
Episodic Memory for Cognitive Robots in Dynamic,
Unstructured Environments

Author:
Flanagan, Colm

Publication Date:
2022

DOI:
https://doi.org/10.26190/unsworks/2004

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/100094 in https://
unsworks.unsw.edu.au on 2024-04-20

http://dx.doi.org/https://doi.org/10.26190/unsworks/2004
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/100094
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Episodic Memory for Cognitive Robots in
Dynamic, Unstructured Environments

Colm Flanagan

February 17, 2022

Supervisor: Prof. Claude Sammut
Co-supervisor: Dr. Bernhard Hengst

School of Computer Science Engineering
Faculty of Engineering

UNSW

Acknowledgements

I would like to thank my supervisor Prof. Claude Sammut whose expertise
helped to formulate a topic of research and establish the relevant method-
ologies that have resulted in the work presented here today. I would also
like to thank Dr. David Rajaratnam who has provided consistent support
and feedback and who co-authored the work on topological mapping that
is an integral part of this thesis. Without this feedback and the many a
Friday evening drink it would have been a decidedly different experience!

Prof. Paul Compton has provided invaluable feedback on the research
relating to Ripple Down Rules and Dr. Bernhard Hengst was very helpful
in providing feedback on a number of the chapters in this dissertation on I
would like to thank them for this.

Considerable work has been done by the UNSW@Home robotics team.
Without this work it would not have been possible to test and evaluate a lot
of the research that we have conducted over the course of this dissertation.
In particular I would like to thank Germán Castro, Peter Kidd, Oliver
Richards, Stathi Weir and Joshua Goncalves.

Finally I would like to thank my parents Peter and Molly Flanagan for
continually supporting me over the last number of years and to my Grand-
father Séamus Ó hÚallacháin who has provided considerable feedback that
has helped develop my writing style throughout this PhD.

ii

Algorithm Structure

For the purpose of this thesis we have our own format for algorithms.
The main body of each algorithm contains numbered lines, with the initial
call to the algorithm appearing directly before line 1. In the header, we
have inputs and comments. The numbered lines next to each comment
correspond to the line in the algorithm that the comment refers to. The
inputs to the algorithm are defined at the very top. An example is shown
below.

Calls to other methods will be highlighted in bold and class or structure
member variables will be in italics succeeding a period.

Algorithm 1 algorithmExample: An example of our algorithm struc-
ture
Input: someInput
Comments:
1: This is a comment referring to line 1 of this algorithm
2: Call some other algorithm named callSomeFunction
3: Here we access the class member variable, var
algorithmExample(someInput)

1: line1 : See comment above for clarity
2: callSomeFunction()
3: instanceOfClass.var

iii

Abstract

Elements from cognitive psychology have been applied in a variety of ways
to artificial intelligence. One of the lesser studied areas is in how episodic
memory can assist learning in cognitive robots. In this dissertation, we
investigate how episodic memories can assist a cognitive robot in learning
which behaviours are suited to different contexts. We demonstrate the
learning system in a domestic robot designed to assist human occupants of
a house.

People are generally good at anticipating the intentions of others. When
around people that we are familiar with, we can predict what they are likely
to do next, based on what we have observed them doing before. Our ability
to record and recall different types of events that we know are relevant to
those types of events is one reason our cognition is so powerful. For a
robot to assist rather than hinder a person, artificial agents too require
this functionality.

This work makes three main contributions. Since episodic memory requires
context, we first propose a novel approach to segmenting a metric map into
a collection of rooms and corridors. Our approach is based on identify-
ing critical points on a Generalised Voronoi Diagram and creating regions
around these critical points. Our results show state of the art accuracy
with 98% precision and 96% recall.

Our second contribution is our approach to event recall in episodic memory.
We take a novel approach in which events in memory are typed and a unique
recall policy is learned for each type of event. These policies are learned
incrementally, using only information presented to the agent and without
any need to take that agent off line. Ripple Down Rules provide a suitable
learning mechanism. Our results show that when trained appropriately we
achieve a near perfect recall of episodes that match to an observation.

Finally we propose a novel approach to how recall policies are trained.
Commonly an RDR policy is trained using a human guide where the in-
structor has the option to discard information that is irrelevant to the
situation. However, we show that by using Inductive Logic Programming
it is possible to train a recall policy for a given type of event after only a
few observations of that type of event.

Contents

1 Introduction 1

1.1 Overview of the Research . 1

1.2 Motivation and Significance of the Research 3

1.2.1 The Falling Glass Problem 5

1.2.2 A Friend Coming to Visit 6

1.3 Overview of Method . 7

1.4 Conclusion . 11

2 Literature Review 14

2.1 Episodic Memory and Natural Language 14

2.2 Topological Mapping . 16

2.2.1 Building Topological Maps 17

2.2.2 Room Segmentation 19

2.2.3 Semantic Mapping 21

2.2.4 Maintaining a World Model 22

2.2.5 Conclusion to Topological Mapping 26

2.3 Spatial Reasoning . 28

2.3.1 Conclusion to Spatial Reasoning 35

i

2.4 Temporal Reasoning . 36

2.4.1 Conclusion to Temporal Reasoning 37

2.5 Episodic Memory . 37

2.5.1 Case Based Reasoning 47

2.5.1.1 Never Ending Learning 50

2.5.2 Plan Recognition . 53

3 Topological Mapping 56

3.0.1 Statement of Acknowledgement 56

3.1 Introduction . 56

3.2 Methodology . 59

3.2.1 The Brushfire Algorithm 60

3.2.2 Cleaning the Occupancy Map 65

3.2.3 Creating the Generalised Voronoi Diagram 67

3.2.4 Selecting Critical Points 68

3.2.5 Creating Regions . 72

3.2.6 Merging Regions . 77

3.3 Conclusion . 80

4 Creating and Retrieving Events in Episodic Memory 82

4.1 Introduction . 82

4.2 Creating Events in Episodic Memory 85

4.2.1 Event Representation 85

4.2.2 Frames . 90

4.2.3 Generic frames Used in Event Representation 92

ii

4.2.4 Creating New Types of Events 94

4.3 Ripple Down Rules . 106

4.3.1 Ripple Down Rules as Event Recall Policies 114

4.4 Event Retrieval . 116

4.4.1 Recall Policies for Common Generic Frames 116

4.4.2 Distinguishing Between Episodic and Semantic Mem-
ories . 119

4.4.3 Event Recall Using Ripple Down Rules 120

4.4.3.1 The Retrieval Pipeline 121

4.4.3.2 The Difference Between Critical and Non-
critical Actions 121

4.4.3.3 What Are Critical States and How Are They
Arranged in a Hierarchy 127

4.4.3.4 When Should an Agent Recall or Create an
Event . 130

4.5 Conclusion to Event Retrieval 144

5 Training Recall Policies 147

5.1 Introduction . 147

5.2 Training Policies . 148

5.2.1 Training Policies Through Human Guidance 149

5.2.1.1 Manual Training of Episodic Recall Policies 152

5.2.2 Training Policies by Induction 161

5.2.3 Adopting a Hybrid Training Model 161

5.2.4 Fully Automated Approach to Updating Policies for
Event Recall . 165

5.3 Conclusion . 174

iii

6 Evaluation and Results 176

6.1 Topological Mapping Evaluation and Results 176

6.1.1 Evaluation Metrics 177

6.1.2 Results . 178

6.2 Event Recall Results . 181

6.2.1 Creating Data Sets 183

6.2.2 Synthesising a Training and Testing Set 187

6.2.2.1 Pre-defining Recall Policies 187

6.2.2.2 Rules for Generic Frames 188

6.2.3 Results . 195

6.2.3.1 Event Sub-class Results 196

6.2.3.2 The Effect of Critical Actions 205

6.2.4 Discussion . 206

7 Conclusion 208

7.0.1 Thesis Summary . 208

7.0.2 Research Comparison 210

7.0.3 Extensions and Future Work 211

Bibliography 213

.1 Topological Map Results Extended 230

Chapter 1

Introduction

1.1 Overview of the Research

The term episodic memory was first introduced by Tulving in 1972 [1]. In

this work he distinguishes between episodic and semantic memory which he

states are both separate components of declarative memory. Episodic mem-

ory is a collection of events obtained through personal experience with both

a spatial and temporal relevance, providing a context for events. Whereas,

semantic memories are decontextualised, that is knowledge that is indepen-

dent of time and location. The aim of this work is to design and evaluate an

episodic memory architecture from the perspective of artificial intelligence.

Initially, each event will have a time and a location associated with it, as

well as the action that created the event. However, it is not necessarily the

case that that information is relevant to the event. To assist in differentiat-

ing between relevant and irrelevant information, each event is given a type,

where one type of event may have information that is different to another.

The concept of typed events is not mentioned in psychology literature on

episodic memory.

Although episodic memory is a component of declarative memory that is

agreed to exist, there is no good understanding of how episodic memories

1

are created, stored, represented or recalled. Therefore, at no point in this

dissertation do we claim to replicate human-like episodic memory or claim

that our approach more closely resembles human episodic memory than

other approaches. Rather, this research aims to design a system that has

the same functional advantages of human episodic memory, without trying

to mimic a human-like memory mechanism.

This research makes three significant contributions. We have already noted

that episodic memories are spatio-temporally relevant memories. We present

a method for discovering qualitative descriptions of the location of objects

in the environment. For example, if a person is asked where they went

on holidays they will say the name of the country or city rather than geo-

graphical co-ordinates. That is locations are grounded in symbols that can

be used to communicate information to other agents, and can be used by a

task-level planner. As our research takes place in a domestic environment,

we need a way to segment a metric map of the environment into rooms

and corridors. In Chapter 3 we propose a novel approach to topological

mapping that achieves state of the art accuracy when evaluated using a

precision and recall metric as proposed by Bormann et al [2].

The second significant contribution of our research is in how events are

recalled from memory. By distinguishing between different types of events

we are able to customise unique recall policies for each type of event. When

recalling events, many previous approaches use a nearest neighbour tech-

nique to match an observation to an event in memory. If the goals that

the agent is expected to achieve are known in advance and a finite amount

of information can be shown to the agent then this approach works very

effectively. However, in a partially observable, unstructured environment

such as a domestic environment, this may not be the case and unexpected

things can happen. An agent may need to perform an unknown number of

tasks and the types of information presented to the robot might also not be

known in advance. Thus, we require a recall policy that is able to capture

the different nature of different types of events. By separating events into

different types and assigning each type its own recall policy we can effec-

tively recall events from memory. Our results show that with this kind of

2

recall policy, after the system has been sufficiently trained, we can achieve

almost perfect recall. By this we mean that a recall policy can correctly

classify almost all instances of a sub-class of event and correctly discard

almost all instances of other sub-classes of events.

Our final contribution is in how our recall policies are trained. By using a

form of interactive machine learning, we can train our recall policies using

only information that is relevant to that type of event. Each recall policy is

represented as a Ripple Down Rule (RDR) [3, 4, 5, 6]. This means that our

policies can be trained incrementally and without the need for the agent to

be taken offline. Moreover, we learn only using information that is relevant

and so we do not waste time collecting unnecessary data.

The evaluations show that with a small number of observations of any given

type of event we can train recall policies that are capable of effectively

perfect recall. Depending on the length of an event sequence the number

of observations required to train a recall policy changes slightly. However,

we have found that the average number observations of a type of event

needed to train these policies is less than 5.

In the introduction to this thesis we provide the reader with a brief overview

of the motivation behind our research and detail each sub-discipline of ar-

tificial intelligence that is relevant to our work. In some of these disciplines

we make clear and distinct contributions while in others we are using pre-

vious work as we believe it to be complimentary to our work or work that

we believe might be complementary to extensions to our work.

1.2 Motivation and Significance of the Re-

search

Artificial intelligence is a broad field with many sub-disciplines. Our work

focuses on cognitive robots and its applications to robots operating in par-

tially observable, unstructured environments. Specifically, our research fo-

cuses on a domestic robot. Domestic environments are of interest because

3

of their variety. Each domestic environment is slightly different from ev-

ery other environment, with different layouts, structures and occupants.

Within each environment, any number of different types of events might

occur and it is important that an agent can learn from and react to these

events.

Before continuing we clarify what is meant by an unstructured environ-

ment. An unstructured environment is one that typically contains many

obstacles, the positions of which are liable to change for any reason. Due

to the dynamic nature of such environments, robots cannot rely entirely on

having complete knowledge of an environment and must continually make

adjustments to account for any changes. Consequently, many decisions are

made with a believed rather than known state-of-the-world. For the most

part, we evaluate this thesis in domestic environment settings. As domes-

tic environments have most of these properties they are unstructured in

nature.

Contrary to research that is focused on training a robot to perform a task,

this research is directed towards understanding the context in which the

task is performed, and how the context changes the requirements of the

task.

We show that by using episodic memory, where events are typed, we can

characterise the variety of context information and train the system to recall

appropriate memories for a given context. This research does attempt to

teach a robot how to perform a task, but rather on understanding and

reasoning about different contexts that indicate to an agent when a task

should be performed.

To explain why this is significant we present two examples of two different

types of events, both of which may occur in typical home environment, but

are not connected. An agent should be able to distinguish between the two

different types of events and distinguish between the types of information

relevant to each type of event. This should enable an agent to effectively

recall related past experiences and any behaviour associated with that type

of event.

4

While the environments that we refer to in this dissertation are unstruc-

tured, a robot is still equipped with a certain degree of apriori knowledge.

For example, an agent is endowed with a world knowledge that informs

the agent about the last known state of the world, the agent has a map of

the environment and a topological map where the environment has been

segmented into individual rooms and corridors. For example, in Section

1.2.1, we describe the case where a glass falls off a table. This is a type of

event that is typically in a domestic environment. However, in order for

the robot to know that the glass has changed state, it needed to know that

it was previously on the table. This information is contained within the

robot’s world model and is an example of apriori information.

1.2.1 The Falling Glass Problem

In the following example a robot witnesses a glass falling off the edge of a

table. That same robot then witnesses someone cleaning up the glass with

a brush. The first observation is the falling glass, the second observation,

which occurs at a time soon after the first observation is of someone cleaning

up the glass. How these two events are established and connected is covered

at a later stage in this dissertation. Here, we demonstrate the types of

events that an agent may need to recognise and reason about.

For an agent to recall an event in memory, it must have an understanding

of what information is relevant in the event just observed. This is the event

type’s recall policy which is a Ripple Down Rule [3]. In this example, the

robot should learn that the only information relevant to the event is that

the glass was observed falling. When recalling this type of event, the agent

does not have to consider the time, location or anything else as none of it

is relevant.

5

1.2.2 A Friend Coming to Visit

In the previous example, the agent should discard time and location as

being relevant to that type of event, as it doesn’t matter what time it is or

where it is, a cleanup generally follows.

However, time and location might be relevant for other types of events.

Consider when a friend comes to visit on a Monday morning. This might

be a ritual, one that both friends adhere to every week. In recalling this

event, the robot should not discard the time as it may be relevant. For

example, when a friend comes to visit on a Monday, the agent should make

the house occupant and their friend a cup of tea. However, if the same

friend instead comes to visit on a Friday evening, the required behaviour

might be to fetch two beers from the fridge. Thus, the agent should not

discard the time of the event in this case.

These examples demonstrate that a single retrieval mechanism or cue to

recall events from memory is not practical. Hence our motivation to learn

recall policies specialised for the type of event. In doing so, if the event

has been previously observed, we can recall that event with near perfect

accuracy and thus recall any behaviours associated with that type of event.

For example, on observing a friend visiting on Monday morning the robot

should recall this and, without prompting make two cups of tea.

As we will demonstrate, previous research in this field, such as SOAR

[7, 8, 9] or Homem et al [10], in case based reasoning, do not address

episodic recall in this way, instead attempting to fit single retrieval cues to

all cases or events. This approach is well suited to domains where agents

have a finite number of goals and actions. Our approach is intended to work

in unstructured environments where the types of events and behaviours are

not known in advance and must be learned.

While the two examples presented above did not include location, it is often

relevant to the robot’s behaviour in the home. Therefore, our research also

requires extensions to be made in topological mapping.

6

1.3 Overview of Method

In this section we give an overview of the thesis, the methods that we

employ and explain how we evaluate each contribution. In Chapter 2 we

review the work that is most relevant to our research. Chapter 3 covers

our approach to topological mapping. This approach consists of a five-stage

pipeline.

Episodic memories need context, in particular, time and location. We as-

sume that the robot has mapped its environment, which is usually done

by some form of simultaneous localisation and mapping (SLAM), produc-

ing an occupancy grid map. Phase-one of the pipeline involves removing

errors from the occupancy grid. Maps generated using SLAM are likely

to contain errors and so it is important that these errors are addressed

before we attempt to segment the environment into rooms and corridors.

We then create a Generalised Voronoi Diagram (GVD) by re-implementing

an approach proposed by Lau et al [11]. From the GVD, we identify spe-

cific nodes that are considered to be critical points. Ideally, these critical

points would be doorway points but as will become clear, in cluttered en-

vironments, often other points are misinterpreted as being doorway points.

Regions are then created around these critical points as detailed in Section

3.2.5. In an ideal environment, these regions would represent entire rooms

and corridors, however as we have already stated, clutter in the environment

often leads to additional critical points being selected and thus, additional

regions being created that are not rooms or corridors. To account for this

we merge regions that are part of the same room or corridor.

We evaluate our approach using the precision and recall metric proposed

by Bormann et al [2]. This is considered the standard metric to evaluate

approaches to topological mapping. We achieve state of the art accuracy

with 98% precision and 96% recall, which, to the best of our knowledge,

are the most accurate results to date.

In Chapter 4, we explain how events are created and recalled from memory.

Our hypothesis is that different types of events have different types of infor-

7

mation that are relevant to them and thus require different recall policies.

Recall policies are learned incrementally and, without any need to take the

agent offline. We use Ripple Down Rules (RDR) [3, 4, 5, 6] to learn recall

policies as they can be learned incrementally through interaction with the

human occupant, who acts as a trainer.

We construct individual recall policies for each type of event. This means

that when an agent attempts to recall an event from memory, it does so

considering only the information that has proven to be relevant to that

type of event. A recall policy is attached to the generic representation of

an event, where its purpose is to establish if an observation is an instance

of that type of event.

An event is created when the agent observes a sequence of related actions,

which we refer to as a critical action. A critical action is an action that

has a significant effect on the environment. Depending on the domain,

what is considered significant can change. It is also likely that there are

several states that are considered to be significant. For example, having

broken glass on the floor is a significant state because a person might hurt

themselves. Therefore, an action whose effect is that broken glass is on the

floor is considered a critical action and thus, a new event is created.

On creating a new event, we use the policies assigned to the event types

already in memory to try to establish if what we have observed is a new

type of event or if it is an instance of an event type already in memory and

consequently recall that type of event from memory. If the observation is

a new type of event then we create a new event type.

Figure 1.1 provides a very high-level overview of the individual components

of this thesis that are most relevant. Components highlighted in blue are

novel contributions of this thesis and respectively make up a chapter each.

8

Figure 1.1: The components of the thesis. Components are represented
by circles and connections between components are shown through arrows.
A bi-directional arrow indicates a service call. For example, the when an
event is written to the episodic data base it is then sent to the training
module, the policy for that type of event is updated and sent back to the
data base. Components in blue are novel contributions. If a component is a
sub-module of another component then it is shown inside that component.
For example, a topological map is a sub-module of a world model.

Our evaluation is in a simulated domain. There are a number of reasons

for choosing to evaluate in simulation.. The main reason is that we can

collect much larger data sets than is possible using the physical robot. In

our simulation, we collect a database of different types of events. Events

are represented by frames that contain information including, for example,

time and location, which are also represented as frames. Each generic

frame is given its own matching or recall policy that indicates when a new

observation is an instance of that type of frame. Thus, it is not only events

that are assigned recall policies but all types of frames.

We collect nearly 50 different types of events and, for each event type, we

collect over 300 different examples. For each type of event we synthesise

instances of that type and also synthesise instances of the other frame types

that each event is constructed from. This will become clear in Section 6.2.

9

We evaluate event recall as follows. A synthetic data set is constructed

from hand-crafted recall policies for each type of frame. The aim is for the

learning system to reverse engineer the policies from examples randomly

generated from the hand-crafted policies. For each type of event we have

approximately 375 synthesised instances of that type. Each instance con-

tains different information, as it is randomly generated, making the data set

highly varied. As noted, the purpose of the event recall policy is to deter-

mine if an observed event is an instance of a stored event type. Therefore,

when evaluating our system, we check that we correctly classify all valid

instances of a type of event and correctly reject all instances of other types

of events. We do this under varying levels of stress including varying levels

of distraction, perception noise and misclassification noise. With correctly

trained policies we can achieve almost perfect recall of events from memory.

This evaluation and the results are explained in Section 6.2.

Our final contribution is how we train these recall policies. Typically, RDRs

are trained manually using a human expert to guide the learning. However,

by using Inductive Logic Programming (ILP) we can autonomously train

event recall policies. This does come with the caveat that our recall policies

cannot be trained as quickly. For example, when manually training recall

policies using a human guide, it is possible to train a successful recall policy

after only one observation of that type of event. However, this can only be

done after many questions are asked by the agent. Thus, it is not a feasible

approach to train recall policies and so we must sacrifice some training time

in exchange for a more automated approach. We evaluate the method by

checking how many observations of a given type of event are required to

train a policy that we know to be correct. One should remember that we

evaluate our approach to episodic recall by generating training examples

from hand-crafted policies that we know to be correct. Our objective is

to train a new policy that matches to the hand-crafted one. We further

evaluate our training in the same way that we evaluate our recall. Namely

we test how many training instances are required before the policy achieves

acceptable recall, < 5%, under different levels of stress.

Different types of events have different complexities and some events may

10

be part of an event sequence, that is when multiple events are connected to

each other. For example, a friend arriving is one event and it is succeeded

by the agent making two cups of tea. As one would expect, events that

are part of a long event sequence take longer to train. Thus, in our eval-

uation we present the results for a number of event sequence lengths. To

summarise however, we found that single events required only an average

of 2.03 observations after the initial observation to correctly induce a recall

policy.

Chapters 34 and 5 describe the above methods in detail. Our evaluation

and results are presented in Chapter 6, with our concluding remarks in

Chapter 7.

1.4 Conclusion

Throughout the introduction we have presented an overview of the research

conducted in this dissertation. We present two examples of use cases where

the research objective is clearly visible. The evaluation details significantly

more use cases however the two examples presented were chosen due to

the fact that they are decidedly different in nature showing how the theory

is generalisable and can be applied to a diverse range of situations that a

robot may encounter daily.

We present a high level account of some of the crucial components necessary

to the research and justify the necessity of each. To the fields that we make

an explicit contribution we detail these contributions in Chapters 3 to 5.

Episodic memory presents a range of challenges for artificial intelligence.

We believe that the three most significant of these challenges relate to

how an agent can recall an event, how an agent can create and represent

an event and how an agent can forget events. The latter of these this

dissertation does not focus on although we recognise the importance of

it. Agents will likely observe hundreds if not thousands of different types

of events throughout their life. An agents memory however has a limited

11

capacity for space. Thus, it is important to have some means by which less

relevant types of events can be removed from memory and free up space

for types of events that are deemed more pertinent.

We believe that this has the potential to be an interesting extension to this

research however we do not focus on it here. Instead the research in this

dissertation primarily focuses on topological mapping and in a system that

can acquire domain specific knowledge for each type of event that the agent

observes and, in doing so it can create unique recall policies for each type

of event so that they can be correctly recalled from memory on observing

an instance of that type of event. Our main contributions are as follows:

1. We first propose a novel approach to segmenting a metric map into a

collection of rooms and corridors. Our approach is based on identi-

fying critical points on a Generalised Voronoi Diagram and creating

regions around these critical points. Other approaches have relied on

identifying critical points to segment an environment, however, they

often use arbitrary, hard coded metrics for determining what a crit-

ical point is making these approaches less robust to more complex

environments. We evaluate our approach using the precision and re-

call metric proposed by Bormann et al [2]. Our results show state of

the art accuracy with 98% precision and 96% recall.

2. Our second contribution is our approach to event recall in episodic

memory. We take a novel approach in which events in memory are

typed and a unique recall policy is learned for each type of event.

These policies are learned incrementally, using only information pre-

sented to the agent and without any need to take that agent off line.

Ripple Down Rules provide a suitable learning mechanism. Our re-

sults show that when trained appropriately we achieve a near perfect

recall of episodes that match to an observation.

3. Finally we propose a novel approach to how recall policies are trained.

Commonly an RDR policy is trained using a human guide where the

instructor has the option to discard information that is irrelevant to

the situation. However, we show that by using inductive reasoning it

12

is possible to train a recall policy for a given type of event after only

a few observations of that type of event.

This dissertation is organised as follows. In Chapter 2, we cover the related

research in this field. In particular we focus on areas of cognitive robotics

that endow an agent with episodic memory and other fields of artificial

intelligence that also make use of episodic memory. Chapter 3, we present

our novel approach to topological mapping which allows an agent to localise

itself and other objects at an abstract level. This is essential for episodic

memory. Chapter 4 covers our approach to retrieving events from memory

using a novel approach that utilises the power of Ripple Down Rules. Our

final theory chapter, Chapter 5 details our approach to training recall poli-

cies. In Chapters 6 and 7 we explain our evaluation process, present our

results and conclude this dissertation.

13

Chapter 2

Literature Review

In this chapter we review research related to acquiring and recalling episodes

in memory as well as some other related topics.

2.1 Episodic Memory and Natural Language

In this section we review some of the work in Natural Language Processing

that is most relevant to our research.

An approach to improving conversational dialogue is presented by Kasap

et al [12]. They examine how episodic memory can be used to improve

Human Robot Interaction (HRI). The research investigates how to model

episodic memory that supports long-term interaction with people. The

specifically embed emotional cues into episodes and use those cues amongst

other information such as natural language to generate a belief state based

on past experience. Goals are then represented with a Hierarchical Task

Network and are realised through a natural language, Finite-State-Machine

based dialogue system to produce the correct response to the given context.

Preliminary results of this research are largely qualitative and demonstrate

only a simple example of an agent name Eva interacting with two people.

They demonstrate their system by showing how Eva responds differently

14

to the two people who she interacted based on the emotional cues of the

first interaction. For example, if one of the subjects was rude to Eva then

she was less friendly the second time around.

Our proposed system presents a more generalisable episodic memory imple-

mentation. As already clarified, our work distinguishes between different

types of events. One can think of a conversation between two people or an

agent and a person as a specific type of event. Thus, our system is capable

of capturing conversational events as well as other types also.

Xiong et al [13] and Kumar et al [14] use a dynamic memory network

(DMN) to improve question answering of a natural language processor.

The system consists of four modules. The first is the input module. An

input is taken in and encoded via a recurrent neural network (RNN). This

input is a sentence or sentences given in natural language. The second

module is the question module, and functions in a very similar manner to

the input module. The third is the episodic memory module (EMM) and

consists of internal memory and an attention mechanism. The RNN takes

the input or question and creates an episode. This episode then updates

the EMM. On each input there may be a need for multiple episodes. This

is because on the first pass, a pass being an episode created by the RNN,

the system may discover that additional information is required. Kumar

et al give an example to explain when this need for additional information

may occur. A question is presented to the system, where is the football?.

A previous input to the system was, John put down the football. Only by

taking another pass can the system determine that it needs to find the

location of John so that the question can be answered.

Each episode is concatenated into a vector which is then passed to the

answer module (AM), which is the final module in the DMN. This module

reasons about all of the given inputs and from this produces an answer.

This is significant in that it enables the system to extrapolate from indirect

information.

Li et al [15] and Sutskever et al [16] use reinforcement learning to model

future reward in NLP. Another method however could be to use the Hid-

15

den Markov Model (HMM) to predict in advance the direction in which

a sentence may be going and to begin constructing a quicker response. A

HMM according to Eddy et al [17] is “a finite model that describes a prob-

ability distribution over an infinite number of possible sequences”. In other

words, if we know the value of the state at time t-1 then we can make a

prediction about future states. The basic ideas behind this are relevant to

our research albeit to a different domain. Episodic memory involves using

an observation at a given point in time t, to reason about what might have

occurred in the past, time t-N or what might occur in the future, time t+N.

We have reviewed the material that is most relevant to this dissertation. In

particular, we are interested in the work on dynamic memory networks [13,

14] as these take an alternative look at the way in which episodic memory

can be applied. However, natural language processing is not a focal point

of our research and so we have only very briefly reviewed some of this work

that has similarities with episodic memory concepts.

2.2 Topological Mapping

Topological mapping is relevant to our work since it is necessary for the

episodes in memory to have a location that has semantic meaning, rather

than coordinates on a map. For example, the robot may need to know if

it is the kitchen versus the dining room. Topological maps create regions

to which we can attach such labels.

Bormann et al [2] provide a detailed and comprehensive survey of methods

for room segmentation. They note how, like our approach, the most popu-

lar technique for room segmentation is to start from a Generalised Voronoi

Diagram (GVD). However, all these techniques make assumptions about

room structures, such as rooms being convex. As will become clear in

Chapter 3, segmenting an environment often leads to multiple sub-regions

being created due to clutter. Sub-regions that are members of the same

larger region must be merged. Work reviewed in the survey by Bormann

et al [2] also identifies the need to merge smaller Voronoi regions that

16

may have been created as a result of tables and chairs being interpreted

as doorways, however, the techniques provided rely on ad-hoc mathemati-

cal operations for determining when certain regions should be merged, for

example assuming the size of doorways, which is not generalisable to all

environments.

Crespo et al [18] survey work on using semantic information for robot nav-

igation. The survey focuses on both human-assisted and autonomous tech-

niques for acquiring semantic information from a metric map. The survey

details the main reasons why semantic mapping is necessary, specifically

focusing on how it relates to high-level reasoning about an environment

similar to how people reason about the environment. It also details how

semantic or topological mapping improves human-robot interaction, auton-

omy, localisation and efficiency. We have also identified additional areas

where topological mapping is relevant such as in maintaining a world model

that can be used for high-level planning and episodic memory.

2.2.1 Building Topological Maps

Some of the earliest work on topological mapping is by Thrun and Bücken

[19]. In this work they introduce the concept of critical points for par-

titioning a metric map into isometric regions of interest. Our work on

topological mapping also makes use of the idea of critical points in that

we attempt to identify doorway-like points on a metric map. Thrun and

Bücken initially generate a Voronoi diagram and then select a number of

points within the Voronoi diagram as potential critical points. Points are

selected as members of the Voronoi diagram if they are free and equidistant

from two occupied cells elsewhere in the map. The metric that they use

to define a critical point is that is it in closer proximity to its respective

occupied cell than any other Voronoi point within some ε-neighbourhood

region. The ε-neighbourhood area however is hard coded and each region

must have only one critical point. This means that there are multiple crit-

ical points defined that should not be critical points. For example, along

a corridor there may be several critical points when in reality there should

17

be only two, assuming the corridor is clear.

Our method for defining critical points is more generalisable as it relies on a

change in the distance between a Voronoi point and its respective occupied

point as we traverse along a path of Voronoi points. This means that a

critical point is exactly that. It is a doorway point or some other point of

interest created by clutter. In using an ε-neighbourhood approach it means

that there will inevitably be critical points where there should not be and

it is also possible that other valid critical points may be missed. This is

because each neighbourhood can and must have only one critical point.

This explains why corridors have multiple when they should not have but

it also means that actual critical points, like doorway points, may be missed

if the distance between a Voronoi cell and that Voronoi cell’s occupied point

in a doorway is not the smallest distance for that ε-neighbourhood.

Beeson et al [20] look at another method for detecting points of interest or

critical points on a topological map by identifying junction points on the

Generalised Voronoi Diagram. These junction points are defined as points

on the GVD that fork or branch into multiple other paths.

In an empty environment this would work well. However, as noted, a typical

domestic environment contains furniture and so this does not solve the

larger scale issue of place detection in the context of rooms and corridors.

As outlined in the survey by Bormann et al [2], the most common ap-

proach to generating topological maps is to start with a Voronoi diagram.

Friedman et al [21] generate a Voronoi graph from an occupancy grid and

then represent each Voronoi point as a node of a conditional random field.

This they refer to as a Voronoi Random Field (VRF). From here they es-

timate the label of each node in the Voronoi graph. Using the labels of

each node they can segment the environment into rooms, hallways and

doorways. They use human-labelled training data to learn the parameters

for the VRFs. This very nicely segments an environment into a collection

of regions. Our work uses a similar GVD however we have simplified the

classification problem as we are looking only at identifying doorway points.

This also allows for more accurate reconstruction of regions within the

18

environment as we are less likely to suffer from mis-classification problems.

Wu et al [22] propose partitioning a map into a collection of Voronoi cells.

These cells however contain no semantic information and the objective is

not to determine the structure of an environment but to create a series of

navigable zones.

In our work we focus on indoor robots that either have access to good

quality sensors that can generate metric maps or that already have access

to metric maps. However, some work has been done in the context of field

robotics where high quality sensor data or metric maps are not available.

Ramaithitima et al [23] look at generating topological maps using a swarm

of robots. They use the relative position of robots to one another in a

swarm to create a GVD. Each robot is equipped with a bearing sensor that

can detect that robot’s neighbours and a touch sensor for obstacle avoid-

ance. The results show an accurate generation of a GVD in an unknown

environment with limited metric information.

2.2.2 Room Segmentation

Liu et al [24] look at building a semantic map using a Markov chain that

produces samples of probabilistic world models. Here they use a Bayesian

framework to infer the most probable world W ∗, from a space of possi-

ble worlds Ω given the map M, where W ∗ ∈ Ω. This probability can be

described as

W ∗ = argmax
W∈Ω

p(W |M)

To solve this they construct a Markov chain that generates samples W i

from the solution space Ω. The method works very effectively but makes

a number of assumptions. The main assumptions made are: rooms must

be rectangular, have at least one door, each cell should belong to only one

room and walls must have two main orientations. In contrast, our approach

makes no assumptions about the environment.

Mura et al [25] present an approach that reconstructs complex indoor en-

19

vironments from cluttered point cloud scans. They extract candidate walls

from the point cloud by applying a diffusion process to separate the candi-

date walls from clutter. Similarly Ochmann et al [26] automatically recon-

struct building models from point clouds. They focus their work on indoor

environments and initially filter the point cloud to remove points that lie

outside of the house. They take multiple scans of each room generating

a point cloud. The initial scans provide a rough segmentation of the en-

vironment into rooms however openings such as doors and windows lead

to overlap between scans. Filtering noise from outside the environment

gives a rough estimation of points inside the environment. This is then

extended by generating potential wall candidates. To separate rooms using

wall candidates, they pair wall surface lines that satisfy certain constraints

and assume therefore that the two opposite surfaces of the walls separate

the rooms.

The work on segmenting an environment using 3-D point clouds as pre-

sented by [26] and [25] is further extended by Ambrus et al [27]. They

perform automatic room segmentation from unstructured 3-D data of in-

door environments. They focus on the identification of walls and openings

using point cloud data. While they provide accurate representations of en-

vironments their work again makes some significant assumptions. Firstly,

they define an opening or a door as being an opening in a wall that matches

some size criterion. This criterion means that it is less generalisable to some

more obscure environments. They also make assumptions that rooms must

be mostly convex. This is something that we avoid. Finally, they require

a point cloud representation of the environment. This is something that is

not easily generated. By focusing with 2-D SLAM generated maps we can

be more certain that our approach is usable by almost all standard robots.

An alternative method to segmenting a topological map is presented by

Mielle et al [28]. In this instance they do not rely on a GVD but rather

create a free space image where each pixel in the image is assigned a value

based on its nearest obstacle. Neighbouring pixels with the same values are

grouped into regions. This results in a slight problem however, as typically

areas such as corridors, where each corridor should be a single region are

20

often not identical in length and so result in multiple regions being created

along a corridor. By using a GVD and monitoring the rate of change of

distances of the points along the GVD our method is significantly more

robust to this type of noise.

They do address this issue by defining a metric upon which two sub-regions

should be merged. This metric is loosely based around the idea that two

regions that have similar values should still be merged. However, this

appears not to be generalisable as they also must define a second metric to

merge regions that should be merged but were not covered by the first.

2.2.3 Semantic Mapping

As already noted, topological mapping is the process of segmenting an en-

vironment into meaningful regions. This is related to semantic mapping,

which is the process of assigning high-level labels to areas of an environ-

ment. The key difference between the two is one of emphasis: topological

mapping is the process of segmenting an environment. Semantic mapping

involves assigning high-level labels to regions of an environment. Further-

more, topological mapping seeks to identify connections between regions,

for example to be used in path planning, while semantic mapping is con-

cerned with identifying meanings within a region.

Buschka and Saffiotti [29] propose a two-part method for room detection.

They first use segmentation to isolate various spaces in an environment

that may represent a room and detect when a robot has entered a new

room. Then they use feature extraction to determine the type of that room.

Their work relies on the assumption that a room is rectangular. A further

extension of this work by Galindo et al [30] proposes a multi-hierarchical

approach, maintaining two map representations in parallel. They maintain

a spatial and a semantic map. The two maps are linked by a concept

called anchoring. For example, they would link bed-1 to an image of a

bed. Again their work largely focuses on inferring types of rooms given

perceptual inputs. The work is relevant to our work however, in that

inferring a room’s type given perceptual inputs is necessary, but as it is not

21

the primary focus of our work we will only briefly review some of the other

research that has been conducted in this area.

Dellaert and Bruemmer [31] propose an extension to fastSLAM that in-

cludes semantic information and Limketkai et al [32] add semantic infor-

mation about objects on a grid using Relational Markov Networks to rep-

resent the relationships between objects on a metric map allowing a robot

to reason about the map from a spatial perspective.

Rottmann et al [33] use a standard classifier to determine objects sur-

rounding a robot and from there infer the room type. Mart́ınez Mozos et

al [34] extend this work by using an adaptive boosting method to improve

performance over more standard classifiers. Other such work that covers

adding semantic information to a topological map and that we will review

only very briefly is that of Nieto-Granda et al [35]. They create a seman-

tic map in cooperation with a human guide. The result is a probabilistic

classification of the metric map into a set of labels given by the guide.

There has been some more recent work in this field also. Sünderhauf et al

[36] use a convolutional network paired with a series of one-vs-all classifiers.

This enables the robot to recognise place types and to learn new semantic

classes online. Similarly Brucker et al [37] extends this work by applying

it to a three-dimensional domain.

2.2.4 Maintaining a World Model

As we noted, the objective of generating a topological map is to form

the basis for a world model. The world model is a collection of predi-

cates explaining the current known state of the world and those predicates

are organised within the topological map. Some earlier work focused on

this idea, in particular maintaining and refining incomplete domain mod-

els for planning systems, Gil [38]. The paper looks at refining knowledge

required for a planning agent through direct interaction with the environ-

ment. While we did not explore this work in great detail, it has applications

to our research. Most noticeable is how this system handles planning with

22

incomplete preconditions or effects due to missing information in the do-

main knowledge. In Section 4.2.4, we note one of the limitations of our

work is assuming actions effects are observed immediately after an action

observation. This has the potential to miss potentially crucial information

and result in a partially complete domain. In an extension to this research,

we aim to look at how adopting this model to our system could assist in

limiting the effects of this limitation.

Sridharan et al [39] explore a similar concept, interactively learning domain

knowledge in the context of human-robot collaboration. They use Answer

Set Prolog to represent and reason about incomplete knowledge in the

domain and combine this reasoning system with advanced probabilistic

models to learn actions that can be used to solve subsequent problems.

In recent years a good deal of work has been done in this field. Herrero et

al [40] propose a relational database model where both objects and rooms

have physical and conceptual or semantic properties. They link an object

described by its physical properties to that same object described by its

conceptual properties. The proposed model is good in that it provides

a generalised means to represent objects in a world so that they can be

reasoned about on different levels of abstraction. Their use of a relational

database however, means that queries can be quite complicated and we feel

that a NoSQL database works better for maintaining a world model.

Bazcuoğlu et al [41] present a model for maintaining a symbolic knowl-

edge base of action costs for robot manipulation tasks on the assumption

that robots can use previously updated probabilistic models for improving

their actions. To each action they record both symbolic and sub-symbolic

data. They demonstrated their method on a door opening task. The sym-

bolic data contains information such as the action executed, the arm used,

the goal and any failures. The sub-symbolic data was the metric data

return from the robot’s perception, trajectories, joint-states etc. They

timestamped both sets of data so they could be matched. They generate

positive and negative samples of data and fit a Gaussian Mixture Model

(GMM) to both which was used as a predictive function for choosing action

parameterisation. The model presented works well as a symbolic database

23

for storing knowledge regarding the execution of specific tasks. They are

not proposing a world model in the sense of an understanding about what

is true in the environment. However, they do propose a means for rep-

resenting a robot’s action capabilities symbolically which is relevant to a

more generic world model.

