
Rapid embedded hardware/software system generation

Author:
Peddersen, Jorgen; Shee, Seng Lin; Janapsatya, Andhi; Parameswaran, Sri

Publication details:
Proceedings of VLSI Design 2005
pp. 111-116
0769522645 (ISBN)

Event details:
18th International Conference on VLSI Design (VLSI Design 2005)
Kolkata, India

Publication Date:
2005

DOI:
https://doi.org/10.26190/unsworks/421

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38932 in https://
unsworks.unsw.edu.au on 2024-04-24

http://dx.doi.org/https://doi.org/10.26190/unsworks/421
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38932
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Rapid Embedded Hardware/Software System Generation

Jorgen Peddersen†‡, Seng Lin Shee†‡, Andhi Janapsatya†, Sri Parameswaran†‡

†School of Computer Science and Engineering, The University of New South Wales
Sydney, NSW 2052, Australia

‡National Information and Communications Technology Australia (NICTA)∗
Sydney, NSW 2052, Australia

{jorgenp,senglin,andhij,sridevan}@cse.unsw.edu.au

Abstract
This paper presents an RTL generation scheme for a SimpleScalar

/ PISA Instruction set architecture with system calls to implement C
programs. The scheme utilizes ASIPmeister, a processor generation
tool. The RTL generated is available for download. The second part
of the paper shows a method of reducing the PISA instruction set
and generating a processor for a given application. This reduction
and generation can be performed within an hour, making this one of
the fastest methods of generating an application specific processor.
For five benchmark applications, we show that on average, processor
size can be reduced by 30% , energy consumed reduced by 24%, and
performance improved by 24%.

1. Introduction
Humans are increasingly reliant on Embedded Systems. Embed-

ded systems are seen today in application specific equipment such as
telephones, PDAs, cars, cameras etc. Embedded systems differ from
general purpose computing machinery since a single application or a
class of applications are repeatedly executed. Thus, processing units
can be customized without compromising functionality.

The heart of an embedded system is usually implemented using ei-
ther general purpose processors, ASICs or a combination of both.
General Purpose Processors (GPPs) are programmable, but consume
more power than ASICs. Reduced time to market, and minimized
risk are factors which favor the use of GPPs in embedded systems.
ASICs, on the other hand, cost a great deal to design and are non-
programmable, making upgradability an impossible dream. How-
ever, ASICs have reduced power consumption and are smaller than
GPPs.

Recently a new entrant called the Application Specific Instruction
Set Processor (ASIP) has taken center stage as an alternative con-
tender for implementing functionality in embedded systems. These
are processors with specialized instructions, selected co-processors,
and parameterized caches applicable only to a particular program or
class of programs. An ASIP will execute an application for which it
was designed with great efficiency, though they are capable of exe-
cuting any other program (usually with greatly reduced efficiency).
ASIPs are programable, quick to design and consume less power
than GPPs (though more than ASICs). ASIPs in particular are suited
for utilization in embedded systems where customization allows in-
creased performance, yet reduces power consumption by not having
unnecessary functional units. Programmability allows the ability to
upgrade, and reduces software design time. Tools such as ASIP-
meister [1], Tensilica [2], ARCtangent [3], Jazz [4], Nios [5] and
SP5-flex [6] allow rapid creation of ASIPs.

The advent of tools to create Application Specific Instruction Set
Processors has greatly enhanced the ability to reduce design turn–
around time. Despite several efforts to the contrary [7, 8, 9, 10, 11],
∗National ICT Australia is funded through the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through the Aus-
tralian Research Council.

customization still remains an art rather than a well understood sci-
ence. In addition, customization of an ASIP can take a significant
amount of time.

In this paper, we look at a simple method of customization to speed
up design turn–around time of the processor. We start with a well
configured processor with a rich set of instructions. After compi-
lation of the application and its associated libraries, we remove un-
wanted instructions and re-synthesize the processor. The resulting
processor is now capable of running the same application, in a smaller
processor with reduced power consumption, and higher speed (due
to reduced clock width). The initial processor we created was based
upon the SimpleScalar / PISA [12] instruction set. The selection of
this particular instruction set enabled an opulent set of tools to be
available.

