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Abstract

Writing correct and performant low-level systems code is a notoriously demanding job, even
for experienced developers. To make the matter worse, formally reasoning about their correct-
ness properties introduces yet another level of complexity to the task. It requires considerable
expertise in both systems programming and formal verification. The development can be ex-
tremely costly due to the sheer complexity of the systems and the nuances in them, if not assisted
with appropriate tools that provide abstraction and automation.

Cogent is designed to alleviate the burden on developers when writing and verifying sys-
tems code. It is a high-level functional language with a certifying compiler, which automatically
proves the correctness of the compiled code and also provides a purely functional abstraction of
the low-level program to the developer. Equational reasoning techniques can then be used to
prove functional correctness properties of the program on top of this abstract semantics, which
is notably less laborious than directly verifying the C code.

To make Cogent a more approachable and effective tool for developing real-world systems,
we further strengthen the framework by extending the core language and its ecosystem. Specif-
ically, we enrich the language to allow users to control the memory representation of algebraic
data types, while retaining the automatic proof with a data layout refinement calculus. We re-
purpose existing tools in a novel way and develop an intuitive foreign function interface, which
provides users a seamless experience when using Cogent in conjunction with native C. We aug-
ment the Cogent ecosystem with a property-based testing framework, which helps developers
better understand the impact formal verification has on their programs and enables a progres-
sive approach to producing high-assurance systems. Finally we explore refinement type systems,
which we plan to incorporate into Cogent for more expressiveness and better integration of sys-
tems programmers with the verification process.
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Chapter 1

Introduction

Software systems are an important part of the modern society, and are tightly connected to ev-
eryone’s life. Their presence is everywhere, ranging from small, simple devices such as light
control panels in homes and offices, to much more sophisticated systems such as rockets and
spacecraft. Ideally, these software systems should operate correctly, in accordance with their
designs and specifications. However, defects in software inevitably appear during development.
For the majority of software systems, it is sufficient to apply traditional quality control measures,
such as testing. These measures are capable of detecting some defects, but usually not adequate
to guarantee their absence, especially not in a mathematically sound manner. Depending on
the application, the remaining defects in software products have a varying level of impact on
people’s lives. If a light control panel manifests a integer overflow problem every several years
and turns off a light by mistake, it generally does not result in a major disruption. In contrast, a
similar bug in an airliner can be fatal, and unfortunately such bugs have indeed been reported.
For example, Boeing’s flagship 787 Dreamliner aircraft could lose all alternating current electri-
cal power if it had been continuously powered for 248 days [Federal Aviation Administration
2018]. This was cause by an internal counter overflow in the generator control units’ software.
The overflow bug, in this instance, could potentially lead to fatal accidents. To eliminate errors,
more rigorous measures must be taken to ensure the functional correctness of software systems
in safety-critical applications. Such applications include, but are not limited to, vehicles and fa-
cilities in a transport system, power plants controls, medical devices, etc. Having correctness
guarantees for these systems is important, not only because the misbehaviour in these systems
can cause loss of life, but also because it is crucial to retain the confidence the public has in these
systems, and furthermore in the industries where these systems are used.

1.1 Formal Software Verification

Formal verification of software systems [Almeida et al. 2011; Bjørner and Havelund 2014] is a
methodology for reasoning about properties of computer programs by presenting mathematical
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proofs based on a well-founded formal system. Formal verification is a composite of its theory,
engineering practice and toolset. It is accomplished by viewing or modelling the program as a
mathematical object, and formally proving properties directly of the mathematical model of the
system, or showing that the model of the implementation is compliant with a formal mathemat-
ical specification.

Interactive theorem proving [Ouimet and Lundqvist 2007; Ringer et al. 2019], among all formal
verification methods, is arguably the most thorough and rigorous means to ensure the correct-
ness of programs. It is typically done in a proof assistant (or sometimes interchangeably called
a theorem prover ) software, in which the user can write program specifications, define functions
and theorems and construct mathematically proofs in a formal language. The formal language
is defined on top of a sound formal system, such as higher-order logic (HOL) or Martin-Löf’s
intuitionistic type theory [Martin-Löf 1972, 1984]. The proofs are mechanically checked by the
proof assistant according to the formal rules in its underlying formal system. To construct the
proofs, proof assistants provide the user with varying degrees of automation, but they rely on
user input to make progress when the automation falls short—after all, there is usually no de-
cision procedure for the validity of theorems in these formal systems. Commonly used proof
assistants include Isabelle/HOL [Nipkow, Paulson, et al. 2002], Coq [Bertot and Castéran 2004],
Agda [Norell 2009, 2007] and HOL [M. J. C. Gordon and Melham 1993], just to name a few.

Formally proving the correctness of software system gives very strong guarantees, but
it comes at a price: enormous amount of work in proof engineering [Andronick et al. 2012;
Matichuk et al. 2015]. Formal verification technologies typically require very specialised
expertise from the developers [Bowen and Stavridou 1993], which is a scarce and expensive
resource. Interactive theorem proving is even more so, and mandates heavy user engagement in
the course of software development.

Large systems are often built in a hierarchical manner. The low-level infrastructure at the
bottom layer is typically smaller, more stable, and is shared across multiple high-level modules,
which are more feature-rich and fast-evolving. The bottom layers are usually a good place to
effectively spend the scarce resources for formal verification, and their verification can have a
far-reaching effect. If any defects in them are exploited, it compromises the correctness of all the
dependent modules and the overall system. Verified low-level systems grant a solid foundation
for any subsequent formal reasoning about the correctness of other higher-level components in
the system.

In a software system, the lowest level of the software stack is usually the operating system
(OS). At the core of an OS sits the kernel, which is the most critical part of the whole OS. With a
microkernel architecture, which is commonly advocated for its better component isolation and
security characteristics [Biggs et al. 2018], the layered structure of the whole system is more ob-
vious: The kernel is the bottom layer, running the most essential mechanisms of the OS; other
system services are stacked on top of the kernel, running in user space. The OS kernel and ser-
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vices must be dependable, so that other applications can run on top of the OS safely and securely.
Low-level systems are intrinsically complicated to develop, and are also difficult to get right.
There are usually more nuances in their designs and implementation strategies due to the special
role that they play, which entails their unique performance characteristics and the interactions
with hardware and other systems. The main source of conceptual complexity in systems code is
the need to deal with real hardware details, as opposed to some abstract representations. Micro-
kernels are good examples of typical low-level code. Albeit their relatively small codebase, they
are immensely complicated to build, as almost everything in them is intertwined in exchange for
minimalism and high performance [Heiser and Elphinstone 2016]. The nature of systems code
gives us a dichotomy: On one hand, because they are tricky to program and hence more prone
to bugs, they are in desperate need of verification; on the other hand, the low-level nature makes
them more challenging to model and to verify. Luckily, the research community has recognised
the demand for verified systems programs and has attended to solving this problem. In the past
decades, fruitful research results are seen in formal software verification, especially of systems
software, from OS kernels [Gu et al. 2016; Klein, Elphinstone, et al. 2009; Nelson et al. 2017], to
OS services such as device drivers [Alkassar and Hillebrand 2008; Amani, Chubb, et al. 2012; Hao
Chen et al. 2016; Duan and Regehr 2010], file systems [Amani 2016; Haogang Chen et al. 2015],
network protocols [Cluzel et al. 2021], to compilers [Bourke et al. 2017; Kumar et al. 2014; Leroy
2009], to utility software [Chlipala 2015; Protzenko, Parno, et al. 2020; Zaostrovnykh et al. 2017].

1.2 Program Verification Approaches

Researchers and practitioners from the industry have been constantly seeking for opportunities
to develop better tools to reduce the effort neededwhen conducting formal verification. Program-
ming language research provides an answer. There have been numerous successful attempts to
use high-level programming languages equipped with powerful type systems to produce low-
level code with program synthesis techniques. The core idea is to allow the developers to oper-
ate on a more abstract ground, which is easier to reason about, and the proved properties can be
transported to the low-level implementation easily. These high-level languages should be pow-
erful enough for the users to perform low-level tasks efficiently without needing them to attend
to every aspect of the low-level details, which is a major source of software bugs. For languages
aimed at low-level programming, they ideally should allow the users to fine-tune some aspects
of the implementation that they are mostly concerned with, such as memory management and
data layout.

Another key factor to successful adoption of formal verification is its scalability, especially
when we move the practice of formal verification up the hierarchy of software modules. This
is because, as we move further towards the application layer, the number of systems and the
amount of code becomes more abundant. A microkernel of an OS can be as small as a few
thousand lines of C code. Other components of an OS, such as file systems and device driver,
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can be much larger, and an operating system may require multiple of these components. For
instance, modern Linux supports several dozens file systems, and the number of device drivers it
supports is hardly countable. If the effort required to manually verify a small OS kernel is barely
affordable, it will certainly not be the case for the above-mentioned OS components. It is reported
that it cost 11 person-years to develop and verify the seL4 microkernel, which comprised of less
than 9 thousand lines of C code. This number does not include the effort spent on the proof
infrastructures, tools and libraries [Klein, Elphinstone, et al. 2009].

The research into high-level programming languages for low-level systems programming
has seen some fruitful results. For example, F* [F* 2022; Swamy et al. 2016] is a general-purpose
functional language equipped with a very powerful dependent type system with effects. F* is
designed for program verification, and it leverages the power of Satisfiability Modulo Theories
(SMT) solvers, symbolic computation and proof tactics to increase the level of automation when
constructing proofs. F* is not only a single programming language, but it is also a framework
for embedding domain-specific languages (DSLs). For instance, Low* [Protzenko, Zinzindohoué,
et al. 2017] is an embedded domain-specific language (EDSL) tailored for low-level systems pro-
gramming. The language features fine-grained control over memory management, which is of
paramount importance for low-level programming tasks. A custom compiler backend is attached
to Low* to generate C code. EverParse [Ramananandro et al. 2019] is another embedded language
that specialises in parsing binary formats. Domain-specific knowledge and proof techniques are
leveraged to further ease the verification process. F* programs can be extracted to a range of
target languages, including OCaml, C and assembly. It enables the reasoning about functional
correctness and security properties of realistic applications.

CakeML [CakeML n.d.; Kumar et al. 2014] is an ML-style functional programming language
that is mechanically verified end-to-end. Programmers can choose to express the intended be-
haviours of their programs in higher-order logic (HOL), and a language synthesis tool will gen-
erate CakeML syntax tree accordingly. It can be subsequently compiled to binary code on several
supported architectures. Although low-level programming is not necessarily the best applica-
tion domain that CakeML is designed for, some ongoing research is exploring the possibility of
reusing CakeML, or parts of its verified compiler pipeline for low-level programming challenges.
Nonetheless, CakeML is another very good example of how high-level programming languages
can be used to facilitate the reasoning of programs on an abstract level.

ATS [Danish and Xi 2014; Xi 2017] is a multi-paradigm, feature-rich, and efficient program-
ming language that unifies implementations with formal specifications by virtue of its expressive
type system. It is equipped with a dependent type system and also a linear type system, making
it very suitable for low-level programming, where the performance, in terms of both time and
space, is key. The employment of the linear type system also enables multithreaded programming
with ATS in a safe manner.

Fiat [Delaware, Pit-Claudel, et al. 2015] is a library for the Coq proof assistant [Bertot and
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Castéran 2004; Coq n.d.], allowing developers to declaratively define the specification of SQL-
style query structures. It supports iterative refinement of the specification to efficient functional
programs, with high degree of automation. Each refinement step produces a certificate that can
be mechanically checked by Coq. Fiat specifically has a focus on synthesising efficient abstract
data types from the specification.

The list of examples of how programming languages can be leveraged to aid formal verifica-
tion does not end, and we do not intend to, and cannot, exhaust it. What we have seen, however,
is that the community acknowledges the potential that programming languages have in con-
tributing to successful adoption of formal verification in programming practices—even though
the detailed strategies in the implementation vary—and the benefits have been indeed convinc-
ingly demonstrated.

1.3 The Cogent Framework

Our answer to the formal verification challenge in low-level systems programming is Co-
gent [Klein, Andronick, Keller, et al. 2017] (Chapter 2). Cogent is a high-level functional
language for systems programming, and is a tool for reducing the cost of formal verification.
This is achieved by means of code-proof co-generation—the Cogent’s certifying compiler
generates C code along with a proof that certifies the correctness of the generated code. By
design, Cogent is not a general-purpose language for all types of systems code. By virtue of
the type system that Cogent uses, Cogent is specifically purposed for systems programs that
do not heavily rely on memory aliasing (i.e. sharing) or can be implemented in an alternative
design with minimal aliasing without degrading their performance significantly [Amani 2016].
For this reason, Cogent has been primarily used for developing file systems and device drivers.
Microkernels, on the other hand, are typically not suitable candidates, because aliasing is so key
to their performance and they can hardly be modularised.

The design of Cogent is heavily influenced by the experience that the team has previously
acquired in formally verifying the seL4 microkernel [Klein, Andronick, Keller, et al. 2017; Klein,
Derrin, et al. 2009]. The verification of seL4 is achieved by the joint effort from systems engi-
neers and proof engineers, two groups of developers with very distinct technical background.
The design of seL4 was shaped iteratively around a Haskell prototype, which served as a com-
munication protocol between the two groups of developers. This was also greatly assisted by
developers who were knowledgable in both fields. In the seL4 development, the Haskell pro-
totype and the C implementation of the kernel were not formally, nor mechanically connected.
When systems developers attempted to optimise the C implementation or to add new features, it
often resulted in the Haskell prototype becoming out-of-sync with the actual C implementation,
and some effort would be required to update the prototype to catch up.

Cogent, in its ecosystem, serves a similar purpose to the Haskell prototype as seen in the
seL4 development. But in this instance, the semantics of the language is guaranteed to be an
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abstraction of the C code, thanks to Cogent’s certifying compiler. We use Cogent to serve as a
middle ground for both systems programmers and proof engineers. Admittedly, the connection
between the Cogent program and the high-level functional correctness proof needs to be main-
tained manually. This typically results in a workflow where developers first design and develop
the system in Cogent, and once they are confident with the features and performance of the
program, they hand the program to the proof engineers for verification.

1.4 Evaluation

To assess any verification-oriented programming languages, it is important that we put them
in the right context. It is important that such a language can deliver the expected results in
the formal verification of software systems. It should not be neglected though, when putting
these languages in action, they necessarily involve human factors, which include effectiveness,
efficiency, workflow, maintainability, and general user experience. We summarise them as the
usability problem of a language-aided verification framework. Specifically, we further dissect
the usability problem into the following aspects, which will be the benchmarks we use to assess
Cogent.

Expressiveness—whether the language is powerful enough for the users to fulfil their
tasks. Cogent partly serves as a specification language for low-level system code. When the
program synthesiser cannot effectively derive code, we need to enrich the specification so that
the compiler has enough knowledge about how to synthesise code.

Performance—howdoes the resulting programperformwhen it is deployed. When pro-
gramming in a high-level language, there are inevitably gaps in the performance of the generated
low-level target code when compared with code manually written in a low-level language. To
fill the gap, the users should be able to more directly intervene in the code generation algorithm
for the performance critical portions of the program, if the compiler itself is unable to determine
the optimal compilation strategy. This is similar to the plethora of optimisation flags found in
many compilers.

Framework—does the language give enough guidance to the developers so that they tend
to make the right design decisions. A framework should suggest an appropriate workflow
to the developers. When the users follow this workflow, they should be able to achieve their end
goal with little back-tracking in their development, if any. The features that the framework pro-
vides can have a big impact on how users proceed with their development. When the framework
falls short on certain features, the users will inevitably try to navigate through the obstacles to
get their work done, veering off course. Having the right framework ensures that the users use
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the framework as intended, and obtain the most benefit out of the framework. Also, the frame-
work should set the stage for developers to communicate effectively, both among themselves and
with the language.

Tooling—does the language provide the necessary tools to facilitate an effortless de-
velopment experience. The programming language and the ecosystem should provide users
with user-friendly tools. These tools should be intuitive to understand and learn, simple to use,
and effective in what they are intended for. When the tools are inadequately effective or efficient,
the users may try to exploit shortcuts to get things done in an inappropriate manner, or worse,
be deterred from using the language.

In the case of Cogent, the high-level question that we would like to ask then is: what is
missing from the Cogent language and its verification framework for it to be effectively used
in real-world applications. By experimenting Cogent in several case studies, we acquired more
insights about the Cogent ecosystem, and gained experience with its application in realistic
development scenarios. We identified a few shortcomings of the prior Cogent language and its
verification framework:

• TheCogent language does not grant users fine-grained control over the low-level memory
layout of data types, and the default layout chosen by the compiler is not in general suit-
able for implementing binary-compatible, efficient systems programs. Users often have
to adapt the design of their programs to match how the compiler chooses to represent
data, resulting in inadvertent deviation from the reference design of the system. Also, the
default layout that the compiler picks creates a representational gap between the Cogent
portion of the system and the ambient programwith which the Cogent portion interfaces.
This leads to costly data conversion and copying, hindering the overall performance and
trustworthiness of the system. We address this problem in Chapter 3.

• The Cogent language is restricted, in the sense that it doesn’t natively support language
features that are widely used in realistic programming tasks, such as recursion, loops, and
aliasing. Therefore, programming with Cogent heavily relies on its interface to C code,
when extra expressiveness is sought after. It is crucial that the language interface between
Cogent and C is simple, and is intuitive to use, so that it is not a technical obstacle in
Cogent’s ecosystem and it does not ruin the user experience with Cogent. This issue is
examined and tackled in Chapter 4.

• Cogent greatly reduces the effort required in formal verification. It automates the refine-
ment proof of the compilation process from Cogent to C code. However, it leaves parts
of the overall system to be manually verified. They include the high-level functional cor-
rectness of the Cogent code, and that of the manually written C code that is needed to
complement the expressiveness of Cogent, as we just mentioned above. The verification
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of the correctness of the Cogent program with respect to the specification is an post-hoc
effort. However, Cogent itself in many cases fails to give developers any indication on
whether the functional correctness proof can indeed be constructed in a satisfactory man-
ner, if at all. Providing developers with early feedback on the verifiability of systems under
construction is key to a successful deployment of the Cogent framework. We present our
attempt at addressing this problem in Chapter 5.

• As a communication medium between systems developers and verification experts, Co-
gent faithfully expresses the operational behaviours of a system. But the language alone
is not expressive enough for developers to write down the properties about their pro-
grams, which is another useful method to document their design and implementation,
and to communicate with the verification team. Some other verification-oriented pro-
gramming languages provide more expressive type systems, such as dependent types, and
other languages have support for program annotations, in the form of assertions about
language objects and program states. Examples of such languages include Dafny [Leino
2010], ESC/Haskell [Xu et al. 2009]. Chapter 6 is an exploration in this direction.

1.5 Contributions and Roadmap

This thesis is devoted to answering these questions and to addressing the limitations of Cogent.
It utilises a breadth of technologies to augment the Cogent framework from different facets.
Each addition to the overall system, moreover, carries ideas that are applicable independent of
Cogent. They can be used on their own in other contexts individually. The rest of this thesis is
structured as follows:

• In Chapter 2, we set up the background knowledge about the Cogent framework. After a
quick tutorial on Cogent, we introduce the Cogent language, its compilation process, and
the formal verification framework. We defer background information that is only required
by an individual chapter to that relevant chapter.

• Chapter 3 is devoted to the Dargent extension of Cogent. Dargent is a data layout
description language, and is an extension to Cogent’s refinement-based formal verifi-
cation framework. It allows programmers to dictate the memory layouts of high-level
algebraic datatypes, giving systems programmers more expressiveness and flexibility in
using a high-level language for low-level tasks. Despite a strong resemblance to data de-
scription languages (or sometimes called data marshallers, encoders or parsers), Dargent
is in fact fundamentally different from these languages, as we will see throughout the
chapter. The Dargent extension is key to enabling Cogent programmers write high-
performance, binary-compliant systems code, without sacrificing the abstraction Cogent
provides. Dargent demonstrates how a layout-refinement calculus can be incorporated
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in a high-level languages. We believe it is an essential feature that not only Cogent, but
other real-world systems programming languages should be equipped with.

• Cogent programming is highly reliant on the interoperation with C code. Chapter 4
presents antiquoted-C, our foreign function interface (FFI) solution to alleviate the pain
in language interoperability. Specifically, because of some specific features of Cogent’s
type system, the traditional name-mangling techniques in FFIs fall apart. The antiquoted-
C takes a totally different approach to FFI design, which is intuitive for users, and is also
cost-effective for language developers. We give our recipe for its construction and envision
its application in other languages.

• One of the key reasons to adopt the Cogent approach is to benefit from its semi-automatic
formal verification. Although a significant portion of the proof is fully automatic, man-
ual effort is still needed in parts of the verification. This means that user expertise and
development cycles are required to obtain a fully verified system. Chapter 5 presents the
augmentation to the Cogent framework with a property-based testing (PBT) mechanism.
This form of testing, apart from the typical functionality of finding bugs that all testing has,
can also be used as an important intermediate step towards a fully verified system. Instead
of testing properties about the concrete implementation of the system directly, we test the
refinement relation between the implementation and an abstract executable specification.
This specification is very similar to the one that will be used in the formal proofs. The
testing framework thus is a lightweight replica of the corresponding refinement proof. It
can guide developers to good systems designs that are amenable for formal verification. It
also allows for an incremental approach to fully verified systems.

