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Abstract

Biometric-based authentication provides a highly accurate means of authentica-

tion without requiring the user to memorize or possess anything. However, there

are three disadvantages to the use of biometrics in authentication; any compromise

is permanent as it is impossible to revoke biometrics; there are significant privacy

concerns with the loss of biometric data; and humans possess only a limited number

of biometrics, which limits how many services can use or reuse the same form of

authentication.

As such, enhancing biometric template security is of significant research interest.

One of the methodologies is called cancellable biometric template which applies an

irreversible transformation on the features of the biometric sample and performs the

matching in the transformed domain. Yet, this is itself susceptible to specific classes

of attacks, including hill-climb, pre-image, and attacks via records multiplicity.

This work has several outcomes and contributions to the knowledge of privacy-

preserving biometric authentication. The first of these is a taxonomy structuring

the current state-of-the-art and provisions for future research. The next of these is a

multi-filter framework for developing a robust and secure cancellable biometric tem-

plate, designed specifically for fingerprint biometrics. This framework is comprised

of two modules, each of which is a separate cancellable fingerprint template that has

its own matching and measures. The matching for this is based on multiple thresh-

olds. Importantly, these methods show strong resistance to the above-mentioned

attacks. Another of these outcomes is a method that achieves a stable performance

and can be used to be embedded into a Zero-Knowledge-Proof protocol. In this novel

1



method, a new strategy was proposed to improve the recognition error rates which

is privacy-preserving in the untrusted environment. The results show promising

performance when evaluated on current datasets.

2
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Chapter 1

Introduction

1.1 Introduction to The Topic

Since the introduction of iPhone 5S with fingerprint authentication in 2013, biometric-

based authentication has become a must-have feature in any smartphone since. Why

is biometric authentication increasingly used more on personal handheld devices?

Passwords and tokens based authentication methods rely on one’s knowledge and

possession, respectively. There exist some limitations for both of these approaches.

Passwords that are easy to remember are also easy for an adversary to compromise

while physical tokens can be stolen, lent, or cloned. On the other hand, for thou-

sands of years, biometrics have been used to verify individuals [107] as they are the

physical traits that constitute a human being. Over this period, biometrics have

proven to be reliable for the recognition of people. The last several decades of ad-

vances in computing have seen the replacement of error-prone manual comparison to

automated processes. There are numerous advantages to biometrics as an authenti-

cation mechanism; unlike passwords and tokens, biometrics cannot be forgotten or

lost, and cannot be transferred or stolen. On a smartphone, presenting a biometric

sample (such as scanning a fingerprint, showing a face) is far more convenient than
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having to fill in a password. From the perspective of a malicious adversary, the

effort expended to overcome a password is potentially significantly less than that for

a biometric. Interestingly, biometrics have even been used within the Multifactor

Authentication (MFA) to give a better access control [19]. The ‘who you are’ aspect

of the MFA has distinct advantages for use in this paradigm, and is increasingly

used.

Biometrics are often categorized into two classes: physiological biometrics and

behavioral biometrics [150]. Each has its own advantages and disadvantages and

depends on the context to be used effectively. For examples, smartphones usually

integrate fingerprint, face, or iris recognition since the sensors for these biometrics

are inexpensive and portable, allowing their use in handheld devices. Therefore,

how good a biometric is depends on how it is used. Yet, fingerprint and face are

still among the most widely used biometrics for authentication due to the explosive

increase in smartphones.

However, biometrics do have disadvantages as a form of authentication. Chief

amongst these is the concerns regarding privacy. What would happen if a biometric

template is in the hands of a malicious adversary? First and foremost, all appli-

cations that use this template are potentially compromised. This is an issue as

there are a finite number of unique biometrics for any given individual. The loss of

a biometric is also important to note as biometrics are not revocable. A compro-

mised biometric sample is considered lost permanently. As a result, there is a strong

emerging research interest to devise the methods designated for securing biometric

templates as a means of reducing the risk of accidental and malicious loss. One of

the current approaches is the Cancellable Biometric Template.

Before detailing the research conducted in this thesis, this chapter is dedicated

to framing the issues explored in this work. Some background knowledge is briefly

reviewed in section 1.1.1, to frame the need for this work and to provide some context

for key concepts. Afterward, the Research Question of the thesis will be presented

in section 1.2. Finally, in section 1.2, the structure of the thesis is given.
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1.1.1 Background Knowledge Framing the Research Need

The concept of the cancellable biometric template is one of the more actively

researched methods for biometric template protection. Rather than a single defini-

tion, cancellable templates are often defined by their core characteristics. Ratha et

al. [124] described the four characteristics of a cancellable biometric template as:

• Non-invertibility: The transformation that is applied on a biometric template

is either non-invertible or computationally hard to be reversed. Later on, the

ISO/IEC 24745 standard usually refers to this characteristic as irreversibility.

• Revocability: In case that a cancellable biometric template is compromised,

it can be revoked while the original biometric data is still secure. A new can-

cellable biometric template is regenerated from it using a new set of parameter

keys.

• Unlinkability: This term is also usually referred to as Diversity. It requires

all the cancellable biometric templates generated from the same original bio-

metric data with different set of parameter keys to have no correlation. This

characteristic ensures that an attacker cannot use a compromised cancellable

biometric template to cross authenticate another application.

• Accuracy: The non-invertible transformation, when applied, should not de-

grade the matching results in the transformed domain.

With the above characteristics, cancellable biometric templates provides a firm

foundation as an appropriate approach to resolve the problems of traditional au-

thentication methods. Importantly, it is a privacy-preserving methodology in the

sense that it aims to protect the biometric with an irreversible transformation that

avoids the necessity to store the original biometric template. However, there are

emerging techniques that have been shown to weaken the protections given by can-

cellable biometric temples. One of these, Attacks via Records Multiplicity (ARM),

have shown to be effective in reducing the privacy of users [100].
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ARM was first proposed in [136]. With this attack, the malicious adversary re-

verses the irreversible transformation applied on the biometric template by gather-

ing samples from multiple biometric authentication systems that employ the same

method. In detail, given a raw biometric template x, multiple sets of parameters ki

(i = 1, 2, ..., n), and the transform function F , multiple transformed templates are

generated as yi (i = 1, 2, ..., n) where each transformation follows the one-time-pad

model such that each individual yi is infeasible to be linked back to x. For conve-

nience, such transformation will be referred as the One-Time-Pad (OTP) model.

Being deployed in multiple locations, these yi’s are not linked. However, assuming

the OTP transformation function F and parameter set ki (i = 1, 2, ..., n) are known,

an adversary can launch the ARM if he/she can determine the original biometric

data x through solving the acquired system of equations as shown in several research

publications 1.1. For example, a cancellable design with an OTP-based transforma-

tion such as many-to-one linear mapping is exposed to the ARM [100] because a

unique solution can be determined through solving a well-defined system of linear

equations.



y1 = F (x, k1)

y2 = F (x, k2)

y3 = F (x, k3)
...

yn = F (x, kn)


(1.1)

Therefore, the ARM can cripple a privacy-preserving biometric authentication

system, making the cancellable biometric methods no longer privacy-preserving.

This has consequences that are potentially far-reaching, as it can expose the original

biometric, which may in use elsewhere and is non-revocable. It is important to find

the irreversible transformations that are resistant to the ARM but does not affect the

performance of the authentication systems. This leads us to the Research Question,

which is detailed in the next section.
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1.2 Research Question and Contributions

1.2.1 Thesis Research Question

As noted above, there is a need to progress the field of biometric authentication

with privacy preservation. Specifically, cancellable biometric template needs to be

defended against the ARM. As such, the major research question for this thesis is

as follows:

How can we develop biometric authentication frameworks that can ad-

dress major security and privacy threats while retaining a good authen-

tication performance?

This is a non-trivial research problem as security strength and high authentication

performance are conflicting goals. To best answer this research question, there are

multiple sub-processes required.

The first stage of this work is to understand the current state of the art in the field,

both from an offensive and defensive perspective. What are the current biometric

processes used, and what is their performance? What are the current threats and

attacks on privacy and security, and how effective are these? What are the current

research opportunities in this area? All of these responses are necessary to best

explore the research question that is the central point of this work.

The second stage of answering this question is to evaluate, irrespective of perfor-

mance, whether it is possible to mitigate the current and emerging attacks. If so,

can performance then be improved or considered to be competitive with other cur-

rent approaches? This may require the development or redevelopment of multiple

approaches.
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1.2.2 Novel Research Contributions of This Work

In order to answer the research question, this thesis contains the following contri-

butions:

• A taxonomy for the current and emerging biometric authentication systems,

especially the privacy-preserving technique, is devised.

• Two sets of robust local-structure-based fingerprint features are designed with

the capability to deliver stable performance even in noisy conditions.

• Along with the features mentioned above, two irreversible transformations are

proposed to incorporate in a multi-filter cancellable template framework that

is able to defend against the current attacks such as the ARM, Hill-climb, and

Pre-image.

• A light-weight biometric authentication that utilizes the power of Artificial

Intelligence (AI) with high performance is embedded in a Zero Knowledge

Proof Protocol to be ready for use in a subsequent cryptography-based security

system.

1.3 Thesis Structure

The research in this thesis employs privacy-preserving biometric authentication as

its theme. It is structured into six chapters: Chapter 1 introduces the topic of this

thesis along with briefing some of the background knowledge in the field. Chapter 2

gives a taxonomy of the emerging related work and also functions as a comprehensive

review of the literature in the field. Chapter 3 presents a local-structure-based design

for a cancellable fingerprint template. Chapter 4 combines the work in Chapter 3

with a newly proposed cancellable fingerprint design based on the MCC to devise a

Multi-filter Cancellable Fingerprint Template framework. This framework is proven

to have successfully defended against the current attacks with the best performance
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when compared with the current state of the art. Chapter 5 is dedicated to the

integration of a light-weight biometric authentication in a Zero-Knowledge-Proof

Protocol to be used in a subsequent cryptography-based security system. Finally,

chapter 6 concludes this thesis and suggests future research directions.
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Chapter 2

Literature Review

A subset of the work reported in this chapter (mostly from Section 2.2 to Section 2.4) has been
published in the following article: Tran QN, Turnbull BP, Hu J. Biometrics and Privacy-Preservation:
How Do They Evolve?. IEEE Open Journal of the Computer Society. 2021 Mar 23;2:179-91.

2.1 Overview

In addition to reviewing the related work in biometric authentication from a

privacy-preserving perspective, this chapter is also dedicated to present a compre-

hensive taxonomy for privacy-preserving biometric authentication system. The well-

designed taxonomy can structure the vast knowledge in the field which helps an in-

depth understanding of the complicated relationships among various concepts and

existing works.

Biometrics are traits of human body characteristics and behaviour. From a cryp-

tographic perspective, biometrics possess properties that make them suitable as an

authentication factor; they cannot be forgotten like a password or pin, and they

cannot be lost or stolen like a token. Biometrics can help address the inherent se-

curity weakness of cryptography in identifying a genuine user. However, biometrics

themselves are limited and will be a permanent loss if compromised. Also, the pri-

vacy of biometrics are subject to the protection of legal regulations. Therefore, there

is a paradigm shift towards privacy-preserving biometric authentication technology,
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which has the potential to address these concerns.

Due to their uncertain nature, biometrics cannot be protected by simply applying

conventional encryption. This leaves them exposed to various threats. As a result,

there exists an immediate necessity to devise methods that not only preserve the

privacy of biometric data but also ensure the performance of biometric authentica-

tion systems. According to the standard set by ISO/IEC FCD 24745:2011 [55], a

biometric protection scheme must be: (i) irreversible, that is computationally infea-

sible to reconstruct the original biometric data from the encrypted template; and

(ii) unlinkable, whereby the encrypted templates generated from the same biometric

data are not correlated such that a cross-matching attack is successful.

As many biometric matching techniques in the unprotected domain are integrated

into the privacy-preserving biometric authentication systems, a taxonomy and sum-

mary of the state-of-art biometric matching techniques in the unprotected domain

are also provided. Such system-level knowledge organization will help produce ex-

cellent self-contained contents of reference materials for researchers from both the

biometric community and the cryptography community who would otherwise have

difficulty in understanding the relevant materials from the other side. Additionally,

it provides a structured approach to the understanding of the domain and its areas

of the current and emerging research and development.

2.2 A Taxonomy of Biometrics and Privacy-preserving

Techniques

Privacy-preserving mechanisms for biometrics are designed to ensure the security

of biometrics when used in any authentication system. They are normally catego-

rized into cancellable biometrics template and biometric cryptosystem [128]. This

work presents a new perspective on the classification of privacy-preserving techniques

in addition to the categorization of the biometrics genres. A privacy-preserving

biometric security system consists of biometric component and privacy-preserving
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Figure 2.1: Privacy-preserving Biometric-based Authentication System

mechanisms.

Due to the characteristics of the biometrics, they are categorized into two main

types: behavioral biometrics and physiological biometrics. Behavioral biometrics are

the types of biometrics that are focused on the actions of the owner. The behavioral

biometrics are categorized into two sub-categories: extrinsic and intrinsic behavioral

biometrics. The reactions that correspond to certain events are extrinsic behavioral

biometrics (typing, keystrokes, touchscreen usage patterns, driving styles, and so

on) meanwhile those that come from the routine activities of a person are intrinsic

behavioral biometrics (gait, voice, and many others). Being the actions of a person,

behavioral biometrics are countless, resulting in more studies proposed on the new

types being used in an authentication system.

Traditionally, privacy-preserving mechanisms for biometrics have always been cat-

egorized as cancellable biometrics and biometric cryptosystems. Cancellable biomet-

rics are the application of a non-invertible transformation onto the biometric data,

and biometric cryptosystems rely on cryptographic techniques to encrypt the bio-

metric data. However, as the field continues expanding, more recent studies that

have been proposed require a more complicated and specific categorization. Hence,

this work proposes a novel taxonomy in which each class or sub-class is better spec-
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ified based on its characteristics:

• Non-invertible Transformation: methods that applies a non-invertible trans-

formation on the biometric data. Biometric matching is performed in the

transformed domain. For instance: cancellable biometrics, Hashing, or Homo-

morphic Encryption.

• Direct Biometrics Key Generation: methods that generate a cryptographic

key based on a biometric data.

• Information Hiding Techniques: techniques that, given public information,

make it hard to find the corresponding original information.

• Protocol-based Protection: methods in which protection is achieved by de-

ploying a protocol that usually involves multiple parties.

The taxonomy provides an overall structured level of biometrics and mechanisms.

Fig 2.1 provides an overview of the interconnection between the privacy-preserving

mechanisms. This relationship will be discussed in the next sections.

An abstraction-level taxonomy overview is presented in Figure. 2.1. In this tax-

onomy, the whole Biometric Privacy-preserving Authentication is comprised of Bio-

metrics and privacy-preserving mechanisms. Biometrics are categorized into Physi-

ological Biometrics and Behavioral Biometrics where Privacy-preserving mechanims

are categorized into: Non-invertible Transformation. Direct Biometrics Key Gener-

ation, Information Hiding Techniques, and Protocol-based Protection. The details

for each component are discussed in the following sections.

2.3 Biometric Authentication Systems

Biometrics are the traits of human body characteristics and behavior. They are

excellent attributes for identity management.
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2.3.1 Behavioral Biometrics

Behavioral biometrics focus on recognizing the individual based on the nature of

their actions. As indicated in Figure 2.1, behavioral biometrics can be categorized

into either extrinsic or intrinsic behavioral biometrics. Each of these is discussed

separately.

2.3.1.1 Extrinsic Behavioral Biometrics

Extrinsic behavioral biometrics are those that occur based on the uniqueness

of an individual’s behaviour in dealing with specific situations. For example, the

identification of typing or touchscreen usage patterns [152,186].

The implementation and use of touchscreen has seen rapid expansion of use owing

to the wide expansion of smartphones in the digital age. Consequently, touchscreen

input has been extensively considered as an extrinsic behavioral biometric to iden-

tify users [56]. However, in general, touchscreen biometric authentication is user

friendly but has a high error rate, potentially making it one factor of authentication

in support of less error-prone techniques. Another important extrinsic behavioral

biometric is patterns produced in typing. However, as pointed out in [118], the

assumption that typing pattern is stable over time does not hold, meaning that it

can change over time for multiple reasons. It has been shown that the accuracy of

a typing-based behavioral biometric authentication is not reliable. In addition, the

user’s level of familiarity with the language to be typed also affects the identification

process. Typing time latency relative order feature and clustering can help improve

the system performance [74] [173].

2.3.1.2 Intrinsic Behavioral Biometrics

Intrinsic behavioral biometrics come from the natural activities of the body. These

include, for instance, gait and voice. Intrinsic behavioral biometrics are normally

used for distant individual identification and are cooperation agnostic.
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Tao et al. [143] proposed General Tensor Discriminant Analysis (GTDA) as a pre-

processing step for LDA and applied this with gait recognition for evaluation. Aside

from this, three Gabor-function-based decomposition techniques have also been de-

vised to recognize the walking figure. Experimental results from this work indicated

good performance when compared with other state-of-the-art methods of gait recog-

nition, based on the University of South Florida HumanID Database. Specifically

focusing on gait recognition without cooperation in different conditions, Bashir et

al. [15] proposed Gait Entropy Image (GEnI) for auto feature selection on which an

Adaptive Component and Discriminant Analysis (ACDA) is formulated for match-

ing with the selected features. On the other hand, Zhang et al. [197] focused on

devising a solution for the degraded performance when confounding variables are

present by proposing AutoEncoder framework, which is capable of automatically

disentangling gait features from appearance. The authors also generated a more

challenging gait database that contains only frontal view gaits (FVG) with varia-

tions. Chao et al. [26] considered each gait as a set of independent frames and used a

network called GaitSet for learning from this set. This method is said to be immune

to frames permutation and able to integrate frames from other videos. Evaluations

on the OU-MVLP gait database and CASIA-B gait database reached an average of

87.1% and 95.0% recognition rate. Wang and Yan [166] proposed a cross-view gait

recognition system with ensemble learning in which multiple gait learners are taken

into consideration. Recognition rate when evaluated with CASIA dataset A and

B is 95.5% and 96.1%, respectively. Zou et al. [200] utilized a CNN and an RNN

to learn the gait biometric of each individual from walking data, which is collected

using smartphones in the wild with no constraints about speed or path. From the

two datasets of 118 individuals collected by smartphones, this algorithm reached

93.5% and 93.7& accuracy rate in identification and authentication, respectively.
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2.3.2 Physiological Biometrics

Physiological biometrics are the traits that belong to a human, including finger-

prints, palmprints and finger veins. They are usually unchangeable and are consis-

tent for an individual throughout their life. However, the collection of physiological

biometrics is subject to multiple external factors, such as the pressure on the collec-

tion device, surface collection cleanliness, and other environmental factors. In this

section, the physiological biometric authentication is categorized into the partitions

of fingerprint, face, others, and multimodal.

2.3.2.1 Fingerprint

The fingerprint has long been applied as a reliable tool for individual identifica-

tion. This section will review the proposed key advances on fingerprint matching

techniques where most of them are integrated with the various privacy-preserving

mechanisms in forming privacy-preserving biometric authentication systems.

Ridge-based Matching: One of the most common fingerprint matching method-

ologies is ridge-based matching. This method has been developed to deal with low-

quality images generated from low-resolution sensors. In 1986, Isenor and Zaky [76]

introduced a unique method to match two fingerprints by representing the images

using connected graphs in which each node is a level number given to a ridge after

adjusting the orientation of all ridges. Matching is performed between two graphs

in three phases: partitioning, refining, and scoring. This technique has been proven

to correctly identify corresponding minutiae. Marana and Jain [111] proposed a

ridge-based fingerprint matching method using Hough Transform for low-quality

fingerprint images captured by solid state sensors, achieving FRR of 1.7% at FAR

of 0.1%. Feng et al. [48] presented a ridge-based matching method that constructed

the ridge and minutia correspondences between two fingerprints. Choi et al. [27]

also employed the concept of combining ridge features with minutiae.

Image-based Matching: An image-based methodology uses feature vectors to
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represent an image. From a bio-cryptographic perspective, it is used to create images

from fingerprints that can then be compared. Almansa and Cohen [11] presented

a thin-plate spline model to match fingerprint images, relying on the geometric

transformations between two images. Ito et al. [77] specifically sought to work

with low-quality fingerprints, and overcame many of the challenges with a phase-

based image matching process that uses phase components in 2D DFT. In general, a

fingerprint image-based matching scheme is a global feature based matching scheme.

Such features are not as accurate as local features, such as minutia representation.

However, with the great success of Deep Learning mechanisms in image processing,

such fingerprint image-based methods have found new applications in fingerprint

presentation attack detection [28,62].

Minutia-based Matching: A minutia is the point of either ridge bifurcation or

a ridge ending on a fingerprint, which is described by its coordinates and orientation.

Jain et al. [78] proposed a point pattern matching scheme for fingerprint comprising

of two stages: alignment and matching. In alignment stage, the differences caused

by translation, rotation, and scaling between the template and query is estimated

such that the query minutiae are aligned with the template minutiae. In the match-

ing stage, the minutiae from both are converted to polygons in a polar coordinate

and matched using an elastic string matching algorithm from which an analysis of

the accuracy and distribution of the genuine and impostor matching are provided.

Minutia-based fingerprint matching is the major fingerprint matching mechanism

in use today, and many fingerprint matching schemes are derived from the minutia

feature. Many use minutia feature processes and add additional features, such as

ridge count, to increase effectiveness [188]. In general, such methods can produce

very high matching performance and are widely deployed in practical systems.

Local Structure-based Matching Methodology: Local structure matching

is a process widely used for not only fingerprint matching but also for matching of

other biometrics, since it limits the influence of external factors that cause noise

and distortion to a biometric object. Minutia Cylinder Code (MCC), introduced by

Cappelli et al. [24] is the current state-of-the-art algorithm. It is a hybrid between
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local structure-based matching and minutia-based matching methodology, as each

of the local structures constructed is based on a minutia. Given a minutia m =

{xm, ym, θm}, the MCC representation of m’s is the cylinder whose bases’ centered

at m with a pre-defined radius R and a height of 2π. A cuboid encloses the cylinder

such that the cylinder’s bases are aligned with vector θm. The cuboid is divided into

small cells with an associated value calculated by feeding the minutiae’s spatial and

directional contribution into a sigmoid function. Each of the cell values is assessed

their validity to evaluate the cylinder’s matchability before calculating the cylinder

similarity. In addition, the authors also provide four global scoring methods to

consolidate all pairs of cylinder similarity into a matching score as the means to

determine whether two fingerprint match or not. MCC was evaluated with dataset

FVC2006 DS2[a-e] under the traditional FVC protocol. The matching performance

of this method is still considered the state-of-art today due to its low EER and FMR

(0.15% and 0.18%, respectively).

