
Sensitivity of net ecosystem exchange and heterotrophic
respiration to parameterization uncertainty

Author:
Exbrayat, J; Pitman, Andrew; Abramowitz, Gabriel; Wang, Y

Publication details:
Journal of Geophysical Research: Atmospheres
v. 118
Chapter No. 4
pp. 1640-1651

Publication Date:
2013

Publisher DOI:
http://dx.doi.org/10.1029/2012JD018122

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/53697 in https://
unsworks.unsw.edu.au on 2024-04-17

http://dx.doi.org/http://dx.doi.org/10.1029/2012JD018122
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/53697
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Sensitivity of net ecosystem exchange and heterotrophic
respiration to parameterization uncertainty
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Received 16 May 2012; revised 30 October 2012; accepted 2 November 2012; published 25 February 2013.

[1] We examine the uncertainty in net ecosystem exchange due to the model treatment of
heterotrophic respiration in a variety of hydroclimatic conditions using a land surface
model. Multiple soil temperature-respiration functions and soil moisture-respiration
functions are incorporated into the Carnegie-Ames-Stanford Approach with Carbon-
Nitrogen-Phosphorus (CASA-CNP) biogeochemical model coupled to the Community
Atmosphere Biosphere Land Exchange land surface model. Every possible combination of
the newly implemented functions is then used to simulate heterotrophic respiration and net
ecosystem exchange at 10 different flux towers covering a large range of global vegetation
types. Results show that a large uncertainty in the simulated net ecosystem exchange is
attributable to differences in the soil respiration parameterization. No single combination of
soil temperature and moisture-respiration functions appears to show superior performance
across all sites. Large variations in the simulated evolution of soil carbon storages
emphasize the problem that to use an observationally based soil temperature or soil
moisture response function requires a land surface model to capture the observed soil
temperature and soil moisture mean and variability correctly. Land surface models are
known to vary dramatically in their simulation of the soil moisture state and probably
in their simulation of soil temperature. Resolving how to simulate heterotrophic respiration
and net ecosystem exchange will therefore require an accurate simulation of temperature
and moisture combined with a realistic soil heterotrophic respiration parameterization,
and these cannot be developed and implemented in isolation.

Citation: Exbrayat, J.-F., A. J. Pitman, G. Abramowitz, and Y.-P. Wang (2013), Sensitivity of net ecosystem exchange and
heterotrophic respiration to parameterization uncertainty, J. Geophys. Res. Atmos., 118, 1640–1651, doi:10.1029/2012JD018122.

1. Introduction

[2] With an estimated total of 2400Gt [Batjes, 1996], the soil
is the largest terrestrial carbon pool. Understanding the interac-
tion between climate and soil carbon is therefore crucial, since
even relatively small changes in soil processes could either
contribute significantly to, or compensate for, human emissions
[Kirschbaum, 2010]. Several studies have shown that a rise in
temperature due to climate change is likely to accelerate soil
respiration processes [Cox et al., 2000; Jones et al., 2003;
Friedlingstein et al., 2006]. This positive feedback has been
predicted to contribute to the increase in atmospheric carbon
dioxide (CO2). For example, all 11 models compared by
Friedlingstein et al. [2006] showed that future climate would

likely reduce the effectiveness of the land surface to absorb
human emissions in spite of the CO2-fertilization effect.
However, differences between the projections reported by
Friedlingstein et al. [2006] illustrate the importance of
appropriately parameterizing the soil carbon-climate response
to increasing CO2 [Kirschbaum, 1995; Knorr et al., 2005;
Falloon et al., 2011] and associated global and regional climate
changes.
[3] Land surface models (LSMs) commonly simulate

heterotrophic respiration (HR) as a function of soil tempera-
ture, soil moisture, and available substrate. A large variety of
functions describing the way soil temperature and moisture
control HR is available in the literature. A significant effort
has been put into studying the effect of temperature on soil
processes based on experimental data [e.g., Kirschbaum,
1995, 2000; Bond-Lamberty and Thomson, 2010; Davidson
and Janssens, 2006] and modeling experiments [e.g., Reichstein
et al., 2005]. A recent comparative study by Falloon et al.
[2011] highlighted discrepancies in the parameterization of the
soil moisture control on HR as an important source of
uncertainty. Similarly, Chen et al. [2011] showed how the effect
of temperature on HR was sensitive to soil moisture, indicating
that these two controlling factors are closely related.
[4] In this paper, we explore the uncertainty of simulated