Structure of the paper is as follows. Section 2 gives a summary of
existing works on application specific processors; Section 3 provides
our methodology for processor generation; Section 4 describes the
SimpleScalar processor we have designed; Section 5 defines the min-
imization process we apply to the instruction set; Section 6 describes
the experimental procedure and present the results; and Section 7
will conclude the paper.

2. Related Work
Early research for ASIPs focused on instruction set customizations

to satisfy the constraints on embedded system designs. [13] de-
scribes instruction set synthesis for an application in a parameterized,
pipelined microarchitecture. Complex instructions which cannot be
accommodated within the clock constraint have to be designed as a
multi–cycle instruction. [14] proposed a methodology to generate
the later as well as single–cycle instructions for DSP applications.

With the demand for shorter design turnaround times, many com-
mercial and research organizations have provided base processor cores,
so that less modifications have to be made on the design to achieve
the particular performance requirements. This has led to the emer-
gence of reconfigurable and extensible processors. Xtensa [2], Jazz
[4], PEAS-III [1], ARCtangent [3], Nios [5] and SP5-flex [6] are ex-
amples of processor template based approaches which build ASIPs
around base processors.

Xtensa [2] is a configurable and scalable RISC core. It provides
both 24–bit and 16–bit instructions to freely mix at a fine granularity.
The base processor supports 80 base instructions of the Xtensa ISA
with a 5–stage pipeline. New functional units and extensible instruc-
tions can be added using the Tensilica Instruction Extension(TIE)
Language. Synthesizable code can be obtained together with the soft-
ware chain tools for various architectures implemented with Xtensa.

The Jazz Processor [4] permits the modelling and simulation of a
system consisting of multiple processors, memories and peripher-
als. Data width, number of registers, depth of hardware task queue,
and addition of custom functionality can be added. It has a base ISA
which supports addition of extensible instructions to further optimize
the core for specific applications. The Jazz DSP Processor has a 2–

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 27, 2008 at 17:42 from IEEE Xplore. Restrictions apply.

stage instruction pipeline, single cycle execution units and supports
interrupts with different priority levels. Users are able to select be-
tween 16–bit or 32–bit data paths. It also has a broad selection of
optional 16–bit or 32–bit DSP execution units which are fully tested
and ready to be included in the design. However, Jazz is suitable only
for VLIW and DSP architectures. The Jazz DSP System can be con-
figured to handle memories, and on-chip or off-chip bus interfaces
clocked at either the same speed or double the speed of the processor
[15].

PEAS-III [1, 16] is able to capture a target processors’ specification
using a GUI. Estimation of area, delay and power consumption of the
target processor can be obtained in the architectural design phase. A
Micro-operation level simulation model and RT level description for
logic synthesis can be generated along with software chain tools. It
provides support for several architecture types and a library of con-
figurable components. The core produced follows the Harvard style
memory architecture. Several JPEG encoder designs were achieved
and evaluated within a short span in [17] by using the PEAS-III ap-
proach.

In [18], an existing processor instruction set and architecture can be
customized without designing and creating a new processor. This is
related to the platform based approach for architectural exploration.
There is a need to broaden the architectural space being explored.
The issues which need to be addressed for ASIP design exploration
are discussed in [19].

One branch of design space exploration for ASIPs is for rapid ar-
chitectural exploration with added extensible instructions. This has
been explored in [7] through the use of the Xtensa processor from
Tensilica [2].

Atomic operations within an extensible instruction operation can
be duplicated [8] via various cut enumeration and mapping, thus
potentially achieving a higher speedup. Extensible instructions are
generated via a compilation method. This work was performed by
extending the Altera Nios [5] processor which managed to show en-
couraging speedups of 2.75X on average.

Searching for the best extensible instruction is vital to shorten the
design time of modern ASIPs. In [9], a matching algorithm is em-
ployed to match the traced program with a set of predefined exten-
sible instructions which have been highly optimized while meeting
performance and power constraints. [10] took another step ahead
by generating the extensible instruction directly from the application
code. An estimation method is used to meet the area and latency
constraints to avoid synthesizing which will slow down the explo-
ration process. Both of these works were presented on the Xtensa [2]
platform by extending the available instruction sets.