Mason and Marthi [42] provide a semantic world model for long-term

change detection and semantic querying. Their work primarily focuses

on object segmentation, attempting to stay away from a priori objects and

focus on generic object descriptions such as colour and size. They define

an object as a geometrically distinct region above a plane. A plane in this

case, is any large flat surface that is not the floor. This technique works

well in that it is generalisable to a multitude of environments. However,

we feel that in this instance, making use of some assumptions could have

drastically improved the performance of the system. For example, they

are focusing their work towards domestic robots. This means that there

will be a significant collection of generic household objects that a classifier

would be very effective at identifying. We are not saying that the semantic

description of objects is not beneficial, in fact quite the opposite. However,

focusing only on a semantic description can lead to a lot of errors. For

example, there are many objects that would have roughly the same size

and colour in any given environment. Their technique of detecting if two

observed objects are the same is to check if their convex hulls overlap. This

will inevitably lead to false detections and could be massively improved by

running a classifier as additional confirmation. The querying method is not

unique and simply involves querying on fields in a noSQL database. Their

technique for determining if change has occurred is to check the convex

hulls of two observed objects and see if they are the same at time t and

t
′
. This is fine as long as the object is in roughly the same area and will

collapse if it is not present at all as you cannot compare the convex hull of

an object to empty space. It also means that changes in object locations

relative to one another cannot be represented or even behavioural relations

in objects cannot be represented as there is no information as to what that

object actually is.

24

Elfrin et al [43] proposes a much more complex and complete world model.

They identify four main components that a world model should contain:

1. Must contain semantically rich objects for anchoring;

2. Must have good data association - Need to update objects based on

measurements;

3. Model based object tracking - Know when an object has changed

position;

4. Real time execution.

The main contribution that the paper made was an extended anchoring

algorithm using multiple hypothesis tracking. Each object is represented

by a symbol. For example, symbol l1 might represent cup-12. Predicate

symbols represent properties of objects and are mapped in the predicate

attribute space. An anchor then consists of the following properties:

αa = (l1, z
k
i ,M

k
a)

l represents the actual object, k is the time stamp, z are the set of ob-

servations at time k and M is the behaviour model of that anchor. The

behaviour model probabilistically measures the behaviour of the item at

time k. By using this form of behavioural modelling they are able to per-

form object tracking in the world model. For example, a cup placed on

a table may move. The behavioural model of that cup states that it may

move around that table and there is a high probability that it may move

within a certain region. Therefore, if the cup does move the behavioural

model will tell the world model that it is the same cup and not a new one.

Their work on maintaining a world model was subsequently extended in

[44]. In this work the model is updated based on the expected information

gain obtained by the update, the action cost of the update and the task

that the robot is performing. In this way the updates are handled using

more conceptually relevant information.

25

2.2.5 Conclusion to Topological Mapping

Building on the existing work in topological and semantic mapping, we

identify a number of key issues that we address in this dissertation:

1. Limiting environmental assumptions. Almost all of the existing

techniques on topological mapping make strong assumptions about

the environment that limit their broader applicability. For example,

assumptions are made in relation to the shape of regions (e.g., regions

must be convex), or the number or size of doors, or whether the

environment must be empty. While it is true that all approaches

to topological mapping must make some assumptions, our method is

able to segment regions without making such significant assumptions

that it makes the approach difficult to scale. Instead we make only

minor assumptions, for example, a room must have at least one entry

point and the environment must be an indoor environment, making

it applicable to a very broad range of indoor environments.

2. Semantic labelling based on topological maps. Using object

recognition to assign semantic labels is crucial to identifying the

semantics of rooms and spaces. However, techniques that seek to

classify regions only by identifying visible objects cannot accurately

determine the structure of those underlying regions, nor how those

regions are connected. While [21] and, more recently, [37] are able

to produce excellent results they will still encounter the problem of

mis-classifying parts of the environment. Our technique of identifying

doorway points and creating regions around these, followed by merg-

ing regions with the same high-level label, mitigates this problem and

determines a room’s structure to a much higher degree of accuracy.

3. Topological mapping as a rich information source for cogni-

tive robots. Our technique produces five distinct maps, each one

containing unique information that is highly relevant to the needs

of a cognitive robot. This provides information to the robot at dif-

ferent levels or abstraction that can be applied to a broad range of

26

cognitive robotic functions. The base two maps are the raw or low-

level occupancy grid. These maps provide a robot with a low-level

representation of the environment and are useful for localisation and

navigation. The third map, a Generalised Voronoi Diagram provides

a robot with knowledge about the safest routes through an environ-

ment. These routes are not strictly speaking optimal but show paths

of maximum clearance, paths where a robot is least likely to damage

itself by colliding with obstacles. The fourth and fifth maps allow

a robot to reason at a high-level about the spatial structure of the

environment. It is at this stage that we make the most significant

contribution to the literature.

Some recent work has attempted to address the problems that we have

raised also. Hou et al [45] propose an approach to topological mapping

which is similar to ours in that they attempt to first segment an environ-

ment into regions of interest and then merge those regions into room and

corridor structures. Their approach however has several methodological

flaws. They firstly do not provide any quantitative results to show the

success of their methods. They also use open source libraries to detect

alpha shapes and merge polygonal regions that are within the same alpha

region. This means that they are limited in the shapes of the environments

that their method is applicable to. By not using some sort of critical point

to measure start points of polygons they are also obliged to split single

polygons across more than one region and having to arbitrarily split them.

Much of the work reviewed in this section, particularly the research on

topological mapping, is work that is either directly relevant to the field

of research and is work that we make significant contributions to, or it

is work that is necessary to implement for our research such as the work

on maintaining a world model by Elfring et al [44, 43]. A world model

is a collection of predicates organised within a topological map. It is an

essential component of an episodic memory system and this is why we have

extensively reviewed all of the relevant research in this field.

27

2.3 Spatial Reasoning

In addition to knowing the location of objects in a map, it is also necessary

to know the spatial relationships between objects and to be able to reason

about those relationships. There are two types of spatial reasoning, qual-

itative (QSR) and metric (MSR). We return to the example of the fallen

glass to demonstrate the importance of spatial reasoning in episodic mem-

ory. the falling glass. To detect that a glass has fallen the robot must be

able to reason about the glass’ position relative to the environment. For

example, a glass is more likely to fall if it is placed on the edge of a table

rather than in the middle.

Thippur et al [46] compare QSR and MSR and show how they can improve

object classification in a table-top scene. They start by creating a series of

point cloud clusters of the objects on the table. In the case of an office table

these objects are computer monitors, keyboards or mice for example. They

then use a pre-trained classifier to label each object. By then comparing

the spatial relations of all of the clusters they try to improve the confidence

in the object classification. For example, a keyboard is more likely to be

in front of a monitor.

Kunze et al [47] focus on how spatial reasoning can help to improve object

recognition when a pre-trained classifier selects a point cloud cluster as

being two of the possible objects that may be in the scene in question.

They refer to the relatum as the reference object, or the object against

which a spatial relation measurement is made. They refer to the object that

a spatial relation is measured with respect to the relatum as the referent.

So for example, if the relatum is the keyboard and the referent the mouse

then we would say that the mouse is found to the right of the keyboard or

the referent is found to the right of the relatum.

Metric Spatial Reasoning is when we describe a spatial relation in terms of

continuous values, such as the distance between two objects measured in

centimetres, or the angle between two objects measured in degrees. With

QSR these quantitative representations are replaced by logical relations. To

28

define a spatial relation using QSR Thippur et al [46] proposed 12 different

predicates:

• 4 directional relations

1. behind-of

2. in-front-of

3. left-of

4. right-of

• 3 distance relations

1. very-close-to

2. close-to

3. distant-to

• 3 size relations

1. shorter-than

2. narrower-than

3. thinner-than

• 2 projective relations

1. overlapping

2. non-overlapping

They found that, for low perceptual accuracy, both MSR and QSR im-

proved classification. As the perceptual accuracy increased, only MSR

showed an improvement. This is because it relies on specific measurements

and when a sufficiently large training data set is provided, it can yield very

accurate results. They also found that when there is a small training data

set, QSR performs better, which is where the advantage of generalisation

comes in. Kunze et al [47] also found similar results in that spatial rea-

soning did increase the performance of object classification compared to

29

just using a pre-trained classifier alone. Hu et al [48] proposes something

similar in that they attempt to improve object recognition using spatial

understanding.

Another interesting area where spatial reasoning is of use is described by

Young et al [49]. Here QSR is used to train robots by observation. The

specific robots in question are simulated in the RoboCup 2D soccer simu-

lation. The robot watches a human attempt to score a goal with another

human defending the goal and observes a qualitative action at each time

step. It then discards any continuous information so that it is left only with

an action class e.g. kick, run, turn etc. These actions are then turned into

a set of QSR features. These features are defined as a combination of star

calculus features, that provide a binary representation of the qualitative

directions between entities in the environment, relative to one another and

the qualitative trajectory calculus, which provides information about the

relative motion. The QSR features are then combined with a pre-trained

classifier to make a prediction on what the action is. The robots do not al-

ways replicate the humans perfectly due to mis-classifications or the robots

mimic mistakes.

Gemignani et al [50] demonstrate how QSR can assist in long-term nav-

igation for a robot. They use QSR in conjunction with a representation

of the environment to execute commands given verbally by a user. Simi-

lar Kumar et al [14], they want to be able to reason about the command

to extract crucial information such as the command type, object location,

reference object location and the spatial relation between the object and

reference object. The NLP used however is slightly different from Kumar

et al [14] in that it relies a more on specification. Kumar et al [14] can ex-

tract information from abstract commands. In Gemignani et al, the agent

has a knowledge base (KB) of frames. These frames contain information

about the environment in which the agent and user are operating. When a

command is given verbally by the user, the agent begins to parse it. It first

isolates the command type, which will ordinarily be the verb in question.

It places the remaining tokens (parts of the sentence) into an array, which

will contain information about the object in question , the reference object

30

and the spatial relation between them. So if, for example, a command like

“go to the cupboard to the right of the sink” were given to the robot, then

the command type would be go to, the object in question would be the

cupboard, the reference object would be sink and the spatial relation would

be right-of. Once the command is correctly interpreted the agent generates

the necessary messages which will allow the command to be executed.

What we would ideally like to do is to enable the spatial reasoner proposed

by Gemignani et al [50] to work in conjunction with that proposed by

Thippur et al [46] and Kunze et al [47]. So the robot would have a KB of

both the map but within that KB it would have “sub-KBs” which would

contain information about the more confined locations within a room such

as a table-top. This is the representation we believe is most appropriate

for episodic memory.

Qualitative Spatial Reasoning has also been used in robot learning. For

example, Wolter et al [51] use Qualitative Spatial Reasoning to learn ma-

nipulation tasks, throwing a piece of paper into a bin. They define a spa-

tial logic that combines qualitative abstraction with linear temporal logic.

This allows them to represent relevant information about the learning task.

Their architecture contains the following main components:

• A QSL or qualitative task description (throw the paper in the bin);

• A controller;

• A learning element;

• A planning module.

They input training data to the learning element, which trains a forward

model (a model which allows the robot to predict event outcome based on

its controller inputs). From there, the forward model sends an action to a

planner. The planner creates a plan and then executes it. The result of the

execution is then compared to the task description. If it does not meet the

desired requirements then adjustments are made and the forward model is

31

retrained. To restrict the amount of learning data to be gathered they also

use spatial logic to augment the selection process for gathering data. For

example, they only gather training data which leads to the robot throwing

the rubbish in front of itself.

They adapt Allen’s temporal calculus [52] to represent spatial relations.

Allen defines 12 predicates for representing temporal intervals. The general

form of such a predicate is r(X, Y) and is known as a qualitative constraint.

For example, O(A,B) means that A overlaps B. A scene can be described

by a the conjunction of qualitative constraints.

Figure 2.1: An example scene taken from [51]

In Figure 2.1, the state of the world can be represented as a conjunction of

qualitative constraints as:

ABOV E(c, d) ∧ ABOV E(d, g) ∧ ABOV E(t, g)∧

ABOV E(c, g) ∧ LEFTOF (c, t) ∧ LEFTOF (d, t)

They need to be able to reason about both time and space as the act of

throwing something is dynamic and therefore its scene description changes

over time. For this, they define a Krike structure

〈N, I〉

.

32

Here N is a set of time points and I is an interpretation function which

assigns truth values to the constraints at various time points. For example,

at time 0 the Krike model would interpret the constraint TOUCHES(b, g)

to be false or:

0 6∈ I(TOUCHES(b, g))

At time 1 however it would interpret it as touching or

1 ∈ I(TOUCHES(b, g))

By using this combination of spatio-temporal logic, they are able to com-

pare the current state of the environment with the goal state to see if the

robot is performing the task as required. If not then they can adjust pa-

rameters accordingly to try and achieve the goal state. For example, in a

situation where the robot is about to throw the paper, it might predict that

with an impulse A, the paper will land with position (Ox, Oy). The robot’s

position is R and the goal position is P . The following relation shows how

the parameters are to be updated to train the robot:

So(R,P) ∧ So(P, (Ox, Oy) Ax < A

This says that if the robot throws in direction So and the paper lands in

(Ox, Oy) with respect to the goal P , then the robot has over thrown and

the next impulse Ax must be less than the previous impulse. By using this

logic, they are able to train the robot to complete manipulation tasks.

So far, all of the work that we have reviewed in spatial reasoning involves

ways to qualitatively represent the environment. This is most relevant to

our work with regard to maintaining a world model.

Jan Oliver Wallgrün [53] uses spatial reasoning to learn the topological

map of an unknown environment. He imagines a topological map as being

a collection of hallways and junctions. When the robot arrives at a junction,

it observes the hallways that are connected via the junction. All junction

observations are made using qualitative cardinal coordinates. For example

33

a junction observation may be represented as:

J1 =
{
southeast(lJ11), south(lJ12)

}
This means that the junction J1 connects two hallways, one running south-

east and the other running south. When a new observation is made they

update their representations of their un-directed graph

GH = (VH , EH)

where VH represents the junctions of the environment and EH represent

the hallways. Using these representations, the system can learn a model of

the environment represented in this qualitative format.

Representing an environment in this way is interesting but needs to be

extended. Simply viewing an environment as a collection of hallways and

junctions provides only a fraction of the information required to reason

about the environment. No mention is made of the rooms, the connections

between rooms, the spatial relations of the rooms to each other, not to

mention the lack of information about any objects that may be present in

the environment.

For much of our work, we make use of the region connection calculus by

proposed by Cohn and Renz [54], called RCC-8. They define eight Jointly

Exhaustive Pairwise Disjoint (JPED) relations, hence the 8 in the RCC-8.

For any two regions exactly one of the JPED relations holds. Similar to

Allen [52], Cohn and Renz use spatial regions rather than spatial points as

a primitive. The regions that they define are as follows:

1. Disconnected - DC;

2. Externally Connected - EC;

3. Partially Overlapping - PO;

4. Equal - EQ;

34

5. Tangible Proper Part - TPP;

6. Non-Tangible Proper Part - NTPP;

7. Inverse Tangible Proper Part - TPP−1;

8. Inverse Non-Tangible Proper Part - NTPP−1.

From a visual point of view it looks as follows.

Figure 2.2: The RCC-8 relations visualised

Each of these relations is extendable to an n-dimensional domain.

2.3.1 Conclusion to Spatial Reasoning

We have described some of the most relevant research in spatial reasoning.

In this work, we show how spatial reasoning contributes to the efficiency

and success of long-term learning through episodic memory. We also show

how using spatial reasoning with episodic memory has applications in the

field of explainable AI. Looking at one potential use case it is easy to see

why. Suppose Paul and Michael always have a meeting in Michael’s office

at two o’clock on a Wednesday evening and suppose someone were to ask a

concierge robot where they might find Paul. The episodic memory would

tell the robot that because it is two o’clock on a Wednesday they will

be able to find Paul in Michael’s office. The ability to reason about the

world spatially, i.e. the spatial connectivity of different rooms and their

orientations relative to one another, as provided by the topological map,

means that a robot can naturally describe the path to Michael’s office in a

35

way that a person can understand. This is similar to work done by Krieg-

Brückner et al [55] and Matuszek et al [56] although they focus mainly on

the interpretation of directions rather than providing information.

2.4 Temporal Reasoning

In 1983 Allen [52] proposed a calculus for temporal reasoning. His rep-

resentation uses a temporal interval as a primitive and describes ways of

representing the relationships between these temporal intervals. For this

reason the method is often known as Allen’s Interval Calculus. Kautz and

Ladkin[57] proposed the integration of metric and qualitative temporal rea-

soning. This is an extension of Allen’s interval calculus, in which intervals

of time are expressed in both a qualitative and metric manner. They illus-

trate this with the following example. Suppose there is a time interval that

begins at time x and ends at time y. Let that interval be denoted {x, y}.
In metric reasoning one might write:

2 ≤ {x, y} < 3

This means that the interval is greater than or equal to two and less than

three of whatever the relevant units are (seconds, minutes, hours etc). Met-

ric reasoning deals with these exact relations between an interval and time

points. Qualitative reasoning however deals with the relations between two

time intervals as denoted by the Allen predicates:

1. P = Precedes;

2. M = Meets;

3. O = Overlaps;

4. S = Starts;

5. D = During;

36

6. F = Finishes.

So if, for example, we have two intervals i and j, i(P)j means that the

interval i precedes the interval j, or the latest point in i is before the ear-

liest point in j. The representation proposed by Kautz and Ladkin [57]

combines both of these notations into one. They also provide a method

for converting from metric-to-Allen and vice versa. The idea of reason-

ing about specific points in time in a purely metric sense was addressed

in a paper by T. Allen et al [58]. Here, they design and implement an

algorithm for qualitative point based temporal reasoning. The difference

between what they propose and what James Allen proposed is that James

Allen takes time intervals as a primitive whereas T. Allen takes time points

as a primitive. They developed four reasoners, two basic reasoners using

standard graph operations and another which uses ranking of nodes to im-

prove query-answering times. They have a further two reasoners, one based

on series parallel graphs and the other a re-implementation of the chain

based approach proposed by Gerevini and Schubert [59].

2.4.1 Conclusion to Temporal Reasoning

In episodic memory an event happens at a specific time in a specific loca-

tion. However, for that event to happen, something had to have changed.

To recognise that change, we must be able to reason about the world tempo-

rally. For example, an action may be defined by preconditions and effects.

The effects must succeed the preconditions and to recognise this the agent

must apply its knowledge of temporal reasoning.

2.5 Episodic Memory

Episodic memory was first described by Tulving in 1972 [1] when he dis-

tinguished between episodic and semantic memory. The definition was

extended in 1983 [60]. He conjectured that declarative memory was split

37

into two parts. Episodic memories were collections of events experienced

by a person. They are highly contextualised meaning they all have a time

and a location associated with them and, for the memories to be created,

something significant has to happen. For example, you may recall loosing

your wallet at a shopping centre last Tuesday.

Semantic memories consist of knowledge that is not dependent on context.

For example, you may know that Abraham Lincoln was the president of

the United States in the 1860s and yet you did not experience the event.

The definition proposed by Tulving is in line with that of Wheeler and

Ploran [61] in that episodic memories are personal experiences. They do

however provide a little more scientific backing to the theory by presenting

studies that show how people can be episodically but not semantically

impaired. The studies provide more insight into how declarative memory

is split but still, they still do not definitively prove what episodic memory

is.

Tulving and Markowitsch claimed in 1988 [62] that episodic memory was

a trait unique to people. Griffiths et al [63] however believe that other

animals exhibit episodic memory systems and that it is not possible to

prove that they don’t because it is not possible to prove a universal negative.

They demonstrate their findings by designing experiments around how Jay

birds cache their food for winter. They show that Jay birds can remember

where and when they stored certain types of food and will always collect

the most perishable food first. They also exhibit the ability to update

information regarding the current status of the cache.

Baddeley [64] describe an episodic buffer as being one of the components

of working memory. They claim that it is a limited capacity, temporary

storage system that is capable of integrating information from a variety

of sources and if necessary, manipulating and modifying that information.

The module is episodic in that is holds episodes, whereby information is

integrated across time and space. Like the work reviewed so far, this is

episodic memory in the context of human psychology and not an AI agent.

It is an extension of the theory proposed by Tulving in that Baddeley

38

explicitly addresses the issue of temporary storage. Up to the time of his

paper, there had been no mention of how or why certain information was

forgotten. This is an essential component of episodic memory in an artificial

agent, as computers like people do not have endless storage and managing

which memories are to be kept or thrown away is of great significance.

From the perspective of cognitive psychology, what is largely agreed is

that episodic memories must have three fundamental components: time,

location and an action.

In AI, episodic memory has been studied in various areas. As we saw in

section 2.1, episodic memory has been introduced into dynamic memory

networks for use in question answering [13, 14]. Similarly in neural net-

works, Lopez-Paz and Ranzato [65] look at gradient episodic memory for

continual learning. Their system learns over a sequence of tasks, noting

the limitations of classical neural network approaches to learning. Firstly,

the agents are constrained to learning a small number of tasks and suffer

from forgetting previously learnt material when a new task presents itself.

They also require large numbers of training examples per task and must

be shown these examples multiple times. They address these issues by pre-

senting Gradient Episodic Memory (GEM). The GEM can store memories

of a given task. These memories can then be used to constrain the loss

function of the succeeding task so that it does not increase. In this way,

previously learnt information is being used in a new task.

Much of the work that uses episodic memory for learning either in a neu-

ral network or through reinforcement learning has focused on the issue of

sample inefficiency. Botvinick et al [66] look at how through using episodic

memory, traditional reinforcement learning techniques can learn much more

quickly and with significantly less data. They combine episodic RL with

meta-RL which is the concept of learning to learn. The episodic component

allows for more efficient sampling by addressing the small step size required

during learning while the meta-RL addresses the issue of weak inductive

bias. A system with a weak inductive bias will be able to learn a wide

range of patterns but will in general be sample inefficient. The episodic

memory element allows the learning algorithm to match the current state

39

to a previously learned behaviour which means that the previously learnt

behaviour influences the current policy.

Lin et al [67] apply a similar technique to RL called Episodic Memory Deep

Q-Networks. The principle behind this work is that the episodic memory

can supervise an agent during training. The episodic control remembers

experiences during training that returned a high reward and replays these

experiences during evaluation. Their results show that they need only 20%

of the interactions of standard Deep Q-Networks to achieve state of the art

results on the Atari games.

The term episodic memory has become quite widely used in recent years in

artificial intelligence. However, the term is used very inconsistently. In a

neural network, an episodic memory is some event that returned a positive

reward at an earlier stage during training. The definition we assume in this

dissertation is very different to those in the neural networks or some other

machine learning literature.

Given any observation, our aim is to be able to reconstruct an event of

the same type if a similar event has been previously observed and learn an

associated action. Thus, our definition of an episodic memory is closer to

that of cognitive psychology: it is personal experience (or experience of a

robot) that is associated with a context, usually a time and location, and

has an associated action. The context may be specific, e.g. a particular

time and location or may be generalised, e.g. every Friday afternoon.

Cognitive robotics is one of the areas where episodic memory has been

most prevalent. One of the earliest mentions of episodic memory for cog-

nitive robots is EPIROME [68]. This is a framework for investigating high

level episodic robot behaviour. However, there is no mention of a retrieval

mechanism nor of how an event is represented. EPIROME differs from

some other systems, such as SOAR [69], in that EPIROME events are

typed, similar to classes in an object orientated programming language.

This is also a representation that we make use of in our work.

Even earlier than EPIROME, Laird et al [69] proposed the SOAR cognitive

40

architecture. In 2004 Nuxoll and Laird [7] extended the architecture to

include an episodic memory. In this paper they listed the main components

of an episodic memory that we have already noted. In later work [8, 70],

discuss their implementation in more detail. One thing that remains a

constant in the work on SOAR and indeed in most work on episodic memory

is the point at which an event is created. In SOAR an event is created every

time an agent performs an action. This is a reasonable strategy in their test

domains, which are games such as tankSOAR or Pacman. As we shall see, a

domestic environment presents problems that require a different approach..

The memory retrieval mechanism used in SOAR is based on a two-phase,

nearest neighbour, cue matching algorithm. This is very similar to the way

most case-based reasoning systems work, as we will discuss later. Retrieval

involves first identifying possible episodes based on surface cue analysis

and then performing structural cue analysis on episodes that were returned

from the first phase. This method works well for a small number of stored

episodes but degrades as that number increases, With nearest neighbour

cue matching algorithms, there may be many episodes very close to the

cue, any of which could be possible matches. Even if there are no episodes

near to the cue, one will still have to be selected. SOAR addresses many of

the problems associated with nearest-neighbour methods, such as providing

agents with meta-data to detect sub-perfect matches. However, on a large

enough database this will still have difficulties accurately detecting the

correct match. We propose a retrieval method that reduces the possibility

of selecting the wrong episode given an observation by learning type-specific

retrieval policies. The algorithm is described in Chapter 4.

Wallace et al [71] address the efficiency of SOAR on large data sets of

episodes. As an agent’s sequential collection of episodes increases it takes

an agent significantly longer to trace back through its history to find the

correct episode cue. Instead they assign hashcodes to episode sequences, re-

ducing an episode sequence to an integer. This meant that they can quickly

recognise episodes but not recall them as the entire episode is discarded.

Vanderwerf et al [72] extend this work by examining possible hashcodes

that can allow at least partial recall of the episodes also. Again in the

41

context of single agent games, tracing through an agent’s history is ade-

quate to eventually find the correct match. There are a limited number

of actions that an agent can take and so the correct action will likely be

in a recent trace of episodes. As our test domain is an embodied agent

in an unstructured environment, a rule-based retrieve mechanism gives us

greater flexibility and oes not assume that the relevant event is in a recent

trace.

Nuxoll et al [9] compare the most common approaches for forgetting episodes.

While there are various techniques that can be used to improve the effi-

ciency of an episodic retrieval mechanism, one of the most effective ways is

to remove episodes that are no longer relevant. Their comparison concluded

that an activation approach, in which episodes are selectively removed from

the database based on criteria relating to a certain type of events frequency

and recency of recall has the best performance.

In 2012 Nuxoll et al [8] further extended the work on episodic memory in

SOAR and showed how it can enhance an agent’s cognitive capabilities. Up

to this point all work had primarily focused on the structure of an episodic

memory and how it can fit into a cognitive architecture. Here, they evaluate

how episodic memory contributes to the cognitive capabilities of an agent

in an environment. Their evaluation is on two different games: tankSOAR

and Pacman. The evaluation consists of showing how the agent’s action

modelling and decision making improve when enabled by an episodic mem-

ory. They show how, after multiple runs of each game, passing episodic

memories down through the runs, the agents are able to learn to outper-

form the hand coded control agent by predicting the outcome of future

actions.

Operating in an unstructured domestic environment, episodic memories

require a rich representation. Tecuci and Porter [73], represent generic

events as a triple: 〈context, contents, outcome〉, where context is the set-

ting that an episode took place in, contents are the set of events that make

up an episode and the outcome is the episode’s effect. We employ a similar

representation as described in Chapter 4. However, we make some slight

adjustments. Each generic event is represented as a frame [74] in a graph

42

database. The contents in Tecuci and Porter’s representation are replaced

by a compound action, whose effect results in a significant state change.

This is something that will be explained in more detail later. The con-

text is separated into time and location variables. We also include links

to other events that may be connected to the current event. The event

representation and justification for it is explained in Chapter 4.

Stachowicz et al [75] proposes an episodic-like memory (ELM) for cognitive

robots. They use the term episodic-like memory as, once again, their model

is based on a hypothesis of what episodic memory is, as opposed to a proven

definition. The term episodic-like memory was coined by Clayton et al

[76, 77]. Stachoiwcz et al design their system with the aim of being able to

connect experiences over time and space and to be able to efficiently recall

them.

Stachowicz et al identify a number of components that they claim are

essential to an ELM module. They first state that previously experienced

events must be recollected in their spatio-temporal context. They deal more

specifically with quantitative spatio-temporal measurements as opposed to

qualitative. They note that a complex event is made up of several sub-

events and that the retrieval of any one component of an event means

a retrieval of all of the event. The information present in an episode or

event must be flexible, by which they mean that they should be able to

manipulate the information to relate it to similar but not exact replicas of

the event.

Learning from an event must be done after a single observation. They note

that events can be both nested and overlap with one another and that the

ELM module must act independently of any other software modules. In

other words, no other software module should be designed specifically to

cater for the ELM.

Although this covers a number of the key elements of an Episodic Memory

Module (EMM) it misses several crucial points. For example, they fail

to take into consideration the significance of an event. The significance

of an event is one of the main factors in determining whether or not an

43

event is added to the EMM in the first place. They also do not take

into consideration the degradation of a memory over time. The EMM

has a limited capacity and so it is crucial that old and possibly irrelevant

memories are removed to make room for more recent or more relevant

episodes. Another serious limitation, which is common to most of the work

that we have reviewed, is that they put constraints on the data that an

episode can have. This means that an agent is limited in what it can learn

and remember and therefore also limited in what it can retrieve.

Constraining data types has the advantage that events can be indexed

and retrieved in nLog(n) time. However, speeding up retrieval does not

remove matching errors. Constraining the data types also means trying

to fit a single retrieval cue to all events. We have already discusses why

this is not suitable for unstructured environments, as encountered by a

domestic robot. So while this approach may retrieve events quickly, it

is not guaranteed that the correct event will be retrieved and it does not

generalise to unstructured environments. We describe our solution to these

problems using Ripple Down Rules in Chapter 4.

Liu et al [78, 79] present some interesting uses for an Episodic Memory

Module (EMM). They use the EMM to improve behaviour planning. Even

though all states of the environment are not observable to a robot it must

still make a decision on its behaviour. They note how using a partially ob-

servable Markov decision process for planning under uncertainty can pro-

duce some good results but they also note that it can also become compu-

tationally inefficient when the number of unobservable states becomes too

large. By using the episodic memory they can reduce perceptual aliasing.

In other words, they try to reduce the errors of the current observed state

determined purely by sensor data by trying to match the current state to

one of the previously observed states. They note in their paper how the

spatio-temporal information is relevant to constructing an event but again

discuss it in a purely quantitative way.

Similar to Stachowicz et al they also note the importance of one-shot learn-

ing. Like with Stachowicz, however, they do not take into consideration the

significance of an episode, nor do they address the degradation of an episode

44

as its repetition throughout time becomes less frequent or non-existent. Liu

et al also constrain their data types.

Other methods for event retrieval, have been proposed. We have already

discussed the technique used in SOAR [70]. Lim et al [80] use a method

called a compound cue to retrieve events. This is problematic, however, as

it relies on retrieving events based on a number of matches in the attributes

between two events. This, in a large enough data base will almost certainly

lead to multiple matches with no way of finding the best match given the

current context.

The general associative memory model of Shen et al [81] also proposes a

method that can retrieve events even with partial or noisy retrieval cues.

Chang and Tan [82] improves on this, based on a generalised self-organising

neural network known as fusion adaptive resonance theory. They evaluate

their method on the CAVIAR data set. While their model is complete and

works well with both noisy and partial retrieval cues it makes assumptions

about what information is relevant to any given event. This will make

it difficult to generalise over a complete continuous spectrum of events as

some information is relevant in certain contexts and not others. Their

retrieval is also based on obtaining a match score between two events and

therefore risks losing valid matches as it returns the best match score as

the correct match every time. As it is a neural network like approach they

normalise all of the input data thereby losing all contextual information.

We address many of these issues by embedding ripple down rules [4, 6, 3]

into the generic frame of an episode.This allows our system to learn a

customised matching algorithm for events of any type. That is, the best

match will be returned based on a set of rules for that particular event.

This means that partial or noisy event cues can be handles by rules that

can discard missing or noisy information. It also means that we are not

confined to learning a matching algorithm for events of any one type.

Berlin and Motro [83] propose an alternative approach to event retrieval.

They use Bayesian learning to match two client schema. An attribute

dictionary is a collection of attributes consisting of possible values and their

45

probabilities. The database acquires knowledge about attributes through

inputs from domain experts. They determine a matching score which is

a numeric value determining to what extent the client X matches to the

dictionary A. They do this for pairs of schema and the total matching score

between schema A and schema B is the sum of the matching scores between

schema A and the dictionary and schema B and the dictionary. As this

requires a lot of training data, we chose not to investigate this any further.

Other machine learning techniques for data matching have been proposed

by Leordeanu [84] and Caetano [85]. While machine learning techniques

can be very powerful for event retrieval as we have noted, they can also

have major drawbacks in that they very often attempt to fit a single cue to

all events. One of the advantages of Leordeanu and Caetano is that they

move away from handcrafted solutions to a retrieval cue, and learn as new

data are presented. However, as with a lot of machine learning techniques

these methods required large data sets.

Vernon et al [86] present a case for a joint episodic-procedural memory.

Their procedural memory is a means by which an agent anticipates future

events based on sensory experience. They propose a framework that al-

lows internal simulation to be conditioned by sensory inputs and episodic

memory. The simulation hypothesis, as they refer to it, makes three as-

sumptions:

1. Regions of the brain can be excited without causing physical move-

ment;

2. Perceptions can be caused by internal brain activity and not just

external stimuli;

3. Motor behaviour or perceptual activity can evoke other perceptual

activity.

They claim that episodic memories can evoke these three assumptions and

can therefore be used to anticipate future action. In their research, they

focus strongly on the neurobiological aspect of episodic memory. They

46

note how episodic memories can be fuzzy or incomplete representations of

an experience and retrieval of an episodic memory may create a different

reconstruction each time.

2.5.1 Case Based Reasoning

Case Based Reasoning (CBR) attempts to solve problems based on solu-

tions to similar, previously encountered problems, and so is very closely

related to episodic memory. Kolodner [87] and Sharma and Sharma [88]

review recent work on CBR.

Some of the earliest work related to CBR was presented by Schank and

Abelson [89] in 1977. They proposed that situations can be recorded as

scripts, where each script provides information about an event that allows

the system to create expectations or perform inferences. Watson and Marir

[90] give an extensive review of this work.

One of the main challenges facing CBR is how to retrieve the most rele-

vant case given an observation. One of the most common methods is the

two-phased approach described earlier. The first phase typically involves

an inexpensive, shallow retrieval to select some candidate matches. The

candidate matches are typically quite broad in nature and most of the can-

didates will not be valid matches of the observation. The second phase

applies a more fine-grained method to rank the matches, selecting the best

one. Kendall-Morwick and Leake [91] compare some of the most com-

mon two-phased retrieval algorithms and note the design considerations

necessary for effective and efficient retrieval. One of the more common

methods is to window the phase-one retrieval so that the number of candi-

date matches returned is limited, thereby improving the time complexity

for the second phase. Our retrieval algorithm is also based on a two-phased

approach, although we do not limit the number of candidate matches in

the phase-one retrieval as this risks excluding a valid match.

Kendall-Morwick and Leake’s compare phase-two retrieval algorithms where

the candidate matches are ranked. No algorithm was conclusively found

47

to be superior. This is because CBR can be applied to such a wide diver-

sity of environments that it is impossible to definitively state the “best”

method for ranking candidate matches. Many of the algorithms implement

a qualitative similarity function. This is usually a simple calculation based

on the quantity of common information between two cases or some other

hand crafted similarity measure, such as, a geometric distance calculation.

Veloso and Aamodt [92] and Riesbeck and Shank [93] are examples of the

latter where the observed features serve as dimensions in the event space.

Homem et al [10] employ qualitative learning through CBR and apply it

to learning “keep-away” soccer in the RoboCup 2D soccer simulation. To

match cases, their qualitative similarity function is based on a Concep-

tual Neighbourhood Diagram (CND). A CND is defined as a spatial region

containing each of the 49 spatial relations in EOPRA6 [94]. They calcu-

late the qualitative distance between objects in the CND to compute the

qualitative similarity between previous cases and the current case.

The problem with qualitative similarity functions is that while they retrieve

cases that are similar, based on the provided metric, they do not necessarily

retrieve the most relevant cases for the task at hand. Smyth and Keane

[95] note that instead of simply retrieving the case that is most similar,

the system should instead retrieve the case that is most easily adaptable to

achieve the goal of the current task. They use a look ahead method where

they estimate the cost of adapting a particular case to achieve the goal of

the current task before retrieving it. This is computationally expensive in

the short run, but it does achieve better results. Typically, cases that are

easier to adapt to solve the problem are best suited to the task, following an

Occam’s razor assumption. However, there is a limitation to this approach

too. They evaluate it in a warehouse domain that has a finite number of

possible or likely states and therefore a finite number of executable actions.

Thus, it is possible to estimate the cost of adapting a case to a particular

situation. This is not so suitable for an unstructured environment where an

agent may have to perform the same kinds of tasks in a variety of situations

or contexts and so modelling the cost of adaptation of particular cases is

very difficult and often impossible.

48

In our work we address the problem of how episodes can be retrieved based

on contextually relevant information where the type of event is not known

in advance. It is also not known in advance what types of information

might be relevant to a given type of event and why. Thus, our system is

built on an adaptive, incremental learning algorithm where rules for why

one type of event matches an observation are learnt.

There have been many practical applications of CBR. A review of applica-

tions of CBR by Maher and Pu [96] details how CBR is has been used in

design. In particular, they review applications in architectural design, car

design, communications design and even in such niche areas as fire engine

design. CBR has also been used in medical applications (Holt et al [97]). In

more recent years, neural networks have been favoured in this area [98, 99],

but due to the increasing demand for explainable AI, CBR methods are

making a return. CBR enables a physician to narrow down the scope of

possible diagnoses and treatments. Much of this work again uses on quali-

tative similarity measures where the more symptoms that match, the more

likely two cases match. As noted, CBR has largely been applied to domains

where qualitative similarity functions are suitable or in the case of Smyth

and Kean [95], a cost estimation approach is instead used. In the review

by Sharma and Sharma [88], they note the four steps in CBR as retrieve,

reuse, revise and retain and the retrieve step is responsible for recalling the

most similar case using some variation of a nearest-neighbour algorithm.

Our work can be considered a form of case-based reasoning where each type

of event has its own similarity measure, which is learned incrementally with

each observation of a new instance of an event type. Using incremental

learning, a policy for a particular type of event can be acquired based only

on what is relevant to that type of event. If a particular type of event is

incorrectly recalled then the policy is updated, in either a supervised or

an unsupervised manner, using domain specific knowledge acquired from a

human expert and induced through observations of that type of event. We

describe this process in Chapter 5.

49

2.5.1.1 Never Ending Learning

Never Ending Learning (NEL) is very closely related to episodic memory

in that it involves agents learning from their environment over extended

periods of time. Never Ending Language Learner (NELL) [100, 101] is

a machine learning system designed to read blocks of text from the web,

extracting relevant information. Each day the learner is supposed to im-

prove on its reading ability, which means to improve on the accuracy of

its interpretation of the text. Carlson et al [100] describe the learner in

its earlier stages after just 67 days, explaining the architecture and goals

of the system. The basic design consists of a knowledge base (KB), which

is a collection of facts and a knowledge integrator (KI). This basic design

decides on which facts to promote to the KB. Each day the KB is consulted

and external sources check to verify if the facts are still relevant. The facts

are then weighted with a confidence rating and presented to the knowledge

integrator, which then makes a final decision on the level of confidence in

the proposed fact and the facts with the highest rating are restored to belief

status. In this way, the current base of facts is constantly being questioned

to ensure that they are still valid. This would be of benefit in a domestic

robot since the environment can change frequently.

Carlson et al describes the design as working like an expectation-maximisation

(E-M) algorithm. The E step adds facts to the KB and the knowledge in-

tegrator then checks these facts and makes a final decision on them. The

M step then retrains the software modules so that they are up to date with

the new knowledge. Further design principles that Carlson et al claim are

necessary for a system like this to work are:

• Using subsystem components that make uncorrelated errors - If we

train multiple classifiers to classify the same thing then they can

verify each other, reducing the overall error rate;

• Learning multiple types of inter-related knowledge. This provides

multiple independent sources of the same types of beliefs;

• Using couple semi-supervised learning. Coupling allows one predicate

50

to teach another;

• Distinguishing high confidence beliefs from low confidence constraints

• Using a uniform KB representation to capture candidate facts.

