Step 

Guidance condition significantly demonstrated a lower cognitive load rating than 

the Theorem & Step Guidance condition. There also was a significant difference 
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between the Theorem & Step Guidance and the Problem Solving condition, F (1, 

118) = 94.94, MSE = 1.70, p < .001, 2
pη = 0.45. The Theorem & Step Guidance 

condition significantly demonstrated a lower cognitive load rating than the 

Problem Solving condition. 

For the novice learners (Year 8), an F-test demonstrated a significant 

difference between the Step Guidance, and the Theorem & Step Guidance 

conditions for the rating of cognitive load, F (1, 118) = 5.61, MSE = 1.82, p =.02, 

2
pη = 0.05. The Step Guidance condition significantly demonstrated a lower 

cognitive load rating than the Theorem & Step Guidance condition. There also 

was a significant difference between the Step Guidance and the Problem Solving 

condition, F (1, 118) = 68.40, MSE = 1.73, p < .001, 2
pη = 0.37. The Theorem & 

Step Guidance condition significantly demonstrated a lower cognitive load rating 

than the Problem Solving condition. 

Since the pattern of significance for the simple effects tests was identical 

for novices and experts, that pattern cannot be used to indicate why a significant 

interaction was obtained. Instead, the relative effect sizes will be used.  

The effect of the Step Guidance over the Theorem & Step Guidance 

condition for novices was 2
pη = .05, and for experts was 2

pη = .44. Since the 

effect size for experts was larger than the effect size for novices, this difference is 

likely to contribute heavily to the significant interaction. As for the effect of the 

Theorem & Step Guidance condition over the Problem Solving condition, for 

novices 2
pη = .37, and for experts 2

pη = .45. Since the effect size for experts was 
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larger than the effect size for novices, this difference also may contribute to some 

extent to the significant interaction. From this pattern of effect sizes, it can be 

concluded that the significant interaction was largely caused by the larger 

advantage of the Step Guidance condition over the Theorem & Step guidance 

condition for experts compared to novices. 

 

Theorem & Step
Guidance
Step Guidance

Problem Solving

Figure 8. Interaction between instructional format and level of learner expertise 

for the ratings of cognitive load of Experiment 3. 

Note.  Ratings were made on 9-point scales (1=extremely easy, 9=extremely difficult)    
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Table 5  Means and Standard Deviations for the Ratings of Cognitive Load for 

Different Instructional Conditions and Levels of Learner Prior Knowledge 

(Experiment 3) 

 

Expertise Level Year 8 
n =180 

Year 9 
n =180 

Instructional Condition  Theorem &  
Step 

Guidance 

Step 
Guidance 

Problem 
Solving 

 Theorem & 
Step 

Guidance 

Step 
Guidance 

Problem 
Solving 

 n = 60 n = 60 n = 60  n = 60 n = 60 n = 60 

Ratings of Cognitive Load  

M 5.32 4.73 7.30  4.97 2.73 7.28 

SD 1.58 1.07 0.98  1.64 0.73 0.85 

Note.  Ratings were made on 9-point scales (1=extremely easy, 9=extremely difficult) 
 

 

Relative efficiency of instructional conditions 
 
Cognitive load theory considers the quality of learning and instruction in terms of 

efficiency which takes both performance and learners’ cognitive load into 

consideration. According to this methodology, instructional conditions that show 

a more favourable relationship between mental effort and performance (students 

invest less mental effort to achieve higher performance) are considered more 

efficient than instructional conditions that show a less favourable relationship 

between mental effort and performance (students invest more mental effort to 

achieve lower performance). The formula 
2

)( RPE −
=  that was suggested by 

Paas and van Merriënboer (1993) for calculating the instructional efficiency was 

used in this study, where (E) represents the relative efficiency of the instructional 
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condition, (P) the standardized z-scores for test performance scores, and (R) the 

ratings of cognitive load related to test tasks. 

A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the scores of the relative efficiency indicated a significant main 

effect for the three instructional conditions, F (2,354) = 370.61, MSE = 0.58, p < 

.001, 2
pη = 0.68. There was a significant main effect for the level of expertise, F 

(1,354) = 46.00, MSE = 0.58, p < .001, 2
pη = 0.12. There also was a significant 

interaction between the three instructional conditions and the learners’ expertise 

levels F (2,354) = 13.93, MSE = 0.58, p < .001, 2
pη = 0.07 (See Figure 9). Means 

and standard deviations are provided in Table 6.  

 

 

Table 6  Means and Standard Deviations for the Relative Instructional Efficiency 

for Different Instructional conditions and Levels of Learner Prior Knowledge 

(Experiment 3) 

 
Expertise Level Year 8 

n =180 
Year 9 
n =180 

Instructional Condition  Theorem &  
Step 

Guidance 

Step 
Guidance 

Problem 
Solving 

 Theorem & 
Step 

Guidance 

Step 
Guidance 

Problem 
Solving 

 n = 60 n = 60 n = 60  n = 60 n = 60 n = 60 

Relative Instructional Efficiency  

M 0.06 0.67 -1.54  0.31 1.81 -1.31 

SD 0.99 0.66 0.68  0.97 0.56 0.62 
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Theorem & Step
Guidance
Step Guidance

Problem Solving

Figure 9. Interaction between instructional format and level of learner expertise 

for the relative efficiency of the instructional conditions of Experiment 3. 

 

 

Following the significant interaction, simple effects tests for the expert 

learners (Year 9), demonstrated a significant difference between the Step 

Guidance, and the Theorem & Step Guidance conditions for the relative 

efficiency of experimental conditions, F (1, 118) = 107.97, MSE = 0.62, p < .001, 

2
pη = 0.48. The Step Guidance condition was a relatively more effective 

instructional design than the Theorem & Step Guidance condition. There also was 
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a significant difference between the Theorem & Step Guidance and the Problem 

Solving condition, F (1, 118) = 119.87, MSE = 0.66, p < .001, 2
pη = 0.50. The 

Theorem & Step Guidance condition was a relatively more effective instructional 

design than the Problem Solving condition. 