2.3.2.2 Face

In parallel with fingerprints, facial recognition has been in development for a

significant period of time. Unlike fingerprints, facial recognition does not require

complex hardware, and a modern inexpensive camera can produce a face image

of suitable quality, even from a distance. The art of facial recognition lies in the

algorithm that enhances the image and extracts reliable features from a face to

successfully verify or classify it.

Image-based facial matching: Facial recognition systems that use image-based

matching techniques rely on input image or images of faces to extract features. There

are primarily two types of systems in this category: feature-based and holistic.

The difference between these two techniques is that feature-based approaches use

local structure features and holistic approaches rely on global structure features,

respectively. These are discussed separately below.

Feature-based Facial Recognition: Feature-based Facial Recognition takes the in-
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put image and identifies the face area to extract individual facial features, such

as the eyes, nose, lips, etc. Yuille et al. [190] proposed the deformable templates

approach that describes the features extracted from a face using a parameterized

template; Tan and Triggs [142] introduced Local Ternary Patterns (LTP), which is

a generalized version of the LBP local texture descriptor to improve the recognition

accuracy under uncontrolled lighting conditions. This method achieves state-of-the-

art performance when evaluated with the Extended Yale-B, the CAS-PEAL-R1,

and the (FRGC-204) datasets. A new development expanding on this technique has

been proposed to retrieve local binary features via unsupervised machine learning,

which has the potential to learn the binary codes and the codebook for local face

patches in a single stage [43,104].

There are a myriad of methods based on the use of profiles. Bhanu and Zhou [18]

have proposed curvature values to extract fiducial points from faces, and used a

dynamic time warping method to match them. There are two databases that are

considered best-practice for use in profile-based facial recognition experiments. The

first database, which is from the University of Bern [1], contains profile views of 30

people with three big gray-level profiles each, yielding accuracy of 90%. The second

database, which is from the University of Stirling [2], has 311 images from 35 people,

having 78.4% accuracy. Efraty et al. [45] expanded the angles of the profile such that

various rotations having their own feature space with the aid of 3D models. Various

experiments with two publicly available face databases have been conducted. Recent

works are on facial landmark localization and alignment [39,199].

Holistic Facial Recognition Holistic-based (or global features) facial recognition

systems are designed to establish the features based on the whole image, rather than

specific points or regions as feature-based methods do. Holistic face recognition

systems can be categorized into two approaches: statistical approaches and AI-

based approaches. In its most basic form, a holistic-based face recognition takes

an image as input and treats it as a matrix of intensity values. In order to match,

an input face is compared against the faces the system stored in memory or an

existing database. As one might have thought, this method is not only complex

31



in terms of computational power but also prone to errors due to external condition

changes. For this system to work with stability, several conditions regarding lighting,

pose angle, and distance to camera must be met. In reality, this is rarely the

case with face recognition. Therefore, to reduce the matching complexity, there

exists a necessity to match less features. This would ideally only search for and

match features that are meaningful or discriminative. This is described as the curse

of dimensionality, and is common across several fields. Most works in this space

focus on addressing the dimensional issue by using PCA [137], and LDA [105] to

reduce dimensionality. These earlier works are mostly statistically-based approaches.

Recently, a topology-preserving structural matching was proposed in [44]. Due to

the success in the application of AI, significant attention has been directed toward

AI-based face recognition approaches.

AI-based Facial Recognition With the integration of Artificial Intelligence, facial

recognition has met its next chapter of development. This is at a time when existing

methods such as PCA, LDA, and ICA methods are beginning to saturate and yield

less improvements over time. AI-based face recognition offers multiple approaches to

minimise the impact of the curse of dimensionality in the context of face recognition.

Neural networks are one widely used approach to achieve this. Recently, Yin and Liu

[187] devised a multi-task learning model in which a Convolutional Neural Network

(CNN) was given a main task along with multiple side tasks. In this approach,

pose variation is learned by a pose-directed multi-task CNN. This method reports

comparable or even better performance than state-of-art methods on the LFW, CFP

and IJB-A datasets. Meanwhile, Cocskun et al. [31] improved the performance of a

face recognition system by adding two normalization operations to two of the eight

layers (four convolutional and four max pooling layers) in a CNN-based system.

Multiple Classifier Facial Recognition Each classifier has its own advantages and

disadvantages, and there is active research in the use of multiple classifiers to over-

come these limitations. With integration, the result can be a single complex system

comprised of complementary classifiers. In practice, Multiple Classifier Systems

(MCS) are a powerful solution for solving pattern recognition problems, especially
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those that involve noisy data and large class variations [72]. Toygar, Acan Chawla

and Bowyer [145] embraced a divide-and-conquer design to introduce a multiple clas-

sifier face recognition system using appearance-based statistical methods in which a

facial image is segmented into multiple horizontal regions where a particular statis-

tical method (PCA, LDA, or ICA) is used to extract features. This technique was

evaluated with the FERET dataset, and was shown to provide improvements in not

only storage and computational complexity but also recognition rates.

Video Sequence Facial Recognition: With the growth of surveillance cameras

for security purposes, combined with the increase in power and quality of smartphone

video, the ability to perform facial recognition from video sequences in real-time has

become an active research field. Early works in this space attempted to extend

techniques used in still-image recognition to video, but these were met with limited

success [68,196]. Recently, systems that are explicitly designed for facial recognition

against video inputs have been devised. The most successful of these use neural

networks. Ding and Tao [40] implemented a Convolutional Neural Network for their

facial recognition system. This system proposed a Trunk-Branch Ensemble CNN

model to extract complementary information from holistic face images and patches

cropped around facial components. This method achieved state-of-art performance

on three databases: PaSC, COX Face, and YouTube Faces. Yang et al. [177] pro-

posed a facial recognition using a Neural Aggregation network (NAN), which takes

a video or set of face images as input and produces a fixed-dimension feature rep-

resentation for recognition. Experiments were conducted on IJB-A, YouTube Face,

and Celebrity-1000 benchmarks, and the outcomes highlights its competitive per-

formance against state-of-art naive aggregation methods at the time. In 2018, Li et

al. [102] presented a Recurrent Regression Neural Network (RRNN) framework to

solve the problem of cross-pose facial recognition on both still images and videos.

MultiPIE and YouTube Celebrities databases have been used to evaluate the per-

formance of this framework with different angle poses, achieving 95.6% and 84.6%

on average, respectively.

Sensory Data-based Facial Recognition In parallel with the growth in the
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number of facial recognition techniques based on 2D images or videos, facial recog-

nition based on sensory data has recently attracted significant attention. With

appropriate sensors, facial characteristics are captured and modelled accordingly.

Based on the types of facial data, it can be categorized as infrared facial recogni-

tion and 3D model facial recognition. Each of these is independently discussed, as

follows.

Infrared Facial Recognition Thermal infrared has been used as a tool for detection

of facial features. Unlike images captured by cameras, infrared pictures are not easily

affected by lighting variation. More importantly, Cutler [33] stated that infrared

sensors are even capable of detecting veins underneath the skin, leading to the

exposure of more discriminative features. Thus, thermal infrared sensors tend to

deliver more stable data, especially in facial recognition. However, there are several

reasons that infrared is not that popular for facial recognition; thermal cameras are

more expensive and therefore have a higher deployment cost, they do not work with

glasses and other facial coverings, and are temperature sensitive. Hence, in some

situations, visible light facial recognition systems will outperform infrared ones [89].

Despite these limitations, there is significant work in this space, and many ad-

vantages for doing so. One particular area of research in this space has been the

generation of infrared face databases [106, 192]. Recently, Rodriguez et al. [130]

proposed a Long Wave Infrared (LWIR) image facial recognition framework and

an infrared facial recognition system based on the complex wavelet structural sim-

ilarity (CW-SSIM) index. The authors also generated two new LWIR facial image

databases with variations in poses, expressions, and illumination conditions. Abd

El-Rahiem et al. [3] proposed an infrared facial recognition system that uses Con-

volutional Neural Network (CNN) that includes five convolutional layers and five

max-pooling layers. Terravic Facil IR Database (TFIRDB) has been used for eval-

uation of the method, reaching accuracy of 99%.

3D Model Facial Recognition Constructing a three-dimensional model of the face

for recognition brings an obvious benefit - it provides a greater number of discrim-
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inative features from the curves and shapes on the face, resulting in improvements

to the performance of the developed system. However, it also increases the compu-

tational complexity of the system. Computing developments are such that this cost

will largely be irrelevant, making systems employing such technology more popu-

lar over time. There are several well-known techniques in this area. Sharma and

Kumar [138] proposed a Voxel-based 3D face reconstruction technique and applied

it in facial recognition along with sequential deep learning. Bosphorus, UMBDB

and KinectFaceDB datasets have been used for evaluation, achieving competitive

recognition rates.

Targeting the pose variation, He et al. [71] recently proposed a Deformable Face

Net (DFN) in which a deformable convolution module learns the alignment and

identity-preserving feature extraction. This method has been evaluated on multiple

benchmarks, yielding superior performance in comparison with other state-of-art at

the time. Recently, Al-Obaydy and Suandi [10] presented an automatic pose normal-

ization technique that automates the process of facial landmark detection in a facial

recognition system. Experiments evaluated on FERET database show comparable

or better performance than the state-of-the-art pose normalization approaches.

2.3.2.3 Iris

The iris, considered as biometric with the highest reliability, has been widely used

to identify individuals. In order to use the iris as a method of recognition, a sensor is

required to scan the iris, from which the feature vectors are generated and matched

according to a process. Iris recognition methods can be categorized based on the

following stages; image acquisition, region segmentation, feature extraction, and

matching. Iris recognition systems are categorized into two different types based on

their methodology; features-based and AI-based.

Features-based Iris Recognition: One of the most and first phase-based iris

recognition algorithms used in commercial systems was proposed by Daugman [36,

37]. In this work, the feature vectors of an iris are extracted by applying the 2D
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Gabor filters. After quantization, these feature vectors are called the ’iriscode’.

The Hamming distance is calculated between a pair of iriscodes, reporting best

performance with FAR of 1/151000 and FRR of 1/128000. Tan and Kumar [141]

proposed a solution to improve iris recognition when comparing images taken from

different distances. This process used a Zernike moment-based phase to encode

the local iris features and combine it with global features in a joint strategy. The

proposed algorithm was evaluated with public iris databases, UBIRIS.v2, FRGC,

and CASIA.v4-distance, providing an average improvement in EER of 54.3%, 32.7%,

and 42.6%, respectively, in comparison with other state-of-the-art methods at the

time. Kaur et al. [88] based their method on moment invariants to extract local and

global features with their invariance properties and tolerance to noise from localized

iris region until 15th order.

AI-based Iris Recognition: The use of AI in iris recognition is still in its relative

infancy, but has yielded significant success. Of note, Ahmadi et al. [8] devised

a new method that is developed by neural network and genetic algorithm for iris

recognition. Proencca and Neves [122] proposed to use deep learning classification

models to construct a segmentation-less and non-holistic iris recognition system.

Separately, Dua et al. [42] utilized a feed-forward neural network with a k-means

clustering algorithm in which iris segmentation is conducted with circular Hough

transform that helps separating the iris region from other parts. Targeting post-

mortem iris recognition in deceased forensic identification, Trokielewicz et al. [151]

used deep learning to segment the iris texture area with Gabor-based recognition

method. In addition, a new database of post-mortem iris images from 42 subjects

is established.

2.3.2.4 Other biometrics

Apart from the fingerprint, face, and iris, there are other types of biometrics that

have been used to perform recognition. Although some of these biometrics are not

as popular, largely due to the level of inconvenience and deployment cost when com-
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pared with other biometrics. For example, palmprints are a unique biometric, but

require a physically larger scanner for collection when compared with a fingerprint,

and EEG recognition systems provide explicit uniqueness, but require much more

complex signal capturing devices than many other systems. This section reviews

some eminent works that have been proposed for other biometrics.

Palmprint: Although similar to fingerprints, due to having a bigger area, palm-

print contains more discriminative features that can be used for individual iden-

tification. There are several algorithms proposed to utilize features for matching

two palmprints, and several of the works designed for fingerprint analysis may be

translated. However, palmprints have unique issues, and are susceptible to the curse

of dimensionality problem. Fei et al. [47] made good use of the direction informa-

tion of the palmprint by proposing a three-phase feature extraction procedure; first,

the surface direction of the palmprint is extracted; then its energy map layer is

used to retrieve the latent direction features, and finally, applying multiplication

and addition schemes, the apparent direction and latent direction features are com-

bined in a histogram feature descriptor, which is used for the process of recognition.

As with other areas of biometrics, AI is also being utilized in the identification of

palmprints. Motivated by the desire to construct an scenario-adaptive palmprint

recognition system, Zhao et al. [198] proposed a generic framework that is capable

of extracting high-level discriminative features using a discriminative deep convolu-

tional network that is trained with limited palmprint data. Upon being evaluated

with PolyU Multi-spectral database, IITD, and CASIA, this method reported sig-

nificant results.

Finger Vein: One advantage to using finger veins as a unique attribute is that,

unlike many other personal attributes, it is non-obvious and not subject to easy

retrieval by adversaries. However, the use of finger veins does induce complexity for

deployment. There has been significant work in the use of finger veins for biometrics.

In 2017, Lu et al. [178] proposed a finger vein recognition framework in which the

anatomy structure is exploited to construct a more reliable vein network and vein
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backbone. Matching is performed by first using the vein backbone to align the finger.

Experimental results on Hong Kong Polytechnic Database and Shandong University

database shows the effectiveness of this framework with EER of 0.38% and 1.39%

for HKPD and SDU database, respectively.

Hong el al. [73] utilized NIR image sensors with a convolutional neural network

to improve the quality of the image and the process of matching two finger veins,

respectively. Their method was evaluated with the SDU database in addition to the

two databases that the authors constructed themselves, showing better performance

in comparison with the conventional methods. Xi et al. [174] proposed to perform

finger vein recognition using discriminative binary codes (DBC). The process for

this is as follows; firstly, the relation between subject was illustrated by a subject

relation graph, from which binary templates were transformed to describe the char-

acteristics of each vein, then SVMs were trained to serve the matching process.

This method has been evaluated with PolyU and MLA databases, showing better

performance when compared with other methods at the time. Another work that

also employs binary representation for finger vein recognition is [103] in which Liu

et al., motivated by the LBP, proposed a personalized binary code (PBC) to exploit

the structure of the binary feature corresponding to each class. This method shows

leading performance on SDU and HKPU in terms of EER.

Palm Vein: The relationship between the palm vein and finger vein is similar to

the relationship of the palmprint and fingerprint. Palm vein recognition provides

another way to identify individual based on the features underneath the human skin.

As a result, a palm vein recognition system requires more complicated hardware

setup in addition to the growth in dimensionality. Hence, it is only appropriate to

be deployed with systems that require higher level of security or where deployment

cost is less of a factor.

Although less active than many other areas of biometric research, palm vein re-

search has still made significant improvements in the last decade. Van et al. [154]

proposed to deal with contactless palm vein by a combination of enhanced center-
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symmetric LBP (ECS-LBP) and SIFT. Aberni et al. [5] used multi-scale LBP for

features extraction and ant colony optimization for the preprocessing of palm vein

images towards the recognition of palm vein. Verification rate achieved in this

method is 99.64% while EER is 0.00078%, outperforming state-of-the-art methods.

Kilian et al. [92] focused on the pre-processing stage to generate high-resolution im-

age by using multiframe super-resolution (MSR) from multiple images of the same

scene. According to the authors, this method shows a promising path for low-cost

yet effective imaging devices by outperforming most classical methods.

Ear Recognition: The ear has emerged as one of the newest biometrics for recog-

nition, and has only been actively researched in the last decade. An empirical study

has shown that the ear possesses certain features that are distinct even for identical

twins [117]. Based on the unique shape of the ear, one’s identity can be verified with

an inexpensive camera that captures the image of the ear from afar. Ear acquisition

does not require contact or cooperation. Although it has received significant re-

search interest, the commercial deployment of this kind of biometric as a unimodal

biometric recognition is not as wide as others due to its variation with age, imaging

modalities, and lack of datasets. Instead, the ear can be a supplemental tool used

in parallel with other primary biometric(s) in a multimodal biometrics recognition

system. Recently, Ganapathi et al. [60] based their method on geometric statistics

for a 3D ear recognition. In this process, feature keypoints were first extracted from

3D data through the use of surface variations. Then, each descriptor vector for

each keypoint was defined by three components. Experiments conducted with the

UND-J2 database illustrated the effectiveness with best recognition rate of 100%

and EER of 1.5%.

Electroencephalography: Electroencephalography (EEG) is a test that tracks

the brain wave patterns using small metal discs with wires placed on the scalp.

Brain signals are captured through these sensors and sent back to a computer. This

method is well established in the medical field. There are normally five main brain
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oscillation patterns: Delta (0.5 - 4Hz), Theta (4 - 8Hz), Alpha (8 - 14Hz), Beta (13 -

30Hz), and Gamma (over 30Hz) [155]. Although it has been shown that EEG carries

genetic information [155], it also has the applicability as a biometric recognition

resolution. From the perspective of privacy preservation, the EEG possesses some

advantages over other biometrics. It is a secret biometric, which is even harder to

retrieve than vein-family biometrics, making it robust against spoofing attacks as

an attacker cannot acquire EEG signals, and is inherently present in all humans

and less susceptible to the physical loss that other biometrics are. However, EEG

also has limitations when used in a biometric recognition system: First, it requires

deep cooperation of the user, as EEG signals cannot be distantly recorded. Second,

the deployment of EEG equipment is more expensive than other biometrics. Third,

acquiring EEG is an inconvenient and time-consuming process. Last but not least,

in comparison with other biometrics, EEG contains health data of the user. Thus, to

some extent, it still potentially leaks health information if retrieved by an adversary.

There are several significant works in the research space of EEGs as biometrics.

Das et al. [35] investigated the use of EEG under different frequency bands, visual

stimuli, and subsets of time intervals after the stimuli presence. The experiments

were conducted on a set of 50 healthy subjects and each sample was acquired twice,

which the second one week after the first. Various results have been acquired with the

best being 13.55% of EER in a non-target vs non-target scheme. Fraschini et al. [57]

presented a phase synchronization-based approach for an EEG recognition system,

resulting in an EER of 0.044% for EEGMMIDB. Nakamura et al. [115] aimed at

applying EEG in real-world application by resolving the two issues; collectability and

reproducibility. This EEG system is designed by using a ”one-fits-all” viscoelastic

generic in-ear EEG sensor to collect data over multiple days with multiple objects.

Autoagressive model and spectral features are supported by LDA and used with

SVM classifiers. This method showed a 95.7% accuracy rate on a dataset from 15

subjects.

Wang et al. [158] have proposed some works on the advances of EEG recognition

systems. They presented a deep Gaussian Mixture-HMM for EEG Signals classifi-
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cation [158] that contains two components: the first serves as the automatic feature

extraction by utilizing an autoregressive-deep variational autoencoder model while

the second is built for EEG classification by incorporating the Gaussian mixture-

HMM. In [159], the authors proposed an EEG recognition system that used convo-

lutional neural networks on EEG signals collected during a diverse set of tasks while

recently, in [160], a graph-based method consisting of a network estimate module

and a graph analysis module for EEG biometric identification.

2.3.2.5 Multimodal

Multimodal biometric recognition systems combine multiple, different biometrics

to deliver more stable performance than unimodal biometric systems in terms of

recognition [140]. The features from each biometric are extracted and used for the

process of matching. Multimodal biometric systems have the advantage of accuracy

at the expense of complexity. Depending on the system used, fusion is performed

between biometric responses at a system level, to calculate identity. The most

popular method of fusion is at matching score level.

In 2000, Dialog Communication Systems (DCS) developed BioID, a commercial

multimodal biometric recognition system combining a physiological biometric (face)

with two other behavioral biometrics (voice and lip movement). This system is

outlined in [58]. In the wake of EEG’s increasing applicability as an identification

system, Min et al. [157] incorporated face recognition with EEG to a trusted au-

tonomous system in which the presence of a user is continuously verified. Recently,

Zhang et al. [195] introduced DeepKey as a multimodal biometric authentication

system for gaits and brainwaves. DeepKey is comprised of two components; an in-

valid ID filter model that blocks unauthorized personnel, and an attention-based

Recurrent Neural Network for parallel subject matching. This system achieved 1%

FRR while maintaining FAR at 0%.

The methods to fuse outcomes at a systemic level is a major research focus for

multimodal biometrics systems. In a multimodal biometric system, fusion is a crit-
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ical factor that influences the overall matching performance. In [129], Rodrigues

et al. proposed two fusion schemes. The first of these was the extension of the

likelihood ratio-based fusion, and the second was based on fuzzy logic. The authors

claimed that their proposed methods are more robust against spoof attacks than

other fusion methods. Walia et al. [156] performed fusion at the score level in a

multimodal biometrics system comprised of iris, finger vein, and fingerprints. This

fusion worked by first applying Backtracking Search Optimization Algorithm (BSA)

on each classifier, then using proportional conflict redistribution rules (PCR-6) to

resolve the conflicts among classifiers. This system was tested to produce a 1.5.%

EER and 98.43% accuracy rate. Gupta et al. [67] proposed a score fusion method

that is adaptive, where the matching scores are boosted or suppressed based on the

situation. This method is said to be capable of distinguishing noisy inputs from

spoofing attacks. Accuracy rate of the proposed method reached 99.5% with 0.5%

EER.

Aside from a matching score fusion process, there are several other methods de-

signed to fuse multimodal biometrics at different levels. Believing a feature set is

more informative than matching score or the decision output, Haghighat et al. [69]

introduced Discriminant Correlation Analysis (DCA) to perform feature-level fusion

in a multimodal biometric system. With the same assumption, Joseph et al. [84]

proposed a multimodal biometric system for the improvement in security in cloud

environments. This system fused the features of fingerprint, iris scans, and palm-

print to generate a unique key, which is the outcome of the fusion.