HR and net ecosystem exchange (NEE) arising from
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the choice of the soil temperature-respiration function
(STRF) and soil moisture-respiration function (SMRF). We
adopt a methodology similar to Falloon et al. [2011] by
implementing a large range of STRFs and SMRFs into
CASA-CNP model [Wang et al., 2010] coupled to the Com-
munity Atmosphere Biosphere Land Exchange LSM [Wang
et al., 2011], using existing published functions, and exam-
ine each possible combination of STRF and SMRF. We
use LSM driving and evaluation data measured at 10 differ-
ent sites reflecting tropical, temperate, and boreal environ-
ments. Our aim is to illustrate the uncertainty inherent in
the existing range of SMRFs and STRFs but also to deter-
mine if any of the existing functions can be excluded within
the CABLE and CASA-CNP modeling framework. We
evaluate our simulations using observed net ecosystem
exchange and estimated ecosystem respiration (RECO)
because observations of HR itself do not generally coincide
with the meteorological observations required to drive
the LSM.

2. Methodology

2.1. Data Sets Used

[5] To assess the uncertainty arising from the differences
in SMRFs and STRFs, we chose 10 flux tower sites from
the Fluxnet network (http://www.fluxnet.ornl.gov/fluxnet/
index.cfm). Required in situ meteorological drivers
including temperature, humidity, wind speed, rainfall, and
incoming solar and infrared radiation were available via
the Protocol for the Analysis of Land Surface Models Web
site (PALS; http://www.pals.unsw.edu.au) [Abramowitz,
2012]. PALS is a free online evaluation tool currently under
development at the Climate Change Research Centre of the
University of New South Wales supported by the Global
Land Atmosphere System Study (GLASS) of the World
Climate Research Program. Besides providing easy access
to meteorological forcing data sets and observations at
multiple flux towers, PALS allows registered users to upload
model outputs obtained with those data sets. Then,
automated postprocessing methods are applied to character-
ize the quality of the simulation in comparison with
observed fluxes of net radiation, latent heat, sensible heat,
surface ground heat, and net ecosystem exchange. Results
are stored online and can be made accessible to other PALS
users to allow an easy comparison of model performance.
[6] Table 1 shows the chosen sites and their vegetation

types. These 10 sites are broadly distributed geographically
and cover a large range of climatic conditions: tropical
humid (Howard Springs and Palangkaraya), hot and dry

(Audubon, Roccarespampani, Tumbarumba), temperate
humid (Cabauw, Harvard Forest, Loobos, Tharandt) and
boreal (Boreas).

2.2. Land Surface Model, CABLE, and Biogeochemical
Model, CASA-CNP

[7] The CABLE land surface model was developed by the
Commonwealth Scientific and Industrial Research Organiza-
tion (CSIRO) and is used in the Australian Community
Climate Earth System Simulator (ACCESS) (http://www.
accessimulator.org.au). CABLE is the outcome of several
decades of model development and integrates different
modules that simulate canopy processes, soil and snow,
carbon pool dynamics, and soil respiration. CABLE
performs comparatively with other LSMs in simulating
latent and sensible heat as well as CO2 fluxes at the site scale
[Abramowitz et al., 2007, 2008; Wang et al., 2011].
[8] CABLE is based on the canopy model developed by

Wang and Leuning [1998], which differentiates a single
canopy layer into sunlit and shaded leaves to calculate fluxes
of radiation, heat, water, and CO2 between each big leaf and
the atmospheric boundary layer [Kowalczyk et al., 2006].
The underlying plant turbulence model used to simulate
the micrometeorology within the canopy was developed by
Raupach et al. [1997]. The soil module solves the Richards’
equation for soil moisture in each of the six soil layers and
computes the corresponding soil temperature based on the
heat conduction equation. A three-layer snow module
describes snow accumulation, melting, and density. A
detailed description of CABLE, including equations, is
given by Wang et al. [2011].
[9] The version of CABLE we used here includes the

biogeochemical model CASA-CNP [Wang et al., 2010].
CASA-CNP has three vegetation, three litter, and three soil
pools. Autotrophic respiration includes maintenance and
growth respiration of all vegetation pools. Soil heterotrophic
respiration is the sum of respired CO2 from the decomposi-
tion of litter and soil organic matter, and decomposition rate
also depends on amount of carbon of the decomposing pool,
soil temperature, and moisture. The carbon dynamics of each
pool is modeled as a first-order kinetics. CASA-CNP can
also simulate limitations of nitrogen and phosphorus avail-
ability on C turnover processes, canopy photosynthesis,
and plant growth [Wang et al., 2010] and has recently been
used to explore the dependence of terrestrial carbon uptake
due to nitrogen and phosphorous limitation [Zhang et al.,
2011]. However, since our study only targets biophysical
controls on HR, nutrient interactions are not included. The
net ecosystem exchange (NEE) is calculated as the