While estimation provides fast exploration of the design space, it is
vital that area, power and clock frequency be obtained to justify the
decision to select a certain architectural configuration. Recently, [11]
used a synthesis-driven design exploration flow for rapid investiga-
tion of the different configuration processor architectures. The EX-
PRESSION ADL [20] was used to generate the design tool chains
(i.e. compiler, assembler and simulator). A functional abstraction
approach is used to facilitate the generation of HDL code via a HDL
generator. Thus, chip area, clock frequency and power consumption
can be determined from the result of the synthesis of the HDL code.
Consistencies among the software tool chain and HDL code can be
maintained for a wide range of pipelined architectures because the
framework tools, hardware model, compiler and simulator are gener-
ated from the same ADL specification. The framework is able to add
support for additional pipeline paths, interlocking, stalling, flushing
and multi-cycle operations [21]. Modification of the pipeline features
and ISA can be made by just making changes to the ADL specifica-
tion. Architectural features such as VLIW and Superscalar have been
implemented on the DLX [22] architecture in this work. However,
the occurrence of data dependencies from previous instructions have
not been addressed other than stalling of the pipeline [23].

SimpleScalar

PISA

Instruction

Description

ASIPmeister

Syscall

Subroutines

Register

Forwarding

Patches

Imem.vhd Dmem.vhd

Software Libraries

Generation

Application

Binary

Command

Line

Arguments

Application

Input Data

SS_CPU

System

Generation

SimpleScalar

PISA

System

Processor Description Application Information

Initial

Stack

File

Structure

SimpleScalar

PISA

architecture

Description

Figure 1: Methodology to construct the SS processor

A large portion of previous research on ASIPs has been focussed
on completely custom instruction sets through extending the work on
base processors. We have developed a framework that provides total
control of the implementation and configuration of the base proces-
sor, providing opportunities for further design exploration not only
by extending instructions, but also by reducing the instruction set to
improve performance of the system.

Our research exploits the flexibility of ASIPmeister [1, 16] to in-
clude and exclude any subset of the instruction set. Instead of aug-
menting to the base processor, we can remove redundant instructions
from the processor to improve performance in terms of area over-
head, power dissipation and latency. Instruction sets can be chosen
to closely fit the application being run. Our processor implements the
Portable Instruction Set Architecture (PISA) which is closely linked
to the SimpleScalar [12] architecture. This ISA is chosen to take ad-
vantage of the tool set already available as part of the SimpleScalar
framework. Our work can be further improved to include extended
instructions as well, providing extra functionality via addition to the
existing instruction set.

The contributions of our work are:

1. a methodology for rapid design of a configurable microprocessor
core

2. a full SimpleScalar architecture (integer) processor core which is
synthesizable into SOC or onto an FPGA for prototyping

3. a novel approach to generate a processor with various subsets of
instructions in contrast with other approaches of just extending
the base core processor

3. Methodology
The methodology to construct a processor is shown in Figure 1.

The system generation step consists of hardware and software li-
brary generation. Rapid generation of the processor is achieved using
ASIPmeister as it allows targeting to any processor description and
instructions can be added and removed at will.

3.1 Hardware Generation
ASIPmeister produces an HDL model for the given instruction set

description. We have added register forwarding to the ASIPmeister
HDL model to eliminate the need for multiple stalls during execution
due to data hazards.

The first step in generation of the hardware is to create a description
of the processor to be generated which is suitable for ASIPmeister.
The pipeline stages and hardware resources (e.g. register file, divider
etc.) must be defined. Instructions to be included in the processor
should also be defined at this time. Several pipeline registers need to

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 27, 2008 at 17:42 from IEEE Xplore. Restrictions apply.

be added here to allow register forwarding to occur. These include
result, destination and source select registers.