After the first 67 days the NELL system achieved a precision of 74%.

Mitchell et al [102, 101] extended NELL, collecting over 120 million con-

fidence weighted beliefs. They discuss the similarities between NELL and

the way in which a human learns over time. People, as they note, learn to

perform numerous different functions over years of self-supervised training,

where previously learned knowledge enables the learning of new knowledge

and self reflection ensures that plateaus in performance do not occur.

The NELL provides a good case for where long-term learning is useful.

Long-term Autonomy has also been a focus for research in robotics. Hawes

et al [103] study the performance of service robots over long-term usage.

Similar work was also conducted by Willow Garage [104] and TANGY [105].

Hawes et al define long-term usage as a number of weeks of non-stop use,

with the obvious exception of allowing the robot time to recharge. They

focus mainly on software robustness and how it can improve over time

through learning.

Nicolescu et al [106] teach robots how to perform new tasks through a

combination of demonstration and verbal cues from a human expert. The

aim is to develop a flexible mechanism that allows a robot to learn and refine

representations of high-level tasks from interaction with a human through

a set of underlying capabilities already available to the robot. One ability

that humans possess when learning new tasks is to differentiate between

relevant and irrelevant information. Therefore, they propose to perform

multiple demonstrations to the robot, in different environments and to

further refine it thereafter with feedback from the teacher. In this way, the

robot can more easily distinguish relevant and irrelevant facts. As well as

purely visual training during the demonstration, the human teacher gives

the robot verbal cues . For example, if the teacher were to say “Here”

it indicates to the robot that the current environment is relevant to the

51

task. “Take/Drop” are instructions that provoke the robot into performing

certain actions and “Start/Stop” indicate when training has started and

finished.

Calinon et al [107] similarly look at differentiating between relevant and

irrelevant information. The main focus of the paper is on how to generalise

the information that has been presented to the robot during training. The

aim is to teach the robot some simple manipulation tasks, specifically,

picking and placing a bucket, moving a piece on a chess board in a certain

configuration and picking up a piece of sugar and bringing it towards the

mouth. The procedure is first to find the relevant features of the task then

decide on how the task should be performed and finally attempt to find

an optimal controller to generalise the task by the most efficient method.

In training the robot they use a slightly different approach from Nicolescu

[106]. Instead of getting the robot to watch and repeat before giving it

some verbal cues to refine the task reproduction performance, they instead

manually move the various hardware components of the robot in a process

they refer to as kinesthetics. They argue that by training the robot in this

fashion they can more accurately and more quickly collect the relevant data

than if the robot were to observe a human performing the task.

CoBot [108, 109, 110] was a robot operating at CMU alongside people over

an extended period of time. The idea is that CoBot could assist people

in the lab with things that they may need but could also request help

from people when it encounters a problem that it could not execute due

to hardware or software constraints. The research is conceptually similar

to ours in that it is a robot operating in the real world with people. If the

robot became mis-localised it asked a person to confirm to it where it was.

The research also focused on knowing which people were likely to be able to

help, for example they may know that Dave in room B is a good candidate

for assistance. This is episodic in that the information is spatio-temporally

aligned, but otherwise the system did not make as general use of episodic

memory as our system.

Kunze et al [111] conducted a review of work in Long-Term Autonomy.

The survey covers in depth the application of LTA to different fields of

52

robotics such as Navigation and Localisation, Knowledge Representation,

HRI, Perception and Learning. Most of the work presented in the review

has also been reviewed in this literature survey.

2.5.2 Plan Recognition

An important aspect of our work is in being able to recognise the state

of the world as a result of some action or set of actions. This share some

problems with plan recognition. Here, we only review the work most closely

related to ours.

Blaylock and James [112] goal recognition system tries to predict the goal

of a plan from a sequence of observation. The work is related to ours in

that it must recognise if a new observation is a new event or an extension

of the currently observed events. In our work, we are concerned with being

able to determine the point at which an episode terminates.

Abductive reasoning is often used to infer a plan given an observation.

Singal and Mooney [113] note some of the issues that occur with classical

abductive reasoning techniques such as, for example, that they are typically

constructed of hard clauses and as such cannot handle uncertainty. By con-

trast, probabilistic methods handle uncertainty well but cannot cope with

structured data representations. They introduce an approach that uses

Markov Logic Networks. The approach mitigates the drawbacks associ-

ated with both first-order logic approaches and probabilistic methods and

retains the benefits of both.

An example best illustrates the relevance of plan recognition to our work.

If a robot is requested to pick up a cup there are several actions that are

executed in the process. The first is to navigate to where the cup is. Using

abductive reasoning, combined with a probabilistic model, we could abduce

that no plan resulted in this state of the world, i.e. the robot being at the

cup location. It is therefore likely that this action is an intermediate action

and part of a plan that will result in a significant change in the world’s

state, such as the robot holding the cup.

53

This is essential as will become clear when we detail how an event is created

in Section 4.2. We create events based on a significant state change in the

world, which is the result of a compound action being executed. Recog-

nising compound from intermediate actions means that we do not create

events for every single action but only for significant ones.

Meadows et al [114] address a similar issue. They focus on plan under-

standing which is different to plan recognition in that the objective is to

provide an explanation for an agent’s behaviour in terms of the inferred

goals, beliefs and intentions of the agent based on observed actions. To

achieve this, their system incorporates a knowledge base of rules expressed

in first-order logic and a working memory that is a set of ground literals.

Their representation has a hierarchical structure, in which a task is sub-

divided into conditions, invariants, subtasks and effects. This structure

relates closely to our work because, as previously noted, we require a tech-

nique to differentiate intermediate and compound actions, similar to how

Meadows et al segment their task structure into compound-and sub-tasks.

However, they rely on a priori domain specific knowledge. This is means

that facts must be explicitly added to the knowledge base, which reduces

the generalisability of their technique. In contrast to this, we use a statis-

tical model, combined with abductive reasoning to learn whether certain

types of actions are in compound actions or if they serve only as an in-

termediate action. This is complicated by the fact that this may depend

on the context in which the action is executed. Consider two cases where

a robot must leave a room. In one case, it is to get to another location

where a more significant task awaits it. In another it is because it has been

requested to leave the current room because it is causing an obstruction. In

the former case, the action of traversing to another room is an intermedi-

ate action whereas in the latter it is a compound action as its outcome has

achieved a significant state as the action was carried out on the instructions

of a person.

Kautz and Allen [115] introduce an action hierarchy where actions are de-

composed into sub-actions. This enabling them to make inferences about

a plan without exact matches being required. For example, a makePasta

54

action may be subdivided into two sub-actions, makeSpaghetti and makeG-

nocci. Therefore, on observing either of these actions a conclusion could

be made that making pasta is the objective and as this action is tied to a

boil action it can be inferred that boiling will occur at some point in the

future.

This action hierarchy representation is relevant to our work in that we

require a similar understanding of how actions can be decomposed into

compound actions that achieve a significant goal and intermediate actions

that are executed along the way.It should be noted however, that Kautz

and Allen make a closed world assumption where all actions and their

decompositions are known in advance. We make no such assumptions.

Moreover, in our work the same action executed in different contexts may

be an intermediate action or a compound action and so we cannot use an

a priori world representation like Kautz and Allen.

55

Chapter 3

Topological Mapping

The work described in this chapter was published in the Australasian Con-

ference for Robotics and Automation 2020 [116]

3.0.1 Statement of Acknowledgement

This research was jointly conducted with Dr. David Rajaratnam. Dr.

Rajaratnam’s original research on topological mapping was extended so as

to capture, as best as possible, the true ground truth representation of each

room and corridor within an environment allowing us to achieve the state of

the art results that are presented here and allowing us to build a semantic

ontology of an environment for use in an episodic memory system. .

3.1 Introduction

We already noted in the literature survey the relevance of topological map-

ping, particularly its function in providing us with a basis for a world

model, which is essential for episodic memory. This is our primary use for

a topological map in the context of an episodic memory system. While

we mention the advantage of a topological map to a navigation task, par-

56

ticularly how some of the maps that we create can be used to generate

paths of maximum safety, we do not explore those use cases in this the-

sis. Instead, we explore how a topological map allows us to ground objects

to regions of an environment so that a robot can more effectively reason

about state changes of those objects. This is handled through a combina-

tion of the world model and live observations. We also reviewed the most

relevant work to date in the field. In this chapter, we present the basis

for our method. We first briefly summarise the method and explain the

significance of the research and we then provide a detailed description of

the theory, implementation, evaluation and results. Finally, we conclude

with proposed extensions to the work.

Topological mapping is the process of segmenting a metric map into a col-

lection of meaningful regions. What is regarded as meaningful is context

dependent. For example, sometimes it may be relevant to know only the

outer boundaries of an environment so that an agent knows the limits to

which it is permitted to travel. In other contexts, it may be necessary to

segment the environment into a collection of regions that an agent can ac-

cess, or a collection of regions that a team of rescue robots can access [117].

It is worth noting the distinction between topological mapping and seman-

tic mapping as these two are often confused. As noted, a topological map

is a map that has been segmented into different regions of space. In our

approach, as will become clear, these regions are linked by critical points.

A semantic map provides a high-level or qualitative description of the en-

vironment, often using features to generated meaning to a region of space.

Our approach primarily focuses on topological mapping in that we are pre-

senting a novel approach to segmenting a metric map. We do however use

semantic features within the environment to assist in a semi-autonomous

labelling process to provide logical names to regions. For example, we

might use the fact that a robot identified a sink and fridge to assign the

label kitchen to a particular region. Our main contribution however is in

the field of topological mapping rather than semantic mapping.

In our work, we are interested in regions that provide an accurate descrip-

tion of the structure of rooms and corridors within an indoor environment

57

such as an apartment, house, or office. In robotics, there are several applica-

tions for topological maps based on this type of segmentation, for example,

high-level path planning, localisation [118] and spatial reasoning [119] to

name but a few.

As noted already, our primary motivation for generating accurate topo-

logical maps lies in their application to the development of episodic mem-

ory, which includes building associations between information of many dif-

ferent types, such as times, locations and actions. In other implementa-

tions of episodic memory in cognitive robots, such as the SOAR architec-

ture [69, 7, 120], the availability of this information is often assumed at

a high-level of abstraction. It remains an important and open challenge,

how such abstract information can be derived from low-level sensor data.

In particular, because episodic memories contain spatio-temporal informa-

tion, the ability to determine the location, in qualitative terms, at which an

event took place is essential. Accurate topological maps fulfil this function.

Our work addresses some key issues in the construction of accurate topolog-

ical maps from the occupancy grid produced as part of a robot’s Simultane-

ous Localisation and Mapping (SLAM) process [121, 122, 123]. The main

issues that we aim to address are assumptions that previous approaches

make in relation to the environment. While not all approaches that we

have reviewed make all these assumptions, the main ones that we have

identified are, environments must be empty, environments must be con-

vex or relatively simple in shape, or the number or size of doorways in

the environment. Our approach softens many of these assumptions while

still achieving state of the art results. In particular, we make three major

contributions. Firstly, we provide a method to build accurate topologi-

cal representations of an environment. Secondly, our method makes no

assumptions about the semantics of the environment.

Finally, our approach produces five maps at distinct levels of abstraction,

all with different yet highly relevant information. At each stage, we create

a more generalised representation of the environment for the robot to use,

removing low-level of metric features at each step. The different levels of

abstraction are important to note as they provide the robot with maps

58

that can be used in different contexts. For example, the third map that

we create is a Generalised Voronoi Diagram. This informs the robot about

paths of maximum clearance throughout the environment. By following

these paths, a robot may not find an optimal route but will find one of

maximum safety where it is least likely to damage itself or anything else

by colliding with objects or people. This is essential if we are to adhere

to Azimov’s first and second laws of robotics. The final maps provide the

robot with high-level descriptions of the spatial connectivity of different

regions of the environment. The robot is then able to communicate at

a level that people can comprehend. This abstract representation of an

environment is crucial for a robot to co-exist with people.

The maps are produced as part of a five-stage pipeline. We summarise this

pipeline in Section 1.3.

Our method is evaluated using a precision and recall metric as proposed

by Bormann et al [2] over ground truth. We achieve 98% precision and

96% recall in both empty and cluttered environments of arbitrary shapes

and sizes, which to the best of our knowledge is the most accurate segmen-

tation of an environment to date. We use a combination of open source

maps, provided by Bormann et al [2], Google’s open source SLAM software,

Cartographer[124] and maps that we generated in our laboratory using a

Toyota Human Support Robot [125].

3.2 Methodology

As noted, our region segmentation algorithm is a five stage pipeline where

each stage of the pipeline produces a map at a different level of abstraction

to the previous stage. The five stages of the pipeline are as follows:

• Clean the occupancy map;

• Create a Generalised Voronoi Diagram (GVD);

• Determine doorway points;

59

• Create regions;

• Merge regions.

Note that we use the term regions as opposed to Voronoi regions. While it

is true that we start from a GVD, the regions themselves are not Voronoi

regions. A Voronoi region is a polygon in which all points enclosed within

the polygon are closer to a one Voronoi point than they are to any other

Voronoi point. It will become clear later as to why this is not the case in

our work.

The first four stages of the pipeline can be computed dynamically by ex-

tending the dynamic variant of the Brushfire algorithm for computing a

Generalised Voronoi Diagram, proposed by Lau et al [11]. While the

dynamic variant of the Brushfire algorithm is itself not an original contri-

bution of our work, as it is a re-implementation of Lau et al [11], we do

extend the algorithm by applying it to stages 1 through to 4 of our pipeline.

3.2.1 The Brushfire Algorithm

The Brushfire algorithm is a means of calculating the attractive potential of

cells in an occupancy grid. It is often categorised as a planning algorithm,

but it has a broader application. It is particularly useful when trying to

find a path of least resistance rather than the shortest path. In using the

algorithm on an occupancy grid, the initial step is to assign all occupied

cells a zero distance value, the next step is to assign all free cells that touch

an occupied cell a value of one. Cells that touch a cell with a value of

one but are themselves free are assigned the value two and so on. The

method is summarised in algorithm 2. A graphical representation of how

the algorithm is applied to a static map is given in figure 3.1.

Let cx ∈ Ri×j. Where Ri×j is the occupancy grid and cx is a cell with

coordinates (i, j)

Extending the basic brushfire algorithm, Lau et al [11], develop a dynamic

variant that is able to efficiently deal with updates to the occupancy grid

60

Algorithm 2 brushFire: Brushfire Algorithm

Input: Ri×j

brushfire(Ri×j)

1: for all cx ∈ Ri×j do
2: if occupied(cx) then
3: cx.value← 0
4: else if notOccupied(cx) then
5: lowestNeighbour = findLowestNeighbour(cx, R

i×j)
6: cx.value← lowestNeighbour + 1
7: end if
8: end for

Algorithm 3 findLowestNeighbour: Finding a cell’s lowest valued
neighbour

Input: Cell cx with coordinates (i,j), Occupancy grid Ri×j

Comments:
1: Gets the 8 cells that touch the current as an array.
3: Remove the zeroth element of the Adj8 array 5: It is possible the nearbouring
cells have not yet been assigned a value either
findLowestNeighbour(cx, R

i×j)

1: Adj8 = getAdjacent(cx, Ri×j)
2: lowestValue = getValue(Adj8.at(count))
3: Adj8.removeAt(0)
4: while lowestValue is null do
5: lowestValue = getValue(Adj8.at(count))
6: Adj8.removeAt(0)
7: end while
8: for all a ∈ Adj8 do
9: value = a.value

10: if value is null then
11: continue
12: else if value < lowestValue then
13: lowestValue = value
14: end if
15: end for
16: return lowestValue

61

Figure 3.1: Graphical representation of the Brushfire algorithm. The cells
in the grid that are coloured black are occupied. Any cell, whether fully or
partially occupied is assigned a value of zero. Neighbouring cells of a cell
whose value is zero, and free, get a value of one, cells that are neighbouring
a cell of value one and are free are assigned a value of two and so on.

by tracking any changes and only recalculating cells that are modified as

a result of these changes. They use this algorithm to calculate Voronoi

points as part of a GVD. Here, we apply the algorithm to each of the first

four stages of our pipeline.

When creating a map, a new occupancy grid is generated at whatever fre-

quency the LIDAR publishes its data. This new map contains information

about previously unknown cells or else updated information about the state

of previously known cells. When a cell changes its state to occupied, Lau et

al [11] initially call one of two functions: setObstacle for when the value

of the new cell is known and occupied or removeObstacle for when the

value of the new cell is known and unoccupied. Both of these functions

update the value of the cell and insert it into a priority queue that sorts

the queued cells by distance. They then iterate over this queue in the up-

dateDistanceMap function and call either a “lower” or “raise” wavefront

as required. A “lower” wavefront is called when a cells state changes to

occupied. The “lower” wavefront updates the closest obstacle distance of

affected cells. Similarly, a “raise” wavefront is called when the value of a

cell changes to unoccupied. The “raise” wavefront clears the distance value

of all cells whose closest obstacle was the newly unoccupied cell. When call-

ing the updateDistanceMap function the changes are propagated to all

affected cells which completes the update.

62

In the implementation by Lau et al [11], the “lower” wavefront is respon-

sible for determining if a cell is in the GVD. In our case, the algorithm is

has more than one purpose. The first job of the “lower” wavefront is to

determine the value of unknown occupancy grid cells. We are assuming

that each cell should have a definite value, either occupied or unoccupied,

but due to noisy lidar readings this may not be the case. Thus, as we will

demonstrate in Section 3.2.2, we develop a method to decide the value of

unknown occupancy grid cells. The second job is the to determine if a

cell should be included in the GVD, the third is to determine if a cell in

the GVD is a critical cell and lastly if a cell is not in the GVD then we

determine which region it belongs to.

The pseudo code for these algorithms is seen in algorithms 4 to 7.

In algorithms 4 to 7, obst refers to an array, which for each cell in the

occupancy grid, stores the coordinates of the nearest occupied cell. If a

cell, s, is occupied then its value in obst is itself. The variable dists refers

to the distance from s to its nearest occupied cell. The function isOcc(s)

returns true if s is an occupied cell and clearCell resets the value of s. The

function insert, inserts s into the priority queue with distance d or updates

its priority if s is already in the queue. Comparing these algorithms to Lau

et al [11], one might only see a small difference in algorithm 7 where,

instead of only trying to establish if a given cell is a member of the GVD,

we execute all functions that make up the first four stages of our pipeline.

This is what the function callAllMapUpdates is responsible for.

63

Algorithm 4 setObsta-
cles/removeObstacle: Lau
et al ’s dynamic variant of the
Brushfire algorithm

Input: s - a cell on the grid
setObstacle(s)

1: obsts ← s
2: dists ← 0
3: insert(open, s, 0)

removeObstacle(s)

1: clear(s)
2: toRaises ← true
3: insert(open, s, 0)

Algorithm 5 updateDis-
tanceMap: Updating the
distance map

updateDistanceMap()

1: while open 6= empty do
2: s← pop(open)
3: if toRaises then
4: raise(s)
5: else if isOcc(obsts) then
6: lower(s)
7: end if
8: end while
9: return updatedMap

Algorithm 6 raise: A raise
wavefront
Input: s - a cell on the grid
raise(s)

1: for all n ∈ Adj8(s) do
2: if (obstn 6= cleared ∧

¬toRaisen) then
3: if ¬isOcc(obstn) then
4: clearCell(n)
5: toRaisen ← true
6: end if
7: insert(open, n, distn)
8: end if
9: end for

10: toRaises ← false

Algorithm 7 lower: A lower
wavefront
lower(s)

1: for all n ∈ Adj8(s) do
2: if ¬toRaisen then
3: d←‖obsts − n‖
4: if d < distn then
5: distn ← d
6: obstn ← obsts
7: insert(open, n, d)
8: else
9:

callAllMapUpdates(s,
n)

10: end if
11: end if
12: end for

In the following explanation of each of the five stages of the pipeline, we

assume that we are working with a static map. Our main reason for doing

this is that it makes the explanation of what is happening at each of the

stages clearer.

64

Algorithm 8 callAllMapUpdates: Calling the relevant functions

Input: Cell s and adjacent cell n
callAllMapUpdates(s, n)

1: correctMap(s, n)
2: selectVoronoiPoints(s, n)
3: selectDoorwayPoints(s, n)
4: createRegions(s, n)

3.2.2 Cleaning the Occupancy Map

An occupancy grid is a map generated using SLAM [121, 122, 123]. The

value of a cell in an occupancy grid can be either occupied, unoccupied or

unknown, where the last case indicates the unexplored areas of the environ-

ment. Deciding what to do with unexplored areas is important in building

a topological map, in particular because frequently, the laser scanner used

to generate the occupancy map incorrectly identifies a particular cell as

unknown when in fact the value of that cell should be known.

This can produce a spray paint effect that leads to generating regions

around features that do not correspond to any actual features in the en-

vironment. This can also have adverse effects on other common low-level

algorithms such as an A∗ path planning algorithm.

To solve this, we propose a simple, yet effective, algorithm that corrects

or cleans the occupancy grid of these cell misrepresentations. If a cell is

unknown but touches an occupied cell then its value becomes occupied. If

it is unknown but touches only unoccupied cells then its value becomes

unoccupied. The algorithm is summarised in algorithm 9. Let the state or

value each cell, ci,j ∈ Ri×j where Ri×j is the two dimensional occupancy

grid, be represented as ci,j.state.

This algorithm makes the task of generating a topological map significantly

more feasible as it means that at the very least, the outer boundary of the

map and any other walls within the map are now unbroken and do not

contain any missing or incomplete data.

On occasions however, it is possible that we remove real artefacts from the

65

Algorithm 9 correctMap: Cleaning the Occupancy Map

Input: Occupancy map Ri×j

Comments:
9: If any neighbouring cell was occupied, the state would not be unknown and so
this would only be assigned occupied in that event
correctMap(R)

1: for all ci,j ∈ R do
2: Adj8 = getAdjacent(ci,j , R

i×j)
3: for all a ∈ Adj8 do
4: if ci,j .state is unknown ∧ a.state is occupied then
5: ci,j .state← occupied
6: break
7: end if
8: end for
9: if ci,j .state is unknown then

10: ci,j .state← unoccupied
11: end if
12: end for

occupancy grid. For example, the legs of a table or chair are often narrow,

which can confuse a SLAM algorithm as the LIDAR data are not as reliable

as data from a wall or some other larger feature.

When this happens, the legs of tables can often be represented as unknown

points when they should be known and occupied. Moreover, it is possible

that they are represented as unknown points that touch only unoccupied

cells. By algorithm 9, they are then interpreted as being themselves unoc-

cupied cells and are removed from the map. This can create difficulties for

a navigation algorithm. However, we have found that it does not cause any

serious issues for our region segmentation algorithm. Such an effect can

be seen in figure 3.2. Importantly, as the robot keeps exploring the space

around it, the LIDAR data will become more complete and any errors in

the map will be updated.

A before and after image is shown in figure 3.2. The occupied cells are

black, the unoccupied cells are white and unknown cells are grey. Note

that in the figure on the right there are only two colours present after

cleaning because all cell states are considered to be known.

66

(a) Before Correcting (b) After Correcting

Figure 3.2: Before and After Correcting the Occupancy Grid

3.2.3 Creating the Generalised Voronoi Diagram

The Generalised Voronoi Diagram (GVD) is a collection of points in free

space where the two closest obstacles to each point have the same distance

[126, 127]. Typically, this applies only to a continuous space and not to

a discretised cell space. A more complex algorithm is needed to compute

the GVD for an environment represented by a map with discretised cells,

as usually generated by SLAM algorithms.

In selecting which cells are candidates for the GVD, we use the method

proposed by Lau et al [11], which is itself an extension of the technique

presented by Kalra et al [128]. We choose this algorithm as it very accu-

rately and quickly generates a GVD and it is easy to implement with a

Brushfire algorithm to work with dynamically changing environments.

Let a cell be denoted ci,j and a neighbouring cell be ni∗,j∗ , the asterisk

representing plus or minus zero or one. If both ci,j and ni∗,j∗ are potential

Voronoi cells in the continuous sense with the distance to the nearest oc-

cupied cell, occc and occn being distc and distn respectively, and if distn

cannot be lowered by using occc as the new occupied cell for ni∗,j∗ then we

must check which of the two cells is a candidate for the GVD. This can oc-

cur because we are dealing with cells as atomic variables rather than single

points. Having two neighbouring cells in the GVD can cause complications

so it is generally considered good practice to avoid this.

67

We first check that neither ci,j nor ni∗,j∗ is adjacent to its closest obstacle.

Lau et al [11] then state the following: If ni∗,j∗ has a valid closest obstacle

that is different and not adjacent to the valid closest obstacle of ci,j then the

cell that is chosen as a candidate for the GVD is whichever cell violates the

continuous Voronoi condition to a lesser extent. In other words, if we were

to swap the obstacles around so that the closest obstacle to ci,j is now the

obstacle of ni∗,j∗ and vice versa, then whichever has the smaller distance

increase is selected as a candidate for the GVD. Algorithm 10 clarifies the

process. Let voroGraph represent the GVD. When calling this algorithm,

it is assumed that we have computed the GVD in the continuous space

already. This algorithm is then called when two of the cells in the GVD

are neighbours to each other.

Algorithm 10 selectGVDCell: GVD Cell Selection [11]

Input: Two cells in the GVD, ci,j and ni∗,j∗ and the two cells that each of
these are nearest too, cnearest, nnearest.
selectGVDCell(ci,j, ni∗,j∗ , cnearest, nnearest)

1: if distc > 1 or distn > 1 then
2: if cnearest 6= nnearest ∧ ¬touching(nnearest, cnearest) then
3: if distance(ci,j, nnearest) < distance(ni∗,j∗ , cnearest) then
4: voroGraph.insert(ci,j)
5: else
6: voroGraph.insert(ni∗,j∗)
7: end if
8: end if
9: end if

The final result can be seen in figure 3.3. Figure 3.4 shows the Generalised

Voronoi Graph being created dynamically using the dynamic variation of

the Brushfire algorithm as already discussed. Note that figure 3.3 and

figure 3.4 are not of the same map.

3.2.4 Selecting Critical Points

The final three stages of the pipeline are where we make the most significant

contribution. We have already detailed a minor contribution in how we

clean the occupancy map, which, given the reduction in error allows us

68

Figure 3.3: Voronoi diagram of @Home arena of RoboCup 2018 in Mon-
treal. The blue lines represent critical points that we cover in Section 3.2.4.
The black points are the cells that are selected as members of the GVD
and pink cells are cells in the GVD that are also corridor points.

(a) (b) (c)

Figure 3.4: GVD being created dynamically

to generate significantly more accurate environment representations than

previous techniques.

In this section we detail how select what we refer to as critical points. In

ideal environments, all critical points would only correspond to doorway

points. However, as environments are rarely ideal, often times other points

are selected because they have been misinterpreted as being doorway points.

Thus, it is more appropriate to refer to these points as critical points rather

than doorway points.

As already noted in the literature review, there have been other approaches

that have looked at the concept of selecting critical points in a gener-

alised Voronoi diagram. Most notably by Thrun and Bücken [19] and

69

also by Beeson et al [20]. These approaches however lack the robustness

of our method. Thrun and Bücken rely on selecting critical points inside

ε-neighbourhood regions. Each ε-neighbourhood region is a circle of fixed

radius, inside which there must be at least one critical point. This critical

point is defined as being the point in the GVD with the shortest distance

to its respective occupied cell. Using this approach, there will be multiple

critical points defined in locations that they should not be. For example,

in our approach a corridor will have two critical points, one at each end

of the corridor, assuming the corridor is empty, which, for arguments sake,

we will in this instance. However, Thrun and Bücken would have multiple

critical points, as each ε-neighbourhood region must have at least one.

Beeson et al [20], define critical points as being junctions in the topological

map. Like many methods that we have reviewed so far, this only works

when the environment is completely empty and so does not generalise to

more common domestic environments that are typically filled with clutter.

Our definition of a critical point means that our approach is extendable to

many types of environments. Our goal is to identify points that correspond

to doorway points. We can accurately selects doorways as being critical

points but also we may select other points that are not doorways due to

clutter.

Our approach to identify critical points is as follows. Given any cell in

the GVD, vn, there are at least two obstacles in the environment, whose

distances to the cell are the same. We denote this distance as dn. The

change in dn between two consecutive Voronoi cells, is dn − dn∗ . Where

n∗ is the Voronoi cell next to cell n in the GVD, assuming that they are

ordered by distance to one another. We will refer to this distance as ddiff .

We compute ddiff for each Voronoi cell pair, (vn, vn∗), which we represent

as vp. Assuming there are i cells in the GVD there will be i-1 pairs as each

cell will belong to two pairs except the first and last.

We compute the running average for each ddiff (vp) as follows:

70

davg = ∀n ∈ {0, . . . , i− 1}

(∥∥ddiff (vp(i))∥∥+ dtotal

n

)

Where dtotal is the current total of all distance differences summed. Algo-

rithm 11 shows the pseudo code for this algorithm.

We try to find a ddiff (vp(i)) that is significantly less than davg. That is,

ddiff (vp(i))� davg

In most environments, LIDAR provides a detailed enough occupancy grid

that the rate of change of distances between any cell in the GVD to its

nearest occupied cell and that same distance measure for a consecutive cell

in the GVD, is subtle. This is, of course, until an irregularity occurs which

causes a rapid change in this distance. Such an irregularity might be a

door. Therefore, we assume that all points in the GVD have the potential

to be critical points but that the initial value for a point n is false. Let the

value for a critical point for any point n be cpn. By default then

cpn ← false

If we observe a rapid change in the distance from one Voronoi cell to its

nearest occupied cell then this value becomes true.

cpn ← true

Algorithm 11 describes how we select a critical point. Let V be the collec-

tion of Voronoi points in the GVD and vn be Voronoi point n.

We have already noted how it is possible for us to get false positives using

this algorithm.

These points are false positives for doorways, instead picking up legs of chair

71

Algorithm 11 selectCriticalPoints: Critical Point Selection

Input: the GVD as V
selectCriticalPoints(V)

1: for vn ∈ V do
2: if vn 6= vend then
3: ddiff = dvn∗ − dvn
4: sum = sum+ ddiff
5: curravg = sum/n
6: if ddiff � curravg then
7: cpn ← true
8: end if
9: end if

10: end for
11: return V

and tables etc. However, they still provide useful information about the

environment, particularly in that one constraint for identifying a doorway

point is that the robot must be able to navigate through the area that was

responsible for creating this point. Thus, a path planner might find these

points useful as it is known in advance which areas are accessible to the

robot.

3.2.5 Creating Regions

The previous stage of the pipeline returns the GVD, along with a vector

of critical points. We take a subset of the vector where each point in the

subset has the value of cpn as true. Let this vector be denoted by:

CP = 〈cp1, . . . , cpn〉

assuming that there are n critical points. Each critical point is also a

Voronoi point and between two consecutive critical points are a vector of

other Voronoi points. Let two consecutive critical points cpn and cpn∗ be

denoted by Pn.

72

Pn = 〈cpn, cpn∗〉

CP can then be represented as:

CP = 〈P1, . . . , Pn−1〉

For each Pn, there are a set of Voronoi points. The set of Voronoi points are

the points in between each of the critical points that construct the critical

point pair Pn. This set is called Vn.

Each critical point pair Pn and the set of associated Voronoi points Vn make

up the collection of Voronoi points that are contained in region Rn.

The triple:

< cpn, Vn, cpn∗ >

represents the Voronoi points between two critical points. Starting at ei-

ther end of this vector, that is, one of the two critical points, we create

a circle. The radius of this circle is the distance from each critical point

to its respective occupied cell, in the case of a critical point that is also a

doorway point, this is the distance from the centre of the door to the edge

of the door. This then defines a maximum limit for how far this region,

which is the region being created between cpn and cpn∗ can expand into

the next region, that is, the region that is created between cpn∗ and cpn∗∗ .

As we assume that doorways are relatively small in width this ensures that

no region expands too far into a connecting region but also guarantees at

least some overlap. See figure 3.5

Taking the vector Vn, we start at the first Voronoi point and we repeat the

same process as we did for each doorway until we reach the last Voronoi

point in Vn. That is, we create a circle with each Voronoi point as the

centre of that circle and the radius of each circle equal to the distance of

73

Figure 3.5: The blue blocks represent a doorway dividing two corridors.
The green dot is the Voronoi point at the centre point of the doorway. The
distance from the Voronoi point to the door is D, the red circle is the circle
created around this doorway point and is of radius D. The circumference of
the circle is the limit that the region representing corridor one can expand
into corridor two and vice versa for the region representing corridor two
into corridor one.

each Voronoi point to its closest occupied cell. Remember that Vn itself does

not contain either critical point but the points in between. We have one

condition when creating these circles. No circle created around a Voronoi

point that is not a critical point can expand past the maximum point of

expansion as determined by the circles created around the critical points.

We let this condition be denoted by γ and a violation of this condition is

γ∗. As circles are just regions we, can use the RCC-8 relations [54] to check

if this condition has been violated.

Let Ccpn be the circle created around one of the critical points and let Cvn

be the circle created around Voronoi point n. We can say that if either

of the following two RCC-8 relations holds then the condition has been

violated.

TPP (Ccpn , Cvn) ∨NTPP (Ccpn , Cvn)→ γ∗

This means the if Ccpn is a Tangential Proper Part of Cvn or if Ccpn is a

Non-Tangential Proper Part of Cvn then we have violated the condition for

maximum expansion. In theory, there is nothing wrong with Ccpn being a

TPP of Cvn . However, it is very close to a violation and so we do not allow

it for safety. See figure 3.6.

74

Figure 3.6: Tangential and Non-Tangential Proper Part

If there is a violation then we reduce the radius of the circle Cvn until

there is no longer a violation. This can be more easily understood through

algorithm 12. Let the function createCircle, generate a circle with centre

at point, v and radius R.

Algorithm 12 generateCircles: Expansion of Voronoi Points to Occu-
pied Cells

Ccpn : Circle around doorway point n
Ccpn+1

: Circle around doorway point n+1
Cv : Circle around Voronoi point v
RCv

: Radius of Cv
generateCircles()

1: for v ∈ Vn do
2: Cv = createCircle(v, RCv)
3: while γ∗ do
4: reduce(RCv)
5: end while
6: end for

When determining the region we calculate the point of intersection of each

of the circles. The intersection points are the vector of points that make

up the polygon that represents the region. When we have enough Voronoi

points, that is, a high enough resolution in the GVD, the points of in-

tersections of each of the circles are a negligible distance away from the

occupancy grid wall. This means that we can very accurately trace along

the edges of the occupancy grid. See figure 3.7.

We show an example of this in Figure 3.8. Figure 3.9 shows how this can be

done dynamically using the dynamic invariant of the Brushfire algorithm.

Note that this region is not strictly speaking a Voronoi region. To explain

75

Figure 3.7: Key: Voronoi points can be seen in red, circles are in black and
the region created is in blue

Figure 3.8: Regions Diagram of @Home arena in RoboCup 2018, Montreal

(a) (b) (c)

Figure 3.9: Regions being created dynamically

why this is the case, let us consider the strict definition of a Voronoi region.

In a given n dimensional plane, a collection of points can be selected based

on some chosen metric. Each of these points is known as a Voronoi point. In

a Generalised Voronoi Graph that metric is a coordinate whose distance to

its two closest obstacles is the same. The metric however can be anything.

A Voronoi region is a polygon with the same number of dimensions as the

plane itself that contains all coordinates that are closest to a given Voronoi

76

point than to any other Voronoi point in that plane.

If we look only at critical points as Voronoi points, then our generated

regions are not strictly Voronoi regions. Take two critical points, α and β.

The region extending from α to β is denoted by Rα and the points within

that region are Pα. We can say that there will be some points within Pα

that will be closer to critical points β than to critical point α, more formally

expressed as follows:

∀x ∈ Pα,∃x : [distance(x, β) < distance(x, α)]

From this it is clear that the regions created by our proposed method are

not strictly Voronoi regions.

3.2.6 Merging Regions

The final stage in our pipeline is merging each of the regions created in

the previous stage. As noted in section 3.2.5, an environment that is not

completely empty or convex will give rise to sub-regions within rooms. This

is due to clutter creating false doorway points. While these sub-regions are

useful for localisation and navigation, it is also possible to generate a higher

level map by labelling and merging sub-regions into larger regions that more

closely match our understanding of rooms.

We extend the previous map by attaching a label to each of the sub-regions

based on the larger region that they create. We use a semi-autonomous

procedure to do this. There are two related reasons for this. Firstly, in

general, a room’s type (kitchen, bedroom, etc) cannot be determined purely

by its geometry. Additional information is required about the nature of the

objects within the room. One way of obtaining this information it to use

object recognition, but this is prone to recognition errors.

Secondly, we assume that the robot interacts with its human operators.

For these interactions to be natural and intuitive, the regions in the envi-

ronment require meaningful names. These names can be very specific to

77

individual people. For example, a typical house may have several bedrooms

some of which may be assigned to a specific person while others may be

designated as a visitor bedroom or study.

So even if the robot has an accurate vision system, it must still ask its

human operators to assign meaningful names to regions. Consequently, it

is reasonable for the purposes of this research to adopt a semi-autonomous

region labelling process requiring human operator involvement.

The semi-autonomous labelling system has two steps. Initially the robot

uses its vision system, in combination with YOLO [129, 130, 131], to

recognise and place different objects around the environment. Then using

a look-up table containing a list of objects likely to be found in a room, it

labels regions based on those objects, or if no such objects were identified

then it labels the region based on the objects that were closest to it.

The systems then returns the labelled map to a human, who corrects or

updates the region labels. This is only possible for maps for which we have

vision data. Many of the maps that we evaluated were open source and we

do not have vision data. In these cases we had no choice but to manually

label the maps.

Each region that is generated in stage four of this pipeline, is assigned a

unique number, starting at one and ranging to however many regions are

created, R = 〈r1, . . . , rn〉. For each rn ∈ R we assign a descriptive label

depending on what room or larger region that region, rn is a member of. If

two regions are connected and have the same label then they are merged.

connected(rn, rm) ∧ same label(rn, rm)→ merge(rn, rm)

As regions are just polygons made up of a collection of two dimensional

coordinates, we can use the CGAL computational geometry library [132]

to perform the merging of two regions. When two regions are merged, a

new region is created. This new region is connected to all of the individual

regions to which the original two regions used in the merge were connected.

78

Assuming all regions have been labelled correctly, we group them based on

those labels. We then iterate over each group and merge the connecting

regions together.

Algorithm 13 summarises the process. The replace function takes the

original region r, the region that it was merged with rnext and replaces

both of those regions, that are in the group of regions g with the newly

generated, merged region rnew.

Algorithm 13 mergeRegions: Merging regions

Input: G = Groups of regions by name
mergeRegions(G)

1: for g ∈ G do
2: for r ∈ g do
3: rnext = r.next
4: if connected(r, rnext) then
5: rnew = merge(r, rnext)
6: replace(r, rnext, rnew, g)
7: end if
8: end for
9: end for

After algorithm 13 has completed, all regions with the same label are

merged into one. Figure 3.10 shows the end result for the RoboCup 2018

@Home arena.

Figure 3.10: Regions having been merged diagram of @Home arena Mon-
treal RoboCup 2018

The results of the evaluation of the methods described in this chapter are

presented in Section 6.1.

79

3.3 Conclusion

This chapter, presented a novel approach to segmenting a metric map into

a topological map that achieves state of the art accuracy in determining an

environment’s structure. The empirical evaluation presented in Section 6.1,

show that the method achieves 98% precision and 96% recall. Segmentation

of a metric map into a collection of rooms and corridors has a number of

uses in robotics, navigation, localisation, spatial reasoning, maintaining a

world model, human robot interaction and episodic memory.

In this thesis, we are interested in how the topological map can provide an

abstract description of the spatial information pertaining to a particular

domain entity. For certain types of events, this information may be needed

to provide a contextual understanding of the event. For example, a meeting

that takes place at the same time in a particular room. Another example of

this type of information might be that the robot has an understanding that

a wallet was last seen next to the fridge in the kitchen. If the robot learns

that this is a common location for a person to leave a wallet then it can

use that information to infer where a wallet might be should it be asked

to retrieve it. Our contribution is not focused on the language used to

describe these spatial relations but rather how our topological map can be

used to provide the most accurate representations of these spatial relations

between objects within the environment.