Table 1. The 12 Selected Flux Tower Sites

Site Vegetation Type Latitude Longitude Country Years Key Reference

Audubon Grassland 31.59�N 110.51�W US 2003–2006 Emanuel et al. [2007]
Boreas Evergreen needleleaf 55.88�N 98.48�W Canada 1997–2004 Dunn et al. [2007]
Cabauw Grassland 51.97�N 4.93�E Netherlands 2003–2007 Gilmanov et al. [2007]
Harvard Forest Deciduous broadleaf 42.54�N 72.17�W US 1994–2002 Urbanski et al. [2007]
Howard Springs Shrub 12.49�S 131.15�E Australia 2002–2005 Chen et al. [2003]
Loobos Evergreen needleleaf 52.17�N 5.74�E Netherlands 1997–2007 Dolman et al. [2002]
Palangkaraya Evergreen broadleaf 2.35�N 114.04�E Indonesia 2002–2004 Hirano et al. [2007]
Roccarespampani Deciduous broadleaf 42.41�N 11.93�E Italy 2002–2007 Rey et al. [2002]
Tharandt Evergreen needleleaf 50.96�N 13.57�E Germany 1998–2006 Grünwald and Bernhofer [2007]
Tumbarumba Evergreen broadleaf 35.66�S 148.15�E Australia 2002–2006 Leuning et al. [2005]
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difference between the ecosystem respiration (RECO; sum
of autotrophic and heterotrophic respiration) and photosyn-
thesis. It is positive when RECO exceeds photosynthesis
and the ecosystem is a carbon source.

2.3. Soil Temperature and Moisture Response
Functions

[10] In existing LSMs, most carbon models calculate the
influence of soil moisture and soil temperature on the carbon
cycle separately at each time step. The product of these func-
tions is then used to adjust process rates during the
corresponding time step [Falloon et al., 2011]. However,
differences exist between models in the way these limita-
tions are parameterized potentially leading to large discrep-
ancies in the fluxes predicted. To explore the impact of the
differences in the STRF and SMRFs, we implemented
the six new STRFs and seven SMRFs into CASA-CNP.
The scaling functions computed in the original version of
CASA-CNP are also used, as shown in Figures 1 and 2.
We note that each of the STRFs and SMRFs used here are
represented in existing biogeochemical models (Table 2).
For further details, equations used for each STRFs and SMRFs
are summarized in Text S1 of the supporting information.
[11] The effect of soil temperature is commonly described

in the different STRFs in terms of an increase in HR for
warmer temperatures. Along the original CASA-CNP
STRF, we implemented six alternative functions (Figure 1)
based on previously published equations (Table 2 and Text
S1). Usually, while the shape remains the same, the height
of a STRF depends on the model structure in which it is
embedded (e.g., reference temperature, respiration rate in
optimal conditions). Therefore, in order to only address the
effect of shape differences between functions, we adjusted
our STRF with a multiplicative factor (Text S1 in the
supporting information) so that the area under each curve
in Figure 1 would equal the area under the curve
corresponding to the reference CASA-CNP STRF over tem-
peratures between �30�C and 50�C, which correspond to
the feasible range at nonpermanently frozen sites. The same
temperature response functions are then used at all modeled

sites as CASA-CNP only uses one STRF when applied glob-
ally. Close examination of Figure 1 shows that with tem-
peratures around 0.0�C, the STRFs differ from less than
0.05 (K1995: Kirschbaum [1995]; PnET-CN: Aber et al.
[1997]) to ~0.25 (CASA-CNP). Maximum spread is ob-
served for soil temperatures around 30�C before STRFs
meet around 40�C with values around 1.5. For temperatures
below 10�C, the CASA-CNP STRF always gives the highest
values, whereas K1995 has the highest values over the range
10�C to 40�C. The PnET-CN STRF is the most generous for
soil temperature over 40�C. It is interesting to note that over
the full range of temperatures represented in Figure 1, the dif-
ferent STRFs cross several times, e.g., K2000 [Kirschbaum,
2000] and Nitrogen Carbon Interaction Model (NCIM) [Esser
et al., 2011], revealing different changes of heterotrophic respi-
ration rates simulated for the same change in temperature.
[12] In the case of the SMRFs (Figure 2), a soil water

content below the wilting point leads in some SMRFs to
either a zero (e.g., SOILN [Jansson and Berg, 1985]) or a
low but constant scaling of HR (e.g., ISAM). Sim-Cycle’s

Figure 1. Evolution of the soil temperature-respiration
scaling factor as a function of soil temperature for the differ-
ent STRFs included in this paper.