In addition to the development of recognition methods, researchers have also

worked on generating benchmark databases for multimodal biometrics. The major-

ity of these databases provide a combination of physiological and behavioral bio-

metrics that are acquired with different sensors or views to ensure the presence of

variations. In 2007, Fierrez et al. [54] generated BioSec, a multimodal biometrics

database containing fingerprint images, frontal face images, iris images, and voice

utterances. The data was recorded from 200 individuals over two sessions. Fierrez et

al. [53] constructed another multimodal biometric database named BiosecurID. This
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database includes different unimodal biometrics sub-databases; speech, handwritten

signature and handwritten text, keystrokes, iris, face, fingerprints, and hand. Yin

et al. [189] generated the SDUMLA-HMT database for multimodal biometrics, con-

taining face images, finger vein and fingerprint images, iris images, and gait videos.

2.4 Privacy-preserving Techniques

This section introduces a new perspective on the categorization of the privacy-

preserving mechanisms for biometric system. An overview of the classes is presented

in Figure 2.2.
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Figure 2.2: Privacy-preserving Mechanisms

The privacy-preserving mechanisms are categorized into the following categories:

• Non-invertible Transformation.

• Direct Biometrics Key Generation.

• Information Hiding Techniques.

• Protocol-based Protection.

Each of these is discussed separately.

43



2.4.1 Non-invertible Transformation

Non-invertible Transformation techniques are comprised of one-way transforma-

tions applied on the biometrics data such that an adversary cannot retrieve the

original biometric data. Comparison of two biometrics is performed in the trans-

formed domain to ensure no information about the original data is leaked.

2.4.1.1 Hashing

Cryptographic hashing generates a hash value from an input data. However, ap-

plying it on biometric induces variation, as cryptographic hashing requires the input

data to be exactly the same every time. Any slight change to the input completely

changes the hash produced. In 2004, Jin et al. [80] proposed a two-factor authen-

tication method named BioHashing. This work used an iterative inner product

operation to combine the tokenized data with fingerprint data. The resultant data

is a separate feature set, which is then binarized using a predefined threshold. This

work achieved 0% as its best EER when working with FVC2002 DB1-4 at the time.

In 2017, Jin et al. [81] proposed an Index of Max (IoM) Hashing as the non-invertible

transformation for cancellable fingerprint template with MCC. MCC was used as

the fingerprint vector, which is fed into the process of generating template by finding

the IoM codes with different approaches (Gaussian Random Projection based IoM

and Uniformly Random Permutation based IoM). FVC2002 DB1-3 and FVC2004

DB1-3 were chosen to test this method. Approaching from the BioHashing concept,

Meetei and Begum [113] combined the iris features with a tokenized pseudo-random

number. One of the most famous works that have been proposed in protecting the

palmprint template is by Connie et al. [30] in which a set of pseudo-random keys is

used to generate palmhash code, functioning as the protection layer for palmprint

template.
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2.4.1.2 Cancellable Biometric Templates

Ratha et al. [124] first proposed the idea of cancellable biometrics in 2001 as a

method to protect biometric data. To be considered as a cancellable template, the

following four characteristics are required [124]:

• Non-invertibility: cancellable biometric template cannot be, or is computa-

tionally hard to be, reverted to retrieve the original biometric data given the

corresponding parameter is exposed to the adversary. Irreversibility is a more

accurate term that is used in the ISO/IEC 24745 standard.

• Revocability: If a cancellable biometric template is compromised, the original

biometric data is still safe and able to be used with new sets of parameters

to generate new transformed templates. The template generated with the old

parameters is no longer valid and is revoked.

• Diversity: Different cancellable biometric templates generated by different set

of parameters should have no correlation such that a cross-template attack is

not possible.

• Accuracy: Transformation of the biometric data should not degrade the match-

ing process.

Lee et al. [96] used each minutia in a fingerprint as a reference point whose invari-

ant features are derived from its neighboring area. The transformation applied on

each of the minutiae is determined by two changing functions of the distance of the

orientation, leading to a new position of the minutiae. The proposed method yields

EER of 3.4%. A separate work that also employed a minutia-matching methodology,

Ahn et al. [9] extracted the features from a triplet of minutiae and applied a shifting

transformation on the geometrical properties of the tripplet. Being evaluated with

good quality dataset FVC2002 DB2, the proposed work reached EER of 3.61%.

Approaching from the direction of applying two-factor key generated by split-

ting the projection matrix to produce biometric template, Yang et al. [175] project
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the biometric features as the transformation in the sense that a dynamic random

projection is applied on the feature vectors of the local minutia. The projection’s

content is determined by the feature vectors. In 2011, Ahmad et al. [7] designed a

cancellable fingerprint template whose features are constructed based on the relative

interaction between two minutiae in a pair polar coordinate system. Yang et al. [176]

utilized both local and global structures to extract features to which a perpendicu-

lar projection is applied as the non-invertible transformation. Yang et al. [182] used

the Delaunay triangulation method to construct triangles from three minutiae from

which local features are extracted. Each element in the set of triangles (also referred

to as the set of local structures) is applied with the non-invertible Polar Transfor-

mation defined in [124]. Two fingerprint images are deemed match or non-match

based on the number of corresponding triangles. Due to this inflexible tolerance,

this method’s performance when evaluated with good quality dataset FVC2002 DB1

and FVC2002 DB2 is comparatively poor with 5.93% and 4.0%, respectively. Binary

representation has been widely used in designing cancellable fingerprint templates

due to its simplicity and lightweight in implementation. Recently, Yang et al. [181]

proposed a cancellable fingerprint template method using random projection. The

remarkable novelty in this work is the decorrelation algorithm, which provides pro-

tection against the ARM.

In recent years, Wang et al. [162–164] have proposed various works on designing

non-invertible transformation functions from the perspective of digital signal pro-

cessing. In 2012 [162], they proposed an infinite to one mapping approach in which

the binary strings representation of features are first mapped to the frequency do-

main by applying the Discrete Fourier Transform (DFT). Afterward, the resultant

vectors are multiplied with a parameter matrix whose number of rows equals the

number of binary values from the string and number of columns is less that the

number of rows. This method achieved EER of 3.5%, 5%, 7.5% for FVC2002 DB1-

3, respectively. In 2014, they proposed another alignment-free cancellable template

method that uses curtailed circular convolution as the non-invertible transforma-

tion [163]. After extracting features and bin-indexing them to produce binary rep-
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resentation, the authors converted them to frequency domain with DFT and remove

part of the resultants to get the cancellable templates. This method managed to

bring down the EER of the good quality FVC2002 DB1 and FVC2002 DB2 to 2%

and 3% but when dealing with lower quality images from FVC2002 DB3, it still

reached 6.12%. In 2016 [164] , Song and Hu proposed to protect the template of

the fingerprint using a non-invertible transformation based on blind system iden-

tification concept. Using the same method to extract features, generate a binary

string, and convert the output to frequency domain using DFT as the previously

mentioned method, the authors then used a Finite Impulse Response (FIR) vector

of the moving average model to generate cancellable template. They also showed

that under certain circumstances, as long as the length of the FIR vector is within

a specified range, the transformation is non-invertible. Both One versus One and

FVC protocols have been evaluated with FVC2002 DB1-3 and shown competitive

performance against the state-of-art methods at the time. Song et al. designed

partial Hadamard transformations and partial DFT in [161] and [165], respectively.

Both works employ a vector as a parameter key to select certain rows of the output

matrix accordingly as the cancellable templates of the binary string representation

of features. The difference lies in the fact that the former method was used with

Hadamard transformation meanwhile the latter method utilized the Discrete Fourier

Transformation. Recently, Yang et al. [185] proposed a feature-adaptive random pro-

jection cancellable biometric template. The projection matrices are determined by

a basic matrix that is associated with local features. The four fingerprint databases

FVC2002 DB1-3 and FVC2004 DB2 are used to evaluate this approach. Although

the authors claimed that the projection matrices are destroyed after use, this method

is still not resistant to the ARM.

Taking advantage of the MCC’s performance, various non-invertible transforma-

tions have been proposed to protect the templates. The authors of MCC proposed

P-MCC [50] as a template protection scheme in which a KL projection [59] is applied

on the MCC vector. However, this projection is not revocable. Hence, in 2014, the

authors proposed 2P-MCC [51] with the ability to reissue a compromised template
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by incorporating a partial permutation-based scheme. In the meantime, Zhang et

al. [194] proposed two non-invertible transformation to generate cancellable finger-

print templates from MCC: Combo Plate Transformation and Functional Trans-

formation. In 2018, Arjona et al. [12] designed Physically Unclonable Functions

(PUFs) to apply on P-MCC and named it P-MCC-PUFs.

Similar to fingerprints, cancellable biometric templates have also been applied to

the iris. Recently, Yang et al. [183] proposed a cancellable iris system by employing

steganography to hide the user’s key, decreasing the chance of losing the key to

adversary and improving the security of the system. Having been evaluated on

CASIA-IrisV3-Interval, MMU-V1, and UBIRIS-V1-Session 1 databases, this method

achieved EER of 1.66%, 4.75%, and 3%, respectively. Importantly, by incorporating

steganography to hide the user’s key in an image, which is not detectable with

human eyes, the authors made this method less exposed to the ARM. However, a

machine learning technique or a simple method that scans the stego-images’s pixels

may give knowledge about a secret being hidden. Hence, further analysis may be

employed to retrieve the secret.

In addition to fingerprints, iris, and face, the cancellable template design has also

been applied to protect other biometrics. These are less common, but there has

still been significant enhancements in this area. Palmprints are one of the hidden

biometrics that needs to be protected as a person only has 2 palmprints. Due to the

large area of the palmprint, more complicated and costly sensor is required, leading

to less interest in comparison to other biometrics. Qiu et al. [123] proposed to

generate a cancellable palmprint template by utilizing Anisotropic Filter to extract

the orientation information and applying chaotic matrix to measure it. Evaluation

of the method’s performance is conducted on Hong Kong PolyU database and Tongji

Contactless Palmprint Dataset, achieving EER of 0%. One of the recently published

works on palm vein is by Ahmad et al. [6] in which the authors used a wave atom

transform (WAT) from which the features are extracted. In order to protect the

feature, with a user-specific key, a randomization and quantization are applied to

generate the palm vein templates. Under four databases: PolyU, PUT, VERA, and
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their own database, this method achieved 1.98%, 0%, 3.05%, and 1.49%, respectively.

2.4.1.3 Homomorphic Encryption-based Biometric Matching

Homomorphic Biometric Encryption though conceptually is similar to cancellable

biometric as the former performs matching in encrypted domain while the latter

performs in transformed domain, it is a type of bio-cryptosystem as it modifies

and applies traditional encryption techniques on biometric data instead of using a

non-invertible transformation. Barrero et al. [64] utilized homomorphic probabilistic

encryption to construct a general framework for multi-biometric template protection

with fusions in three levels and achieved EER of 0.12% while the templates storage

requires only 200KB. Recently, Morampudi et al. [114] protected the iris used in an

authentication system with fully homomorphic encryption. Evaluated with CASIA-

V1 database, this method reached an EER of 0.19%.

2.4.2 Direct Biometric Key Generation

Direct Biometric Key Generation takes a biometric data as input to generate

helper data, from which digital keys are generated. Importantly, biometric key

generation schemes do not require either of the biometric template or the private

key to be stored in the system, mitigating the risk of them being exposed to adversary

when there is an attack targeting the database.

One of the first biometric key generation schemes was proposed by Davida et

al. [38] in which they used user-specific error correction to address the uncertainty in

testing data. The authors demonstrated this method with iris biometric. Although

applicability in iris was shown, whether or not this method is suitable for other

biometrics is still doubtful as iris exhibits far less variation in comparison with face

or fingerprint features.

Since then, there have been various key-generation designs proposed with different

types of biometrics [16,120,126,127,131]. In general, direction biometric key gener-
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ation methods tend to be unreliable due to the biometric data noise. The following

sections of this work focuses on research designed to retrieve reliable keys from noisy

data. It will focus on the concept of Fuzzy Extractor and its applications for being

one of the breakthroughs that provides a firm foundation for other methods.

Fuzzy Extractor Fuzzy Extractor [41] is one of the famous biometric key gen-

eration schemes. This method differs from FVS (Fuzzy Vault Scheme which will

be introduced in the next sections) in the sense that instead of using chaff points,

high-degree polynomial is used. In their original paper, the authors proposed two

primitives: secure sketches and a fuzzy extractor: A secure sketch is a probabilistic

function that generates helper data about the noisy input w (w can be considered

as, but is not limited to being a biometric input) without significantly revealing it,

i.e., reducing its entropy. An exact recovery of w can be retrieved given the existence

of some w′ as input that is computationally close enough to w. Assuming M is the

metric space to be used with the scheme and dis calculates the distance between two

objects in M , a secure sketch is comprised of two phases: Sketch (SS ) and Recover

(Rec) such that: (i) SS takes the input w and returns a binary string s; (ii) Rec takes

s and w′ as input. If dis(w,w′) ≤ t, then w is recovered, i.e: Rec(w′, s) = w where

t is the distance threshold or error tolerance. On the other hand, a fuzzy extractor

is constructed from a secure sketch and a strong extractor (the reader can refer to

the original text in [41] for further information). It can reproduce a nearly uniform

random string R from the input w′ when dis(w,w′) ≤ t. Additionally, a syndrome

key generation scheme that is based on polynomial interpolation that requires low

storage space is proposed and called PinSketch.

In the original text, fuzzy extractor is enabled to work with different metric spaces,

such as Hamming distance, Set difference, and Edit distance. Hence, it has a wide

range of applications to protect biometric template data. There is significant work in

this space, especially focusing on fingerprints. Xi et al. [172] proposed an alignment-

free fingerprint authentication system with fuzzy extractor. In details, rotation and

shift free local structures derived from minutia are used to eliminate the alignment

process. A near equivalent Dual Layer Structure Check (NeDLSC) is devised to

50



make it applicable to bio-crypgraphic constructions. Finally based on NeDLSC,

fuzzy extractor is applied. The algorithm is evaluated on FVC2002 DB2, yielding

EER of 4.5%. In 2012, Yang et al. [179] applied fuzzy extractor to protect the

features in a fingerprint authentication system. In their design, Delaunay triangle-

based local structures are extracted as registration-free features. The use of fuzzy

extractor not only delivers the improvement in matching performance but also makes

pre-alignment process unecessary. Upon having been evaluated on FVC2002 DB2,

the algorithm achieved 13% of EER.

Various works from unimodal to multimodal biometrics have also employed fuzzy

extractor. Chang et al. [25] incorporated cancellable multi-biometric with fuzzy

extractor and a novel bit-wise encryption.

2.4.3 Information Hiding Techniques

Information Hiding Techniques are processes that hide or obfuscate biometric data

by fusing it with another piece of data (known as a digital key) to produce public

helper data. In an authentication phase, the digital key is recovered by applying a

retrieval algorithm given the presence of a closely matched biometric query to the

template that is used to generate the helper data.

Fuzzy Commitment Scheme: In 1999, Juels and Wattenberg [87] proposed

the Fuzzy Commitment Scheme (FCS). Given a set C containing error correcting

codewords c with length n, witness x being the biometric data with length n, in the

enrolment phase, a function F is used to commit the codeword c and the biometric

data x to create the helper data F (c, x) by estimating and storing the difference

vector δ between x and c where δ = x − c. The hash value of the codeword c,

denoted as h(c) is stored along with δ. In the authentication phase, given that a

biometric data x′ is computationally close to x with respect to a pre-defined metric,

c can be retrieved by using δ to perform a translation of x′ toward x. Decision is

made based when comparing the hash value of the result with h(c).

Rathgeb et al. [125] used the FCS to protect the fusion at the feature level in
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which two binary biometric templates are combined. This method was evaluated

with the CASIA-v3-Interval iris database [193].

There have also been numerous methods that apply FCS in protecting fingerprint

templates: Sandhya and Prasad have proposed quite some works in applying FCS

to design a fingerprint-based authentication system: In 2016, the authors used FCS

to protect the binary strings generated from the Delaunay neighbor structures [134]

and achieved 1.43%, 1.79%, and 5.89% for datasets FVC2002 DB1-3, respectively.

In the same year, they proposed a privacy-preserving system for fingerprint with

Delaunay triangulation net features based on FCS. In 2017, they [135] combined

the concept of cancellable biometrics with FCS to devise their cancellable finger-

print privacy-preserving authentication system using spiral curves, reaching EER of

1.17%, 2.46%, 8.51% when evaluated with datasets FVC2002 DB1-3, respectively.

In 2013, Imamverdiyev et al. [75] built an FCS-based privacy-preserving biometric

authentication system using different combinations of texture descriptors (such as

Gabor filter-based FingerCode, local binary pattern, and local direction pattern). In

details, the fingerprint texture descriptors, which is the result of the combination, is

binarized by a biometric discretization method and protected with FCS. Upon being

evaluated with FVC2002 DB2a fingerprint dataset, the results show improvement

in the performance of texture-based fingerprints bio-cryptosystem with FCS.

Due to the variations presented in facial recognition, leading to a variant binary

string representation, it has rarely been used in an FCS-based bio-cryptosystem.

Feng et al. [49] combined the transform-based and bio-cryptosystem approach in a

three-step hybrid algorithm based on random projection, discriminability-preserving

transform, and FCS. Three face databases are used for the evaluation of this method,

namely: FERET, CMU-PIE, and FRGC, giving estimated security of 206.3 bits,

203.5 bits, and 347.3 bits, respectively. In 2018, Nazari et al. [116] is one of the few

who used FCS to protect face features. They integrated face recognition with bi-

narization transformation, chaos feature permutation and FCS. The proposed work

was evaluated in three face databases: CMU PIE, FEI, and Extended Yale B. Gilka-

laye et al. [61] constructed FCS-based bio-cryptosystem with facial recognition by
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proposing a real-value compatible FCS. Labeled Faces in the Wild (LFW) dataset

was used for evaluation.

Recently, Yang et al. [184] used FCS to protect the biometric-based healthcare

data and stored it along with the cancellable finger vein template on a smart card.

In addition to physiological biometrics, FCS has also been used with behavioral

biometrics. Specifically, gait-based authentication systems are receiving increasing

research interest. Recently, Elrefaei and Al-Mohammadi [46] extracted gait features

from gait images with local ternary pattern and calculated the average of a gait cyle

using gait energy image before having joined them together and produced feature

vector. FCS is used to protected the data. This system achieved good results with

0% of FAR as well as FRR. However, the key length retrieved is only 45-50 bits.

The most obvious disadvantage of FCS is that it requires an ordered representation

of the biometric features. As a result, it has limited application due to the difficulties

in designing a biometric feature extraction scheme that produces ordered binary

string from a noisy input. This problem is addressed by the next introduced work.

Fuzzy Vault Scheme In 2006, Juels and Sudan proposed one of the most well-

known privacy-preserving biometric system concepts, the Fuzzy Vault Scheme (FVS)

[86]. FVS uses error correcting code with polynomial encoding. In the enrolment

phase, given the biometric feature set A and a polynomial p to encode the key k,

p(A) is calculated in addition to the adding of chaff points to hide the genuine points

of p. This set of points T is the template. In authentication phase, assuming that

A′ is the input query biometric feature set, p(A′) is calculated. If a large portion of

A overlaps with A′, sufficient points lying on p are located. Hence, applying error

code correction, k is successfully recovered. With this work, the authors enabled

privacy-preserving biometric authentication system to work with an unordered set,

which is one of biometrics’ characteristics. In addition, it was proved that without

having the same biometric, reconstruction of the polynomial is not possible with the

presence of the chaff points.

Fingerprints are one of the hidden biometrics that urgently need protection. This
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fact alone explains why there are countless studies on securing fingerprints, especially

using FVS. Li et al. [101] proposed a topological structure-based fingerprint privacy-

preserving biometric authentication system with FVS. This method requires the

process of registration in order to identify the core though it does not reveal any

information about the minutiae. The performance reported from evaluation with

FVC2002 DB2 is 94% of GAR with FAR being 0.03%. In 2009, Xi and Hu [171]

proposed an FVS-based Fingerprint based on composite features that requires no

pre-alignment and evaluated this method with FVC2002 DB2 dataset, reporting

GAR of 98.5% while FAR is 0.01%.

Iris is another hidden biometric that requires complex techniques in order to

meaningfully and correctly capture. Lee et al. [98] presented an FVS-based privacy-

preserving biometric authentication system with local iris features in which multiple

local regions’ iris features are extracted from the iris image. Clustering method is

applied to generate exact values of the unordered set. The problem of alignment

is addressed by using a shift-matching technique. Through experimental results,

128-bit private keys were generated using iris data with no prior registration.

Apart from fingerprints and iris, face has also been incorporated with the FVS.

Wu and Yuan [169] proposed to apply FVS on a face online authentication system

in which instead of using the original face template, a transformed face template is

used with a key with FVS to provide revocability for the face template. However,

because the face template is transformed and applied with FVS, it is expected that

this method suffers from great degradation. Joshi and Sanghavi [85] integrated a

Face FVS in Cloud Computing. Facial features are extracted from user’s face image

then converted to binary string to be bound with a secret key in FVS.

Beside unimodal privacy-preserving biometric authentication system and single-

technique privacy-preserving, FVS has also been used as the protection layer for mul-

timodal privacy-preserving biometric system or as one of the components in a multi-

technique privacy-preserving scheme. Leng and Teoh [99] combined 2DPalmHash-

Code, cancellable biometric, and Fuzzy Vault to protect palmprint templates. Re-
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cently, Bobkowska et al. [21] combined iris, fingerprint, and face biometrics to con-

struct a multibiometric privacy-preserving biometric authentication system with the

purpose of preventing fraud in e-passports with FVS. Another security technique

that is also incorporated in this method is the use of steganography in mapping

biometric images to one another. The location map functions as the secret key,

protected by FVS.

There have also been studies that incorporate multiple methodologies to construct

a privacy-preserving biometric authentication system. For instance, Yang et al. [180]

use bio-hashing algorithm to generate two transformed templates and apply FCS

and Fuzzy Vault to generate two sketches, respectively. The sketches are then fused

with two operations: ’AND’ operation and ’OR’ operation to switch the focus on

performance or security.

2.4.4 Protocol-based Protection

Bio-cryptosystem constructs biometric authentication system using encryption

techniques at the protocol level, which plays an important role in ensuring the

security of biometric data. With the rapid development of smart devices, bio-

cryptosystem has become more and more crucial in protecting the user’s privacy.

2.4.4.1 Client/server-based Biometrics Authentication Protocol

Assuming that the server is secure, Xi et al. [170] proposed a client/server proto-

col authentication system based on fingerprint in which the original features from

fingerprint are protected by Elliptic Curve Cryptography (ECC) in the transferring

from the client to the server. On the server side, biometric keys are generated and

protected using FVS. The security of this protocol has been shown by analyses of

several types of attack in addition to the details about memory and time usage.