We have already addressed some of the limitations of this work. The main

limitation relates to how regions are labelled. Manual labelling is not ideal,

however there is a large body of work on autonomous labelling, most no-

tably by Bruckeret al [37] that compliments our approach very well and

could be used to extend it.

The first method clusters objects together. Often sub-regions are created

around items such as fridges or tables (looking only at a domestic environ-

ment). Therefore, if certain objects appear within sub-regions or clusters

of certain objects appeared within sub-regions, this leads to a reasonable

expectation as to the type of room to which the region belongs. For exam-

80

ple, if two regions are next to one another and one region contains a kettle

and a toaster and in the other, a fridge, this a good indication that both

regions belonged to the kitchen.

Another technique is to use a method similar to that proposed by Kong

et al [133]. They use natural language descriptions of scenes to improve

symbol grounding, that is, to more accurately assign a label to a particular

object or scene. The method involves having an understanding of the

typical spatial relations of objects to one another in a particular room.

Having determined where objects are relative to one another they can apply

a label to a scene. For example, if the robot observes a television in front

of a couch in a sitting room, then it is safe to assume that any regions

in-between the two objects belong to the sitting room.

This may seem unnecessary given the previous suggested technique, how-

ever, consider for example a studio apartment where there may not be

clearly defined separations between different rooms. To one side of a couch

you might have a dining table and to the other side a television. Using the

logic proposed by Kong et al [133] you could say that any regions that lie

between the couch and dining table belonged to the dining room and any

regions between the couch and television were the sitting room.

81

Chapter 4

Creating and Retrieving

Events in Episodic Memory

The work described in this chapter was accepted as a poster presentation

in the Advances in Cognitive Systems conference in 2020 [134].

4.1 Introduction

In this chapter, we address the following questions:

• Why was an event recalled?

• How was the event recalled?

• Why was the event stored in the first place?

Figure 4.1 shows an example of a type of event that a person is likely to have

stored in their episodic memory. In recalling events, there are two main

points of interest that need to be considered. The first is the accuracy

and the second is the efficiency with which events can be recalled. Our

approach is most concerned with the accuracy of the recall but we also

develop extensions that address the issue efficiency.

82

Figure 4.1: The person sees rain which recalls an event depicting a time
when they were caught outside and reminds them to bring an umbrella.
The blue boxes represent other memories that may be banked in a person’s
episodic memory. The goal of the retrieval algorithm is to recall the correct
type of event from the bank of memories.

As described in the literature survey, many different approaches to event

recall have been proposed. In the context of episodic memory for cognitive

robots, the most notable is the SOAR cognitive architecture [69, 7, 8, 70,

9]. To retrieve memories, Nuxoll and Laird [7, 8] use a nearest neighbour

procedure. Nearest neighbour methods work well in domains with a finite

number of realistically probable states. For example, in evaluating their

system, Nuxoll and Laird [7, 8] test the accuracy of retrieval in two different

board games, the more complex of these is TankSOAR which is a variation

on “first person shooter” games. The world is a two-dimensional grid and

the agent is a tank that can move about the grid. The tank is equipped

with hardware that can change the state of the world, for example, a device

that can fire missiles. To fire a missile, the tank must collect missiles

that are randomly scattered throughout the environment. The objective

of TankSoar is to score as many points as possible. Points are awarded for

hitting an enemy tank with a missile and more points are awarded if the

enemy tank is destroyed. A tank loses points if it is hit.

Nearest neighbour approaches will work well in such cases, however they are

83

not as effective in unstructured, partially observable environments because

they struggle to distinguish between two apparently similar types of events

that only have subtle differences.

Event recall or “case retrieval” has also been studied extensively in Case

Based Reasoning (CBR). As already noted, the objective of CBR is to

find a solution to a newly observed problem by retrieving a previously

encountered case that best matches the current observation. This research

has the same retrieval problem.

CBR often retrieves cases using a two-phased approach. The first phase is

typically a simple and inexpensive search for a set of candidate matches.

The requirements for retrieval in the first phase are very general so that

it doesn’t exclude any cases that are valid matches. The second phase

attempts to find the best match amongst the candidates.

Our approach differs from previous methods in how it identifies the best

match. In this chapter, we detail this approach and explain why it is a

contribution to the field. In Section 2.5.1 we described the most relevant

CBR research. Our conclusion is that CBR retrieval often relies on a simple

qualitative similarity metric that does not consider contextual information

that is unique to each type of event. We handle this by using Ripple Down

Rules (RDR) to acquire context-specific recall policies. This is essential

in rich, unstructured environments because subtle differences in cases may

require substantially different responses. Because RDRs can be learned

incrementally, if two events are identified as equally good matches, when

one is actually a better match, we can update the recall policies to make

the correct distinction, based on the current context. To our knowledge,

no other approach allows this.

84

4.2 Creating Events in Episodic Memory

4.2.1 Event Representation

Many of the systems that we have reviewed represent events as an agent’s

action in a particular situation. However, it is also possible that events

occur due to some exogenous actions and may not be seen by the agent at

the time that the event happened. For example, on leaving and returning

to a room, the agent may see that the position of a chair has changed. From

that, the agent infers that an action must have been performed, creating

a new event. The ability to infer such events is needed in a multi-agent

environment, such as a home, since other occupants, human or machine,

have the ability to act independently of the robot.

We represent actions in the same way as the PDDL task-planning language

[135]. That is, each action has preconditions and effects and both are

conjunctions of predicates. The agent is endowed with apriori information

regarding the generic structure of an action. That is to say, the agent is

aware that an action has parameters, preconditions and effects. However,

we do not provide the agent with specific instances of action models in

advance. For example, we do not inform the agent that a move to waypoint

action has two parameters, the from waypoint and the to waypoint, or that

the precondition is that the agent is at the from waypoint and the effect

is that the agent is at the to waypoint. Instead, each instance of a new

type of action model is learned by observations and by taking advice from

a trainer.

The system stores the current state of the world as a conjunction of predi-

cates, organised within a topological map. The arguments of these predi-

cates refer to things in the world, for example, people, objects or the robot

and the topological map allows us to ground these arguments to qualita-

tive locations needed for the episodic memory and for the agent’s planning,

reasoning and communication. Locations can also be arguments of a pred-

icate. So, from now on we refer to all people, objects, the robot, locations

and anything else that can exist in the world as objects.

85

We recognise that an action has taken place and therefore, that an event

has taken place using the world model. If at some point in time the precon-

ditions of an action are satisfied and if at a later point in time the effects

are satisfied, then it is assumed that the action must have occurred.

Let a predicate, P , represent a belief in the world. Let, A, be an action

and let the world at time, t, be represented by Γt, such that:

Γt = 〈P1 ∧ · · · ∧ Pn〉

The following is the PDDL representation of a robot moving from one

location to another.

(: action goto waypoint

: parameters(?r − robot ?from ?to− waypoint)

: precondition((robot at(?r, ?from)))

: effect(and

(not(robot at(?r, ?from)))

(robot at(?r, ?to))

)

)

An alternative way of describing an action uses Allen’s temporal logic [52].

Let, X, be a state that occurs at time t, Y , is a successor state at time t+1

and, A, is the associated action:

∀X, Y : X 6= Y ∧ {X � Y } =⇒ A

where X � Y means X occurs before Y , or in terms of the world model:

86

(Γt 6= Γt∗) ∧ (Γt � Γt∗) =⇒ A

This tells us that action A can be deduced if we see state X, followed by

state Y provided states X and Y are not the same. Making the closed world

assumption, the world model tells us everything that is currently believed

to be true in the robot’s environment. If one of those beliefs changes then

something must have happened.

In addition to the action definition, an event has other information such

as the time, location, other events that it is connected to and also the

recall policy for that type of event. The agent is provided with a means

to create a timestamp and also a topological map apriori. Furthermore, it

is also provided with the generic structure of the frames representing each

of these types of data and a generic frame representing objects within the

environment. The robot must use this apriori information and populate

each slot in these frames with information that is has observed to learn the

specific instance representation of the type of event that is taking place.

We are assuming that the robot has perfect sensing for this. That is to

say, it correctly identifies objects using computer vision and that it has

perfectly localised itself and the relevant objects within the environment.

We are aware that this assumption will not hold true in all cases in the

real world. While this is a limitation of this work, it is partially handled

through inductive reasoning. Here we use multiple observations of a type

of event to infer what information remains consistent. In the event of a

false positive, where the robot idenitifies something that it should not, this

is quite effective at removing the incorrect information. However, in the

case of a false negative it is less effective. We have provided some possible

solutions to this in Chapter 5.

Events and all other data associated with events including the matching

rule for a given type of event are stored as frames in a graph database.

Before going into detail about this, we address some concerns regarding

when we choose to remember an event.

As already noted, the system creates an event when there is a change in

87

the world model. While this allows us to recognise actions that the agent

is and is not responsible for, it can also mean that every change, however

inconsequential, can trigger event creation. This is clearly undesirable.

There are several ways that this can be dealt with. Below, we describe

some of these methods, along with our own solution, which is covered in

more detail in Section 4.4.3.2. The first approach is to have a pre-defined

set of action models, but we have already said that we want to avoid this

since we want our robot to be able to learn new actions. For robots to

co-exist with people, it must be possible for the robot to learn in a form of

Never Ending Learning (see Section 2.5.1.1).

A better approach, for our purposes, is to learn that some events can be ig-

nored as remembering them typically proves not to be useful. This method

is discussed in Section 4.4.3.2. Previous research, such as Nuxoll and Laird

[8], use an attention mechanism and a threshold value. If the event does

not excite the attention mechanism above a threshold value then the event

is not remembered.

Another way this can be done is to build policies for types of actions, similar

to how we build recall policies for different types of events, and learn in

what contexts a particular type of action should lead to an event being

created. This is the preferred approach as it makes no prior assumptions

about an action and whether or not that action is relevant and therefore

makes no assumptions about whether that event is relevant. Some contexts

may mean that one type of action is relevant and others may not be. Take

for example, the action of moving from one room to another. Sometimes,

this is only intermediate, serving as a node in a sequence of actions where

a critical result is achieved. For example, if the robot is required to get a

glass of water, then leaving the room that it is currently in and going to

the kitchen is not a significant part of the event and remembering it is not

useful.

In contrast, if the robot is being a hindrance and the person directly asks

the robot to leave, then the action of the robot going from one room to the

other is significant and, in this context, should be remembered.

88

We refer here to types of actions being relevant rather than types of events

being relevant. This is because actions are responsible for creating events

and therefore we are concerned whether a certain type of action is relevant

in a given context.

We define an action hierarchy in which a critical action may consist of a

sequence of intermediate, low-level actions. We represent this critical action

as A and the intermediate actions as αn, where n ∈ {0, . . . , t}, assuming

there are t intermediate actions we can then say the following:

A ← αt � αt−1 � · · · � α1 � α0

For simplicity, when we refer to an action in the context of an event, we

are referring to the critical action that created this event.

We can therefore create a new event when a critical action is observed.

That is, a critical action acts like a trigger, indicating that we should

create a new event. Note that this new event may or may not be a new

type of event. It is the job of the recall policy associated with each type

of event in memory to determine if this observed event is an instance of a

type of event already in memory or a new type of event.

Note that an event that is constructed from a sequence of actions (among

other information), can also be part of an event sequence. To establish if

it is a part of an event sequence, we keep a record of the most recently

observed events in an episodic buffer. When a new event is observed, we

check with the other events in the buffer to see whether the current event

is connected to any of them and if so, we calculate the temporal relation

of the two events to one another and link them to each other.

For example, consider three types of events, the first of which is a person

sitting on a sofa, the second is a person switching on the television and the

final event is getting a beer from the fridge. All three events are recorded

as separate events but they are all part of a single event sequence.

In this chapter, we focus only on the recall policies and how successfully

89

they perform and so we are assuming that every action is a critical action.

This allows us to create a much larger database on which to evaluate the

effectiveness of RDRs as recall policies.

4.2.2 Frames

As already noted earlier, each event is stored as a frame in a graph database

and in this sub-section we explain this particular implementation of frames

and why they are well suited to this application.

Frames are data structures used to segment knowledge into smaller sub-

structures of knowledge. They were proposed by Minsky [74] in 1975. The

reason we use frames is that events or episodes are collections of multiple

different types of data, which can themselves be a collection of multiple

different types of other data. For example, critical actions are responsible

for creating events. Thus, one of the frames that make up an event is an

action frame which has as members predicate frames and so on.

Frames permit embedded data structures with no limits on the types of data

that construct an event and therefore frames allow for the most generalised

representation of an event in episodic memory. They also allow us to easily

access the individual data that make up the episode which is essential when

it comes to event matching and generalisation.

Our system is implemented using the FrameScript language [136]. Frames

can be generic, representing classes of objects, or instance frames, each

representing an individual object. Data are held in slots, each slot having

a unique name. A generic frame defines the base structure of the frame,

all of the slots, any default values that those slots may have when a new

instance of this generic frame is created and any procedures associated with

those slots.

A procedure attached to a slot must be defined within the generic frame.

Figure 4.2 shows a simple example of a generic frame.

Frames support inheritance, which is essential for our system. Since events

90

Figure 4.2: This figure shows a simple example of a generic frame describ-
ing a person. Slot names refer to properties associated with the frame
type. For example, each person has a name and therefore we declare a slot
called name. We can also apply procedures to these slots. In the example
shown here we declare a procedure called if new which is called when a
new instance of this frame is created. The purpose of this procedure is to
initialise the slot value of the new instance. This value can be overwritten
later.

are typed, each event type is represented by its own generic frame. In

addition, each event type inherits properties of the generic event frame.

As an example of an event instance, consider when a person requests a cup

of coffee. The action for this event is to get the coffee, the time may be in

the morning, and the location might be an office or kitchen. All of these

times and locations are instances of other generic frames and all are linked

from the instance frame for the event. How all these frames are used will

become clear when we explain our recall pipeline in Section 4.4.

Tecuci et al [73], represent events as a triple,

〈context, contents, outcome〉

where context is the setting that an event took place in, contents are the set

of actions that make up an event and the outcome is the event’s effect. Our

representation is similar, where the contents are represented by a critical

action, if the event involves a sequence of sub-actions.

In the next section we explain the generic frames that are the core of our

91

event representation.

4.2.3 Generic frames Used in Event Representation

After several observations of a particular type of event, it may become

apparent that some kinds of information are not relevant. However, ini-

tially all of the data represented by the frames below must be considered

potentially relevant.

Generic Frame event :

This frame defines the top-level event structure. All other event data are

linked to this frame.

A generic event has slots: action, start time, end time, start location, end

location, references to any other information and connected events.

Generic Frame action :

The core of each event is an action. A generic action frame has slots:

name, parameters, preconditions and effects.

Preconditions and effects are conjunctions of predicates, so we create a

frame structure to represent a predicate.

Generic Frame predicate:

A generic predicate has the slots: name, arity, arguments.

Predicates have arguments and the values of these arguments are objects.

The word object refers to anything that is in the environment. This can

be a physical object such as a glass, phone, television, etc. but it can also

represent people, the robot, locations and just about anything else that is a

grounded concept in the environment. So we define a fourth generic frame,

object.

Generic Frame object :

A generic object has slots: name, class.

We also require generic frames for time and location.

92

Generic Frame time:

A generic time frame has slots: year, month, day (1-31), weekday (Mon-

Sun), hour, minute, part of day (morning, afternoon, evening, night).

Generic Frame location :

A generic location has the slots: room name.

Each event may also have connected events. For example, if one were to

break a glass then a connecting event would be to clear it up. We therefore

define a sixth generic frame, connected event

Generic Frame connected event :

A generic connected event has slots: event, temporal relation.

Connected events have two slots, the first slot is the event itself which links

to an event frame which has already been defined. However, a connected

event also has a temporal relation to the event that it is connected to. This

is represented by one of Allen’s temporal relations[52]. Therefore we define

one last generic frame.

Generic Frame temporal relation :

A generic temporal relation has all of Allen’s temporal relations[52]:

precedes, meets, overlaps, finished by, contains, starts, equals, started by,

during, finishes, overlapped by, met by, preceded by.

Note that the connected event slot may be empty if there are no other

associated events.

Before explaining how a new event is created, we note that recall policies

for events are represented as RDRs. The purpose of the recall policy is to

establish if something that an agent has observed is an instance of the type

of event to which the policy applies. Therefore, we extend generic frames

to include an RDR recall policy. RDRs can be used to recall any kind of

frame, not just event frames.

93

4.2.4 Creating New Types of Events

In Section 4.4, we explain how we determine if an event belongs to a new

event type or if it is a type seen before. However, for now, let us assume that

all observed events are new types. The system creates a new instance of

an event frame, with an associated action frame and all the other required

frames for time, location, etc.

If the event is a person sitting down, then the action is an instance of

an action frame with the precondition: not(sitting(Person)) and effect:

sitting(Person). The time is an instance of the time frame and the location

being an instance of the location frame type.

The job of the recall policy is to determine if an observed event is an

instance of a known event type. If it is not, new generic frames for the

new event type must be created. A new type of event may also have a

new type of action, which becomes an instance of a new sub-class of the

generic action frame. This is needed to create a unique matching policy

for that new type of action and the same for all other data. New generic

frames may also be needed to represent specialisations of other frames, e.g.

sub-classing time to add morning and afternoon. Each new generic frame

has an associated RDR for recognising instances of that generic frame.

The need for this can be better understood by looking at the generic object

type. Remember that the slot names associated with this are, name and

class. In an event involving a breaking glass, the object in question would

be a glass, with some unique ID in the environment. The value of the name

slot for this object is glass one and the value of the class slot is glass. When

trying to recall this event at a future point in time, we are not concerned

with the fact that it was glass one that broke but rather that the class of

the object was a glass. We therefore create a rule for this type of object.

The rule should state that if the class of the object is a glass, then it is a

valid instance of this type of object:

if match(class) then match

94

However, consider a friend, John Smith comes over to visit. The object

now in question is one with class person and name John Smith. However,

in this type of event the name of the person is what is relevant and not

just the fact that it was any person. So here we train a policy that states

the following:

if match(class) ∧match(name) then match

This policy is then used along with all of the other policies for the other

types of frames in this type of event to establish if another observation

of John Smith coming to visit is an instance of this type of event. If the

policies have been trained correctly then it should determine that the next

time John Smith comes to visit it is another instance of this event and a

new type of event does not need to be created. One of the benefits of using

RDRs to express policies, however, is that if the agent makes a mistake

and incorrectly concludes that either the second observation is a new type

of event or that it is an instance of a different type of event, the RDR can

be incrementally updated to account for the difference between the two

instances so that the same mistake is not made in the future.

These policies are very basic and only serve to demonstrate the necessity

for the hierarchical structure of the data that we adopt for our model.

When the robot observes a new type of event we create sub-classes for all

frames that are linked to that event, starting with the event itself so that

individual matching procedures can be defined. Algorithm 14 details the

process that is used for every object in the event. In creating a new generic

frame that is a sub-class of an existing generic frame, the slot values of the

initial observation frame are the slot values of this new generic frame.

The first step to creating a new type of event is to create a new sub-class

of the event and all other data. Algorithm 14 specifies this process.

It is not only generic events that have unique recall policies assigned to them

but all other types of data, such as the action and time frames within an

event too.

95

Algorithm 14 createFrameSubclass: Frame inheritance for all frames
in an event
Ii is an instance of some generic frame. The function put takes three
arguments. The frame that we are trying to put a value in, the name of
the slot in the frame that that value is being put in and finally the actual
value itself. The function definition is therefore: put(Frame, Slot name,
Slot value). The createFrameSubclass takes as input an instance frame,
gets the parent of that instance frame and creates a new generic frame
that is a sub-class of this frame’s parent.
Comments:
6: Instance is a data type, this line says that if the slot value is an instance
frame of some other data type then the if statement is true
Input: Ii

createFrameSubclass(Ii)

1: Gi → parent of Ii
2: Gnew ← subclass of Gi

3: for all slot ∈ slots of Ii do
4: sname = name of slot
5: svalue = value of slot
6: if svalue instanceof Instance then
7: put(Gnew, sname, createFrameSubclass(svalue))
8: else
9: put(Gnew, sname, svalue)

10: end if
11: end for
12: return Gnew

96

Thus, we must evaluate all relevant recall policies in order to determine

if an observation is an instance of a given type of event. For example,

consider an event type whose rule is:

if match(action) then match

This means that if we compare two frames, one being the generic event

type stored in memory and the other being an event that has just been

observed and if the action slot values are the same then we conclude that

the observation is also an instance of this type of event. To determine if

the action slot values are the same we must evaluate the rule for this type

of action. This might also involve evaluating the rules for some other types

of data too and so on. Of course we only create new types of actions when

we need to create a new type of event.

When one type of event has not yet had a sufficient number of observations

so that unique recall policies can be trained, we still need some way to recall

that event from memory. Therefore, if we have only seen one instance of

a type of event, then the recall policies for every slot are inherited from

the generic frames for which that frame is a sub-class. For example, the

recall policy for each type of event is initially the recall policy that has

been assigned to the generic event frame and the same for the action, time,

location, etc. These are what we refer to as the default policies.

The default policies have been chosen in such a way that they are guar-

anteed to recall an event that matches the observation, however, because

they lack specificity, they can also recall many other events that are distant

matches to the observation. This is why we must then specialise the recall

policy for the type of event that is a close match so that it can be more

accurately recalled at a future time. This is explained in more detail in

Section 4.4.

Before checking if an observed event is an instance of a new type of event

or if it is an instance of an event already in memory, we need to collect

and organise the information from the observation within the event frame.

97

We then use this frame and compare it against the generic events already

in memory to determine if it is a new type of event or not. Algorithms 15

through 20 specify the process for collecting and organising the information

that an agent obtains through observing an event into an event instance

frame.

The first stage is to check if anything has changed in the agent’s world. As

already explained, an agent has a world model which is a collection of facts,

represented by predicates, organised within a topological map. When one

of these facts changes, for example the agent moves to a new location, this

informs the agent that something has happened and therefore it is possible

that an event has occurred.

We update the world model using information that the agent can observe.

If the agent observes a cup on a table when there was not one there before,

it adds the fact: on(cup, table) to the world model. We periodically update

the world model and compare two succeeding instances of the world model

to check if anything has changed. If something has changed, we create an

action using the differences between the two observations as preconditions

and effects of that action. So if the change in the world model was the

location of the robot then we would create the following action model:

: precondition((robot at(robot, locationx)))

: effect(and

(not(robot at(robot, locationx)))

(robot at(robot, locationy))

)

We then check to see if this action is a critical action and if it is we create

a new event instance. Using this new event instance and the generic event

types that are stored in memory that have unique recall policies defined,

we check to see if this is a new type of event or if it is an instance of one

98

of the types of events already observed and stored in memory.

Before describing the pipeline for organising information from an observa-

tion into an event it is worth noting the way that we treat predicates in

the world model. Suppose we represent the state of a glass being on the

table as:

on(glassx, tabley)

with glassx being an instance of glass. We assume that the on predicate

cannot apply to that same glass in more than one situation at the same

time. Therefore, if we observe that same glass on the floor then the agent

should add the predicate on(glassx, f loor) to the world model and remove

the predicate on(glassx, tabley).

99

Algorithm 15 handleWorldUpdates: Handle World Model Updates

This algorithm is only ever called once, when the robot is started. Initially,
lastWorld will be obtained from some database where we stored the last
known state of the world on shutting down the system. While the robot is
in operation, the while loop to get new states of the world is called contin-
uously
Input: lastWorld← {P1 ∧ · · · ∧ Pn}: {Last known state of the world}
allActions ← [. . .]: {A critical action can be preceded by several non- actions
so declare an empty array to store them}
Struct Difference contains

precondition: List of predicates
effect : List of predicates
wasDifferent : boolean

end
Comments:
3: Returns a set of predicates
11: This is where we check if it is a new type of event or an instance of a pre-
viously observed type of event. This is a multi-stage pipeline clarified in Section
4.4
handleWorldUpdates(lastWorld)

1: diff = new Difference
2: while true do
3: currentWorld ← getCurrWorld(lastWorld)
4: diff ← compare(currentWorld, lastWorld)
5: if diff.wasDifferent then
6: action ← buildAction(diff)
7: isCritical ← checkIsCritical(action)
8: if isCritical then
9: allActions ← allActions.append(action)

10: event ← makeEvent(allActions)
11: passToEpisodicMemory(event)
12: lastWorld ← currentWorld
13: allActions ← [. . .]
14: continue
15: else
16: allActions.append(action)
17: lastWorld ← currentWorld
18: continue
19: end if
20: end if
21: end while

Algorithm 1, specifies how an agent updates its world model. In this al-

100

gorithm we have not detailed how the observableWorldStates variable is

obtained. An agent can obtain information from a variety of perceptual

inputs. Depending on the robot in question and the domain of application

there may be different sensors that return information about the world.

Most robots are equipped however with a camera and a lidar. We use the

camera to give the agent information about the objects that it can observe

and the lidar returns information about the map.

Algorithm 16 getCurrWorld: Get the Current World

Input: lastWorld : {the last known state of the world}
Comments:
6: Each predicate has a primary argument. If the action of a predicate
applied to the primary argument is in the world model and is also some-
thing that the agent can observe then we found it easier to simply replace
that predicate in the world model rather than check the secondary arguments.
getCurrWorld(lastWorld)

1: currentWorld ← lastWorld
2: states ←observableWorldStates as predicates
3: for all s ∈ states do
4: if s 6∈ currentWorld then
5: currentWorld.append(s)
6: else if s ∈ currentWorld then
7: currentWorld.replace(s)
8: end if
9: end for

10: return currentWorld

Algorithm 17 details how an action is constructed. Actions form the base

of every event and are essential to event recall in almost every case. Thus,

this is a crucial step in our pipeline.

In algorithm 18, we check if an action is a critical action or not. If an

action is not critical then we do not create a new event instance. Rather

we note this action as being an intermediary action in a sequence of actions

that will conclude with a critical action.

101

Algorithm 17 buildAction: Building an Action

Input: difference ← instance of Difference struct: {predicates that have
changed between two world model observations}
Struct Action contains

precondition: List of predicates
effect : List of predicates
parameters: List

end
Comments:
5: Gets all the arguments in all the predicates of the precondition
buildAction(difference)

1: action = new Action
2: action.precondition ← difference.precondition
3: action.effect ← difference.effect
4: for all precondition ∈ action.precondition do
5: thisPreconditionArguments ← get(arguments of precondition)
6: action.parameters.append(thisPreconditionArguments)
7: end for
8: for all effect ∈ action.effect do
9: thisEffectArguments ← get(arguments of effect)

10: action.parameters.append(thisEffectArguments)
11: end for
12: return action

102

Algorithm 18 checkIsCritical: Check if action is significant

Input: action ← instance of Action struct:
Comments:
1: We have assigned an RDR policy to the generic action frame. This func-
tion evaluates those rules to check if they are significant.See Section 4.4.3.2
checkIsCritical(action)

1: isCritical ← evaluateSignificantRules(type of action)
2: if isCritical then
3: return true
4: else
5: return false
6: end if

Actions are constructed from preconditions and effects. On an observation

of the world, it is possible that changes will have occurred. Preconditions

are states that were true before the current observation and effects are

states that are true after the current observation. Algorithm 19 details

how we compare two succeeding observations of the world to establish if

there is any observable difference.

103

Algorithm 19 compare: Compare Worlds

Input: current ← current state of world
Input: last ← state immediately before current state
Comments:
3: “names of last” is an array with the names of all predicates contained in the
last state of the world. It is one of the simplest checks we do to see if a new state
has been observed
8: If the predicate’s action applied to a primary argument are in both the current
and last state of the world we check to see if the secondary arguments have
changed.
compare(current, last)

1: difference.wasDifferent ← false
2: for all Pn ∈ current do
3: if name of Pn 6∈ names of last then
4: difference.wasDifferent ← true
5: difference.precondition.append(¬Pn)
6: difference.effect.append(Pn)
7: else if name of Pn ∈ last then
8: if argumentssec of Pncurrent 6= argumentssec of Pnlast

then
9:

10: difference.wasDifferent ← true
11: difference.precondition.append(Pn of current)
12: difference.effect.append(Pn of last)
13: end if
14: end if
15: end for
16: for all Pn ∈ last do
17: if name of Pn 6∈ current then
18: difference.wasDifferent ← true
19: difference.precondition.append(Pn)
20: difference.effects.append(¬Pn)
21: end if
22: end for
23: return difference

104

Algorithm 20 makeEvent: Make a new event

Input: allAction ← List of Actions: {all intermediary actions and the
critical action}
Comments:
9: The episodic buffer stores all of the events in this particular sequence. For
example, breaking a glass and cleaning it up consists of two separate events.
For this example we would create an instance of a connected event frame and
include the breaking glass as the event with a “precedes” temporal relation. This
connected event instance would then be put into the connected event slot of the
final event, which is cleaning it up.
11: see algorithm 14
makeEvent(allActions)

1: startTime ← time of allActions[0]
2: endTime ← time of allActions[length(allActions - 1)]
3: startLocation ← location of allActions[0]
4: endLocation ← location of allActions[length(allActions - 1)]
5: event.startTime = startTime
6: event.endTime = endTime
7: event.startLocation = startLocation
8: event.endLocation = endLocation
9: event.connectedEvents = establishEventConnectivity(episodicBuffer)

10: event.action = allActions[length(allActions - 1)]
11: event ← createDataTypeSubclasses()
12: return event

Before continuing we wish to address a limitation of this work and some

possible implications of it. We also would like to discuss a possible exten-

sion to this research to address this limitation. One may note that these

algorithms refer only to a single type of action occurring at any given time.

Thus, from these algorithms one can infer that the agent is incapable of

handling different actions happening simultaneously. This is correct and

it is one the limitations to this work. One of the main reasons for this

limitation is that we have chosen not to provide the agent with specific

action representations apriori. Consequently, an agent is unaware of the

specific precondition and effect predicates that are relevant to any given

type of action and must assume, unless instructed otherwise, that all ob-

served predicate state changes are relevant to a given type of action. Thus,

if two actions occur simultaneously and the agent does not know anything

about either action, it must assume that the state changes that occurred

as a result of both actions are relevant to only one action. While all of the

105

information relating to both actions will be captured, on a future observa-

tion of either of these actions, the information relating to the other action

will be removed as per our learning pipeline outlined in Chapter 5.

One of the main implications of this is that we risk missing important

information and not learning how to solve potential problems that arise as

a result of some types of events. If a person had expected the agent to

learn this information, it may be very difficult to explain why the agent

has not and this will have an impact on the level of trust instilled in the

autonomous agent.

One possible solution to this problem is to provide the agent with action

models apriori. However, this creates further problems and requires more

hands on training from a human expert. We have explicitly stated that

this is something that we wish to minimise in this thesis.

4.3 Ripple Down Rules

In this chapter we explain how Ripple-Down Rules RDR are usd to create

policies for event types.

RDRs were introduced by Compton in 1990 [3] as a knowledge acquisition

method for knowledge based systems. An RDR is learned incrementally

by interaction with a human trainer. Initially, the RDR consists of a very

general default rule, which is progressively specialised as new cases are

encountered. The RDR methodology can be thought of as a general-to-

specific search for the best fitting set of rules. Thus, the initial RDR

represents the most general hypothesis. When a new case is covered by the

RDR, when it should not be, the RDR is specialised by adding an exception

rule. When a new case if not covered when it should be, a new alternative

rules is added. This is illustrated in Figure 4.3

We use RDRs as event recall policies in an episodic memory system. As we

have noted throughout this thesis, different types of events will have differ-

ent types of information that are relevant to them. Thus, when checking

106

if a particular event stored in memory matches an observation of an event,

it is logical that we should use a policy that is specialised for that type

of event. When training a Ripple Down Rule policy, we have the option

to discard information that is not relevant to the system. Therefore, the

irrelevant information will not be considered when making a decision as to

whether the candidate event matches the observation. This is in compari-

son to other learning methodologies where all data that are relevant to the

system must be defined in advance and used across every decision.

As the job of the RDR in our case is to determine if an observation matches

an event in episodic memory, the default rule is:

if true then no match

This is because it is most likely that an observation does not match an

event in memory, as there may be many different types of events and only

one valid match.

To further explain how Ripple Down Rules work, we use a simple example

of identifying fruit. Later, we give examples of how they are used as recall

policies for episodic memory, however, as the structure of episodes can be

quite complex, a simpler example serves as a better introduction. We start

with the default rule:

if true then unknown

If the first training example is a banana we add an exception rule. A

generic frame for fruit may have properties like colour, shape, size, etc.

When trying to generate a new exception rule, the system asks whether the

values of these properties of the new example are relevant to the conclusion.

In this case, we discard all properties except the colour. Thus, the new rule

is:

107

Figure 4.3: Each of the nodes in the tree represents a new RDR that is an
exception to its parent node. Rule A is the default rule and in this example
it has three exceptions. Rules that are exceptions to another rule but are
themselves at the same level in the tree are alternatives to one another.
In this example, Rule B1, Rule B2 and Rule B3 are alternatives to one
another and exceptions to Rule A. Similarly, Rule C11 and Rule C12 are
alternatives to one another and exceptions to Rule B1. Rule C32 is the
rule that fired in this case. That is, its conditions were satisfied. If it fired
incorrectly, then an exception can be added to this rule creating another
level to the entire RDR. This is done dynamically without any need to
rebuild the RDR tree.

108

if colour is yellow then banana

which is added to the existing RDR producing the new RDR:

if true then unknown except

if colour is yellow then banana

A case that causes the creation of a new rule is called a “cornerstone case”

and is stored with the rule.

The next training example that we provide is an apple. In this case the

banana rule is not satisfied, so the conclusion from the default rule holds.

To update the RDR, we add an alternative to the exception rule that was

not satisfied. Again, we discard all properties except colour and the RDR

is now:

if true then unknown except

if colour is yellow then banana

else if colour is red then apple

The condition for the new rule is obtained from the differences between the

cornerstone case of the rule that fired incorrectly and the new case. In this

example, the system will ask, “is it because the colour is red”?

Suppose now that a lemon is presented. One of the rules states that if the

colour is yellow, the conclusion is banana, which is incorrect. Therefore, we

now add an exception to the banana rule. The prior case of the banana and

the new case have the same colour, so this cannot be used to discriminate

the training examples, however, they do differ in their shape. So a new

exception rule is added:

109

if true then unknown except

if colour is yellow then banana except

if shape is round then lemon

else if colour is red then apple

Algorithms 21 to 24 and 25 detail how an RDR is updated and evaluated

respectively.

Algorithm 21 updateRDR: Update a Ripple Down Rule

Input: oldCase ← instance of some generic frame type, e.g. fruit
Input: newCase← instance of some generic frame type, must be the same
as oldCase
Input: rule ← instance of RDR and is the rule to update
Comments:
1: This is the last rule to fire in the rule that we are updating. This is the rule
that fired incorrectly
2: Get the differences between the old case and the new case for which the rule
needs to be specialised to account for
3: RDRs are recursive structures. Exceptions or alternatives that are added to
an RDR are themselves instances of RDRs
4: Adds the new rule as an exception to the lastRule. If there are already other
rules as exceptions to the lastRule then this is an exception to those rules
updateRDR(oldCase, newCase, rule)

1: lastRule ← rule.lastRule
2: List conditions ← differences(oldCase, newCase)
3: RDR newRule ← createNewRule(conditions)
4: addRule(newRule, lastRule)

If the trainer makes a mistake and answers a question incorrectly, the RDR

can be corrected when a later case is misclassified due the error. This will

create a more complex RDR than is necessary, but it will yield the correct

conclusion.

110

Algorithm 22 Differences between two cases

Input: oldCase ← instance of some generic frame type, e.g. fruit
Input: newCase ← instance of some generic frame type, must be the
same as oldCase
Struct Slot contains

name
value

end

Struct Condition contains
name
value

end
allconditions ← [. . .]
Comments:
4: We get the name of the slot from the slot variable and use this to get the
value from the same slot for the newCase instance

differences(oldCase, newCase)

1: for all s ∈ slots of oldCase do
2: svalueOld ← s.value
3: snameNew ← s.name
4: svalueNew ← getValue(newCase, snameNew)
5: if svalueOld neq svalueNew then
6: condition = new Condition
7: condition.slot name ← s.name
8: condition.value ← s.value
9: allConditions.put(condition)

10: end if
11: end for
12: return allConditions

111

Algorithm 23 createNewRule: Creating a new rule

We pass a list of potential conditions to this function. RDRs training
is guided by a human however and the human has the option to discard
information that they believe to be irrelevant. Therefore, when training
RDRs using this manual approach we need to run an additional check
over the conditions to see if they should be included in the new rule and
to find out what the conclusion to the new rule should be. However,
when we train an RDR policy using techniques borrowed from Induc-
tive Logic Programming as we do in Chapter 5, we do not take this last step.

Input: conditions ← List of Condition
createNewRule(conditions)

return rule = new RDR
return rule.conclusion ← ask(What is the conclusion to this new rule)
for all c ∈ conditions do

isRelevant ← ask(Is c.name equal to c.value relevant?)
if isRelevant then

return rule.put(c)
end if

end for
return return rule

Algorithm 24 addRule: Adding a new rule to an RDR

RDRs also contain a wasTrue variable. This is true if the rule fired when it
should not have and so an exception is added. It is false if a case for a rule
was not covered when it should have been and so an alternative is added.
Input: newRule ← instance of RDR
Input: lastRule ← last rule to fire
addRule(newRule, lastRule)

if lastRule.wasTrue then
lastRule.exception ← newRule

else
lastRule.alternative ← newRule

end if

112

Algorithm 25 evalRDR: Evaluate a Ripple Down Rule

Input: rule ← instance of RDR
Input: case ← an instance of some generic frame. In this example, an
instance of fruit
evalRDR(rule, case)

while rule 6= null do
bool didFire = checkFire(rule.condition, case)
if didFire then

if rule.exception 6= null then
var result = evalRDR(rule.exception, case)
if result 6= null then

return result
else

return rule.conclusion
end if

end if
else

if rule.alternative 6= null then
rule = rule.alternative

end if
end if

end while
return null

113

4.3.1 Ripple Down Rules as Event Recall Policies

Recall from Section 4.2 that an event is represented by a frame with slots

whose values can be other frames representing different types of informa-

tion. For example, there is an action frame, a time frame, a location frame

etc. Each of these frames may also have slots that refer to other frames, for

example, the action frame has two slots, precondition and effect and these

refer to frames of type predicate etc.

The following sections describe events used in our evaluation and how we

use RDRs to construct specialised recall policies.

Before we explain how we are using RDRs as event recall policies, we

describe the differences between how we use RDRs and how they are more

commonly used. When adding an RDR to a frame it is usual for one to

add the RDR to a slot in the generic frame. The RDR is then used to

determine the value that that slot should have under certain conditions.

As always, each rule in the RDR will have conditions and a conclusion.

The conditions refer to the name and the expected value of one of the

other slots in the frame. The conclusion to a rule is the value that the slot

should receive if the rule fires.

This is the situation that we descried in Section 4.3. It is likely that we

would declare a generic fruit frame where the slots are: name, shape and

colour. We would add the RDR described to the name slot and depending

on the values of the shape and colour slots we would use the RDR to

determine the name of the fruit.

In our case however, we do not add an RDR to a specific slot in a generic

frame but rather to the generic frame itself. The conditions of each rule

refer to slot names, however, we do not include specific slot values or ranges

of values within the conditions. Rather, each condition in a rule is a boolean

with the same name as the slot to which it applies. The condition states

whether that slot value in the generic frame should match the value of the

same slot in the observation in order for the rule to fire. For example, a

114

rule such as:

if match(time) then match

means that if the value of the time slot in the generic frame is the same as

the value of the time slot in the observation, then the rule should fire and

the frames match.

We do this for a number of reasons. The first reason for this variation

on RDRs is because we often have slot values that are instances of other

frames. This means that for these cases we cannot perform a simple equality

as a condition. We instead need to use the policy associated with the action

frame to determine if the action frame in the observation is the same as

that of the generic.

Lastly, we explained in Section 4.4 how we handle the comparison of two

lists. Recall that slots can hold lists in two different ways. The first is

that the slot is a single valued slot but has a list as a single value. If our

matching policy for the frame dictates that this slot is relevant then all

terms in the list of the generic frame must match all terms of the same slot

in the observation.