Figure 2. Evolution of the soil moisture-respiration scaling
factor as a function of relative soil moisture for the different
SMRFs included in this paper.

Table 2. Soil Moisture-Respiration Functions (SMRFs) and Soil
Temperature-Respiration Functions (STRFs) Implemented in
CASA-CNP

Model Reference

SMRFs
Bethy Knorr [2000]
ISAM Yang et al. [2009]
LPJ Sitch et al. [2003]
Sim-Cycle Ito and Oikawa [2002]
SOILN Jansson and Berg [1985]
SWAT Arnold et al. [1998]
TRIFFID Cox [2001]
STRFs
ISAM Yang et al. [2009]
K1995 Kirschbaum [1995]
K2000 Kirschbaum [2000]
LPJ Sitch et al. [2003]
NCIM Esser et al. [2011]
PnET-CN Aber et al. [1997]
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SMRF [Ito and Oikawa, 2002] increases from a perfectly
dry soil rapidly to wilting point; SWAT [Arnold et al.,
1998] and LPJ increase linearly with soil moisture toward
wilting point. Thus, at wilting point, the range in the SMRFs
is from 0.0 (SOILN) to ~0.6 (Sim-Cycle). Similarly, some
models indicate that optimal conditions are met at saturation,
e.g., Bethy [Knorr, 2000], LPJ [Sitch et al., 2003], and
ISAM, whereas other parameterizations do not consider
saturated soils as being optimal, e.g., Sim-Cycle, SOILN, and
TRIFFID [Cox, 2001]. Thus, at saturation, SMRFs vary from
as low as 0.2 (SOILN, Sim-Cycle) to as high as 1.0 (SWAT,
LPJ, Bethy, ISAM), while TRIFFID uses a value 0.7.

2.4. Experimental Design

[13] The original CABLE model was initialized following
Wang et al. [2011]. A spin-up process reused the in situ
meteorological input for each site shown in Table 1 until
the maximum difference between simulated soil temperature
and soil moisture was less than 0.001�C and 0.001m3 water/
m3 soil at the same time step in two consecutive runs. This
quasi-steady state ensures that the choice of initial soil phys-
ical conditions does not affect the simulated HR or NEE.
Since the implemented functions only affect the carbon
balance, we set the initial conditions of soil moisture,
temperature, and canopy water content equal to their final
value in the spin-up period for each simulation at each site.
Then, the CASA-CNP soil carbon pools were initialized to
quasi-steady state by running the original biogeochemical
module (i.e., with CASA-CNP response functions) with
previously equilibrated soil moisture and soil temperature
calculated by CABLE over 10,000 loops of available
meteorology at each site. Finally, these equilibrated carbon
pools were set as initial conditions for all the possible
combinations of the eight SMRFs and seven STRFs used
to simulate each site over the time periods indicated in
Table 1. This resulted in a total of 56 simulations per site
between which only the response functions varied. In each
case, site-specific International Geosphere and Biosphere
Program vegetation type [Loveland et al., 2000], canopy
height, and reference heights were used, while soil types
were obtained from CABLE’s default grid of soil types,
based on Zobler [1999]. These correspond to values
typically used by CABLE and CASA-CNP when run
globally [Wang et al., 2011, Zhang et al., 2011]. Parameter
sets derived from global data are not calibrated to force
CABLE or CASA-CNP to match site-specific observations
as we want to mimic the application of these new functions
in a climate model framework. Flux tower data are used in
an informative manner to place our study in the idealized
case where the surrounding climate model would predict
unbiased meteorological variables. Furthermore, Abramowitz
[2005] and Abramowitz et al. [2007] demonstrated that the
improvement in modeling skill achieved following parameter
optimization was relatively small in comparison with model
errors in LSMs.