• Refinement types are another lightweight tool that can be used by systems programmers
to express their intentions in the design of systems. It has some great potential when in-
tegrated into Cogent’s verification framework. Chapter 6 digresses from Cogent, and
explores some more theoretical results about refinement types. Specifically, we formalise
a simple refinement type system in Agda, and interpret the language in a shallow man-
ner in Agda. We formulate refinement types in terms of Hoare-triples, which significantly
simplifies the formalisation. We present some initial results on using backward reason-
ing, the weakest-precondition predicate transformer as a typechecking algorithm, which
aggregates all proof obligations about subtyping (i.e. logical entailments), which can be
solved separately, either by automatic theorem provers, or manually by proof engineers.

• We conclude the thesis in Chapter 7 with more directions for future work outlined.

The source code associated with this thesis, and more broadly, with the whole Cogent project, is
publicly available online in the project’s GitHub repository [The Cogent team 2023]. A snapshot
of the development presented in each chapter, if available, is given in the respective chapter.
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Chapter 2. Cogent: A Programming Language for Systems Programming

We devote this chapter to an introduction of Cogent, the main research platform on which this
thesis is based. In this chapter, we first give an overview to the Cogent framework (Section 2.1).
Then we introduce the Cogent language with a quick tutorial (Section 2.2). Next, we discuss
Cogent’s type system (Section 2.3), which is important for understanding the development pre-
sented in the rest of this thesis. Towards the end of this chapter, we outline Cogent’s compilation
pipeline (Section 2.4) and its verification pipeline (Section 2.5), which are particularly relevant to
the work presented in Chapter 4 and Chapter 5 respectively.

2.1 Overview of Cogent

In an attempt to developing and formally verifying file systems [Amani 2016], researchers saw
a need for a methodology which allows them to achieve it productively. Contrary to an oper-
ating system’s microkernel, such as seL4 [Klein, Elphinstone, et al. 2009], file systems are not
only possibly larger in size, but also, more importantly, dozens of them may be needed for one
operating system to serve different users. That is why manually verifying one single file system
is often not adequate, and manually verifying dozens of them is not practical.

Keller et al. [2013] then came to the conclusion that a high-level functional language was
a good choice to fulfill the task of (partly) automating the verification of file systems code. In
a nutshell, the systems programmers write file systems code in a functional language, which is
capable of co-generating efficient C code, along with a proof that the generated code is correct
with respect to the source language’s semantics. Not only that the high-level functional language
is easier to programwith, but also, more crucially, it is a lot easier to reason about in an interactive
theorem prover, such as Isabelle/HOL [Nipkow, Paulson, et al. 2002], since equational reasoning
techniques can be utilised. This hides the low-level tedium such as reasoning about pointers and
memory locations commonly seen in traditional C verification.

The high-level functional language that we arrived at was Cogent. It is a total, higher-order,
polymorphic, purely functional programming language. TheCogent compiler co-generates low-
level C code, as well as a machine-checked certificate proving the correctness of the compiled C
code. Cogent differs frommainstream functional languages (e.g. Haskell, ML) in a few aspects.

First of all, since Cogent is a language tailored for writing and reasoning about low-level sys-
tems code (initially file systems code, and later extended to other domains of systems program-
ming), and in such applications manual memory management is paramount for performance
concerns, all heap memory management has to be done by the user explicitly, as in C. This saves
Cogent from having a garbage collection mechanism, which simplifies the verification of the
compilation, and also importantly, gives developers more control over the run-time performance
of the compiled Cogent programs.

Secondly, Cogent is equipped with a uniqueness type system [Baker 1992; Barendsen and
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Smetsers 1993; Bernardy, Boespflug, et al. 2017; de Vries, Plasmeijer, et al. 2007, 2008; Ennals et
al. 2004; Harrington 2006; Hofmann 2000; Jung, Jourdan, et al. 2017; Li et al. 2022; Marshall et al.
2022; Odersky 1992; Wadler 1990; Walker 2005], which is key to enabling a seamless semantic
transition from Cogent’s purely functional semantics to C’s imperative semantics. Along with
the semantic shift, it also lends itself to a principled compilation strategy to efficient low-level C
code, by means of performing in-place updates [Bernardy, Boespflug, et al. 2017, Section 6.3].

Thirdly, Cogent is a pure and restricted language. Unlike Haskell, Cogent does not have
primitives like the IO monad, which allows for interaction with the “world” while retaining the
purity of the language. Any effectful computations in Cogent bottom out at foreign function
calls into C. These impure operations include I/O, memory (de)allocation, etc. Additionally, for
the simplicity of the automatic proof generation, Cogent does not natively support recursive
data types, recursion or loops.

Instead, Cogent is bundled with a standard library of common abstract data types (ADTs),
such as arrays, linked lists and red-black trees, and the corresponding operations on them. This
library consists of many data types and functions that cannot be natively implemented in Co-
gent. Because the library is primarily implemented in C, we also sometimes refer to it as the C
library, even it contains a small amount of Cogent code. Users can extend this C library with
more data structures and functions that can be reused by other applications. For instance, dur-
ing the experiments on implementing file systems using Cogent [Amani, Hixon, et al. 2016], the
library was extended to include some key data structures from the virtual file systems switch
(VFS) layer. Apart from the C library, users can always opt for implementing a small amount of
their code directly in C, when Cogent is not expressive enough to complete a specific task or
some manual optimisation needs to be done on the C level. Cogent programs can access this
part of the code via a foreign function interface (FFI) between Cogent and C.

On the verification front, the purely functional semantics of Cogent and its certifying com-
piler reduce the effort needed to prove end-to-end correctness properties about the compiled
programs. Specifically, what we want to establish is a notion of refinement [R. J. R. Back 1988;
Morgan 1990; Roever and Engelhardt 1998] between the C implementation and a functional cor-
rectness specification of the system that the user wrote in Isabelle/HOL. The refinement relation
states that the generated C code correctly implements of the specification (see Figure 2.1). The
end-to-end proof is divided into two halves by a compiler generated functional semantics of the
Cogent source program, which is shallowly embedded in Isabelle/HOL. The C refinement proof
(the lower half) from Cogent’s program semantics down to C is fully automatic, thanks to Co-
gent’s certifying compiler. Instead of verifying the correctness of the compiler, we prove the
correctness of each compiled C program by translation validation [Pnueli et al. 1998]. The func-
tional correctness proof (i.e. the upper half of the end-to-end proof) from the semantics of the
submitted Cogent source program to the functional correctness specification remains a manual
effort, but it is eased through equational reasoning techniques by virtue of the purely functional
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Figure 2.1: The verification framework of Cogent

nature of both the Cogent program and the specification. With the end-to-end proof, more
abstract properties can be proved on top of the functional specification. Any property of the
functional specification can be projected onto the C code. Cogent and its certifying compiler
greatly reduce the effort required to prove the correctness of low-level code, as seen in projects
like the seL4 verification [Klein, Elphinstone, et al. 2009; Klein, Sewell, et al. 2010], in which the
manual verification is done directly on the C language level.

The correctness of the C library has to be manually verified, and this proof can indeed by
tough. Thankfully, the C library is meant to be shared across many systems, by all Cogent
users. Therefore, the effort invested in proving each library module is an one-off effort, and it
will be amortised over time. The work by Cheung et al. [2022] showcases the verification of the
WordArray module, which defines common operations on arrays of words.

Cogent has been used to implement two real-world file systems: BilbyFs [Amani 2016] and
the Linux ext2 file system. As a proof of concept, the functional correctness of two key file sys-
tem operations in BilbyFs—sync, which flushes the content in the buffer to the physical storage
medium, and iget, which looks up an inode from the physical medium—were formally veri-
fied [Amani 2016; Amani, Hixon, et al. 2016]. Later, Cogent was also used to implement and
verify device drivers, some of which will be mentioned in Chapter 3. From the case studies, it can
be seen that Cogent’s verification methodology indeed reduces the effort of formally verifying
operating systems code, compared to verification that is directly carried out on C.

Interim summary The verified microkernel seL4 [Klein, Elphinstone, et al. 2009] sets a base-
line and a guideline for low-level systems code verification with the Isabelle/HOL verification
toolchain. It uses the three-layer architecture, Isabelle/HOL functional correctness specification
– Haskell executable specification – C code, to decompose and modularise the verification task.
Each step of the verification is a refinement proof established manually, and the two refinement
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proofs are composed to form the justification for the correctness of the concrete C implementa-
tion with respect to the abstract Isabelle/HOL specification. The Cogent project was an incar-
nation of an attempt to verify file systems at scale, and a language-based approach was chosen.
Amani [2016]’s PhD dissertation gives a full account of the modular design of a verifiable flash
file system BilbyFs, its two independent implementations in C and in Cogent, and the formal de-
velopment of BilbyFs based on the Cogent verification framework. The thesis can be interpreted
in two ways: It is an umbrella project that defined the scope of Cogent and used Cogent as a
tool to approach file system verification; it is also the largest case study of the Cogent language,
which provided the language designers with feedback from the user’s perspective and validated
the verification methodology of Cogent. Almost in parallel with Amani [2016]’s work, O’Con-
nor [2019b]’s PhD dissertation documents the design and formal semantics of the core calculus
of the Cogent language, with a focus on its uniqueness type system, its type inference engine
and the semantic shift from a purely functional semantics to an imperative one. These two pieces
of work, together, advanced seL4’s verification story by using Cogent as the intermediate level
between the Isabelle/HOL specification and C, and by generating C code and its refinement proof
from the high-level language Cogent, which was a leap in developer productivity for both sys-
tems programmers and verification engineers. This thesis builds on previous work, enriching
the Cogent language and its verification framework with highly demanded language features
and better infrastructure for end users, while preserving the abstraction boundary provided by
Cogent.

2.2 Cogent at a Glance

One of the most outstanding features of Cogent, apart from its certifying compiler, is its unique-
ness type system [Baker 1992; Barendsen and Smetsers 1993; Bernardy, Boespflug, et al. 2017; de
Vries, Plasmeijer, et al. 2007, 2008; Ennals et al. 2004; Harrington 2006; Hofmann 2000; Jung,
Jourdan, et al. 2017; Li et al. 2022; Marshall et al. 2022; Odersky 1992; Wadler 1990; Walker 2005].
As an opening example, we showcase a toy file system implementation which gives a taste of
Cogent and demonstrates the key language features.

Figure 2.2 contains the complete Cogent code for the toy file system’s implementation.1 The
file system has a flat storage structure and does not support directories found in most real-world
file systems. All it can store are regular files (analogous to Linux’s regular file type). In the file
system, files are identified by an integer identifier, and the contents of a file is represented as
an array of bytes. The file system allows three operations on files: write, read and remove. The
underlying data structure that stores the files is a binary search tree (BST), with the key being the
file identifier. Alongside the storage, we keep a snapshot of the current state of the file system;
we call it a summary. That summary consists of the number of files currently stored (similar to

1The real Cogent compiler does not accept Unicode characters as shown in the code. In this thesis we use Unicode
symbols rather than their ASCII counterparts for better cosmetics.
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1 include <gum/common.common.cogent> -- for Maybe and Either

2 include <gum/common/wordarray.cogent>

3 -- length: ∀(a :< DSE). (WordArray a)! → U32

4

5 type BST k v

6 insert : ∀ (k :< DSE, v). (v, BST k v) → (Bool, BST k v)

7 lookup : ∀ (k :< DSE, v). (k, (BST k v)!) → Maybe v!

8 delete : ∀ (k :< DSE, v). (k, BST k v) → Either (BST k v) (BST k v, v)

9

10 type Summary = { count : U8, used : U32, last : Bool }

11 type Disk = BST U8 File

12 type File = { id : U8, data : WordArray U8 }

13 type Operation = < Write File | Read U8 | Remove U8 >

14

15 free : ∀ (t :< E). t → ()

16

17 go : (Operation, Summary, Disk) → (Summary, Disk)

18 go (op, sum, d) =

19 op | Read id →
20 let sum = (lookup[U8, File] (id, d)

21 | Just f → sum {last = True}

22 | Nothing → sum {last = False}) !d

23 in (sum, d)

24 | Write f →
25 let size = length (f.data) !f

26 and (res, d) = insert (f, d)

27 and True ⇐ res � False → (sum {last = False}, d)

28 and sum {count = c, used = u} = sum

29 in (sum {count = c+1, used = u+size, last = True} , d)

30 | Remove id →
31 delete (id, d)

32 | Right (d, f) →
33 let sum {count, used} = sum

34 and size = length (f.data) !f

35 and _ = free f

36 in (sum {count = count - 1, used = used - size, last = True}, d)

37 | Left d → (sum {last = False}, d)

Figure 2.2: A simple example of a Cogent program
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ls -l | wc -l in Linux), the total size of storage used in the file system (du -s), and a Boolean
flag indicating whether the last file system operation has succeeded or not (Linux’s return code).

On lines 1 and 2, we include some library files. The first one brings the types Maybe t and
Either a b into scope. These two types have their standard meanings, as in many mainstream
functional languages such as Haskell. In Cogent, they are defined as follows, unsurprisingly:

type Maybe t = < Nothing | Just t >

type Either a b = < Left a | Right b >

They are called variant types in Cogent, which are also commonly called sum types, tagged unions
or disjoint unions in other contexts.

Line 2 includes a word array library, which implements an array type whose element must be
words (unsigned words of 1, 2, 4, or 8 bytes long). This is the data type that we use to represent
the file contents. The word array library is implemented in a variant of C, and it is invoked in
Cogent via the C foreign function interface, which we shall discuss in more detail in Chapter 4.
An excerpt of the word array implementation from Cogent’s standard library will be given at
the beginning of Section 4.6. For the time being, however, it is safe to think of it as a regular
C implementation operating on the following WordArray type (with the elements instantiated to
8-bit word type u8):

struct WordArray_u8 {

int len;

u8* values;

};

TheC struct consists of an integer value for the length of the array and a pointer to an ordinary C
byte array to store the words. In most cases, the array is allocated dynamically in heap memory.

Aword array length function (line 3 in Figure 2.2, commented out as it has been defined in the
library) will be needed to calculate the size of the file. This function is polymorphic on the element
type a. a :< DSE is a constraint on what instances a can take. DSE are the three permissions
that a type can be granted. They stand for Droppable (or Discardable), Shareable and Escapable
respectively. The type constraint a :< DSE grants a all three permissions, meaning that a can only
be instantiated with types (e.g. words) that have all three permissions (i.e. unrestricted). When
a type cannot be shared or dropped, we call it a linear type [Girard 1987; Wadler 1990]. In other
words, any object of a linear type can only be used exactly once. When a type is not subject to this
restriction, we call it a non-linear type. The Escapable permission controls a type’s mutability,
namely whether it is writable or readonly: escapable roughly corresponds to writeable. We will
come back to the uniqueness type system with a more formal notion in Section 2.3.

On lines 5–8 we define an abstract type BST k v, where k is the BST’s key type and v is
the value type. Following the type are two abstract functions. An abstract function in Cogent
is a function whose type signature is given in Cogent, while the definition of the function is
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provided in C. In the three interface functions, we again declare the key type to be unrestricted.
These functions’ signatures are standard. We need to note though, that all three functions can fail:
The insert function may fail because the key to be inserted is already in the BST, and the other
two functions may fail when the queried key does not exist. When the insertion and removal
operations fail, the functions are still required to return the (unchanged) file store; this is due
to the uniqueness requirements imposed by the type system. The uniqueness requirements are
exempted in the lookup function. Because the function only needs to inspect the BST without
modifying it, it only requires a readonly reference to the BST, denoted by the ! symbol in the type
(BST k v)!. A readonly type can be freely discarded (or dually, shared), and hencewe do not have
to return it in the lookup function. The restriction on readonly linear object is that there must
not be any other writable references to the same memory region when any readonly references
are present. This restriction is needed to retain referential transparency of the language.

The uniqueness type system governs how resources are used and how objects are referenced,
which is of paramount importance when compiling the purely functional language into efficient
C code. Even for abstract functions, we can still reason about the behaviours of the function
according to its type. The insert function takes a linear value v and a linear BST, and returns as
result a Boolean flag for signalling errors along with the potentially modified BST. Given the fact
that the input v is not returned, we know that in the fail case where the new value is not added
to the tree, the input object must be freed by the insert function. The lookup function returns
a readonly copy of the object in question. From this information, it can be adduced that this
function returns a readonly alias to the element that is sought after, as this is the only sensible
definition of the function given the types. The remove function returns a linear object of type v

—the removed element—along with the updated BST in the success case (viz. Right of the Either
type). We know from the type system that the returned object is uniquely referenced, and hence
we can later deallocate the memory for it.

We define some types for the file system on lines 10–13. The Summary and File types are
record types, which have the normal meaning as in other languages. The Disk type is a type
synonym to the abstract type BST U8 File. On line 15, we declare an abstract function free

that works for all writable linear types, which is suggested by t :< E. Again, as Cogent is a
restricted pure language, this function has to be defined in C. The remainder of the code defines
the main file operation function go, which updates the file store and the summary as per the
input operation.

The go function heavily relies on pattern matching, which is key to any real-world functional
languages. Pattern matching in Cogent is represented by the scrutinee expression followed by
a series of aligned vertical bars. Indentation is part of Cogent’s syntax, similar to Haskell and
Python. We pattern match on the variant op, which is the file system operation to be performed.

In the Read case, we invoke the lookup function, explicitly applying it to its type arguments
U8 and File. In most cases, types arguments can be omitted and the compiler is able to infer them.
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Unfortunately, the type inference algorithm is incomplete and in some cases, a little explicit type
information from the users is needed to guide the type inference engine. This is typically the
case when a type variable only appears in its !-ed readonly form. As the ! type operation is not
injective, the users need to tell the compiler what instance the type variable should take. On
lines 21 and 22, we set the last flag according to the result of the lookup function call. In the
binding of the sum, we let! (reads “let bang”) the variable d with the !d syntax. The variable d

represents a writable linear object, and we use !b to temporarily turn it into a readonly reference,
which is expected by the lookup function. The let! construct temporarily turns the linear object
d into an unrestricted one, so that it can be discarded in the lookup function. This mechanism is
simliar to immutable borrows in Rust [Klabnik and Nichols 2022, § 4.2]. The write permission on
d is recovered outside of the let!-binding, as soon as the !-ed object goes out of scope. Cogent’s
linearity analysis is rather coarse-grained. To ensure the soundness of the type system, it always
takes the safer course of action. It puts a bold requirement on the language that readonly objects
must not escape from a let!-binding, even though it is safe in some cases. It therefore does not
allow us to write the code on lines 20–23 in a seemingly equivalent way:

let res = lookup[U8, File] (id, d) !d

in res | Just f → (sum {last = True }, d)

| Nothing → (sum {last = False}, d)

Here, res contains a readonly reference in the Just case and is thus disallowed.
In the Write case, we first need to compute the size of the file to be written, and then call the

insert function. It is worth mentioning that we cannot swap the order of these two expressions:
if we called insert first, then the linear file f would be consumed by the function, and we would
then lose it permanently. This is due to the linear usage of linear objects—any (non-readonly)
linear object can only be used exactly once. We give a name d to the function’s return value (line
26). Since d is linear, the resultant d does not shadow the argument d. This is why we do not
need to, and very often prefer not assign fresh variable names to linear objects that are updated
in-place—keeping the same name is a good indication of how the variables got updated. Line 27
uses a biased pattern matching syntax, inspired by Idris [Brady 2011, 2013], to avoid excessive
cascading indentation levels. The syntax translates easily to the equivalent and more traditional
syntax in the following way:

let 𝑝2 ⇐ 𝑒� 𝑝1 → 𝑒1
in 𝑒2

translates to
𝑒 | 𝑝1 → 𝑒1
| 𝑝2 → 𝑒2

It greatly improves the aesthetic of the code when 𝑒1 is short, which is commonly the case for
error handling. On lines 28–29, we first “take” out the count and used fields from the file store
and bind their values to c and u respectively, and then “put” the updated values back into the
store. This is how we destructively update fields of a record, such as Disk.

The Remove case is largely similar to Write. We use regular pattern matching syntax for
comparison. Line 33 shows the use of field-puns: when the binder’s name is the same as the field
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name, we can omit the = sign and the binder on the right hand side. The same applies for a put
operation r {f = 𝑒}: when the expression 𝑒 is a single variable f , whose name is the same as the
field name f, the put can be shortened to r {f}.

2.3 Cogent’s Uniqueness Type System

Similar to the Rust language [Rust n.d.], Cogent is equipped with a uniqueness type system that
ensures memory safety and eases verification. Cogent’s type system allows imperative-style
destructive updates, while retaining a purely functional semantics. The type system eliminates
the need for a garbage collector, enabling the compiler to generate more efficient, predictable C
code, making the language suitable for systems programming tasks.

The uniqueness types come at a cost: it is impossible in pure Cogent to implement data
structures which, even temporarily, rely on sharing. Instead, such data structures have to be
implemented in C, verified separately, and imported as ADTs through a FFI that requires the
uniqueness type constraints to be satisfied at the interface level.

Uniqueness type systems ensure that each linear object in memory is uniquely referenced.
Consequently, updates to these objects in a purely functional language can be compiled as in-
place destructive updates, without the need for copying. In Cogent, we call the type of objects
that are subject to the uniqueness restrictions linear types, and the rest non-linear types.2 Roughly
speaking, linear objects either reside in the heap, or contain pointers to other heap-objects. Co-
gent’s verification framework depends on the AutoCorres library [Greenaway 2015; Greenaway
et al. 2014], which does not support stack pointers, therefore all pointers address heap memory.
In short: a linear object is behind a pointer and/or contains pointers.

Cogent primitive types include the unsigned 𝑛-bit integer types, U8, U16, U32 and U64, and
booleans (Bool). For the work that we will describe in Chapter 3, we extended the language
with custom-sized unsigned integers. These integer types range from U1 to U63. We call these
non-standard integer types non-word-size integers, contrary to the word-size integers of U8, U16,
U32 and U64. The Cogent language defines primitive arithmetic, logical and bitwise operators
only on word-size integers. The only operations allowed on non-word-size integers are cast and
truncate, which converts an integer to a wider or a narrower integer. Primitive types in Cogent
are all unboxed and non-linear.