Experiments have been evaluated on the NIST Special Database 24 and FVC2002

DB2, yielding competitive results. Odelu et al. [119] showed that the multiserver
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scheme in [70] is exposed to a threat with certain flaws then proposed an improve

multi-server authentication protocol with biometric smart card and ECC. Various

attack scenarios have been analyzed in addition to the simulation for formal security

verification. Recently, dealing with the privacy of autonomous vehicle users, Jiang

et al. [79] devised a cloud-centric three-factor authentication protocol for authen-

tication and key agreement called CT-AKA in which biometrics, passwords, and

smart cards are combined to control access. The authors synthesized three emi-

nent biometric protection techniques FVS, FCS, and Fuzzy Extractor to ensure a

leakage-free protocol in addition to two sessions keys being used in the protocol.

Formal proof of this method is also provided to show its security strength.

2.4.4.2 Secure Multiparty Computation-based Biometric Security Pro-

tocol

Secure multiparty computation (SMC) is a powerful cryptography protocol which

can protect the input privacy of each participant [23]. It has found some appli-

cations in privacy-preserving biometrics security systems [23, 29, 52, 144]. Bringer

et al. [23] provided an overview of an early SMC application on privacy-preserving

biometrics security. It focused on securing the face identification from a database,

and distance computation of fingerprint and iris representations. Chun et al. [29]

considered the privacy-preserving biometric authentication problem where the bio-

metric authentication process is outsourced to the cloud and the biometric data is

fully encrypted. An outsourceable privacy-preserving biometric authentication (O-

PPBA) protocol was proposed. The proposed O-PPBA can take advantages from

both homomorphic encryption and the garbled circuit. One drawback is the require-

ment for another independent cloud service provider. Tian et al. [144] stated that

the existing biometric-based remote user authentication (BRUA) methods in the

client-serve setting lack certain privacy considerations, e.g., authorized user’s multi-

ple sessions should not be linked while the user’s identity remains anonymous to the

cloud server. In addressing this issue, a privacy-preserving biometric-based remote
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user authentication (PriBioAuth) proposed was proposed. Based on the SMC tech-

nique, secure biometrics matching protocol was proposed. One of the advantages

is that no user interaction is required for the biometrics matching. Similar to [29],

it requires two independent servers. A major issue with these works is that no

matching/authentication performance evaluation has been conducted. In the bio-

metrics community and in practice, matching performance is most important. The

challenge is the conflicting goal of achieving high biometric authentication accuracy

while maintaining high privacy protection.

2.4.4.3 Zero-knowledge proof-based Biometric Security Protocol

Zero-knowledge proof is a cryptography protocol where party A can prove to

party B that part A has certain knowledge and yet without revealing any other

additional information [52]. This nice property is well suited for privacy-preserving

biometrics authentication and some interests have been made [20, 66]. In real-life

security systems, authentication processes often involve many attributes/identifiers,

e.g., password, login name, and biometrics etc. of a personal identity. In [20],

a privacy-preserving scheme in addressing the problem of verification of multiple

identifiers and proofs of identity was proposed. The proposed idea is to generate

aggregate signatures on commitments which are then used for privacy-preserving

identity proof via the zero-knowledge proof protocol. The security of the proposed

scheme has been formally proved under the co-gap Diffie-Hellman assumption for

groups with bilinear maps. The authors in [66] proposed a mobile phone-oriented

privacy-preserving biometric authentication scheme. The proposed scheme used

machine learning-based classifier to extract a revocable biometric identifier and then

produced a cryptographic identify token encoding the biometric identifier. Finally,

the cryptographic identity token is embedded into the zero-knowledge proof protocol

for the privacy-preserving authentication. The proposed scheme was integrated with

a key agreement mechanism to address the man-in-the-middle Mafia attack on the

conventional zero-knowledge proof based identify verification protocol. Biometrics

57



matching performance has been provided.

2.5 Research Limitations and Opportunities

In addition to the fact that many of the existing works, although privacy-preserving

mechanisms applied, are exposed to the ARM [100], there have been proofs that bio-

metric authentication systems are compromised by the hill-climbing [110] and the

pre-image attacks [95, 97]. While ARM is an exclusive attack in the field, hill-

climbing and pre-image attacks are not. This means that there are more and more

attacks that can be devised and launch to compromise a biometric authentication

system. Hence, it is important that new privacy-preserving mechanisms must be

able to protect the biometric authentication systems from these attacks. This is

the main target of this thesis as it seeks to devise a privacy-preserving biometric

authentication system that not only is resistant to the abovementioned attacks but

also does not sacrifice its authentication performance for the security.

2.6 Chapter Summary

This chapter has reviewed the related work in biometric authentication and the

privacy-preserving mechanisms then provided a systematic taxonomy that can be

used for the current and emerging work in the field. It has also pointed out the

need to defend current and emerging biometric authentication systems from popular

attacks, including the ARM. The next chapters will present the design to achieve

this goal.
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Chapter 3

Cancellable Template Generation

based on K-nearest-neighbor Local

Structures

The work reported in this chapter (mostly from Section 3.2 to Section 3.4), has been partially
published for publication in the following articles:

Tran QN, Hu J. A Multi-Filter Fingerprint Matching Framework for Cancelable Template Design.
IEEE Transactions on Information Forensics and Security. 2021 Mar 26;16:2926-40.

Tran QN, Hu J, Wang S. Alignment-free cancelable template with clustered-minutiae local structure.
In2018 IEEE Global Communications Conference (GLOBECOM) 2018 Dec 9 (pp. 1-6). IEEE.

3.1 Introduction

As presented in Chapters 1 and 2, there exists a need to provide secure biometric

authentication in terms of template privacy while the performance is not sacrificed.

This chapter first proposes a robust set of fingerprint features then evaluates it

with the existing partial DFT as the transformation. However, due to the transfor-

mation’s being exposed to the ARM, an ARM-resistant transformation is proposed.

Specifically, the concept of using the KNN clustering algorithm to construct the local

structures for the recognition of fingerprints will be presented. Employing the same

concept from [146], this work first clusters the set of minutiae, then performs the

59



feature extraction. Specifically, extending the previous work, this newly proposed

method significantly improves the performance by applying the KNN Clustering al-

gorithm, making the outcome more usable and able to be implemented in real-world

environments. To do this, the novel process first employs the partial Discrete Fourier

Transform (pDFT) that was proposed in [165] to generate the biometric cancellable

template and examine the performance of the proposed features. It then presents

the Multivariate Polynomial Transformation (MPT) to enable ARM resistance for

the set of features.

3.2 KNN-based Local Structure

3.2.1 KNN Clustering Algorithm

KNN is one of the most basic clustering techniques. The algorithm works by

iterating through a finite set of data points and finding the k nearest points of the

reference point by calculating the their distance to it. Based on the attributes of

the dataset, an appropriate distance metric is chosen. As a result, one data point

may belong to multiple clusters.

In the proposed process, the set of minutiae is clustered with the KNN based

on their physical position on the fingerprint. For this work, the Euclidean distance

metric has been used. The clusters will then be referred to as local structures in

this work.

3.2.2 Feature Extraction

In this section, the details of the proposed scheme are presented.

Suppose that a set of N minutiae extracted from a fingerprint image is denoted

as:

M = {mi}Ni=1 (3.1)
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in which mi = (xi, yi, θi, ti) and xi and yi are the horizontal and vertical coordinate

of the minutia, respectively; θi is the orientation of the minutia; and ti indicates

the type, whether an ending or a bifurcating minutia. In order to construct the

local structures, the kNN algorithm is applied on the set M . Iterating through each

of the minutiae in the fingerprint, kNN constructs a cluster that contains k + 1

minutiae, including the reference minutia itself. Each of the cluster is considered as

a local structure. Connecting each of the minutiae a′ in the local structure with the

reference minutia a, the following features are extracted from each pair:

f = (laa′ , α, β, ta′) (3.2)

where:

• l is the Euclidean distance between the member minutiae and the reference

minutia.

• α is the angle formed by minutia orientation vector and the line connecting.

• β is the angle formed by minutia’s orientation vector and the line connecting.

• t is the type of minutiae.

This process results in a feature matrix of size 4× k for each local structure in the

fingerprint image. There are totally N local structures, corresponding to N minutiae

in the fingerprint.

After the feature extraction phase, a process of quantization is applied in order

to compensate for the distortion caused by the elasticity of skin. In details, an

appropriate stepsize for each of the feature (except the minutia type) is selected,

denoting as: bl, bα, and bβ for l, α, β, respectively. Therefore, the total number of bits

used to represent a local structure’s feature matrix is: b = bl + bα + bβ. This means

that upon translating into decimal number, after quantization, the value of each

feature vector in the feature matrix is a number ranging from 0 to 2b (corresponding

to string containing b 0 bits to b 1 bits). At this point, the feature matrix becomes
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a vector of k decimal numbers. Those numbers that appear only once in the vector

act as the index of the bins in a binary string that contains 2b bits. These positions

are assigned the values of 1’s meanwhile the rest have value of 0’s. At the end, each

feature matrix is represented by a sparse 2b binary string. This process is the same

as bin-indexing process in [162].

The original features of the fingerprint are protected with bin-indexing since they

are partially hidden after the process of choosing indices. However, as if an attacker

were able to acquire the binary string of a local structure, the information leakage

could lead to the expose of indices that appear once in the quantized feature vector.

Therefore, it is vital that each of the binary strings are applied a non-invertible

transformation to be protected.

3.3 Cancellable Template Generation with Par-

tial DFT

First of all, a DFT matrix is expressed as follows:

U =



1 1 1 · · · 1

1 W W 2 · · · W 2b−1

1 W 2 W 4 · · · W 2(2b−1)

...
...

... · · · ...

1 W 2b−1 W 2(2b−1) · · · W (2b−1)(2b−1)


(3.3)

where b is the number of elements in the binary string and W = e−j2π/b. The DFT

vector fc of the binary string fb that has 2
b elements is calculated as:

fc = Ufb (3.4)

where fb is the original feature representation of a local structure in the form of a

2b-column vector.
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With U being used, the transformation applied is reversible. Hence, in order to

satisfy the irreversibility characteristic, instead of using the full-rank matrix U , a

submatrix of U , referred to as ω is used. In order to generate ω, a vector P that

contains the index of the chosen row in U is randomly generated.

P = [p1, p2, p3, . . . , pR] (3.5)

Since ω is a submatrix of U , the length R of the vector P that determines ω’s number

of rows must be in the range [1, 2b− 1] where an ω with 2b− 1 rows is the matrix U

itself. The greater R is, the more features are selected to be used for matching but

the less secure the original features become. In this scheme, to balance between the

performance and security, R = 500. On the other hand, each pi ≤ 2b−1 since pi acts

as the index of the row chosen in U . This is how ω is constructed from the original

DFT matrix U . After this step, the partial DFT vector is calculated as follows:

fpDFT = ωfb (3.6)

From the equations 3.4 and 3.6, the relationship between fDFT and fpDFT can be

drawn as:

fpDFT = [fDFT (k1), fDFT (k2), . . . , fDFT (kR)]
T (3.7)

fpDFT is a vector comprises of complex numbers, which represent the selected

features based on the parameter key K in the frequency domain.

3.3.1 Matching in the Transformed Domain

In order to protect the privacy of the original fingerprint features, matching is

performed in the transformed domain. The process of matching a query fingerprint

is essentially the same as for a template: cluster the minutiae, extract and quantize

the features, and apply non-invertible transformation.

Assume that after clustering, the template image has Nt local structures, whereas
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the query image has Nq local structures. Note that Nt ̸= Nq can happen due to the

difference between two images. Extracting the features as in Eq. 3.2, followed by a

quantization process, and finally using pDFT to apply non-invertible transformation,

each local structure from the template and query is represented by a complex vector

fpDFT of length R. For a better illustration, each fpDFT from the template and

the query is referred to as hCt and hCq , respectively, for Ct = 1, 2, ..., Nt and Cq =

1, 2, ..., Nq. The dissimilarity between two local structures from the template and

query is calculated as follows:

d(hCt , hCq) =
eT ∗ e

(hT
Ct
∗ hCt) + (hT

Cq
∗ hCq)

(3.8)

in which:

e = hCt − hCq

The distance between two local structures ranges from 0 to 1, meaning absolutely

identical or absolutely different, respectively. After the calculation of the distance

between all pairs of local structures from template and query, the pair that has the

least distance is selected as the dissimilarity score between the template and query.

The matching is a match if this score is less than a pre-defined threshold.

3.3.2 Experimental Results and Analysis

The proposed scheme was implemented with the community-respected public

databases FVC2002-DB1, FVC2002-DB2, FVC2002-DB3 [108], and FVC2004-DB2

[109]. Each of these databases has 100 fingerprints. Each of which contains eight

impressions. More importantly, the resolution of the databases varies from one to

another as indicated in Table 3.1.

The fingerprint recognition software VeriFinger SDK was used to extract minutiae

from raw fingerprint image.

Each of the databases is tested with One versus One Matching Protocol. In detail,
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Table 3.1: Database resolution details

Database FVC2002DB1 FVC2002DB2 FVC2002DB3 FVC2004DB2
Number of fingerprints 100 100 100 100

Number of images/fingerprint 8 8 8 8
Resolution 500 dpi 569 dpi 500 dpi 500 dpi
Sensor Type Optical Optical Capacitive Optical
Image size 388× 374 296× 560 300× 300 328× 364

Image Quality Good - Medium Medium Medium - Low Very Low

the first impression of each fingerprint is used as the template. Genuine testing

uses the second impression meanwhile impostor testing uses the first impression of

other fingerprints in the database as the query to compare against the template.

This results in having a total of 100 genuine tests and 4950 imposter tests. In

order to evaluate the performance of the proposed methods, the Equal Error Rate

(EER), the False Rejection Rate (FRR), and the False Acceptance Rate (FAR) are

employed. FAR is the rate that the system mistakenly authenticates a fingerprint

from different finger. FRR is the rate that indicates the system’s probability to

reject the fingerprint from the same finger. EER is the rate when FAR and FRR

are equal.

3.3.2.1 Lost-key Scenario

As the user loses their personal key to an adversary, it can be used as a tool to

penetrate the biometric authentication system. This scenario is simulated by using

the same key to create templates for all users’ fingerprint. The Receiver Operating

Curve (ROC) of all databases evaluated under this scenario is shown in Figure 3.1.

The resultant EERs are presented in the Table 3.2.

As shown in Figure 3.1, the best EERs that the algorithm can reach with keylength

of 500 are: 0.2%, 0.04%, 4.78% and 7.64% for FVC2002 DB1, FVC2002 DB2,

FVC2002 DB3, and FVC2004 DB2, respectively. Though observing a slight decrease

of 0.01% and 0.49% comparing to the work proposed in [165] when working with

FVC2002 DB1 and FVC2002 DB3, the algorithm tends to work well with all other

the databases tested, even with very low-quality images in FVC2004 DB4. Moreover,
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Figure 3.1: ROC Curves

the keylength parameter applied in this work is R = 500. Meanwhile in [165], the

keylength evaluated was 1000. This means that a shorter vector of features is used,

achieving a better result. At the same time, the shorter the keylength is, the more

secure the system becomes.

3.3.2.2 Revocability and Diversity

Revocability and Diversity test evaluates a very important characteristic of a fin-

gerprint cancellable template design. It is used to make sure that different templates

generated with different keys from the same fingerprint are not related. In order

to test the new method’s revocability and diversity, the same direction as Wang et

al. [165] is followed. In detail, the process goes as follows: 50 transformed templates

were generated from the first impression of each fingerprint in FVC2002-DB2, each

with a different set of parameter keys to match with the original. This test yields

the pseudo-impostor score. On the other hand, each user is assigned different key

to match to each other. This test produces real impostor score. The distribution

of these scores is plotted in the Figure 3.2. A statistical analysis is performed to

determine how similar the distribution of the impostor score to the pseudo-impostor

score: To compare, the mean of impostor score compared with pseudo-impostor
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Table 3.2: EER comparison (%)

FVC2002DB1 FVC2002DB2 FVC2002DB3 FVC2004DB2
Ahmad et al. [7] 9 6 27 -
Jin et al. [83] 5.19 5.65 - 11.64

Yang et al. [182] 5.93 4 - -
Jin et al. [82] 4.36 1.77 - 21.82
Das et al. [34] 2.27 3.79 - -

Tulyakov et al. [153] 3 - - -
Wong et al. [168] 1.97 2.54 - 9.2
Kumar et al. [94] - 4.98 - -

Sandhya and Prasad [133] 4.71 3.44 8.79 -
Wang and Hu [162] 3.5 4 7.5 -
Wang and Hu [164] 3 2 7 -
Wang et al. [161] 1 2 5.2 13.3
Wang et al. [165] 0.19 1 4.29 9.01

Proposed method 0.2 0.04 4.78 7.64

score is: 0.1142 and 0.1141, respectively. Meanwhile, the standard deviation of im-

postor score and pseudo-impostor score is: 0.0107 and 0.0110, respectively. It is clear

that they are very close to each other. This means that the reissued templates using

different parameter keys are virtually impostor to the original template. Hence, a

malicious adversary cannot perform a cross-template attack.

3.3.2.3 Security Analysis:

The proposed method translates the features extracted from fingerprint into bi-

nary string representation. Therefore, in order to secure the original features, the

binary string is what needs protecting. To achieve this, a partial Discrete Fourier

Transformation, serving as the non-invertible transformation, creates a security bar-

rier using an underdetermined system of linear equations: As mentioned above, ω

is the submatrix of D by selecting specific rows from D. This makes ω a full row

rank but column rank-deficient. Since there are 2b columns in D, ω has 2b columns

too. Moreover:

nullity(ω) = 2b − rank(ω) (3.9)

or equivalently:

nullity(ω) = 2b −R (3.10)
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Figure 3.2: Normalized Score Distribution

In the experiments, the following parameters were set: R = 500 and b = 16.

Therefore, there are 2b−500 free variables in the equation system. Assuming that the

malicious adversary launches an ARM into the algorithm, they must rebuild the full

rank equation system by gathering enough equations. With keylength R = 500 and

there are 216 = 65536 equations required in reaching a unique solution, each system

compromised gives an adversary 500 equations. In order to get the user’s original

features, the adversary would need to successfully compromise approximately 132

applications.

Although this non-invertible transformation can mitigate the chance of a hacker

successfully launching an ARM into the biometric system, it does not fully defend

the original biometric data from this attack. Thus, an additional method is proposed

to generate biometric cancellable template that can defend the biometric authenti-

cation system from ARM by leveraging the power of multivariate polynomial system

of equations.
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3.4 Cancellable Template Generation with the Mul-

tivariate Polynomial Transformation

In this section, the performance of the algorithm is improved by expanding the

idea of using the KNN to construct the so-called KNN Minutia Extractor with the

help of the Multivariate Polynomial Transformation (MPT), which also functions as

an irreversible transformation. In other words, MPT is not only used for protection

but also to contribute to generating the minutia descriptor.

3.4.1 Multivariate Polynomial Transformation (MPT)

Irreversible transformations have mostly been relied on underdetermined system

of linear equations. However, this approach has been proved to be vulnerable to

the Attack via Record Multiplicity [100]. Therefore, the non-linear Multivariate

Polynomial Transformation (MPT) is proposed to utilize the power of non-linear

system of polynomials to protect the raw fingerprint features. In [32], Courtois et al.

claimed that solving large systems of quadratic multivariate polynomial equations is

an NP-hard problem. In this case, a higher-degree multivariate polynomial is used

to increase the complexity of finding the solutions.

Given the vector fb = (bl, bα, bβ, t) and a multivariate polynomial equation is

generated with the form:
µ∑
1

ν∏
1

xχ
j = ζ (3.11)

where µ, ν are the number of monomials and the number of variables in each mono-

mial, respectively. Both are predefined as positive integers. χ is the degree corre-

sponding to variable xj; and xj’s are the components of vector fb.

Upon plugging in the variables and evaluating the equation, the result ζ is re-

trieved. Repeating this process 4 times (which is also the number of components in
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each vector fb) gives us the Multivariate Polynomial System of Equations:



µ1∑
1

ν1∏
1

xχ1

j1
= ζ1

µ2∑
1

ν2∏
1

xχ2

j2
= ζ2

µ3∑
1

ν3∏
1

xχ3

j3
= ζ3

µ4∑
1

ν4∏
1

xχ4

j4
= ζ4


(3.12)

This is a well-defined Multivariate Polynomial System of Equations and solving

such system is an NP-hard problem. Security of the system can be enhanced by

introducing more variables to the system. In other words, security is improved

by adding more virtual features to each vector f in Eq. 3.2. In this case, a hash

function can be applied that takes the features as input. In more detail, each feature

from a feature vector is fed into the hash function SHA224 to create 28 8-bit hash

values. After all four features have been hashed, there are a total of 112 hash

values, which are to be used as input for the MPT. However, this also increases

the computation that needs to be done in order to perform matching. Therefore,

the balance between the number of variables in an MPT and the time to perform

matching is an optimization problem. A hash function alone is not strong enough

in this case due to the quantization of the input. MPT can enhance the system’s

security.

All the ζ values obtained by evaluating all four polynomials are then translated

into a binary string and concatenated altogether position-wisely. In addition, each

ζ value will be given one extra bit to indicate its sign following the simple rule: If

ζ ≥ 0, its sign bit is ’1’. Otherwise, it is ’0’. Note that all the sign bits are appended

at the end of the string. The whole binary string is then translated back into a

decimal number. This means that each cluster is now represented by:

FT = {fT}k1 (3.13)
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where each fT is now a decimal number.

At this stage, FT is used to represent each minutia and will be stored in the

database functioning as the template to be compared against.

3.4.2 KNN Minutia Descriptor Similarity

The normalized similarity between two descriptors: template υT and υQ KNN

Minutia Descriptors is calculated as follows:

S(υTp, υQr) = 1− |P(υTp)\P(υQr)|+ |P(υQr)\P(υTp)|
|υTp|+ |υQr|

(3.14)

where:

• P (t) is a set function that converts KNN minutia descriptor data t into a set,

meaning that no duplication is allowed.

• \ is the set difference operation.

After the similarity between all pairs has been calculated, the process first ranks

them in a descending order. Scores with higher ranks are given higher weights. The

hypothesis underpinning this is that if the query comes from the same finger as the

template, more high scores are present. On the other hand, in case of a false-accept

attack, a very low number of high scores are present. The formula to generate the

KNN score Sknn is as follows:

Sknn =

kp∑
1

Siwi (3.15)

where:

• kp is the number of considered pairs

• Si is the score at rank ith
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• wi is the corresponding weight given for score at rank ith. Kindly note that

all the weights sum to 1.0.