The second way that a slot in a generic frame can have a list value is if the

slot is multivalued. This is the more common way for slots to contain lists

and we treat the terms in these lists as alternatives. Thus, if the slot is

relevant to the match policy then only one term in the generic frame needs

to match one of the terms in the observation.

Thus, it is possible for us to capture equalities, inequalities and ranges of

values depending on the how the slot contains the list. If new values of a list

present as relevant then we can update the list in the generic frame rather

than the policy in the generic frame. This means that we only need to

update a matching policy when information about which slots are relevant

to the policy change and not when values of those slots change. This has

proven to be more efficient than directly updating the RDRs.

115

4.4 Event Retrieval

So far we have only shown how observed events are represented as frames.

In Section 4.2, we made the assumption that all observations were of new

types of events and therefore, when creating an event, we created a new sub-

class of event and also created new sub-classes of all frame types contained

within that event. It is not necessary to do this every single time. In fact,

as will quickly become clear, we see a lot of repetition in day-to-day life

meaning that the same types of events are observed many times and new

types of events become less common.

In this section, we explain how the recall policies are evaluated against an

observation, we evaluate the effectiveness of this approach to event recall

and also detail extensions to this approach that can make it more efficient

in both the time and space.

We explain how recall policies are trained in Chapter 5.

4.4.1 Recall Policies for Common Generic Frames

Recall from Section 4.2 that we defined eight generic frames that are rele-

vant to all events. Also remember that, after a number of observations, it

may become clear that these frames may need to be specialised for partic-

ular types of events. When a type of event has not had a sufficient number

of observations to train its own unique recall policy, that type of event

and all frames contained within it inherit the recall policies of the parent

frames. This is to ensure that we have some means to recall events that

have not yet had a sufficient number of observations so that a more unique

and accurate policy can be trained.

These policies were coded manually and have been written in such a way

that they remain general enough to make sure that if an observation is not a

new type of event, then the observation will be assigned to the correct type

of event. However, they are so general that it is likely that an observation

may also be assigned to event types to which it should not be assigned.

116

When inheriting policies, the child frame adopts the recall policy of the

parent frame. For example, we have defined a generic event frame and

we have manually coded a basic recall policy for the generic event frame.

When we observe a new type of event, we create a sub-class of this generic

event frame. However, as the new type of event has not yet had sufficient

number of observations to train a unique policy, it takes on the policy that

we manually coded for the generic event frame. It should also be noted

that each event is made up of several different types of frames, the action,

location, time, etc. and we also create sub-classes of each of these in our

new type of event. Each of these frames will also adopt the policy of their

respective parent frame.

While the default policies are manually trained or coded, the policies for

the individual types of events are learned autonomously and incrementally.

Here we explain these policies and show that while they are effective at

recalling events that should be recalled, they also recall many other events

that should not be recalled. This explains the need to specialise the policy

to narrow the retrieval to the most relevant events.

In the following, we present rules without including the default rule, which

is always:

if true then no match

To evaluate the rule we use a generic frame and compare this to an ob-

servation of something that we believe might be an instance of that frame

type. We compare the values of slots that have the same name. If the slot

values are the same then the slot’s match value value is true, otherwise it

is false.

if slotgeneric.value = slotinstance.value then slotgeneric.match value← true

The conditions of the rules refer to the slot match value which is a boolean

value. In the context of a rule, we refer to this value by the name of the

117

slot. For example, refer to the rule assigned to the generic event data type

below.

event:

if match(action) then match

When trying to establish if an observation is an instance of an event type,

we compare the value of the action slot in the observation with the value of

the action slot in the generic. If the values are the same then we conclude

that the observation is an instance of an event.

action:

if match(precondition) ∧match(effect) then match

predicate:

if match(name) ∧match(argument) ∧match(arity) then match

object:

if match(type) then match

time:

if true then no match

location:

if match(name) then match

temporal relation:

if match(all slots) then match

118

connected event:

if match(event) ∧match(temporal relation) then match

The rule for the temporal relation frame may seem confusing. The condi-

tion, match(all slots) means that for the system to conclude that some-

thing is an instance of a temporal relation, all slots in the instance must

have the same value as all slots in the generic. We present this rule with

the condition, match(all slots), because each slot in a temporal relation

frame is one of Allen’s temporal intervals [52], and as there are quite a few

of these it more compact to write the rule as above.

4.4.2 Distinguishing Between Episodic and Semantic

Memories

In Section 2.5, we described some of the theories surrounding episodic mem-

ory in cognitive psychology. Recall that Tulving [60] distinguished between

episodic and semantic memories. He stated that episodic memories are rec-

ollections of personally experienced events and that each episodic memory

is contextualised. This means that episodic memories have a time and a

location associated with them. In contrast, semantic memories are known

facts and entities, the events surrounding which happened independently

of the person’s experience.

Therefore, Tulving proposed that declarative memory should be split be-

tween episodic memories and semantic memories. Similarly our collection

of memories is also split. Semantic memories are non-episodic declarative

concepts. All types of events that are semantic memories have been ob-

served more than once. As more observations of a given type of event are

noticed, we are able to induce a more general representation of an event

type. This reasoning may determine that the spatio-temporal aspects of

the event that were a part of the event in some of the earlier observations

are no longer considered relevant and so are removed and the remaining

information is stored in the semantic memory.

119

This is not to say that episodic memories “become” semantic memories.

Some information from the episodic memory is retained because it is rel-

evant information and this part forms a semantic memory. For exam-

ple, when learning that Edmund Barton was the first prime minister of

Australia, the experience of learning that information remains an episodic

memory, however, some of the information learnt through that event is

stored as a semantic memory.

Separating memories into episodic and semantic stores has a practical ad-

vantage. As our collection of events grows over time, the recall time also

increases. By splitting events into two separate collections we can increase

the efficiency of recall. This is our primary justification for splitting the

events into two separate collections. There are no other additional benefits

to be gained from making this distinction apart from improved efficiency.

Thus, our reasoning for calling the two collections of events episodic mem-

ories and semantic memories is largely due to historical reasons. The types

of events stored in the semantic memory collection will likely have less

episodic qualities than those events stored in the episodic memory collec-

tion. Historically, in cognitive psychology, events with these qualities have

been called semantic events. Thus, we have chosen to call this collection

the semantic episode collection.

4.4.3 Event Recall Using Ripple Down Rules

In Section 4.3.1 we gave examples of how an RDR can represent a recall

policy and explain how they are used to recall those events.

In Chapter 2.5, we reviewed the most common approaches to event retrieval

in case-based reasoning (CBR). Event or case retrieval is most commonly

implemented in two phases. The first phase usually involves some form of

shallow query that returns candidate matches for a new observation. The

second phase selects the case from the candidate matches that is the best

match to the observation.

We similarly adopt this model of a two-phased retrieval pipeline.

120

4.4.3.1 The Retrieval Pipeline

In this section we describe the retrieval pipeline. We show how recall

policies are evaluated against an observation and how to determine if the

observation is a new type of event or if it is an instance of a type of event

already in memory. We also give examples to explain the advantages of

this method over other approaches to event recall in a setting where an

agent must co-exist with other agents in a dynamically changing environ-

ment. However, before proceeding, we explain how we differentiate between

critical and non-critical actions.

4.4.3.2 The Difference Between Critical and Non-critical Ac-

tions

Section 4.2.4 explained that an event is created when the agent notices a

change in the state of the environment. There are a couple of problems

associated with this approach that we would likely to address. First is

that the effects of an action sequence that has been learned are assumed

to be the instantaneous observation of a state change. In reality, there

may be multiple effects to any given action and they may be observed at

different temporal points. Assuming that the effect of the action is only

what was instantaneously observed could have potential implications. The

most significant is that important information relating to the action may

not be included in the action model. However, as our learning method

allows for human intervention, it is possible to manually correct this in the

event that it does occur. It is also possible to include new information in

an action model on subsequent observations of that type of action.

The second and arguably more significant problem is that even inconse-

quential state changes can lead to events being created when they should

not. To prevent an agent from creating spurious events, the robot must

have an understanding of the significance of the end state of an observed

action. We can achieve this by defining a set of conditions that describe

states of the environment that, if observed, constitute a significant state,

121

which we refer to as a critical state. If we observe a critical state then

we conclude that the action that resulted in the observed state is a critical

action. A simple example of one of these states is:

on(floor, broken glass)

We assume that unless explicitly told otherwise, the world is in equilibrium.

That is, there is no reason to assume that an event has occurred.

Once a critical state in the world has been observed by the agent, an event

is created. Note, however, that just because a state change doesn’t result

in a critical state, it doesn’t mean that we do not take note of it. In fact,

this is how we learn new action models. The following example clarifies

this.

In planning, the objective is to achieve a goal and it can be assumed that

the goal is a critical state. In the PDDL planning language [135] we specify

a domain that informs the agent about the actions available to achieve that

goal. Assume that we have a goal where a person should be holding a glass

of water.

holding(Person, water)

An action model should specify an action whose effects satisfy the goal. As

actions are described by their preconditions and effects, the preconditions

setup sub-goals that must be satisfied first. Consider the following sequence

of actions that achieve the goal:

holding(Person, water)

as illustrated in figure 4.4.

To achieve the goal, five actions must be executed, where only the last

one achieves the desired effect. However, we only wish to create a single

event to represent this sequence. However, suppose the agent has not

been endowed with the domain knowledge of how to accomplish a given

122

Figure 4.4: The initial state is shown in red. Actions are in black and the
effects of an action are pointed to by a hooked arrow. The preconditions of
an action are indicated by a straight arrow. Preconditions and effects can
be conjunctions as well as single predicates.

task. Through observations of state changes, it is possible for the agent to

build this action sequence and so it is able to learn how new goals can be

achieved. If we assume noiseless observations then algorithm 26 describes

this process. Note that noisy observations can be handled by generalisation

over multiple instances of the action sequence.

Note that algorithm 26 only shows a high level description of what happens

when actions are or are not considered critical actions.

Also note that what is considered a critical action is not only something

that results in a critical state but any succeeding action that resolves this

state. This is because a critical state is one that is often undesirable and

therefore the robot must attempt to address it. For example, if the critical

state is that broken glass is on the floor then a plan that resolves this state

is to clean the broken glass.

In reality, determining if an action is a critical action or not is quite chal-

lenging. Critical states in an unstructured environment must be prioritised.

123

Algorithm 26 newActionSequence: Learning new action sequences

Variable HolderAction stores the non-critical actions that form part of
the action sequence observed prior to observing the critical action. This
is stored as the last HolderAction in an array of HolderActions. Record
both the time and the location of these actions as this is relevant to the
start and end time/location of the event that will eventually be created
when the agent observes a critical action.

struct HolderAction
action: Instance of action
time: Instance of time {The time this action was recorded}
location: Instance of location {The location this action was recorded}

end

newActionSequence()

1: action sequence = new List of HolderAction
2: observation = action that was observed
3: for all e ∈ effect of observation do
4: if e is critical state then
5: critical action = new HolderAction(observation, current time,

current location)
6: action sequence.put(critical action)

comment: This is where we call Algorithm 20
7: makeEvent(action sequence)

8: else
9: this action = new HolderAction(observation, current time, cur-

rent location)
10: action sequence.put(this action)
11: end if
12: end for

124

For example, the agent may observe two actions happening at the same

time. Let us assume that both actions are critical actions and therefore

we create events for both actions. Recalling these events recalls the entire

sequence of events that leads to a behaviour that the robot can execute

and that attempts to address the critical states.

Assume that we label the actions action A and action B and that the effect

of A is that there is dirt on the floor and the effect of B is that there is

broken glass on the floor.

Even if we observe action A first, action B must take priority because it is

of greater significance. Therefore, we must order our critical states based

on their significance.

While this may seem like a clear solution to the issue of which types of

actions should take priority, it is further complicated by the fuzzy nature

of people’s psyche. For example, consider the action sequence in figure 4.4.

Here we have two actions that are goto waypoint actions. It is reasonable

to assume that these are not actions around which individual events would

normally be created but rather they would be considered intermediary ac-

tions. However, consider a situation where a person explicitly asks the

robot to leave. Our model may tell us that a person who is frustrated is a

critical state, the solution to which is to leave the room. Given the context

of the situation, the goto waypoint action is now relevant as it has resolved

our critical state, or at least improved it!

This problem can be solved by once again introducing Ripple Down Rules.

Recall that the main advantage of RDRs is that they can learn incremen-

tally as new evidence presents to the system. For matching policies, RDRs

are used in both the sub-class and the super-class of the frame type. How-

ever, when deciding if an action should be considered a critical action or

not, we apply the rule only to the super-class, i.e. the action frame type.

We choose the default rule to be:

if true then non critical

125

We then add an exception to this default rule so that the rule is now:

if true then non critical except

if state ∈ critical state vector then critical

However, an action can also resolve a previous critical state. Therefore,

another rule is added as an exception to the default and the rule is now:

if true then non critical except

if state ∈ critical state vector then critical

else if (critical state) ∧ (action resolves) then critical

This policy states the following:

If a critical state is observed then the action is a critical action. However,

if a critical state has already been observed and it has also been observed

that that critical state has been resolved, then the action is also a critical

action.

To date we have found that only these two rules are necessary. However,

as we have highlighted throughout this dissertation, the advantage of using

RDRs as policies is that the policy can be incrementally updated. So, if

another case were to present whereby an action should be considered a

critical action, then that rule can be added to the policy.

Previous work, such as Nason and Laird [137], uses numerical values to

judge the significance of state-action pairs. Their work is an example of a

hybrid-AI model where reinforcement learning techniques are crossed with

symbolic practices. Depending on the state, the same action may return a

different value to the state-action pair. This is something that we feel could

be complimentary to the work that we are conducting here. However, by

using RDRs rather than numerical values we have some key advantages,

126

the main one being that we can more aptly capture the contextual setting

under which actions should be considered critical.

4.4.3.3 What Are Critical States and How Are They Arranged

in a Hierarchy

A critical state is something that may but should not physically occur and

therefore must be resolved.

Using an RDR policy applied to the super-class action frame, we can de-

termine whether or not an action is a critical action. In this section we

explain what a critical state is and how they are arranged in a hierarchy

so that they can be prioritised.

As the world is represented as a collection of predicates, it is logical for

us to also represent critical states as a collection of predicates. We also

group certain critical states together that are similar to one another. For

example, we might define a type of critical state called hazard and group

critical states that represent hazardous states under this type, such as, for

example, on(floor, broken glass) and on(floor, water), as both of these

are dangerous states that could lead to a person getting hurt.

Types of critical states are arranged within a hierarchy in order of priority.

We also order all of the critical states that are grouped under the same

type in a hierarchy. This means that within a given class of critical state

we have an order of priority. For example, one may consider a broken glass

to be more significant than a slippy floor and so under the hazard class, a

broken glass would be prioritised over a wet floor.

We represent a type of critical state as C, where C is a tuple consisting of

a set of members, M, a level of significance, λ ∈ N and a set of children,

T , where ∀t ∈ T , t→ C ′, such that C ′ represents a sub-type of C.

The set of members, M are the critical states, represented as predicates,

that are all of the same type. Referring to the same two examples from

before, on(floor, broken glass) and on(floor, water), these are both mem-

127

bers of the hazard class.

However, the hazard class can also have sub-classes, for example, a trip

hazard or a slip hazard. Each one of these sub-classes can also have mem-

bers, so in the examples that we have used so far it is likely that we would

in fact include the state on(floor, water) as a member of the slip hazard.

This is a recursive structure meaning that each t ∈ T is also a type of

critical state that can also have sub-classes. We therefore represent the

critical state tuple as follows:

C ::= 〈λ,M|T 〉

It is possible that there can be multiple different types of critical states

that are at the same level of priority. When this happens it is because we

could not prioritise one over the other and so when the agent observes two

members of different types but at the same level it deals with them on a

first come first served basis.

Critical states that are sub-classes of other Critical states are ordered hi-

erarchically within the parent state. See figure 4.5 for clarity.

Initially, and for the purpose of evaluation, we chose the critical states

based on the environment that we tested in. We have also manually en-

coded the hierarchy of these critical states. Manually encoding a hierarchy

is not ideal and is something that we would like to address in future re-

search. For example, it should be possible to add to and learn new critical

states as the robot observes the environment and automatically learn the

significance of that critical state with respect to other critical states. How-

ever, what we were trying to prove was that by using this model an agent

could ignore an event that is not relevant, thus it is adequate to select

the critical states that we believe are likely to be observed. We are aware

of this limitation however and have suggested it as an extension to this

research.

128

Figure 4.5: Each box represents a type of constraint. The hierarchy of types
is organised from top to bottom. Shadow boxes represent other types of
critical states at that level and boxes within boxes represent sub-classes of
the critical state type that they are embedded in. For example, here we
have a type called hazard and it is our most significant state, along with
some others not named in this diagram. The only member of hazard is the
broken glass predicate and so this takes priority. Other types of hazards
are trip and slip hazards that we consider to be of equal significance. We
prioritise all members of the parent critical state type before we handle
any of the members of the children. We must prioritise all hazards before
we deal with any inconveniences.

129

4.4.3.4 When Should an Agent Recall or Create an Event

Before returning to the main subject of this section, namely how events are

recalled from memory, we want to very briefly explain when it is that an

event should be recalled from memory or when a new type of event should

be created and added to memory. Recall that in Section 4.2 we stated that

a new type of event is created when we fail to recall any other type of event

either in episodic or semantic memory.

While this is true, the point at which we create the new type of event is

not at the exact time when the agent fails to recall any of the other types

of events. In Section 4.4.3.2 we noted the policy for determining whether

an action is a critical action or not and the policy is that if the effect of

the action is a critical state or rather if at least one of the effects of the

action is a critical state then the action is a critical action.

At this point, we attempt to recall an event from memory. This is a de-

liberate constraint that we place on our recall pipeline. We include this

constraint for the same reason we constrain the point at which a new type

of event is created in memory. Recall that we only create new types of

events when an agent observes a critical action to prevent the system from

creating multiple different types of seemingly irrelevant events. For similar

reasons, we do not want to attempt to recall events on every minor state

change in the environment. This would be inefficient and time consuming.

Thus, we constrain our recall policy to only recall events when a critical

state has been observed. If we are successful then we recall the entire event

sequence which concludes with an event, the action of which is an action

that the agent can execute to resolve the critical state.

However, in order for that final event to be a part of that event sequence,

we need to wait for it to be observed. Therefore, when we observe a critical

state and we cannot recall any event from memory that relates to that crit-

ical state, then we must assume that at some point the agent will observe

another event that resolves this critical state and thus we must wait until

this event is observed before we can create a new type of event in memory

using the process outlined in Section 4.2.

130

Returning once again to the recall process. Like in CBR, our algorithm is

a two-phased approach and depending on the necessity may be run twice.

This is because initially we aim to match the observation to an event in

semantic memory. The reason for this is that each type of event in semantic

memory has been observed a sufficient number of times for a unique recall

policy to be defined for that type of event. Therefore, if the observation

is in fact an instance of a type of event in semantic memory then we are

more likely to recall the correct type of event from semantic memory and

that type of event only.

In querying the events in episodic memory, we are using the default recall

policies, which are the policies that are inherited from the default generic

frames that we outlined in Section 4.4.1.

First Phase Recall:

The first phase involves a very simple shallow query where we return any

events that have at least one or more slot values that match the same slots

in the observation. These matches are called candidate matches. When

initially trying to determine if the observation matches an event in seman-

tic memory this can be quite an effective step to take. This is because

the types of events in semantic memory are the most generalised versions

of those types of events and so there is only a minimal amount of irrele-

vant information. Thus, we can filter out quite a large sample of semantic

memories immediately.

We have found this to be less effective however when querying episodic

memories. This is because the events in episodic memory have not yet

had a sufficient number of observations for us to logically induce a more

generic representation of that type of event. Thus, they typically contain

a lot of random or irrelevant information, some of which is likely to match

something in the observation.

It is also true that as our database of episodes grows, the first phase recall is

likely to return a significant number of candidate matches. The first phase

recall is largely an implementation detail and we mention it only because

it is a common practise within Case-Based Reasoning recall. Returning a

131

large number of candidate matches is not ideal however it will limit to an

extent the number of matches that the second phase recall must evaluate.

Thus, it provides some relief to the more complex part of this recall policy.

Second Phase Recall:

The second phase of our recall pipeline is where we make the most signifi-

cant contribution to this field. It is at this stage that we are using RDRs

to establish if the current observation event is an instance of any of the

events either in semantic or episodic memory.

In algorithm 27 we have left out some of the details such as handleMany-

ValidMatches function. This is because the details of this function are

more aptly covered when we explain the recall policy training procedure.

The most important function in algorithm 27, is the evaluateRules func-

tion. This is where an observation is evaluated against the recall policy for

each type of event that is returned as a candidate match.

Algorithm 28 evaluateRules: Evaluating Recall Policies for Episodic
Memory Retrieval

Input: observation, candidateMatches {We are assuming that we have
already executed the shallow query.}
evaluateRules(observation, candidateMatches)

for all match ∈ candidateMatches do
eventMatch ← doFramesMatch(match, observation)
if eventMatch then

return true
end if

end for
return NULL

When evaluating the rules, we compare all common slots in the observation

to the candidate match and compare the results of the comparison against

the condition in the match policy for the particular type of frame that we

are dealing with. Figure 4.6 shows a very rudimentary example of this

for a simple event. Algorithm 28 through 36 clarifies this process for the

evaluteRules method.

132

Algorithm 27 recallEvents: Recall Pipeline Summary

Input : event collection ← semantic {This is the name of the collection
that we initially query. We always start by querying the semantic collection
and so this variable is initialised to semantic}
Input : observation
Comments:
6: This is the point that we know a new type of event has been observed but
we are waiting to observe the event that resolves the critical state that has been
observed before creating this new type of event in memory
11: Nothing returned from semantic memory so repeat the process on episodic
memory
14: We have recalled an event from memory and only one event so we return it.
We use the observation to induce a more specialised policy as will be explained
in Chapter 5
16: At this point we need to specialise the policies for each returned event because
only one should be correct
recallEvents(event collection, observation)

1: candidates ← shallowQuery(observation, event collection)
2: validMatches ← evaluateRules(observation, candidates)
3: if validMatches is NULL then
4: if event collection is episodic then
5: while ¬ resolveEventObserved do
6: doNothing
7: end while
8: createNewTypeOfEvent(observation)
9: else

10: event collection ← episodic
11: recallEvents(event collection, observation)
12: end if
13: else if validMatches 6= NULL ∧ length(validMathces) is 1 then
14: return validMatches
15: else
16: handleManyValidMatches()
17: end if

133

The first step in this algorithm is to determine if the two frames that we

are comparing, match each other. If we are comparing two event frames,

one being a generic event in memory and the other being an observation

event, and the doFramesMatch method return true, then we conclude

that the observation is an instance of the candidate event type.

Algorithm 29 doFramesMatch: Checking if Two Instances Match

Input: candidatematch as cm
Input: observation as o

Comments:
1: Returns all slots. Refer to algorithm 22 for slot structure
5: We don’t have the slots for this frame so we need to call an external function
to get the value for slot called sname in the observation instance
6: If slot values are null, then we can not do a comparison
14: Returns a tuple. The didEvaluate is a boolean which is true if a rule fired
and the conclusion is the conclusion of that rule. Candidate match stores slot
match value for each slot which is used when evaluating the rules
16: The conclusion will be either match or no match
doFramesMatch(cm, o)

1: slots = cm.getSlots()
2: for all slot ∈ slots do
3: sname ← slot.name
4: svaluecandidate ← slot.value
5: svalueobservation ← o.getValue(sname)
6: if svaluecandidate is NULL ∨ svalueobservation is NULL then
7: continue
8: end if
9: if doSlotsMatch(svaluecandidate, svalueobservation) then

10: slot.match value← true
11: end if
12: end for
13: parent ← cm.getParents()
14: (didEvaluate, conclusion) ← evalMatchRDR(cm, parent.matchRule)
15: if didEvaluate then
16: return conclusion
17: end if

In comparing two frames, we can only compare them to each other if they

have at least one common ancestor. For example, an event in memory may

be represented as a generic frame type that is a sub-class of the generic

134

Figure 4.6: Both boxes are pseudo-representations of a very simple type
of event. The box on the left is the observation. The box on the right is
a candidate match. The box on the right is the exemplar for the generic
event type that has at least a partially trained recall policy. The shadow
box represents that generic event with the RDR in red. The RDR in this
case states that if the value of the action of an event that has been observed
matches the value of the action in the generic frame for this event then the
observation is also an instance of the candidate event type. In this case
that would be true and so the candidate event would be returned as a valid
match to the observation

event frame. Whereas the observation is just an instance of the generic

event frame. Even though the immediate parent of both instances is not

the same, we can still compare them against each other as they have a

common ancestor in event. We compare only slots that have the same

name as each other and check whether the data in those slots match, if

they do then the slot match value variable for that slot is assigned true.

We use this value when evaluating the matching policy for this type of

frame.

135

Algorithm 30 doSlotsMatch: Checking if the Slot Values Match

Input: candidate value as cv
Input: observation value as ov
Comments:
1: cv/ov are the values associated with the two slots that we are currently com-
paring
2: If values are null then they can’t be compared and so we assume they do not
match
5: If the variable types are not the same then they can’t be equal
8: Slot values can be instances of other frames and so we recursively call the
process for these two values
15: By now we have established that the slot values are lists. Slot values that are
lists can be two types, multivalued or not multivalued and they must be handled
separately. We clarify this further below
doSlotsMatch(cv, ov)

1: if cv.isNull ∨ ov.isNull then
2: return false
3: end if
4: if type of cv 6= type of ov then
5: return null
6: end if
7: if type of cv is Instance ∧ type of ov is Instance then
8: return doInstsMatch(cv, ov)
9: end if

10: if type of cv is not List then
11: return cv.equals(ov)
12: end if
13: if ¬multivaluedSlot then
14: if cv.containsClass(instance) then
15: return doListsWithFramesMatch(cv, ov)
16: else
17: return cv.equals(ov)
18: end if
19: else
20: return doListsIntersect(cv, ov)
21: end if

Algorithm 30 requires further clarification. In this algorithm we check if

the value of two slots match. Although this may seem trivial, the values of

a slot can be another frame, in which case we recursively start the process

again. Slots can also contain lists as their values. This is again more

complicated because a slot can contain a list in two ways. The first is that

the slot can be multivalued, the second is that the slot can be single valued

136

but have a list variable as the only member. We specify the process for

confirming if two lists that have frames as member match in algorithms 31

to 34.

Algorithm 31 doListsWithFramesMatch: Check if Two Lists With
Instances Match
Input: candidate list as cl
Input: observation list as ol
Comments:
5: One of the main reasons we avoid lists is we should be sure of the order of
elements in the list also
doListsWithFramesMatch(cl, ol)

1: if cl.length 6= ol.length then
2: return false
3: end if
4: for all (index, element) ∈ cl do
5: if ¬doInstsMatch(element, ol.at(index)) then
6: return false
7: end if
8: end for
9: return true

Algorithm 32 checks if two lists intersect. Lists can either contain instance

frames or not. If two lists contain instance frames then checking if those

two lists intersect is more complicated as we have already clarified. We

outline the process for checking if two lists with instance frame intersect in

algorithm 33.

Algorithm 32 doListsIntersect: Check if Two Lists Intersect

Input: candidate list as cl
Input: observation list as ol
Comments:
4: Assuming that no term is an instance then we check if any of the other terms
are common to both lists. If they are then the commonTerm function returns true

doListsIntersect(cl, ol)

1: if cl.containsClass(Instance) then
2: return doListsWithInstancesIntersect(cl, ol)
3: else
4: return cl.commonTerm(ol)
5: end if

137

Algorithm 33 doListsWithInstancesIntersect: Check if Two Lists
With Instances Intersect
Input: candidate list as cl
Input: observation list as ol
Comments:
1: This returns the instance pairs that we referred to earlier. Both of the in-
stances in each pair are of the same type and so we compare the instance frames
in each pair to see if they match
3: the first of the pairs is always from the candidate and not the observation
doListsWithInstancesIntersect(cl, ol)

1: instPairs ← pairInstances(cl, ol)
2: for all pair ∈ instPairs do
3: if doInstsMatch(pair.first, pair.second) then
4: return true
5: end if
6: end for
7: return false

Algorithm 34 takes two lists that have instance frames as members and

groups the instance frames that are of the same type or have the same

parents, into pairs. Recall that we mentioned that instance frames can

only be compared for similarity if they have at least one common ancestor.

However, a list within the context of a frame is not constrained to have

only one type. Nor are lists constrained to have types ordered in any

particular way. Consequently, any given list might contain frames that have

different parents. Thus, if we were to apply a brute force comparison of

two lists, we will likely be trying to compare two frames that do not have a

common ancestor. As we have already stated, this is not possible and so this

approach would be inefficient. To maximise efficiency we group instance

frames that have the same parents and compare each pair of instance frame.

We can then find the intersection of each of the individual instance pairs.

138

Algorithm 34 pairInstances: Pairing instance frames together
Comments:
5: If the parents are the same then we create an instance pair Input:
candidate list as cl
Input: observation list as ol
pairInstances(cl, ol)

1: return list = new List
2: for all c ∈ cl do
3: this pair = new List
4: for all o ∈ ol do
5: if c.getParents().equals(o.getParents()) then
6: this pair.put(c)
7: this pair.put(o)
8: return list.put(this pair)
9: end if

10: end for
11: end for
12: return return list

When comparing the items of a multivalued slot to the items of another

multivalued slot, we only look for some intersection between the two. In

other words, to be able to decide that two multivalued slots match one

another, we only need there to be one common term between the two slots

and that common term does not necessarily need to have the same index

in both lists. Thus, in the context of a rule, one can think of the terms

of a multivalued list as being disjunctions of one another. For example,

consider we had the following slot called drinks and the value of this slot

in the generic was:

whiskey, beer

If the value of the drinks slot is relevant to the recall of the event and if

the agent observes either whisky or beer as being a member of the drinks

slot in the observation it will conclude that the two events match. Another

way that this can be written is:

139

if whisky ∨ beer then match

On the other hand, when comparing the values of two single valued slots

when those values are lists, we compare the two lists in the same way that

we compare any other variables. Thus, in order to conclude that two lists

match, all of the values in both lists must be the same. In the context of

a rule we can consider all values of these types of lists to be conjunctions

of each other. Thus, if both whisky and beer were relevant to the event

above then this rule would be:

if whisky ∧ beer then match

There is a reason for differentiating between these two different types of

lists and we should also note that when dealing with lists it is most common

for us to be dealing with items from a multivalued slot rather than a list

from a single valued slot. Consider the representation that we have for

an action, which has preconditions and effects. The preconditions and the

effects of an action are conjunctions of predicates: 〈P1 ∧ · · · ∧ Pn〉, and in

the frame representation, each predicate is an item in a multivalued slot.

It is unlikely, when comparing an observation event to an event in memory

that the state of the world will be the same even though the events might

be the same. Other information, previously unknown, will almost certainly

have been added or removed in between observations of this type of event

and so an exact match of the preconditions and effects will be unlikely even

though the events might be the same.

Thus, if we wish to see whether preconditions between an observation of

an action and a generic action in memory match, we look only for an

intersection between the items in the slots. Similarly for the effects. More

formally speaking:

∀A,B{list(A)∧list(B)∧multival(A)∧multival(B)∧intersect(A,B)→ match(A,B)}

140

However, there may also be a case where all elements of a list must match for the

slot to match. For example, consider the event is of a meeting and before that

meeting can take place all attendees must be present. We might then have a

type of object called attendees whose value is everyone involved in the meeting.

Hypothetically, it might be the case where if all attendees are not present then a

different meeting is taking place. In this case, we would have a single valued slot,

whose value is the list of attendees. If the observation of this does not match

exactly then we conclude that it is a different meeting.

One further difficulty arises when we have multivalued slots when one or more of

the items is another instance. When this happens we must split the multivalued

slot into sub-lists, each sub-list containing instance frames of the same type. We

then compare the sub-lists that have frames that are of the same type with one

another to see if there is a common term between the sub-lists. We do this as

per algorithm 34.

For example, consider we had two frames and one of the slots contained infor-

mation about objects that had been observed in the environment. It might be

a case that in one of the events we saw two chairs, a dog and a cat and in the

other we saw three chairs but no dog or cat. In the former frame, we would split

the list into three sub-lists with the first sub-list containing the instance frames

of the two chairs, the second containing the instance frame of the dog and the

third containing the instance frame of the cat. In the latter, we would split the

list into a collection of sub-lists however this collection size would be one and

contain the instance frames of the three chairs. Only the chair frame type is

common to both and so we would check for any intersection between these two

sub-lists. If there is a common chair to both then we would assign the slots

match each other.

When running this comparison it is easier for us to create another list of instance

pairs. For example, consider the two chair lists we have just discussed. If the

first list is represented as:

〈Ca, Cb〉

and the second as:

〈Cc, Cd, Ce〉

141

then we create another list:

〈〈Ca, Cc〉, 〈Ca, Cd〉, 〈Ca, Ce〉, 〈Cb, Cc〉, 〈Cb, Cd〉, 〈Cb, Ce〉〉

When then iterate over this list of instance pairs and check if any two instances

in each pair match one another.

Before detailing the algorithm to evaluate the match rules for each data type,

recall that we record whether the slots in the candidate and observation matched.

We use this value to evaluate the matching policies.

Algorithm 35 evalMatchRDR: Evalute the Match Policy for a Given
Type of Data

Input: candidate instance as ci
Input: matchRule
Comments:
2: This is a boolean variable. If the rule fires this is set to true
5: Checks if a condition was satisfied
9: If there is no exception then set the rule to be the alternative to the current
rule. Eventually this will be null and the while loop will end
12: return whether any rule fired and the conclusion of the last rule to fire
evalMatchRDR(ci, matchRule)

1: RDR rule = matchRule
2: conditionSatisfied ← false
3: while rule 6= null do
4: lastRule ← rule
5: conditionSatisfied ← evaluateCondition(ci, rule.condition)
6: if conditionSatisfied ∧ rule.exception 6= null then
7: return evalMatchRDR(ci, rule.exception)
8: else
9: rule ← rule.alternative

10: end if
11: end while
12: return 〈conditionSatisfied, lastRule.conclusion〉

A condition is a tuple consisting of a functor, f and two arguments, v1, v2. The

functor can be one of three types: it can either be a boolean comparison (==),

a logical and (∧) or a logical or (∨). In the event that the functor is a boolean

comparison, the second variable in the tuple is the slot name and the third is

the boolean value indicting if the compared slots matched. In the event that it

is a logical and or a logical or, the remaining two values are other conditions.

142

For example, if the rule were:

if match(action) then match

that is another way of saying:

if match(action) == true then match

Therefore, the condition tuple in this case would be:

〈==, action match value, true〉

However, if the rule were:

if match(action) ∧ time then match

then condition tuple in that case would be:

〈∧, action match value == true, time match value == true〉

143

Algorithm 36 evalCondition: Evaluate the Condition for a Given Rule

Input: candidate instance as ci
Input: condition
Comments:
1: Caters for the default rule
18: At this point the condition is a tuple with a functor, ==, a slot name and
an expected match value. If the actual match value of the slot is equal to this
then return true
19: We record whether the slots matched when compared
evalCondition(ci, condition)

1: if condition is true then
2: return true
3: end if
4: if condition.functor is and then
5: if evalCondition(ci, condition.v1) ∧ evalCondition(ci, condition.v2)

then
6: return true
7: else
8: return false
9: end if

10: end if
11: if condition.functor is or then
12: if evalCondition(ci, condition.v1) ∨ evalCondition(ci, condition.v2)

then
13: return true
14: else
15: return false
16: end if
17: end if
18: sname = condition.v1

19: didMatch ← ci.getMatchValue(sname)
20: if didMatch.equals(condition.v2) then
21: return true
22: else
23: return false
24: end if

4.5 Conclusion to Event Retrieval

We have presented a novel approach for event retrieval using Ripple Down Rules

as recall policies. The method is intended for robots that operate in an unstruc-

144

tured, partially observable environment with people or other robots and which

have a wide variety of tasks where it is impossible to know in advance what those

tasks might be.

This is in contrast to almost all other domains for which research in either

case or event retrieval has been evaluated. As we will demonstrate when we

present the evaluation of this method in Section 6.2, most other approaches work

best in domains where there is either a single objective (goal) or a finite list of

known goals. In our work however, this is not the case, and no assumptions

are made regarding the expected behaviour of a robot. In the context of our

research, the purpose of episodic memory is so that a robot can better recognise

situations in which it is required to assist people. In an environment like a game,

where the robot is the only agent and episodic memory only serves to better the

robot’s performance, an approach in which the qualitative similarity between

an observation and an event in memory, exciting an attention mechanism above

some threshold, may be more effective. This is because a game can typically

rely on the same information being relevant to every situation and the number

of goals that the agent needs to achieve is finite and known.

In many domains this is not the case. We require an approach where the infor-

mation that is pertinent to a particular type of event is prioritised in the recall

policy for that type of event. Furthermore, it is essential that the recall policy

for any type of event can be incrementally updated as new and more relevant

information regarding that type of event is presented. This will become clearer

when we describe how we train recall policies.

We have demonstrated an approach to episodic recall that is capable of captur-

ing the contextual information that is relevant to different types of events. As

our method uses a different representation of context to other methods in the

literature a direct comparison is difficult. However, we will show in our evalu-

ation that our approach is effective at differentiating between different types of

events in different contexts and can consequently accurately recall the correct

event from memory.

That is not to say however that our approach is without flaws. An agent must

initially be provided with apriori information relating to the environment and

to the structure of the data representing the various components of an event.

We also hand encode the hierarchy of critical states which must be addressed.

145

While these assumptions and constraints are not insignificant, we believe that

they can be addressed. In Chapter 7 we suggest some possible extensions to this

research that may address these problems.

Another notable draw back is time complexity. Recall policies are evaluated

in linear time O(n), so as the number stored episode grows, the run time grows

linearly. We have, to some extent, already addressed this issue. By first splitting

our memories between episodic and semantic memories there is less of a demand

on each individual query and by using a two-phased approach, we reduce the

number of episodes for which we must evaluate the recall policies.

However, we can further improve the time complexity by compiling our recall

policies into a structure similar to a RETE network [138]. Such a network

would evaluate an RDR only when the values referenced in the condition are

present. This means that our retrieval algorithm could be much improved in

time complexity as we would not need a linear traversal of each event, evaluating

the RDRs one at a time.

146

Chapter 5

Training Recall Policies

5.1 Introduction

So far we have explained how recall policies can be used to retrieve an event from

memory, with specific reference to how different recall policies can be assigned

to different types of events, capturing only the information that is relevant to

that type of event. In this chapter, we explain the process by which these recall

policies are learned.

Before beginning, we provide some further clarification on our terminology. We

use the phrases “recall policy” and “matching policy” interchangeably. There

is a reason for this. Matching policies are applied to generic frames and the

objective of the matching policy for a given type of frame is to establish whether

an observation is an instance of that generic frame. Events are just other types

of frames and so an event recall policy is no different from an event matching

policy. However, as we are trying to recall events from memory we often refer to

the policy associated with a given type of event as that event type recall policy.

With other types of frames, we refer to the matching policy of that type of frame.

Training policies through induction has gained some attention in recent years.

For example, Law et al [139] learn Answer Set Programs, including normal

rules, choice rules and constraints using Inductive Logic Reasoning. The primary

difference is the type of policy that we are training. We have chosen to explore the

possible benefits afforded by using Ripple Down Rule policies. Our motivation

147

for choosing this type of policy is that it can be trained easily and if necessary

can be guided by a human to correct any errors in the learning.

There are two ways in which recall policies can be trained and each method has

advantages and disadvantages. The first way is to train policies manually using

a human trainer to guide the learning, as is consistent with how Ripple Down

Rules are traditionally trained. As will be seen, in Section 5.2.1, there are few

situations in which one would want to manually train a recall or matching policy.

Manual training involves asking the trainer a series of questions. Dealing with

a single complex event or with a sequence of events can often lead to a lot of

questions being asked and can prove vexing to the trainer. The advantage of this

type of training, however, is that we can often train a policy to a high degree

of accuracy with only a single observation of the type of event for which we are

training. This is arguably the only advantage to this style of training.

The second way to train a recall policy for an event is by induction. Through

this process, a policy is induced from a number of observations that are known

to be a specific type of event. We do not bias the process in anyway, so it is

possible that a policy can contain irrelevant information or it may be affected

by noisy observations.