For the novice learners (Year 8) a significant difference was obtained 

between the Step Guidance, and the Theorem & Step Guidance conditions for the 

relative efficiency of experimental conditions, F (1, 118) = 15.74, MSE = 0.70, p 

< .001, 2
pη = 0.12. The Step Guidance condition was relatively a more effective 

instructional design than the Theorem & Step Guidance condition. There also was 

a significant difference between the Theorem & Step Guidance and the Problem 

Solving condition, F (1, 118) = 107.02, MSE = 0.72, p < .001, 2
pη = 0.48. The 

Theorem & Step Guidance condition was relatively a more effective instructional 

method than the Problem Solving condition. 

Since the pattern of significance for the simple effects tests was identical 

for novices and experts, that pattern cannot be used to indicate why a significant 

interaction was obtained. Instead, the relative effect sizes will be used.  

The effect of the Step Guidance over the Theorem & Step Guidance 

condition for novices was 2
pη = .12, and for experts was 2

pη = .48. Since the 

effect size for experts was larger than the effect size for novices, this might 

explain the reason behind the significant interaction. As for the effect of the 

Theorem & Step Guidance condition over the Problem Solving condition, for 

novices 2
pη = .48, and for experts 2

pη = .50. Since the effect size for experts was 



133

similar to the effect size for novices, this difference is unlikely to contribute a 

great deal to the significant interaction. This pattern of effect sizes did not 

contribute much to the significant interaction. In view of that, it can be concluded 

that the significant interaction originated from the larger advantage of the Step 

Guidance condition over the Theorem & Step guidance condition for experts 

compared to novices. 

 
 

Relative instructional efficiency values were positive with lower level group 

learners for the Theorem & Step Guidance and Step Guidance conditions and 

negative for the Problem solving condition (see Figure 10). With higher level 

learners, relative instructional efficiency values were positive with lower level group 

learners for the Theorem & Step Guidance and Step Guidance conditions and 

negative for the Problem solving condition (see Figure 10). 
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Mental Effort

Performance

Low Efficiency

High Efficiency

TSG(yr9)= 0.31

TSG(yr8) = 0.06

  SG(yr9) = 1.81

                         

                                 SG(yr8) = 0.67

PS(yr9)= -1.31

     PS(yr8) = -1.54

E = 0

 

Figure 10. Representation of relative instructional efficiency (E) associated with 

learning through Theorem & Step Guidance (TSG), Step Guidance (SG) and 

Problem Solving (PS) for students with a lower prior knowledge level (Year 8) 

and higher prior knowledge level (Year 9, red)(Experiment 3). 
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8.4 Discussion 
 

Experiment 3 was designed to test for an expertise reversal effect taking 

into consideration the instructional methods and the learners’ prior knowledge. It 

was hypothesized that it would be more important for Year 8 than Year 9 students 

to be presented worked examples that include theorems under the Theorem & 

Step Guidance condition relative to the other conditions, as they had not been 

exposed to the properties of parallel lines previously, and having the theorem 

associated with each step might improve their understanding of the problem. On 

the other hand, Year 9 students may perform better using the Step Guidance 

condition compared to the other conditions as the presence of the theorem might 

be redundant since they have learnt these theorems at school. The presence of 

these theorems might impose an extraneous cognitive load that reduces 

performance. 

The results indicated an advantage of the Step Guidance condition over 

the Theorem & Step Guidance condition which in turn was superior to the 

problem solving condition on all measures for both Year 8 and Year 9 students.  

However a significant, ordinal interaction was demonstrated. The effect size of 

the advantage of step guidance over a combination of step guidance and the 

theorem was larger for Year 9 than Year 8. It can be concluded that the significant 

interaction originated from this larger advantage of the Step Guidance condition 

over the Theorem & Step guidance condition for Year 9 compared to Year 8. 

  While the advantage of the Step Guidance condition over the Theorem 

and Step Guidance condition was reduced for Year 8 compared to Year 9, it was 
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not reversed. The reason might be that the parallel line theorems are 

comparatively easy to understand, even for novice learners and the available 

knowledge structures about the theorems in their long-term memory might have 

allowed them to solve the problem without any theorem guidance. Therefore, 

providing a theorem in a worked example might be redundant even for Year 8 

students and that might have imposed an extraneous load that caused the 

instructional condition to be less effective.  

 

The reported significantly lower ratings of cognitive load for the Step 

Guidance condition than the other two conditions (Theorem & Step Guidance and 

Problem Solving conditions) for both Year 8 and 9 students support the cognitive 

load explanation of the findings. This result might imply that reducing the amount 

of redundant information associated with presenting the theorem released 

sufficient cognitive resources for effective learning of geometric problem solving.  

 

The significant difference in instructional efficiency associated with the 

performance task also provided support for the cognitive load explanation of the 

findings based on the redundancy effect (e.g. Chandler & Sweller, 1991; Sweller, 

2003). Redundant information accompanying the Theorem & Step Guidance 

condition could become a source of extraneous cognitive load.  The removal of 

this essentially redundant source of information may enhance solving geometric 

problems.  
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The results did not support the hypothesis that the less knowledgeable 

learners would excel under the Theorem & Step Guidance condition, as the Step 

Guidance condition was the best instructional method for both Year 8 and Year 9. 

Since the results revealed an expertise reversal effect based on an ordinal but not 

a dis-ordinal interaction, an attempt to widen the difference between the expertise 

levels may be needed to obtain a dis-ordinal interaction. As can be seen in the 

ordinal interaction plots of Figures 6, 7, 8, and 9, decreasing the levels of 

expertise, could result in the lines eventually crossing. Therefore, Experiment 4 

was designed to widen the expertise difference by using students from Years 7 & 

10 rather than Years 8 & 9. In addition, a more difficult Geometry Topic, Circle 

Geometry, with more complex, more difficult theorems was chosen in order to 

increase the importance of including the theorem in worked examples for novice 

learners.  
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9.1 Introduction 
 

Experiment 3 was designed to test for an expertise reversal effect taking 

into consideration the instructional methods and the learners’ prior knowledge. It 

was hypothesized that the advantage of the Step Guidance condition over the 

Theorem & Step Guidance condition would be reduced for Year 8 compared to 

Year 9 students. The results indicated an advantage of the Step Guidance 

condition over the Theorem & Step Guidance condition which in turn was 

superior to the problem solving condition on all measures for both Year 8 and 

Year 9 students.  However a significant, ordinal interaction was demonstrated. 