3.4.3 Experimental Performance

The scheme is evaluated with the four publicly available databases previously dis-

cussed; FVC2002-DB1, FVC2002-DB2, FVC2002-DB3, and FVC2004-DB2. Each

database has 100 fingerprints with 8 samples each. There are a total of 800 finger-

print images in the database. The quality of the fingerprint images in these database

ranges from very good to very poor, respectively.

In order to evaluate the performance of the module, the traditional FVC protocol

is used: to generate the FRR, each sample is matched against all other fingerprint

samples of the same finger, yielding 2800 genuine tests. On the other hand, FAR

is generated by matching each fingerprint’s first sample with one another, yielding

4950 impostor tests in total.

3.4.3.1 Lost-Key Scenario

To simulate the Lost-Key scenario, the same set of parameters are applied to

generate the Multivariate Polynomial systems of Equations to transform the whole

database. The EER is recorded and presented in the Table 3.3.

Table 3.3: KNN-MPT’s performance in EER (%)

FVC2002
DB1

FVC2002
DB2

FVC2002
DB3

FVC2004
DB2

KNN-MPT 4.02 3.64 11.62 18.95

The ROC curve for the four databases is shown in Fig. 3.3

72



10-4 10-3 10-2 10-1 100

Logarithmic False Acceptance Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
e
n
u
in

e
 A

c
c
e
p
ta

n
c
e
 R

a
te

FVC2002 DB1

FVC2002 DB2

FVC2002 DB3

FVC2004 DB2

EER Line

Figure 3.3: KNN-MPT’s performance over four publicly available databases.

3.5 Conclusion

This chapter presented a robust local-structure-based set of fingerprint features

along with an ARM-resistant transformation to protect the biometric templates.

Two transformations: the pDFT and the newly proposed Multivariate Polynomial

Transformation have been evaluated with the feature set. While the former miti-

gates the ARM, the latter enables the feature set with ARM-resistance capability.

However, in comparison with the current state-of-the-art methods, this system’s per-

formance is inferiror. This means that the requirement from the Research Question

stated in Chapter 1 to retain good performance is not satisfied. Hence, the proposed

method only gives a partial solution to the Research Question stated in Chapter 1

by resolving the problem of the ARM. In the next chapter, a cancellable template

framework is constructed by incorporating the KNN-MPT module proposed in this

chapter with another cancellable fingerprint template module. The latter also pro-

vides resistance to the ARM while the framework achieves the best performance

among the current state-of-the-art cancellable fingerprint template methods.

73



Chapter 4

An Enhanced Minutia Cylinder

Code Design and a Multi-filter

Fingerprint Cancellable Template

Framework

The work reported in this chapter (mostly from Section 4.2 and Section 4.3), has been partially
published in the following article:

Tran QN, Hu J. A Multi-Filter Fingerprint Matching Framework for Cancelable Template Design.
IEEE Transactions on Information Forensics and Security. 2021 Mar 26;16:2926-40.

4.1 Introduction

As outlined in Chapter 1, there is a significant need for privacy preservation when

biometric authentication is used. This chapter seeks to answer the research question

that this thesis raised in chapter 1 by incorporating the KNN-MPT module with

the newly proposed EMCC module into a complete framework that provides high

level of accuracy and security. In detail, this chapter proposes a novel framework for

cancellable fingerprint template and validates it by comparing it with the current

state-of-the-art algorithms. The framework improves the performance by combining
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two cancellable fingerprint modules: the KNN-MPT and the EMCC. Each of them is

able to defend the fingerprint features from the current notorious attacks in the field,

such as: ARM, hill-climbing, and pre-image attack as shown later in this section.

The remainder of this chapter is structured as follows: In Section 4.2, the concept

of MCC is briefly reviewed and followed by the methodology of how MCC is applied

in order to generate new features. It also presents the standalone performance of

this module. The design of the framework along with the experiments and security

analysis is presented in Section 4.3.

4.2 Enhanced Minutiae Cylinder Code (EMCC)

In this section, after revisiting the main concept of the MCC, the newly proposed

Enhanced MCC is explained. Afterward, the process of applying the so-called Irre-

versible Order-based Binary Encoding is explained.

4.2.1 MCC Concepts

Minutia Cylinder Code (MCC), introduced by Cappelli et al. [24] in 2010 rep-

resents each minutia based on a 3D structure that contains information of relative

minutiae’s Euclidean distance and angle. This section briefly reviews the concept

of creating the MCC for each minutia. More details on MCC can be found in the

original publication [24].

The cylinder of a minutia m = {xm, ym, θm} in the set M is constructed by

setting m as the center associated with a radius R and the height 2π. The cylinder

is wrapped around by a cuboid with the base being aligned with the minutia’s

orientation. The cuboid is divided equally into LD layers. The total number of cells

of each cylinder is: LS × LD = LC . Then, each layer is equally partitioned into

LS number of small cuboid cells. The value of the cell at the position (i, j, k) is

determined by the directional and spatial contributions of the minutiae within its
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neighborhood.

Each of which is formed by a ∆S × ∆S base and ∆D height, where ∆S = 2×R
LS

and ∆D = 2×π
LD

. At this point, each cell is given three indices (i, j, k) to define its

position in the cuboid.

The angle associated to all cells at height k in the cylinder is defined as: dφk =

−π + (k − 1
2
) × ∆D. The coordinates of the center of each cell with indices (i, j)

when projected onto the cylinder’s base is given as:

pmi,j =

 xm

ym

+∆S ·

 cos(θm) sin(θm)

− sin(θm) cos(θm)

 ·
 i− NS+1

2

j − NS+1
2

 (4.1)

Note that this is the position expressed in the spatial coordinates of the minutiae

template.

Each cell possesses a numerical value Cm(i, j, k) to which the contributions from

the minutiae in the neighboring region Npmi,j
= {mt ∈ T ;mt ̸= m, dS(mt, p

m
i,j) ≤ 3σ}

around pmij add up. 3σ is the radius of the region whereas dS(mt, p
m
i,j) is the Euclidean

distance between the minutia m and p. The cell value of each cell is calculated as

follows:

Cm(i, j, k) =

{
Ψ(

∑
mt∈Npm

i,j

(CS
m(mt, p

m
i,j) · CD

m(mt, dφk)))

}
(4.2)

if ξm(p
m
i,j) = valid

In case ξm(p
m
i,j) = invalid, Cm(i, j, k) is invalid, too.

In equation 4.2:

• CS
m(mt, p

m
i,j) and CD

m(mt, dφk) refer to the spatial and directional contribution

to cell (i, j, k), respectively, of minutia mt. They are defined as follows:

CS
m(mt, p

m
i,j) = GS(dS(mt, p

m
i,j)) (4.3)

where:

GS(t) =
1

σS

√
2π

e
(− t2

2σ2
S
)

(4.4)
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and

CD
m(mt, dφk) = GD(dϕ(dφk, dθ(m,mt)))

where:

dϕ(θ1, θ2) =


(θ1 − θ2)if− π ≤ θ1 − θ2 ≤ π

(2π + θ1 − θ2)ifθ1 − θ2 < −π

(−2π + θ1 − θ2)ifθ1 − θ2 ≥ π

 (4.5)

in which:

GD(α) =
1

σD

√
2π

∫ α+
∆D

2

α−∆D

2

e
− t2

2σ2
D dt (4.6)

• Ψ(v) = 1
1+e−τ(v−µ) is a sigmoid function that is used to not only limit the

contribution of dense minutiae region but also map the value in the range

[0, 1]. It is controlled by two parameters τ and µ.

• ξm(p
m
i,j) determines if a point pmi,j is invalid or not by assessing the region around

it with the following rule: if dS(m, pmi,j) ≤ R and [pmi,j ∈ Conv(T,Ω), then

ξm(p
m
i,k) is valid. Otherwise, it is invalid. Conv(T,Ω) is the convex hull [121]

of the minutiae in set T. This function is used to filter out the parts of the

cylinder that are outside of the considering fingerprint area which might not

contain discriminative information.

In the end, the cylinder set generated from an ISO/IEC 19794-2 minutiae template

is: CS = {Cm|Cm is valid, m ∈M}. Each Cm is the cylinder of the minutia m that

contains values Cm(i, j, k). In order for a cylinder Cm to be valid, it has to satisfy

certain conditions. These conditions are presented in the original paper [24].

To summarize, an MCC vector contains the cell values in the range [0, 1], which

are the spatial and directional contributions of the neighboring minutiae. The next

section uses the MCC cell values to derive new features for better matching.

77



4.2.2 EMCC

This section introduces a new method based on the concept of natural language

processing. The main idea is to transform each cylinder Cm in the Cylinder Set CS

into a bag of words Γm. Within each word, an encoding process will be applied as

an irreversible transformation. Therefore, the Cylinder Set CS becomes the Bag Set

BS = {Γm|m ∈ T}, which will be stored in the database for matching. Pseudo-code

of this process is presented in Algorithm 1.

Algorithm 1: Generate Encoded Bag of Words

Data: Set of Cylinder CS, Number of Words Λ, Projection Matrix RP

Result: Set of Bag of Words BS
foreach Vector Cm in CS do

multiply RP with Cm to get CmP ;
generate Λ words from CmP to get Bag of Words Γm;
foreach word w in Γm do

Binarize w orderly;

4.2.2.1 Random Projection of Cm:

In order to generate the cancellable template, a random projection will be applied

on the vector of MCC values. In more detail, a random Projection Matrix RP with

dimension dR×LC is generated to project the Cm. Each RP ’s value lies in the range

of (0, 100].

CmP = RP ∗ Cm (4.7)

4.2.2.2 The Generation of Bag of Words

After projecting the MCC value vector, a bag of words is generated from the

CmP . Each bag contains individual unit of words. Each word comprises of two

adjacent cell values that are chosen from the cylinder. Such word construction

can help retain the relationship among the cells, making the words more discrim-

inative. Λ words for each bag are generated. Λ is randomly chosen. After this
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process, each bag of word can be represented as: Γm = {w1, w2, ..., wΛ} in which

w = (CmP (i, j, k), CmP (i
′, j′, k′)).

4.2.2.3 Irreversible Order-based Binary Encoding

w = (CmP(i, j, k), CmP(i’, j’, k’))

[CmP(i, j, k) = CmP(i’, j’, k’)] � 0

CmP(i, j, k) > CmP(i’, j’, k’)

CmP(i, j, k) < CmP(i’, j’, k’)

(1, 1)

(1, 0)

(0, 1)

Figure 4.1: Irreversible Order-based Encoding Process: A word consisting of two
real-valued parts is encoded into a binary code based on their relative values.

A random projection-based cancellable template design is subject to the ARM.

Each word (i.e. cell values) is protected by applying an Irreversible Order-Based

Encoding function as indicated in Fig. 4.1. Specifically, the two parts CmP (i, j, k)

and CmP (i
′, j′, k′) of each word, which are MCC neighboring cells in real-valued form,

will be compared against each other. The greater value yields bit ’1’ while the smaller

yields bit ’0’. If they are equal, then both yield ’1’. Both values cannot be zero due

to the fact that based on Eq. 4.7, Cm is non-negative and RP is generated in a non-

negative manner. The order-based encoding provides an irreversible transformation

on the fingerprint features. If an adversary is able to retrieve the transformed

template, which is in the binary form, he can only determine which part of a word

yields a greater real number. There is no way to find out the original value. For

instance, assume that CmP (i, j, k) = 0.95 and CmP (i
′, j′, k′) = 0.62. After the

irreversible Order-based Encoding, this word is encoded as [1, 0]. There is an infinite

number of words that can be encoded as [1, 0].

Therefore, the Order-based Binary Encoding will be applied to the CmP as the

irreversible transformation. On the other hand, the projection matrix is a param-

eterized transformation with random elements. Hence, in order to generate a new

cancellable template, a different projection matrix R yields a different CmP . In the

end, the CmP can be used as the cancellable fingerprint template to be stored in the
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database.

Next, each bag will be separated into small chunks with length of Φ words. The

purpose of this separation is to enhance the tolerance of the bag of words by the

localization of error tolerance at the chunk level, thus improving the overall perfor-

mance. Therefore, each Bag of Word contains
⌈
Λ
Φ

⌉
words and eventually becomes:

Γm = {γ1, γ2, ..., γ⌈Λ
Φ

⌉} in which each γ = {wb1, wb2, ..., wbΦ} and wb is the two-bit

encoded word. This is the transformed data which is stored in the database as the

templates.

4.2.2.4 Similarity between Two Bags of Words

To evaluate the similarity between two Bags of Words, the similarity between two

chunks is generated. The similarity between two chunks is the Jaccard similarity

calculated position-wisely, meaning that the chunk at i-th position in the template

will be compared against its counterpart at the same position. Specifically, it is

given in the following formula:

δγti,γqi =
H(γti, γqi)

2Φ−H(γti, γqi)
(4.8)

where H(γti, γqi) is the Hamming distance between two chunks γti and γqi, respec-

tively. A word from template and a word from query are considered a match to each

other if and only if each of their bits is the same to its counterpart position-wisely.

The similarity between two chunks is filtered by a parameter ϵ: Those pairs

possessing passed similarity are considered as matched chunks. Counting the number

of matched chunks (η) between two Bags of Words and using the Jaccard similarity,

it is possible to evaluate the similarity between two Bags of Words. Hence, Eq. 4.8

becomes:

∆Γm,Γn =
η

2
⌈
Λ
Φ

⌉
− η

(4.9)

After the similarity between all pairs of Bag of Words has been calculated, the

next step is to determine the matching score Semcc for this layer. The Dynamic
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Local Similarity Sort (DLSS) is proposed, a modified version of the Local Similarity

Sort (LSS) from [24] to do this.

DLSS: In the original version, LSS sorts all the similarity scores in a descending

order and calculates the average score based on the nP pairs chosen, which is partially

dependent on the number of minutiae of the template and the query. In our scheme,

this parameter is chosen based on the behavior of the scores. First, a threshold

ωbag is set to filter the low similarity scores between two Bags of Words. Sorting is

performed after this. The score values lower than ωbag will be set to 0 after sorting.

When matching with a genuine fingerprint, a low matching score is not desired. On

the other hand, an impostor sample should not generate a high score. Therefore, it

is necessary to control the number of considered pairs so that the genuine matching

yields a high score while the impostor matching generates a low score. An upper

bound and a lower bound are set to overcome this challenge with the hypothesis

that a genuine sample possesses a high number of highly correlated Bag of Words

meanwhile an impostor sample has a low number of similar Bag of Words. In short,

these parameters are used to ensure that the number of considered pairs falls in the

specified range.

The EMCC matching score between two fingerprint images is generated as follows:

Semcc = W (np) ∗∆ mod (4.10)

where:

∆ mod =

np∑
1

∆2
i

np

(4.11)

On the other hand, W (np) is a dynamic weight function of the number of chosen

pairs np controlled by the parameter ρ. It is defined as:

W (np) = e
−ρ∗

(
1
np

−0.1
)

(4.12)
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Figure 4.2: EMCC’s performance over four publicly available databases.

4.2.3 Experimental Results

In order to evaluate the performance of the EMCC, it was implemented with

four publicly available databases FVC2002-DB1, FVC2002-DB2, FVC2002-DB3,

and FVC2004-DB2. As mentioned from the previous chapters, the quality of these

databases range from very good to very noisy, respectively. In addition, the FVC

protocol is chosen for the evaluation: To calculate the FRR, each sample is matched

against the other samples of the same fingerprint. With FAR, The first sample of

each fingerprint is matched against its counterpart of other fingerprints. Finally, the

EER is employed to provide the most accurate evaluation of the proposed method’s

performance.

Lost Key Scenario To simulate the “Lost-Key” Scenario, the same projection

matrix is applied as the parameter key to transform the features before the Irre-

versible Order-based Encoding is applied. The performance is presented in Table.

4.1 while the ROC curves are illustrated in Fig. 4.2.

As shown in Figure 4.2, these results are comparable but still inferior to the

82



Table 4.1: EMCC’s performance in EER (%)

FVC2002
DB1

FVC2002
DB2

FVC2002
DB3

FVC2004
DB2

EMCC 8.9 5.67 23.40 15.49

state-of-art methods. However, the Irreversible Order-based Encoding has a strong

security, especially against the ARM attack. Therefore, combining the current ap-

proach with the KNN-MPT to create a framework that provides not only stable

performance but also increased template security.

4.3 Multi-filter Fingerprint Cancellable Template

Design

In order to improve the performance of fingerprint matching, yet retain the tem-

plate security, EMCC and KNN-MPT are both incorporated into a multi-filter

framework in which the decision is given based on multiple measures. Firstly, a

fingerprint’s minutiae are fed to both the EMCC and KNN-MPT module. These

two modules will extract the features and apply the transformation on the corre-

sponding templates, respectively. Finally, the two transformed templates are stored

in the database. When a query fingerprint comes, it goes through the same process

to have its transformed template generated. Three measures are used to assess the

similarity of the two fingerprints: EMCC measure, KNN measure, and the fused

measure from which, a decision is made. The overall structure of this framework is

illustrated in Fig. 4.3.

As shown in Fig. 4.3, as a fingerprint is enrolled in the system, two modules

will simultaneously extract the features and generate their corresponding cancellable

template using their own user keys. The templates are stored in the database. In the

verification stage, the same user keys are used to transform the query fingerprint

for the appropriate modules to produce the cancellable templates. Matching is

performed feeding the three measures: KNN measure, EMCC measure, and fused
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Figure 4.3: Multi-filter Fingerprint Matching Framework

measure into a Multi-layer Fingerprint Matching Algorithm.

4.3.1 Multi-filter Fingerprint Matching Algorithm

As the features have already been extracted, and the similarity calculated from

both layers, the next stage is to generate a fused matching score and make a decision:

whether the query B is from the same fingerprint as the template A or it is only an

impostor trying to gain unauthorized access.

Eq. 4.12 is expanded to generate a fused score as follows:

Sfused = e
−λ

(
1

wemccSemcc+wknnSknn

)
(4.13)

This score will be fed to the decision-making module for the consideration along

with other measures.

Traditionally, a single fused score has been used for matching decision. Although

a fused score can take into account multiple different characteristics, the end result

tends to be a trade-off score which can filter out some subtle discriminative char-
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Figure 4.4: Multi-layer Fingerprint Matching Algorithm: After all three measures
have been generated and fed to the Matching module in the framework, the stored
template data is retrieved from the database. A predefined measure is chosen to
be compared first. If the similarity satisfies the threshold in the current filter,
a ”matched” decision is given. Otherwise, another measure is compared for the
similarity in the next filter. This process repeats until either a measure satisfies its
corresponding threshold or there are no more measures to compare with, leading
the decision to be ”non-matched.”

acteristics of some instances. In order to address this issue, a multilayer-filtering

algorithm is proposed as shown in Fig. 4.4. A multi-staged matching decision

scheme that takes the EMCC similarity score, the KNN similarity score, and the

fused score into consideration is designed in this framework to determine if two fin-

gerprints come from the same finger. In details, after the three measures have been

generated, a predefined measure will be compared against the threshold T1. If it

does not pass this threshold, the next measure is checked against the threshold T2;

If unsuccessful, the last measure is checked against the threshold T3. If none of the

measures is successful, the decision will be ”non-matched”.

4.3.2 Experimental Results

Table 4.2: Computation time in seconds

KNN Descriptor EMCC
Generate Match Generate Match

FVC2002 DB1 2.82 0.34 0.33 1.47
FVC2002 DB2 3.94 0.63 0.47 3.18
FVC2002 DB3 1.12 0.09 0.27 1.05
FVC2004 DB2 1.24 0.13 0.30 1.33

Table 4.2 shows the average computational cost for the EMCC and the KNN
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Descriptors. Two methods were implemented in Python 3.6 and run on the 6th

generation Intel Core i7-6700 3.4Ghz with 16GB of RAM. As shown, the total time

to generate a cancellable template for both measures with this system is approxi-

mately 4 seconds, which is practically acceptable in real-world applications. With

the KNN Descriptor, the maximum base and power of the operation are 6 and 28,

respectively, which correspond to approximately 3 and 5 bits. Therefore, the cal-

culations performed in an MPT are not exponential, which means that not much

computational power is required. In addition, the program was not written in its

most optimal manner. Hence, it can be tuned to use much less computational power.

Importantly, the framework can be implemented in C with optimization techniques

to achieve its best efficiency.

In order to evaluate the accuracy of the framework, the four publicly avail-

able datasets FVC2002-DB1, FVC2002-DB2, FVC2002-DB3, and FVC2004-DB2

are chosen to be implemented. The parameters used in the experiments are pre-

sented in Table 4.3. Note that the parameters introduced in this scheme are shown.

The parameters from other papers are detailed in the original papers.

Both the traditional FVC and One versus One protocol were employed. In One

versus One protocol, the FRR is generated by matching the first and the second

instance of each fingerprint against each other while FAR is calculated the same as

FVC’s.

Lost Key Scenario:

In order to simulate this scenario, the same parameter key is used to generate

the polynomials for all users in the KNN-MPT module. For the EMCC module,

the same random projection matrix is used to evaluate the impostor performance

in the lost key scenario. Since two methods are fused, the separate performances of

the EMCC module and the KNN-MPT module are evaluated, then compare them

with the proposed fused method to show the effect in improving the performance.

All variations of the matching algorithms are assessed and shown in Table 4.5. Bold

text indicates the lowest EER. In addition, the Receiver Operating Characteristic
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Figure 4.5: ROC for One versus One protocol

(ROC) curves for all the datasets in One versus One protocol and the FVC protocol

are shown in Fig.4.5 and Fig.4.6. The thresholds T1, T2, T3 varied based on the

databases. In order to generate the ROC curves, two of the three thresholds will be

fixed while the other is changing. The best EER is recorded and chosen to generate

the ROC curves.

The resultant EER’s of the proposed framework are presented and compared in

Table 4.4 and Table 4.6. As shown in these tables, the proposed framework shows

the best performance in comparison with the other state-of-art methods in the field.

On the other hand, with the traditional FVC protocol, except the work proposed

in [132], the proposed framework shows a superior performance when compared with

the rest, even when dealing with the FVC2004 DB2, which has been considered to

be a tough dataset due to the noise and distortion present in the fingerprint images.

The reason for the slightly worse performance than the work in [132] is because

Sadhya et al. [132] only conducted 1000 genuine tests in their experiments while the

FVC protocol with 2800 tests is followed strictly. Hence, it is not comparable.
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Figure 4.6: ROC for FVC protocol

Table 4.7 shows the decidability index d’ for each database using the standalone

measure EMCC, KNN, or Fused. However, since the proposed framework applies

multiple thresholds to make a decision, these indices do not reflect fairly how sepa-

rate the genuine and impostor distributions are in terms of matching decision. Thus,

a more sophisticated decidability analysis is conducted.