There is a difference between irrelevant information and noise. Irrelevant infor-

mation is information that has been correctly observed but bears no relevance

to the event. An example may be the time of day that a glass broke. Irrelevant

information is rarely a cause for concern and our recall policies are usually not

affected by this information. Noise on the other hand comes from poor observa-

tions and noisy observations can at times lead to relevant information not being

observed correctly and thus not being included in the recall policy for that type

of event. This is more problematic but as we will explain in the following sections

it is still possible for us to manage these situations.

5.2 Training Policies

RDRs are most commonly trained by a human expert. However, if the system

must ask the trainer many questions, this can be labour intensive, and ineffi-

cient. For example, in the case that we presented in Section 4.3, we use RDRs to

148

recognise fruit and initially a human trains the system by answering questions

about the properties of the fruit. As there is typically a small number of prop-

erties, like size, colour, shape, etc., this is quite manageable for the trainer and

an accurate classifier can be learned with little effort.

In our case, however, the data structures that we are working with can be quite

complex. While it is possible to train event recall policies using only a human

expert, that approach can lead to hundreds of questions being asked, which for

obvious reasons, is not practical. Therefore, the system learns a recall policy by

observing a series of events. This still involves using a human expert to assist,

however it typically only requires about two or three questions per event. Thus,

the learning system requires more examples than one driven entirely by a trainer,

but it requires less human intervention.

We explain both techniques and outline the advantages and disadvantages of

each. The main advantage of RDRs is their ability to learn incrementally without

any need to rebuild a model. Whether a human expert explicitly trains the recall

policy or the policy is learned from examples, amendments to the policy can be

easily made with succeeding observations of an event type.

In the conclusion of this dissertation, Chapter 7, we compare our approach with

common methods for training recall policies both in episodic memory and case-

based reasoning. We outline the advantages and disadvantages of our approach

and give examples of why the approach is well suited to robots operating in

domestic environments.

5.2.1 Training Policies Through Human Guidance

In this section, we explain how an event recall policy can be trained using a

human to guide the learning. The main advantage is that a recall policy can be

trained with only a few observations, and often only one. An example of where

this approach might be necessary or preferred to a more autonomous learning

method, is if the type of event is very rare and therefore there are very few

training examples. For example, if the type of event is an annual one, this might

mean that it could take several years for a robot to properly learn how to recall

this type of event. Therefore, strongly guided human training is preferred for

rare cases.

149

However, as will become clear, when applied to training event recall policies, this

style of training is generally discouraged. The reason that we discourage this

type of learning is because an event is a complex, large data structure. When

training an RDR policy on simple cases, like the example where our system learns

to recognise fruit, a human-guided approach is acceptable. This is because only

a small number of questions will be asked to train the policy. For events, this

is not the case and it is possible that a significant number of questions will be

asked to train a recall policy. This is the main disadvantage to this training

method.

The default RDR covers the most common cases. If a new case is covered by

the RDR when it should not be, an exception is added. That is, the RDR is

specialised. When a case is not covered when it should be, an alternative is

added, resulting in a generalisation. If a branch in the RDR tree is created due

to noisy data, this can be corrected when further examples are observed.

Consider again the example that we presented in Section 4.3, where the objective

is for the system to learn to identify fruit. The default rule is:

if true then unknown

When a new example of fruit is presented, the default rule fires but returns an

incorrect conclusion. Because the rule fired and produced an incorrect conclu-

sion, it must be specialised by adding an exception rule. The conclusion of the

exception rule is the correct classification, provided by the trainer. The condi-

tion of the exception rule is obtained by examining the differences between the

conditions in the rule that fired and the new case. For the default rule, the values

associated with all properties of the new case are potentially relevant since the

condition of the default rule is just true.

The system generates a set of questions for each property of the fruit. In the

case of a banana the questions might be:

is it because colour = yellow?

is it because shape = long?

150

The trainer may answer yes to the first question and no to the second. Therefore,

the following exception is added to the default rule and the RDR now becomes:

if true then unknown except

if colour = yellow then banana

Suppose the system is now presented with an orange. The default rule fires, but

since it has an exception rule, it is evaluated but does not fire since its condition is

not satisfied by the new example. The difference between the properties required

by the last evaluated rule and the new case is that the colour is orange, so the

trainer will be asked if the ruled failed because of this difference. If the answer

is yes, then an alternative rule is added to generalise the RDR:

if true then unknown except

if colour = yellow then banana

else if colour = orange then orange

While this method is very effective for training systems where typically the

number of questions being asked is small, this is not a practical solution for

complex data, where a large number of questions may be needed to determine

the conditions in a new rule.

This is the case for our episodic memory since an event frame can have many

properties, including embedded frames of other types of data. Each generic

frame has its own recall or matching policy and these policies are represented by

Ripple Down Rules. Trying to train the recall or matching policy for an event

type could require hundreds of questions. In the next section, Section 5.2.1.1, we

present an example to show how even a simple event can require many questions

to construct the recall policy.

Nevertheless human-assisted training may be needed in three circumstances:

1. In rare cases, as described earlier, this approach might be preferable to an

151

autonomous one.

2. If an event’s recall policy has already had extensive training then it is

likely that only a small number of cases will not be covered by the recall

policy. Thus, the number of questions that must be asked to update the

policy is likely to be quite small and manageable.

3. We can more effectively handle noisy observation. If the agent incorrectly

observes something that it should not have or fails to correctly observe

something that it should have, we can instruct the agent that this differ-

ence is not relevant and it should be ignored.

5.2.1.1 Manual Training of Episodic Recall Policies

When manually training policies, we compare two observations of an event

against each other and determine if the values in each of the slots that have

the same name are equal. Recall that a slot stores the values of a specific prop-

erty of a given type of frame. So for example, if the type of frame that we are

comparing is a time frame, then one of the slots might be called hour and its

value might be 8.

Suppose we say that a given event is of type X . If a slot, has as its value,

an instance of another generic frame Y, then we can say that X embeds Y or

X ↪→ Y. When this is the case, we train the matching policy for the generic

frame Y first. This way, we have a policy that we can use to determine if the

slot values in X , that contain Y as a value, match one another. We do this

recursively for every frame that contains other embedded frames.

For example, when determining if two events match one another, we use the

recall policy associated with one of those events, for example:

if match(action) then match

To conclude that the events match, we check that the values of the action slots

match. We do this by evaluating the rule associated with the type of action

contained in the action slot. Before we can do this, however, we must have a

rule defined for that type of action. Thus, when training or updating event recall

152

policies we use a bottom-up approach. That is, we first identify frames whose

slots contain only atomic values or values that are not instances of other frames

and thus can be compared directly without needing to learn a new policy.

As already noted, when manually training RDRs, a user is asked questions that

are generated by the agent, based on the differences between the case for which

the current rule incorrectly fired and the new case for which the rule must be

updated. By using the difference between the current rule and the case for which

the rule fired incorrectly, the system is intelligently constructing questions. By

doing this, we are not asked about irrelevant information that had no effect on

the system’s incorrect decision. This is one of the key properties of RDRs and

one of the main reasons that we chose to use them. When training matching

policies, it is not the values of the slots but rather whether the values match

of two slots that are being compared that matters. Therefore, we also record

whether the last time we compared two slots, if the values of those slots matched.

If we are training policies manually, we can begin to specialise the default policy

after only the first observation. If training through induction, as we will explain

at a later stage in this chapter, we must wait for at least a second observation

before we can begin specialising the policy.

While it is possible to train a policy for an event after only the first observation,

we do not recommend this. This is because we will be asked a significant number

of questions. The reason for this is that the trainer is asked questions regarding

the differences between the initial case and the new case that resulted in the rule

being specialised. When specialising the default rule, everything is considered to

be different as we have had nothing previously to compare it against. In other

words, we must answer questions about every single slot and whether the values

of those slots are relevant.

It is for this reason that, in very complex situations, a lot of questions can be

generated to train the recall policy for an event type. Therefore, we use this

style of training only in a very small number of situations.

The following algorithms, algorithms 37 to 39 outline the process for manually

training a recall policy. Succeeding these algorithms is an example presented to

demonstrate why this is an approach one would want to avoid.

If one chooses to train policies only by hand, we recommend that the trainer

153

waits for at least the second observation of that type of event. This is because it

is possible that the number of questions asked to train a policy manually might

be reduced dramatically if one were to wait for a second observation of that

type of event. However, this might also not be the case and it depends on the

nature of the event in question. For example, if the two observations of the event

had much the same information, then we would only be asked questions on the

differences of which, there would be few. If, however, the two observations had

only a small amount of common information then we would be asked a large

number of questions to generalise the policy. Thus, as a default, we avoid the

manual approach to policy training.

154

Algorithm 37 trainRDR: Manual Training of Event Recall Policies

Input: candidate
Input: observation instance as observation
Comments:
1: The generic frame of the candidate
2: We keep track of the last rule to fire. This is the rule to which we add an
exception
3: The new rule to be added
4: ask is a function that takes a question as input, asks that question and returns
true if the answer is yes
11: Need to train the policy for any embedded frames
13: Lists also contain frames that have policies that need to be trained
trainRDR(candidate, observation)

1: generic to train ← candidate.getParent()
2: lastRule = generic to train.matchRule.lastRule
3: exception = new RDR
4: if ask(Do events candidate and observation match) then
5: exception.conclusion ← match
6: end if
7: for all s ∈ slots of cand do
8: svalue candidate = s.value
9: svalue observation = observation.getValue(s.name)

10: if svalue candidate instanceof Instance then
11: trainRDR(svalue candidate, svalue observation)
12: else if svalue candidate instanceof List then
13: trainListRDR(svalue candidate, svalue observation)
14: else
15: slot match value ← svalue candidate.equals(svalue observation) ?

true : false
16: end if
17: end for
18: exception.condition ← askQuestions(slots of candidate)
19: lastRule.exception.add(exception)

The trainListRDR function takes two lists as input and checks to see if either

list contains instance frames. If they do then they must train the policies for the

generic frames from which these instances inherit their properties.

155

Algorithm 38 trainListRDR: Manual Training of Data Types Con-
tained Within Lists
Input: candidate list as candidate
Input: observation list as observation
Comments:
4: inheritsFrom returns all of the ancestors of a particular instance frame
trainListRDR(candidate, observation)

1: for all t candidate ∈ candidate do
2: for all t observation ∈ observation do
3: if t candidate instanceof Instance ∧ t observation instanceof In-

stance then
4: if inheritsFrom(t candidate).intersects(inheritsFrom(t observation))

then
5: trainRDR(t candidate, t observation)
6: end if
7: else if t candidate instanceof List ∧ t observation instanceof List

then
8: trainListRDR(t candidate, t observation)
9: end if

10: end for
11: end for

In algorithm 38, on line 4, we check that two instance frames have a common

ancestor before we use them to update a policy for the candidate instance frame.

This is so we don’t try and compare, for example, an apple and an car in order

to train the policy for the apple. However, if we were comparing an apple and

an orange, they would have a common ancestor in fruit and so we would assume

that there might be some common information between the two that could help

train a policy for the apple.

156

Algorithm 39 askQuestions: Generating and Asking Questions for
Training

Struct Condition contains
slot name: String
slot match value: Boolean

end
Input: Slots of the candidate as slots
Input: The rule that fired incorrectly as rule ← Instance of RDR
Comments:
6: We check if the current condition is already in the rule. If it is not then it
hasn’t been covered and so could be relevant to the new rule
5: We keep track of whether this slot’s value was the same as the same slot in
another instance, the last time they were compared
7: This function generates the question based on the current case and the rule
that fired incorrectly and waits for a response. The question might be: is the
fact that the action slots match relevant

askQuestions(slots, rule)

1: conditions = new List〈Condition〉
2: for all s ∈ slots do
3: currentCondition = new Condition
4: currentCondition.slot name ← s.name
5: currentCondition.slot match value ← s.lastMatchValue
6: if currentCondition 6∈ rule then
7: question = createQuestion(currentCondition)
8: if ask(question) then
9: conditions.put(currentCondition)

10: end if
11: end if
12: end for
13: return conditions

In the following example, we show how a simple event of a glass falling off

a table is represented using frames and further demonstrate why you want to

avoid manually training recall policies using this event as an example.

In this example, if one trains the events recall policy after only the first obser-

vation, the total number of questions asked to train this policy is 31. However,

even if one were to wait for a second observation of this type of event it is likely

that this number would not decrease by much. This is due to the nature of this

event. Only the action is relevant and so it is likely that all other information,

such as, the time, the location, etc., would be different on a second observation.

157

Figure 5.1: This is the first observation of the event for which we are
manually training a recall policy. The event is depicting a glass falling off
a table. The shadow boxes represent the generic frames of which the boxes
containing the information are the exemplars. It is these generic frames for
which we are training matching policies. Slot names align along the left
hand side of these boxes with the values of these slots immediately to the
right of each slot name. A value like Action 1 for example is the unique
ID of another instance frame of some action type. The time of this event
is 10:30 am on December 14th.

Thus, demonstrating why this approach is to be avoided.

158

Figure 5.2: This is the second observation of the same type of event depicted
in figure 5.1. It contains largely the same information except one might
notice that the time of the event is different. For this type of event the
time should be irrelevant

While it is possible to specialise a recall policy after only the first observation, it

is almost never something that we would recommend pursuing. Thus, we present

here an example where we are generalising a policy after the second observation

of the event. The first and second observations of this event type are depicted in

figures 5.1 and 5.2 respectively. Because we have already one observation of this

type of event, the first specialisation of the default rule serves as the template

rule for this type of event. That is to say, the policy for this type of event is as

follow:

if true then no match except

if match(action) ∧match(time) ∧match(location) then match

Each of the action, time and location frame type contained within their respective

slots also have rules of their own that we do not show here. However, one should

note that the objects names are different, glass one and glass two respectively

and that all of the information in each of the slots of the time frames are different

and also the location frames.

159

Because all of this information is different, the rule:

match(action) ∧match(time) ∧match(location)

will fail and consequently the default rule will fire and return, no match. Thus,

it must be specialised and this specialisation will be a generalisation of the first

rule that we had. We generalise this rule by discarding conditions that no longer

hold true in each of the rules as we see necessary.

The values of the action slots were different, however, the value of the action

slot is an action frame type and it also has a matching rule. This rule has also

returned the conclusion no match because the names of the objects further down

the line are different and initially the action policy would have assumed these

names to be relevant. Thus, the first question that we are asked by the agent is

the following:

Question one: The values of the name slot in Ob 1 are different. Can I discard

this condition?

We would of course answer yes to this and the new policy for that type of object

would be the following:

if true then no match except

if match(name) ∧match(type) then match

else if match(type) then match

This generalisation allows us to conclude that the action slots of the two obser-

vations of this event type do in fact match and thus we do not need to discard

the match(action) condition from the event policy and we are consequently not

asked about it. However, the time slots and the location slots also have differing

information. In the interest of brevity, we will not describe every question asked,

however, the time frame has 8 slots all with different information, all of which

needs to be discarded and the location frame has 1 slot with differing informa-

tion. We are then finally asked if we can discard the time and location conditions

from the event recall policy and this brings the total question count to 12.

160

The final policy would then be:

if true then no match except

if match(action) ∧match(time) ∧match(location) then match

else if match(action) then match

We should note that we have shown only a very simple example and in reality

the structure of an event is even more complex with start and end times and

locations, as well as other connected events. It is also likely that there will be

more than 1 object. Thus, with very complex events, the question count could

run into the hundreds and this is why we avoid this approach where possible.

5.2.2 Training Policies by Induction

We have so far detailed how a policy can be trained using a human guide.

However, it is clear that this is not a practical way to train event recall policies

in most situations. A more efficient way, however, is that policies can be trained

by induction over several examples.

To learn a policy we use some background knowledge and a collection of facts to

induce an RDR. The collection of facts are events that we know to be of the same

type. The background knowledge consists of a pre-defined ontology of generic

frames.

5.2.3 Adopting a Hybrid Training Model

Suppose we have a situation where the policy for a certain type of event is:

if match(action) ∧match(time) then match

We are ignoring the default rule here. Consider however, that in the case that

the location values are the same we want to conclude that the events are in fact

not the same. On another observation of the event, our recall policy will not

consider the location of the event because the recall policy has not indicated

161

that the location is relevant and so if the action and time values are the same

then the rule will fire and return the conclusion match. At this point we must

specialise the rule to include the following:

if match(location) then no match

Because the action and time slots are covered by the original rule the system

only asks a question about the location. The new rule then becomes:

if match(action) ∧match(time) then match except

if match(location) then no match

Because we are only asked a single question or a very small number of questions

to update this policy it might make more sense, in this case, to train the policy

manually.

In reality, a situation like this is unlikely to occur and would in fact only be

possible if we were to keep track of every observation of a given type of event

rather than only storing the generic. There is good reason for this and it is to do

with how inductive reasoning works. If the location at which an event took place

is not relevant then it is not likely to be consistent across observations of that

type of event and so we will induce a generic representation for that type of event

that does not include the location. Thus, when we compare an observation of

an event to a generic event in memory, the location slot values will never match

because the location slot will have been removed from our generic representation

of that type of event.

If coincidentally the location remains consistent across a number of observations

of the event then it will be captured by the first rule. That is, our first rule

would in fact be:

if match(action) ∧match(time) ∧match(location) then match

Thus, when an observation of this event presents itself where the location slot

162

values are not the same, then this rule will not fire and the default rule will fire

instead. Thus, we must add another exception to the default rule. The entire

rule will therefore be:

if true then no match except

if match(action) ∧match(time) ∧match(location) then match

else if match(action) ∧match(time) then match

However, it might also be desirable for us to keep a record of all observations

of any type of event and not just the generic frame for that type of event. This

is so that we can more effectively handle noisy observations. This we explained

in Section 5.2.2. If we adopt this approach then we can use a voting system

to determine which information should be included in the generic frame of that

event. It is then possible for the location of the event to be included in the

generic frame of that type of event but not be explicitly captured by an earlier

rule. Consider the following example by way of explanation.

Workers in an office will often times organise weekly meetings. Typically these

meetings will be at a specific time and a specific location. However, if for example

the first two observations of a meeting happened in a different location then the

agent would induce the following rule for this type of event.

if match(action) ∧match(time) thenmatch

This is because the location of this meeting has been inconsistent across the two

observations and thus would not be included in the recall policy for this type of

event. How this is induced is detailed in the next section. As will become clear

when we detail the process for inducing a generic representation of an event, the

location information in the generic frame of the event will be null. If we only

ever store one example of each event in memory, then this will never change.

This is because we are storing what the agent believes is the most generalised

version of that type of event and as it was previously proven that the location

did not matter, then it will never be considered as part of the event.

163

However, if we store all observations of an event and use a voting system to decide

which information is included in the generic frame of an event then this will not

be the case. For example, consider that the same meeting was coincidentally

held in the same room for the next five weeks in a row. The voting system

should inform the agent that the location information should be included in the

generic frame of the event. The policy however remains the same because the

current policy:

if match(action) ∧match(time) thenmatch

has so far entailed all positive cases of this type of event.

Consider now that we are told we can no longer use that room because it has

been booked for another meeting but that we are free to use any other room that

we like. We must now update this policy to explicitly inform the agent that if

we observe a meeting in this room in the future then it is a different meeting and

so we should not recall this type of event from memory. In this case, because

only a small number of questions need to be asked to generate the update, it is

preferable to manually inform the agent about the update and so the new policy

becomes:

if match(action) ∧match(time) then match except

if match(location) then no match

It would however, be more effective to generate the initial updates to this policy

using induction over several examples. In the next section, Section 5.2.4, we

outline the process for updating a recall policy using induction.

While it is unlikely to occur, as we have demonstrated, there are few disadvan-

tages to employing a hybrid-training method should it be required. One of the

main disadvantages to using a human-guided approach is the number of ques-

tions that a user is asked. However, this is only the case if the event is new.

Recall that RDRs construct questions based on differences between cases. When

no policy has been trained, all observed information is perceived as different to

the default policy. However, if the policies have been trained to a degree, prefer-

164

ably through induction, then it is likely that there will only be small differences

between the observed case and the rule that fired incorrectly. Thus, a human

can quickly update the policy to reflect the correct information, with relatively

few questions.

5.2.4 Fully Automated Approach to Updating Poli-

cies for Event Recall

We have explained how in some contexts it might be preferable to update a

policy using a hybrid approach where the first updates to a matching policy are

learnt by induction over several examples and later updates are done manually.

In almost all cases, with the exception of very rare types of events, it is preferable

to initially train a recall policy using induction. In the last section we describe

more formally the process for updating policies by induction.

The initial step to autonomously update a policy using induction is to find the

most general representation of the event that we are training the policy for. This

involves finding the intersection between the generic event from memory and the

event instance that the agent observed. We are making the assumption that

we have already established at this point that the observed event is the same

type as the event recalled from memory. The agent is also endowed apriori with

the pre-defined ontologies representing the relevant components of the event.

That is to say, the agent is aware of the structure of the frames that we defined

in Section 4.2.3. We also assume that each of the slots in each of the frames

has been populated with the correct information, i.e. the time slot contains an

instance of a time frame. This apriori information and these assumptions are

important aspects of our automated learning pipeline.

Finding the intersection between two frames involves removing information that

does not remain consistent across succeeding observations of that type of frame.

Thus, in doing this we find the minimal generalisation of these two frames.

Algorithm 40 formalises the process for finding the intersection between two

frames. The inputs to this algorithm are the generic frame in memory and the

observation frame. The algorithm initially receives two event frames.

165

Algorithm 40 frameIntersection: Finding the intersection of two in-
stance frames
We have previously referred to the events memory as candidates. However,
when calling this algorithm we have already established the observation is
an instance of the generic event in memory. Thus, we in this case we refer
to this frame simply as the referent.

Comments:
7: If the slots values do not have the same type then they cannot be the same

and so we remove them

9: In this line we check to see if the slot values intersect one another. Slot

values can be other instances or lists. Therefore we must check for intersections

of these instances or lists. If they are atomic, strings, integers, etc. then we

compare the values

13: If the slot values intersect then we replace the value of the slot with the

value returned from the slotIntersection function. If there has been no further

generalisation then there will be no change to the slot value of the generic

Input: referent, observation
frameIntersection(referent, observation)

1: slots = referent.getSlots()
2: for all s ∈ slots of generic do
3: slot name = s.name
4: slot value = s.value
5: observation value = observation.getSlot(slot name)
6: if slot value.getType() 6= observation value.getType() then
7: referent.removeSlot(slot name)
8: end if
9: slot intersection = slotIntersection(referent value, observa-

tion value)
10: if slot intersection.isNull() then
11: referent.removeSlot(slot name)
12: else
13: referent.replaceSlot(slot name, slot intersection)
14: end if
15: end for
16: return referent

166

Algorithm 41 slotIntersection: Finding the intersection of two slot
values
This algorithm takes the values in two slots and finds the intersection be-
tween them. If the values are not list or instance types then we check only
that the values are the same and return null if not. If they are of list or
instance types then it is slightly more complicated. We are assuming that
we have already established that both values are the same type and so we
do not check for that here.
Comments:
4: Lists can also have instances and this further complicates finding the
intersection between two lists. Algorithm 42 clarifies the process
Input: referent value as rv
Input: observation value as ov
slotIntersection(rv, ov)

1: if rv instanceof Instance then
2: return frameIntersection(rv, ov)
3: else if rv instanceof List then
4: return listIntersection(rv, ov)
5: else
6: return rv.equals(ov) ? rv : null
7: end if

Algorithm 42 finds the intersection of two lists. This is more complicated than

it might appear since the elements of the lists can have different types: instance

frames, other lists and atoms (strings, integers, etc).

Algorithm 43 takes lists with elements that have different types and sorts the

elements by type into three sub-lists, the first element of which is a list containing

instance frames, the second is a list containing other lists and the third is a list

containing atoms.

〈〈inst1, . . . , instn〉, 〈list1, . . . , listn〉, 〈atom1, . . . , atomn〉〉

Recall that the objective is to find the intersection between the two original lists

that are now sub-divided into three other lists,the first of which contains instance

frames. Thus, we first find the intersection between the two lists that contain

instance frames.

To find the intersection between two lists containing only instance frames we

167

must first group the instance frames into pairs depending on their parents. If

two instance frames have the same parent then we must assume that there might

be some commonality between them. The number of pairs of instances of a given

frame will be equal to the number of instances of that frame in the first list

multiplied by the number of instances of that same frame in the second. For

example, consider the following two lists:

〈dog1, dog2, dog3, cat1, cat2〉, 〈dog4, cat3〉

These two lists are then grouped as follows:

〈〈dog1, dog4〉, 〈dog2, dog4〉, 〈dog3, dog4〉, 〈cat1, cat3〉, 〈cat2, cat3〉〉

Algorithm 34 groups frames by their parents. We then find the intersection of

each pair of frames per algorithm 40.

We then repeat this process for the list types by pairing lists together and re-

cursively calling algorithm 42 on each pair. We do this because we must also

assume that it is possible for any two lists in either of the original lists to have

a common term. Thus, we group the list types as follows:

〈list1, list2, list3〉, 〈list4, list5〉

〈〈list1, list4〉, 〈list1, list5〉, 〈list2, list4〉, 〈list2, list5〉, 〈list3, list4〉, 〈list3, list5〉〉

Finally, we find the common terms between the atomic values and include these

in the final result also.

168

Algorithm 42 listIntersection: Finding the intersection of two lists
Comments:
13: We refer the reader to algorithm 34
Input: referent list as rl
Input: observation list as ol
listIntersection(rl, ol)

1: return list = new List
2: referent split = splitList(rl)
3: observation split = splitList(ol)
4: all ref instances = referent split.atIndex(0)
5: all obs instances = observation split.atIndex(0)
6: all inst pairs = pairInstances(all ref instances, all obs instances)
7: for all p ∈ all instance pairs do
8: temp = frameIntersection(p.atIndex(0), p.atIndex(1))
9: return list.put(temp)

10: end for
11: all ref lists = referent split.atIndex(1)
12: all obs lists = observation split.atIndex(1)
13: all list pairs = pairLists(all ref list, all obs lists)
14: for all p ∈ all list pairs do
15: temp = listIntersection(p.atIndex(0), p.atIndex(1))
16: return list.put(temp)
17: end for
18: for all t ∈ referent split.atIndex(2) do
19: if t ∈ observation split.atIndex(2) then
20: return list.put(t)
21: end if
22: end for
23: return return list

169

Algorithm 43 splitList: Split a list into different frame types
Comments:
2-4: Create lists for each type that we are dividing the original list into
Input: list
splitList(list)

1: return list = new List
2: instance list = new List
3: list list = new List
4: atom list = new List
5: for all val ∈ list do
6: if val instanceof Instance then
7: instance list.put(val)
8: else if val instanceof List then
9: list list.put(val)

10: else
11: atomic list.put(val)
12: end if
13: end for
14: return list.put(instance list)
15: return list.put(list list)
16: return list.put(atomic list)
17: return return list

It is possible that the intersection of two events can be null. This happens when

observations have noise. It is most common for this to happen when the agent

fails to observe something that it should have. For example, if an object in the

environment is relevant to an event and if, say, it is the only object that is relevant

to that event, then it is likely that after a sufficient number of observations of

that type of event, the generic frame will contain only that object, assuming

that we have had noiseless observations. However, if on one of the observations

of that type of event the robot fails to identify the object properly, it is going to

assume that it is not relevant and that object will be removed from the generic

event after the noisy observation. Because it is the only relevant information it

is likely that no information will be contained in the generic event and it will

thus be null.

We have already proposed a solution for addressing this in that we store all

observations of each type of event in memory and use a voting system to decide

which information is kept. While this would largely solve the issue, it comes at

the cost of requiring significantly more storage.

170

The voting system that we could employ would be akin to a confidence interval

used in machine learning. The confidence interval is an interval statistic that is

a quantified measure of the uncertainty of an estimate. The challenge that we

will face in employing this system is in determining how many observations of a

given type of frame we require before we can get a meaningful estimate of the

relvant information that should be kept.

There are also other situations where a voting system is preferable to decide

which information is contained in the generic frame. Consider a situation where

there is altering information for one type of event, for example, an event where

a friend comes over to visit and in some cases the two friends drink whisky and

on other occasions the two friends drink beer. If the first two observations of

this type of event were to have different drinks then the agent would logically

induce that the drinks are not relevant to the event even though they are.

For obvious reasons this would cause issues. By using multiple instances of

the event however the agent can apply a voting system to determine which

information should be included in the event’s generic frame. After a sufficient

number of observations it would conclude that both whisky and beer are relevant

to this type of event. It would then put both drinks in the generic frame as

objects of a multi-valued list. One should recall from algorithm 32 that when

comparing two multi-valued lists, the terms within those lists are disjunctions

of one another. Thus, we can inform the agent that the drinks are relevant and

if the agent then observes the two friends drinking either whisky or beer on a

future observation, then it will correctly recall this event.

Alternatively, we could adopt a hybrid model and directly inform the agent that

both drinks are relevant to the event.

The space complexity of storing each instance of every event, however, is an

enormous constraint. Each event contains many different frames, consuming a

significant amount of storage. Thus, this is not the approach that we adopted for

this work. In Chapter 7, we provide a more detailed explanation of the benefits

of storing each instance of every type of event and how this can be implemented

in future work.

On each pass of algorithm 40, the frame that is passed to the algorithm becomes

more general, assuming that there are further generalisations to be made. Using

the information contained in the generic frame for the event we can update the

171

matching policy as detailed in algorithm 44.

In analysing algorithm 44, recall how a Ripple Down Rule policy is structured

and updated. An RDR begins with a default rule that returns the most likely

conclusion when no further information has been provided that allows us to

specialise the policy. In the case of a matching policy that rule is:

if true then no match

When this rule fires incorrectly, it is specialised to account for the new case as

has been described in Sections 4.3 and 4.3.1. Therefore, when updating a policy

we assume that some rule has fired incorrectly or else there would be no reason

to update the policy. The structure of an RDR captures the last rule that fired,

the rule to which we are adding an exception.

There is one catch to this however. When we induce a policy for a type of event

we induce this policy using the generic frame of that event type. Embedded

within that generic frame will be other generic frames each with their own unique

matching policy as has been outlined.

It might not be the case where all matching policies fired incorrectly, however

the only information that the agent is aware of is that some rule incorrectly fired.

Therefore, it must initially assume that all are incorrect and that each rule must

now be specialised or generalised further.

If it is the case where one of the matching policies of one of the generic frames

contained within the event fired correctly however, the newly induced rule will

be identical to a rule already in the RDR matching policy for that generic frame.

Thus, a quick check tells us that this policy does not need further specialisation.

The input to the induceMatchPolicy function is the generic frame that we are

training the policy for.

172

Algorithm 44 induceMatchPolicy: Inducing a matching policy

Struct Condition contains
slot name: String
slot match value: Boolean

end
Struct RDR contains

conditions: List〈 Condition 〉
conclusion: 〈 match, slot match value 〉

end

Comments:
7: If the two slot value is a list then we need to induce a policy for all frames in
the list
Input: generic
induceMatchPolicy(generic)

1: new conditions = new List〈 Condition 〉
2: slots = generic.getSlots()
3: for all s ∈ slots of generic do
4: if s instanceof Frame then
5: induceMatchPolicy(s)
6: else if s instanceof List then
7: induceMatchPolicyList(s)
8: end if
9: temp condition = createCondition(s.name)

10: new conditions.put(temp condition)
11: new rule = new RDR
12: new rule.conditions = new conditions
13: new rule.conclusion = match
14: addRule(intersection, new rule)
15: end for

173

Algorithm 45 induceMatchPolicyList: Inducing policies from lists

We induce policies for all frames in a list
Input: list
induceMatchPolicyList(list)

1: for all t ∈ list do
2: if t instanceof Frame then
3: induceMatchPolicy(t)
4: else if t instanceof List then
5: induceMatchPolicyList(t)
6: end if
7: end for

Algorithm 46 createCondition:
Creating a new condition

Here we create a new condition to
add to the new rule that is being
added to the policy.
Input: slot name

createCondition(slot name)

1: return cond = new Condition
2: return cond.slot name ←

slot name
3: return cond.slot match value ←

true
4: return return cond

Algorithm 47 addRule: Adding a
new rule
It is worth noting that technically it
is possible to have multiple parents.
In reality this rarely proves to be the
case with our work
Input: data instance, new rule
addRule(data instance,
new rule)

1: data type =
data instance.getParents()

2: for all d ∈ data type do
3: this rule = d.matchRule
4: last rule = this rule.lastRule
5: if new rule 6∈

last rule.exception then
6: last rule.exception.put(new rule)
7: end if
8: end for

5.3 Conclusion

In this chapter we outlined the process by which we are training a data matching

policy. We present the results of this in Section 6.2.3 where we show how accurate

recall policies can be trained after only a small number of observations which is

174

why this approach to learning has such significant contributions in the field of

episodic memory in cognitive robots. We present 3 ways that recall policies can

be trained and have outlined the advantages and disadvantages of each.

We require a system that can be updated dynamically, incrementally, as relevant

information appears and captures only the information that is relevant to the

type of event to which the policy is assigned. Ripple Down Rules provide us

with all of these relevant capabilities and it is why we choose to engage them as

recall policies.

Our approach also differs in that we do not attempt to fit a single retrieval cue

or mechanism to all events in memory but rather assign individual policies to

each type of event. Consequently it was necessary that these policies could be

trained with relative ease and perform well over a large data set. The results,

presented in Section 6.2.3 prove this to be the case.

175

Chapter 6

Evaluation and Results

6.1 Topological Mapping Evaluation and Re-

sults

Chapter 3 explained how we generate topological maps from two-dimensional

occupancy grid representations of environments. The occupancy grid only shows

free and occupied space and this does not necessarily correspond to a logical

understanding of areas. A topological map provides the foundation on which

a world model can be built and the world model provides the system with the

necessary information required to model episodic memories.

Our approach to generating a topological map achieves state of the art accuracy.

To evaluate our approach we use the precision and recall metric as proposed by

Bormann et al [2]. This is the standard metric on which topological maps are

evaluated. Our results show that, on average, we achieve 98% precision and 96%

recall which, to the best of our knowledge, is the highest level of accuracy that

has been achieved.

Before explaining this in further detail we briefly explain what these evaluation

metrics mean and how it is possible to achieve different results in both categories.

176

6.1.1 Evaluation Metrics

When segmenting a topological map, the result is compared against a ground

truth. Depending on the application, the environment may be segmented into

different types of regions. In our case, as we deal primarily with domestic robots,

we segment the environments into a collection of rooms and corridors and each

room or corridor is given its own ground truth. In determining the ground truth

of a region, people are asked what they believe to be the most accurate repre-

sentation of a given room. For our evaluation we use twenty open source maps

provided by Bormann et al [2] which already have an associated ground truth and

an additional six maps that we have created ourselves that we believe show more

complex environments and therefore more aptly demonstrate the capabilities of

our approach.

Precision is defined as the maximum overlapping area of a segmented region

with a ground truth region divided by the area of the segmented region. Recall

is the maximum overlapping area of a ground truth region with a segmented

region divided by the area of the ground truth region [2]. Precision is high if the

segmented region is fully contained within the ground truth region and recall is

high if the ground truth region is fully contained within the segmented region.

Let the area of the ground truth region be Agt and the area of the segmented

region be Aseg. The area of the overlap between the two regions is A{gt ∩ seg}.

Therefore,

precision =
A{gt ∩ seg}

Agt

recall =
A{gt ∩ seg}

Aseg

While our precision and recall figures vary only slightly, others have found that

these figures can vary widely. For example, Bormann et al [2], achieve 93%

precision, with 85% recall. Figures 6.1 and 6.2 show graphically how this is

possible.

177

Figure 6.1: This shows a
ground truth representation
of the environment as deter-
mined by Mielle et al [28]

Figure 6.2: This shows the
segmentation as determined
by Bormann et al [2]. If one
looks at the largest, centre
room it is clear to see why
they have achieved high pre-
cision but relatively low re-
call. Both segmented regions
are fully contained within the
ground truth and hence high
precision is achieved. How-
ever, the ground truth is not
even nearly contained within
either segmented region and
hence recall is low.

6.1.2 Results

We hypothesised that our approach to topological mapping would achieve state-

of-the-art results using the precision and recall metric. In turn, our approach

would produce the most accurate segmentation of an environment, giving a clear

representation of the individual rooms and corridors that make up the environ-

ment. We also hypothesise that we achieve these results while softening many of

the assumptions that previous attempts have made, as we have already outlined.

We present our results in comparison with the most accurate attempts to date,

using the same metric for evaluation.

On average, we achieve 98% precision and 96% recall and we evaluate this on a

total of 28 maps, 6 of which we created either using a robot in a real environment

or through an open source ROS bag file and the other 20 were provided as part

of the open source data set by Bormann et al [2].

178

This compares with Mielle et al [28] who achieve 96% precision and 95% recall,

Bormann et al [2] who achieve 93% precision and 85% recall and Fermı́n-Leon et

al [140] who achieve 93% precision and 81% recall. The results were achieved on

the open source data set provided by Bormann et al [2]. As will be clear, we also

show results on some additional maps to show the capabilities of our system in

more complex environments. However, we have not tested the other approaches

on these maps.

One might compare our results to those of Mielle et al and conclude that we

make only minor improvements. However, Mielle et al make a number of sig-

nificant assumptions that make their work less generalisable to more complex

environments. The first assumption is that environments must be empty. This

is arguably the most significant assumption as unstructured environments are

rarely empty and thus it would fail in almost any furnished house or office. They

also make the assumption that environments must be convex or be relatively sim-

ply shaped. As can be seen in figures 6.3 to 6.11 where we graphically present

the results of nine maps that we evaluated, this is not an assumption that we

make and thus we can conclude that we achieve state of the art results while

making no assumptions about the environment’s contents or structure.

Each figure from 6.3 to 6.11 shows five of the same map at different levels of

abstraction. The map on the far left is the raw occupancy grid, the second from

the left is the occupancy grid after it has been cleaned as outlined in Section

3.2.2, the centre map shows both the Generalised Voronoi Diagram as well as

the selected doorway (critical) points. The map that is second from the right

shows all of the regions that we generate before they are merged and the last

map shows the end result which is the fully segmented map into the rooms and

corridors that construct that environment.

Figure 6.3: This is a map that we manually created to represent as accu-
rately as possible a real house with multiple different rooms and obstruc-
tions

179

Figure 6.4: This is a map of our @Home testing arena at the University of
New South Wales

Figure 6.5: This is a map of the arena for the roboCup@Home league in
Montreal, 2018

Figure 6.6: This is a map of one of the Gazebo environments provided by
Robotis[141]

Figure 6.7: This is the first of two partial maps that we made using open
source ROS bags files from Google cartographer [124]

Figure 6.8: This is the second map taken from open source ROS bag file
provided by [124]

.

180

Figure 6.9: This is one of the maps provided in the open source data set
from Bormann et al [2]. These have become the standard for evaluating
approaches in topological mapping.

Figure 6.10: This map shows that in some, very rare cases, it is possible
that the final stage of our pipeline has only minimal improvement over the
second to last stage. As noted already, in a completely empty and convex
environment, stages one to four of our pipeline are sufficient to accurately
segment an environment into rooms and corridors. We have included this
map, which is empty and convex to show this.

Figure 6.11: This map can also be found in the data set provided by Bor-
mann et al [2]

In conclusion, we have shown how our approach to topological mapping achieves

state of the art results while addressing some of the key assumptions that we

identified in previous work.

6.2 Event Recall Results

One of the main claims of this thesis is that different types of events have different

types of information that are relevant to those types of events and therefore

require different recall policies. We also claim that a recall policy should only

181

capture the information that the system believes is relevant to an event type. We

also note that an event is just one type of frame and that these claims extends

to all types of frames.

We are hypothesising that by assigning unique recall policies to individual types

of events we can successfully capture the contextual information relevant to that

type of event. In turn, when recalling instances of this type of event from memory

we can correctly recall instances of the type of event that we are observing and

discard instances of other types of events, even ones that are qualitatively similar

in nature. We further hypothesise that by using RDRs as recall policies we can

train them to recall events correctly with only a minimal number of training

examples. This is an important feature of our system as in order for robots to

effectively co-exist with people, they must be able to learn quickly and effectively.

We use the term believe here intentionally. One can never be sure that one has

accurately captured only relevant information and so we must assume that on

some future observation we may need to generalise or specialise the policy to

account for this. Our choice of policy type allows for this.