Algebraic data types include record and variant types. Type synonyms to other types can
be defined but such types have a structural interpretation, meaning the synonym is identical
to the type it is aliasing. In general, two types in Cogent are identical if they have the same

2The terminology is somewhat intermingled unfortunately, partly due to historical reasons. Strictly speaking, we
should call them unique types and non-unique types, which align with our (correct) use of the term uniqueness type
system. The concepts of uniqueness and linearity are closely related yet different; their relationship has not been
systematically studied until recently [Marshall et al. 2022]. For the purpose of this thesis, the distinction between
them is largely an orthogonal problem. We recommend that interested readers consult Marshall et al. [2022]’s work
for more details and references on that topic.
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structure, after fully expanding any type synonyms. Furthermore, Cogent supports declaring
abstract types with their definitions provided in C. For the development of Dargent (Chapter 3),
we also extended Cogent with array types. Array types are indexed by their lengths, which are
restricted to constant integers, for a tractable type checking algorithm.

The Cogent type system distinguishes between boxed and unboxed types through a sigil
annotation on the type. In the surface language, a prefix # type-operator turns a type into its
unboxed form. A boxed type (sigil b©) resides in the heap and is accessed by reference through its
unique pointer. An unboxed type (sigil u©) is accessed by-value and either resides in the stack or
is inlined inside a larger data structure in the heap. In the latter case, when the object is accessed,
it will be copied by value to the stack. All boxed types are by definition linear while the converse
is not true.

Records, arrays and abstract types can be either boxed or unboxed. Primitive types and
variant types, however, can only be unboxed. For this reason, primitives and variants are not
accompanied by a sigil. For a boxed type, Cogent allows further fine-grained control of acces-
sibility: a boxed sigil can either be a writable boxed sigil ( w©) or a readonly one ( r©). When a
type has a readonly sigil, even though it is behind a pointer or contains pointers, it becomes
non-linear.

In Figure 2.3, we show some key typing rules for records and variants, and use them to explain
the operations allowed on these types. For a fuller formalisation of the Cogent language, readers
are recommended to consult O’Connor [2019b]’s PhD dissertation. In the typing rules, Δ is a
kinding context, and Γ is a typing context. The judgement Δ ⊢ Γ ; Γ1 ⊞ Γ2 is for splitting the
typing context. This is needed because Cogent’s type system is substructural, and linear objects
cannot be freely duplicated or dropped in the context.

For record types, as Cogent does not support native heap-memory (de)allocation, only un-
boxed records can be constructed with primitive operations. In the Struct rule, the expression
initialises several fields of an unboxed record with their initial values. In a record type, each field
is annotated with its usage 𝔲, which can be either present (⚬) or taken (⦁). When an unboxed
record is constructed, all the initialised fields are present. The take operation is accomplished
with a pattern matching in the surface language, such as r {f1 = e1, f2 = e2}. Multiple fields
can be taken simultaneously in the surface language, but in the core calculus, a take operator
only operates on one field at a time. It is used to access fields in a non-readonly record. Be-
cause of the uniqueness type system, when such a field is accessed, it transfers the ownership
of that field from the record to a new binder. In the typing rule Take, after the field f is taken,
its usage changes from present to taken. The new binder y now owns the field. Dually, a put
operation returns the ownership of a field back to a record. Its surface syntax looks the same as
that of a take, but it is an expression rather than a pattern. When a record is non-linear, fields
can be directly accessed via the more conventional member access operation (written like e.f in
the surface language), whose typing is formalised in the Member rule. The non-linearity of the
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Δ; Γ ⊢ 𝑒 ∶ 𝜏

Δ; Γ ⊢ 𝑒𝑖 ∶ 𝜏𝑖

Δ; Γ ⊢ #{fi = 𝑒𝑖} ∶ {f⚬𝑖 ∶ 𝜏𝑖} u©
Struct

Δ ⊢ {f⚬𝑖 ∶ 𝜏𝑖, f⦁ ∶ 𝜏} 𝑠 Share
Δ; Γ ⊢ 𝑒 ∶ {f⚬𝑖 ∶ 𝜏𝑖, f⦁ ∶ 𝜏} 𝑠

Δ; Γ ⊢ 𝑒.f ∶ 𝜏
Member

Δ ⊢ Γ; Γ1 ⊞Γ2
Δ; Γ1 ⊢ 𝑒1 ∶ {f𝔲𝑖 ∶ 𝜏𝑖, f⚬ ∶ 𝜌} 𝑠 𝑠 ≠ r©
Δ; 𝑥 ∶ {f𝔲𝑖 ∶ 𝜏𝑖, f⦁ ∶ 𝜌} 𝑠, 𝑦 ∶ 𝜌, Γ2 ⊢ 𝑒2 ∶ 𝜏

Δ; Γ ⊢ take x {f = 𝑦} = 𝑒1 in 𝑒2 ∶ 𝜏
Take

Δ ⊢ Γ; Γ1 ⊞Γ2
Δ; Γ1 ⊢ 𝑒1 ∶ {f𝔲𝑖 ∶ 𝜏𝑖, f⦁ ∶ 𝜏} 𝑠
𝑠 ≠ r© Δ; Γ2 ⊢ 𝑒2 ∶ 𝜏

Δ; Γ ⊢ put 𝑒1.f ≔ 𝑒2 ∶ 𝜏
Put

Δ; Γ ⊢ 𝑒 ∶ 𝜏

Δ; Γ ⊢ A 𝑒 ∶ ⟨A⚬ 𝜏,A⦁
𝑖 𝜏𝑖⟩

VCon

Δ ⊢ Γ; Γ1 ⊞Γ2 Δ; Γ1 ⊢ 𝑒1 ∶ ⟨A⚬ 𝜌,A𝔲
𝑖 𝜏𝑖⟩

Δ; 𝑥 ∶ 𝜌, Γ2 ⊢ 𝑒2 ∶ 𝜏 Δ; 𝑦 ∶ ⟨A⦁ 𝜌,A𝔲
𝑖 𝜏𝑖⟩, Γ2 ⊢ 𝑒3 ∶ 𝜏

Δ; Γ ⊢ case 𝑒1 of A 𝑥.𝑒2 else 𝑦.𝑒3 ∶ 𝜏
Case

Δ ⊢ Γ; Γ1 ⊞Γ2
Δ; Γ1 ⊢ 𝑒1 ∶ ⟨A⚬ 𝜌,A⦁

𝑖 𝜏𝑖⟩ Δ; 𝑥 ∶ 𝜌, Γ2 ⊢ 𝑒2 ∶ 𝜏

Δ; Γ ⊢ esac 𝑒1 of A 𝑥. 𝑒2 ∶ 𝜏
Esac

(lists are represented by overlines)

Figure 2.3: Typing rules for records and variants

record is represented by the Share judgement.

Variants are always unboxed. Once a variant is constructed (see the VCon rule), the given
constructor is marked as present, and the usages of all other constructors are marked as taken.
These absent alternatives can be arbitrarily chosen, therefore type annotations need to be given
by the user to guide Cogent’s type inference engine. Pattern matches in the surface language
will be desugared to a sequence of case-of (rule Case) expressions and a terminating esac-of
(rule Esac) expression. The former takes two continuations: one for the matched constructor
and the other for the remaining variant. When a constructor is matched, we mark it as taken (⦁)
in the remaining variant. The esac-of only handles variants that have one remaining unmatched
constructor.

The Cogent compiler used a pre-defined code generation algorithm to compile data types
to C. A record type in Cogent was mapped to a C struct, with the fields laid out in the order
in which they are declared in the type. The mapping for variant types, on the other hand, was
less direct: Cogent’s verification tool chain does not support C unions, so variants are also
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Δ ⊢ 𝜏1 ⊑ 𝜏2

for each 𝑖 ∶ Δ ⊢ 𝜏𝑖 Drop Δ ⊢ 𝜏𝑖 ⊑ 𝜌𝑖
for each 𝑗 ∶ Δ ⊢ 𝜏𝑗 ⊑ 𝜌𝑗

Δ ⊢ {f⚬𝑖 ∶ 𝜏𝑖, f𝔲𝑗 ∶ 𝜏𝑗} 𝑠 ⊑ {f⦁𝑖 ∶ 𝜌𝑖, f𝔲𝑗 ∶ 𝜌𝑗} 𝑠
RecSub

for each 𝑖 ∶ Δ ⊢ 𝜏𝑖 ⊑ 𝜌𝑖
for each 𝑗 ∶ Δ ⊢ 𝜏𝑗 ⊑ 𝜌𝑗

Δ ⊢ ⟨A⦁
𝑖 𝜏𝑖,A

𝔲
𝑗 𝜏𝑗⟩ ⊑ ⟨A⚬

𝑖 𝜌𝑖,A
𝔲
𝑗 𝜌𝑗⟩

VarSub

Figure 2.4: Subtyping rules for records and variants

represented as structs in C, containing a field for a tag, and a field for each alternative’s payload.

2.3.1 A Remark on Subtyping

Cogent’s type system supports subtyping, which deserves further elaboration. Figure 2.4
presents the subtyping judgement for records and variants. The notion of subtyping is closely
related to the uniqueness type system that Cogent employs, or more precisely, about the usage
of each part of the record or the variant. As we have seen earlier, the usage of a field in denoted
by its takenness in a record. When it is taken, it means that the ownership has been transferred
from the record to another object. The notion of takenness for variant types denotes whether
an alternative has been pattern matched or not. In both cases, when two types form a subtyping
relation, they only differ in the takenness of their parts. The takenness of fields and alternatives
is a static property of types, and it does not affect the generated C code: The taken parts of the
type are present in the corresponding C type, except that the C program never accesses them.
As a result, types that form a subtyping relation must have the same underlying representation.
This is the insight we acquired while experimenting with different subtyping schemes. In
particular, Cogent does not employ width-subtyping for composite types, and integer types of
different widths do not form any subtyping relation either.

In Cogent, take, put and pattern matching are all operations that convert objects between
subtypes and supertypes. If different C presentations were used, the conversion would have to
be accomplished by costly data copying. This is because the generated C code will be verified and
reinterpreting memory (e.g. via a C cast) is in general prohibited by the verification framework.
By sharing the same memory representation, we essentially restrict subtyping to the static se-
mantics, and no dynamic operations are needed in the runtime, which results in better runtime
performance. The performance gain is particularly evident for pattern matches. Since only one
constructor is matched at a time in the core calculus, when we exhaust a large variant type, it is
achieved by a cascade of matches. If each match incurred a copy, the overhead would cumulate.
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Requiring the same representation among subtypes also simplifies the C code generation and the
automatic C refinement proof.

2.4 Compilation

The Cogent compilation pipeline is depicted in Figure 2.5. The compiler is developed in a fully
modular fashion, which is important for component reuse. Similar to various other program-
ming languages, Cogent has a surface language and a core language. After the source Cogent
program text is parsed and typechecked, it is desugared into the core language, which is then fol-
lowed by a series of core-to-core AST transformations, each with a typechecking phase for sanity
checking. The normaliser turns the core AST into A-normal form [Sabry and Matthias Felleisen
1992], which is significantly more verbose. Then the AST is monomorphised by generating spe-
cialisations of the original polymorphic functions in accordance with the type arguments used in
the program, which are determined by a call-graph analysis. At this stage, the AST can become
quite lengthy, if a large number of instances of a polymorphic function are needed. Luckily there
is no need for programmers to inspect the intermediate representations (IR) or the verbose target
C code, which is obtained by compiling the monomorphised Cogent AST to a C AST and pretty-
printing it to a file. From each core AST representation, the compiler can generate Isabelle/HOL
embeddings, which we introduce next.

Remarks—readability of generated C code. One of the design philosophies that Cogent’s
designers have is that the target code does not need to be inspected by human programmers.
The Cogent compiler typically produces a large volume of very verbose C code, due to the A-
normalisation and monomorphisation phases. This design decision is opposite to some other
high-level verification languages, such as Low* in the F* toolchain [Protzenko, Zinzindohoué,
et al. 2017], which puts a strong emphasis on producing readable C code, so that domain experts
can further inspect and optimise the generated C code. For Cogent, the only occasion that
might require developers to directly interact with the generated C code is during debugging; no
optimisation or interfacing is done on the C code level. Some extensions to Cogent have been
explored to lift debugging to the Cogent level [Warn 2021]. As we shall see in later chapters, the
extensions and improvements described in this thesis do not attempt to improve the readability
of the C code; we rest upon the do-not-read-C assumption. End of remarks.

2.5 Verification

Apart from being a programming language, Cogent is also a verification framework realised
in Isabelle/HOL, based on the concept of certifying compilation. As we have introduced earlier,
compiling a Cogent program results in multiple components:

(1) a C program,
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Cogent source
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core
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core
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Figure 2.5: The Cogent compilation pipeline

(2) an Isabelle/HOL shallow embedding of the Cogent program,
(3) an Isabelle proof of refinement between the C program and the Isabelle shallow embedding.

The C refinement proof relies on the AutoCorres library [Greenaway 2015; Greenaway et al.
2014] to generate a representation of the C code in Isabelle/HOL. More precisely, the AutoCorres
library abstracts the C semantics via the formal language SIMPL [Schirmer 2006] into a monadic
embedding in Isabelle/HOL.

This compilation process provides an indirect way of formally verifying properties about the
generated C program. The programmer first needs tomanually prove the desired properties about
the Isabelle/HOL shallow embedding. Thismanual proof should follow by reasoning equationally
about the HOL term and applying term rewriting tactics provided by the theorem prover. Then,
the automatic refinement proof between the C code and the shallow embedding transports the
proven properties to the C program. To summarise, Cogent’s verification framework reduces
complicated low-level verification on the C program to a simple high-level equational proof.

The refinement proof between the C code and the Isabelle/HOL shallow embedding is com-
posed of a series of language-level proofs and translation validation phases, and it is fully auto-
matic, thanks to Cogent’s certifying compiler (see Figure 2.6). When the compiler generates the
shallow embedding of the Cogent program in Isabelle/HOL, it also generates a deep embedding
representing the abstract syntax of the Cogent program. Two semantics are assigned to the deep
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Shallow
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Update Semantics
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refines
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Figure 2.6: The Cogent-C refinement

embedding: a purely functional value semantics, and a stateful update semantics, with pointers
and memory states and in-place field updating. It is proved once-for-all that these two semantics
are equivalent for any well-typed Cogent program. As part of the certifying compilation, the
compiler produces a refinement proof between the shallow embedding and the deep embedding
with value semantics, and a refinement proof between the deep embedding with update seman-
tics and the monadic C embedding obtained from AutoCorres. Chaining the three correspon-
dence lemmas results in a correspondence between the shallow embedding and the C program,
stating that the C program is a refinement of the Cogent program’s semantics. For more tech-
nical details about the C refinement proof, we refer interested readers to our paper [Rizkallah
et al. 2016].

With the refinement verification framework that Cogent provides, users can be assured
of the correctness of the program as far as the C code level. To ensure that the C code runs
correctly on the binary level, the C code could be further compiled with a verified C compiler
such as CompCert [Leroy 2009]. However, there is a semantic gap between their C model and
that of Schirmer [2006] that we use. For more related work in the area of formalised C semantics,
[Krebbers 2015]’s PhD dissertation provides a good overview. The Cogent generated C code
also falls into the subset of Sewell et al. [2013]’s gcc translation validator, which can be made to
compose directly with our compiler certificate.
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Chapter 3

Dargent: A Layout Description
Language

The material of this chapter is adapted from the following publications:

⋄ Liam O’Connor, Zilin Chen, Partha Susarla Ajay, Christine Rizkallah, Gerwin Klein, and
Gabriele Keller. Nov. 2018. “Bringing Effortless Refinement of Data Layouts to Cogent.” In:
International Symposium on Leveraging Applications of Formal Methods, Verification and Val-
idation. Springer, Limassol, Cyprus, 134–149. doi: https://doi.org/10.1007/978-3-030-0
3418-4\_9

⋄ Zilin Chen, Matt Di Meglio, Liam O’Connor, Partha Susarla Ajay, Christine Rizkallah, and
Gabriele Keller. Jan. 2019. A Data Layout Description Language for Cogent. at PriSC. Lisbon,
Portugal

⋄ Zilin Chen, Ambroise Lafont, Liam O’Connor, Gabriele Keller, Craig McLaughlin, Vincent
Jackson, and Christine Rizkallah. Jan. 2023. “Dargent: A Silver Bullet for Verified Data
Layout Refinement.” Proc. ACM Program. Lang., 7, ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Article 47, 27 pages. doi: 10.1145/3571240

The author of this thesis contributed to the design of the Dargent language, the design and im-
plementation of the compiler, the pen-and-paper formalisation of the language, and was involved
in discussions about the verification and case studies. The Isabelle/HOL formalisation and proofs
presented in Section 3.2.6, Section 3.3.2, and the implementation of the applications presented in
Section 3.6 are primarily developed by co-authors of the above publications.

Systems programmers need fine grained control over the memory layout of data structures, both
to produce performant code and to complywithwell-defined interfaces imposed by existing code,
standardised protocols or hardware. Code that manipulates these low-level representations in
memory is hard to get right. Traditionally, this problem is addressed by the implementation
of tedious marshalling code to convert between compiler-selected data representations and the
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desired compact data formats. Such marshalling code is error-prone and can lead to a significant
runtime overhead due to excessive copying. While there are many languages and systems that
address the correctness issue, by automating the generation and, in some cases, the verification
of the marshalling code, the performance overhead introduced by the marshalling code remains.
In particular for systems code, this overhead can be prohibitive. In this work, we address both
the correctness and the performance problems.

We present a data layout description language and data refinement framework, called Dar-
gent, which allows programmers to declaratively specify how algebraic data types are laid out
in memory. Our solution is applied to the Cogent language, but the general ideas behind our
solution are applicable to other settings. The Dargent framework generates C code that manip-
ulates data directly with the desired memory layout, while retaining the formal proof that this
generated C code is correct with respect to the Cogent functional semantics. This added expres-
siveness removes the need for implementing and verifying marshalling code, which eliminates
copying, smoothens interoperability with surrounding systems, and increases the trustworthi-
ness of the overall system.

3.1 Introduction

In the realm of software systems, such as device drivers, file systems, and network stacks, precise
control over the data layout of objects is crucial for compatibility and performance. Specifically,
controlling the composition of objects in memory on a bit- and byte-level can avoid the need for
translation or deserialisation at the boundaries between on-medium and in-memory data which
frequently arise from interacting with standardised protocols or hardware.

These systems are often implemented in the C language, in part because it offers low-level
features to give fine-grained control over data layout. Unfortunately, to maintain good perfor-
mance, the C programmer must throw away the conceptual abstraction of the data type, and
instead focus on the low-level details of bits and bytes. This low-level code contains many subtle
bit-twiddling operations which, apart from being difficult to manually verify, are also tedious
and error-prone to implement.

To maintain the higher-level structure of a program without sacrificing performance, we
want to use a language with a high-level semantics, but with facilities for specifying the low-
level memory layout of heap-allocated objects. Most high-level languages use fixed heap layouts,
and Cogent was no exception. Applying such a fixed code generation scheme is no surprise
for a typical high-level functional language, whose implementation details are hidden from the
language users. But Cogent is not just a functional language, it is also a systems language
where the exact low-level representation of data types is relevant to programmers. This fixed
code generation algorithm often resulted in suboptimal or undesired representations of Cogent
types in C, and users of the Cogent language had to know about the implementation details of
the code generator in order to write C code that directly interfaces with Cogent programs. In
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situations where the Cogent program needs to interoperate with existing C components, say,
when developing an operating system component that interfaces with the Linux kernel headers,
glue code was required to translate between representations, resulting in development and run-
time overhead. Also, problematically, as this glue code depended on the representation choices
made by the compiler, future versions of the Cogent compiler could break previously working
code due to changes in the code generation scheme.

In this chapter, we present Dargent, a language for describing data layouts of high-level
algebraic datatypes, along with a data refinement framework for automatically verifying the cor-
rectness of the compiled C code with respect to the layout descriptions. We build on the Cogent
language and refinement framework (Chapter 2).

While there is a very long line of prior work on data description languages [G. Back 2002;
Bangert and Zeldovich 2014; Fisher and Gruber 2005; Geest and Swierstra 2017; Kohler et al.
1999; Madhavapeddy et al. 2007; McCann and Chandra 2000; Ramananandro et al. 2019; Slind
2021; Wang and Gaspes 2011; Ye and Delaware 2019], and the data layout descriptions used in
Dargent do indeed look similar to those used in such languages, there is a fundamental differ-
ence: These languages are designed for synthesising data (de)serialisation functions (also some-
times referred to as datamarshalling/unmarshalling functions, encoders/decoders, or parsers and
pretty-printers for low-level data), which convert data stored in a low-level, sequential format in
some storage medium to a high-level, structured representation in memory and vice versa. They
are primarily used for the interaction and communication between different programming lan-
guages (e.g. a foreign function interface) or systems (e.g. data transmission over the network). In
this context, code to transform back-and-forth between the two representation is still necessary.

Dargent, on the other hand, is intended to solve a different problem. The Dargent data lay-
out descriptions grant programmers the ability to dictate to the Cogent compiler how it should
lay out the algebraic data types used by the Cogent program itself. The compiler generates code
that works directly with data laid out according to the programmer’s specifications, as well as
Isabelle/HOL proofs showing that it has done so correctly.

Depending on the application, Dargent therefore can either eliminate entirely or reduce the
need for data (de)serialisation code, be it manually written or automatically derived, when inter-
acting with the external world. Because algebraic data types can be represented directly in their
binary data formats with Dargent, the programmer does not need to decode raw data first into
some other in-memory representation in order to operate on it as a data type. Eliminating these
(de)serialisation steps naturally results in more concise and readable code, better performance,
and easier informal and formal reasoning.