Decidability Analysis: According to the original definition in [167], decidability

index is used to evaluate the gap between the same samples’ matching score dis-

tribution and impostor samples’ matching score distribution. Therefore the whole

database’s d′ has lost its interpretation. For illustration purpose, a fingerprint is

chosen to calculate the decidability index d’ as follows: Each of the fingerprint’s

impressions is matched against the other impressions of the same fingerprint to

build the genuine matching score distribution; the first impression of the fingerprint

is matched against the first impression of other fingerprints to build the impostor

matching score distribution. This protocol yields 28 genuine scores and 99 impostor

scores for each measure: EMCC, KNN-MPT, and Fused measure. The match-
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Figure 4.7: EMCC’s d’ = 2.2547

ing algorithm being used in this experiment follows the order EMCC-KNN-Fused,

meaning that the EMCC score will be compared against EMCC threshold first. If

it passes this threshold, decision is made. If not, the KNN score is checked against

a KNN threshold and the same process applies. If the pair comparison cannot pass

any of the three layers, the query is considered as an impostor. Fingerprint 1 from

FVC2002-DB1 is chosen as the subject for this experiment. The whole process is

illustrated in Fig. 4.7, Fig. 4.8, and Fig. 4.9. Kindly note that there exist disconti-

nuities in these graphs because no database can generate continuous scores.

As shown in Fig. 4.7, Fig. 4.8, and Fig. 4.9, after the first filter EMCC with

threshold being set to 0.53, from the 28 genuine tests, 15 tests passed this filter while

13 failed. All of which were carried on to the second filter of KNN where 10 tests

were correctly identified as genuine and three still failed. In the end, the last filter

of the fused measure accepted these last three tests. On the other hand, all 99 im-

postor tests have been filtered out correctly with no single impostor has been falsely

accepted by any of the three filters. The d’ index progressively increases from 1.147
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Figure 4.8: KNN’s d’ = 2.2712 (before entering EMCC filtering, original KNN’s d’
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Figure 4.9: Fused’s d’ = 5.8250
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Figure 4.10: Revocability Test with KNN Minutia Descriptor Measure

in the EMCC filter to 2.2712 in the KNN-MPT filter, and finally reached 5.8250 with

the Fused filter. The very last d’ index is of crucially important as it is the point

where the framework decides to reject or not. In addition, as shown from the graphs,

the overlapped region between the genuine and impostor score distribution shrinks

from the beginning to the end of the matching process. This analysis not only shows

the uniqueness but also the accuracy of this proposed framework. A unique advan-

tage of our multi-layer matching decision framework is: a high threshold sufficiently

far away from the overlapped region of the genuine and imposter score distributions

could be used to make a ”yes” decision in the first two stages. Therefore, a ”yes”

result tends to be highly reliable. For the instances that could not pass the high

threshold will be passed to the next layer with different feature distributions where

an additional information is introduced to aid the matching decision. Note that

statistics in this one example is not reliable due to small population. However, it

well illustrates the workings of the proposed framework.

Revocability and Diversity are what makes a cancellable template strong or not.
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Figure 4.11: Revocability Test with EMCC Measure

Specifically, these characteristics of a cancellable template authentication system

proves that templates generated by different parameter keys even from the same

fingerprint should have no correlation. In order to evaluate this framework’s ability

to satisfy the revocability and the diversity, the same practice is followed as in

[164], which is to use FVC2002 DB2 and the following evaluation protocol. For

each fingerprint, the first impression is chosen to generate 50 different transformed

templates with 50 disparate parameters to compare with the original templates. This

experiment was conducted for all measures: EMCC scores, KNN-MPT scores, and

Fused scores. These are called pseudo-impostor test scores. The pseudo-impostor

scores are then plotted together with genuine scores and impostor scores to compare

the distribution as illustrated in Fig.4.11, Fig.4.10, and Fig.4.12 for the EMCC,

the KNN-MPT, and the Fused measures, respectively. The pseudo-impostor score

distribution should not have a significant overlapped region with the genuine score

distribution.

Looking at the figures, it can be seen that the genuine score distribution from all
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Figure 4.12: Revocability Test with Fused Measure

three measures is different from the pseudo-impostor score and the real impostor

score distributions. The detailed statistics data is presented in Table 4.8.

The Standard Deviation and Mean of each type of scores are presented. There

is a big difference in terms of both Standard Deviation and Mean of genuine and

impostor scores. On the contrary, the EMCC Pseudo-impostor score distribution’s

standard deviation and mean (0 and 0, respectively) are very close to the EMCC

Impostor score distribution’s counterpart (0.0538 and 0.0255, respectively). The

same situation happens to KNN-MPT’s and Fused’s Pseudo Impostor and Impostor

scores.

It can be concluded that in the proposed framework, different keys generate dif-

ferent cancellable templates and that the attacker cannot perform a cross-template

attack even if he or she is able to retrieve a cancellable template of the same finger

with a different key. Therefore, the framework does satisfy the Revocability and

Diversity condition.

Unlinkability Analysis: Unlinkability of a cancellable biometric template de-
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sign measures the difference among transformed templates that originate from the

same fingerprint. The framework in [63] proposed two linkability measures: Local

Measure D↔(s) - System Score-Wise Linkability and Global Measure Dsys
↔ – System

Overall Linkability. These two measures depend on the distributions of the prob-

ability p(Hm|s) and p(Hnm|s) of two templates belonging to mated or non-mated

pair given a linkage score. In this test, the protocol described in [63] is followed to

evaluate the D↔(s) and the Dsys
↔ for both the KNN-MPT module and the EMCC

module. In details, for each module, six transformed databases are generated using

six different keys. Mated score distribution is recorded by cross matching the im-

ages from the same biometric object. Non-mated score distribution is generated by

collecting the scores from cross-matching different biometric object. The results for

the KNN measure are plotted in Fig.4.13.

The mated and non-mated distributions in all four databases overlap the whole

region. Besides, D(s) is consistently 0 through the whole score distribution.

With the EMCC module, as the mated and non-mated cross-matching are eval-

uated, the score distribution consists of all 0’s for both distributions without any

variance. This means:

• The mated and non-mated score distribution both contain only score of 0,

leading to the full unlinkability: D↔(s) = 0.

• For scores other than 0, p(Hm|s) and p(Hnm|s) are undefined. Hence, D↔(s)

does not exist when s ̸= 0.

• For scores other than 0, p(s|Hm) and p(s|Hnm) are undefined. Consequently,

based on the mathematical definition in [63], Dsys
↔ = 0.

It can be concluded that the two measures KNN-MPT and EMCC both satisfy

the unlinkability condition in this protocol.

False Cross Match Rate (FCMR) and False Non-Cross Match Rate

(FNCMR) Analysis: According to [139], FCMR is defined as the probability

of fingerprints generated from different fingers but are considered successful match
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(a) KNN-MPT with FVC2002-DB1: Dsys
↔ =

0.0
(b) KNN-MPT with FVC2002-DB2: Dsys

↔ =
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(c) KNN-MPT with FVC2002-DB3: Dsys
↔ =

0.0
(d) KNN-MPT with FVC2004-DB2: Dsys

↔ =
0.0

Figure 4.13: KNN-MPT’s unlinkability analysis with all four databases

while FNCMR refers to the probability of unsuccessfully matched pairs of finger-

prints that come from a finger using different keys. These two measures are expected

to sum approximately to 1 at all points (i.e.: FCMR + FNCMR ≈ 1).

In order to measure the FCMR, in FVC2002 DB1, the transformed template of

each of the fingerprints’ first impression is matched against the first impression of

other fingerprints in the database. With FNCMR, the transformed templates with

different keys of the first and second impression of each fingerprint are matched. The

result of this test is plotted and visualized in Fig. 4.14. It can be observed from this

graph that at all points, the framework satisfies the condition FCMR+FNCMR ≈

1.
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Figure 4.14: FCMR and FNCMR when ϵ = 0.35, KNN Descriptor Threshold and
EMCC Threshold are set at 0.7 and 0.45, respectively.

4.3.3 Security Analysis

4.3.3.1 Attack via Record Multiplicity

With only the projection matrix RP and the compromised transformed templates,

an attacker can easily reverse the random projection matrix to get the original cell

values Cm as this is an invertible operation in the context of an ARM. However,

before getting to the CmP , the attacker must compromise the encoding transfor-

mation. Unlike the binarization process introduced in the original MCC [24] which

determines the bit value based on a fixed threshold, the encoding is based on the

order of the two CmP values in a word. Hence, even if the attacker collects massive

amount of encoded data and uses statistics tools to get the distribution of the val-

ues, the attack will be unsuccessful since no information on the cell value is exposed

after encoding. In detail, two real numbers A and B will be encoded as [1, 0] if

A > B. Given [1, 0], as the domain of A and B is dense, such encoding satisfies

infinity-to-one mapping. It is similar in the case of [0, 1] being given as the encoded
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word. Given [1, 1] as the encoded word, the only leaked information is that A = B.

It also satisfies infinite-to-one mapping. Hence, it is irreversible. Without further

information about A and B, the probability of finding the true values of A and B

is almost zero. Even when A and B are random but not uniformly distributed, the

probability of finding the true values of A and B is still negligible due to their dense

domain. Therefore, this method is ARM-free.

The KNN-MPT module has many possible solutions. In addition, since the system

has as many equations as the number of variables, it is a well-behaved system.

An attacker can use two tools to attack this system; the Groebner method or the

Newton-Ralphson method.

When an attacker uses a Groebner basis-based solver to launch the attack onto the

KNN-MPT module, the complexity could get to doubly exponential in the number

of variables [14]. More details and analysis on the scenarios are presented in [112].

According to [13], given a well-defined Multivariate Polynomial System of Equa-

tions of n variables with degree of at most d, the arithmetic complexity to retrieve

Groebner bases is dO(n2). However, this is only the complexity to calculate Groebner

bases of one system that associates with one feature vector fb. The embedded hash

function increases the number of variables for the MPT, leading to more complexity

to solve the system of equations.

On the other hand, the Newton-Raphson method can also be used to estimate

one of the solutions of the Multivariate Polynomial System of Equations. However,

due to the nature of this method, several assumptions must be satisfied. One of the

most important conditions is that the starting point must be chosen appropriately.

Otherwise, the method might fail to converge or the solution returned is not the

correct solution of the template. According to Bezout’s theorem, given that d1, d2, d3,

and d4 are the degrees of each polynomial equation in the system, respectively, the

system has at most d1.d2.d3.d4 solutions. This makes Newton-Raphson method

hardly suitable to solve the Multivariate Polynomial System of Equations in the

system because the solutions space grows exponentially and there is no suitable
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means to verify whether a guessed solution is the correct template solution.

The above analysis is the complexity upperbound without considering the hash

function as well as the constraints of the variables. In practice, these variables are

in limited range instead of the whole real field. It is unclear whether there exists a

deterministic solution to the constrained Multivariate Polynomial Equations System.

4.3.3.2 Pre-image Attack

Pre-image attack refers to that: given an y, it is difficult to find an x such that

y = f(x) [95].

EMCC module: Given the transformed templates, it is hard to find a systematical

way in conducting the pre-image attack, including its approximated version, against

the EMCC module. This is because of the combination of the random projection

and the irreversible order-based encoding. To the best of our knowledge, there is no

known closed-form mathematical solution available. For the feedback score guided

solution search, please refer to the discussion on the hill-climb attack. For the input

solution search without feedback score guidance, please refer to the discussion in the

entropy analysis.

KNN-MPT module: Each local structure comprises of k minutiae, corresponding

to k quantized feature vectors fb’s. These quantized vectors are represented by a

stream of b bits. After transformation (hash+MPT), the local structure similarity

scores are ranked to construct a KNN-MPT score Sknn from the top ranked local

structure similarity scores. Given the transformed templates, it is hard to find a

systematical way in conducting the pre-image attack because the hash functionality

embedded in the transformation has the pre-image resistant feature.

4.3.3.3 Hill-climbing Attack

Hill-climbing attack assumes that the similarity score is accessible by the adver-

sary. As a result, modified templates of the biometric are iteratively fed into the
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recognition module until it is successful [110]. Each time, the attacker adjusts the

input based on the retrieved similarity score from the previous trial to gradually

approach the correct input, hence successfully gains access to the system. In the

proposed framework, both the the EMCC module and the KNN-MPT module show

strong security against the hill-climbing attack. Similar to the pre-image attack

discussed above, this section’s focus is in finding the solution that can match the

original biometric feature under protection.

EMCC module: the attacker may obtain the binary representation of the trans-

formed template, which is the result of the Irreversible Order-based Encoding. Given

that the original encoded word is [0, 1], other possible combinations of [1, 0] or [1, 1]

may give a lower similarity. As a result, the attacker is able to identify the correct di-

rection for further exploits. However, any further trials toward this direction do not

reveal more information on how close the modified template is to the template stored

in the database. In other words, the feedback from the similarity score does not pro-

vide any further information that helps the attacker modify the input. For example,

given the two MCC values CmP (i, j, k) = 83.4 and CmP (i
′, j′, k′) = 35.7, the 2-bit en-

coded word constructed by the Irreversible Order-based Encoding is w = [1, 0]. As-

sume that the attacker launches a hill-climbing attack by choosing C ′
mP (i, j, k) = 70

and C ′
mP (i

′, j′, k′) = 90. After some iterations, the attacker adjusts these values

based on the retrieved similarity score and ends up with C ′
mP (i, j, k) = 80 and

C ′
mP (i

′, j′, k′) = 79, which gives the correct encoded word w′ = [1, 0]. However, once

this point is reached, any further adjustments of C ′
mP (i, j, k) and C ′

mP (i
′, j′, k′) along

this direction do not change the similarity score. Hence, the attacker is not able

to exploit further from this direction. As far as these two elements are concerned,

there is no way to identify better points if they have the same order relationship.

KNN-MPT module: the hash function not only helps increase the number of input

variables to the MPT but also makes it harder for an adversary to launch a hill-

climb attack. This is because the embedded hash function destroys the input/output

relationship. Each pair of input/out is uncorrelated to one another. Hence, the

previous trials do not help to find the better points.
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Note that many optimization methods need information from previous trials in

finding the next better points, which is similar to the principle of the hill-climbing

attack approach. Therefore, the advantages of the proposed KNN-MPT module and

EMCC module are still useful against such attacks.

4.3.3.4 Entropy Analysis

Strictly speaking, entropy measures the probability of guessing the secret suc-

cessfully. For convenience, this work adopts the common practice with the uniform

distribution assumption of the concerned variables. In this case, the analysis is

about the brute-force search space.

EMCC module: There is no feature quantization in this module. Therefore,

feature points are dense which implies the infinite entropy if the secret is about the

exact original feature point. In this module, the error tolerance is achieved via an

order encoding. In practical applications, approximated features can also break into

the systems, especially when the matching threshold is small. It is very difficult to

provide an accurate estimation of the system entropy in this situation if the secret

includes the approximated feature. A coarse entropy estimation could be made by

calculating the number of quantized feature points where the quantization takes the

effect of the approximation into consideration. This is plausible but also challenging

as it does not have quantization in this module. In order to simulate the effect of

feature quantization, the following experiment is conducted. A random template X0

is stored which is a bag of words. Then a matching experiment is performed against

artificial templates, which are generated by perturbing X0 by adding random values

of δ to each of its elements. If the bound of δ is fixed and ten times of matching

experiments do not change the matching score significantly for most of the artificial

templates, the maximum magnitude of δ is used as the quantization step for all

elements of the feature. Through this experiment, the bound of δ is determined as

0.2. This means that the quantization zone of each feature element is 0.4, leading to

2.5 disjoint quantization zones for each of the feature elements as the feature element
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value is normalized in the range [0,1]. For convenience, two possible quantized values

for each feature element are used. There are 1280 cells in a feature vector. Therefore,

there are 21280 distinct quantized feature points, leading to the entropy being 1280

bits.

KNN-MPT module: As mentioned above, each local structure in this module is

represented by the k feature vectors. Each of them is quantized and represented

by b bits. When the matching is performed, the number of involved local structure

pairs LS is taken into consideration. Hence, the total number of entropy bits are

given as: Eb = b∗k ∗LS. In the experiment, each of the three features l, α, and β is

represented by 5 bits. Adding the last bit that represents the minutia type, b = 16.

In order to generate the KNN-MPT score Sknn, the local structure scores are ranked

in descending order then choose the two pairs with the highest scores. Hence, LS

is set at 2. The number of feature vectors k depends on the database.

The brute-force search space in terms of number of trials for each method is given

in Table 4.9.

There is no doubt that any result from the theoretic security analysis tends to

be conservative due to the simplified assumptions. In practice, the system’s FAR

is a more realistic indicator of the security strength. For example, the security

strength against the pre-image attack, and a practical system’s entropy will be

bounded by the FAR performance. This is because the FAR represents the false

acceptance rate produced from the imposter attacks. It has included the effects of the

matching threshold and the real biometrics distribution which a theoretic analysis is

infeasible to consider. It is easy to achieve a very low FAR by increasing the matching

threshold. However, it will also decrease the FRR performance at the same time.

Therefore, the EER performance would be a fair indicator for measuring the security

strength of a practical system as it provides the FAR performance with the balance

of the FRR. The proposed system provides the best EER performance which should

also provide a superior security strength in terms of entropy and resistance to the

pre-image attack.
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4.4 Discussion and Conclusion

In this chapter, a framework that is constituted by two cancellable fingerprint

template modules is proposed. Each of these modules have been shown to be resis-

tant to some of the current attacks on the biometric template, especially the ARM.

In addition, the overall performance of the framework is comparable with the current

state-of-the-art systems at the time.

The framework proposed in this chapter is a complete solution to the Research

Question stated in Chapter 1 due to the following reasons: (i) It is privacy-preserving

due to the ability to defend from the current attacks on the biometric template, es-

pecially the ARM as shown in the previous sections; (ii) In order to achieve the

template security, the framework does not have to sacrifice its performance. How-

ever, as the Research Question suggests, there are multiple solutions. In the next

chapter, an alternate solution is sought using a different approach.
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Table 4.3: Parameters used in the experiments

Parameters Descriptions
Value

1v1 FVC

Λ
Number of words in each
bag

1280

Φ
Number of words in each
chunk

100 - 350 100, 300

dR
Number of rows in Pro-
jection Matrix

1280

ϵ
Chunk filtering threshold
parameter

0.7 - 0.75

ωbag
Low Bag of Words simi-
larity score filter

0.3 - 0.6

nP
Number of considered
pairs in Eq. 4.11

[4, 10]

ρ Parameter in (4.12) 6.6336

k
Number of nearest neigh-
bors used in KNN algo-
rithm

5 - 11

µ
Number of monomials in
a polynomial equation

2 - 3

ν
Number of variables in
each monomial

1 - 112

χ Power of a variable 0 - 4

kp
The number of consid-
ered pairs in Eq. 3.15

2

wi
Weight of the score at ith
rank in Eq. 3.15

0.55 - 0.7

wemcc
The weight of Semcc in
Eq. 4.13

0.1 - 0.3

wknn
The weight of Sknn in Eq.
4.13

0.9 - 0.7

λ
The parameter of Eq.
4.13

0.1 - 0.3
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Table 4.4: EER (%) Comparison in One vs. One Protocol

FVC2002
DB1

FVC2002
DB2

FVC2002
DB3

FVC2004
DB2

Ferrara et al. [50] 0 0.37 4.94 -
Jin et al. [82] 4.36 1.77 - 21.82
Wang and Hu [162] 3.5 5 7.5 -
Wang and Hu [164] 3 2 7 -
Wang et al. [161] 1 2 5.2 13.3
Wang et al. [165] 0.19 1 4.29 9.01
Tran et al. [149] 0.2 0.04 4.78 7.64
Kho et al [90] 0 0 2 4
Proposed Framework 0 0 0.14 2.71

Table 4.5: EERs (%) of different order in the matching algorithm

FVC2002
DB1

FVC2002
DB2

FVC2002
DB3

FVC2004
DB2

EMCC - KNN - Fused 0.28 0.08 1.41 3.38
EMCC - Fused - KNN 0.28 0.08 1.40 3.45
KNN - EMCC - Fused 0.28 0.08 1.41 3.38
KNN - Fused - EMCC 0.38 0.23 1.43 3.83
Fused - EMCC - KNN 0.28 0.08 1.40 3.45
Fused - KNN - EMCC 0.42 0.23 1.43 3.83

Table 4.6: EER (%) Comparison in FVC Protocol

FVC2002
DB1

FVC2002
DB2

FVC2002
DB3

FVC2004
DB2

Ferrara et al. [50] 3.33 1.76 7.78 -
Das et al. [34] 4 - - -
Wang and Hu [164] 4 3 8.5 -
Kho et al. [90] 2.28 1.25 6.4 7
Jin et al. [81] 0.43 2.10 6.60 8.02
Abdullahi et al. [4] 0.364 0.538 2.395 5.925
Proposed Framework 0.23 0.08 1.46 3.25

Table 4.7: Decidability index d’

FVC2002
DB1

FVC2002
DB2

FVC2002
DB3

FVC2004
DB2

EMCC 2.8634 3.2811 1.6117 2.0391
KNN-MPT 3.03 3.1912 2.1816 1.7644
Fused 4.0002 4.9040 2.8152 2.7037
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Table 4.8: Standard Deviation and Mean of each score type

Std Dev Mean
EMCC Genuine 0.4900 0.7995
KNN Genuine 0.1614 0.4740
Fused Genuine 0.0848 0.8017
EMCC Impostor 0.0538 0.0255

EMCC Pseudo Impostor 0 0
KNN Impostor 0.0933 0.3848

KNN Pseudo Impostor 0.0423 0.0232
Fused Impostor 0.0287 0.0391

Fused Pseudo Impostor 0.0024 0.0172

Table 4.9: Number of trials to attack each database with each method

KNN Descriptor EMCC
FVC2002 DB1 2320 21280

FVC2002 DB2 2352 21280

FVC2002 DB3 2192 21280

FVC2004 DB2 2160 21280
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Chapter 5

A Privacy-preserving Biometric

Authentication System with

Binary Classification and Error

Codes Corrections in a Zero

Knowledge Proof Protocol

The work reported in this chapter (mostly from Section 5.2 and Section 5.3), has been partially
published for publication in the following article:

Tran Q, Turnbull B, Wang M, Hu J. A Privacy-preserving Biometric Authentication System with
Binary Classification in a Zero Knowledge Proof Protocol. IEEE Open Journal of the Computer
Society. 2021 Dec 24.