While the advantage of the Step Guidance condition over the Theorem and Step 

Guidance condition was reduced for Year 8 compared to Year 9, it was not 

reversed. Since the results revealed an expertise reversal effect based on an 

ordinal but not a dis-ordinal interaction, an attempt to widen the difference 

between the expertise levels may be needed to obtain a dis-ordinal interaction. As 

the graphs presented in Experiment 3 illustrate an ordinal interaction, decreasing 

the levels of expertise could result in the lines ultimately crossing. Therefore, 

Experiment 4 was designed to widen the expertise difference by using students 

from Years 7 & 10 rather than Years 8 & 9 as the gap between levels of expertise 
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in Experiment 3 may not have been large enough. Thus, by choosing Years 7 & 

10, we might be able to obtain a dis-ordinal interaction. 

 

In addition, a more difficult Geometry Topic, Circle Geometry, with more 

complex theorems was chosen in order to increase the importance of including the 

theorem in worked examples for novice learners. In Experiment 3 the theorems 

chosen were finding angles that were held between two parallel lines. These 

theorems are part of the Mathematical curriculum of Year 9 Students. 

Accordingly, it was understandable that Year 8 students found these theorems 

comparatively easy to understand as the available knowledge structures about the 

theorems in their long-term memory might have allowed them to solve the 

problem without any theorem guidance. Taking this into consideration along with 

the findings of Experiment 3, the theorems chosen in Experiment 4 were based on 

circle geometry, topic that is part of the Mathematical curriculum for Year 10.  

This topic was chosen to test if presenting guidance with the theorem 

might have a positive effect on novices’ learning. Circle geometry is considered a 

difficult topic and thus, Experiment 4 was designed to test for the expertise 

reversal effect. It was hypothesized that Year 7 would perform better than Year 

10 when using the Theorem & Step Guidance condition as the available 

knowledge structure about these theorems in Year 7 students’ long-term memory 

might not allow them to solve the problem without any theorem guidance. It was 

also hypothesized that Year 10 would perform better using the Step Guidance 

procedure as the information concerning the theorem in the Theorem and Step 

Guidance condition would be redundant and inhibit students’ learning. In 
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summary, Experiment 4 was designed to investigate whether a dis-ordinal 

interaction between the level of expertise (Year 7 & 10) and the instructional 

methods (Theorem & Step Guidance and Step Guidance) could be obtained. 

 

 

9.2 Method 
 

9.2.1 Participants 
 
The participants were 60 Year 7 students and 60 Year 10 students attending a 

private school in North Sydney, Australia. Year 7 students were aged between 12 

and 13 years, Year 10 students were aged between 15 and 16 years. The students 

who belonged to each level were at the same level of mathematical skills, as 

determined by their class teachers.  The grading of students by class teachers 

according to mathematical skills is standard practice and is part of the school 

curriculum in Sydney schools. Year 7 students had not been exposed previously 

to circular geometry, but Year 10 students had learnt the properties of circular 

geometry prior to the experiment. 

Students from each year were randomly assigned into three equivalent 

groups of 20. One group was guided at each solution step with the answer for the 

corresponding angle and the theorem behind each move (Theorem & Step 

Guidance). The students in another group were presented with the angle they had 

to find at each step but not provided the theorem they had to use to find the angle 
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(Step Guidance). The third group represented the Problem Solving (control) 

condition. 

 

9.2.2 Material 
 
For the acquisition phase, theorems were selected from the circle geometry topic 

that forms a part of the mathematics curriculum material suitable for students at 

this stage.  The theorems were related to finding the angles associated with arcs in 

a circle. The selected angles were angles that subtended the same arc, a central 

angle, an angle at the circumference, an angle formed by a tangent and a secant 

and angles in a cyclic quadrilateral (these angles were formed when several lines 

cut a circle). The geometry associated with these figures depicting these angles 

had not been previously taught to Year 7 students involved in the experiment, 

while Year 10 students had learnt the properties of circle geometry in school and 

were previously exposed to such figures. Depending on the experimental 

condition, the same figures were supplemented either with steps and full solutions 

including the theorems used or with steps to follow with no theorem indicated, or 

with no solution at all. The figures presented to each experimental group were 

identical in size, including angle sizes, and retained the same angle names (the 

problems presented to each group are found in Appendix H). 

The test material included finding angles based on angles formed by lines, 

chords and tangents to a circle. Three problems were similar to the acquisition 

problems, with almost the same figures as in the acquisition problems, but with 

different measures of the given angles. Following the similar questions, three 



142

transfer problems were given that did not include any measurements of angles; 

participants were asked to prove two angles to be equal using the properties of 

circle geometry.  The marking system was identical to Experiment 3. The test 

problems can be found in Appendix I. 

 

9.2.3 Procedure 
 
The same procedure was used as in the previous experiment. It consisted of a 

learning phase (25 minutes) and a test phase (35 minutes). It was conducted over 

one school session, with each child tested individually.  Two days prior to the 

experiment, a revision session occurred (45 minutes) to review the prerequisite 

material needed to conduct the experiment. The session was similar for all groups 

and was given to all the students in order to remind them of the geometric 

terminology used in the experiment (radius, diameter, centre, circumference, 

tangent, secant, chord, arc, right angle, straight angle, revolution angle, vertical 

opposite angles, sum of measures of angle in a triangle and equal angles).  