This additional power in expressiveness can also be used to improve the performance of the
compiled Cogent code, e.g. by having smaller memory footprints or a specialisedmemory layout
optimal for the underlying architecture, independent of the interoperation between languages or
systems. It also enables Cogent programmers to directly write code that is binary-compatible
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with native C programs.

Cogent is readily amenable to an extension for prescribing data layouts and fine-tuning the
compilation of algebraic data types by virtue of its lack of a runtime system and direct compilation
to C. Before Dargent, it simply adopted the layout conventions of the underlying C compiler.
The introduction of Dargent into the framework enabled improvements to some outstanding
inefficiencies in the prior design, such as a reduced reliance on (de)serialisation code within file
system implementations [Amani, Hixon, et al. 2016] and directly representing device register
formats as data types (Section 3.6).

Furthermore, we have extended the Cogent compiler so as to preserve the benefits of Co-
gent’s high-level type system and semantics. The upshot is that our compiler automatically
translates read and write operations on heap-allocated objects to take account of their partic-
ular data layout. The translation’s correctness is guaranteed by the enhanced data refinement
theorem (Section 3.3.1). To the best of our knowledge, this is the first framework that is able
to leverage data layout specifications for generating bit-level accessors with formal correctness
guarantees.

We make the following contributions in this chapter:

• We designed and implemented Dargent, a data layout description language for control-
ling the memory layout of algebraic data types, down to the bit level. We present the
formalisation of the core calculus and its static semantics (Section 3.2).

• We discuss the compilation process of Cogent code down to C, and the extended verifi-
cation framework to automatically verify the translation of high-level read/write accesses
(known as getters and setters) to explicit offsets within a well-defined memory region (Sec-
tion 3.3).

• We explore the design space of the Dargent language, and compare with alternative de-
signs (Section 3.4). We also compare and contrast Dargent with data (de)serialisation
languages, which are arguably more thoroughly studied (Section 3.5).

• We demonstrate the utility of Dargent in the context of device drivers by an extended
suite of examples (Section 3.6).

• We discuss how to use Cogent abstract types and functions to compose an API for ma-
nipulating variable-sized data structures, which would require other extensions to Cogent
and Dargent to be handled natively (Section 3.7 and Section 3.8).

All the results described in this chapter, including the case studies we present, are associated with
formal proofs in Isabelle/HOL. These materials are packaged as a virtual machine image, which
is publicly available [Z. Chen, Lafont, O’Connor, et al. 2022]. It is derived from a development
branch of the Cogent project repository [The Cogent team 2023], and it was originally sub-
mitted as the supplementary material for the POPL’23 paper [Z. Chen, Lafont, O’Connor, et al.
2023], from which this chapter is derived.
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type Example = {

struct ∶ #{a ∶ U32, b ∶ Bool}, -- nested embedded record
ptr ∶ {c ∶ U8}, -- pointer to another record
sum ∶ ⟨A U16 | B U8⟩ -- variant type

}

Figure 3.1: Example of a Cogent type

3.2 The Dargent Language

We have designed and implemented a data layout description language called Dargent, which
describes how a Cogent algebraic data type may be laid out in (heap) memory, down to the bit
level. Layout descriptions in Dargent are transparent to the shallow embedding of Cogent’s
semantics, but they influence the definition of the refinement relation to C code generated by the
compiler. In Section 3.3.1, we describe inmore detail the extensions to our verification framework
to accommodate the Dargent layout descriptions. Here, we focus on the language definition.
To begin with, we give an informal overview of Dargent’s language features.

3.2.1 An Informal Introduction to Dargent

Dargent offers the possibility to assign any boxed Cogent type a custom layout describing how
the data should be stored in the heap. A boxed type assigned with a custom layout is compiled to
a C struct with a single field: an array of 32-bit words.1 This array represents the Cogent type:
it can be deemed as untyped in C, but the Dargent description contains enough information to
access individual parts of the type correctly. How data is laid out in memory is purely a low-
level concern, and it does not affect the functional semantics of a Cogent program in any way.
In other words, Cogent functions are parametric over the layouts of types. Under the hood, the
Cogent compiler generates custom getters and setters in C, retrieving and setting the relevant
parts of the type from the representing array.

As an example, consider the Cogent type in Figure 3.1. This record consists of three fields:
struct, ptr and sum. struct is an unboxed record, denoted by the leading # symbol. This field
is embedded inside the parent Example record. The ptr field is a boxed record, and is stored
somewhere else in the heap, referenced by a pointer in the Example type. The last field is a
variant type, with two alternatives tagged A and B respectively. This variant is unboxed (recall
that there is no boxed variant in Cogent) and is stored in the heap inside the parent record.

A layout for this record type must specify where each field is located in the word array.

1Throughout the chapter, unless we explicitly specify the size, the term “word” always refers to unsigned integer
types of 1 byte, 2 bytes, 4 bytes or 8 bytes and the actual size is usually less relevant in the discussion. It does not
necessarily imply pointer-sized words. We discuss the implications of the choice of the word size later in Section 3.3.1.
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Sizes 𝑠 ⩴ 𝑛B ∣ 𝑛b ∣ 𝑠 + 𝑠

Layout expressions ℓ ⩴ 𝑠 (memory blocks)
∣ 𝑙 (layout variables)
∣ pointer (pointer layout)
∣ 𝐿 ℓ𝑖 (layout names)
∣ ℓ at 𝑠 (offsets)
∣ ℓ after f (relative locations)
∣ ℓ using 𝜔 (endianness)
∣ record {f𝑖 ∶ ℓ𝑖}
∣ variant (ℓ) {A𝑖 (𝑛𝑖) ∶ ℓ𝑖}

∣ array {ℓ} [𝑛]

Declarations 𝑑 ⩴ layout 𝐿 𝑙𝑖 = ℓ

Layout names ∋ 𝐿

Endianness 𝜔 ⩴ BE ∣ LE

Field names ∋ f
Constructors ∋ A
Natural numbers ∋ 𝑛,𝑚

Layout contexts 𝐶 ⩴ 𝑙𝑖 ∼ 𝜏𝑖

Figure 3.2: The syntax of the Dargent surface language

Overlapping is not allowed, except for the payloads of the two constructors of the variant type,
since only one of them is relevant at each time, depending on the tag value. The layout must also
specify what the tag values for the variant constructors A and B are. We will give a layout to this
type after a short introduction to the Dargent language constructs.

Layouts cannot currently be assigned to unboxed records, i.e. records that are not behind a
pointer (for example, a stack-allocated local variable). We plan to overcome this limitation in the
future.

In Figure 3.2 we present the surface syntax for Dargent. A layout expression is a description
of the usage of some (heap) memory. It only describes the low-level view of a memory region—it
is not associated to any particular algebraic data type. From this perspective, Dargent descrip-
tions are independent of Cogent types. As we will shortly see, however, a given Cogent type
can only be laid out in certain ways, which places restrictions on which layouts can be assigned
to a given type.

When specifying a layout, two pieces of information are relevant: how much space a com-
ponent occupies in memory and where it is placed in relation to the overall heap object in which
it is contained. Primitive types, such as integer types and booleans, are laid out as a contiguous
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block of memory of a particular size. For example, a contiguous 4-byte block would be an appro-
priate layout for the 32-bit word type U32. A block of memory is specified as a size expression,
which can be in bytes (B), bits (b), or additions of smaller sizes. Additionally, memory blocks of
word size (e.g. 1 byte, 2 bytes, 4 bytes and 8 bytes) can be given an endianness (BE or LE), with
the using keyword.

A boxed component of a composite type is represented as a pointer, and thus must be de-
scribed with the special pointer layout, and not as a chunk of memory. This special layout im-
proves readability of code, and also offers better portability: a pointer layout will have different
sizes depending on the host machine’s architecture.

Layouts for record types use the record construct, which contains sub-expressions for the
memory layout of each field. As we can specify memory blocks down to the individual bits, we
can naturally represent records of boolean values as a bitfield:

layout Bitfield = record {x ∶ 1b,y ∶ 1b at 1b, z ∶ 1b at 2b}

Here the at operator is used to place each field at a different bit offset, so that they do not overlap.
If two record fields have overlapping layouts, the description is rejected by the compiler.

The at operator can be applied to any layout expressions, which will shift the entire expres-
sion by the specified amount. Alternatively, the after operator can be used in a record layout to
specify the location of a field relative to another one.

layout Bitfield = record {x ∶ 1b,y ∶ 1b after x, z ∶ 1b after y}

In the layout above, a later field is placed right after the previous one. This saves the programmer
from calculating the concrete offset values. When no offset (at or after) is given, it will by default
place the field after the previous one. The layout above can be simplied to

layout Bitfield = record {x ∶ 1b,y ∶ 1b, z ∶ 1b}

Layouts for variant types use the variant construct. It firstly requires a layout expression
for the tag. Then, for each constructor in the variant, a specific tag value needs to be assigned,
followed by a layout expression for the payload of that constructor. When one alternative is
taken, the memory used by other alternatives becomes irrelevant, which is why the memory for
the payloads can overlap. Additionally, Dargent allows for zero-sized payloads. For instance,
the Maybe 𝑎 type, defined as ⟨Just 𝑎 ∣ Nothing ()⟩, may be given a layout in which the payload
for constructor Nothing does not occupy any memory.

Array layouts are used for describing built-in array types in Cogent. Currently we only
allow a uniform layout for all elements of an array. Therefore, in the array layout expression,
the programmer only needs to supply a layout for the first element, along with the length of
the array, which is restricted to a constant integer. Unlike layouts for other types, because of
the iterative nature of arrays, working out the occupied bits for each array element could be
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tricky: even though we require all elements to share a uniform layout, each element clearly has
a different offset to the beginning of the array. Therefore if an offset is given to ℓ in an array
layout array {ℓ} [𝑛], it effectively applies the offset to the entire array, rather than the element’s
offset to each array cell. For instance, a layout array {3B at 1B} [3] will render an array in the
first shape rather than the second one:

[0] [1] [2]

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B

[0] [1] [2]

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B

To achieve the second layout, some extra work is required. Thankfully, such a layout is arguably
less useful in practice, and if it is genuinely desired, one would need to define the element type
to be four-byte long, including an explicit padding field for the unused byte in each element. We
will give a formal semantics to layout expressions in Section 3.2.5.

Similar to Cogent types, Dargent expressions are also structural. Layout synonyms can be
defined using the layout keyword, just as Cogent type synonyms are defined using the type

keyword. For example,

layout FourBytes = 4B

defines a layout synonym FourBytes, which is definitionally equal to 4B on the right hand side.
Layout and type synonyms can take parameters.

We can now give a Dargent description to the Example type in Figure 3.1 (assuming a 64-bit
architecture):

layout ExampleLayout = record {

struct ∶ record {a ∶ 4B , b ∶ 1b },
ptr ∶ pointer at 8B ,
sum ∶ variant (1b)

{A(0) ∶ 2B at 1B , B(1) ∶ 1B at 1B } at 5B

}

Figure 3.3 gives a pictorial illustration of this memory layout. In the layout above, it is worth
noting that the at 1B offsets for the two payloads of A and B are in relation to the beginning
of the sum field, which is 5 bytes (5B) from the beginning of the top-level structure. We can
equivalently write variant (1b at 5B) {A(0) ∶ 2B at 6B,B(1) ∶ 1B at 6B} at 0B for the sum field
without changing its layout.

At this point, this layout is still independent of the Cogent type, and the compiler will only
check that this layout definition is well-formed: that it does not have overlapping fields, that the
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a b
A

B
ptr

if=0

if = 1

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B 16B

Figure 3.3: The ExampleLayout, visualised

tag values are distinct, and so on. To associate a layout to a type, we add a layout keyword to the
type language of Cogent. For this example, the type Example layout ExampleLayout describes
the type Example laid out according to the description in ExampleLayout. The compiler will check
that ExampleLayout is an appropriate layout for the Cogent type Example. We will talk more
about the well-formedness and matching rules later in Section 3.2.5. To reduce verbosity, a type
synonym can be given to the layout-annotated type above.

3.2.2 Layout Polymorphism

We extend Cogent’s existing parametric polymorphism mechanism to support layout polymor-
phism. This feature allows users to abstract over the layout that they would like to assign to a
certain type. In a Cogent function signature, layout variables, just as type variables, can be uni-
versally quantified. These layout variables may be constrained, similarly to type constraints in
Haskell, which require that a layout variable matches a type.2 For example, in the code snippet
below,

type Pair 𝛼 = {fst ∶ 𝛼, snd ∶ 𝛼}

layout LPair 𝑙 = record {fst ∶ l, snd ∶ l at 4B}

freePair ∶ ∀(𝛼, 𝑙 ∶∼ 𝛼). Pair 𝛼 layout LPair 𝑙 → ()

we define a parametric type synonym Pair 𝛼 and layout synonym LPair 𝑙, and an abstract poly-
morphic function that operates on such a pair. In the function’s type, we require layout 𝑙 to be
compatible with type 𝛼, so that the LPair 𝑙 is always a valid layout expression for type Pair 𝛼.
Layout-polymorphic functions may be explicitly applied to layouts, akin to explicit type appli-
cations. For example, freePair[U32]{{FourBytes}} instantiates 𝛼 to U32 and 𝑙 to FourBytes. If the
type–layout application is incompatible, as for instance in freePair[U8]{{1b}}, where 1b is not big
enough to store the U8, the typechecker will reject such a program. The typechecker also ensures
that any instantiation of 𝑙 produces layouts that are well-formed. For example, if 𝑙 is instantiated
with 8B, it will render LPair 𝑙 ill-formed, as the snd field will overlap with the fst. This can be
rectified by using the after relative location (or leaving the location implicit) instead, which will
automatically place the snd field right after fst.

2A formal definition of layout matching is discussed in Section 3.2.5.
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Layout polymorphism is necessary to retain the full generality of type polymorphism in
the presence of Dargent, as demonstrated by the example above. Layout polymorphism also
facilitates code reuse in several scenarios:

(1) It can be used in programs that are architecture-agnostic. For the same program running on
different architectures, the same algebraic datatypemay be laid out differently according to
the hardware it runs on. These datatypes are not necessarily part of the API, as developers
tend to design interfaces in an architecture-independent manner and these types thus have
uniform layouts across different architectures. However, datatypes that are internal to the
program can be represented with appropriate layouts to best suit the architecture and the
respective C compiler for better performance.

(2) Besides architectural differences, layout polymorphism allows types to be reused more
broadly across different applications. For instance, colours are a general concept indepen-
dent of the application. One common way to logically represent a colour is the ARGB
model. However, the actual low-level layouts for the logical ARGB value vary. Commonly
used layouts include ARGB32 and RGBA32, and other layouts also exist. In this case, devel-
opers can simply define an ARGB colour type with a polymorphic layout to be determined
at use-sites.

(3) Layout polymorphism also facilitates software engineering practices. For example, de-
velopers can start with the default layout without a Dargent annotation, and incremen-
tally optimise the program to use more compact and efficient Dargent layouts. In this
case, they simply instantiate the layouts differently, without needing to re-define the types.
Benchmarking is another use case: developers can easily have the same type with different
instantiations side-by-side to study their performance differences.

3.2.3 Dargent Typechecking

In this section, we give an informal account of the typechecking phase of the surface language.
The Dargent surface language will be later desugared into a core calculus (cf. Section 3.2.4), and
typechecking will be repeated on the core language. The two typechecking phases are largely
similar. Since we only formalise the core language, we will defer the discussion of formal typing
rules to the core language in Section 3.2.4. Here we only try to provide some intuition.

The first check on the Dargent layout is its well-formedness. It not only checks for the
obvious malformed Dargent definitions such as duplicate field names in a record, but also for
the allocated memory for the layout. For example, the fields of a record cannot overlap with
each other. This is done by recursively examining each component in the layout definition and
observe which bits are used by each substructure. A notion of allocation is coined to capture
this information. A well-formed layout can be represented as a valid allocation, which is a non-
overlapping set of bits that the layout claims to use.

Once the Dargent layouts and Cogent types are all checked to be well-formed, the type-
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Bit ranges 𝑟

Offsets 𝑜 ∈ ℕ

Layouts ℓ ⩴ () (unit layout)
∣ 𝑟𝜔 (primitive layouts)
∣ 𝑙{𝑜} (layout variables)
∣ record {f𝑖∶ ℓ𝑖}
∣ variant (ℓ) {A𝑖 (𝑛𝑖)∶ ℓ𝑖}

∣ array {ℓ} [𝑛]

Field names ∋ f
Constructors ∋ A
Endianness 𝜔 ⩴ BE ∣ LE ∣ME

Natural numbers ∋ 𝑛

Layout contexts 𝐶 ⩴ 𝑙𝑖 ∼ 𝜏𝑖

Figure 3.4: The syntax of the Dargent core language

checker also ensures that the given layout matches the type to which it is attached. Intuitively,
it means that the layout is suitable to store the data of a certain type. For example, the space
to store a U16 needs to be big enough, and a record layout should be used to store the data of
a record type. The surface typechecker, as detailed in [O’Connor 2019b], is constraint-based.
To resolve the constraints about matching layout-type pairs, the expected pairs of layouts and
types will be added to a pool of constraints. Most of the constraints will be decomposed into
smaller and simpler constraints during the structural decomposition phase—the simplifier, and
eventually bottom out as axioms (e.g. memory blocks and primitive types) or errors. Most of the
constraints involving Dargent layouts can be solved independently of other type constraints.
Of course, they will need to wait until the relevant type unifiers are instantiated. Apart from the
layout-type matching, the surface typechecker is also responsible for the inference of implicit
Dargent layout applications, akin to implicit type applications in polymorphic functions.

3.2.4 The Dargent Core Calculus

After the surface typechecking phase, with the inferred types and layouts explicitly annotated in
the syntax tree, the Dargent surface language is desugared into a smaller core calculus, whose
syntax is outlined in Figure 3.4. The core calculus is the language on which the verification is
based. As can be seen in the figure, layouts consist fundamentally of bit ranges, which describe
which bits in memory are used to store each piece of data. The definition of bit ranges is not given
in the figure, because our core calculus is parametric over the exact bit range representation—
at different points in the compilation pipeline, bit ranges are represented differently, to suit the
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purpose of that particular phase of the compilation.

Bit ranges are annotated with an endianness to form a primitive layout in our core language.
When the endianness is not specified in the surface language, amachine endianness will be given
by default, written ME in core. When C code is generated, a subroutine will be invoked to
determine the machine endianness, so that the C code works as intended. In this chapter, when
the endianness is unimportant, we will leave out the endianness subscript from the syntax 𝑟𝜔.

When the surface layout expressions are first desugared, the bit ranges are represented as
BitRange (𝑜, 𝑠), which is a pair of natural numbers, indicating the offset (𝑜 bits) from the beginning
of the top-level heap object in which it is contained, as well as the range occupied (𝑠 bits). In
BitRange (𝑜, 𝑠), we require 𝑠 > 0 for convenience. For zero-sized layouts, the empty layout () can
be used instead.

Layout variables are given the form l{𝑜}, as we additionally need to remember the offset to
be applied to the layout variable after its instantiation. When l is instantiated, it will be shifted
to the right by 𝑜 bits. The other core layouts are very similar to their counterparts in the surface
language.

In summary, the desugarer converting the surface layout expressions to the core calculus
must perform the following tasks:

• expanding layout names to layout definitions;
• computing size expressions into bit ranges;
• computing offsets relative to the beginning of the top-level heap object;
• inserting explicit layout applications to any layout polymorphic function calls.

The desugaring algorithm is a simple inductive definition, which can be found in Figure 3.5. Note
that, because the after offset operator needs to know about the fields in the records, they have
been expanded to the equivalent at operators in an earlier phase of compilation. Therefore the
desugaring algorithm is not concerned with the relative offsets.

Dargent is used for describing the layout of heap memory. To cover all the heap memory
that is addressable from an object, it suffices to attach a layout description to all the pointers the
object contains. Recall that in Cogent, if an object is referenced by-pointer, it has a boxed type.
This is to say that we only need to annotate boxed types with layout information. In the Example
type that we showed earlier in Figure 3.1, the layout annotation ExampleLayout is attached to the
Example type, which is a boxed type. That layout description contains all the information about
how the fields should be laid out, including the unboxed fields struct and sum, which also reside
in the heap. For the boxed field ptr, however, the description in ExampleLayout does not extend
beyond the indirection—it only knows that ptr is a pointer but it is oblivious to the memory
layout behind it. To prescribe the layout for {c ∶ U8}, a separate layout annotation should be
attached to this type, e.g. {c ∶ U8} layout record {c ∶ 1B}.