3. Results

[14] Figure 3 shows the averaged seasonal cycle for the 10
sites (Table 1) for simulated heterotrophic respiration (HR,
mmolm�2 s�1). First, note that the original CASA-CNP
model run (in blue in Figure 3) is always well bracketed

by the other alternatives (in gray). However, while all
parameterizations agree on the broad pattern of seasonal
variation of HR, they differ significantly on the amplitude
of seasonal variation. This is especially true at temperate
sites where monthly average HR rate can differ by up to
5mmolm�2 s�1 (e.g., Harvard Forest and Tharandt). On
the other hand, these differences are less pronounced in trop-
ical sites where the main difference between model versions
can be largely explained by the baseline rate of HR at a
given soil temperature and moisture, a key parameter in all
models (e.g., Howard Springs).
[15] These large differences in simulated HR propagate in

the calculation of RECO as shown in Figure 4. The default
version of CASA-CNP (blue in Figure 4) captures the
seasonal variation in RECO at Audubon, Boreas, Cabauw,
Loobos, Tharandt, and Tumbarumba within 2 mmolm�2 s�1

each month of the year. The default version is less skillful at
Harvard Forest, especially between June and September
when model bias is greater than 3 mmolm�2 s�1, but key
aspects of the seasonal cycle are still captured. Summer
months at Roccarespampani exhibit a bias of up to 4 mmol
m�2 s�1 despite the default version of CASA-CNP being
skillful at RECO prediction from January to May and from
October to December. The modeled RECO by CASA-CNP
reaches a maximum in July, while the observed RECO in
July was lower than that in spring or autumn months,
possibly as a result of summer water stress. The weakest
simulations are at the two tropical sites, Howard Springs
and Palangkaraya, where RECO (Figure 4) is always under-
estimated throughout the year.
[16] Alternative parameterizations of HR provide a first-

order uncertainty range of simulated RECO that brackets
the observations at Cabauw, Tharandt, and Tumbarumba
all year round (Figure 4). While this is not the case at
Audubon, Boreas, Harvard Forest, and Loobos, the discrep-
ancy is less than 1 mmolm�2 s�1. In the summer months at
Roccarespampani and throughout the year at Howard
Springs and Palangkaraya, all parameterizations fail to
capture the broad seasonal patterns of RECO.
[17] Figure 5 presents the annual cycle of simulated NEE. In

a similar result to the RECO simulations (Figure 4), the uncer-
tainty range of simulated NEE brackets the flux tower data at
Audubon, Boreas, Cabauw, Loobos, and Tumbarumba almost
all year round, while a difference of at least 2mmolm�2 s�1 is
observed between flux tower data and NEE at Harvard Forest
and Roccarespampani during the Northern Hemisphere
summer. All simulations fail to capture NEE at Tharandt and
the two tropical sites (Howard Springs and Palangkaraya).
However, even at sites where simulations seem acceptable,
there is no globally best model parameterization, with different
approaches (gray curves in Figure 5) matching observations
(black curve in Figure 5) in different seasons.
[18] Among the existing functions tested here, the perfor-

mance of CASA-CNP in simulating HR and in turn RECO
and NEE clearly depends on the choice of the parameteriza-
tion of these biophysical controls on HR. However, the
effect of different STRFs on HR also depends on the varia-
tion of soil temperature. The absolute differences are smal-
lest at cold soil temperatures and at around 40�C as
indicated in Figure 1. Figure 6 shows the temperature-
dependent respiration rate adjustment used in the calculation
of HR (a rescaled version of Figure 1) along with probability
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density functions of soil temperatures simulated by CABLE
for each site (in gray). Adjustment values are represented as
a function of the maximum value achieved by any of the
STRFs at the temperature indicated on the x axis. The actual
soil temperatures simulated by CABLE are insensitive to the
choice of parameterization in CASA-CNP. The range and
density of temperatures are critical as they determine which
parts of each STRF are active at each site. For example, at
the Boreas site, all soil temperatures lie in the range of soil
temperature functional space that produce low adjustment
values (Figure 1), but the lowest STRF always has a value
less than or equal to 30% of the highest STRF over the

relevant temperature space (Figure 6). At the other extreme,
for warmer sites such as Palangkaraya and Howard Springs,
while all soil temperature values lie in the range of soil
temperature functional space that results in high adjustment
values, the relative range of temperature respiration adjust-
ments is narrower, with the lowest STRF being always
greater than 30% of the highest one. Hence, Figure 5 shows
less variation in HR at Howard Springs and Palangkaraya
than at Boreas because it matters less which temperature
adjustment function is used at those sites. In between are tem-
perate sites where some soil temperature values lie within the
range where they trigger very large relative differences in the