.

5.1 Introduction

The previous chapters have proposed biometric template protection mechanisms

based on cancellable biometric template with high accuracy. This chapter seeks to

provide an alternative solution to the Research Question that was raised in Chapter
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1 in the sense that it explores another approach using an SVN classifier and an MLP

Neural classifier and cryptography-based protocol to provide privacy preservation.

With this method, the biometric sample is represented by a binary stream. In the

Enrollment phase, the hash value of this stream is stored along with the parity bits

of a Reed-Solomon Error Codes Correction (ECC). Besides, the chosen classifier

is trained to identify the genuine and impostor users. In the Verification phase,

the query will first be examined by the classifier. If it passes, it will be fetched

to the Reed-Solomon Error Codes Corrections to reconstruct the original binary

stream such that an exact hash value can be produced. This process in integrated

in a Zero-Knowledge Proof protocol to ensure that privacy is preserved. Finally,

if the hash value is the same as the stored version, authentication is granted. To

evaluate the potential of the proposed method, the FVC2002-DB1, FVC2002-DB2,

FVC2002-DB3, and FVC2004-DB2 for fingerprint and UBIRISv1 for iris have been

chosen to implement.

As the Research Question asks “How to develop biometric authentication frame-

works that can address major security and privacy threats while retaining a good

authentication performance”, we need to explore the alternate methods. This ap-

proach is fundamentally different from the processes outlined in the previous chap-

ters. Thus, it is expected to have different advantages and disadvantages. Exploring

this will enable a more complete response to the Research Question. In detail, in

privacy-preserving biometric authentication, templates are directly used for match-

ing. This makes the templates a weak point that needs protection in order to ensure

the privacy of the users. However, the work proposed in this chapter does not involve

the direct use of the biometric template. Instead, the power of the classifiers com-

bines with the ECC can deliver a stable performance while securing the biometric

template features with the cryptographic hash function.

With this hypothesis, this work seeks a privacy-preserving biometric authentica-

tion system that is AI-enabled in which a cryptographic hash function can apply to

protect the biometric template features while a stable performance is still retained.

The intra-class difference caused by the distortion is resolved by an ECC, making
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the reconstruction of the original template’s hash value feasible.

This chapter is structured as follows: The detailed proposed method is presented

in Section 5.2. Section 5.3 is dedicated to analyzing the experimental results. Some

discussion is provided in Section 5.4. Finally, Section 5.5 concludes the chapter.

5.2 Proposed Method

In this work, beside the traditional strategy that uses the features from a single

image illustrated in Fig. 5.2, a strategy that utilizes the composite features from

double images is proposed as indicated in Fig. 5.3. This strategy combines the

features from two images of the sample biometric subject to create the so-called

composite feature, which is used for both training and testing the classifier.

Observa�on

Data String
RSC Encoder Parity Bits

Hashed Template 

String

Passed Classi�er 

Query String
RSC Decoder

(n, k) RSC

Hashed Query String
Zero-Knowledge Proof 

Protocol

Figure 5.1: Overall Scheme

In the first stage, which is illustrated in the Fig. 5.1, the biometric data is

108



processed and filtered by a classifier before being corrected by the ECC. In more

detail, first, biometric features are extracted and represented in the form of binary

representation. Then, a model for each subject is trained using the binary data.

When a query comes, after its features in the binary format have been retrieved,

the model verifies the authenticity of the query. If it is authenticated by the model,

the query is passed to the ECC to be prepared for hash string generation, which is

described in later sections.

Binary 

Classi�er

Biometric Data

Decision

Authen�ca�on

Biometric 

Sample

Figure 5.2: Traditional Authentication

Due to the flexibility of the scheme, any biometric features that can be represented

in binary form is compatible with the proposed scheme, though a different composite

biometric feature might be used. The proposed scheme is evaluated with fingerprint

and iris, which are among the most widely used biometric modalities.

First Sample

Binary 

Classi�er

Second Sample

Biometric Data

Decision

Authen�ca�on

Figure 5.3: Composite Feature-based Authentication

5.2.1 Fingerprint with Bitstring Representation by Normal-

ized Local Structures

The raw fingerprint bitstring representation proposed in [91] will be adopted.

This single fingerprint image based feature presentation is constructed from the
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normalized local structures. At first, the minutiae of a fingerprint are extracted.

Then, for each minutia being set as the reference, two sets of local structure features

are extracted: Minutiae-based Local Structure (MBLS) and Texture-Based Local

Structure (TBLS). As two sets of features are extracted, a subspace projection is

applied to reduce the dimensionality of both feature sets before fusion. The fused

local structures from a set of fingerprints are fed into a K-means clustering to

produce K clusters. As a query fingerprint is assessed, it goes through the same

process. Its bitstring bf is created by applying the K-means clustering based on

the clusters created before. The i-th bit is set to 1 if the i-th cluster contains any

minutia of the fingerprint. After this process, a fingerprint is represented by a 4,500

bit long binary string. A detailed description of this method can be found in [91].

5.2.2 Iris with Bitstring Representation by Perceptual Hash

Perceptual hash (pHash) of a multimedia file is its fingerprint that is derived from

its content’s features [93]. For this chapter, the Discrete Cosine Transformation

(DCT) pHash from the pHash library implemented by Zauner [191] is used: At

first, the input image is converted to greyscale using luminance. Afterward, the

image is resized to the size of 32 × 32 to simplify the computation of the DCT by

using a 7 × 7 kernel for convolution. The DCT matrix is generated based on this

resized image. A 8× 8 DCT coefficient matrix is then calculated. The pHash value

is computed by normalizing the elements of the one dimensional array created from

the DCT coefficient matrix with its median. The details of how pHash works and

is implemented can be found in [191].

Following the method in [65], the pHash of an iris image is extracted as follows:

First, a segmentation process is applied onto the image to identify the iris region.

After that, the pHash of the segmented iris image is generated. This step results

in an integer in the range of [0, 264 − 1]. This number is then translated to its

corresponding binary form, which is used to represent the iris image.
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5.2.3 Composite Features Retrieval

Traditional biometric authentication uses the features extracted from a single

biometric image. However, due to the noise, the features extracted from this single

biometric image are not discriminative enough. Importantly, if these features are

used for template construction, the error rates are hypothetically high. Therefore,

it is crucial that stable features are selected to be used for matching. This process

is referred to as: Composite Features Retrieval (CFR). With the sparse binary

representation from [91], this process is as simple as follows:

Given two binary representations b1 and b2 that belong to the same subject, a new

binary representation bc with the same length is constructed by selecting only the

common bit 1’s positions between two binary strings. The newly generated binary

string bc is the input data to the model trainer.

Upon applying the CFR, the number of samples per subject increases: The FVC

databases now, instead of having eight samples per subject as they did previously,

contain
(
8
2

)
= 28 samples per subject. Similarly, the original UBIRISv1 database

has 241 subjects with 5 samples each while the CFR-based strategy has
(
5
2

)
samples

per subject. The detailed comparison of before and after applying the CFR is shown

in Table. 5.1

Table 5.1: Number of samples

Fingerprint Iris
Traditional CFR Traditional CFR

Samples/subject 8 28 5 10
Total samples 800 2800 1205 2410

Prior to training a model, binary strings from the same subject are labeled as

positive data while those that are from different subject as negative data. How

these two types of data are used is presented in the next sections.
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5.2.4 AI-based Classifiers

In this section, the details of the settings for each AI-based classifier employed

are presented: the Support Vector Machine and the Multilayer Perceptron Neural

Network.

First, a dataset for each of the subjects in a database is constructed. Afterward,

this dataset is separated such that: 80% of the data is used for training while the

rest 20% is used for testing. The specific amount of data used for training and

testing is different for each strategy. This information is presented in the Table 5.2.

Table 5.2: Amount of data used for testing and training for each biometric subject
in a database

FVC Databases UBIRIS
Traditional CFR Traditional CFR

Training
Positive 6 22 4 8
Negative 594 2178 960 1920

Testing
Positive 2 6 1 2
Negative 198 594 240 480

For fingerprints, there will be 2× 100 = 200 positive tests and 198× 100 negative

tests for the traditional strategy. On the other hand, the CFR-based strategy yields

6 × 100 = 600 positive tests and 594 × 100 = 59, 400 negative tests. Similarly,

traditional strategy for iris yields 241 positive and 57,840 negative tests while CFR-

based strategy yields 482 positive and 115,680 negative tests.

5.2.4.1 Support Vector Machine Classifier

SVM is a widely applied classifier [17]. Given a set of classes Y and a set of

attributes X with |Y | and |X| being the total number of classes and attributes,

respectively, the Support Vector Machine (SVM) finds the hyper planes that assign

each attribute x in the set X to a class y in the set Y . In this scheme, the SVM is

chosen for subject identification due to the following reasons:

• The publicly available databases for fingerprints and iris posses limit number
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of samples per subject. Hence, the model has to be trained in a data-restricted

environment.

• The purpose of the scheme is to verify a user’s authenticity. Therefore, it is a

binary decision: Yes/No.

SVM does not require a significant amount of data to train a model. More impor-

tantly, SVM was traditionally designed to provide binary decisions. It is for these

reasons that SVM is an appropriate choice for the verification role.

SVM uses some kernel functions to optimize the process of assigning training data

x to its associated class y. Similar to [65]’s, this method uses Radial Basis Function

(RBF) as the kernel function whose parameters C and γ are chosen from a 10-fold

cross validation grid search. The proposed scheme differs in the sense that the SVM

used outputs a binary decision, instead of the class label as in [65]. This is because

the classifier is set up to give a yes/no decision without exposing any information

about the subjects in the database.

5.2.4.2 Multi-layer Perceptron Neural Network

In addition to the SVM, a Multi-layer Perceptron (MLP) Neural Network is em-

ployed to evaluate and compare the performance. MLP belongs to the Feed-forward

Neural Network. It has three kinds of layers: input layer, hidden layer, and output

layer. The data flows from the input layer to the hidden layer where all the com-

putational tasks occur before it gets transfered to the output layer. While SVM is

a good classifier against linearly distributed data, MLP is a strong tool to classify

non-linearly separable data.

In this work, a vanilla neural network is implemented, meaning that an MLP

neural network that has a single hidden layer. The details of the parameters used

are given in Table. 5.3.
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Table 5.3: Parameters used for the MLP neural network training

Parameter Value
Number of hidden layers 1
Number of neurons/hidden layers 100-500
Activation function ReLU
Solver Adam
Alpha 10−4

Learning rate 0.001
Maximum number of iterations 200

5.2.5 Hashed ECC

As a model is being trained, ECC is applied with one of the positive observations

in the training dataset. Specifically, an (n, k) RSC is used to encode the observation

where n is the codeword length and k is the number of parity bits that determines

how many errors can be corrected. After this step, the k parity bits retrieved are

stored along with the hash value of the observation. These parity bits are used for

error corrections on the query binary string. Fig. 5.1 visualizes this process. In this

section, how the biometric binary representation is preprocessed to input into the

(n, k) RSC is presented.

5.2.5.1 Hashed Fingerprint Bitstring

At first, the 4500-bit string bf is chunked into groups of eight bits each. Since 8

does not divide 4500, four bits of ’0’ are padded to make the last byte complete.

This yields a string of byte BS of 563 bytes.

In this scheme, an RSC with a fixed codelength nf = 255 is used. The number of

parity bits kf that determines how many errors can be corrected (k
2
) is dynamically

changed. Since nf < 563, the string of bytes is chunked into the length of nf − kf

bytes each as input for the RSC. For instance, given that kf = 32, Bf consists of

three sub-strings. The first two substrings are (255 − k) byte-long while the last

substring is 563 − 2(255 − k) = 53 + 2k byte-long. Normally the last substring is

not long enough to be the input of the RSC scheme. The RSC will pad with the
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byte of ‘0’ to make it long enough. In the encoding phase, the parity bits pi for each

substring are generated. After this phase, the set of parity bits P = {pi}3i=1 for each

substring are stored along with the hash of the input byte string. In the decoding

phase, after the query is chunked and padded, the parity bits are appended to the

end of each substring and inserted into the decoder. If there are maximum
kf
2
errors

in a substring, it is correctable to the original byte string. The hash of the query is

compared against the template hash stored in the system.

5.2.5.2 Hashed Iris Bitstring

The length li of the iris bitstring is 64-bit long. The number of parity bit ki ranges

are chosen such that: li + ki + pi = ni where pi is the number of padded bits ’0’

due to the fact that the iris bitstring is not long enough to serve as the input of the

RSC. After being corrected by the RSC, the hashed iris bitstring is stored with the

parity bits.

5.2.6 Chaum-Pedersen Protocol

The Chaum-Pedersen is one of the interactive Zero Knowledge Proof protocols. It

allows the verification of a secret without having to reveal it. In this case, it is used

to authenticate the user if he can present the original hash string. Assume that P

is the prover and V is the verifier. P needs to prove to V that he/she possesses the

hash string S without revealing it.

Chaum-Pedersen Protocol [22]:

• Let G be a cyclic group of prime order q generated by some generator g ∈ G.

• Let C be a challenge space used by the verifier V, which is a subset of Zq.

• P produces the triplet (u, v, w), v = gS, w = uS. The triplet is a public

parameter which is accessible by both the prover and the verifier. S will

become the commitment of the prover.
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When P needs to prove to V that they own the private biometrics hash string

S, they randomly pick a number St from Zq and calculates vt and a wt where

vt ← gSt and wt ← uSt and send them to the verifier V. Upon receiving vt and

a wt, V generates a challenge c ∈ C and sends it to P. With the challenge c, P

calculates Sz ← St + S ∗ c and sends it back to V as the answer. Finally, V checks

if gSz = vt ∗ vc and uSz = wt ∗ wc. If the equality holds, P is authenticated as the

holder of the biometrics hash string S. In the proposed privacy-preserving scheme,

the biometrics hash string S is generated on the spot. It is not stored anywhere and

there is no secret mapping anywhere. The security strength depends primarily on

the cryptography strength of the Chaum-Pedersen Protocol.

5.3 Experimental Results

In this section, the experimental results that have been conducted for the finger-

print databases FVC2002-DB1, FVC2002-DB2, FVC2002-DB3 and FVC2004-DB2

and the iris database UBIRISv1 are presented.

In order to evaluate the performance of the classifiers used, the False Acceptance

Rate (FAR), False Rejection Rate (FRR), and Accuracy are used. To calculate these

measures, the following figures are recorded: True Positive (TP), False Positive

(FP), True Negative (TN), and False Negative (FN).

• FAR is the probability that the model mistakenly accepts a sample that is

not from the same subject with which the model was trained. It is given as

the ratio of the number of falsely accepted samples (FP) to the total number

of impostor tests: FAR = FP
nI

where nI is the total number of impostor tests.

• FRR is the probability that the model mistakenly rejects a sample that is

from the same subject with which the model was trained. It is given as the

ratio of the number of falsely rejected samples (FN) to the total number of

genuine tests: FRR = FN
nG

where nG is the total number of genuine tests.
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• Accuracy is the probability that the model correctly identifies the genuine as

well as the impostors. It is given as the ratio of the sum of correctly identified

genuine and impostor samples to the total number of tests conducted: Acc =

TP+TN
nI+nG

.

The biometric performance is also evaluated using the Equal Error Rate (EER).

The details on how EER is generated will be presented in the next sections.

5.3.1 Classifiers’ Performance

5.3.1.1 Fingerprint

The classification performances of the SVM classifier and the MLP classifier for

the fingerprint’s FVC databases are presented in the Table. 5.4 and Table. 5.5,

respectively.

Table 5.4: Fingerprint’s SVM performance (%)

Traditional CFR

FVC2002-DB1
FAR 0.00 0.00
FRR 11.00 1.83
Accuracy 99.99 99.99

FVC2002-DB2
FAR 0.69 0.00
FRR 0.50 1.17
Accuracy 99.99 99.99

FVC2002-DB3
FAR 0.00 0.00
FRR 13.00 4.17
Accuracy 99.89 99.96

FVC2004-DB2
FAR 0.56 0.00
FRR 6.00 9.00
Accuracy 99.39 99.91

As shown in the Table. 5.4, the binary classification models for fingerprint trained

with both strategies yield a very low FAR. Also, using the same strategy, the lower

the quality of the images in the database is, the higher the FRR becomes. On

the other hand, as the CFR strategy is applied, the FAR is decreased to 0.00% for
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FVC2002-DB2 and FVC2004-DB2 while the FVC2002-DB1’s and FVC2002-DB3’s

FRR decrease sharply.

Gunasinghe and Bertino [65] employed the concept of using SVM for biometric

authentication with ECC with a Zero-Knowledge Proof, which achieved 0.21% FAR

along with 21% FRR when implemented with iris. However, in their work, the

ECC was applied on the biometric data before it was classified by the SVM model.

Moreover, in their work, a multi-class SVM was used. This means that the SVM

model will output a class label based on the input data. As the class label is used

as one of the secrets for key derivation, it is likely to be hard-coded in the protocol.

This poses security issue that an attacker can perform a series of attacks to learn

which label corresponds to a dummy label.

This work is different in the sense that: First, it only outputs a binary decision

(either yes or no). Hence, there is no hard-coded label. Second, the scheme in this

chapter explores the use of not only the SVM classifier but also the MLP classifier.

Last but not least, this work proposes a novel strategy to extract features from

biometric samples, contributing to the improvement of the scheme’s performance.

The performance with MLP Neural Networks is presented in Table. 5.5.

Table 5.5: Fingerprint’s MLP performance (%)

Traditional CFR

FVC2002-DB1
FAR 0.00 0.00
FRR 1.00 1.50
Accuracy 99.99 99.99

FVC2002-DB2
FAR 0.00 0.00
FRR 3.00 0.83
Accuracy 99.97 99.99

FVC2002-DB3
FAR 0.00 0.00
FRR 10.00 4.30
Accuracy 99.90 99.96

FVC2004-DB2
FAR 0.00 0.00
FRR 29.00 7.83
Accuracy 99.67 99.92

Comparing with the SVM’s performance, MLP performs better in terms of rec-

ognizing the impostors when CFR is employed. Except with FVC2002-DB1 having
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a slight increase in FRR from 1.00% to 1.50%, MLP shows a sharp improvement of

FRR when CFR is applied in all other databases while the FAR is kept at 0%.

The better performance shown by the MLP can be explained by its better ability

to deal with non-linear data than SVM’s counterpart. Though possessing the kernel

functions that can work with non-linear data, SVM’s ability to classify non-linear

data is limited. More importantly, the minutiae on a fingerprint are distributed

naturally randomly. This results in the non-linear distribution of the bits generated

by [91]. Hence, using the same method to generate fingerprint bit string, MLP with

its flexibility in working with non-linearity shows a better performance.

5.3.1.2 Iris

The classification results of the SVM and MLP classifier are presented in Table.

5.6, respectively.

Table 5.6: Iris’s performance (%)

SVM MLP
FAR FRR Accuracy FAR FRR Accuracy

Traditional 0.41 0.00 99.59 0.00 6.22 99.97
CFR 0.39 0.00 99.61 0.00 0.21 99.99

As it can be seen from the Table. 5.6, UBIRISv1’s SVM performance kept FRR

at 0.00% in both strategies, contrasting to the MLP that maintained FAR at 0.00%.

In this situation, it can be said that the CFR-based MLP performs the best by

rejecting all impostors while keep the FRR as low as 0.21%.

5.3.2 Biometric Performance

The classifier’s ability in classifying the fingerprints has been investigated. In this

section, the biometric performance of these classifiers will be evaluated using the

EER, which is the rate when the FAR equals the FRR. Kindly note that the FAR

and FRR used to generate the EER are not the same as the ones mentioned in

the previous section. Previously, the classifiers generate two probabilities: one for
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the positive class and one for the negative class. To make a decision, the classifier

chooses the class with the higher probability. Consequently, the FAR and the FRR

are generated based on this decision. On the contrary, multiple thresholds will be set

to determine the corresponding pair of FAR and FRR. By changing the thresholds,

the EER can be generated.

5.3.2.1 Fingerprint

The fingerprint recognition performance in terms of EER using different classifiers

is presented in the Table. 5.7. In addition, some of the Detection Error Tradeoff

(DET) curves are shown in Fig. 5.4.

Table 5.7: Fingerprint’s EER (%)

SVM MLP

FVC2002-DB1
Traditional 0.54 0.00
CFR 0.33 0.00

FVC2002-DB2
Traditional 1.00 0.00
CFR 0.00 0.00

FVC2002-DB3
Traditional 1.00 2.37
CFR 2.17 2.34

FVC2004-DB2
Traditional 1.00 2.31
CFR 2.47 2.50

In terms of biometric performance, overall, both the classifiers perform well in all

cases with very low EER. Within the same database, the MLP classifier even shows

slightly higher EER than the SVM. On the other hand, it can be concluded that

both the SVM and MLP classifier deliver good biometric performance. In general,

the CFR performs better over good to moderate quality databases. It is observed

that a very difficult database (DB2004) tends to produce much fewer bit 1’s in the

CFR binary template, leading to a noticeable performance degradation. This is

closely related to the challenge in producing quality fingerprint features over the

poor quality fingerprint images.
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(a) SVM with Traditional Strategy imple-
mented in FVC2004-DB2

(b) MLP with Traditional Strategy imple-
mented in FVC2004-DB2

(c) SVM with CFR applied in FVC2004-
DB2

(d) MLP with CFR applied in FVC2004-
DB2

Figure 5.4: Fingerprint’s DET curves
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(a) SVM with Traditional Strategy for Iris
Recognition

(b) SVM with CFR Strategy for Iris Recog-
nition

Figure 5.5: Iris’s DET curves

5.3.2.2 Iris

Similar to the fingerprint’s counterpart, iris’s recognition performance with differ-

ent classifiers is shown in Table. 5.8. The DET curves for different classifiers under

different strategy are presented in Fig. 5.5.

Table 5.8: Iris’s EER (%)

SVM MLP

UBIRISv1
Traditional 1.24 2.07
CFR 0.41 0.0017

It can be seen that in this case, the CFR strategy performs better than the tra-

ditional strategy in both cases. This is related to the pHash feature that is used to

represent each iris image: pHash is a 64-bit string that represents the features of

the media file. This means that pHash was not originally devised for biometrics but

instead for the generic recognition of the content in a file. Hence, pHash being the

main features for iris recognition limits the discriminativeness of the iris’s charac-

teristics. Therefore, CFR contributes to lower the FRR while the FAR is kept at a

lower level at the same threshold, leading to a decrease in the EER. Compared with

fingerprint, iris tends to have more stable features where the CFR can play a bigger

role.