As we have discussed informally in Section 2.3, the boxedness of a type is denoted by a sigil
in Cogent. Since we only need layouts to be specified at boxed type locations, we can extend
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ℓ
dsgr
↪ ℓ′

sizeBits (𝑠) ≠ 0 ℓ = BitRange (0, sizeBits (𝑠))

𝑠
dsgr
↪ ℓME

SizeDs
sizeBits (𝑠) = 0

𝑠
dsgr
↪ ()

Size0Ds

𝑙
dsgr
↪ 𝑙

VarDs
ℓ = BitRange (0,𝑀)

pointer
dsgr
↪ ℓME

PtrDs

ℓ
dsgr
↪ ℓ′

ℓ using 𝜔
dsgr
↪ ℓ′𝜔

EndianDs
𝐿 𝑙𝑖 = ℓ ∈ TypeDefs ℓ

dsgr
↪ ℓ′

𝐿 𝑙𝑖
dsgr
↪ ℓ′

NameDs

ℓ
dsgr
↪ ℓ′ sizeBits (𝑠) = 𝑏

ℓ at 𝑠
dsgr
↪ offset (𝑏, ℓ′)

OffsetDs

for each 𝑖: ℓ𝑖
dsgr
↪ ℓ′𝑖

record {f𝑖 ∶ ℓ𝑖}
dsgr
↪ record {f𝑖 ∶ ℓ′𝑖}

RecordDs

ℓ𝑡
dsgr
↪ ℓ′𝑡 for each 𝑖: ℓ𝑖

dsgr
↪ ℓ′𝑖

variant (ℓ𝑡) {A (𝑣𝑖) ∶ ℓ𝑖}
dsgr
↪ variant (ℓ′𝑡) {A (𝑣𝑖) ∶ ℓ′𝑖}

VariantDs

ℓ
dsgr
↪ ℓ′

array {ℓ} [𝑛]
dsgr
↪ array {ℓ′} [𝑛]

ArrayDs

offset (𝑜, ()) = ()

offset (𝑜,BitRange (𝑜′, 𝑠)) = BitRange (𝑜 + 𝑜′, 𝑠)

offset (𝑜, 𝑙{𝑜′}) = 𝑙{𝑜 + 𝑜′}

offset (𝑜, record {f𝑖 ∶ ℓ𝑖}) = record {f𝑖 ∶ offset (𝑜, ℓ𝑖)}
offset (𝑜, variant (ℓ𝑡) {A𝑖(𝑣𝑖) ∶ ℓ𝑖}) = variant (offset (𝑜, ℓ𝑡)) {A𝑖(𝑣𝑖) ∶ offset (𝑜, ℓ𝑖)}
offset (𝑜, array {ℓ} [𝑛]) = array {offset (𝑜, ℓ)} [𝑛]

sizeBits (𝑛B) = 8𝑛

sizeBits (𝑛b) = 𝑛

sizeBits (𝑏1 + 𝑏2) = sizeBits (𝑏1) + sizeBits (𝑏2)

Figure 3.5: Desugaring Dargent. 𝑀 is the pointer size in bits; TypeDefs stores the layout syn-
onyms.
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the definition of sigils in the core language to accommodate Dargent layouts:

Sigils 𝑠 ∶∶= w©ℓ (writable)
∣ r©ℓ (readonly)
∣ u© (unboxed)

If the sigil is boxed (either writable or read-only), it can carry a Dargent layout. We use
b©ℓ as a notational convenience when we do not wish to distinguish its mutability. When the
layout annotations are left out, the type will be compiled with the default layout chosen by the
compiler, as introduced in Section 2.3. This ensures that the language is backward compatible
and allows for a smooth transition for the programmers.

3.2.5 The Static Semantics with Dargent

In the rest of this section, we give a formal account of the static semantics of the core calculus.
Firstly, we present the well-formedness rules for Dargent layouts. The well-formedness of lay-
outs are specified in terms of allocations, which denote the set of bits that each layout occupies in
memory. In this formalisation, we choose to use a set of bit ranges BitRange (𝑜𝑖, 𝑠𝑖) to represent
the set of allocated bits. This is not the only way to represent the memory allocation, but it is
easy to work with both for the well-formedness checks and for the remainder of the compilation
process. As a notational convenience, we use the single element to mean the singleton set that
the element comprises. When the unions of bit ranges are taken, we do not need to collapse
them into a single bit range. In many cases, they are disjoint anyway and cannot be combined
into one.

A layout ℓ is well-formed, if there exists an allocation 𝑎 such that ℓ ≍ 𝑎 holds. The judgement
ℓ ≍ 𝑎 can be read as: the allocation 𝑎 is reserved for layout ℓ. Formally, ℓ wf def

= ∃𝑎. ℓ ≍ 𝑎. The
allocation rules are specified in Figure 3.6. It only highlights the allocation aspects of the well-
formedness, but leaves implicit the scope checking of layout variables, which would require a
context but is otherwise straightforward.

One important requirement in the allocation rules is that certain parts of a composite type
do not overlap in memory. For example, the fields in a record type cannot overlap, and any
payload in a variant type cannot overlap with the tag. For variant layouts, there are a few more
things that need to be checked: (1) The tag values have to be distinct, so that the payload can
be disambiguated. (2) The tag size is smaller than an int in C. (3) The tag size is no bigger
than necessary to store the tag values; this ensures that there is a unique way to sensibly store
the tag value and the layout description has no ambiguity. The second point above deserves
some more elaboration. Technically, the restriction on the size of the tag is not necessary and
we require it as such mainly for simplicity in code generation. The real technical restriction
is, in a Cogent program, regardless of the use of Dargent, if there are more than 231 distinct
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ℓ ≍ 𝑎

() ≍ BitRange (0, 0)
UnitAlloc

BitRange (𝑜, 𝑠) ≍ BitRange (𝑜, 𝑠)
PrimAlloc

ℓ ≍ 𝑎 𝑎 = BitRange (𝑜, 𝑠) 𝑠 ∈ {8, 16, 32, 64}

ℓ using 𝜔 ≍ 𝑎
EndianAlloc

(layout variables are not checked)

fi distinct for each 𝑖: ℓ𝑖 ≍ 𝑎𝑖 𝑎𝑖 disjoint

record {fi ∶ ℓ𝑖} ≍ ⋃
𝑖
𝑎𝑖

RecordAlloc

ℓ𝑡 ≍ BitRange (𝑜𝑡, 𝑠𝑡) A𝑖 distinct 𝑣𝑖 distinct
𝑠𝑡 ≤ 𝑁 2𝑠𝑡−1 ≤ max 𝑣𝑖

for each 𝑖: 𝑣𝑖 < 2𝑠𝑡 ℓ𝑖 ≍ 𝑎𝑖 BitRange (𝑜𝑡, 𝑠𝑡), 𝑎𝑖 disjoint

variant (ℓ𝑡) {A𝑖 (𝑣𝑖) ∶ ℓ𝑖} ≍ ⋃
𝑖
𝑎𝑖 ∪ BitRange (𝑜𝑡, 𝑠𝑡)

VariantAlloc

ℓ ≍ BitRange (𝑜, 𝑠)

array {ℓ} [𝑛] ≍
𝑛−1

⋃
𝑖=0

BitRange (𝑖 ⋅ 8 ⋅ ⌈𝑠/8⌉ + 𝑜, 𝑠)

ArrayAlloc

(⌈⋅/⋅⌉ computes the integer division rounded up)

Figure 3.6: Space allocation rules for Dargent. 𝑁 is the int size in bits.

constructors, the C verification may fail.3 This is because tags are compiled to enumeration
constants. The C standard [ISO 1999, §6.7.2.2] requires that the enumeration constants to be
representable as int, and accordingly in our C verification tool AutoCorres [Greenaway 2015;
Greenaway et al. 2014], enumeration constants are defined to be signed 32-bit words. As the
Cogent compiler only uses the non-negative values for enumeration members, we can have at
most 231 constructors in any Cogent program. This restriction does not preclude us from having
a tag value that is greater than 231 − 1. When Dargent is used, the value of a tag does not need
to agree with the enumeration constant for that tag in the default layout. Dargent allows a
Cogent type to be refined differently between the default layout and a custom one, or among
custom layouts. What matters is the correspondence between the algebraic constructor and the
underlying representation specified by a layout. It is perfectly fine for a constructor A that, the
enumeration constant defined for it has value 1, whereas in the Dargent layout we specify it to
be 264 − 1.

In the ArrayAlloc rule, we derive the respective allocation of each element in the array,

3Similarly, functions symbols are compiled to enumeration members, therefore there is a similar restriction on the
amount of functions.
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based on the layout of the first element. From this rule we can see that all elements can be
accessed in the same way: the bitwise operations are the same for all elements, but on different
bytes in the representing array.

We are unable to fully check the well-formedness of layouts which involve layout variables.
For instance, a record layout record {f ∶ l, g ∶ 1B at 1B} can either be well-formed or ill-formed
depending on what l is instantiated to. This requires that the well-formedness checks on (layout)
polymorphic functions to be conducted at call sites, when the layout variables are instantiated
to concrete layouts. This is enabled by the fact that in Cogent, polymorphism is restricted to
predicative rank-1 universal quantifiers.

The second check after the well-formedness of layouts is the match relation between a layout
and a type, which we mentioned earlier in Section 3.2.3. When we attach a Dargent layout to
a Cogent type, we need to check that they are compatible. We notice that, as far as the layout
is concerned, the structural and representational information of types are relevant, whereas the
linearity properties are not. To reflect this, instead of checking directly on types, we apply an
erasure function to Cogent types that removes the linearity information. These types are called
type representations, which are denoted as ̂𝜏. In fact, the notion of linearity erasure and type
representation is used not only in layout checks; they are also key ingredients in the C refinement
proofs [Rizkallah et al. 2016]. The definition of type representations are given in Figure 3.7.4 In
particular, a function type is unified to a single type fun, which represents a function symbol.
This is because in the target language, functions are compiled to function symbols, which are
elements of an enumeration in C. We keep the sigils in the type representations, as the sigils
store the layout information of the data structure behind the pointer. That allows us to define
the 𝒬 ⊢ ̂𝜏 ok and 𝒬 ⊢ ℓ ∼ ̂𝜏 rules mutually inductively later. Once we collect all the matching
pairs that need to be checked, we can coalesce all the boxed type representations to a singleton
pointer type representation, similar to how we treated functions.

In Figure 3.8, we show the type well-formedness rules and the companion match rules. Here,
we only focus on the Dargent-related aspects of the well-formedness checks; other syntactic
or semantic criteria such as duplicate field names or linearity properties are omitted from these
rules. The match rules are rooted in the well-formedness checks for boxed types of the form
𝒬 ⊢ ̂𝜏 ok. This is because Dargent layouts are given as part of boxed sigils in types. Such
checks can be decomposed into match rules of individual components of boxed composite types.
The match rules are of the form 𝒬 ⊢ ℓ ∼ ̂𝜏, meaning that under the assumption 𝒬, layout ℓ
can accommodate a type ̂𝜏, where 𝒬 contains the known constraints, which are either axioms or
come from the constraint 𝐶 in the type scheme ∀𝛼𝑖 𝑙𝑗. 𝐶 ⇒ 𝜏1 → 𝜏2 of a function’s type.

For primitive types, we require the size of the layout to perfectly match the size of the type.

4We use a different meta-variable �̂� to range over type representation variables, as it subsumes type variables and
the !-ed variants of type variables. However, for () and primitive types, we do not make such syntactic differentiation,
because they correspond one-to-one with their original counterparts. Note that, for example, U32! ≡ U32.
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Type representations ̂𝜏 ⩴ () (unit)
∣ �̂� (variables)
∣ fun (function)
∣ {f𝑖 ∶ ̂𝜏𝑖} 𝑠 (records)
∣ ⟨A𝑖 ̂𝜏𝑖⟩ (variants)
∣ ̂𝜏[𝑛] 𝑠 (arrays)
∣ Bool ∣ U1 ∣ … ∣ U64 (prim. types)
∣ C ̂𝜏 𝑠 (abs. types)

(lists are represented by overlines)

Figure 3.7: Syntax of type representations.

This design may seem overly restrictive, but allowing for a larger layout is ambiguous. Questions
like which bits are used to store the data and where the padding is placed can arise. We therefore
require an exact match to avoid under-specification. It also simplifies other rules about layouts,
as we will see shortly. When dealing with layout variables (rule VarMatch), we need to deduce
𝑙 ∼ ̂𝜏 from the knowledge we have in the context. The judgement ̂𝜏 ≲ℓ ̂𝜏′ (Figure 3.9) is essentially
an implication that 𝑙 ∼ ̂𝜏′ ⟹ 𝑙 ∼ ̂𝜏. This relation, although defined as an implication, is in fact
an equivalence relation in the current setting, as we don’t allow under-specifying the layout of
a type. We keep this asymmetric notion for future extensions.

As Dargent layouts now become part of the sigils in boxed types, they also affect the sub-
typing relations among types. This is the third check that we need to perform due to Dargent
layouts. As remarked in Section 2.3.1, one key criterion for subtyping is that if two types form
a subtyping relation, these two types must have the same underlying representation. With the
addition of Dargent, we simply retain this criterion, requiring that the subtype and the super-
type have the same Dargent layout, if they are both boxed. From this extension, it again clearly
demonstrates the advantages of our design principle of subtyping, without which the subtyping
relation would be much more convoluted with Dargent.

Finally, there is another static check that needs to be adapted for Dargent—typechecking
polymorphic functions. We need to extend the Cogent typechecking rules to accommodate
layout applications. The extended typing rule for simultaneous type/layout applications is as
follows (other contexts and checks that are independent of layouts are omitted):

typeOf(f ) = ∀ 𝛼𝑖 𝑙𝑗. 𝐶 ⇒ 𝜏1 → 𝜏2 𝒬 ⊢ 𝐶[𝜏𝑖/𝛼𝑖][ℓ𝑗/𝑙𝑗]

𝒬 ⊢ f [𝜏𝑖]{{ℓ𝑗}} ∶ (𝜏1 → 𝜏2)[𝜏𝑖/𝛼𝑖][ℓ𝑗/𝑙𝑗]
TyLyApp

It instantiates the constraint 𝐶 in the type scheme, and the instantiated layout-type pairs should
be subject to the match rules displayed in Figure 3.8, under the set of known constraints 𝒬. Note
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𝒬 ⊢ ̂𝜏 ok

𝒬 ⊢ ℓ ∼ {f𝑖 ∶ ̂𝜏𝑖} u©

𝒬 ⊢ {f𝑖 ∶ ̂𝜏𝑖} b©ℓ ok
RecordOk

𝒬 ⊢ ℓ ∼ ̂𝜏[𝑛] u©

𝒬 ⊢ ̂𝜏[𝑛] b©ℓ ok
ArrayOk

𝒬 ⊢ ℓ ∼ C ̂𝜏 u©

𝒬 ⊢ C ̂𝜏 b©ℓ ok
AbsTyOk

𝒬 ⊢ ℓ ∼ ̂𝜏

bits (𝑇) = 𝑠 𝑇 is a primitive type

𝒬 ⊢ BitRange (𝑜, 𝑠) ∼ 𝑇
PrimTyMatch

bits (U𝑛) = 𝑛

bits (Bool) = 1

𝑙 ∼ ̂𝜏′ ∈ 𝒬 ̂𝜏 ≲ℓ ̂𝜏′

𝒬 ⊢ 𝑙{𝑜} ∼ ̂𝜏
VarMatch

̂𝜏 is boxed 𝒬 ⊢ ̂𝜏 ok 𝑀 is the pointer size

𝒬 ⊢ BitRange (𝑜,𝑀) ∼ ̂𝜏
BoxedTyMatch

𝑁 is the size of int

𝒬 ⊢ BitRange (𝑜, 𝑁) ∼ fun
FunMatch

𝒬 ⊢ () ∼ ()
UnitMatch

for each 𝑖: 𝒬 ⊢ ℓ𝑖 ∼ ̂𝜏𝑖

𝒬 ⊢ record {f𝑖 ∶ ℓ𝑖} ∼ {f𝑖 ∶ ̂𝜏𝑖} u©
URecordMatch

for each 𝑖: 𝒬 ⊢ ℓ𝑖 ∼ ̂𝜏𝑖

𝒬 ⊢ variant (BitRange (𝑜𝑡, 𝑠𝑡)) {C𝑖 (𝑣𝑖) ∶ ℓ𝑖} ∼ ⟨C𝑖 ̂𝜏𝑖⟩
VariantMatch

𝒬 ⊢ ℓ ∼ ̂𝜏 ℓ is byte aligned

𝒬 ⊢ array {ℓ} [𝑛] ∼ ̂𝜏[𝑛] u©
UArrayMatch

ℓ ∼ C ̂𝜏 u© ∈ 𝒬 ℓ = BitRange (𝑜, 𝑠)

𝒬 ⊢ ℓ ∼ C ̂𝜏 u©
UAbsMatch

Figure 3.8: Dargent Typing Rules

that we also need to check the well-formedness of all the involved layouts that were previously
inhibited by the presence of layout variables. This is left implicit in the rule above.

3.2.6 The Meta-Properties of the Type System

With the augmentation of Dargent to Cogent’s type system, we are able to re-establish the
meta-properties about the type system. The changes needed are minimal, and are chiefly around
type specialisation (see [O’Connor, Z. Chen, Rizkallah, et al. 2016] for more details). The special-
isation of types is a key ingredient in proving the correctness of monomorphisation. It allows
us to carry results of the polymorphic language over to the monomorphic instantiations, upon
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blockSize ( ̂𝜏) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

bits (𝜏) if ̂𝜏 is a primitive type
𝑁 if ̂𝜏 is a function type
𝑀 if ̂𝜏 is a boxed type
0 if ̂𝜏 = ()

⊥ otherwise

(𝑀 is the size of a pointer, and 𝑁 is the size of an int)

̂𝜏 ≲ℓ ̂𝜏′

�̂� ≲ℓ �̂�
VarCompt

blockSize ( ̂𝜏) ≤ blockSize ( ̂𝜏′)

̂𝜏 ≲ℓ ̂𝜏′
BlockCompt

for each 𝑖: ̂𝜏𝑖 ≲ℓ ̂𝜏′𝑖

{f𝑖 ∶ ̂𝜏𝑖} u© ≲ℓ {f𝑖 ∶ ̂𝜏′𝑖 } u©
URecordCompt

for each 𝑖: ̂𝜏𝑖 ≲ℓ ̂𝜏′𝑖

⟨C𝑖 ̂𝜏𝑖⟩ ≲ℓ ⟨C𝑖 ̂𝜏′𝑖 ⟩
VariantCompt

̂𝜏 ≲ℓ ̂𝜏′

̂𝜏[𝑛] u© ≲ℓ ̂𝜏′[𝑛] u©
UArrayCompt

Figure 3.9: Type-compatibility rules

which the dynamic semantics is defined. Contrary to the original language, in which only type
polymorphism is present, the introduction of layout polymorphism with constraints restricts the
domain of layouts and types that can apply to a function. As we have just seen, in the typing
judgement, we need to keep an extra context 𝒬, which keeps track of the pairs of layouts and
types that need to match. In particular, in the type specialisation lemmas [O’Connor, Z. Chen,
Rizkallah, et al. 2016, Lemmas 3 and 4], we can see how the context 𝒬 gets extended with the
new pairs induced by the type and layout instantiations:

Lemma 3.1 (Specialisation lemmas). Let 𝜌𝑖 be a list of well-formed types and ℓ𝑗 be a list of well-
formed layouts. Let 𝛼𝑖 denote the list of type variables declared in Δ, and 𝑙𝑗 is a list of layout variables
forming 𝐿.

• Δ; 𝐿; 𝒬 ⊢ 𝜏 wf implies Δ; 𝐿; 𝒬′ ⊢ 𝜏[𝜌𝑖/𝛼𝑖, ℓ𝑗/𝑙𝑗] wf; and
• Δ; 𝐿; 𝒬 ⊢ 𝑒 ∶ 𝜏 implies Δ; 𝐿; 𝒬′ ⊢ 𝑒[𝜌𝑖/𝛼𝑖, ℓ𝑗/𝑙𝑗] ∶ 𝜏[𝜌𝑖/𝛼𝑖, ℓ𝑗/𝑙𝑗]

when the following conditions hold:
• for each i, Δ; 𝐿; 𝒬′ ⊢ 𝜌𝑖 wf;
• for each k such that ℓ𝑘 ∼ ̂𝜏𝑘 ∈ 𝒬, 𝐿 ⊢ ℓ𝑘[ℓ𝑗/𝑙𝑗] wf and 𝒬 ⊢ ℓ𝑘[ℓ𝑗/𝑙𝑗] ∼ ̂𝜏𝑘[ ̂𝜌𝑖/�̂�𝑖],

where 𝒬′ is 𝒬 extended with ℓ𝑘[ℓ𝑗/𝑙𝑗] ∼ ̂𝜏𝑘[ ̂𝜌𝑖/�̂�𝑖] for each ℓ𝑘 ∼ ̂𝜏𝑘 ∈ 𝒬.

In this lemma, the Δ; 𝐿; 𝒬 ⊢ 𝜏 wf judgement is the Cogent type well-formedness judgement
augmented with the 𝒬 ⊢ ̂𝜏 ok check outlined in Figure 3.8, and 𝐿 ⊢ ℓ wf is the well-formedness
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of layouts implied by the rules in Figure 3.6. [𝜌𝑖/𝛼𝑖, ℓ𝑗/𝑙𝑗] denotes the simultaneous substitution
of type variables 𝛼𝑖 and layout variables 𝑙𝑗. The lemma states that, if a poly-type 𝜏 is well-formed,
then instantiating it with well-formed types and layouts preserves its well-formedness. It also
states that the type and layout instantiation preserves the typing of expressions. The second
condition in the lemma ensures that the instantiation does not render any currently well-formed
layout ill-formed, nor does it invalidate any existing layout-type matching registered in 𝒬. Once
they are checked, the instantiated pairs will be added to the context 𝒬′, and under the extended
context 𝒬′ we check for well-formedness of 𝜌𝑖 for all 𝑖. This reflects how we progressively check
for layout well-formedness and layout-type matching as we gain more knowledge about how
variables are instantiated.

We give a concrete example to show an application of the lemma.