Once the processor has been described and hardware resources are
defined, the description is entered into ASIPmeister. In this design
step, the micro operations performed by each stage of the pipeline
are entered to describe the processor. Some register forwarding in-
formation needs to be provided by the designer here. Destination
registers must be updated to indicate which registers are being up-
dated by each stage of the pipeline. Results for each stage must be
collated in registers for ease of forwarding these results to the execut-
ing instruction. Signals are also used to indicate which source inputs
require forwarding to take place. This is required so operands such
as immediate data do not cause register forwarding or data stalls to
occur.

After the processor has been input into ASIPmeister and generated,
some alterations must be made to complete register forwarding. A
parameterized program that generates patch files for ASIPmeister
output has been created to perform these alterations. Several key
datapath and control issues for register forwarding are fixed by these
patches and a forwarding unit is generated that resides in the register
decode stage.

The forwarding unit has access to the current instruction and the
source and destination registers which were added to the processor
description. Using this data, the forwarding unit determines which
stage will provide each of the source operands for the execute stage.
Some data hazards cannot be overcome by register forwarding such
as an instruction using the result of a preceding memory instruction.
Stalls are automatically inserted into the pipeline by the forwarding
unit when it detects this dependency. The forwarding unit can also
detect conflict in the resources being used. As the pipeline has two
memory stages, but the data memory has only one access port, a
resource hazard may result. The forwarding unit detects these struc-
tural hazards and stalls the pipeline so that they will not occur.

Once these alterations have been made, the HDL description of the
CPU of the processor is complete. Additional hardware can now
be added to the design such as cache and memory mapped I/O to
complete the hardware specification of the processor.

3.2 Software Generation
The software generation stage of the design involves the generation

of instruction and data memories to be interfaced with the processor
and the addition of software subroutines needed to interface to hard-
ware and possibly service interrupts. This may also mean creation of
a file system and structure for systems where an operating system is
not present. Other additions here may be the creation of a boot loader
to initialize the memories and stack used in the system.

This process ultimately generates the memory models used by the
design including all the initial memory maps. It must therefore be
performed for each application to be executed on the system. The
process for creating the memory maps will be the same for each pro-
cessor and can easily be automated.

4. SimpleScalar Implementation
To demonstrate the system we have made a hardware implementa-

tion of the PISA instruction set executing on the SimpleScalar pro-
cessor. All the integer instructions and registers in the processor have
been defined and implemented using the method described above.
Specific implementation issues for creating the SimpleScalar proces-
sor are described in this section. We have made this implementation
available to download from http://www.cse.unsw.edu.au/˜esl/rapid.

4.1 SimpleScalar Processor
The SimpleScalar processor has 64-bit wide instructions and con-

tains a 32x32-bit register file. Additional registers are used for spe-
cific instructions, such as HI/LO registers used by multiply and di-
vide type instructions.

The SimpleScalar simulator[24] allows simulation of single cycle

Bootloader

Syscall

Subroutines

Application

Code

0x00000000

0x0FFFFFFF

0x00000060

Unused

0x00400140

(a) Instruction Memory

Application

Data

File Structure

0x10000000

0x7FFFFFFF

0x7FFFFDE0 Syscall Data

0x7FFFFE20

Application

input/output

Stack

Unused

(b) Data Memory

Figure 2: Memory Map

processor and multiple issue out-of-order execution versions of the
processor. However, to demonstrate the methodology, a middle ground
has been set for the processor by implementing a six-stage pipelined
version of the processor. The stages are as follows:

• IF - Instruction Fetch

• ID - Instruction Decode and Read Register File

• EXE - Execute Instruction in ALU

• MEM1 - Perform First Memory Access (for load/store instruc-
tions)

• MEM2 - Perform Second Memory Access (for double word load/store
instructions)

• WB - Write Register File

One interesting instruction in SimpleScalar is the syscall instruc-
tion. This instruction can be used to perform a wide variety of func-
tions such as file I/O, heap manipulation etc. The SimpleScalar sim-
ulator simply uses the syscalls provided by the operating system the
simulator is running on to implement these calls. However, this is
not an option for a hardware implementation.