 

9.2.4 Rating of cognitive load associated with task performance 
 
Immediately after the acquisition phase, each participant was asked to estimate 

how easy or difficult it was to learn the material and answer the questions on a 

nine-point scale by placing an “X” in the space provided related to one of the nine 

numbers (1 being extremely easy, 9 being extremely difficult, (see Appendix G). 

The scores obtained from this rating scale were used as indicators of cognitive 
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load associated with the learning tasks. These rating were also used for 

calculating relative instructional efficiency of instructional conditions. 

 

9.3 Results  
 

Variables  
 
The dependent variables under analysis were similar test and transfer test scores 

(Means and standard deviations are provided in Table 7), subjective ratings of 

cognitive load (Means and standard deviations are provided in Table 8), and 

relative instructional efficiency measures (Means and standard deviations are 

provided in Table 9).  The independent variables were instructional designs 

(Theorem & Step guidance, Step guidance, or Problem solving) and the level of 

learner expertise (Year 7 and Year 10 students).  

 

Similar test results  
 
A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the scores on the similar test indicated a significant main effect for 

the three instructional conditions, F (2, 114) = 38.39, MSE = 1.31, p < .001, 2
pη = 

0.40. There was a significant main effect for the level of expertise, F (1, 114) = 

8.67, MSE = 1.31, p = .004, 2
pη = 0.07. There also was a significant interaction 

between the three instructional conditions and the learners’ expertise levels F (2, 

114) = 10.75, MSE = 1.31, p < .001, 2
pη = 0.16 (See Figure 11).  



144

Theorem & Step
Guidance
Step Guidance

Problem Solving

Figure 11. Interaction between instructional format and level of learner expertise 

for overall similar test scores of Experiment 4. 

 

 

Following the significant interaction, a simple effects test for the expert 

learners (Year 10), demonstrated a significant difference between the Step 

Guidance, and the Theorem & Step Guidance conditions, F (1, 38) = 19.60, MSE 

= 1.00, p < .001, 2
pη = 0.34. The Step Guidance condition outperformed the 

Theorem & Step Guidance condition. There also was a significant difference 

between the Theorem & Step Guidance and the Problem Solving condition, F (1, 
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38) = 15.92, MSE = 1.23, p < .001, 2
pη = 0.30. The Theorem & Step Guidance 

condition significantly outperformed the Problem Solving condition. 

 

For the novice learners (Year 7), there was a significant difference 

between the Theorem & Step Guidance condition, and the Step Guidance 

condition, F (1, 38) = 5.59, MSE = 1.61 p = .023, 2
pη = 0.13.  The Theorem & 

Step Guidance condition outperformed the Step Guidance condition. There also 

was a significant difference between the Step Guidance and the Problem Solving 

condition, F (1, 38) = 9.36, MSE = 1.81, p = .004, 2
pη = 0.20. The Step Guidance 

condition significantly outperformed the Problem Solving condition.  

 

 

Table 7  Means and Standard Deviations for the Similar and Transfer test Scores 

for Different Instructional Conditions and Levels of Learner Prior Knowledge 

(Experiment 4) 

 
Expertise Level Year 7 

n =60 
Year 10 

n =60 
Instructional Condition  Theorem  

&  
Step 

Guidance 

Step 
Guidance 

Problem 
Solving 

 Theorem      
       &  

Step 
Guidance 

Step 
Guidance 

Problem 
Solving 

 n = 20 n = 20 n = 20  n = 20 n = 20 n = 20 

Total Scores for Similar Test 

M 6.35 5.40 4.10  5.90 7.30 4.50 

SD 1.04 1.47 1.21  1.12 0.86 0.10 

Total Scores for Transfer Test 

M 5.45 4.50 2.30  4.75 6.10 2.60 

SD 0.89 1.32 0.86  1.16 0.97 1.05 

Note: The maximum score was 9 for both the similar and transfer tests. 
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Transfer test results 
 
A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the scores of the transfer test indicated a significant main effect for 

the three instructional conditions, F (2, 114) = 91.23, MSE = 1.11, p < .001, 2
pη = 

0.62. There was a significant main effect for the level of expertise, F (1, 114) = 

4.33, MSE = 1.11, p = .04, 2
pη = 0.04. There also was a significant interaction 

between the three instructional conditions and the learners’ expertise levels F (2, 

114) = 11.99, MSE = 1.11, p < .001, 2
pη = 0.17 (see Figure 12).  

Theorem & Step
Guidance
Step Guidance

Problem Solving

Figure 12. Interaction between instructional format and level of learner expertise 

for overall transfer scores of Experiment 4. 
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Following the significant interaction, a simple effect test for the expert 

learners (Year 10) demonstrated a significant difference between the Step 

Guidance and the Theorem & Step Guidance conditions, F (1, 38) = 15.90, MSE 

= 1.15, p < .001, 2
pη = 0.30.  The Step Guidance condition outperformed the 

Theorem & Step Guidance condition. There also was a significant difference 

between the Theorem & Step Guidance and the Problem Solving condition, F (1, 

38) = 37.74, MSE = 1.23, p < .001, 2
pη = 0.50.  The Theorem & Step Guidance 

condition outperformed the Problem Solving condition. 

 

For the novice learners (Year 7), there was a significant difference 

between the Theorem & Step Guidance, and the Step Guidance conditions, F (1, 

38) = 7.15, MSE = 1.26, p = .011, 2
pη = 0.16. The Theorem & Step Guidance 

condition outperformed the Step Guidance condition. There also was a significant 

difference between the Step Guidance and the Problem Solving conditions F (1, 

38) = 38.97, MSE = 1.24, p < .001, 2
pη = 0.51. The Step Guidance condition 

significantly outperformed the Problem Solving condition.  

 

Ratings of cognitive load 
 

A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the ratings of the cognitive load indicated a significant main effect 

for the three instructional conditions, F (2, 114) = 57.97, MSE = 1.86, p < .001, 
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2
pη = 0.50. There was a significant main effect for the level of expertise, F (1, 

114) = 8.69, MSE = 1.86, p = .004, 2
pη = 0.07. There also was a significant 

interaction between the three instructional conditions and the learners’ expertise 

levels F (2, 114) = 8.14, MSE = 1.86, p < .001, 2
pη = 0.13 (see Figure 13). Means 

and standard deviations for different instructional conditions and levels of prior 

knowledge are provided in Table 8.  