Figure 3. Seasonal simulated heterotrophic respiration (mmolm�2 s�1). The default version of CASA-
CNP is in blue. All alternative combinations of a STRF and a SMRF are in gray.
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temperature adjustment, but a significant fraction of temperatures
lie within a range of soil temperature where the absolute differ-
ences among the different STRFs is small (e.g., at Tharandt
where the most frequent soil temperature is around 0�C).
[19] Figure 7 shows the soil moisture adjustment (as in

Figure 2) expressed as a fraction of the maximum value
obtained by any of the SMRF for each moisture content
value, along with the distribution of actual soil moisture
values simulated by CABLE. As in Figure 6, a value of 1
is assigned to a SMRF if it is greater than all the others for

a particular moisture value. The shaded area represents the
probability density function of the soil moisture as simulated
by CABLE and used by CASA-CNP. As with temperature,
these soil moistures are insensitive to the choice of STRFs
and SMRFs, and only the default values are shown. The
SMRFs are more diverse than the temperature dependencies
and, except for CASA-CNP and Sim-Cycle, are usually
composed of several linear segments meeting at sharp
angles. There is some interesting behavior: note that the
shape of the functional form for the SMRF can be

Figure 4. As in Figure 3 but for ecosystem respiration (mmolm�2 s�1), with observations in black. The
default version of CASA-CNP is identified in blue, and simulations using the alternative parameterizations
are in gray.
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logarithmically increasing from 0.0 (Sim-Cycle), linearly
increasing (LPJ, Bethy), or zero (CASA-CNP, SOILN) to
a threshold value corresponding to the water content at
wilting point (0.3 at Audubon, 0.6 at Palangkaraya, and
0.2 at Howard Springs). However, Figure 7 shows that for
soil moisture computed by CABLE at these sites, this is an
unnecessary complexity because the soil moisture values
never drop into this range. The various SMRFs are generally
different by at least 0.4 and commonly by 0.5 in the range
where soil moisture occurs (Figure 2), which translates to
the lowest SMRF generally having half the value of the
highest one. However, at Boreas, since saturated conditions

are simulated most of the time, this relative difference leads
to a factor 4 difference between the most generous (Bethy
and SWAT) and the most constraining functions (CASA-
CNP, Sim-Cycle, and SOILN). This is consistent with the
roughly fourfold difference between lowest and highest
mean monthly respiration rates shown in Figure 3.

4. Discussion and Conclusions

[20] The simulation of the terrestrial carbon budget is one of
the key purposes of many terrestrial models. Belowground car-
bon is strongly affected by HR, which is parameterized in

Figure 5. As in Figure 4, but for net ecosystem exchange (mmolm�2 s�1). Negative values indicate that
the ecosystem is a net carbon sink, while positive values indicate a net carbon source.
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terrestrial models using a temperature function to accelerate HR
as temperature increases and a moisture function that initially
increases HR as the soil becomes wetter and then maintains or
reduces HR in very wet conditions. These functions depend
on the soil moisture and temperature simulated by the terrestrial
model. Capturing HR well in a terrestrial model is important in
simulating NEE, but it is also a key to understanding how the
land-based sinks of CO2 might change in the future. Will sinks
be maintained, increase, or decrease?

[21] We have tested all possible combinations of eight
SMRFs and seven STRFs within a single biogeochemical
model coupled to a LSM, assuming idealized conditions in
which both meteorology and initial conditions would be
known. Depending on how we parameterize these functions,
very large differences can be simulated in NEE at 10 different
sites. Differences in flux results presented in Figures 3, 4, and
5 lead to variations in soil carbon content ranging from a loss
of around 800 gCm�2 yr�1 to a gain of 400gCm�2 yr�1 while

Figure 6. Relative value of each STRF compared to the maximum value at each temperature. STRF with
a value of 1 is the maximum for this specific temperature. The shaded area is the probability density func-
tion (arbitrary units) of the soil temperature simulated by CABLE.
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using the same initial conditions, as illustrated in Figure 8.
We have shown that the default version of CASA-CNP
implemented functions for the temperature and moisture depen-
dencies of HR that seem at least as plausible as many of the
alternative functions (Figures 1 and 2). However, even though
the alternative parameterizations all provide a ratio of HR to
RECO in agreement with reported values [Davidson et al.,
2006], the impact of differences between STRFs and SMRFs
was not only clear in the simulation of HR (Figure 5) but could
also be identified when summed with other C fluxes in NEE