Example 3.1. Assuming the appropriate contexts Δ, Δ′, 𝐿 and 𝐿′. Let ℓ1
def
= record {f1 ∶ 𝑙1, f2 ∶ 𝑙2}

and 𝜏1
def
= {f1 ∶ 𝛼1, f2 ∶ 𝛼2} b©ℓ1

. We know that Δ; 𝐿; ℓ1 ∼ ̂𝜏1 ⊢ 𝜏1 wf. Let ℓ2
def
= ℓ1[1B at 1B/𝑙2]

and 𝜏2
def
= 𝜏1[U8/𝛼2]. According to Lemma 3.1, we need to show that ℓ2 is well-formed and ℓ2 ∼ ̂𝜏2,

which can be easily checked as per the rules defined in Section 3.2.5. In conjunction with the other
conditions, we are able to conclude that Δ′; 𝐿′; ℓ1 ∼ ̂𝜏1, ℓ2 ∼ ̂𝜏2 ⊢ 𝜏2 wf. If we further instantiate 𝑙1
and 𝛼1 with 4B and U32, we will get stuck with the well-formedness of ℓ2[4B/𝑙1], because the two
fields overlap in memory. This is only made possible with the extended 𝒬′ context, which contains
the partially instantiated ℓ2. 3

3.3 Compiling Dargent

In this section, we shift our focus to the back-end of the compilation, briefly discussing the target
C code generation process. Firstly, we look into the generated C code for boxed records when
Dargent annotations are present (Section 3.3.1), and we briefly discuss how the C refinement
proof is extended to account for layouts (Section 3.3.2). Later, we will discuss arrays and abstract
types (Section 3.3.3). Finally we dive in to the core language transformations needed to facilitate
code generation (Section 3.3.4).

3.3.1 C Code for Records

Records are the most widely used types in Cogent, and they are currently the only built-in types
in Cogent that can be boxed. We therefore use records as an example to discuss how Dargent
layouts influence the generated C code.

Without custom layouts, a Cogent record is directly compiled to a C struct with as
many fields as the original record: if 𝑇 = {𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵}, then J𝑇K is a pointer type to
struct {J𝐴K 𝑎; J𝐵K 𝑏; }, where J⋅K denotes the compilation of Cogent types to C types.

The Dargent extension to the compiler relies on the observation that we are free to choose
what a Cogent boxed record is compiled to as long as we provide getters and setters for each
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field, since they account for all the available Cogent operations on boxed records. Assigning a
custom layout ℓ to a Cogent record 𝑇 results in a C type that we denote by J𝑇Kℓ, consisting of
a C struct with a fixed sized array of words as a single field. The implementation chooses the
word size to be 32 bits, primarily because most Cogent programs we develop are targeting 32-bit
embedded systems, but this is not fundamental to the design and is easily made configurable to
any word size (by setting a compiler flag). It is worth mentioning that this does not mean that
a layout has to be a neat multiple of 32 bits in size. It is absolutely valid to have a record layout
like record {a ∶ 1B, b ∶ 3b}, 11 bits in total. When this layout is embedded in another layout, e.g.
record {x ∶ record {a ∶ 1B, b ∶ 3b},y ∶ 2B}, the remaining bits after the field b will be used by the
following field y, without any implicit padding.

The getters and setters for each field are generated according to the layout. If a top-level
boxed record 𝑇 contains a field a ∶ 𝐴, the C prototypes are

J𝐴K get_a (J𝑇Kℓ 𝑡);

void set_a (J𝑇Kℓ 𝑡, J𝐴K 𝑎);

Note that J𝐴K, the return type of the getter (and similarly for the second argument of the set-
ter function) does not involve the layout ℓ. If 𝐴 is a boxed type, then J𝐴K is a pointer to the
type 𝐴, whose layout is dictated by the layout information stored in 𝐴’s sigil, independent of
ℓ. If 𝐴 is unboxed, the getter function is the point at which we convert the low-level custom
representation governed by the layout ℓ into a standard representation of 𝐴, so that the value
of the field 𝑎 can be inspected by the rest of the program. As an example, consider the struct

field in Figure 3.1. Roughly, the generated C getter has prototype struct { U32 a; bool b; }

get_struct (Example * t), where Example is a C structure with a single field consisting of a
fixed sized array spanning 16 bytes.

Remarks—the choice of the target C types. We use a singleton struct rather than a bare C
array for a Dargent-annotated Cogent record. The reason is that we would like to retain a one-
to-one correspondence between Cogent types (up to their type representations) and C types.
Otherwise, any two Cogent types with the same length will be compiled to the extract same
array, which will obscure the correspondence between Cogent types and C types, rendering the
C refinement proofs much harder.

As we have briefly mentioned earlier, the choice of the 32-bit word array is primarily to
suit the applications that we developed using Dargent and is configurable. When the array is
accessed, the size of the array’s element type determines the granularity at which we process
data. When accessing a field in a record, the memory used by the field is partitioned into a list of
parts. Bit-wise operations are conducted on each individual part, and the results are combined
to form the value of a field.

When we write programs that access registers and memory of I/O devices, the architecture
mandates a certain access pattern, and the part size is thus determined by the application. In
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other cases, the choice of the part size is a matter of performance fine-tuning and can be set
to any size that the C compiler and the underlying architecture is optimised for. The smaller
the size, the more partitions needed, and vice versa. Currently, we have not yet attempted to
systematically study the performance implications of the part size.

When choosing a different part size, the verification of course needs to be adapted accord-
ingly. The C refinement verification works equally well for any chosen sizes: none is easier or
more difficult than another, and the proof is fully automatic in all cases, so it is mostly trans-
parent to the end users. What may matter is the amount of C code being generated due to the
different part size, and it has an impact, of a varying degree, on the performance of verification
(i.e. the resources Isabelle draws to process the proof scripts). End of remarks.

Getters and setters are generated recursively following the structure of the involved field
types. The process typically involves generating auxiliary nested setters and getters that directly
manipulate the data array based on the value of the nested field (such as a or b in the example of
Figure 3.1), and similarly for getters.

For example, the getter and setter for the struct field of Figure 3.1 are roughly implemented
as follows5:

// the data array

typedef struct Example { U32[4] data } Example;

struct field_struct { U32 a; bool b; };

// setter for the struct field

static inline void set_struct(Example * d, struct field_struct v) {

// calls to nested setters

set_struct_a(d, v.a);

set_struct_b(d, v.b);

}

// getter for the struct field

static inline struct field_struct get_struct(Example * d) {

// calls to nested getters

return (struct field_struct){.a = get_struct_a(d), .b = get_struct_b(d)};

}

As can be seen, a getter function (or similarly a setter) incurs a data format conversion: it turns
the low-level data format into a high-level typed value in C.Therefore getting and passing around
a large unboxed type can be expensive at run-time. In practice though, if the program is carefully

5The Cogent compiler is highly customisable with compiler flags and pragmas. For instance, the C compiler does
not have to support compound literals; the Cogent compiler is capable of generating them in alternative ways. The
C refinement proof generation may need to be extended with a little extra engineering work, as it is currently tailored
to the flags that we use in our experiments.
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designed and implemented, and the programmer only passes the minimal structures needed to
external functions, there is a good chance that an optimising C compiler is able to eliminate
unnecessary data conversions. The Cogent language and its compiler allow users to configure
the generated C functions. For instance, as shown in the code snippet above, getters and setters
are by default generated as static inline functions, which is configurable via compiler flags.
Cogent also allows programmers to annotate a Cogent function with a CINLINE pragma, so that
it is compiled to an inline C function, exposing more optimisation opportunities.

Invalid bit patterns Calling a getter on an external word array can lead to unexpected be-
haviours when the data format is invalid. This can happen, for instance, when variant types are
involved, if the value in the tag part does not match any tag values declared in the Dargent
layout. Any undefined tag values will be treated as the last constructor’s tag. For example, if
the layout of a variant is variant (2b) {A(0) ∶ 1B,B(1) ∶ 2B,C(2) ∶ 4B} and the tag value seen in
the data format is 3, which does not match any defined tag values but also fits in the 2-bit space
reserved for the tag, it will be deemed as the last alternative, namely C.

Dargent is not a low-level data parsing language, nor an interface language, therefore the
generated C getters do not check for validity, and assume that the input is valid. Users of the
language are responsible for checking the validity of any incoming data. These checks are typ-
ically performed at the C-Cogent language boundaries. In fact, the integrity of data within a
Cogent program should be maintained at all times, regardless of Dargent. Otherwise, the com-
piler may fail to generate a valid proof, or may result in untrue assumptions in the theorems that
can never be discharged. In either case, the soundness of the Cogent verification framework is
never compromised.

3.3.2 Formal Verification of Records

As mentioned earlier, the getter and setter for each field are what define the Dargent layout.
On the value semantic level (recall Section 2.5 that value semantics is the functional semantics
of Cogent), the getters and setters need to satisfy the following two compositional properties:

1. [Roundtrip] Getting a field should yield a value equivalent to what was previously set;
2. [Frame] Setting a field does not affect the result of getting another field.

It is worth mentioning that, somewhat unintuitively, extending the verification framework to ac-
count for Dargent does not require proving that the generated getters and setters are accessing
data at the locations specified by the layout; it is sufficient to show that they compose correctly as
listed above. We prove the compliance of the accessor functions with the Dargent specification
as an additional layer.

The verification of any software system must assume the correctness of a trusted computing
base (TCB) [Rushby 1981]. In Cogent systems, this TCB is largely comprised of externally pro-
vided C code. While the Cogent framework allows for manual verification of this C code [Che-
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ung et al. 2022], with Dargent we eliminate large swathes of this C code entirely, specifically
the so-called “glue code” which translates between data formats. This reduces the size of the TCB
without imposing any additional verification burden.

In Cogent’s refinement story, the addition of Dargent only affects the refinement between
Cogent’s stateful update semantics and the generated C code. Above this low-level layer, the
functional embeddings of Cogent still use high-level algebraic data types, regardless of the spec-
ified layouts. To re-establish the refinement relation between the C code and the Cogent seman-
tics, we developed some Isabelle/ML tactics to automatically prove the following:

(1) the correspondence between Cogent record values and C flat arrays;
(2) the correspondence between record operations in Cogent and in C;
(3) the compositional properties of generated getters and setters stated above;
(4) the correspondence between generated getters/setters and the specified layout.

For more details about the construction of the automatic verification mechanism, we refer inter-
ested readers to [Z. Chen, Lafont, O’Connor, et al. 2023].

3.3.3 Arrays and Abstract Types

Arrays and abstract types work slightly differently to record types. We first discuss array types.
Due to the iterative nature of arrays, when we generate getter/setter functions for accessing
array elements, we would ideally do it schematically: generate one getter and one setter function,
which take the index as an argument, and access the element in a uniform manner. This is in
contrast to record accessors, in which case we can generate one pair of accessors for each field
individually. To simplify this task, we choose the part size to be a single byte, rather than four
bytes as we did for records. This allows for an easy calculation of the position of each element
in the array, as we require the array elements to be byte aligned.

When accessing unboxed abstract types residing on the heap by value, there are two possible
reasons why the compiler-generated getters/setters are not suitable. Firstly, Cogent is oblivious
to the internal structures of abstract types. Even though with the size information in the layout,
Cogent knows where to access such an abstract type, it does not necessarily know how. Recall
that in Cogent, only heap-objects can have custom layouts with the help of Dargent. It means
that the abstract type on the heap may have a different layout to its stack counterpart. When
moving an object of an abstract type from the heap to the stack, it may require converting from
the custom layout to a default one (and similarly for the other direction). Secondly, the size of
the abstract type can be large, making value copying part by part inefficient. Instead, memory
area copy functions may be preferred for these tasks, such as the memcpy family. To grant such
flexibility to the users, the Cogent compiler allows users to define their own getter/setter func-
tions for record fields.6 The user-defined accessors may have different function signatures than

6The record field’s type does not have to be an abstract type; it can be any Cogent type. Custom getters/setters
are not yet implemented for array elements, and are not needed for variant types.
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the compiler-generated ones. They will suppress the generation of the getters/setters for the rel-
evant fields of a record type. As the custom getter/setter functions are directly defined in C, it
means that the user needs to manually prove the correctness properties of these functions.

3.3.4 Bit Range Transformation

After discussing what C code is generated, we now look at how to generate C code, from the
core Dargent language. As mentioned in Section 3.2.4, the Dargent core calculus initially
represents a bit range as a pair of integers denoted by BitRange (𝑜, 𝑠), where 𝑜 indicates the offset
(in bits) to the beginning of the top-level datatype in which it is contained, and 𝑠 indicates how
many bits it occupies. This representation is concise and easy to work with when typechecking
the core language. Such a representation, however, does not necessarily lend itself to a simple
code generation algorithm. Therefore we have another step to convert each bit range into a list
of aligned bit ranges tailored for C code generation. Aligned bit ranges is in fact a more formal
notion for parts, which we introduced earlier in Section 3.3.1.

An aligned bit range AlignedBitRange (𝑝, 𝑜, 𝑠) is a triple of integers, where 𝑝 is the part-offset
to the top-level datatype, 𝑜 is the bit-offset inside a part, and 𝑠 is the number of bits occupied.
Each aligned bit range essentially contains the information about which bits in each part are
used. The part-offset 𝑝 for a part may differ from its position in the list: if no bit in a part is
used, we will leave out such an empty part from the list. The following property needs to hold
for aligned bit ranges: ∀AlignedBitRange (𝑝, 𝑜, 𝑠). 𝑝 ≥ 0 ∧ 𝑜 ≥ 0 ∧ 𝑠 ≥ 1 ∧ 𝑝 + 𝑜 ≤ 𝑆 where 𝑆 is the
part size.

Each generated C getter/setter function consists of a series of statements, each operating on
one part by means of bit manipulation. Each such C statement is generated according to the
information in one aligned bit range. This one-to-one mapping simplifies C code generation and
the C refinement proof.

3.4 Alternative Designs

In this section, we explore some alternative designs that we have considered, ranging from the
language design to the verification framework, and compare them with our current design.

In the language design space, we choose to define Dargent layouts separate from Cogent
types, and to only relate them afterwards with the layout keyword. This design has received
a lot of attention, because it seems to be a sub-optimal choice: As some common information
is duplicated in both the types and the layouts, it requires us to have a set of dedicated typing
rules to relate types and layouts (as we have seen in Figure 3.8). We make this design decision
for several reasons.

Firstly, while the Cogent type structure is central to the functional semantics of any Cogent
program and the reasoning about its function correctness, the exact layout of algebraic data types
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is just an implementation detail, totally irrelevant to the top-level Isabelle/HOL embedding of the
Cogent program, and whose correctness is guaranteed by the automatic C refinement proof that
the Cogent compiler produces. These two constructs are conceptually separate.

Secondly, this approach leaves more flexibility and is amenable to future extensions. Cur-
rently, as we have seen in Figure 3.8, the layout-type matching is fairly restricted: e.g. a U16 type
has to occupy 2 bytes (2B) in memory, and a record type has to be laid out in accordance with
a record layout. In the future, several extensions might be made to relax this matching relation.
For example, it is technically valid to store a smaller type in a larger memory area, say, a U16

type in a memory region of 4 bytes, or a record type in a contiguous chunk of memory that is big
enough. Some heuristics can be implemented in the compiler to decide how to arrange under-
specified layouts. This feature can be useful in improving programmers’ productivity, because
the programmers do not always need to fully specify the layout when the layouts of parts of a
type are unimportant. Also, as there is ongoing work towards adding refinement types to Co-
gent [Paradeza 2020] (also see Chapter 6), a refined type could possibly be laid out in a smaller
memory area. For instance, {𝜈 ∶ U16 | 𝜈 < 2} can be laid out in a memory area as small as 1 bit.
None of these extensions would be easy to implement if the layout information was baked into
the types.

Thirdly, separating layouts and types encourages modularity. Developers using the Cogent
language can write programs without needing to worry about the detailed layout of types, and
are still able to prove functional correctness of their code against some high-level specification
and ship their code to end users. The end users, with the knowledge of the particular target
architecture and environment, can decide the layouts and plug them into the Cogent programs.

Finally, this design decision enables easier compiler engineering. Even though our design
requires a dedicated set of rules for checking the layout-type matching, it actually significantly
simplifies the compiler engineering in the long term. The Cogent compiler is very large, and the
layout-type matching checker only constitutes a small part of the typechecker. The compiler not
only compiles Cogent programs to C, but also generates information for various Isabelle proof
tactics, numerous embeddings of the program in Isabelle/HOL and Haskell (see Chapter 5).
A lot of these embeddings are only concerned with types, and not layouts. If the layouts and
types were merged, any changes to the layout implementation would require changes to various
irrelevant parts of the compiler.

Alternative designs of the Dargent language have been previously proposed (e.g. [Teege
2019]). Figure 3.10 shows an example of type definitions of a record and a variant in an alterna-
tive design, together with their counterparts in the current Dargent design. In this alternative
design, the layout annotations are embedded in the type definitions and layouts are no longer
first-class. In the record type R, the type U8 implicitly prescribes its layout, which is one byte.
On top of that, users can optionally provide more descriptors, such as the endianness. For those
layout-agnostic types, such as the unboxed abstract type #T, a keyword sized is used to attach
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-- In an alternative design

type T -- an abstract type

type R = { f : U8 using BE, g : #T sized 4B at 1B } -- a record

type V = < 2b | 0 → A (U8 at 1B) | 1 → B (#T sized 4B at 1B)> -- a variant

-- In Dargent

type T

type R = { f : U8, g : #T }

type V = <A U8 | B #T>

layout LR = record { f1 : 1B using BE, g : 4B at 1B }

layout LV = variant (2b) { A(0) : 1B at 1B, B(1) : 4B at 1B}

Figure 3.10: A record and a variant in the alternative design vs. their Dargent equivalents

a layout to a type. In the variant type V, the layout of the tag (2b) is included, and the tag value
has to be given as part of the type in each alternative.

It is common practice to use types to carry the layout information. In fact, in all the language
that we surveyed (see Section 3.9), none of them use a separate first-class layout language in
parallel with a type system. In the case of Dargent, however, for the reasons we stated above, we
choose not to merge layouts with types. In particular, we value the modularity and separation of
concerns between the algebraic view of objects (types) and the low-level implementation details
(layouts). As can be seen in the Dargent code snippet in Figure 3.10, lines 6–8 are purely about
types, contrary to lines 3 and 4, in which the layout and type information is intermingled. The
separation of concern is also manifested in the polymorphic function definitions. In Dargent,
we can define generic functions that operate on fixed types but parametric in the layouts used
for the types. Once types and layouts are merged, it would require a more complicated subtype
system to group the types that share the same algebraic structure, contrary to the use of layout-
type matching constraints 𝑙 ∼ 𝜏 that form the layout context (cf. 𝐶 in Figure 3.4).

* * *

Now we move our focus to the data refinement framework that Dargent provides. Dargent
helps users solve slightly different problems in two different scenarios. The first scenario is when
the users need to specify the layout of types in the memory in order to conform to a specification
that is imposed by an industry standard or a protocol. Another scenario is when a Cogent
program needs to interoperate with some existing C code. For the former, the layout compliance
is very easy to achieve with Dargent, as the layout information is directly encoded in terms of
bits and bytes. For the latter, the users need to know the layout of the native C types, so that they
can prescribe the layout of the Cogent types to match the interfacing C types in memory. In
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general, the existing C types cannot be directly used by Cogent, because they cannot always be
abstracted to Cogent-level algebraic data types. It in turn requires the user to have certain level
of knowledge about the implementation details of the C compiler being used—more precisely,
how the C compiler represents C types in memory in terms of their layout.

Astute readers may have already noticed that, Dargent does not talk about C types at all—
all it says is how Cogent types map to the bits and bytes in memory. In fact, as explained
in Section 3.3.1, the certifying compilation is not concerned with whether getters and setters
access the designated bits and bytes. What Dargent provides is a data refinement between the
generated C types (together with the accessors) and the Cogent types (and the corresponding
operations). The data layout serves only as a communication medium for relating the Cogent
types and the C types.

It is possible to have a different refinement set up, in which the user instead specifies directly
how a Cogent type is compiled to a C type. The obvious advantage of this approach is that
the compilation and the refinement between the source Cogent code and the compiled C code
are independent of the C compiler in use. This allows the user to freely choose any C compiler
or switch to a different one at anytime without needing to change the Dargent code. When
the exact memory layout becomes relevant, the user can then bring their knowledge about the
C compiler on board, just as how one writes programs in C directly. The disadvantage of this
approach is that directly defining the correspondence between a Cogent type and a C type (and
the respective operations) is more involved. The simple, but arguably less desired, Cogent to
C mapping, for example the default Cogent code generation algorithm (i.e. without Dargent),
is relatively easy to define. As the correspondence gets more convoluted, say, when the user
wants to specify a very compact C representation for an algebraic data type, it quickly becomes
less obvious how the correspondence can be encoded. It also makes the synthesis of the acces-
sor functions harder to implement. It may end up requiring the users to manually define the
refinement relation, and the accessor functions on the C level, similar to what is required in the
property-based testing framework, which we will cover in Chapter 5.

In summary, even though the dependency on the C compiler renders the system less generic,
the data layouts do serve as a convenient intermediary for specifying the data refinement down to
the C level, requiring the least amount of user input and allowing the compilation and refinement
proof to be fully automatic.

3.5 Dargent Is Not for Data Marshalling

Aswe have argued in Section 3.1, Dargent is designed to specify the memory layout of algebraic
datatypes and use this information to guide the compiler to generate code that can directly access
individual parts of a data structure without the need to transport or transform data. This is a
completely different problem than what data description languages (DDLs) try to solve. They are
used to synthesise programs according to a specification to convert the data from one memory
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presentation to another.
Dargent and DDLs have some technologies in common, though. For example, both of them

use a declarative language to specify the memory layout of high-level datatypes, and the com-
piler is responsible for the heavy-lifting. In fact, the language features present in both types of
languages are almost identical. Since the solutions to these two problems are technically similar,
is it possible to repurpose Dargent and use it for data (de)serialisation? In summary, there are
two major reasons why Dargent cannot be used as a DDL.