   

 

Table 8  Means and Standard Deviations for the Ratings of Cognitive Load for 

Different Instructional Conditions and Levels of Learner Prior Knowledge 

(Experiment 4)       

 
 
Expertise Level Year 7 

n =60 
Year 10 
n =60 

Instructional Condition  Theorem  
&  

Step 
Guidance 

Step 
Guidance 

Problem 
Solving 

 Theorem 
& 

Step 
Guidance 

Step 
Guidance 

Problem 
Solving 

 n = 20 n = 20 n = 20  n = 20 n = 20 n = 20 

Ratings of Cognitive Load  

M 5.05 5.10 7.20 4.95 2.95 7.25 

SD 1.10 1.94 0.95 1.85 0.83 1.07 

Note.  Ratings were made on 9-point scales (1=extremely easy, 9=extremely difficult) 
 

 

Following the significant interaction, a simple effect test for the expert 

learners (Year 10), demonstrated a significant difference between the Theorem & 

Step Guidance, and the Step Guidance conditions, F (1, 38) = 19.51, MSE = 2.05, 
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p < .001, 2
pη = 0.34. The Step Guidance condition demonstrated a significantly 

lower cognitive load rating than the Theorem & Step Guidance condition. There 

also was a significant difference between the Step Guidance and the Problem 

Solving conditions F (1, 38) = 202.48, MSE = 0.91, p < .001, 2
pη = 0.84. The Step 

Guidance condition demonstrated a lower cognitive load rating than the Problem 

Solving condition. There was a significant difference between the Theorem & 

Step Guidance and the Problem Solving conditions F (1, 38) = 23.19, MSE = 

2.28, p < .001, 2
pη = 0.38. The Theorem & Step Guidance condition demonstrated 

a lower cognitive load rating than the Problem Solving condition. 

For the novice learners (Year 7), a simple effect test demonstrated a non-

significant difference between the Theorem & Step Guidance, and the Step 

Guidance conditions, F (1, 38) = 0.10, MSE = 2.49, p = .921, 2
pη = 0. The 

Theorem & Step Guidance and the Step Guidance conditions demonstrated 

almost identical cognitive load ratings. There was a significant difference 

between the Step Guidance and the Problem Solving condition, F (1, 38) = 18.83, 

MSE= 2.34, p < .001, 2
pη = 0.33 and a significant difference between the 

Theorem & Step Guidance and the Problem Solving condition, F (1, 38) = 45.75, 

MSE= 1.06, p < .001, 2
pη = 0.54.  Both the Step Guidance and the Theorem & 

Step Guidance conditions demonstrated lower cognitive load rating than the 

Problem Solving condition. 
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Figure 13. Interaction between instructional format and level of learner expertise 

for the ratings of cognitive load of Experiment 4. 

Note.  Ratings were made on 9-point scales (1=extremely easy, 9=extremely 
difficult)    
 

 

 Relative efficiency of instructional conditions 
 
A two-way analysis of variance (learner level of expertise X instructional 

conditions) for the relative efficiency scores indicated a significant main effect for 

the three instructional conditions, F (2, 114) = 68.87, MSE = 0.87, p < .001, 2
pη = 

0.55. There was a significant main effect for the level of expertise, F (1, 114) = 
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8.76, MSE = 0.87, p = .004, 2
pη = 0.71. There also was a significant interaction 

between the three instructional conditions and the learners’ expertise levels F (2, 

114) = 10.83, MSE = 0.58, p < .001, 2
pη = 0.16 (see Figure 14). Means and 

standard deviations are provided in Table 9.  

 

 

Table 9  Means and Standard Deviations for the Relative Instructional Efficiency 

for Different Instructional Conditions and Levels of Learner Prior Knowledge 

(Experiment 4)  

 

Expertise Level Year 7 
n =60 

Year 10 
n =60 

Instructional Condition  Theorem &  
Step 

Guidance 

Step 
Guidance 

Problem 
Solving 

 Theorem & 
Step 

Guidance 

Step 
Guidance 

Problem 
Solving 

 n = 20 n = 20 n = 20  n = 20 n = 20 n = 20 

Relative Instructional Efficiency  

M 0.58 0.11 -1.47  0.34 1.71 -1.33 

SD 0.75 1.28 0.75  1.16 0.67 0.80 

 

 



152

Theorem & Step
Guidance
Step Guidance

Problem Solving

 
Figure 14.  Interaction between instructional format and level of learner expertise 

for the relative efficiency of the instructional conditions of Experiment 4. 

 

  Following the significant interaction, simple effect tests for the expert 

learners (Year 10), demonstrated a significant difference between the Theorem & 

Step Guidance, and the Step Guidance conditions, F(1, 38) = 20.85, MSE= 0.90, p 

< .001, 2
pη = 0.35. The Step Guidance condition was relatively more efficient 

than the Theorem & Step Guidance condition. There was a significant difference 

between the Step Guidance and the Problem Solving conditions, F(1, 38) = 

169.13, MSE = 0.54, p < .001, 2
pη = 0.82. The Step Guidance condition was a 
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relatively better instructional method than the Problem Solving condition. There 

also was a significant difference between the Theorem & Step Guidance and the 

Problem Solving condition, F (1, 38) = 27.70, MSE = 1.00, p < .001, 2
pη = 0.42. 

The Theorem & Step Guidance condition was a relatively more efficient 

instructional method than the Problem Solving condition. 