The impact of ECC on the recognition accuracy of the system is discussed in the
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next section.

5.3.3 ECC’s Impact on the Overall Performance

The output of the classifier is the ECC’s input. This means that the ECC plays

an important role in making a decision. Even if the classifier identifies a biometric

sample as genuine but ECC cannot correct it to the template’s original binary string

to produce an exact hash, the authentication still fails. This section investigates the

influence of ECC on the whole biometric recognition system’s performance. The

length of the codeword used in the Reed-Solomon ECC scheme is 255 while the

number of parity bits are dynamic.

5.3.3.1 Fingerprint

SVM: Since ECC’s input is the classifier’s passed samples, those that have already

been rejected by the classifier will not be taken into consideration. Hence, the FRR

will not change. On the other hand, whether a biometric sample is accepted depends

on the performance of the ECC. As shown in Table 5.5 and 5.6 that MLP was able

to identify all of the impostors, leading to FAR = 0.00% for both fingerprint and

iris. Therefore, an ECC with a large enough number of parity bits can be used to

recreate the template’s bitstring. A low number of impostors can still bypass the

SVM classifier in FVC2002-DB2 and FVC2004-DB2.

The impact of the ECC for Traditional and CFR Fingerprint using the SVM is

presented in Table. 5.9 and Table 5.10, respectively. Table 5.9, ECC shows the

impact on the performance of the scheme. With the number of parity bits nsym

increasing, the FRR rate decreases. For FVC2002-DB1, the FRR decreases and

reaches the same rates with the SVM’s performance when nsym = 63. Due to

FAR = 0.00% for the SVM, this means that when nsym = 63, the ECC accepts all

the samples that have been accepted by the SVM. The situation is slightly different

with FVC2002-DB2 and FVC2004-DB2 datasets, as these have impostors that have
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Table 5.9: ECC performance in percentage (%) with different number of parity bits
for Traditional Fingerprint filtered by the SVM classifier

FVC2002-
DB1

FVC2002-
DB2

FVC2002-
DB3

FVC2004-
DB2

nsym

32
FRR 44.00 77.00 42.00 98.50
FAR 0.00 0.00 0.00 0.01

40
FRR 26.50 42.50 18.50 95.50
FAR 0.00 0.01 0.00 0.02

60
FRR 11.50 0.50 13.00 18.00
FAR 0.00 0.31 0.00 0.36

63
FRR 11.00 0.50 13.00 11.50
FAR 0.00 0.41 0.00 0.42

80
FRR 11.00 0.50 13.00 0.50
FAR 0.00 0.68 0.00 0.50

100
FRR 11.00 0.00 13.00 0.50
FAR 0.00 0.68 0.00 0.50

been accepted. The increase of nsym lowers the FRR but increases the FAR. How-

ever, there is a jump when nsym increases from 40 to 60: With FVC2002-DB2, the

FRR decreases from 42.50% for nsym = 40 to 0.5% for nsym = 60. Its FAR remains

at a fairly low level of 0.31% for nsym = 60. On the other hand, FVC2004-DB2’s

FRR drops from 95.50% when nsym = 40 to 18% when nsym = 60. Its FAR is also

at a very low level: 0.36% when nsym = 60.

For the CFR-based strategy, Table 5.10 highlights the minimal impact ECC has

on the performance. Specifically, in FVC2002-DB2, while the FAR remains 0.00% at

all times, when the number of parity bits nsym = 32, the FRR of the whole scheme

is 3% while nsym = 40, the FRR is 1.17%. This is also the original performance of

the SVM classifier as indicated in Table. 5.4.

MLP: The impact of the ECC on the fingerprint-based authentication system’s

performance when using the MLP is presented in Table. 5.11 and Table. 5.12

for the traditional and CFR-based strategies, respectively. It is evident that for

Traditional-based strategy, the increase in the number of parity bits nsym creates

a decrease in the FRR for all databases. On the other hand, as the use of the MLP

with CFR-based strategy already has a good performance, the change in nsym does
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Table 5.10: ECC performance in percentage (%) with different number of parity
bits for CFR-based Fingerprint filtered by the SVM classifier

FVC2002-
DB1

FVC2002-
DB2

FVC2002-
DB3

FVC2004-
DB2

nsym

32
FRR 1.83 3.00 4.17 9.00
FAR 0.00 0.00 0.00 0.00

40
FRR 1.83 1.17 4.17 9.00
FAR 0.00 0.00 0.00 0.00

60
FRR 1.83 1.17 4.17 9.00
FAR 0.00 0.00 0.00 0.00

63
FRR 1.83 1.17 4.17 9.00
FAR 0.00 0.00 0.00 0.00

80
FRR 1.83 1.17 4.17 9.00
FAR 0.00 0.00 0.00 0.00

100
FRR 1.83 1.17 4.17 9.00
FAR 0.00 0.00 0.00 0.00

not lead to any further decrease of the FRR, except for FVC2002-DB2 when nsym

increases from 32 to 40.

Table 5.11: ECC performance in percentage (%) with different number of parity
bits for Traditional Fingerprint filtered by the MLP classifier

FVC2002-
DB1

FVC2002-
DB2

FVC2002-
DB3

FVC2004-
DB2

nsym

32
FRR 39.50 77.50 39.00 100.00
FAR 0.00 0.00 0.00 0.00

40
FRR 18.00 43.00 15.00 97.50
FAR 0.00 0.00 0.00 0.00

60
FRR 1.50 3.50 9.50 44.50
FAR 0.00 0.00 0.00 0.00

63
FRR 1.00 3.00 9.50 39.50
FAR 0.00 0.00 0.00 0.00

80
FRR 1.00 3.00 9.50 30.00
FAR 0.00 0.00 0.00 0.00

100
FRR 1.00 3.00 9.50 29.50
FAR 0.00 0.00 0.00 0.00

5.3.3.2 Iris

SVM: The FRR and FAR when ECC is used with different number of parity bits

for UBIRISv1 are reported in Table. 5.13. In this table, it can be seen that when
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Table 5.12: ECC performance in percentage (%) with different number of parity
bits for CFR-based Fingerprint filtered by the MLP classifier

FVC2002-
DB1

FVC2002-
DB2

FVC2002-
DB3

FVC2004-
DB2

nsym

32
FRR 1.50 2.70 4.17 7.83
FAR 0.00 0.00 0.00 0.00

40
FRR 1.50 0.83 4.17 7.83
FAR 0.00 0.00 0.00 0.00

60
FRR 1.50 0.83 4.17 7.83
FAR 0.00 0.00 0.00 0.00

63
FRR 1.50 0.83 4.17 7.83
FAR 0.00 0.00 0.00 0.00

80
FRR 1.50 0.83 4.17 7.83
FAR 0.00 0.00 0.00 0.00

100
FRR 1.50 0.83 4.17 7.83
FAR 0.00 0.00 0.00 0.00

the number of parity bits nsym is low, the MLP classifier with CFR-based strategy

tends to deliver less errors than it with the traditional strategy. Although when

nsym = 100, the FRR reached 0.00% for both, while the FAR is equivalent (0.41%

for Traditional and 0.39% for CFR), it is not recommended as a high number of

parity bits would allow more impostors.

Table 5.13: ECC performance in percentage (%) with different number of parity
bits for Traditional and CFR-based Iris filtered by the SVM classifier

Traditional CFR

nsym

32
FRR 31.54 17.63
FAR 0.13 0.10

40
FRR 18.26 8.09
FAR 0.22 0.21

60
FRR 7.05 1.04
FAR 0.35 0.36

63
FRR 7.05 0.21
FAR 0.35 0.37

80
FRR 0.41 0.00
FAR 0.40 0.39

100
FRR 0.00 0.00
FAR 0.41 0.39

MLP: Table. 5.14 presents the performances when the MLP classifier is used.

Unlike when the SVM classifier is used, the MLP classifier is able to detect all the
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impostors in both Traditional and CFR-based strategy. On the other hand, with the

same number of parity bits, CFR-based strategy delivers a much better FRR. The

ECC accepts all samples that are identified as genuine by the classifier when the

number of parity bits nsym = 100 and nsym = 80 with Traditional and CFR-based

strategy, respectively.

Table 5.14: ECC performance in percentage (%) with different number of parity
bits for Traditional and CFR-based Iris filtered by the MLP classifier

Traditional CFR

nsym

32
FRR 32.37 17.63
FAR 0.00 0.00

40
FRR 19.92 8.30
FAR 0.00 0.00

60
FRR 10.79 1.24
FAR 0.00 0.00

63
FRR 10.79 0.43
FAR 0.00 0.00

80
FRR 6.64 0.21
FAR 0.00 0.00

100
FRR 6.22 0.21
FAR 0.00 0.00

5.3.3.3 Results Analysis

In summary, the results have shown the method’s performance with fingerprint

and iris using different strategies and different classifiers along with the help of ECC.

Although the ECC does not help improve the FAR, it plays an important role in

this scheme as without it, the hash value of the template cannot be reconstructed.

For fingerprint, when the SVM classifier is used, the traditional strategy shows

that the ECC can make a big impact on the overall performance across all the

databases: when the number of parity bits nsym is low, the scheme has an extremely

high FRR, especially the low-quality database FVC2004-DB2 with 98.50%. As nsym

increases, the FRR starts to improve until it accepts. On the other hand, the CFR-

based strategy shows little influence of ECC in the scheme’s overall performance as

the change in nsym does not lead to the change in the FRR and FAR. When the
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MLP classifier is used, the situations for traditional and CFR-based strategy are

the same as the SVM classifier’s counterpart. We can conclude that for fingerprint,

CFR-based strategy limits the scheme’s reliance on the ECC.

For iris, with the same classifier being used, the CFR-based strategy shows better

performance. However, the MLP classifier is more favorable as it is able to identify

all the impostors for both strategies. Both Table 5.13 and 5.13 show that when

nsym is changed, ECC does influence the overall system’s performance.

Although it is seen that with a high number of parity bits being used, the ECC

can accept all the genuine samples that have been marked as passed by the classifier.

However, it is not recommended to set nsym high as this creates more chances for

impostors to be authenticated.

5.4 Discussion

In this chapter, a light-weight privacy-preserving biometric authentication system

using AI-based classifier has been proposed. Beside the traditional strategy that

only uses one biometric sample to construct template and conduct matching, a

Composite Feature Retrieval strategy has also been proposed. This strategy shows

certain improvements in comparison with the traditional strategy. Last but not

least, using the ECC and the hash function, this system is integrated with a Zero-

Knowledge-Proof Protocol such that it can be used in subsequent applications that

utilize biometric authentication.

Under different scenarios, a malicious adversary may choose to launch an attack

on different points: Firstly, contrary to the work in [65], the proposed system only

outputs the decision of the matching. The adversary will cope with difficulties if

he wants to gain unauthorized access. Secondly,the system does not directly use

any biometric template. Instead, the hashed value of the binary representation of

the biometric is used in the last layer of authentication. In order to compromise a

template, the adversary must first successfully compromise the hash function. This
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attack is similar to the pre-image attack that was analyzed in Chapter 4. Therefore,

in terms of privacy, the proposed system exposes minimal amount of information.

5.5 Conclusion

As discussed in Section 5.4, this chapter has provided an alternate solution for

the research question stated in Chapter 1. The system proposed in this chapter is

capable of providing biometric authentication with high accuracy yet retaining the

users’ privacy since it only uses the hashed value of the biometric template’s binary

stream. Therefore, it can be used in subsequent applications that utilize biometric

authentication.
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Chapter 6

Conclusion

In this chapter, an answer to the Research Question is given in Section 6.1. The

novelties of this thesis as well as how each of them contributes to giving a solution to

the Research Question are presented in Section 6.2. Finally, some potential future

work directions are suggested in Section 6.3.

6.1 Answering the Research Question

As per Chapter one of this work, this thesis has sought to explore and understand

the following research question:

How can we develop biometric authentication frameworks that can ad-

dress major security and privacy threats while retaining a good authen-

tication performance?

To completely answer this research question, this work has explored several ways

of preserving the privacy of the biometric authentication system users against the

current attacks (especially the ARM) while retaining high recognition accuracy.

This is a non-trivial research proposition, and has necessitated the development of

multiple processes to accommodate.
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Before answering this question, more information was required. Chapter 2 has

two main goals from this perspective. First, it elucidates the current and emerging

classes of attacks and threats to provide clarity on the subset of the research question

that is asking about ...major security and privacy threats.... The second aspect of

this chapter is to provide a high-level structure and taxonomy of the current state

of the field. Neither of these answers the question, but provides more information

that is then used in subsequent chapters.

In the first stage of responding to this question, Chapter 3 presents a robust

local-structure-based set of fingerprint features along with an ARM-resistant trans-

formation to protect the biometric templates. Although the processes implemented

are effective at mitigating ARM, the resultant performance is not comparable with

current state-of-the-art methods. Although this result can be expected, as the cur-

rent processes compared do no protect against the ARM, this only partially answers

the fundamental research question driving this thesis. Chapter 3 highlights that it is

possible to develop an authentication framework that can address emerging security

and privacy threats. However, it has not adequately shown that is possible to do

this whilst retaining good or comparable performance.

Chapter 4 extends on the work of Chapter 3 to improve the performance of the

fingerprint recognition by utilizing the KNN-MPT module from Chapter 4 with

a newly proposed module EMCC. The outcome of this chapter is a multi-filter

cancellable fingerprint framework, which has been proved to be resistant to certain

types of attacks, including the ARM. In regards to the research question, this chapter

has provided a solution that not only addresses the current major security and

privacy threats but also delivers high performance. In effect, this provides a partial

response to the overarching research question, highlighting that it is possible to

avoid ARM and similar potential future attacks without significant degradation to

the performance of such a system.

Chapter 5 takes a different approach to answering the thesis’s research question.

It develops and presents a light-weight biometric authentication system utilizing
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the power of Artificial Intelligence and a cryptographic environment. Being another

approach apart from the cancellable biometrics, this work seeks to mitigate the

ARM and similar classes of attack but not using the biometric template directly.

Instead, the hash value of the binary representation is stored along with the parity

bits of a Reed-Solomon Error Codes Correction scheme. The first authentication

filter is conducted by the AI classifier. If the query passes, it is sent to the ECC

before passing through a hash function to retrieve its hash value. The hash value

is compared with the template stored in the database via a Zero Knowledge Proof

protocol, making information leakage as minimal as possible. This system is an

alternate solution to the Research Question for the following reasons:

• it achieves high accuracy due to the power of the AI-based classifier;

• it does not directly use a template. Thus, in order to compromise a template,

a malicious adversary needs to launch various attacks on the Zero Knowledge

Proof to retrieve the hash value, on the hash function to reverse engineer the

hash value to its input. Because of the nature of the hash function, this is not

an easy task to accomplish.

As such, this work provides a suitable response to the research question guiding

this thesis. Both of the solutions are able to address the privacy concerns targeting

the biometric template. On the other hand, these systems still retain a high level of

performance.

Previously, the research question that sets the theme for this thesis has sought the

solutions to design biometric authentication framework that can address the major

biometric template attacks while still possessing reliable performance. This thesis

has provided two solutions to the question:

• The multi-filter biometric authentication framework that contains two can-

cellable fingerprint template modules can address the major attacks on the

biometric template, including the ARM. It also achieves a reliable performance

when compared with the current state-of-the-art systems [148].
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• The light-weight privacy-preserving AI-based system proposed only uses the

hash value of the biometric template. Authentication is performed in a Zero-

Knowledge-Proof Protocol. This makes it difficult for a malicious actor to

launch an attack to retrieve the original biometric template as the Zero-

Knowledge-Proof Protocol and the hash function need to be compromised.

On the other hand, with the power of the AI-based classifier, the system de-

livers a highly reliable performance in terms of accuracy [147].

Therefore, this research has shown that there is no single methodology that can

be used, but several. This thesis has extended the knowledge of the field regarding

the development of biometric authentication processes and systems resistant to the

emerging attacks.

6.2 Novel Research Outcomes Originating From

This Thesis

In the exploration of this research question, this thesis has achieved several novel

outcomes for the biometric research community: (i) a taxonomy for the biomet-

ric authentication systems and the privacy mechanisms used in the field; (ii) a

multi-filter cancellable fingerprint framework containing two modules that are re-

sistant to the biometric-template attacks such as the ARM; and (iii) a light-weight

privacy-preserving fingerprint authentication using AI-based classifier with a Zero-

Knowledge-Proof protocol. Each of these is discussed separately.

Chapter 2 presented a novel and comprehensive taxonomy of the current state

of privacy-preserving biometric authentication systems. This taxonomy not only

contributes to the systematic categorization of the current and emerging works in

the field but also helps visualize the trend of this field in a near future [150].

The second outcome that the thesis has achieved is the novel multilayer can-

cellable fingerprint framework, as outlined in Chapters 3 and 4. This framework
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combines two cancellable modules that are resistant to the ARM. The first module

employs a cluster-based local structure features and is transformed using the Mul-

tivariate Polynomial Transformation. The second module is an enhanced version

of the widely used MCC [24]. It is transformed using an Irreversible Order-based

Binary Encoding. The matching performed in this framework also contributes to

the performance improvements in various ways using special weight functions and

the dynamic Local Similarity Sort. In addition, the multi-filter that gives decision

based on all three measurements is another point that helps stabilize the system’s

performance.

Another outcome from this thesis is the light-weight biometric authentication

system that leverages the Artificial Intelligence classifier with the Error Codes Cor-

rection and the hash function. This system is implemented in Chapter 5. Without

the direct use of a biometric template, the user’s privacy in terms of biometric data

is not exposed to as much stake. On the other hand, as demonstrated in this work,

AI classifiers provide a reliable foundation for the ECC to correct the binary string

such that if a genuine user is present, the original binary string can be retrieved.

Last but not least, the Zero-Knowledge-Proof Protocol protects the generated secret,

making it even harder for a malicious actor to acquire.

In combination, these outcomes have contributed to providing a comprehensive

solution to the research question that underpins this thesis. At the same time,

they open up opportunities for further discoveries in the field. In the next sections,

some potential future work and research directions are suggested. These arise from

different aspects of this thesis and may provide inspiration for future researchers in

this field.
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6.3 Potential Future Work and Research Direc-

tions

In the course of this research, several potential avenues for future research have

become apparent. These are pathways that the researcher might explore, but are

also opened to the wider research community.

The first aspect of future work is to more completely explore the ARM and similar

classes of attacks to biometric systems. A greater understanding of the ARM and

similar classes of attacks in more detail can provide a greater understanding of the

threat. Biometric-specific attacks are an emerging research area, and understand-

ing these in greater detail will provide greater safety and increase the strength of

future biometric implementations. This may be in the form of testing harnesses and

regimes, for example.

As outlined in Chapter 2, there are several potential areas of biometrics that are

yet to be explored. For example, there are techniques that are being used in some

biometrics that may be applicable to others, but the community has yet to test and

evaluate. This includes the limited number of applications of privacy mechanisms

on behavioral biometrics, or on new biometrics, especially the EEG. Beside these,

the emergence of blockchain with its decentralized characteristic potentially provides

new pathways for biometric authentication and biometric template security.

Although stated in Chapter 4 that there have not been any systematic way to

launch the pre-image attack on the EMCC module, it is necessary to either formally

prove that this module is resistant to such an attack or find the mathematical way

to successfully launch this attack onto the module. This is a necessary research task

to complete for the research community to ensure that a defense mechanism is to

be found before a biometric template is compromised with this attack.

There are also potential improvements that can be made to the processes and

algorithms used. In Chapter 4, the cell values of the original MCC vector play a

crucial role in determining the recognition performance of EMCC. If the distribu-
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tion of these cell values for each fingerprint can be modeled, it is very likely that

the performance of EMCC would be improved. In addition, the proposed DLSS

algorithm has shown that if as the similarity between a pair of local structures is

chosen carefully and correctly, even the low-score pairs can contribute to the process

of recognizing the corresponding local structures. A dynamic implementation of the

Local Similarity Assignment (LSA) is expected to bring a competitive performance.

These would lead to the overall improvement of the framework.

• The MPT is a powerful nonlinear transformation that is resistant against the

ARM. However, there are some optimization issues that need addressing: the

KNN-MPT module of the framework presented in Chapter 4 stores the trans-

formed biometric template as a vector of big decimals. This could lead to the

use of a great amount of computational resources, hindering the applicabil-

ity of the framework in portable devices or constraint-restricted environment.

Besides, if the degree of the multivariate polynomial is too high, the time to

perform calculation and the amount of memory consumed are high as well. It

is necessary to find an optimal degree that balances the security and the time

and memory complexity.

• The two transformations are designed for the cancellable biometric template.

However, biocryptosystem is also found to be vulnerable to the ARM. There-

fore, a solution for the defense of biocryptosystem-based methods against this

kind of attack needs to be devised.

• The use of block-based ECC (especially the Reed-Solomon Codes) in biomet-

rics involves the storage of the parity bits, which are generated based on the

original biometric data. To our knowledge, no research has been dedicated to

evaluate the entropy of these parity bits and the feasibility of retrieving the

original data from these parity bits.

The research in Chapter 4 has been successfully simulated. With tuning, the

algorithms demonstrated here could be implemented and validated for deployment
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into mobile phones, smart devices, and security implementations. There is future

development work required to transition this from research to a robust implemen-

tation. However, this implementation would benefit the community as well as the

commercial providers of the biometric authentication systems due to the secure and

stable performance of the framework. This aspect of the future work is less about

providing research outcomes, but instead about translating these outcomes into im-

plementable libraries for wider dissemination. Software engineering skills will be

required to achieve this.

6.4 Summary

This research thesis has successfully explored and answered the question How can

we develop biometric authentication frameworks that can address major security and

privacy threats while retaining a good authentication performance? From the above

analysis, the research question has successfully been answered. It is possible for

biometric frameworks to mitigate the current threats to security and privacy in this

space. This has been evidenced by the development of two different approaches that

are able to do this.

The first of these proposed two irreversible transformations in conjunction with

a multi-filter cancellable template framework. This was found to be capable of

defending against the current classes of biometric-specific attacks. The second of

these is a novel, light-weight biometric authentication that utilizes the power of AI

with high performance is embedded in a ZKP Protocol to be ready for use in a

subsequent cryptography-based security system.

The field of biometric identification is currently moving rapidly, and will need

to expand as new threats in this space occur. The proliferation of biometrics for

authentication has seen an increase in global security due to their robust nature,

but we must remain vigilant to the emerging threats in space.
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