Cogent’s type system limitations Assuming a record type 𝑅, whose in-memory layout is
ℓ𝑚 and the on-disk layout is ℓ𝑑, we can declare the serialisation and deserialisation functions as
follows:7

type 𝑅𝑚 = 𝑅 layout ℓ𝑚
type 𝑅𝑑 = 𝑅 layout ℓ𝑑
serial𝑅 ∶ (𝑅𝑑 take (..), 𝑅𝑚!) → 𝑅𝑑
deserial𝑅 ∶ (𝑅𝑑!, 𝑅𝑚 take (..)) → 𝑅𝑚

Intuitively, we simply need to copy all the fields from the input record and put them back into
the output record. Suppose that 𝑅 def

= {x ∶ 𝑋,y ∶ 𝑌} , then the ostensible definitions are:

serialT (buf , t) = buf {x = t .x,y = t .y}
deserialT (buf , t) = t {x = buf .x,y = buf .y}

The problem with these definitions is that they cannot be defined recursively. Intuitively, if
a field of the top-level record is also a record, say 𝑋, then the (de)serialisation function for 𝑅
should subsequently invoke a (de)serialisation for 𝑋, ad infinitum. This is however not the case
with Cogent’s type system. Cogent does not support referencing unboxed heap-objects with
pointers. The recursion scheme we outlined above bottoms out at unboxed types, including
unboxed records and variants. When such a type is taken out from the parent boxed record, it
will be moved as a whole to the stack and loses its original layout (recall that stack-objects cannot
have layouts in Cogent). It entails that we have to use the stack as an intermediate storage when
we transform heap-objects from one format into another.

In practice, having unboxed data embedded in a larger structure is common in the in-memory
representation, for fewer indirections and better locality. In the on-disk representation, as ev-
erything is stored linearly, all substructures are necessarily unboxed. If we used Dargent to
(de)serialise data, we would have to use the stack to store unboxed types, and to pass them
around among functions. This is clearly undesirable, not only because of its suboptimal perfor-
mance, but also because the available stack may be very limited (e.g. on embedded devices). This
can be particularly devastating in systems programming, which is usually performance-critical
and tight in resources. Large unboxed structures are not uncommon in systems programming,

7The 𝑇 take(..) syntax means that all fields in a record 𝑇 are taken, and the 𝑇! syntax indicates that a type 𝑇 is
readonly.
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such as the directory entry bitmap and the file name in F2FS’s directory entry block data type8.
In other cases, it might be preferable to situate large data structures unboxed inside other struc-
tures in Cogent due to the uniqueness type system, such as data blocks in a file system or packet
payloads in a network protocol, even though they are boxed in the typical C implementation.

To solve this problem, we need to augment Cogent’s type system with a pointer-reference
operator which is capable of referencing unboxed heap-objects by pointers. This extension is not
only going to be useful for data (de)serialisation, but it also brings more flexibility and perfor-
mance benefits to Cogent programming in general. Region types and locations [Fluet et al. 2006;
Gay and Aiken 2001; Morrisett et al. 2005; Walker and Watkins 2001] are natural candidate type
system extensions to consider. In Section 3.7, we propose a less powerful but simpler extension
to Cogent for referencing heap-allocated unboxed types.

Cogent cannot currently handle dynamic-sized structures, which are very common in real-
world applications. A typical pattern is that in a record, a numeric field is used to define the length
of a later field or the size of the entire record. Cogent’s type system needs to know the size of
each heap-object in order to statically guarantee uniqueness properties. For a dynamically sized
data structure, this is simply impossible. For this reason, Dargent cannot be used to deserialise
NULL-terminated arrays, as the size of the type (and thus the memory region) is only known
dynamically. In Section 3.7, we present a C library API to handle variable-sized data structures.

Program synthesis The foundation of a DDL is its capability of synthesising programs to
perform (de)serialisation according to an abstract, declarative specification. However, Dargent
does not synthesise programs. Dargent is designed to access datatypes regardless of their layout,
rather than transform between different data layouts. As we have seen above, to convert the
type 𝑅 from layout ℓ𝑚 to ℓ𝑑, the definition of the conversion function is not a simple identity.
Instead, in the function definition, the programmer needs to manually recursively decompose
the input object into units of unboxed types, and then reconstruct the output with these parts.
Theoretically, such function definitions can be synthesised. But as Dargent currently stands, it
does not do it, which disqualifies Dargent to be a useful DDL.

Summary From the discussion above, although repurposing Dargent for data (de)serialisa-
tion is currently infeasible, none of the restriction is intrinsic to Dargent. Once the restrictions
from the Cogent side are lifted, with a thin layer on top of Cogent to synthesise the (de)serial-
isation function code, we anticipate the combination to be suitable as a DDL.

3.6 Programming with Dargent

In the previous section, we showcased a data store implementation that uses Dargent layout
mainly on variant types, along with other minor extensions to the language (mainly the zero-

8https://elixir.bootlin.com/linux/v6.1.12/source/include/linux/f2fs_fs.h#L579
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sized array syntax), to implement variable-sized data types that can subsequently be stored in
a fixed-size buffer. The goal was to develop a systems component that is binary compatible
with its native C counterpart, and to eliminate obvious performance overhead that would have
otherwise been inevitable had we implemented it in Cogent naïvely without such facilities.
In this section, we turn our focus back to Dargent itself, and briefly summarise some more
applications of Dargent in systems programming, and show how Dargent helps simplify the
formal verification of these programs. The full implementations discussed in this section can be
found in [Z. Chen, Lafont, O’Connor, et al. 2022].

3.6.1 A Power Control System

To demonstrate the improved readability of programs that Dargent offers, we reimple-
mented a simple power control system for the STM32G4 series of ARM Cortex microcontrollers
by ST Microelectronics. Our Cogent implementation is based on a C implementation from Lib-
OpenCM3 [LibOpenCM3 n.d.], an open-source low-level hardware library for ARM Cortex-M3
microcontrollers. The original C code9 and the corresponding Cogent reimplementation are
displayed in Figure 3.11a and Figure 3.11b for comparison.

In this type of low-level program, compactness of the data types is key. Keeping the memory
footprint small makes the code fit on embedded devices. For that reason, developers want every
bit of thememory to be well-utilised. Hence the C implementations heavily rely on bit-twiddling,
or some of them use the bit-fields feature in the C language. Bit-fields offers an easier interface
to field-operations, but according to the C standard [ISO 1999, §6.7.2.1], the allocation of the bit-
fields are implementation-dependent. This is why many drivers are implemented using manual
bitwise operations to ensure a certain bit allocation, which is crucial for compliance with the
hardware. When the program is implemented in this manner, it often also involves a lot of
macro definitions for the bit masking and shifting values, without which the readability and
maintainability of the code would be even worse.

In the power control code, a 32-bit power control register holds several pieces of information,
each occupying a certain number of bits in the register. To implement it in Cogent, we define
the registers as record types (Cr1, Cr2 and Cr5 in Figure 3.11c) and derive Dargent layouts from
the hardware specifications of the device to prescribe the placement of each field.

As we can see from Figure 3.11c, the Dargent layouts are actually the most involved parts of
the Cogent implementation. If we bring the line count of the Dargent layout definitions into
the equation, the Cogent implementation is not necessarily shorter than its C counterpart, but
the added value is in the abstraction that Cogent and Dargent provide, that the semantics of
the Cogent functions are easily discernible. Each function in the C version performs a sequence
of bitwise operations on the device register. In contrast, in the Cogent implementation, each

9https://github.com/libopencm3/libopencm3/blob/504dc95d9ba1c2505a30d575371accfe49a69fb9/lib/stm32

/g4/pwr.c
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1 void pwr_set_vos_scale(enum pwr_vos_scale scale)

2 {

3 uint32_t reg32;

4

5 reg32 = PWR_CR1 & ~(PWR_CR1_VOS_MASK << PWR_CR1_VOS_SHIFT);

6 reg32 |= (scale & PWR_CR1_VOS_MASK) << PWR_CR1_VOS_SHIFT;

7 PWR_CR1 = reg32;

8 }

9

10 void pwr_disable_backup_domain_write_protect(void)

11 { PWR_CR1 |= PWR_CR1_DBP; }

12

13 void pwr_enable_backup_domain_write_protect(void)

14 { PWR_CR1 &= ~PWR_CR1_DBP; }

15

16 void pwr_set_low_power_mode_selection(uint32_t lpms)

17 {

18 uint32_t reg32;

19

20 reg32 = PWR_CR1;

21 reg32 &= ~(PWR_CR1_LPMS_MASK << PWR_CR1_LPMS_SHIFT);

22 PWR_CR1 = (reg32 | (lpms << PWR_CR1_LPMS_SHIFT));

23 }

24

25 void pwr_enable_power_voltage_detect(uint32_t pvd_level)

26 {

27 uint32_t reg32;

28

29 reg32 = PWR_CR2;

30 reg32 &= ~(PWR_CR2_PLS_MASK << PWR_CR2_PLS_SHIFT);

31 PWR_CR2 = (reg32 | (pvd_level << PWR_CR2_PLS_SHIFT) | PWR_CR2_PVDE);

32 }

33

34 void pwr_disable_power_voltage_detect(void)

35 { PWR_CR2 &= ~PWR_CR2_PVDE; }

36

37 void pwr_enable_boost(void)

38 { PWR_CR5 &= ~PWR_CR5_R1MODE; }

39

40 void pwr_disable_boost(void)

41 { PWR_CR5 |= PWR_CR5_R1MODE; }

(a) The C implementation extracted from [LibOpenCM3 n.d.]

Figure 3.11: The ARM Cortex-M3 power control system
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1 pwr_set_vos_scale : (Cr1, Vos_scale) → Cr1

2 pwr_set_vos_scale (reg, scale) = reg { vos = scale }

3

4 pwr_disable_backup_domain_write_protect : Cr1 → Cr1

5 pwr_disable_backup_domain_write_protect reg = reg { dbp = True }

6

7 pwr_enable_backup_domain_write_protect : Cr1 → Cr1

8 pwr_enable_backup_domain_write_protect reg = reg { dbp = False }

9

10 pwr_set_low_power_mode_selection : (Cr1, Lpms) → Cr1

11 pwr_set_low_power_mode_selection (reg, lpms) = reg { lpms }

12

13 pwr_enable_power_voltage_detect : (Cr2, Pvd_level) → Cr2

14 pwr_enable_power_voltage_detect (reg, pls) = reg { pls, pvde = True }

15

16 pwr_disable_power_voltage_detect : Cr2 → Cr2

17 pwr_disable_power_voltage_detect reg = reg { pvde = False }

18

19 pwr_enable_boost : Cr5 → Cr5

20 pwr_enable_boost reg = reg { r1mode = False }

21

22 pwr_disable_boost : Cr5 → Cr5

23 pwr_disable_boost reg = reg { r1mode = True }

(b) The Cogent implementation

Figure 3.11: The ARM Cortex-M3 power control system

function amounts to a mere record field update. The code base is in turn more palatable for
programmers to work with and it greatly lowers the (formal and informal) verification cost.

To summarise, this example shows that Cogent allows systems programmers to write code
on an abstract level, while Dargent allows them to retain low-level control of the implementa-
tion details.

3.6.2 Bit-Fields

In systems code, it is common to have integer values that are stored in fields of non-standard bit
widths, as in the following example taken from a CAN driver10 where the first field is an identifier
of 29 bits. This is different from the power control register that we showed above, which also
involves non-word-size fields. Such fields in the power control register are modelled as variant
types. For example, Vos_scale is a two-bit field defined as a variant, with bit patterns 0b01 and

10https://github.com/seL4/camkes-vm-examples/blob/89f5d7b7ac373c8e9f000e80b91611e561358ef6/apps/A

rm/odroid_vm/include/can_inf.h#L34
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1 type Vos_scale = < PWR_SCALE1 | PWR_SCALE2 >

2 layout LPwr_vosscale = variant (2b) { PWR_SCALE1(1) : 0b, PWR_SCALE2(2) : 0b }

3

4 type Lpms = < PWR_CR1_LPMS_STOP_0

5 | PWR_CR1_LPMS_STOP_1

6 | PWR_CR1_LPMS_STANDBY

7 | PWR_CR1_LPMS_SHUTDOWN >

8 layout LLpms = variant (3b) { PWR_CR1_LPMS_STOP_0(0) : 0b

9 , PWR_CR1_LPMS_STOP_1(1) : 0b

10 , PWR_CR1_LPMS_STANDBY(3) : 0b

11 , PWR_CR1_LPMS_SHUTDOWN(4) : 0b }

12

13 type Cr1 = { vos : Vos_scale, dbp : Bool, lpms : Lpms }

14 layout record { vos : LPwr_vosscale at 9b

15 , dbp : 1b at 8b

16 , lpms : LLpms at 0b}

17

18 type Pvd_level = < PWR_CR2_PLS_2V0

19 | PWR_CR2_PLS_2V2

20 | PWR_CR2_PLS_2V4

21 | PWR_CR2_PLS_2V5

22 | PWR_CR2_PLS_2V6

23 | PWR_CR2_PLS_2V8

24 | PWR_CR2_PLS_2V9

25 | PWR_CR2_PLS_PVD_IN >

26 layout Lpvd_level = variant (3b)

27 { PWR_CR2_PLS_2V0(0) : 0b

28 , PWR_CR2_PLS_2V2(1) : 0b

29 , PWR_CR2_PLS_2V4(2) : 0b

30 , PWR_CR2_PLS_2V5(3) : 0b

31 , PWR_CR2_PLS_2V6(4) : 0b

32 , PWR_CR2_PLS_2V8(5) : 0b

33 , PWR_CR2_PLS_2V9(6) : 0b

34 , PWR_CR2_PLS_PVD_IN(7) : 0b }

35

36 type Cr2 = { pls : Pvd_level, pvde : Bool }

37 layout record { pls : Lpvd_level at 1b

38 , pvde : 1b at 0b }

39

40 type Cr5 = { r1mode : Bool } layout record { r1mode : 1b at 8b }

(c) The Cogent types with Dargent layouts

Figure 3.11: The ARM Cortex-M3 power control system
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0b10 representing two predefined scale factors. In the CAN driver, the 29-bit field is modelled as
an integer.

struct can_id {

uint32_t id:29;

uint32_t exide:1;

uint32_t rtr:1;

uint32_t err:1;

};

In order to represent the 29-bit field, we can use a primitive 29-bit integer U29. These non-word-
size integers are a new extension we added to Cogent for this purpose, and they required very
few changes in the compiler code. We compile such integers to the smallest standard integer
type that can contain the type, since the C language does not natively support such types. For
instance, U7 is compiled to U8, while U20 is compiled to U32. Thanks to the extension of the
value relation (see Section 3.3.2) to those new types, compiled Cogent programs maintain the
invariant that C values always fit in the narrower bit-width.

With a Dargent layout, we can define a Cogent version of the above C structure as follows:

type CanId = { id : U29, exide : Bool, rtr : Bool, err : Bool }

layout record { id : 29b, exide : 1b, rtr: 1b, err:1b}

The non-word-size integer extension to Cogent, coupled with Dargent, renders the Cogent
language expressive enough to represent C bit-fields, and is as abstract as its C counterpart, if
not more. It guarantees that the bit-fields are operated in a type-safe manner.

3.6.3 Custom Getters and Setters

Because the semantics of Cogent record is characterised by the getter and setter functions of its
fields, it gives us the opportunity to give a partial view in Cogent to a C record. This is useful
when we write a Cogent system that works on a complicated, externally defined C structure
that involves many fields, but we are only concerned with a few specific fields.

Concretely, we can represent this large C structure transparently as a simple Cogent record
with only the relevant fields, and define custom getters and setters that compose well as per the
meta-properties introduced in Section 3.3.2:

type Entry = { id : U32, value : U32 }

We have successfully applied this approach on a small example, where the C structure has the
same fields as the original Cogent type, extended with an additional field. Whilst this example is
contrived, this feature does have real application: it makes it possible to inherit pre-definedC data
structures. For example, in a previous Cogent implementation of a Linux ext2fs driver, Amani,
Hixon, et al. [2016] had to define their own Cogent inode type Ext2Inode which corresponds
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to the standard C struct ext2_inode type, but did not include fields that were irrelevant to the
Cogent implementation, such as certain unsupported file modes and spinlocks. This required
tedious glue code to marshal back-and-forth between the representations. Using this technique,
the standard C struct ext2_inode can be used directly as the representation of the Ext2Inode

type, thus eliminating this glue code entirely.

3.6.4 Verification of a Timer Device Driver

As a case study, we also formally verified, in Isabelle/HOL, a timer driver implemented in Co-
gent; the driver was successfully run on an ODROID hardware, based on the seL4 operating
system [The seL4 Microkernel 2016]. Our formalisation took advantage of the fact that the shal-
low embedding of the Cogent program in Isabelle/HOL remains simple, as the layouts are fully
transparent to the functional semantics of the Cogent program.

Our Cogent implementation is based on a C implementation11. Both implementations are
about the same size (≈60 LoC, excluding type and layout declarations). The timer driver consists
of an interface for two timers, called A and E, provided by the device. The E timer can be used to
measure elapsed time since its initialisation, and the A timer generates an interrupt at the end of
a (possibly periodic) countdown. The driver state is passed around as a C struct, which stores the
memory location of the device registers and a boolean flag remembering whether the countdown
is disabled.

In the original C implementation, operations on the timer registers are largely based on bit-
wise operations, which are typeless, unintuitive to read, error-prone, and more difficult to prove
correct. As we have shown with other examples, modelling the timer registers as algebraic data
types, like records and sum types, makes the program easier to read and to reason about, while
Dargent still allows us control over low-level representation details.

To formally verify the driver, we first wrote a purely functional specification of the driver.
Then, we proved that the shallow embedding of the Cogent driver refines it. Both the specifica-
tion and the manual functional correctness proof are approximately 150 lines each. The manual
proof is established by straightforward equational reasoning—much easier than reasoning about
the bitwise operations implemented in C. Layouts are transparent on the shallow embedding
level: Cogent records are encoded as Isabelle records, just as if no layouts were specified. This
manual functional correctness proof composed with the automatically generated compiler cer-
tificate establishes the correctness of the compiler generated C code. All the tedium in the layout
details is successfully hidden by our automatically generated compiler proofs.

The formal verification managed to uncover several bugs or implicit assumptions that had
been made in the original C driver. These defects are typically corner cases that can be easily
missed by programmers, and are hard to detect with conventional software engineering practices,

11https://github.com/seL4/util_libs/blob/c446df1f1a3e6aa1418a64a8f4db1ec615eae3c4/libplatsupport/s

rc/plat/odroidc2/meson_timer.c
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such as testing.
Firstly, the original C implementation of the initialisation function enabled the countdown

timer A without setting a starting value for it. The behaviour of the timer device in this case
is unspecified. Another related issue is that the initialisation function does not ensure that the
disable flag of the driver state is synchronised with an enable flag of the device register, but
rather assumes such. We introduced a specific invariant to the functional correctness specifica-
tion of this function, to make this assumption explicit.

Additionally, when verifying a function that fetches the time from the device, we had to ex-
plicitly assume that the timer value in the device state is not too large. While the device provides
the timer value in micro-seconds, the function is specified to return the time in nano-seconds.
The conversion requires a multiplication by one thousand, possibly triggering an overflow if the
timer value is larger than approximately 500 years. Thus, we had to add a precondition to rule
out such cases.

3.7 Variable-Sized Data Structures and the Buffer API

Variable-sized structs are a common type of data structure that can be seen in systems code.
Typically, such a struct consists of a header and a body (or payload). In the header, it has a field
of an integer type, indicating the size of the entire struct, or the length of the payload data it
is carrying. The payload of such a struct is placed at the end of the struct; in C, it is usually
implemented either as a flexible array member (e.g. declared as char data[];) at the last field,
or simply excluded from the type’s definition and is assumed to be place right after the header,
accessed via pointer arithmetic.

Typically, such variable-sized data structures are stored consecutively in a pre-allocated
fixed-size (e.g. the size of a page) buffer. In order to access an element in the buffer, the
programmer needs to start from the beginning of the buffer, and use the length information
stored in the header of each element to find the beginning of the next element. This is similar
to following the pointers in a linked list in C (even though one is via pointers, and the other via
pointer arithmetic), and random access to buffer elements is normally not available.

This pattern poses some challenges if we want to implement it in Cogent. Firstly, the size of
each variable-sized element is dependent on the information in its header. From a type systems
perspective, they can be best described as dependent records. Supporting dependent records
requires a dependent type system and it complicates the Cogent’s type system and its certifying
compiler dramatically. Secondly, the uniqueness requirement by Cogent’s type system cannot
be retained if we want to access the elements in the buffer by reference: The unique reference
to the buffer owns the entire space allocated to the buffer, and it stops us from having any other
references to any parts of the buffer, including buffer elements. This is why in the Cogent
implementation of the BilbyFs, Amani [2016] had to deserialise the elements to circumvent the
linearity restrictions. This leads to some significant performance overhead, especially when the
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data (the header and/or the payload) of each element has to be scanned sequentially in order to,
say, search for a particular element.

We define a C library API using Cogent’s abstract types and abstract functions. The API
hides the non-uniqueness from Cogent’s type system. The design of this API needs to make the
following guarantees:

(1) The interface functions satisfy the language contract imposed by Cogent’s type system,
so that invoking the API does not compromise the type soundness of other parts of the
program.

(2) The C definitions of these API functions are written in a way that can be manually proved
to be memory safe relatively easily.