 

For the novice learners (Year 7), a non-significant difference was obtained 

between the Step Guidance and the Theorem & Step Guidance conditions, F (1, 

38) = 1.99, MSE = 1.10, p = .166, 2
pη = 0.05. There was a significant difference 

between the Step Guidance and the Problem Solving condition, F(1, 38) = 22.70, 

MSE = 1.10, p < .001, 2
pη = 0.37. The Step Guidance condition was relatively 

more efficient than the Problem Solving condition. There also was a significant 

difference between the Theorem & Step Guidance and the Problem Solving 

condition, F (1, 38) = 74.20, MSE = 0.57, p < .001, 
2

pη  = 0.66. The Theorem & 

Step Guidance condition was relatively more efficient than the Problem Solving 

condition. 

 

For both lower and higher knowledge level groups, relative instructional 

efficiency values were positive for the Theorem & Step Guidance and Step Guidance 

conditions and negative for the Problem solving condition (see Figure 15). 
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Mental Effort

Performance

Low Efficiency

High Efficiency

               
                           SG (yr10) = 1.71 
                              
                             SG(yr7) = 0.11

TSG(yr10) = 0.34

                                                     TSG(yr7) = 0.58

PS(yr10) = -1.33

PS(yr7) = -1.47

E = 0

 

 
Figure 15. Representation of relative instructional efficiency (E) associated with 

learning through Theorem & Step Guidance (TSG), Step Guidance (SG) and 

Problem Solving (PS) for students with lower prior knowledge level (Year 7) and 

higher prior knowledge level (Year 10, red) (Experiment 4) 
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9.4 Discussion 
 
 

A significant interaction between the effectiveness of alternative 

instructional technique in learning geometric problem solving and levels of 

learner prior knowledge was demonstrated in this experiment. The results 

supported our hypothesis that when the difference between the levels of learner 

expertise increased, a cross over interaction would be revealed. Also it was 

hypothesised that experts would perform better using the Step Guidance format as 

the theorems would impose extraneous cognitive load, and novices would 

perform better using the Theorem & Step Guidance format as the presence of the 

Theorem might help them to better understand the material. The overall similar 

test and transfer test results for experts demonstrated that Step Guidance group 

outperformed the Theorem & Step Guidance group and both these groups 

outperformed the Problem Solving group. The overall similar test and transfer test 

results for novices demonstrated that the Theorem & Step Guidance condition 

outperformed the Step Guidance condition and both these groups outperformed 

the Problem Solving condition. 

 

The superiority of the Step Guidance condition was demonstrated for 

learners with higher levels of prior knowledge as their available knowledge 

structures may have reduced the level of intrinsic load sufficiently to allow 

processing this information without theorem guidance. However, this condition 

was relatively less effective for novice learners as their insufficient knowledge in 

long-term memory may have resulted in an increased extraneous cognitive load 
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caused by the need to search for   relevant explanations. The relevant information 

(the geometric theorems) in the Theorem & Step Guidance condition provided 

such explanations and thus enhanced novice learning. However, this information 

was redundant for more knowledgeable students and inhibited their learning in 

comparison to the format without the theorem guidance. 

 

Novices and experts that used the Theorem & Step Guidance conditions 

reported similar levels of load (novices 5.05, experts 4.95) but novices achieved a 

higher level of efficiency (0.58) as most of the effort they invested was germane. 

In contrast, the experts who invested the same amount of effort achieved a 

relatively lower level of efficiency (0.34), as most of the effort they invested was 

extraneous. Since they already knew the theorems, it was a redundant effort and it 

did not have a positive effect on learning.  

 

The calculated relative instructional efficiency measures associated with 

the overall performance task supported our hypothesis. The positive efficiency 

values for the Step Guidance condition (1.71 for higher prior knowledge level and 

0.11 for lower prior knowledge level) and the Theorem & Step Guidance 

condition (0.34 for higher prior knowledge level and 0.58 for lower prior 

knowledge level) and the negative relative instructional efficiency values for the 

Problem Solving condition (-1.33 for the higher prior knowledge level and -1.47 

for the lower prior knowledge level) demonstrated the overall advantage of 

worked examples over problem solving (in accordance with the worked example 

effect). The relative standing of the efficiency measures for different experimental 
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conditions and levels of learner expertise demonstrated an expertise reversal 

effect. 

These results correspond with previous studies (van Gog, Paas, & van 

Merriënboer, 2006a, 2006b) that have suggested that when learners become 

familiar with the solution procedure, processing any additional information would 

become redundant and inhibit the effectiveness of transfer. We hypothesised that 

eliminating this information and presenting learners with product-oriented worked 

examples would lead to improved effectiveness. The data supported that 

hypothesis. 
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10.1 Theoretical Overview 
 
 

Cognitive load theory provides the basis of this study since the theory 

explains the relation between designing instruction and human cognitive 

architecture (Sweller et al, 1998; van Merriënboer & Sweller, 2005). Working 

memory is the structure that is used to hold and process information we are 

provided with. The limitations of working memory which is one of the most 

important characteristics of human cognitive architecture are exceeded when 

more than a few pieces of information are processed at the same time (Baddeley, 

1992; Cowan, 2001; Miller, 1956)  

 

Long-term memory is another essential element of our cognitive 

architecture. It can store unlimited amounts of complex information and has no 

duration and capacity limitations. It holds information in the form of schematic 

knowledge structures by which our cognitive abilities are determined. A schema 

is a cognitive structure that allows us to consider several elements as a single 

element that is categorized according to how it will be used. Schemas provide 

learners with the ability to encapsulate many elements of information into a single 

unit that needs less working memory capacity than multiple units, thus 
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diminishing the load on working memory. Another method to reduce cognitive 

load is by automation. With practice, skills can become automated and do not 

require much controlled processing in working memory (Schneider & Shiffrin, 

1977; Shiffrin & Schneider, 1977). Consequently, less conscious effort is required 

for this information to be processed and more complex cognitive activities can 

take place since working memory resources become available. 

 

Instructional procedures should be aligned with these characteristics of 

human cognitive architecture. The focal point of cognitive load theory is to 

enhance learning by generating activities that control and manage cognitive load. 