The hardware processor therefore treats this instruction like a soft-
ware interrupt and jumps to a known area of instruction memory
where the syscalls are implemented in assembly. One additional reg-
ister is added to the design to hold the return location of the syscall.
An additional instruction has been added to the instruction set to re-
turn from syscalls after completion. This is the only new instruction
we are required to add to the processor.

4.2 SimpleScalar Software Implementation
SimpleScalar needs several software additions to correctly initial-

ize the processor to execute compiled code. A set of tools has been
created to automate creation of the initial memory contents required
by each application compiled for the system. The input to these tools
are the application binary, command line arguments and information
about the files the application will use.

The memory structure for the instruction and data memories created
are shown in Figure 2. Known memory locations are included on
the diagram at boundary areas of the memory map. The addresses
of unknown length boundaries are not shown in the figure as the size
will depend on the application executed by the processor and its input
data. Each of the areas shown in the figure are further described
below.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 27, 2008 at 17:42 from IEEE Xplore. Restrictions apply.

C Program

Assembly

File

Minimized

Instruction Set

List

Minimized

Processor

Description

SimpleScalar

Compiler

SS_analyze

Figure 3: Minimizing instruction set

4.2.1 Boot Loader
The boot loader is located at the start of memory and is where ex-

ecution starts. This code initializes the stack pointer to point to the
top of the stack and then jumps to the application code. Once the ap-
plication completes, it returns to this area to indicate that execution
is finished.

4.2.2 Syscall Subroutines
As mentioned earlier, SimpleScalar relies on the syscall instruction

to perform file I/O and other important system operations. A set
of assembly instruction subroutines has been created to provide the
syscalls to the processor. The syscalls that have been implemented
for our processor are exit, open, close, read, write, lseek, fstat, ioctl,
dup2, brk and gettimeofday which provide enough functionality for
most programs. These syscalls use the information that has been
pre-loaded into data memory to perform their required actions for
the application.

4.2.3 Application Code
The SimpleScalar binary’s entry point is located at 0x400140 in the

instruction memory. This is where the machine code of the applica-
tion resides.

4.2.4 Application Data
The start of data memory is used for the application’s data and the

heap. Global data and constant strings are initialized at this location
as specified by the application binary. This area of memory will grow
down into the unused space below as the heap grows.

4.2.5 Stack
The stack for the system is located in memory so that it can grow

up into the unused space as the stack fills. The bottom of the stack is
placed as close to the end of the memory as possible after adding the
other required data memory segments.

The stack for the SimpleScalar processor is initialized with the
command line arguments of the executing application was called
with (known as argc and argv in C). This is done to emulate the equiv-
alent stack initialization that the SimpleScalar simulator performs on
startup.

To generate initialization data for this section, the command line for
the application is needed by the data memory generator. The initial
size and contents of the stack and location of the initial stack pointer
can be calculated using this information.

4.2.6 Application Input/Output
An area of memory is reserved here for file accesses performed

by the application. The data for input files used by the system is
stored for later reading by the application. Space is also allocated for

writing to output files. Included in this area is space for the stdin,
stdout and stderr streams for applications which use these for their
I/O purposes.

To generate the layout for this section, the data memory generator
needs to know the amount of size to allocate to each file and needs
access to the input files to copy their data into the data memory. The
size of this section is determined by the number and size of the files
required by the application. The size is minimized as much as possi-
ble to leave more room for the stack.

4.2.7 Syscall Data
The syscall data and file structure sections of memory store the in-

formation about the system and files that the syscalls need to operate
properly. Information for the gettimeofday syscall is retrieved from
here and the mapping from file descriptors to pointers into the file
table in the file structure is contatined here.

4.2.8 File Structure
The file structure section contains a table showing the allocation of

files into the Application I/O space. Each file in the structure con-
sists of a filename and three pointers into the I/O area. The pointers
indicate the start of the file, the end of the file and the current seek
pointer in the file. These pointers are used and updated by the file I/O
syscalls to open and close files as well as perform sequential reads
and writes.