(Figure 3). At temperate and cold sites, those differences create
a spread of seasonal variability of NEE that generally bracket
observations, while all model versions fail by up to several
mmolm�2 s�1 in tropical conditions, possibly due to a
mismatch between the assumed equilibrium and actual initial
conditions at those sites. Further research in that direction is
currently undertaken to improve the evaluation of the sensitivity
of high-frequency fluxes modeling to the initial carbon pools
in the CASA-CNP model. Nevertheless, net differences in
soil C content of up to 1200gCm�2 yr�1 were simulated

Figure 7. Relative value of each SMRF compared to the maximum value at each soil moisture content.
SMRF with a value of 1 is the maximum for this specific moisture content. The shaded area is the prob-
ability density function (arbitrary units) of the soil moisture simulated by CABLE.
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under the same driving conditions at all stations (Figure 8).
This wide range of possible evolution pathways of soil
C storages is consistent with global-scale results from
Friedlingstein et al. [2006] or Falloon et al. [2011], for
example.
[22] Resolving the representation of STRF and SMRF in

LSMs is therefore likely to prove particularly challenging.
First, observationally based analyses of HR response to soil
temperature [e.g., Kirschbaum, 2000, 2010] may provide
insight as to the shape of the STRF at many sites, but our
results (e.g., Figures 3 and 4) suggest that there are places
where all STRFs struggle, likely under very warm condi-
tions which are usually out of range of observational data
sets. Developing ways to scale location-specific STRFs to
be representative of large spatial areas for LSMs coupled
to climate models is a major challenge, but at least the
temperature simulated by LSMs in the root zone is based
on reasonably well-known physics. In contrast, the soil
moisture simulated by LSMs is known to be highly model
dependent [Koster et al., 2009]. In Figure 3 of Koster et al.
[2009], time series of simulated soil moisture for five regions
are shown for seven LSMs. Over Europe, the degree of
saturation simulated by the models vary from 0.4 to 0.8 in
summer; over the Amazon, they vary from 0.7 to 1.0, and
over the southern United States they vary in spring and early
summer from 0.6 to 1.0. These LSM-specific ranges,
mapped onto Figure 7, lead to very different moisture adjust-
ments even if the form of the SMRF was known. Quoting
Koster et al. [2009], “the soil moisture state simulated by a
land surface model is a highly model-dependent quantity,
meaning that the direct transfer of one model’s soil moisture
into another can lead to a fundamental, and potentially
detrimental, inconsistency.” It follows that a given SMRF
will lead to very large differences in the calculation of HR
between different LSMs because the “operating range” of
soil moisture within LSMs varies.

[23] Our results therefore have a worrying implication. To
represent HR well requires a suitable STRF and SMRF to be
used. However, the impact of that function is intimately
connected with the skill of the LSM to simulate the associ-
ated temperatures and soil moistures. Soil moisture has
typically been seen as a quantity that can be model depen-
dent, a quantity that needs to reach a model-specific state
that enables transpiration and soil evaporation to be accu-
rately simulated. Until standardized observations at flux
stations are routinely available with coincident soil tempera-
ture and soil moisture observations, taken over the root zone,
it seems unlikely that this will be resolvable. We did explore
evaluating CABLE’s soil moisture and soil temperature
simulations using observations at the 10 sites (results not
shown), but this proved very challenging due to gaps in
the data, inconsistent measurement depths, few measure-
ments below 0.0�C, and some extremely peculiar tempera-
ture and moisture observations at some sites. There are
simply too few sites with the forcing data required by
CABLE, combined with robust measurements of NEE and
RECO needed to evaluate CASA-CNP, coincident with
observed soil temperature and moisture over the root zone
to constrain the model at this time. We also note that there
is an implicit assumption that we can choose a STRF based
on how well a LSM captures observed NEE, an assumption
that needs to be treated carefully because compensations or
amplifications of errors in the simulation of the different
fluxes respiration and photosynthesis fluxes can provide a
good NEE for the wrong reason. For example, while RECO
simulations at Palangkaraya are clearly inconsistent with
observations, with a bias always greater than 2 (Figure 4),
the corresponding NEE simulations bracket the flux tower
data almost all year round (Figure 5). Conversely, the RECO
simulated at Tharandt by the alternative parameterizations
(Figure 4) correctly brackets the observational data, but the
corresponding NEE simulations fail to do so with flux tower
data (Figure 5). RECO is always underestimated at Howard
Springs (Figure 4), but NEE is always overestimated at the
same site (Figure 5).
[24] Finally, obtaining generalized STRFs and SMRFs