Reducing extraneous cognitive load that results from instructional designs that 

require learners to take part in cognitive activities that are not related to learning 

is crucial (Sweller et al., 1998). As a result of the reduction, more working 

memory resources will be allocated to productive and meaningful learning. 

Nevertheless, cognitive load depends on the learner’s existing domain-specific 

knowledge base. For example, when advanced learners who already have 

sufficient knowledge to process information are provided with detailed 

instructional guidance designed for novices, the excessive guidance may become 

redundant. As a result, cognitive resources will be used to integrate the redundant 

instructions with the learner’s available knowledge structures, thus cognitive 

resources will be diverted from productive higher-order activities. For example, 

while providing both theorems and solution steps is beneficial for novices, it 

might become harmful for advanced learners. The present findings demonstrate 
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this expertise reversal effect (e.g., Kalyuga, 2007; Kalyuga et al., 2003) by 

indicating the differential effectiveness of guided forms of instruction depending 

on the degree of learner familiarity with the learning contents. 

 

The degrees of guidance used in worked examples were examined in four 

experiments that used geometry materials.   Geometry is one of the most difficult 

mathematical areas for students. It has been demonstrated that many students 

have a poor understanding of mathematical proof and find it difficult to construct 

mathematical proofs. In order to enhance students’ cognitive readiness for proof, 

it is essential to provide them during their early years with a good basis that 

includes basic steps of deductive reasoning. Also, it is important to demonstrate 

the succession of theorems needed in order to solve problems instead of focusing 

on the theorems themselves. Hoyles (1998) proposed that it is important to 

consider how proof is presented to students. Therefore, instructional presentations 

should be designed to help students in comprehending geometry proofs and 

theorems by taking into consideration the limitations of human cognitive 

architecture.  

 

The reason why worked examples are efficient when dealing with 

geometry problems is that they eliminate unnecessary search processes and 

enhance schema construction. However, in order for students to succeed in 

problem solving, they need to identify the structural problem features and the 

category to which a problem belongs, and remember the steps related to reaching 
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a solution for this category of problems. Acquiring specific schemas also leads to 

transfer performance since the information concerning types of problems and 

their related steps is stored in problem schemas. Furthermore, cognitive load 

theory suggests that considering learner prior knowledge is crucial in designing 

instructional presentations for novel material. Learning is made easier when the 

context of the new complex material is related to previously constructed and 

stored schemas. 

 

However, while using theorems as a means of providing explanation and 

needed reasoning behind each step might be beneficial for novice learners, it 

could impose an additional extraneous cognitive load on more experienced 

students since the redundant information might cause total cognitive load to 

exceed learner working memory capacity. 

 

The reported experiments compared two formats of geometry worked 

examples: Theorem & Step Guidance and Step Guidance formats. In both formats 

the corresponding material was placed next to the angle related to the problem to 

avoid split-attention as a typical source of extraneous cognitive load in geometric 

worked-examples presentations. However, integrating explanations that are 

redundant for more experienced learners may increase their experienced cognitive 

load. Unfortunately, these learners might discover this redundancy only after they 

have already processed it (Sweller, 2003). 
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The studies presented in this thesis were based on the assumption that, 

according to the expertise reversal effect, the effectiveness of presenting the steps 

and the associated theorem related to each step would depend on the levels of 

learner’s prior knowledge. While beneficial to novices, this method might impede 

learning of more experienced learners due to the redundancy effect.  Presenting 

the steps only could be a better option for these learners.  

 

 

10.2 Review of the Experiments 
 
 

The results of the experiments described in Chapters 6-9 supported the 

assertion of cognitive load theory that instructional designs that lead to 

unnecessary cognitive load might deprive learners of cognitive resources that are 

required for effective learning. The experiments confirmed the superiority of the 

Step Guidance presentation over the Theorem & Step Guidance for more 

knowledgeable learners and the superiority of the Theorem & Step Guidance over 

the Step Guidance for less knowledgeable learners for whom assimilation of the 

theorem potentially represented a substantial cognitive load. 

 

Experiment 1 demonstrated that the Theorem & Step Guidance example 

was superior to the conventional Problem Solving format on transfer but not on 

similar problems while the Step Guidance format was superior to the Problem 

Solving condition on both similar problems and transfer. Thus the results of this 
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experiment divulge the normal effect of worked examples in learning geometric 

problem solving: geometry worked examples were more effective than 

conventional problem solving. Even though there were no significant differences 

between the two worked example formats on both the similar and transfer tests, 

this experiment indicated the possibility of a potential redundancy effect 

associated with theorem guidance since the Step Guidance condition 

demonstrated a more comprehensive superiority over the Problem Solving 

condition than the Theorem & Step Guidance condition and the means favoured 

the Step Guidance condition on both tests.  

 

These results were replicated in Experiment 2 with students who were 

chosen from the same maths year but divided into low achievers and high 

achievers based only on the school classification of students who were placed in 

either a lower or higher maths class. In this experiment, the worked-examples 

effect was also demonstrated favouring the two worked-examples conditions 

(Theorem & Step Guidance and Step Guidance) over the problem solving 

condition on both similar and transfer problems for both low and high achievers. 

Results also indicated that students who were presented with the Step Guidance 

format outperformed those who were given the Theorem & Step Guidance format 

on transfer problems only. The redundant information related to the theorems may 

have affected learners in the Theorem & Step Guidance condition. However, no 

expertise reversal effect was revealed in this experiment, as participants could not 

be clearly distinguished into two expertise levels in the selected area of geometry 

based on more objective characteristics.  
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Experiment 3 was designed to include a larger gap between expertise 

levels. Year 8 and 9 students were chosen for this experiment.  The experiment 

replicated the worked example effect by demonstrating the superiority of both the 

Theorem & Step Guidance and Step Guidance conditions over the Problem 

Solving condition. Moreover, it also revealed the advantage of the Step Guidance 

format over the Theorem & Step Guidance format using both less and more 

knowledgeable learners, this time on both similar and transfer problems. In 

addition, a significant ordinal interaction between these formats and levels of 

learner expertise was demonstrated due to a stronger effect of Step Guidance over 

Theorem & Step Guidance for more knowledgeable than less knowledgeable 

learners. Since the result of Experiment 3 revealed an expertise reversal effect 

based on an ordinal but not a dis-ordinal interaction, an attempt to further widen 

the difference between the expertise levels was undertaken in Experiment 4 in 

order to attempt to obtain a dis-ordinal interaction.  