5. Application Specific Processor Generation
Many applications do not use the full range of instructions avail-

able in general purpose processor instruction sets (e.g. the floating
point instructions or the ’div’ instruction). If a processor is being
designed for one of these applications, then the hardware dedicated
to decoding and executing the instruction can be removed to poten-
tially increase performance and decrease area and power costs of the
processor. By analyzing the application, you can create a minimized
processor just for that application by turning off the instructions you
no longer need.

We have performed this task for our applications running on the
SimpleScalar processor. The methodology of this process is shown
in Figure 3. The application is first compiled to an object file by
the processor compilation tools. The resulting file is then analyzed
to determine which instructions are present. Instructions not present
in the compiled application can then be removed from the processor
description and the processor is created again through the hardware
generation tool. Additionally, the removed instructions are analyzed
to see if any hardware resources are no longer required. If all the
instructions that access a resource (e.g. the divider) are removed, the
resource can obviously be removed from the system without harm.

Another option to allow reduction in size and power of the design
is to replace large hardware resources with software subroutines that
perform the same function. This technique is best used when you
have a large resource that is used very infrequently so the speed loss
incurred will not be too high. To perform this task, the instructions
that access the resource are turned into syscall-like jumps to known
code locations. To demonstrate this, we have written subroutines for
the division instruction to replace the divider in applications where
the ’div’ instructions are only used by infrequent conversion func-
tions such as printf() and scanf().

The process of reducing instructions and replacing large infrequently
used hardware components can reduce the processor size quite sub-
stantially, especially if entire design resources are removed. This
technique is not possible with other ASIP design solutions that use
a base processor instruction set that cannot be pruned. This allows
rapid processor generation targeted at the application the processor
will execute.

6. Experimental Setup
The experimental setup consisted of the system-on-chip architec-

ture as the Device Under Test (DUT) connected to instruction and

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 27, 2008 at 17:42 from IEEE Xplore. Restrictions apply.

Software Libraries Generation

SimpleScalar

Compiler
C Program

Assembly

File

Imem.vhd Dmem.vhd
ASIPmeister

Processor

Description

Synopsys

Design Compiler

Exec. Time

Estimation

Execution

time
Area

Maximum

Frequency
Power

SS_CPU

DUT

Simulation

Model

Analyze

application to

find minimize

instruction set

Hardware

Generation

Figure 4: Experimental Setup
Application Details of the application

adpcmenc adpcm file encoder
adpcmdec adpcm file decoder
pegwitkey pgp key generation
pegwitenc pgp encryption
pegwitdec pgp decryption

Table 1: Mediabench Benchmark Applications used in experi-
ment.

data memory models. The memory models are generated by compil-
ing C programs into SimpleScalar binaries then translating them into
VHDL models. The setup is shown in Figure 4.

Benchmark applications used in our test are taken from Media-
bench [25]. The specific application used for testing are listed in
Table 1. Three processors were rapidly generated for use in the ex-
periment, they are listed in Table 2. Configuration A is a processor
with all SimpleScalar/PISA instructions; configuration B is a proces-
sor with minimized SimpleScalar/PISA instructions based on the ad-
pcm application; and configuration C is a processor with minimized
instruction set based on the pegwit application.

Components within the DUT are synthesizable HDL model of our
SimpleScalar processor generated through the methodology outlined
above.

The SOC architectures described above are used for the purpose
of this paper to evaluating the area, power, and performance of the
DUT. Other customizations, such as existence of a memory hierar-
chy, multiple data paths, changes to pipeline depth, instruction issue
width, etc. can be rapidly generated for evaluating different SOC
architectures.

Synopsys Design Compiler [26] and a 90nm standard cell library
were used to evaluate the DUT area, power, and maximum operating
frequency. To evaluate the execution time of each application, we
estimate the number of cycles needed to run on the processor. A
custom tool was created to calculate the total number of instructions
executed in the application plus any additional stalls that will occur
during the execution. This total execution cycle figure provide an
accurate measurement of the processor performance without the need
to perform lengthy RTL simulations.