We have devised an approach that can correctly distinguish between different

types of events given only subtle contextual cues. We believe our method to

be more suitable in an unstructured, partially observable environment such as a

house, compared with other methods that we have reviewed that are more suited

to a game environment, as we will explain later in this chapter. It is true that

other approaches may be effective in domains where the number of goals and

the types of information presented are known and finite. However, we evaluate

our system in a domestic robot environment that is unstructured and partially

observable. In these types of environments the number of potential goals or

types of information that are presented to the agent can be assumed to be finite.

Our evaluation consists of two main components. We must evaluate how suc-

cessfully we can recall a given type of event or frame using the process outlined

in Chapter 4. Secondly, we measure how many observations of an event type we

require to train a recall policy for that type of event.

To evaluate our approach we must first create training and test data (see Section

6.2.1 below). We create these data by synthesising different instances of an event

type. This process, as outlined in Section 6.2.2, allows us to create large, varied

test and training sets from a small number of observations of any type of event

182

6.2.1 Creating Data Sets

Collecting data involves observing the environment and waiting for things to

change. In collecting data we collect different types of events that an agent

observes. In Section 4.2, we described the structure of an event and how it

is constructed from other types of data such as time, location, etc. Thus, when

collecting instances of events, we are also collecting a host of other types of data.

To collect these data, we need to run experiments in which an agent operates

in a realistic environment and wait for changes to occur. We use a simulation

rather than a physical environment for the following reasons.

Firstly, simulations allow us to obtain data sets in a much shorter time than

using a physical robot. This means that we were able to collect a larger and

more varied data set. It also means that we can re-run experiments far more

effectively when needed.

Secondly, the objective of this thesis is to develop an system whereby an agent

can effectively distinguish between the different types of events in memory using

unique recall policies assigned to those individual types of events. Thus, pro-

viding a more effective approach to episodic memory in unstructured, partially

observable environments. Evaluating our approach in a real world environment

would require us to have a more complete and structured low-level robot ar-

chitecture. For example, in using a simulated environment we are less affected

by things like changing light conditions which on a real robot requires a re-

calibration of the vision system and delays experimentation. We also simplify

computer vision problems by using QR codes to identify objects, as object recog-

nition is outside the scope of this project. However, we do simulate sensor noise.

The simulation allows us to evaluate our approach effectively, as it contains much

of the complexity of a real world environment but also allows us to avoid time

consuming tasks or problems outside the scope of the thesis.

The simulation that we use is an open source TurtleBot3 simulation in ROS/Gazebo

provided by Robotis [141]. We have been careful to make sure that the environ-

ment is as varied as possible and we regularly move objects to different areas,

mimicking as much as possible, a real world setting. Figure 6.12 shows an ex-

ample of a setting that we created.

183

Figure 6.12: This figure shows a simple setting in our simulated environ-
ment. The robot is observing a table with a glass placed on top of the
table. In the background it can also see a bookshelf.

We also note that for the purpose of collecting events for training and testing,

we do not employ critical actions for determining whether an event should be

created or not. This is to assist with creating as large a data set as possible.

Thus, even noisy observations are noted as events and treated as such. Events

that are created due to noisy or irrelevant observations are represented exactly

the same as events created due to valid observations. Therefore, for the purpose

of evaluation, we can treat noisy or irrelevant events as real events. Furthermore,

we show towards the end of this chapter, by employing a method to detect critical

actions we can significantly reduce the length of event sequences where several

of the events in the sequence were created as a result of a noisy or irrelevant

observation.

There is a difference between noisy and irrelevant observations. A noisy ob-

servation is something that has been incorrectly observed, for example, a false

positive in object recognition. An irrelevant observation is something that has

been correctly observed but it present or absence does not affect the observer

event. For example, one may observe a pencil being moved from one side of a

keyboard on a desk to the other side, but the side in which the pencil appears

may not be relevant..

184

The final data set that we created has 331 types of frames, of which 40 are event

frames, with each of these being a sub-class of a generic event frame.

This provides us with a highly varied data set to evaluate our approach. We

tried as far as possible to create a data set where all of the event types had

differentiating features that indicated why one was more suitable to be recalled

than another. In some cases the differentiating features were only slight and in

other cases they were more noticeable.

For example, consider two separate observations of a robot moving from room A

to room B. These may appear to be two observations of the same type of event.

However, it is likely that events of this nature would be part of a larger sequence

and can be discarded as they are intermediary events. We have already explained

why we do not discard them for the purpose of collecting data. Therefore, even

though instances of both types of events have much the same information, a

slight change in context, such as, for example, the time of day, can result in one

recall policy firing and another not and so one of these events is recalled as well

as all of the events in the sequence of which it was a member, and the other is

not.

Of all of the events that we collected, the shortest event sequence was 1. That

is, that events that are part of an event sequence of 1 are stand alone events and

have no connected events associated with them. The longest sequence was 11,

however, many of the types of events in this sequence were in fact either created

through noisy observations or through intermediary events such as moving from

one room to another. We will not explain all of the different types of events

in detail but rather provide a brief explanation as to how some of these events

were collected. For example, one of the events that we observed was that of a

person coming over to visit. In fact, in our data set we have two types of events

of this nature but we change the time of the week so as to trigger different recall

policies. For example, a friend coming over on a Monday morning might mean

that the robot should make two cups of coffee, whereas a friend coming over on

a Friday evening might mean that the robot should get two beers.

Recall that the agent is looking for is a change in the state of the world. The

agent is endowed with a world model that represents the agent’s current beliefs

about the state of the world. On an initial survey of the environment, the agent

does not observe any other person, with the exception of the occupants of the

185

house. Therefore, if the agent, on a subsequent observation, sees another person,

it concludes that something has changed and a new event is created. A human

would refer to that something as a visit from a friend. However, to a robot, it

is represented as an action with the preconditions of the action stating that the

person-Jack -was not in the house, and the effects of the action stating that Jack

is now in the house.

precondition← not(at house(Jack))

effect← at house(Jack)

When collecting events, we make sure that some of them are very similar, like

the two events where people come to visit, but we change some of the contextual

information. The purpose of this is to show how our recall mechanism is capable

of distinguishing between two seemingly similar types of events based on some

subtle changes in context. We also make sure to keep other types of events

very different, to show that we are not constrained by the types of information

presented and our system is capable of generalising to a wide variety of types of

events.

For example, with the two events that represent friends coming to visit, we

recorded one of these event sequences on a Monday morning and the other on a

Friday evening. What the agent noted was that in the former case, the succeeding

event was of two cups of tea being made and in the latter it was two bottles of beer

being fetched from the fridge. The different recall policies for the visiting events

should indicate therefore that the time of the week is important information to

both events as very different succeeding behaviours are required.

Another example of an event that has been mentioned previously is a glass falling

off a table. For this case, the recall policy should inform the agent that neither

the time nor the location are relevant to and only the action of the glass falling

and breaking should be taken into consideration when recalling the event.

186

6.2.2 Synthesising a Training and Testing Set

To synthesise training and test sets, we construct an generic frame for each

type of event, a pre-defined recall policy for that type of event and a set of

rules governing the kind of information that can be contained in an instance of

that type of event. We then construct instances of the event type by randomly

generating slot values that are consistent with these constraints. Since events

are constructed from other types of data, the procedure is applied to all frames

when generating slot values. Thus, to explain how we synthesise events, we refer

more generally to how we synthesise frames.

The aim of the learning system is to be able to reverse engineer the hand-crafted

policies from the data.

Before outlining the process of synthesising a data set we wish to clarify one

point. Synthesising data was not a focal point of our research and consequently

we have not investigated the extent to which this would scale to other domains.

We chose to synthesise data so that we could quickly and effectively generate

a training and testing set. We describe the process to show the reader that

we generate a sufficiently random data set while still maintaining legal entries

in each of the synthesised datum points. For example, we will not generate a

datum point where the time slot has the value dog as this is not a legal value for

time. We cannot say with any certainty that this approach will scale to other

domains as synthesising data was outside of the scope of our research.

6.2.2.1 Pre-defining Recall Policies

We hand-craft policies that define the relevant information for each type of event.

Each generic frame has its own recall or matching policy that determines whether

an observation is or is not an instance of that generic frame. Therefore, we

overwrite the default recall policy for each generic frame

if true then no match

with one that defines the intended recall policy.

187

A simple example is a rule that we might append to a specific type of object

that states:

if match(name) ∧match(type) then match

Policies for all 331 generic event frames can be created by manually training

RDRs, as described in Section 5.2.1.1. These polices can then be used to gen-

erate training and test instances for learning, which attempts to reconstruct the

manually created policies from the data.

6.2.2.2 Rules for Generic Frames

The object generic frame is at the top of our ontology. This type of frame and

all sub-classes of it contain at least two slots, the object name and the object

class. The name must be a unique identifier for this object and the class is the

type of object. For example, a glass positioned somewhere in the environment

is an instance of a sub-class of type object and the slots might be populated as

follows: name : glass one, isa : glass.

We might then define a policy for this sub-class of object as follows:

if match(class) then match

By this we mean that for this type of frame we consider it to be a valid match if

the values in the class slots are the same. To state this more clearly, any glass

in the environment is an instance of this sub-class of object. In order for us to

synthesise other instances of this type of object we create what we refer to as a

rule frame.

A generic frame specifies the legal values of the slots in the corresponding in-

stance frame. For example, the a generic frame with slots,

{name : [glass one, apple one, pear one], type : [glass, apple, pear]}

specifies the legal values of the name and type slots. Type constraints can also

188

be numeric. For example, assume that we were dealing with a time type and the

hour slot within that type. Only values in the range 0, . . . , 23 are legal. The slot

values of synthesised training data are randomly selected from the legal values

contained in the generic frames.

If the value of a slot is an instance of another frame, then the value of the slot in

the generic frame is a generic frame for the type of frame contained in that slot.

For example, when synthesising instances of an event, the time slot contains a

frame of type time. Thus, in the time slot of the generic frame we will have

another generic frame of type time.

Using the generic rule frame and the generic frame for the specific type of data,

the manually created matching or recall policy can synthesise a new set of in-

stances of that generic frame. The process is clarified in algorithms 48 to 53.

We accompany these algorithms with relevant explanations.

Algorithm 48 synthesiseInstances: This function is executed until the
required number of instance frames have been synthesised

We pass three arguments to this function: the generic frame from which
we are trying to synthesise other instances; the generic “rule frame”
specifying the permitted slot value ranges that we refer to earlier; and the
number of instances we require.

Input: generic, rule frame as rf
Input: required number as size
Comments:
1: Declare and empty list to store all the synthesised instances
synthesiseInstances(generic, rf, size)

1: result = [. . .]
2: for i = 0; i < size; i← i + 1 do
3: synth = synthesiseInstance(generic, rf)
4: result.push(synth)
5: end for
6: return result

Algorithm 49 is accompanied by comments to clarify some of the statements. We

call the getParents function on the first line to gain access to the generic frame

which, in turn, gives us access to the matching policy that we have pre-defined

for that frame type.

189

Algorithm 49 synthesiseInstance: Synthesising events using matching
policies and a set of rules

Input: generic frame and rule frame as rf. Comments:

2: We create a new instance of this generic frame
4: This splits up the RDR into a list of individual rules with the conclusion
“match”
6: Choose one of these rules to use at random
9: We don’t have the slots of the rule frame but we have the name of the slot we
are looking for so we can use this function
10: We call this function which will synthesise a value for this slot using the
value of the generic, the policy and the rule indicating what we can include in
this slot
synthesiseInstance(generic, rf)

1: parent = generic.getParents()
2: synthesised instance = new parent
3: match rule = parent.match rule
4: split match rule = splitRule(match rule, [])
5: slot names = generic.getSlots()
6: chosen policy = chooseRandom(split match rule)
7: for all s ∈ slots do
8: generic value = s.value
9: rule value = rf.getSlotValue(s.name)

10: synthesised slot = synthesiseSlot(s, chosen policy, generic value,
rule value)

11: put(synthesised instance, s, synthesised slot)
12: end for
13: return synthesised instance

Algorithm 49, details how an one instance frame is synthesised. We must initially

establish the type of instance frame that we are synthesising and create a new

instance of that frame type. The generic frame stores the matching policy which

we then use to choose values for each of the slots in the new instance. The first

step is to split the matching policy to get all of the rules that conclude with

match. Algorithm 50, describes this process.

190

Algorithm 50 splitRule: Split a matching policy

Input: matching policy as policy, all valid rules as rules
splitRule(policy, rules)

1: while policy 6= null do
2: if policy.conclusion = match then
3: rules.put(policy)
4: end if
5: if policy.exception 6= null then
6: policy ← policy.exception
7: splitRule(policy, rules)
8: else if policy.alternative 6= null ∧ policy.alternative instanceof

RDR then
9: policy ← policy.alternative

10: splitRule(policy, rules)
11: else
12: policy ← policy.alternative
13: end if
14: end while
15: return rules

Algorithm 50, specifies the process of splitting an RDR into the individual rules

that conclude with “match”. This is one of the most important steps to this

process. A matching policy is represented as a Ripple Down Rule, Since an

RDR is a recursive structure of rules with exceptions and alternatives, for a given

generic frame there may be several constraints defining conditions for which an

observation is considered to be an instance of the generic frame. For example, the

following policy for a time frame has two conditions that conclude with match.

if match(hour) then match

else if match(weekday) then match

A situation where this might be the case is if the event in question happened

at a specific hour or range of hours every day, e.g 3-5pm, with the exception

of Monday where it didn’t matter what time of day it was. The generic frame

would have a range of hours in the hour slot and Monday as the value of the

weekday slot.

191

We would therefore use both of these rules when synthesising instances of this

time type. We do this by synthesising values for each slot, one-at-a-time as per

algorithm 51.

Algorithm 51 synthesiseSlot: Synthesise a value for a slot

Input: slot name as sname
Input: policy as p, One of the rules from the matching policy that con-
cludes with “match”
Input: generic slot value as svalue
Input: rule slot value as rvalue, The permissible values for this slot
Comments:
4: If we have a list of instances we call this function
6: If the slot contains neither an instance or a list then choose a value. If the
slot is not relevant then a value is choosen at random from one of the permitted
values defined in rvalue
synthesiseSlot(sname, policy, svalue, rvalue)

1: if svalue instanceof Instance then
2: return synthesiseInstance(svalue, rvalue)
3: else if svalue instanceof List then
4: return synthesiseList(sname, policy, svalue, rvalue)
5: else
6: return chooseSlotValue(sname, p, svalue, rvalue)
7: end if

Algorithm 51, outlines the process for synthesising a slot value, given the chosen

rule on which to synthesise. In each rule that concludes with match we have a set

of conditions that lead to that conclusion. Recall that when we use a matching

policy to determine if an observation is an instance of a frame type, we compare

all values in the slots of the observation with the values of the same slots in the

generic frame in question. The conditions of a rule therefore state whether two

slot values should or should not match in order for the rule to fire and return

the conclusion match.

Using these conditions it is possible to synthesise a new instance frame that,

although different, is still a valid instance of the frame type. For example, take

the following rule applied to the glass object from earlier:

if match(type) then match

This rule tells us that any object in the environment that has the same type slot

192

value as the generic frame for this type of object, is also an instance of this type

of object. However, as the name slot was not explicitly mentioned in the rule,

we can conclude that the value of this slot does not matter. Therefore, we select

at random one of the legal values from the name slot in the generic frame for

our new instance.

In algorithm 52, we choose a value for the slot. We are assuming at this point

that the slot value is atomic as all other types have been handled by this point.

Algorithm 52 chooseSlotvalue: Choosing a slot value

Input: slot name as sname
Input: policy as p
Input: slot value as svalue
Input: rule value as rvalue
Comments:
1: If the slot is not included in the policy then we assume it is irrelevant and
therefore choose a value at random
4: This statement checks if the name is in the policy and that the condition is
that it should match the slot in the generic. This is what ∧true means in this
context
6: Else the name is included in the policy but the policy states that it should not
match the value of the slot in the generic. If this is the case then the chosen
value cannot be the same as the generic
chooseSlotvalue(sname, p, svalue, rvalue)

1: if sname 6∈ policy then
2: random number = randomInt(length(rv))
3: return rvalue.at(random number)
4: else if sname ∈ policy ∧ true then
5: return svalue
6: else
7: random number = randomInt(length(rvalue))
8: temp = rvalue.at(random number)
9: if temp = svalue then

10: chooseSlotValue(sname, p, svalue, rvalue)
11: else
12: return temp
13: end if
14: end if

In algorithm 53, we synthesise values for a list of instances. This is where we

create varied slot values. If the slot is in the policy and the condition is it

should match then we must synthesise at least one that matches. Otherwise we

193

synthesise any random number and are not too concerned if they do or don’t

match to each other.

Algorithm 53 synthesiseList: Synthesising values for a list of instances

Input: slot name as sname
Input: policy as p
Input: slot value as svalue
Input: rule value as rvalue
Comments:
1: If the slot is included in the policy then we select some of the instances in
that slot at random to synthesise off.
6/7: The special instance rule frame must be at the same index in the list as the
frame to which it applies
9: If the slot is not included in the policy then we completely randomise this slot
16: This is the step that truly randomises what happens. By resetting the match-
ing policy to the default policy for this generic frame, our system has no indi-
cation of how two instances of this frame type match. Therefore, all slot values
are now randomised. Some coincidentally may match and others may not
synthesiseList(sname, p, svalue, rvalue)

1: return list = [. . .]
2: if sname ∈ policy then
3: length = randomInt(length(svalue))
4: for i = 0; i < length; i← i + 1 do
5: random number = randomInt(length)
6: temp inst = svalue.at(random number)
7: temp rule = rvalue.at(random number)
8: return list.put(synthesiseInstance(svalue, rvalue))
9: end for

10: else
11: length = randomInt(length(sv))
12: for i = 0; i < length; i← i + 1 do
13: random number = randomInt(length)
14: temp inst = svalue.at(random number)
15: temp rule = rvalue.at(random number)
16: resetMatchRule(svalue.parent)
17: return list.put(synthesiseInstance(svalue, rvalue))
18: end for
19: end if
20: return return list

The final algorithm that we present in this process, algorithm 53, synthesising

values for a list of frames. When the value of a slot is a list of frames, the process

for synthesising values for that slot is more complex. On an initial observation

of a particular generic frame, we assume that all information that was presented

194

as part of that observation is relevant. The reason for this is that each event is

unique and we cannot know or make assumptions about the type of information

that is relevant to any given type of event.

Let us assume that a particular observation of a given type of event had a

list of objects that were present at the time of the observation. For example, on

observing a glass fall from a table the agent may also note there are some apples,

some oranges and a banana on the table. These may not be relevant and after

subsequent observations of this type of event we would expect the robot to draw

that conclusion. However, initially we cannot assume this.

If a slot is multi-valued slot and if the matching RDR states that this slot is

relevant, then we must assume that one or more of slot values is relevant. Thus,

when we synthesise the value of a slot that contains a list of other frames, we

choose a number at random in the range of one to the number of frames in the

slot. We then create that number of instance frames to go into the slot.

Using this method, we can also synthesise noisy observations. In the example

above, only the glass object is relevant. However, we do not inform our algorithm

of this fact. Thus, when selecting instance frames from the slot that holds those

objects, it might select one of the other objects to include in the synthesised

instance of this event rather than the glass. This simulates an observation of an

event where there is missing data, often as a result of sensor noise.

6.2.3 Results

Our evaluation focuses on how successfully we can recall events from memory and

how quickly event recall policies can be trained. When collecting data for training

and evaluation, we assumed all actions to be critical in nature. Therefore, we

also show how, when a method to differentiate critical actions is employed, we

can reduce the size of large event sequences.

The results show that even with very complex event structures, where there are

multiple different types of events as part of an event sequence, we can achieve

high accuracy in our event recall with error rates typically ranging between

0.2% and 2%. By assigning a unique policy to each type of event and iteratively

generalising and specialising each policy so that it captures, as best as possible,

195

the information that is unique to that type of event, we can specialise each policy

so that it is in some way unique from every other policy and thus will be able to

accurately distinguish instances of the type of event to which the policy belongs

from every other type of event.

These results are very encouraging and demonstrate the capabilities of RDRs

as event recall policies. Even as our database of events grows, it is possible

to accurately capture the information that is relevant to each type of event, in

that event’s recall policy so that it is distinguishable from every other event in

memory and thus we can recall events from memory with a very low error rate.

We present our results in two ways. First, we show how our recall improves on

each training instance by demonstrating that the false positive and false negative

rate decreases on each training instance.

Second, we show how quickly an event recall policy can be created from data.

In Section 6.2.2.1, we explain how we hand-craft recall policies for each of the

events in memory so that we can use these policies to create a synthesised data

set. These are the policies that we want to recreate and thus, one of the metrics

that we use for evaluation is how many training instances are required to recreate

these policies on average.

We present the latter results in increasing order of event complexity. That is,

we initially show the results for simple events, events that are not connected to

any other event, and progress to the most complex results, those for events that

are part of very long sequences of larger events.

6.2.3.1 Event Sub-class Results

In our first evaluation, we show the improvement of our recall after each training

instance. We also check how many training instances are required for the recall

policies to converge, which is the point at which there is no improvement in the

recall on our test set. The aim of the system is to learn a policy with only a

small number of training examples. The results presented below are promising

as they show that, in fact, only a small number of observations of a type of event

is required to accurately recall that type of event.

The first evaluation is done under three different conditions. Initially, we look at

196

events that have distractions. A distraction is a correct observation of something

that is not relevant to the event. For example, if the agent initially sees a rub-

bish bin in a room while observing two people having a conversation, then that

rubbish bin is a distraction. We present our results by showing how effectively

our policies can be trained and used with varying amounts of distractions.

We then look at how well our system performs with missing or incorrect data.

Missing data is information that is relevant to the event but is either not included

in the event or it is included incorrectly. The most common reason for this is

sensor noise, however, it can also be due to the relevant information not being

in the robots field of view when the event instance was recorded.

An example of where the information is included but incorrect might be a case

where the robot receives noisy LIDAR data and consequently is mis-localised.

Thus, if the location were relevant to the event in question, it would be recorded

incorrectly. An example of data that are missing might be if the robot should

have observed three pieces of fruit but instead only observed two. Thus, the

event will have incomplete or missing information.

Similarly, we present the results showing the effects of different levels of missing

data.

Lastly, we evaluate our system on a range of misclassification noise. Misclassi-

fication noise is where the trainer incorrectly classifies an event in the training

set. For example, if we were trying to train a policy for event type A and some

of the examples are incorrectly labelled event type B.

In our case, because the goal of the policy for each type of event is to determine

whether an observation is an instance of that type of event or not, misclassified

data in the training set is given the label, no match. Thus, we incorrectly in-

form the agent about conditions under which is should reject instances as being

members of the event type to which the policy belongs. We show our results for

a range of misclassification noise from 1% to 5%.

Distraction Results

The first set of results are for “distractions”. Distractions are different from

197

noise in that a distraction is something that is a correct observation but not

relevant. The evaluation includes differing amounts of distraction. To calculate

the number of distractions in a training instance, we calculate the amount of

additional information that training instance has over the generic frame for that

type of event. Our results are presented in figures 6.13 to 6.14.

198

(a) 10% (b) 20%

(c) 30% (d) 40%

(e) 50% (f) 60%

Figure 6.13: False positives and false negatives after each training instance
for levels of distraction between 10% and 60%

199

(a) 70% (b) 80%

Figure 6.14: False positives and false negatives after each training instance
for levels of distraction between 70% and 80%

One can see from these results that the number of distractions present in the

training examples has little impact on how effectively the event recall policies

are trained and used. The false negative rate always starts at 100% and the false

positive rate starts at 0%. This is because the default policy is:

if true then no match

This policy tells the agent that if no other rule fires, it should conclude that the

observation is not an instance of the event type to which the policy is assigned.

Therefore, with no training, and thus no generalisation or specialisation to the

policy, the agent correctly rejects all events that are not instances of the event

type to which the policy is assigned but it also incorrectly reject all events that

are.

For the majority of cases, except where the distraction rate increases above 80%,

the false positive rate increases slightly after the first or second training instance

before either decreasing again or plateauing. This can again be expected. As

a policy is specialised or generalised, it is likely that instances of some other

events types will be captured by the updated policy. We did not intervene

in the training process, however, at the discretion of the trainer, it is possible

to interrupt training and specialise the recall policy to discard the incorrect

instances that were originally captured.

200

Regardless of event complexity, the recall policies can be trained quickly and can

accurately recall events.

Missing Data

Missing data is a problem for any learning system. For the most part, missing

or incorrect data are mainly due to failures in the robot’s perception, including

misclassifying objects, failing to identify objects, incorrectly identifying a person

and being mis-localised.

To evaluate the amount of missing or incorrect data in a training instance we

use much the same approach as calculating the amount of distraction in a train-

ing instance in that we compare it to the known generic frame for the type of

event we are training. We assume that all information contained in the generic

is relevant. In the case of missing data however, we are less concerned with

the amount of additional information and more concerned with the amount of

missing information. For example, if an event has three pieces of fruit that are

relevant and the robot observed only two, then the amount of missing data is

33%.

We present our results in figure 6.15. We found that with more than 40% missing

data, we struggled to obtain anything meaningful. While this is a problem, we

also found that in reality it is not common to have more than 40% missing data

and for the purpose of training we intentionally added noise into the training

instances to try and push our system to the limit. The average amount of missing

data is between 5% and 15%. With less than 10%, the system is still able to

achieve accurate recall, 4%, after only a small number of observations.

201

(a) 10% (b) 20%

(c) 30%

Figure 6.15: False positives and false negatives rafter each training instance
for varying levels of missing data

Misclassification Noise

Finally, we present the results for how the system is affected by misclassified

training instances. When training a policy for an event type, the training set

generally consists of positive only examples that are labelled, match.

However, sometimes a training instance will be incorrectly labelled as a no match,

resulting in misclassification noise. We show the effect of this for varying levels

of misclassification noise in figure 6.16.

As was expected, the policy learning still converges, but takes longer depend-

ing on the amount of misclassification noise. Note that the false negative rate

fluctuates. When a policy generalises enough, it captures only the information

202

(a) 1% (b) 2%

(c) 3% (d) 4%

(e) 5%

Figure 6.16: False positives and false negatives after each training instance
for varying levels of misclassification noise

203

that is relevant to an event type. If a misclassified example is presented at a late

stage in the training, no further generalisation to the policy is made, with the

exception that the label has been inverted. Consider for example that an event’s

policy was as follows:

if match(action) then match

This policy says that if the values of the action slots in the generic and the

event instance are the same then the instance is a member of this event class. If

we show it a training example that has has been labelled as no match however,

then an exception will be added to this rule. This is because the rule fired

but returned the wrong conclusion, or at least it believed to return the wrong

conclusion.

Because no further generalisation can be done to the event, the exception that

is added is the following:

if match(action) then match except

if match(action) then no match

Therefore, a correctly labelled training example is required to correct the mis-

take.

Policy Recreation

The final set of results that we present show the average number of observations

of an event type that are required to recreate the hand-crafted policies that we

described in Section 6.2.2.1. The following table, table 6.1, details those results.

We present the results in incremental order of complexity. The Event Sequence

Length (ESL) refers to the number of individual events in a sequence. We do not

show the results for each individual type of event that we collecting but rather

the average for all events of the same sequence length.

204

Table 6.1: Recreating event recall policy results

The number of training examples required to recreate the hand-crafted policies
ESL ANSC AISC ANTE
1 7 1061 2.03
2 7 545 2.83
3 4 421 4.02
4 2 412 4.665
5 2 412 4.35
6 2 113 6.5
7 1 106 5.27
8 1 85 4.375
9 1 105 5.5

ESL = Event Sequence Length

ANSL = Average Number of Sub-Classes

AISC = Average Instances per Sub-Class

ANTE = Average Number of Training Examples

Because we are training a robot to operate in a domestic setting, our goal is

to keep the required number of training examples to a minimum. These results

show that our system does perform well with very little training

It is often the case that with large event sequences in this training and testing

set, many of the events that we created could have been discarded if we employed

some means to detect critical actions.

6.2.3.2 The Effect of Critical Actions

In collecting the data above we did give the agent any means of differentiating

between critical and non-critical actions (see Section 4.4.3.2). While we only

touch briefly on the subject in this dissertation we think that it is an important

aspect which merits further research.

Even on a relatively small number of events we can demonstrate how beneficial

and important a feature this is. We also show that when agents are endowed

with this functionality, they can often discover solutions to problems other than

the ones we expect them to learn.

Here, we demonstrate that by replaying the events that we have collected but

differentiating between critical and non-critical actions, we can reduce the size

205

of large event sequences. The first step is to define some critical states. We

initially keep this simple and define a set of states that we want the robot to

avoid. For example, one of the many states that indicates a critical state is:

on ground(broken glass)

When a critical state is noted, we begin recording an event sequence. When that

same critical state has been resolved, we finish recording the event sequence.

This can reduce the size of large event sequences. For example, two of the event

sequences of over 7 events can be reduced to an event sequence of only 3 events.

This is because within this event sequence we recorded several intermediary

events and at least one event that was created due to a noisy observation. On

one occasion the agent believed that a bookshelf that was leaning against the

wall was placed on the other side of that wall. Thus, that perceived state change

recorded a new event.

We also made an interesting discovery in one of the event sequences where an

agent clears up rubbish. When collecting the data, we indicated to the agent that

the event terminated when the fallen fruit had been placed in the bin. However,

our agent instead learned that by simply picking up the fallen fruit it was no

longer on the ground and so the critical state had been resolved. In theory, the

agent was correct but for obvious reasons it is less than ideal for an agent to

carry around indefinitely something that should be in the bin.

One possible solution is to inform the agent that that too is a critical state and

so in resolving one critical state it observes another which in turn triggers a new

sequence of events. This is something, however, that we suggest as an extension

to this research and do not explore it in any further detail at this stage.

6.2.4 Discussion

Our hypothesis was as follows: By assigning unique recall policies to individual

types of events we can successfully capture the contextual information relevant

to that type of event. In turn, when recalling instances of this type of event

from memory we can correctly recall instances of the type of event that we are

observing and discard instances of other types of events, even ones that are

206

qualitatively similar in nature. We further hypothesise that by using RDRs as

recall policies we can train them to recall events correctly with only a minimal

number of training examples. This is an important feature of our system as in

order for robots to effectively co-exist with people, they must be able to learn

quickly and effectively.

Our quantitative results show that with minimal training examples we can recall

events from memory with high accuracy. The quantitative results would appear

to support the hypothesis. However, there was considerable structure placed on

the information contained within an event and it is unclear how effective this

approach would be on an unstructured data set. We also only evaluated our

results in one particular setting, that of a domestic environment. In this type of

environment we believe that our approach is an effective means at learning and

distinguishing between context in different types of events. It is also an effective

approach at learning and reasoning about which types of behaviours should be

applied in a given situation.

However, this method would be significantly less effective at learning how to

execute those types of behaviours and we believe that a more traditional re-

inforcement learning algorithm would be more effective in this case. In other

types of environments were Case-Based Reasoning approaches have been ap-

plied, such as, learning to play a game of soccer, it may be preferable to engage

an approach similar to the one discussed in the SOAR cognitive architecture

[69, 120, 70, 7, 9, 8].

To conclude, in an unstructured environment such as a house, our approach is

an effective means of learning to distinguish between different types of events

and recalling specific types of events on future observations. However, it is not

without limitations and has considerable scope for future research. We provide

some suggestions for future research in Chapter 7.

207

Chapter 7

Conclusion

7.0.1 Thesis Summary

This dissertation presents a novel approach to how events are created and recalled

from episodic memory in cognitive robots. Episodic memory is largely agreed to

be one of two main components of human declarative memory, the other being

semantic memory. We do not claim to “replicate” human-like episodic memory.

However, taking inspiration from the concepts of episodic memories are and how

they are stored, we have formulated some key points that we regard as essential

elements of an episodic memory, when integrated with an artificial cognitive

agent.

We assume that the information stored in an episodic memory is mostly qual-

itative. For example, if a person were to be asked where something happened,

they would respond with the name of the place, a town, a city or in our case,

operating as we do in a domestic environment: a room name. Therefore, a

topological map is required so that a robot can locate objects, and itself, within

the environment at the qualitative level required for episodic memory. Previous

methods for generating topological maps have several limitations that needed to

be addressed. In Chapter 3, we presented our approach to topological mapping

and demonstrated that we achieve state of the art results in precision and recall,

while making none of the assumptions limit the previous work.

For episodic memories to be of use, there must be some means by which we

208

can recall those memories. Other research into episodic recall lacks a number of

crucial elements. The most significant limitation is that they have no means of

addressing the recall of events based only on the specific contextual cues that are

relevant to the event, often relying on some kind of distance metric to determine

the qualitative similarity between two cases or events. By not typing events,

the domain of application is limited to environments with a finite number of

goals and types of information. Typically, partially observable, unstructured

environments do not adhere to these constraints and so a different approach to

episodic recall is required.

By distinguishing between different types of events we are able to define specific

recall policies that are unique to each type of event. Separating events into

different sub-classes has not been commonly adopted elsewhere and the only

other mention of it that we are aware of is in EPIROME [68]. However, our

motivation for distinguishing between different types of events becomes clear

when one thinks of the domain of application that we are investigating, namely

a robot operating in partially observable, unstructured environment, such as

a home. The second major contribution of our research is an episodic recall

mechanism in which unique policies are are acquired for different types of events.

Thus, a policy can more effectively capture the information that is relevant to

the type of event that it is associated with. This was presented in Chapter 4.

If we are to have individual recall policies for each type of event we need an

efficient way to train these policies. Batch style machine learning is not suitable

for our purpose, since recall policies must be learned incrementally, using as few

training examples as possible. The final contribution that we make is an efficient,

hybrid approach to episodic recall policy training based on incremental learning

that can also be guided by a human expert. This approach is an extension to

how Ripple Down Rules are traditionally trained, where only a human guides

the learning. We presented our method in Chapter 5.

Before discussing possible extensions and further work, we summarise the ad-

vantages of our approach over previous methods for implementing episodic recall

or case retrieval.

209

7.0.2 Research Comparison

Evaluating systems that employ episodic memory is difficult because there are no

standard test scenarios for comparison. However, we present a set of situations

where one system might be preferable to another. We assume that agents have

no prior understanding of the goals that they will be expected to achieve or the

information they are likely to be presented with. It is likely that different types

of events will have completely different types of relevant information. Thus, we

require a system that can ignore irrelevant information so that it can accurately

recall episodes. To the best of our knowledge, our method is the only one that

provides this capability.

Apart from SOAR or case based reasoning, one of the earliest mentions of

episodic memory for cognitive robots was EPIROME by Jockel et al [68]. It

appears to be the only other approach, apart from ours, that distinguishes be-

tween different types of events. EPIROME incorporates the concept of typed

events but it does not address what we believe is the most essential element of

an episodic memory system, namely, the retrieval mechanism.

We have already discussed SOAR in the literature review. Depending on the

domain of application, it may sometimes be preferable to use SOAR’s approach

to episodic memory over ours. For example, SOAR uses nearest neighbour re-

trieval [7, 8] and quantitatively weights an event’s significance [137]. This is

efficient and much simpler to implement and may be preferable when events

are not typed, the goals are finite and known and the input data are finite and

known.

Case based reasoning applies similar logic to matching cases and much of the

same reasoning applies as, in most systems that use case based reasoning such as

Homem et al [10], the goals are finite and known in advance. Thus, a system that

quantitatively evaluates the similarity between cases is appropriate. However, for

the same reasons as already outlined, when differentiating between different types

of events, a simple distance metric lacks the capacity to capture the different

types of information relevant to the different types of events.

The use of RDRs as recall policies enables our system to create customised

recall policies that can be trained incrementally, and which are able to ignore

irrelevant information. They can also be trained in a hybrid of human-guided

210

and self-guided learning.

7.0.3 Extensions and Future Work

When generating topological maps, we have a five-stage pipeline, where the fifth

stage uses a semi-autonomous process for labelling regions that are part of the

same larger region. This can be improved by employing a fully autonomous

process to label regions. The system may have semantic information about

the contents of an apartment that could be used to assist in labelling regions.

For example, if the vision system recognises a fridge, the region is likely to be

the kitchen. Spatial relations between different objects can also be used. In

a studio apartment, the separations of different regions or rooms may not be

clearly defined. For example, the gap between a couch and a wall may separate

the dining room from the living room. In a living room however, a couch will

be likely to face towards a television and so all regions in between these can

also be assumed as part of the living room. In doing this it could be useful to

employ research conducted by Fidler et al [142] and Kong et al [133]. They use

an understanding of spatial relations to improve an agent’s scene understanding

and help to classify other objects in the environment.

There are also extensions that can be made to our work in episodic recall. A

recall policy is a Ripple Down Rule and RDRs are built using contextual, se-

mantic information. Therefore, it should be possible for an agent to explain the

reasons why it has recalled one event over another. However, we have not yet

implemented an explanation mechanism.

The efficiency of the recall algorithms could be improved significantly. At present,

evaluating episodic recall policies is linear in time complexity. While we have,

to an extent, addressed the inefficiency of the recall process by employing a two-

stage pipeline, there are still further improvements that could be made. For

example, compiling policies into a network similar to RETE [138] would evalu-

ate an RDR only when the values referenced in the condition are present. This

means that our retrieval algorithm could be much improved in time complexity

as we would not need a linear traversal of each event, evaluating the RDRs one

at a time.

Forgetting events that are no longer relevant would further improve efficiently

211

by reducing the size of the database. Nuxoll and Laird [9] compare the most

common algorithms used for forgetting episodes and conclude that an activation

based method, in which episodes are selected for removal from memory based on

frequency and recency of a particular episode’s recall has the best performance.

Differentiating between critical and non-critical actions is also important. It

should be possible to autonomously add new critical states into the environment.

At present we inform the agent, in advance, of the constraints that it is likely to

encounter or at least a class of constraint that an agent is likely to encounter.

However, this is not flexible and thus not scalable or generalisable. Therefore,

we need to either be able to learn new constraints or else assign quantitative

values to events based on their perceived significance.

The most significant extension that we propose with regard to training recall

policies is how we handle misclassification and perception noise. Currently, the

only means to correct mistakes due to noise is for the trainer to intercept and

manually guide the learning when a mistake has been made. We have proposed

simple solutions to this, namely a voting system to decide which information is

and is not relevant however, a more sophisticated approach would be preferable.

To deal with misclassification noise a method similar to Smith and Martinez [143]

may be used. They introduce a filtering method called PRISM to identify in-

stances in a data set that may be misclassified. Our approach would have to be

altered slightly, as we may need to identify misclassified instances from a very

small data set.

To handle perception noise we must address the low-level issues, namely inaccu-

rate vision and localisation. Both of these are outside the focus of this research,

however, and so we have, as yet, not explored this in much detail.

212

Bibliography

[1] E. Tulving et al., “Episodic and semantic memory,” Organization of mem-

ory, vol. 1, pp. 381–403, 1972.

[2] R. Bormann, F. Jorda, W. Li, J. Hampp, and M. Hägele, “Room segmenta-

tion: Survey, implementation, and analysis,” in 2016 IEEE International

Conference on Robotics and Automation (ICRA), May 2016, pp. 1019–

1026.

[3] P. Compton, G. Edwards, B. Kang, L. Lazarus, R. Malor, P. Preston,

and A. Srinivasan, “Ripple down rules: Turning knowledge acquisition

into knowledge maintenance,” Artificial Intelligence in Medicine, vol. 4,

no. 6, pp. 463 – 475, 1992, representing Knowledge in Medical Decision

Support Systems. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/093336579290013F

[4] B. R. Gaines and P. Compton, “Induction of ripple-down rules

applied to modeling large databases,” Journal of Intelligent Information

Systems, vol. 5, no. 3, pp. 211–228, Nov 1995. [Online]. Available:

https://doi.org/10.1007/BF00962234

[5] P. Compton and B.-H. Kang, RIPPLE-DOWN RULES: THE ALTERNA-

TIVE TO MACHINE LEARNING, 1st ed. Crc Press Llc, 2021.

[6] B. H. Kang, “Multiple classification ripple down rules : Evaluation and

possibilities,” 2000.

[7] A. Nuxoll and J. E. Laird, “A cognitive model of episodic memory inte-

grated with a general cognitive architecture,” in ICCM, 2004.