 

Experiment 4 revealed a significant cross-over interaction between the 

levels of learner expertise and the instructional methods. In this experiment, the 

superiority of the Step Guidance condition over the Theorem & Step Guidance 

and Problem Solving conditions was demonstrated with more knowledgeable 

learners; additionally the superiority of the Theorem & Step Guidance condition 

over the Step Guidance and Problem Solving conditions was demonstrated with 

novice learners. The availability of written theorem information enhanced the 

learning of novices by guiding their attention to the theorems that they needed to 

learn. On the other hand, the same theorem information was redundant for expert 
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learners and inhibited their performance.  The results of this experiment reveal 

that for students who already understand the relevant theorems, learning to solve 

problems primarily consists of learning to recognise problem states and their 

associated moves. Information concerning theorems should only be provided if 

students have yet to learn and automate them. 

 

In summary, novices often have difficulty in acquiring new information. 

Knowledge of geometric theorems is crucial to the learning of unfamiliar and 

difficult geometry problems. It is important that a beginner problem solver 

receive sufficient guidance in the applicable geometric theorems for effective 

learning. The Theorem & Step Guidance worked examples were hypothesised to 

be an efficient teaching method in this situation. However, students who already 

have sufficient knowledge of the relevant geometric theorems (theorem schemas) 

may be able to apply these theorems when solving corresponding geometric 

problems without consciously processing this information. Such more 

knowledgeable students may have an advantage in using their available resources 

to learn and automate the relevant problem solving steps by studying Step 

Guidance examples rather than wasting these resources on processing 

unnecessary theorem information in the Theorem & Step Guidance worked 

examples. To conclude, learning is a process of acquiring schemas through 

integrating new information with existing knowledge structures. If a task is too 

complex to process, the number of elements of information that need to be 

processed might exceed working memory capacity limits and learning may be 

inhibited. Learning how to solve a geometric problem usually involves high levels 
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of element interactivity and is therefore a difficult task to learn and master. For 

expert problem solvers, simultaneously processing many elements or schemas 

may not be problematic; however novice problem solvers are usually faced with a 

considerably higher cognitive load. Reducing any unnecessary extraneous load 

caused by random search processes will free up working memory resources 

available to novice problem solvers. Providing Theorem & Step Guidance 

examples may help to reduce this load for novice learners. For more expert 

learners, eliminating theorem guidance that is redundant for them may reduce 

extraneous cognitive load. It is the responsibility of instructional designers to 

eliminate an unnecessary cognitive load. 

 

 

10.3 Limitations of the Study and Future Research 
 

 

The redundancy effect that was demonstrated in Experiment 4 of this 

study indicated that the effectiveness of Theorem & Step Guidance and Step 

Guidance as methods of instructional support with different degrees of guidance 

might rely on prior geometry proficiency and levels of learner expertise. 

Consequently, it is important to be able to assess the level of learner expertise and 

accordingly provide a level of guidance and support tailored to specific learner 

needs. Further studies are required to examine the effectiveness of this kind of 

adaptive learning environment that focuses on individually tailored levels of 

support and guidance.    
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The most important instructional implication of this study is the necessity 

to develop learning environments that assess levels of learner’ prior knowledge 

and accordingly alter mathematical support levels. Specific knowledge structures 

that may influence the instructional effectiveness of geometry examples need to 

be examined by conducting more research. Instructional materials that are 

learner-controlled but still include possible mathematical support could also be 

considered as an alternative approach that would overcome the complexity of 

assessing learner levels of expertise correctly.   

 

One of the limitations of this study is the lack of a prior knowledge test. 

Prior knowledge of the relevant theorems and problem solving steps need to be 

evaluated in future studies to have clear and objective measures of actual levels of 

learner expertise in specific geometry task areas. Using a test like NAPLAN can 

provide this information, or WRAT-4 where a more global measure of math 

expertise is required.  

 

 

10.4 Conclusions  
 
 

The results of this study have not only theoretical significance but also 

practical implications for the development of instructional materials and 

mathematical instruction when teaching geometric problem solving.  
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 Based on extensive research in cognitive load theory, worked examples 

represent a very effective instructional technique. In this study, Step Guidance 

and Theorem & Step Guidance methods also had a significant effect on learning 

geometry since these methods allowed learners to avoid random search activities 

and thus reduced extraneous cognitive load by providing relevant knowledge and 

activating already constructed schemas.  

 

A new factor examined in this study was the relation between knowledge 

of geometric theorems and learning to solve geometry problems with worked 

examples. Since for the students who already understand the relevant theorems, 

learning to solve problems primarily consists of learning to recognise problem 

states and their associated moves, information concerning theorems should only 

be provided to students who have yet to learn and automate theorem schemas.  

 

The results of this research also provide an additional, evidence-based 

justification for the effectiveness of using worked examples in teaching problem-

solving steps in specific task domains in order to reduce extraneous cognitive load 

and achieve the best learning outcomes. In addition, the idea that studying the 

theorems always benefits solving a geometric problem was tested. Providing 

theorems could have either positive or negative effects depending on levels of 

learner expertise. Learning geometric problem solving may be affected by 

different presentation formats and degrees of guidance that relate to the 

redundancy and expertise reversal effects as proposed by cognitive load theory.   
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Of course, these results should not be interpreted as indicating that 

instruction in the use of geometric theorems can never be beneficial. They may 

benefit younger learners during early stages while building their mathematical 

knowledge or may provide useful reference information for more advanced 

learners. Nevertheless, presenting theorem guidance within worked examples 

appears to have negative consequences for more knowledgeable students. 

Knowledge levels are critical when designing instruction. 
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