6.1 Analysis of Results
Area and power figures are measurements of the on-chip compo-

nents only and do not include the external memory. Results of these
measurements are shown in Table 3. Column 1 in Table 3 shows the

Config. Specification
A SS CPU with full instruction set.
B SS CPU with minimized instruction set for adpcm application.
C SS CPU with minimized instruction set for pegwit application.

Table 2: Different configuration of the SOC architecture.

application executed, column 2 shows the processor configuration of
the DUT, column 3 provides the area measurement, column 4 gives
the percentage area reduction of the minimized instruction set pro-
cessor compared to a full instruction set processor, column 5 gives
the energy measurement, column 6 gives percentage energy reduc-
tion when comparing the different processor configuration.

Column 7 shows the total number of estimated execution cycles
of the application. Column 8 gives the maximum frequency based
on the longest pipeline delay, and column 9 gives the percentage
speedup of the minimized instruction set processor compared to the
full instruction set processor.

The graph in Figure 5(a) shows that the minimized instruction set
processors have an average reduction of 30% of the area compared
to the full instruction set processor. Figure 5(b) shows a minimized
instruction set architecture can achieve a speedup of 25% compared
to the full instruction set processor. In Figure 5(c), the energy re-
duction of the minimized instruction set processor compared to the
full instruction set processor is shown. On average a 24.5% energy
reduction is achieved.
7. Conclusions

This paper presented a novel methodology for rapid processor gen-
eration. Included in this process is a method to tailor the processor
to specific applications by reducing the instruction set to the mini-
mum required to execute the application. We have implemented the
SimpleScalar/PISA processor as a six-stage pipelined processor and
included libraries for syscalls and a file structure in the data memory.
Performance figures have been calculated for this processor and min-
imized versions of the processor for particular applications, which
show a marked improvement with the processor reduction technique.
As the final processor is in HDL it provides a useful tool for testing
other additions to the processor. The SimpleScalar hardware imple-
mentation we created and the software tools for generating mem-
ories for the device have been made available to download from
http://www.cse.unsw.edu.au/˜esl/rapid.

8. References
[1] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kita-

jima, and M. Imai, “PEAS-III: an ASIP design environment,”
in Proceedings of the International Conference on Computer
Design: VLSI in Computers & Processors, (Austin, TX, USA),
pp. 430–436, 2000.

[2] “Xtensa Processor.” Tensilica Inc. (http://www.tensilica.com).
[3] “ARCtangent.” ARC International (http://www.arc.com).
[4] “Jazz DSP.” Improv Inc. (http://www.improvsys.com).
[5] “Altera Nios Processor.” Altera Corp. (http://www.altera.com).
[6] “SP-5flex.” 3DSP Corp. (http://www.3dsp.com).
[7] N. Cheung, J. Henkel, and S. Parameswaran, “Rapid config-

uration & instruction selection for an ASIP: A case study,”
in DATE’03, (Messe Munich, Germany), pp. 802–807, IEEE
Computer Society, Los Alamitos, California, 2003.

[8] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific in-
struction generation for configurable processor architectures,”
in Proceeding of the 2004 ACM/SIGDA 12th International Sym-
posium on Field Programmable Gate Arrays, (Monterey, Cali-
fornia, USA), pp. 183–189, ACM Press, New York, NY, USA,
2004.

[9] N. Cheung, S. Parameswaran, J. Henkel, and J. Chan, “MINCE:
Matching instructions using combinational equivalence for ex-
tensible processor,” in DATE’04, vol. 2, (CNIT La Dfense,
Paris, France), pp. 1020–1025, IEEE Computer Society, Los
Alamitos, California, 2004.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 27, 2008 at 17:42 from IEEE Xplore. Restrictions apply.

Application Configuration Area % area Energy % Energy Clock Frequency % Frequency
(gates) reduction (mJ) reduction Cycle (MHz) improvement

adpcmenc A 196218 53.23 9560870 30.3
B 128843 34.3% 41.94 21.17 9565930 38.4 21.2%

adpcmdec A 196218 100.74 18092079 30.3
B 128843 34.3% 79.37 21.20 18094103 38.4 21.2%

pegwitkey A 196218 92.75 16654773 30.3
C 133924 31.7% 64.64 30.30 16655279 43.4 30.3%

pegwitenc A 196218 217.48 39052206 30.3
C 133924 31.7% 123.75 30.29 39059037 43.4 30.3%

pegwitdec A 196218 123.75 22222020 30.3
C 133924 31.7% 86.25 30.28 22228345 43.4 30.3%

Table 3: Table of results.