suitable for the large spatial scales used in climate models
is even more challenging. These functions use observed soil
temperatures and observed soil moisture with the associated
heterotrophic respiration rates. The LSMs use observed solar
radiation, infrared radiation, air temperature, rainfall, and
specific humidity to simulate soil temperature and soil mois-
ture. In the case of soil temperature, existing theory allows
land surface models to capture heat diffusion reasonably
well. However, no similar theory for soil moisture exists,
meaning land surface models simulate a soil moisture state
that is model specific. Soil moisture varies to support land
surface models capturing observed latent heat fluxes and
the surface energy balance and as a consequence is not
necessarily similar to something that might be observed
and called soil moisture. Thus, a “perfect” SMRF implemen-
ted into different land surface models would lead to different
rates of heterotrophic respiration.
[25] We have shown that the form of the STRFs and

SMRFs proposed in the literature vary dramatically, and
these lead to major differences in how CASA-CNP simu-
lates heterotrophic respiration. As a consequence, large
differences in ecosystem respiration and hence net

Figure 8. Mean annual change in the soil carbon storage
at each station as simulated by each of the alternative parame-
terizations of soil respiration (Au: Audubon, Bo: Boreas,
Ca: Cabauw, Ha: Harvard Forest, Ho: Howard Springs,
Lo: Loobos, Pa: Palangkaraya, Ro: Roccarespampani, Th:
Tharandt, Tu: Tumbarumba). Positive values indicate an
increase in soil carbon content (i.e., sink), while negative
values correspond to a depletion in soil carbon (i.e., source).
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ecosystem exchange are also simulated. Of course we could
have relied on optimization techniques to adjust the response
functions to local conditions. For example, Bauer et al.
[2012] demonstrated that optimizing the shape of different
response functions at a single site led to an almost perfect
overlap of the curves over the corresponding ranges of
temperature and moisture. These locally optimal responses
indicate that regional parameterizations of STRF and SMRF
would probably be more suited than global ones. Still, the
curves diverge dramatically once outside of the relevant
range, introducing a large uncertainty when it comes to
study the effect of changing conditions like climate change.
Other recent studies have examined the robustness of
calibrated models by studying their transferability in both
space and time. For example, Kuppel et al. [2012] calibrated
their model for a specific biome type (broadleaf forest) using
alternatively single-site and multisite data streams. They
showed that a global multisite optimization often provided
as good a simulation as the individual single-site optimiza-
tions while narrowing the posterior distribution of the
parameters. Similarly, Keenan et al. [2012] showed that
the uncertainty in future projections of carbon uptake at the
Harvard Forest site could be reduced by assimilating data
streams at different time resolution. However, by confront-
ing their simulations with transient historical conditions,
they showed that time-invariant parameter values are not
transferable if key processes are misrepresented, or missing,
in the model structure. Care has to be taken therefore when
using these automated methods as an apparently good
simulation may just be the result of an overfitting procedure
that compensates the parameterization inadequacy.
[26] Resolving the form of the STRF and SMRF requires

coincident observation at several locations of the following:
the meteorological forcing required to simulate land surface
fluxes; soil temperature and moisture; heterotrophic respira-
tion; and net ecosystem exchange. The lack of availability of
such complete data sets at multiple locations limits our
capacity to resolve uncertainty in how to model heterotro-
phic respiration in land surface models, and Fluxnet data
alone remain insufficient to thoroughly evaluate complex
models [Keenan et al., 2012]. This fits in a stream of emerg-
ing critical research directions [Treseder et al., 2012] such as
the uncertainty in the way nutrient availability regulates the
carbon cycle, the adaptation of microbial biota and activity
distribution to changes in short-term (e.g., rewetting pulses)
to long-term (e.g., global warming) conditions [Evans and
Wallenstein, 2012; Wallenstein and Hall, 2012], or simply
the correctness of the representation of the soil carbon cycle
in coupled models [Todd-Brown et al., 2012]. All are
required to resolve beforehand whether soil carbon stores
will increase, decrease, or remain the same under future
climate change.
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