[8] A. M. Nuxoll and J. E. Laird, “Enhancing intelligent agents

with episodic memory Action editor : Vasant Honavar,” Cognitive

213

http://www.sciencedirect.com/science/article/pii/093336579290013F
http://www.sciencedirect.com/science/article/pii/093336579290013F
https://doi.org/10.1007/BF00962234

Systems Research, vol. 17-18, pp. 34–48, 2012. [Online]. Available:

http://dx.doi.org/10.1016/j.cogsys.2011.10.002

[9] A. Nuxoll, D. Tecuci, W. C. Ho, and N. Wang, “Comparing forgetting algo-

rithms for artificial episodic memory systems,” in Proc. of the Symposium

on Human Memory for Artificial Agents. AISB, 2010, pp. 14–20.

[10] T. P. D. Homem, P. E. Santos, A. H. R. Costa], R. A. [da Costa Bianchi],

and R. L. de Mantaras], “Qualitative case-based reasoning and learning,”

Artificial Intelligence, vol. 283, p. 103258, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0004370218303424

[11] B. Lau, C. Sprunk, and W. Burgard, “Improved updating of euclidean

distance maps and voronoi diagrams,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Oct 2010, pp. 281–286.

[12] Z. Kasap and N. Magnenat-Thalmann, “Towards episodic memory-based

long-term affective interaction with a human-like robot,” in 19th Interna-

tional Symposium in Robot and Human Interactive Communication, Sep.

2010, pp. 452–457.

[13] C. Xiong, S. Merity, and R. Socher, “Dynamic memory networks for visual

and textual question answering,” 2016.

[14] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gul-

rajani, V. Zhong, R. Paulus, R. Socher, J. Bradbury, and R. Com,

“Ask Me Anything: Dynamic Memory Networks for Natural Lan-

guage Processing,” Proceedings of The 33rd International Conference on

Machine Learning, PMLR 48, vol. 48, pp. 1378–1387, 2016. [Online].

Available: http://proceedings.mlr.press/v48/kumar16.html{%}0Ahttp:

//proceedings.mlr.press/v48/kumar16.pdf

[15] J. Li, W. Monroe, A. Ritter, and D. Jurafsky, “Deep Reinforcement

Learning for Dialogue Generation,” arXiv, vol. 2, no. 2, pp. 1192–1202,

2016. [Online]. Available: http://arxiv.org/abs/1606.01541

[16] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence

learning with neural networks,” in Advances in Neural Information

Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc.,

214

http://dx.doi.org/10.1016/j.cogsys.2011.10.002
http://www.sciencedirect.com/science/article/pii/S0004370218303424
http://proceedings.mlr.press/v48/kumar16.html{%}0Ahttp://proceedings.mlr.press/v48/kumar16.pdf
http://proceedings.mlr.press/v48/kumar16.html{%}0Ahttp://proceedings.mlr.press/v48/kumar16.pdf
http://arxiv.org/abs/1606.01541

2014, pp. 3104–3112. [Online]. Available: http://papers.nips.cc/paper/

5346-sequence-to-sequence-learning-with-neural-networks.pdf

[17] S. R. Eddy, “Hidden Markov models,” Current Opinion in Structural

Biology, vol. 6, no. 3, pp. 361–365, 1996. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0959440X9680056X

[18] Crespo, Castillo, M. Oscar, and Barber, “Semantic information for robot

navigation: A survey,” Applied Sciences, vol. 10, p. 497, 01 2020.

[19] S. Thrun, “Integrating Grid-Based and Topological Maps for Mobile Robot

Navigation Arno Bucken Grid-Based Maps,” Proceedings of the Thirteenth

Nation Conference on Artificial Intelligence Artificial Intelligence, no. Au-

gust, 1996.

[20] P. Beeson, N. K. Jong, and B. Kuipers, “Towards autonomous topological

place detection using the extended voronoi graph,” in Proceedings of the

2005 IEEE International Conference on Robotics and Automation, 2005,

pp. 4373–4379.

[21] S. Friedman, H. Pasula, and D. Fox, “Voronoi random fields: Extracting

topological structure of indoor environments via place labeling.” in IJCAI,

vol. 7, 2007, pp. 2109–2114.

[22] L. Wu, M. A. Garcia, D. Puig, and A. Sole, “Voronoi-based space partition-

ing for coordinated multi-robot exploration,” Journal of Physical Agents,

vol. 1, no. 1, pp. 37–44, 2007.

[23] R. Ramaithitima, M. Whitzer, S. Bhattacharya, and V. Kumar, “Au-

tomated creation of topological maps in unknown environments using a

swarm of resource-constrained robots,” IEEE Robotics and Automation

Letters, vol. 1, no. 2, pp. 746–753, July 2016.

[24] Z. Liu, D. Chen, and G. von Wichert, “2d semantic mapping on occupancy

grids,” in ROBOTIK 2012; 7th German Conference on Robotics, May

2012, pp. 1–6.

[25] C. Mura, O. Mattausch, A. J. Villanueva, E. Gobbetti, and

R. Pajarola, “Automatic room detection and reconstruction in

cluttered indoor environments with complex room layouts,” Computers

& Graphics, vol. 44, pp. 20 – 32, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0097849314000661

215

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://www.sciencedirect.com/science/article/pii/S0959440X9680056X
http://www.sciencedirect.com/science/article/pii/S0097849314000661

[26] S. Ochmann, R. Vock, R. Wessel, and R. Klein, “Automatic

reconstruction of parametric building models from indoor point

clouds,” Computers & Graphics, vol. 54, pp. 94 – 103, 2016,

special Issue on CAD/Graphics 2015. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0097849315001119

[27] R. Ambruş, S. Claici, and A. Wendt, “Automatic room segmentation from

unstructured 3-d data of indoor environments,” IEEE Robotics and Au-

tomation Letters, vol. 2, no. 2, pp. 749–756, April 2017.

[28] M. Mielle, M. Magnusson, and A. J. Lilienthal, “A method to segment

maps from different modalities using free space layout maoris: Map of

ripples segmentation,” 2018 IEEE International Conference on Robotics

and Automation (ICRA), pp. 4993–4999, 2018.

[29] P. Buschka and A. Saffiotti, “A virtual sensor for room detection,”

IEEE/RSJ International Conference on Intelligent Robots and Systems,

vol. 1, no. October, pp. 637–642, 2002.

[30] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. A. Fernandez-

Madrigal, and J. Gonzalez, “Multi-hierarchical semantic maps for mo-

bile robotics,” in 2005 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Aug 2005, pp. 2278–2283.

[31] F. Dellaert and D. Bruemmer, “Semantic SLAM for Collaborative

Cognitive Workspaces,” AAAI Fall Symposium Series 2004: Workshop

on The Interaction of Cognitive Science and Robotics: From Interfaces to

Intelligence, 2004. [Online]. Available: http://frank.dellaert.com/pub/

Dellaert04ss.pdf

[32] B. Limketkai, L. Liao, and D. Fox, “Relational object maps for mobile

robots,” IJCAI International Joint Conference on Artificial Intelligence,

pp. 1471–1476, 2005.

[33] A. Rottmann, O. Mozos, C. Stachniss, and W. Burgard, “Semantic place

classification of indoor environments with mobile robots using boosting.”

Proceedings of the National Conference on Artificial Intelligence, vol. 3,

pp. 1306–1311, 01 2005.

[34] Óscar Mart́ınez Mozos, R. Triebel, P. Jensfelt, A. Rottmann, and

W. Burgard, “Supervised semantic labeling of places using information

216

http://www.sciencedirect.com/science/article/pii/S0097849315001119
http://www.sciencedirect.com/science/article/pii/S0097849315001119
http://frank.dellaert.com/pub/Dellaert04ss.pdf
http://frank.dellaert.com/pub/Dellaert04ss.pdf

extracted from sensor data,” Robotics and Autonomous Systems, vol. 55,

no. 5, pp. 391 – 402, 2007, from Sensors to Human Spatial Concepts.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S092188900600203X

[35] C. Nieto-Granda, J. G. Rogers, A. J. B. Trevor, and H. I. Christensen,

“Semantic map partitioning in indoor environments using regional anal-

ysis,” in 2010 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Oct 2010, pp. 1451–1456.

[36] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke,

G. Wyeth, B. Upcroft, and M. Milford, “Place categorization and semantic

mapping on a mobile robot,” in 2016 IEEE International Conference on

Robotics and Automation (ICRA), May 2016, pp. 5729–5736.

[37] M. Brucker, M. Durner, R. Ambruş, Z. C. Márton, A. Wendt, P. Jensfelt,

K. O. Arras, and R. Triebel, “Semantic labeling of indoor environments

from 3d rgb maps,” in 2018 IEEE International Conference on Robotics

and Automation (ICRA), May 2018, pp. 1871–1878.

[38] Y. Gil, “Learning by experimentation: Incremental refinement of

incomplete planning domains,” in Machine Learning Proceedings 1994,

W. W. Cohen and H. Hirsh, Eds. San Francisco (CA): Morgan Kaufmann,

1994, pp. 87–95. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/B9781558603356500192

[39] M. Sridharan and B. L. Meadows, “Knowledge representation and inter-

active learning of domain knowledge for human-robot interaction,” 2018.

[40] J. C. Herrero, R. I. B. Castaño, and O. M. Mozos, “An inferring semantic

system based on relational models for mobile robotics,” in 2015 IEEE In-

ternational Conference on Autonomous Robot Systems and Competitions,

April 2015, pp. 83–88.

[41] A. K. Bozcuoglu, Y. Furuta, K. Okada, M. Beetz, and M. Inaba,

“Continuous modeling of affordances in a symbolic knowledge base,”

in IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems(IROS), Macau, China, 2019, accepted for publication.

[42] J. Mason and B. Marthi, “An object-based semantic world model for

long-term change detection and semantic querying,” Proceedings of the ...

217

http://www.sciencedirect.com/science/article/pii/S092188900600203X
http://www.sciencedirect.com/science/article/pii/S092188900600203X
https://www.sciencedirect.com/science/article/pii/B9781558603356500192
https://www.sciencedirect.com/science/article/pii/B9781558603356500192

IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 3851–3858, 10 2012.

[43] J. Elfring, S. van den Dries, M. van de Molengraft, and M. Steinbuch,

“Semantic world modeling using probabilistic multiple hypothesis

anchoring,” Robotics and Autonomous Systems, vol. 61, no. 2, pp. 95

– 105, 2013. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0921889012002163

[44] J. Elfring, M. Molengraft, and M. Steinbuch, “Semi-task-dependent

and uncertainty-driven world model maintenance,” Autonomous Robots,

vol. 38, pp. 1–15, 01 2014.

[45] J. Hou, Y. Yuan, and S. Schwertfeger, “Area graph: Generation of topo-

logical maps using the voronoi diagram,” 10 2019.

[46] A. Thippur, C. Burbridge, L. Kunze, M. Alberti, J. Folkesson, P. Jensfelt,

and N. Hawes, “A Comparison of Qualitative and Metric Spatial

Relation Models for Scene Understanding,” Aaai, no. Section 4, pp.

1632–1640, 2015. [Online]. Available: https://pdfs.semanticscholar.org/

af7b/83dca60af4ab7d96a2fb7bb0d6f757493f5e.pdf

[47] L. Kunze, C. Burbridge, M. Alberti, A. Thippur, J. Folkesson, P. Jensfelt,

and N. Hawes, “Combining top-down spatial reasoning and bottom-up ob-

ject class recognition for scene understanding,” IEEE International Con-

ference on Intelligent Robots and Systems, no. Section III, pp. 2910–2915,

2014.

[48] R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Darrell, “Natural

language object retrieval,” CoRR, vol. abs/1511.04164, 2015. [Online].

Available: http://arxiv.org/abs/1511.04164

[49] J. Young and N. Hawes, “Learning by Observation Using Qualitative Spa-

tial Relations,” Proceedings of the 14th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2015), 2015.

[50] G. Gemignani, R. Capobianco, and D. Nardi, Approaching Qualitative

Spatial Reasoning About Distances and Directions in Robotics. Cham:

Springer International Publishing, 2015, pp. 452–464. [Online]. Available:

https://doi.org/10.1007/978-3-319-24309-2{ }34

218

http://www.sciencedirect.com/science/article/pii/S0921889012002163
http://www.sciencedirect.com/science/article/pii/S0921889012002163
https://pdfs.semanticscholar.org/af7b/83dca60af4ab7d96a2fb7bb0d6f757493f5e.pdf
https://pdfs.semanticscholar.org/af7b/83dca60af4ab7d96a2fb7bb0d6f757493f5e.pdf
http://arxiv.org/abs/1511.04164
https://doi.org/10.1007/978-3-319-24309-2{_}34

[51] D. Wolter and A. Kirsch, “Leveraging qualitative reasoning to learning

manipulation tasks,” Robotics, vol. 4, pp. 253–283, 2015.

[52] J. F. Allen, “Maintaining knowledge about temproal intervals,” Readings

in qualitative reasoning about physical systems, vol. 26, no. 11, pp. 361–372,

1990.

[53] J. O. Wallgrün, “Qualitative spatial reasoning for topological map

learning,” Spatial Cognition & Computation, vol. 10, no. 4, pp. 207–246,

2010. [Online]. Available: https://doi.org/10.1080/13875860903540906

[54] A. G. Cohn and J. Renz, “Chapter 13 qualitative spatial representation and

reasoning,” in Handbook of Knowledge Representation, ser. Foundations

of Artificial Intelligence, F. van Harmelen, V. Lifschitz, and B. Porter,

Eds. Elsevier, 2008, vol. 3, pp. 551 – 596. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1574652607030131

[55] B. Krieg-Brückner and H. Shi, “Orientation calculi and route graphs: To-

wards semantic representations for route descriptions,” in Geographic In-

formation Science, M. Raubal, H. J. Miller, A. U. Frank, and M. F. Good-

child, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.

234–250.

[56] C. Matuszek, D. Fox, and K. Koscher, “Following directions using statis-

tical machine translation,” in 2010 5th ACM/IEEE International Confer-

ence on Human-Robot Interaction (HRI), March 2010, pp. 251–258.

[57] H. A. Kautz and P. B. Ladkin, “Integrating Metric and Qualitative Tem-

poral Reasoning,” Ninth National Conference on Artificial Intelligence.

AAAI’91, pp. 241–246, 1991.

[58] T. Allen, J. Delgrande, and A. Gupta, “Point-based approaches to qual-

itative temporal reasoning,” Proceedings of the National Conference on

Artificial Intelligence, pp. 305–316, 11 2006.

[59] A. Gerevini and L. Schubert, “Efficient algorithms for qualitative

reasoning about time,” Artificial Intelligence, vol. 74, no. 2, pp. 207–248,

1995. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/000437029400016T

[60] E. Tulving, Elements of Episodic Memory. Oxford University Press, 1983.

219

https://doi.org/10.1080/13875860903540906
http://www.sciencedirect.com/science/article/pii/S1574652607030131
http://www.sciencedirect.com/science/article/pii/000437029400016T
http://www.sciencedirect.com/science/article/pii/000437029400016T

[61] M. E. Wheeler and E. J. Ploran, “Episodic Memory,” in Encyclopedia

of Neuroscience, L. R. Squire, Ed. Oxford: Academic Press, 2009, pp.

1167–1172. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/B9780080450469007609

[62] E. Tulving and H. J. Markowitsch, “Episodic and declar-

ative memory: Role of the hippocampus,” Hippocampus,

vol. 8, no. 3, pp. 198–204, 1998. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291098-1063%

281998%298%3A3%3C198%3A%3AAID-HIPO2%3E3.0.CO%3B2-G

[63] D. Griffiths, A. Dickinson, and N. Clayton, “Episodic memory:

what can animals remember about their past?” Trends in Cognitive

Sciences, vol. 3, no. 2, pp. 74–80, 1999. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1364661398012728

[64] A. Baddeley, “The episodic buffer: a new component of working

memory?” Trends in Cognitive Sciences, vol. 4, no. 11, pp. 417 – 423,

2000. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1364661300015382

[65] D. Lopez-Paz and M. A. Ranzato, “Gradient episodic memory

for continual learning,” in Advances in Neural Information Processing

Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,

2017, pp. 6467–6476. [Online]. Available: http://papers.nips.cc/paper/

7225-gradient-episodic-memory-for-continual-learning.pdf

[66] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and

D. Hassabis, “Reinforcement learning, fast and slow,” Trends in Cognitive

Sciences, 04 2019.

[67] Z. Lin, T. Zhao, G. Yang, and L. Zhang, “Episodic memory

deep q-networks,” in Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence, IJCAI-18. International Joint

Conferences on Artificial Intelligence Organization, 7 2018, pp. 2433–2439.

[Online]. Available: https://doi.org/10.24963/ijcai.2018/337

[68] S. Jockel, D. Westhoff, and Jianwei Zhang, “Epirome - a novel framework

to investigate high-level episodic robot memory,” in 2007 IEEE Interna-

220

http://www.sciencedirect.com/science/article/pii/B9780080450469007609
http://www.sciencedirect.com/science/article/pii/B9780080450469007609
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291098-1063%281998%298%3A3%3C198%3A%3AAID-HIPO2%3E3.0.CO%3B2-G
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291098-1063%281998%298%3A3%3C198%3A%3AAID-HIPO2%3E3.0.CO%3B2-G
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291098-1063%281998%298%3A3%3C198%3A%3AAID-HIPO2%3E3.0.CO%3B2-G
http://www.sciencedirect.com/science/article/pii/S1364661398012728
http://www.sciencedirect.com/science/article/pii/S1364661300015382
http://www.sciencedirect.com/science/article/pii/S1364661300015382
http://papers.nips.cc/paper/7225-gradient-episodic-memory-for-continual-learning.pdf
http://papers.nips.cc/paper/7225-gradient-episodic-memory-for-continual-learning.pdf
https://doi.org/10.24963/ijcai.2018/337

tional Conference on Robotics and Biomimetics (ROBIO), Dec 2007, pp.

1075–1080.

[69] J. E. Laird, A. Newell, and P. S. Rosenbloom, “SOAR: An architecture

for general intelligence,” Artificial Intelligence, vol. 33, no. 1, pp. 1–64,

1987. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/0004370287900506

[70] N. Derbinsky and J. E. Laird, “Efficiently implementing episodic memory,”

Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5650

LNAI, pp. 403–417, 2009.

[71] S. Wallace, E. Dickinson, and A. Nuxoll, “Hashing for lightweight episodic

recall,” AAAI Spring Symposium - Technical Report, pp. 56–61, 01 2013.

[72] E. Vanderwerf, R. Stiles, A. Warlen, A. Seibert, K. Bastien, A. Meyer,

A. Nuxoll, and S. A. Wallace, “Hash functions for episodic recognition

and retrieval,” in FLAIRS Conference, 2016.

[73] D. Tecuci and B. Porter, “A generic memory module for events.” Proceed-

ings of the Twentieth International Florida Artificial Intelligence Research

Society Conference, FLAIRS 2007, pp. 152–157, 01 2007.

[74] M. Minsky, “Minsky’s frame system theory,” in Proceedings of the

1975 Workshop on Theoretical Issues in Natural Language Processing, ser.

TINLAP ’75. Stroudsburg, PA, USA: Association for Computational

Linguistics, 1975, pp. 104–116. [Online]. Available: https://doi.org/10.

3115/980190.980222

[75] D. Stachowicz and G.-J. Kruijff, “Episodic-like memory for cognitive

robots,” Autonomous Mental Development, IEEE Transactions on, vol. 4,

pp. 1–16, 03 2012.

[76] N. Clayton, T. Bussey, and A. Dickinson, “Can animals recall the past and

plan for the future?” Nature reviews. Neuroscience, vol. 4, pp. 685–91, 09

2003.

[77] N. S. Clayton and J. Russell, “Looking for episodic memory in animals

and young children: Prospects for a new minimalism,” Neuropsychologia,

vol. 47, no. 11, pp. 2330 – 2340, 2009, episodic Memory and the

221

http://www.sciencedirect.com/science/article/pii/0004370287900506
http://www.sciencedirect.com/science/article/pii/0004370287900506
https://doi.org/10.3115/980190.980222
https://doi.org/10.3115/980190.980222

Brain. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0028393208004132

[78] D. Liu, M. Cong, and Y. Du, “Episodic Memory-Based Robotic Planning

under Uncertainty,” IEEE Transactions on Industrial Electronics, vol. 64,

no. 2, pp. 1762–1772, 2017.

[79] D. Liu, M. Cong, Y. Du, Q. Zou, and Y. Cui, “Robotic autonomous

behavior selection using episodic memory and attention system,”

Industrial Robot: An International Journal, vol. 44, no. 3, pp. 353–362,

2017. [Online]. Available: http://www.emeraldinsight.com/doi/10.1108/

IR-09-2016-0250

[80] M. Y. Lim, R. Aylett, P. A. Vargas, W. C. Ho, and J. a. Dias, “Human-

like memory retrieval mechanisms for social companions,” in The 10th

International Conference on Autonomous Agents and Multiagent Systems

- Volume 3, ser. AAMAS ’11. Richland, SC: International Foundation

for Autonomous Agents and Multiagent Systems, 2011, pp. 1117–1118.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2034396.2034446

[81] F. Shen, Q. Ouyang, W. Kasai, and O. Hasegawa, “A general

associative memory based on self-organizing incremental neural network,”

Neurocomputing, vol. 104, pp. 57 – 71, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S092523121200834X

[82] P.-H. Chang and A.-H. Tan, “Encoding and recall of spatio-temporal

episodic memory in real time,” in Proceedings of the 26th International

Joint Conference on Artificial Intelligence, ser. IJCAI’17. AAAI Press,

2017, pp. 1490–1496. [Online]. Available: http://dl.acm.org/citation.cfm?

id=3172077.3172094

[83] J. Berlin and A. Motro, Database Schema Matching Using Machine

Learning with Feature Selection. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013, pp. 315–329. [Online]. Available: https://doi.org/10.

1007/978-3-642-36926-1 25

[84] M. Leordeanu, R. Sukthankar, and M. Hebert, “Unsupervised

learning for graph matching,” International Journal of Computer Vision,

vol. 96, no. 1, pp. 28–45, Jan 2012. [Online]. Available: https:

//doi.org/10.1007/s11263-011-0442-2

222

http://www.sciencedirect.com/science/article/pii/S0028393208004132
http://www.sciencedirect.com/science/article/pii/S0028393208004132
http://www.emeraldinsight.com/doi/10.1108/IR-09-2016-0250
http://www.emeraldinsight.com/doi/10.1108/IR-09-2016-0250
http://dl.acm.org/citation.cfm?id=2034396.2034446
http://www.sciencedirect.com/science/article/pii/S092523121200834X
http://dl.acm.org/citation.cfm?id=3172077.3172094
http://dl.acm.org/citation.cfm?id=3172077.3172094
https://doi.org/10.1007/978-3-642-36926-1_25
https://doi.org/10.1007/978-3-642-36926-1_25
https://doi.org/10.1007/s11263-011-0442-2
https://doi.org/10.1007/s11263-011-0442-2

[85] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola,

“Learning graph matching,” CoRR, vol. abs/0806.2890, 2008. [Online].

Available: http://arxiv.org/abs/0806.2890

[86] D. Vernon, M. Beetz, and G. Sandini, “Prospection in cognition:

The case for joint episodic-procedural memory in cognitive robotics,”

Frontiers in Robotics and AI, vol. 2, p. 19, 2015. [Online]. Available:

https://www.frontiersin.org/article/10.3389/frobt.2015.00019

[87] J. Kolodner, Case-based reasoning. Morgan Kaufmann, 2014.

[88] M. Sharma and C. Sharma, “A review on diverse applications of case-based

reasoning,” in Advances in Computing and Intelligent Systems, H. Sharma,

K. Govindan, R. C. Poonia, S. Kumar, and W. M. El-Medany, Eds. Sin-

gapore: Springer Singapore, 2020, pp. 511–517.

[89] R. C. Schank and R. P. Abelson, Scripts, Plans, Goals and Understanding:

an Inquiry into Human Knowledge Structures. Hillsdale, NJ: L. Erlbaum,

1977.

[90] I. Watson and F. Marir, “Case-based reasoning: A review,” The knowledge

engineering review, vol. 9, no. 4, pp. 327–354, 1994.

[91] J. Kendall-Morwick and D. Leake, A Study of Two-Phase Retrieval for

Process-Oriented Case-Based Reasoning. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2014, pp. 7–27. [Online]. Available: https:

//doi.org/10.1007/978-3-642-38736-4 2

[92] M. Veloso and A. Aamodt, Eds., Case-Based Reasoning Research and De-

velopment: Proceedings of the First International Conference on Case-

Based Reasoning. Berlin: Springer Verlag, 1995.

[93] C. Riesbeck and R. Schank, Inside Case-based Reasoning. Northvale, NJ:

Erlbaum, 1989.

[94] R. Moratz and J. Wallgrün, “Spatial reasoning with augmented points:

Extending cardinal directions with local distances,” Journal of Spatial

Information Science, vol. 5, no. 2012, pp. 1–30, 2012, cited By 21.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-84889008275&doi=10.5311%2fJOSIS.2012.5.84&partnerID=40&

md5=6f3f3bde69a7fb0a59358d57da03ff8d

223

http://arxiv.org/abs/0806.2890
https://www.frontiersin.org/article/10.3389/frobt.2015.00019
https://doi.org/10.1007/978-3-642-38736-4_2
https://doi.org/10.1007/978-3-642-38736-4_2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84889008275&doi=10.5311%2fJOSIS.2012.5.84&partnerID=40&md5=6f3f3bde69a7fb0a59358d57da03ff8d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84889008275&doi=10.5311%2fJOSIS.2012.5.84&partnerID=40&md5=6f3f3bde69a7fb0a59358d57da03ff8d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84889008275&doi=10.5311%2fJOSIS.2012.5.84&partnerID=40&md5=6f3f3bde69a7fb0a59358d57da03ff8d

[95] B. Smyth and M. T. Keane, “Retrieving adaptable cases,” in Topics in

Case-Based Reasoning, S. Wess, K.-D. Althoff, and M. M. Richter, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 209–220.

[96] M. L. Maher and P. Pu, Issues and applications of case-based reasoning to

design. Psychology Press, 2014.

[97] A. HOLT, I. BICHINDARITZ, R. SCHMIDT, and P. PERNER, “Medical

applications in case-based reasoning,” The Knowledge Engineering Review,

vol. 20, no. 3, p. 289–292, 2005.

[98] F. Amato, A. López, E. M. Peña-Méndez, P. Vaňhara, A. Hampl, and

J. Havel, “Artificial neural networks in medical diagnosis,” 2013.

[99] Q. K. Al-Shayea, “Artificial neural networks in medical diagnosis,” Inter-

national Journal of Computer Science Issues, vol. 8, no. 2, pp. 150–154,

2011.

[100] A. Carlson, J. Betteridge, and B. Kisiel, “Toward an Architecture

for Never-Ending Language Learning.” In Proceedings of the Conference

on Artificial Intelligence (AAAI) (2010), pp. 1306–1313, 2010. [Online].

Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/

download/1879/2201

[101] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge,

A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, and et al., “Never-ending

learning,” Commun. ACM, vol. 61, no. 5, p. 103–115, Apr. 2018. [Online].

Available: https://doi.org/10.1145/3191513

[102] T. Mitchell and E. Fredkin, “Never-ending language learning,” in 2014

IEEE International Conference on Big Data (Big Data), Oct 2014, pp.

1–1.

[103] N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mudrova,

J. Young, J. Wyatt, D. Hebesberger, T. Kortner, R. Ambrus, N. Bore,

J. Folkesson, P. Jensfelt, L. Beyer, A. Hermans, B. Leibe, A. Aldoma,

T. Faulhammer, M. Zillich, M. Vincze, E. Chinellato, M. Al-Omari,

P. Duckworth, Y. Gatsoulis, D. Hogg, A. Cohn, C. Dondrup, J. Pulido

Fentanes, T. Krajnik, J. M. Santos, T. Duckett, and M. Hanheide, “The

STRANDS Project: Long-Term Autonomy in Everyday Environments,”

IEEE Robotics and Automation Magazine, 2017.

224

http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1879/2201
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1879/2201
https://doi.org/10.1145/3191513

[104] W. Meeussen, E. Marder-Eppstein, K. Watts, and B. P. Gerkey, “Long

term autonomy in office environments,” in ICRA 2011 Workshop on Long-

term Autonomy, IEEE. Shanghai, China: IEEE, 05/2011 2011.

[105] T. T. Tran, T. Vaquero, G. Nejat, and J. C. Beck, “Robots in retirement

homes: Applying off-the-shelf planning and scheduling to a team of assis-

tive robots,” J. Artif. Int. Res., vol. 58, no. 1, p. 523–590, Jan. 2017.

[106] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot task

learning: Instructive demonstrations, generalization and practice,” in

Proceedings of the Second International Joint Conference on Autonomous

Agents and Multiagent Systems, ser. AAMAS ’03. New York, NY,

USA: Association for Computing Machinery, 2003, p. 241–248. [Online].

Available: https://doi.org/10.1145/860575.860614

[107] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and

generalizing a task in a humanoid robot,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 2, pp. 286–298,

2007.

[108] S. Rosenthal, J. Biswas, and M. Veloso, “An effective personal mobile robot

agent through symbiotic human-robot interaction,” Proc. of 9th Int. Conf.

on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 915–

922, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1838329

[109] S. Rosenthal and M. Veloso, “Mobile Robot Planning to Seek Help

with Spatially-Situated Tasks.” Aaai, vol. 15213, pp. 2067–2073, 2012.

[Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI12/

paper/viewPDFInterstitial/5141/5373

[110] S. Rosenthal, J. Biswas, and M. Veloso, “An effective personal mobile robot

agent through symbiotic human-robot interaction,” Proc. of 9th Int. Conf.

on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 915–

922, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1838329

[111] L. Kunze, N. Hawes, T. Duckett, M. Hanheide, and T. Krajńık, “Artificial

intelligence for long-term robot autonomy: A survey,” CoRR, vol.

abs/1807.05196, 2018. [Online]. Available: http://arxiv.org/abs/1807.

05196

225

https://doi.org/10.1145/860575.860614
http://dl.acm.org/citation.cfm?id=1838329
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewPDFInterstitial/5141/5373
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewPDFInterstitial/5141/5373
http://dl.acm.org/citation.cfm?id=1838329
http://arxiv.org/abs/1807.05196
http://arxiv.org/abs/1807.05196

[112] N. Blaylock and J. Allen, “Hierarchical instantiated goal recognition,” in

Proceedings of the AAAI Workshop on Modeling Others from Observations,

2006, pp. 8–15.

[113] P. Singla and R. J. Mooney, “Abductive markov logic for plan recognition,”

in Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[114] B. Meadows, P. Langley, and M. Emery, “Seeing beyond shadows: Incre-

mental abductive reasoning for plan understanding,” AAAI Workshop -

Technical Report, pp. 24–31, 01 2013.

[115] H. A. Kautz and J. F. Allen, “Generalized plan recognition.” in AAAI,

vol. 86, no. 3237, 1986, p. 5.

[116] C. Flanagan, D. Rajaratnam, and C. Sammut, “Topological Mapping for

Cognitive Robots,” Proceedings of the Australasian Conference on Robotics

and Automation, 2020.

[117] V. Govindarajan, S. Bhattacharya, and V. Kumar, “Human-robot collab-

orative topological exploration for search and rescue applications,” in Dis-

tributed Autonomous Robotic Systems, N.-Y. Chong and Y.-J. Cho, Eds.

Tokyo: Springer Japan, 2016, pp. 17–32.

[118] E. Garcia-Fidalgo and A. Ortiz, “Vision-based topological mapping

and localization methods: A survey,” Robotics and Autonomous

Systems, vol. 64, pp. 1 – 20, 2015. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0921889014002619

[119] J. O. Wallgrün, “Qualitative spatial reasoning for topological map

learning,” Spatial Cognition & Computation, vol. 10, no. 4, pp. 207–246,

2010. [Online]. Available: https://doi.org/10.1080/13875860903540906

[120] J. Laird, K. Kinkade, S. Mohan, and J. Xu, “Cognitive Robotics Using the

Soar Cognitive Architecture,” 8th International Workshop on Cognitive

Robotics, pp. 46–54, 2012. [Online]. Available: http://www.aaai.org/ocs/

index.php/WS/AAAIW12/paper/download/5221/5573

[121] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:

part i,” IEEE Robotics Automation Magazine, vol. 13, no. 2, pp. 99–110,

June 2006.

226

http://www.sciencedirect.com/science/article/pii/S0921889014002619
http://www.sciencedirect.com/science/article/pii/S0921889014002619
https://doi.org/10.1080/13875860903540906
http://www.aaai.org/ocs/index.php/WS/AAAIW12/paper/download/5221/5573
http://www.aaai.org/ocs/index.php/WS/AAAIW12/paper/download/5221/5573

[122] H. Choset and K. Nagatani, “Topological simultaneous localization and

mapping (slam): toward exact localization without explicit localization,”

IEEE Transactions on Robotics and Automation, vol. 17, no. 2, pp. 125–

137, April 2001.

[123] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A

factored solution to the simultaneous localization and mapping problem,”

Proceeding Eighteenth national conference on Artificial intelligence, vol. 68,

no. 2, pp. 593–598, 2002.

[124] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in

2d lidar slam,” in 2016 IEEE International Conference on Robotics and

Automation (ICRA), 2016, pp. 1271–1278.

[125] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase,

“Development of human support robot as the research platform of a

domestic mobile manipulator,” ROBOMECH Journal, vol. 6, no. 1, p. 4,

2019. [Online]. Available: https://doi.org/10.1186/s40648-019-0132-3

[126] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick, “Sensor-based ex-

ploration: Incremental construction of the hierarchical generalized voronoi

graph,” The International Journal of Robotics Research, vol. 19, no. 2, pp.

126 – 148, February 2000.

[127] H. Choset and J. Burdick, “Sensor based motion planning: The hierarchi-

cal generalized voronoi graph,” in Workshop on Algorithmic Foundations

of Robotics, January 1996.

[128] N. Kalra, D. Ferguson, and A. T. Stentz, “Incremental reconstruction of

generalized voronoi diagrams on grids,” in Proceedings of the International

Conference on Intelligent Autonomous Systems (IAS), March 2006.

[129] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” 2015.

[130] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018.

[131] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once

: Unified , Real-Time Object Detection.”

[132] “Cgal computational geometry library,” https://www.cgal.org/.

227

https://doi.org/10.1186/s40648-019-0132-3
https://www.cgal.org/

[133] C. Kong, D. Lin, M. Bansal, R. Urtasun, and S. Fidler, “What are you

talking about? text-to-image coreference,” in 2014 IEEE Conference on

Computer Vision and Pattern Recognition, June 2014, pp. 3558–3565.

[134] C. Flanagan and C. Sammut, “Adaptive Event Retrieval for Episodic

Memory,” Advances in Cognitive Systems, 2020.

[135] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson,

M. Friedman, C. Kwok, K. Golden, S. Penberthy, D. Smith, Y. Sun, and

D. Weld, “Pddl - the planning domain definition language,” 08 1998.

[136] M. McGill, C. Sammut, and J. Westendorp, “FrameScript: A Multi-

modal Scripting Language,” 2008. [Online]. Available: http://www.cse.

unsw.edu.au/{∼}claude/research/papers/framescript.pdf{%}5Cnpapers3:

//publication/uuid/114CFE5B-0EC8-4347-B7CC-514AFB8B1FA0

[137] S. Nason and J. E. Laird, “Soar-rl: integrating reinforcement

learning with soar,” Cognitive Systems Research, vol. 6, no. 1,

pp. 51 – 59, 2005, special Issue of Cognitive Systems Research

- The Best Papers from ICCM2004. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1389041704000646

[138] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object

pattern match problem,” Artificial Intelligence, vol. 19, no. 1, pp. 17 – 37,

1982. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/0004370282900200

[139] M. Law, A. Russo, and K. Broda, “The ilasp system for inductive learning

of answer set programs,” 05 2020.

[140] L. Fermı́n-Leon, J. Neira, and J. A. Castellanos, “Incremental contour-

based topological segmentation for robot exploration,” 2017 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp. 2554–2561,

2017.

[141] “Robotis manual for the turtlebot3,” https://emanual.robotis.com/docs/

en/platform/turtlebot3/overview/.

[142] S. Fidler, A. Sharma, and R. Urtasun, “A sentence is worth a thousand

pixels,” pp. 1995–2002, 06 2013.

228

http://www.cse.unsw.edu.au/{~}claude/research/papers/framescript.pdf{%}5Cnpapers3://publication/uuid/114CFE5B-0EC8-4347-B7CC-514AFB8B1FA0
http://www.cse.unsw.edu.au/{~}claude/research/papers/framescript.pdf{%}5Cnpapers3://publication/uuid/114CFE5B-0EC8-4347-B7CC-514AFB8B1FA0
http://www.cse.unsw.edu.au/{~}claude/research/papers/framescript.pdf{%}5Cnpapers3://publication/uuid/114CFE5B-0EC8-4347-B7CC-514AFB8B1FA0
http://www.sciencedirect.com/science/article/pii/S1389041704000646
http://www.sciencedirect.com/science/article/pii/S1389041704000646
http://www.sciencedirect.com/science/article/pii/0004370282900200
http://www.sciencedirect.com/science/article/pii/0004370282900200
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

[143] M. R. Smith and T. Martinez, “Improving classification accuracy by iden-

tifying and removing instances that should be misclassified,” in The 2011

International Joint Conference on Neural Networks, 2011, pp. 2690–2697.

229

.1 Topological Map Results Extended

Map ID Precision Recall Bormann

1 98 97 no

2 99 94 no

3 94 96 no

4 95 94 no

5 96 95 no

6 90 90 no

7 98 97 no

8 99 96 no

9 100 97 yes

10 97 98 yes

11 97 92 yes

12 98 95 yes

13 99 95 yes

14 92 96 yes

15 97 97 yes

16 98 94 yes

17 99 94 yes

18 100 98 yes

19 100 98 yes

20 95 95 yes

21 96 95 yes

22 99 97 yes

23 99 96 yes

24 98 96 yes

25 97 92 yes

26 96 93 yes

27 99 93 yes

28 99 97 yes

230

	Introduction
	Overview of the Research
	Motivation and Significance of the Research
	The Falling Glass Problem
	A Friend Coming to Visit

	Overview of Method
	Conclusion

	Literature Review
	Episodic Memory and Natural Language
	Topological Mapping
	Building Topological Maps
	Room Segmentation
	Semantic Mapping
	Maintaining a World Model
	Conclusion to Topological Mapping

	Spatial Reasoning
	Conclusion to Spatial Reasoning

	Temporal Reasoning
	Conclusion to Temporal Reasoning

	Episodic Memory
	Case Based Reasoning
	Never Ending Learning

	Plan Recognition

	Topological Mapping
	Statement of Acknowledgement
	Introduction
	Methodology
	The Brushfire Algorithm
	Cleaning the Occupancy Map
	Creating the Generalised Voronoi Diagram
	Selecting Critical Points
	Creating Regions
	Merging Regions

	Conclusion

	Creating and Retrieving Events in Episodic Memory
	Introduction
	Creating Events in Episodic Memory
	Event Representation
	Frames
	Generic frames Used in Event Representation
	Creating New Types of Events

	Ripple Down Rules
	Ripple Down Rules as Event Recall Policies

	Event Retrieval
	Recall Policies for Common Generic Frames
	Distinguishing Between Episodic and Semantic Memories
	Event Recall Using Ripple Down Rules
	The Retrieval Pipeline
	The Difference Between Critical and Non-critical Actions
	What Are Critical States and How Are They Arranged in a Hierarchy
	When Should an Agent Recall or Create an Event

	Conclusion to Event Retrieval

	Training Recall Policies
	Introduction
	Training Policies
	Training Policies Through Human Guidance
	Manual Training of Episodic Recall Policies

	Training Policies by Induction
	Adopting a Hybrid Training Model
	Fully Automated Approach to Updating Policies for Event Recall

	Conclusion

	Evaluation and Results
	Topological Mapping Evaluation and Results
	Evaluation Metrics
	Results

	Event Recall Results
	Creating Data Sets
	Synthesising a Training and Testing Set
	Pre-defining Recall Policies
	Rules for Generic Frames

	Results
	Event Sub-class Results
	The Effect of Critical Actions

	Discussion

	Conclusion
	Thesis Summary
	Research Comparison
	Extensions and Future Work

	Bibliography
	Topological Map Results Extended