Area (Kgates)

0

50

100

150

200

250

A B C
Configuration

K
ga

te
s

(a) Area comparison graph.

Max. Clock Period (ns)

0

5

10

15

20

25

30

35

A B C
Configuration

ns

(b) Maximum Clock Period.

Energy Improvement

0

50

100

150

200

250

raw caudio raw daudio pegw itkey pegw itenc pegw itdec
Benchmark Application

E
ne

rg
y

(m
J)

Energy of SS_CPU

Energy of SS_CPU w ith
minimized ISA

(c) Energy Improvement.

Figure 5: Experimental results showing area, performance, and energy improvement.

[10] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Custom-
instruction synthesis for extensible-processor platforms,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 23, no. 2, pp. 216–228, 2004.

[11] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven ex-
ploration of pipelined embedded processors,” in VLSID’04,
pp. 921–926, 2004.

[12] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an infras-
tructure for computer system modeling,” Computer, vol. 35,
no. 2, pp. 59–67, 2002.

[13] I.-J. Huang and A. M. Despain, “Synthesis of application spe-
cific instruction sets,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, no. 6,
pp. 663 – 675, 1995.

[14] H. Choi, J.-S. Kim, C.-W. Yoon, I.-C. Park, S. H. Hwang, and
C.-M. Kyung, “Synthesis of application specific instructions
for embedded dsp software,” IEEE Transactions on Computer,
vol. 48, no. 6, pp. 603–614, 1999.

[15] “Application to silicon: Understanding the improv methodol-
ogy,” white paper, Improv Systems Inc., June 2001.

[16] “ASIP Meister.” ASIP Meister (http://www.eda-
meister.org/asip-meister).

[17] S. Kobayashi, K. Mita, Y. Takeuchi, and M. Imai, “Rapid pro-
totyping of JPEG encoder using the ASIP development system:
PEAS-III,” in ICASSP, vol. 2, pp. 485–488, 2003.

[18] K. Küçükçakar, “An ASIP design methodology for embedded
systems,” in Proceedings of the Seventh International Work-
shop on Hardware/Software Codesign, (Rome, Italy), pp. 17–
21, 1999.

[19] M. K. Jain, M. Balakrishnan, and A. Kumar, “ASIP design

methodologies: survey and issues,” in Proceedings of the In-
ternational Conference on VLSI Design, (Bangalore, India),
pp. 76–81, 2001.

[20] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau, “EXPRESSION: a language for architecture explo-
ration through compiler/simulator retargetability,” in DATE’99,
(Munich, Germany), pp. 485–490, 1999.

[21] P. Mishra, A. Kejariwal, and N. Dutt, “Rapid exploration of
pipelined processors through automatic generation of synthe-
sizable rtl models,” in Workshop of Rapid System Prototyping
(RSP), 2003.

[22] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, 3rd ed.,
2003.

[23] A. Kejariwal, P. Mishra, J. Astrom, and N. Dutt, “HDLGen:
Architecture description language driven HDL generation for
pipelined processors,” technical report, Center for Embedded
Computer Systems, University of California, Irvine, CA 92697,
USA, February 2003.

[24] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Ver-
sion 2.0,” user manual, SimpleScalar LLC, 1997.

[25] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Media-
bench: A tool for evaluating and synthesizing multimedia and
communications systems,” in Proceedings of the Thirtieth An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, (Research Triangle Park, NC USA), pp. 330 – 335, 1997.

[26] “Synoposys Design Compiler.” Synopsys Design Compiler
(http://www.synopsys.com).

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: The University of New South Wales. Downloaded on November 27, 2008 at 17:42 from IEEE Xplore. Restrictions apply.