The buffer API, although designed independently, bear some resemblance to the API presented
in [Yanovski et al. 2021]. The central concept in the buffer API design is that the buffer has two
views. One view sees a monolithic buffer object12 without any knowledge about (nor any access
to) the internals, and the other view exposes the buffer’s internal structures, allowing for access to
disjoint portions of the buffer. By switching the view, at any time, the set of available references
are always non-aliasing, which preserves the invariants imposed by the Cogent language. The
core function that enables this view-switching idea is the following focus function:

type FocusFArg a b = #{hd : BHeader, bu : BUsed, bf : BFree, acc : a, obsv : b}

type FocusFRet r = #{hd : BHeader, bu : BUsed, bf : BFree, res : r}

focus : ∀ (a, b :< DS, r).

#{buf : Buffer, acc : a, obsv : b, f : FocusFArg a b → FocusFRet r}

→ (r, Buffer)

It takes a buffer (buf) as input, along with some accumulators (acc) and observables (obsv). It
allows the programmer to run a function f operating on the decomposed view of the buffer (we
will come back to the technical details shortly). Once done, the worker function f will recycle
the references to the parts of the buffer and exchange them for the reference to the monolithic
buffer, switching the view back. When the focus function returns, the programmer no longer has
access to internal structures of the buffer. This circumvents the aliasing problem we have when
accessing the contents in the buffer. The focus function itself cannot be implemented in Cogent,
as it requires us to reinterpret a chunk of typed memory as an object of a different type (similar
to a typecast), which breaks type safety principles. The focus function can neither be defined as a
primitive operator in Cogent. Since the Buffer type is not definable as a native Cogent type in
the first place, there is no way to typecheck focus in a sensible way. It therefore has to be defined
as an abstract function in C and to be verified manually.

With the buffer-content view, we have access to the buffer’s header (typed as BHeader), its

12Buffer objects should not be confused with buffer elements. We use the former to refer to the whole buffer, not the
objects residing in the buffer, which is referred to using the latter term.
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occupied portion (BUsed), and its unused portion (BFree). These three objects are disjoint, but
they also amount to the entirety of the buffer. Therefore there is no aliasing, and no memory
leaks. Our API provides a set of functions as building blocks, which can be utilised in different
combinations to perform a wide range of tasks on the buffer elements. Once the job is done, the
focus function will exchange the references to the buffer elements back for the buffer object, and
normal operations resume from here.

The buffer’s header BHeader should not be confused with the header of a variable-sized el-
ement. The buffer header contains meta-information about the buffer. For example, the buffer
header commonly keeps track of the number of elements in the buffer, and holds a pointer to
the beginning of the unoccupied portion of the buffer. It is important to note that the buffer
header may not physically reside next to the buffer contents in memory. For instance, there may
be some global states storing the meta-information about the buffer, which serve as the buffer
header. Logically, however, we can consider them to be part of the buffer object. Care shall be
taken to ensure that the uniqueness invariants are maintained when accessing (especially updat-
ing) the buffer header. Alternatively, we can treat the buffer header as an independent object and
thread it through the focus function as any ordinary writable linear object. With either design,
within the worker function called by focus, the buffer header should be accessible and writeable.
Very often, the BHeader type can be defined in Cogent as a regular Cogent type.

On the other hand, the BUsed and BFree types are typically only definable in C as raw pointers
to buffer memory regions. The assumption is that the buffer is filled up sequentially from the
buffer head, and the elements will not be deleted. This may seem very restrictive, and in some
cases it indeed is, but there are also a group of applications that can be implemented with these
restrictions. Element deletion typically does not require the element in question to be physically
erased from the buffer. It is more common to modify the element length information of the
previous element. This is similar to rerouting the “next” pointer when removing a node from a
linked list. But even for this form of shallow deletion, it requires finer-grained reference tracking
that our current buffer API does not yet support. There are some strategies that can be used to
signal that an element has been removed without deleting it. For example, a “junk” flag can
be kept in each element, and a removed element will have that flag set. Another strategy is
employed in the BilbyFs’s implementation [Amani 2016]: When one element is to be deleted, a
deletion object will be appended to the buffer, indicating that a certain element in the buffer is
no longer current. The real deletion happens at a later stage, managed by a garbage collection
mechanism.

Now we move on to talk about how buffer elements can be accessed in the buffer-content
view. The worker function discussed above exposes two buffer portions: the occupied portion
and the unoccupied portion. It does not yet give us more details about individual elements.
We introduce the element type Entry, which is another important building block in the buffer
API design. Entry is the type that has some internal size-dependency—the size of the object is
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remembered by a length field in the type. To abstract away from the concrete implementation
details of Entry, two functions are implemented on Entry. One is an entry_size ∶ Entry! →

U32 function, which returns the size of the object.13 We also define a has_next ∶ Entry! →

Bool function, which is used to query whether this entry is the last one in the buffer. In many
applications, the last element has its length field set to 0 as the sentinel. The actual definition of
has_next depends on how the elements are tracked in the particular application.

Next, we describe a set of API functions that allow the users to work on the elements within
the buffer. To ease the reasoning about memory safety, we only allow a single pointer to each
portion of the buffer: For the free portion, the pointer will always point to the beginning of it.
After all, if the insertion of new elements is always sequential, there is no need to access any
places in the free buffer other than the head of it. For the used portion, on the other hand, the
single pointer can move along the vector of elements. It starts from the head of the used portion,
and can only move forward by one element at a time. It allows the user to scan through all the
elements, or to search for and operate on any element. Since there is only one pointer available,
it is impossible to implement deletion of elements, which would require pointers to the current
element and to the previous one.

The BUsed object gives the users access to an element, but no more information about the
element is available. In particular, it does not say where the element is in the buffer. It thus has
an existential trait to it. To inspect the contents of the element in focus, a read ∶ BUsed! → Entry!

function is provided by the buffer API. Under the hood, the function read casts a raw pointer
to the occupied portion of the buffer to an element type (Entry). This function may be used to
inspect an element, retrieve information from it, but not to update the element in-place.

The API also provides a next function, which moves the BUsed pointer from its current place
to the next element. It has a signature of next ∶ (BUsed, BFree!) → ⟨This BUsed | Next BUsed⟩.
The function returns a variant type, depending on whether a next element exists or not. Due to
the linearity requirement of the Cogent language, an object of BUsed will be returned in either
case. The readonly BFree is passed in mainly for sanity checks: that the returned BUsed pointer
is not running into the region controlled by BFree.

There may be a generic (C) implementation of the next function: by calling the has_next
and the entry_size function, we know how to find the address of the next element. Then we
compare the address and see if it is beyond the BFree pointer (the second argument to the next
function). Knowing the definition of the Entry type and some application-specific information,
the generic next definition can be overwritten with a more appropriate implementation, or a
more efficient one. We can see that the definition of next has a very strong object-oriented
programming flavour: for an interface function, there may be a default implementation, which
can be overwritten in an ad hoc manner. The Cogent language currently does not yet have such
infrastructure for type classes; we leave the language feature for future work.

13U32 is the integer type of our choice; the width is not essential.
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No function in the API discussed so far is able tomodify anythingwithin the buffer. Typically,
two functions are needed. One is an update ∶ (BUsed, Entry → Entry) → BUsed function, which
can be used to perform in-place update on the current element in view. The other is an append ∶

(BHeader!, BUsed, BFree, Entry!) → (Bool, BUsed, BFree) function, which allows one element to be
appended to the end of the sequence of existing elements. The returned Bool indicates whether
the append operation has succeeded or not, and the function also returns the extended occupied
portion of the buffer, along with the contracted free portion at the end of the buffer if successful.
The invariant is that, before and after the append, no matter whether the operation succeeded or
failed, the occupied buffer and the free buffer will always add up to the entire buffer.

* * *

In summary, the buffer API actually solves three separate problems:
(1) it allows for navigating through the variable-sized element types, which can be deemed as

a special way of laying out an object, which Dargent does not yet support natively;
(2) it allows users to reinterpret memory (e.g. in the Buffer API it reinterprets the Buffer type

as a vector of Entrys via the BUsed and BFree as an intermediate step; and
(3) it allows for pointer references to unboxed structures in the heap.

The solutions to (2) and (3) together offer us away to efficiently access the buffer elementswithout
having to copy (or worse, deserialise) the unboxed structures to the stack, in a way that is safe yet
disallowed by Cogent’s type system. We need (2) here because there is no native type in Cogent
that can be used to represent the internal structure of such a buffer. In fact, the problem (3) stands
more broadly, independent of the reinterpretation of the memory. Now we expand on this point
a bit more.

The inability to take the pointer-reference to an unboxed data structure in the heap is due to
the simplistic uniqueness type system in Cogent. Imagine a naïve take& operation governed by
the following typing rule:

Δ ⊢ Γ; Γ1 ⊞Γ2
Δ; Γ1 ⊢ 𝑒1 ∶ {⋯ , f⚬ ∶ 𝜌 u©,⋯} w©

Δ; 𝑥 ∶ {⋯ , f⦁ ∶ 𝜌 u©,⋯} w©, 𝑦 ∶ 𝜌 w©, Γ2 ⊢ 𝑒2 ∶ 𝜏

Δ; Γ ⊢ take& x {f = 𝑦} = 𝑒1 in 𝑒2 ∶ 𝜏
Take-&

It says that, with the split contexts Γ1 and Γ2, if we take out a field f of some unboxed type 𝜌14

from a boxed record e1, then, in the context of the continuation e2, y is a pointer to the unboxed
field f in the heap, denoted by the typing judgement y ∶ 𝜌 w©. This idea is not so problematic yet,
but as soon as we want to define a dual Put-& rule, it immediately falls apart. The type system
is not powerful enough to figure out if the pointer put back is the same as the one that was taken

14Note that the u© sigil with the unboxed type 𝜌 is somewhat informal, as sigils are currently only defined for
records and abstract types.
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in the first place. This would normally require a notion of locations (e.g. [Morrisett et al. 2005])
to track the pointers.

Cogent’s type system does not offer such fine-grained control over pointer locations. Nev-
ertheless, we can extend the current Cogent language with a read-only Member-& rule, so that
it will not have the in-place update problem. The new Member-& rule is sketched out below:

Δ; Γ ⊢ 𝑒 ∶ {⋯ , f⚬ ∶ 𝜏 u©,⋯} r©

Δ; Γ ⊢ 𝑒→f ∶ &r(𝜏 u©)
Member-&

&r({f𝑖 ∶ 𝜏𝑖} u©) = {f𝑖 ∶ 𝜏𝑖} r©
&r(T 𝜏 u©) = T 𝜏 r©

If the record is read-only, we can access the unboxed field f via a pointer using the new _→_
operator, contrary to the existing _._ member access, which incurs a copy. We also define a meta-
level partial function &r(_) to change the sigil of a type from u© to r©. It is a partial function,
which subsequently makes implicit assumptions in the typing rule about what types the _→_
operation can be applied to.

The need to take pointer-references to unboxed structures it not limited to record types. If
we had a variant type whose payloads were unboxed structures, a similar operation would turn
out to be useful as well. When a heap-allocated variant is pattern matched, it is copied to the
stack, as variants are all unboxed. This has several unfortunate consequences: If the unboxed
payload is very large, it incurs a significant performance overhead and may cause the stack to
overflow. Thus what we need are boxed variant types and a case-of alternative that takes the
pointer-reference to the payload. The extension is however more involved than that for records.

While adding support for boxed variants, we still want their sigils to be restricted: we only
allow u© and r© sigils. Disallowing a writable variant is sensible, because in-place update to
a variant is not intuitive in a functional language, especially when the payload is unboxed and
each potentially has a different size. Thus we exclude in-place updates to boxed variants from our
discussion. Existing typing rules concerning (unboxed) variant types still hold. We only need
to focus on the read-only variants. The construction of read-only variants involves memory
allocation on the heap, which will be realised by defining abstract functions in Cogent just like
boxed records, as no built-in allocationmechanism is provided. In fact, the only additional typing
rules needed are the pattern-matching rules, namely a Case-& and an Esac-& rule:

Δ ⊢ Γ; Γ1 ⊞Γ2 Δ; Γ1 ⊢ 𝑒1 ∶ ⟨A⚬ 𝜌,A𝔲
𝑖 𝜏𝑖⟩ r©

Δ; 𝑥 ∶ &r(𝜌), Γ2 ⊢ 𝑒2 ∶ 𝜏 Δ; 𝑦 ∶ ⟨A⦁ 𝜌,A𝔲
𝑖 𝜏𝑖⟩ r©, Γ2 ⊢ 𝑒3 ∶ 𝜏 Δ ⊢ 𝜏 Escape

Δ; Γ ⊢ case& 𝑒1 of A 𝑥. 𝑒2 else 𝑦. 𝑒3 ∶ 𝜏
Case-&

Δ ⊢ Γ; Γ1 ⊞Γ2
Δ; Γ1 ⊢ 𝑒1 ∶ ⟨A⚬ 𝜌,A⦁

𝑖 𝜏𝑖⟩ r© Δ; 𝑥 ∶ 𝜌, Γ2 ⊢ 𝑒2 ∶ 𝜏 Δ ⊢ 𝜏 Escape

Δ; Γ ⊢ esac& 𝑒1 of A 𝑥. 𝑒2 ∶ &r(𝜏)
Esac-&

&r(⋯) = ⋯

&r(⟨A𝑖 𝜏𝑖⟩ u©) = ⟨A𝑖 𝜏𝑖⟩ r©
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It is crucial to ensure that the resuting type of the pattern match is escapable, so that it does
not leak the readonly pointer to the payload of the heap-allocated variant. We also extend the
domain of the &r(_) function to variants accordingly. Existing Case and Esac rules that operate
on unboxed variants can be extended to read-only variants, preserving the behaviour of copying
the payload to the stack when it is unboxed:

Δ ⊢ Γ; Γ1 ⊞Γ2 Δ; Γ1 ⊢ 𝑒1 ∶ ⟨A⚬ 𝜌,A𝔲
𝑖 𝜏𝑖⟩ 𝑠 𝑠 ≠ w©

Δ; 𝑥 ∶ 𝜌, Γ2 ⊢ 𝑒2 ∶ 𝜏 Δ; 𝑦 ∶ ⟨A⦁ 𝜌,A𝔲
𝑖 𝜏𝑖⟩ 𝑠, Γ2 ⊢ 𝑒3 ∶ 𝜏

Δ; Γ ⊢ case 𝑒1 of A 𝑥.𝑒2 else 𝑦.𝑒3 ∶ 𝜏
Case*

Δ ⊢ Γ; Γ1 ⊞Γ2
Δ; Γ1 ⊢ 𝑒1 ∶ ⟨A⚬ 𝜌,A⦁

𝑖 𝜏𝑖⟩ 𝑠 𝑠 ≠ w© Δ; 𝑥 ∶ 𝜌, Γ2 ⊢ 𝑒2 ∶ 𝜏

Δ; Γ ⊢ esac 𝑒1 of A 𝑥. 𝑒2 ∶ 𝜏
Esac*

The newly introduced _→_, case&-of and esac&-of operators all reference unboxed objects in
the heap. These new pointer-reference operators are not yet implemented in the compiler. They
can however be emulated using abstract functions, as we did earlier with the buffer API’s focus
function. Emulating a single call site of such a pointer-reference operator is relatively straightfor-
ward, and each such function can be manually verified. Alas, it does not scale if such operations
are used across a large number of data types. To emulate the case&-of operation, it requires one
such abstract function for each alternative in every scrutinee type, if we restrict ourselves to ex-
haustive pattern matches. What we need instead are schemes of operators that are parametric in
the types that they operate on. Thus defining these operators as primitive operators will improve
productivity greatly, on both the implementation and the proof automation fronts.

* * *

Now we return to the discussion about the buffer API and envision its implementation and for-
mal verification. Conceptually, the buffer API works not only on a single Buffer type, but rather,
it should work uniformly for a class of buffer-like types. This generic nature calls for a language
feature which can support some forms of ad hoc polymorphism, for abstraction and function
overloading. Such language features are widely available from the literature and real-world lan-
guages, such as existential types [Cardelli andWegner 1985; J. C. Mitchell and Plotkin 1985], type
classes in Haskell [Hall et al. 1996], signatures and functors in standard ML [MacQueen 1984],
and classes in object-oriented languages, just to name a few. With such a language feature in
place, we can define instances of the buffer API class. The technical challenge is that we need
to ensure that the interface functions are general enough so that at least the majority of such
buffer-like types can be defined as instances of the class.

On the verification end, we take an axiomatic approach, in which we characterise each in-
terface function by a set of axioms. The axioms specify what properties each interface function
needs to satisfy. For each instance of an interface function, we can then manually prove that
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the function’s implementation indeed satisfies (or, refines) the specification prescribed by the
axioms. On the update semantics level, the axioms of the interface functions need be sufficiently
strong to prove the memory safety properties about the language, playing a similar role to the
frame conditions when verifying ordinary abstract functions [Cheung et al. 2022; O’Connor, Z.
Chen, Rizkallah, et al. 2016].

In a nutshell, if the axioms for each interface are properly defined and the implementations
are in line with the axioms, everything outside of the focus function should stay exactly the same
as before, and the operations within the invocation of focus should be memory safe. Importantly,
the API functions may not satisfy Cogent’s language contract delineated by the frame condi-
tions, but Cogent’s type system ensures that any violation of the frame conditions is restricted
to an encapsulated scope—within a call to the focus function and the memory region controlled
by a Buffer object. We need to separately verify that the axioms are strong enough, manually,
once-and-for-all, that the use of the interface functions does not undermine the overall memory
safety guarantees provided by Cogent.

To give some intuition, we take the next function as an example. Informally, the axioms
will need to say, if next (bu, bf ) = This bu′, it must be the case that bu = bu′ and it is pointing
to the last element in the buffer; if next (bu, bf ) = Next bu′, then bu′ must be pointing to the
next element and it does not escape the region controlled by the BUsed type. Unsurprisingly, the
formal definition will be more involved and care needs to be taken to ensure that all the details
are considered and captured.

3.8 Example: A Data Store

With all the ingredients introduced, we put everything together and in this section we show an
example which uses Dargent, the buffer API, and the pointer-reference operations emulated
with abstract functions. The example is a miniature data store. Albeit contrived, the core data
structures and operations used here resemble those used in BilbyFs.

The data store keeps a heterogeneous list of data entries, which can be a Person, an Address,
or a Date (of birth). Each entry has an id number, and entries that share the same id are related.
The program reads in the entries from a text file. The entries are in random order in the input
text file, and will be stored in the same order as they were read in. For any id that appears in
the data store, a Person entry of that id must be present, but the Addr and Date entries are both
optional. For simplicity, we do not handle any malformed or corrupted data entries. The only
function of this data store is for the user to query the profile of a person by his/her name. It
will then display all the available information about the person in question, or prompt that the
relevant information is not available in the store.

The data store example is a proof-of-concept exercise trying to capture the core data types
and operations in the BilbyFs file system, so that we are confident that the same techniques can
be applied to the much larger-scale BilbyFs. We first briefly introduce the relevant aspects of
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BilbyFs (and refer the interested readers to Amani’s PhD dissertation [Amani 2016] for a fuller
picture and amore detailed account), and then justify that the data store is a simplistic yet faithful
representation of a real world application.

3.8.1 BilbyFs’s Key Data Structures

BilbyFs [Amani 2016] is a log-structured [Rosenblum and Ousterhout 1992] flash file system for
Linux. It interfaces with Linux via the virtual file system (VFS) layer and works on raw flash
devices that are commonly found in embedded systems via the Unsorted Block Images (UBI)
abstraction layer [MTD n.d.].

In BilbyFs, the file system state is recorded on the device as a sequential (or more precisely,
circular) log, consisting of a list of log entries. Each entry can either be a file system object (such
as inodes, directory entries, data blocks) or a metadata object. The log contains assorted log
entries. To locate an entry, an index kept in the memory can be used, which maps the object
identifiers to their physical addresses on the device. Contrary to typical flash file systems, which
store the index on the disk, BilbyFs only stores the index in memory for simplicity. The trade-off
is that every time the file system is mounted, the flash needs to be scanned in order to reconstruct
the index.15 When a state-changing operation is performed, more log entries will be appended
to the end of the log. When a log entry is updated, it is not removed from the log immediately.
Instead, a new entry will be appended to the end of the log, and the superseded entry will be
marked obsolete. At a later stage, some bookkeeping will be done by the garbage collector to
remove the obsolete entries from the log, restoring space in the device.

For our purpose, it suffices to only look at the abstraction of the flash that BilbyFs provides,
and leave all the underlying mechanism behind the scenes. BilbyFs abstracts the flash as an
object store, which is a sequential collection of objects for log entries. Two preallocated buffers
are utilised: a read buffer mirroring the certain flash fragment that we are interested in, and a
write buffer which caches objects to be committed to the flash.

Objects are stored contiguously in the buffers in sequence. All objects share a common header
type, and each carries a different type of payload. If we model the buffer as an array of objects,
the elements need to have the same type, in a strongly-typed setting (in our case, Cogent). We
organise them as a record type Objwhich contains the fields of the common header, and a variant
type at the end which carries different types of payloads.

Some object types are variable-sized, such as directory entry objects containing the file name
strings or data objects storing the contents of files. Prior to Dargent, a variant type is compiled
to a struct in C, consisting of a tag field and one field for the payload of each alternative. It means
that if the payload types are large unboxed types, the overall variant can be gigantic, rendering
the memory utilisation very poor (after all, only one alternative is active at any time).

As a result, the data structures used in the Cogent implementation had to deviate from

15Summaries are used in BilbyFs to improve the performance, but that is orthogonal to our discussion.

71



Chapter 3. Dargent: A Layout Description Language

BilbyFs’s reference C implementation, by storing a pointer to the variable-sized array, which
itself is stored elsewhere, rather than directly embedded in the object type. Consequently, the
Cogent implementation of BilbyFs is not binary compatible with its C counterpart, whichmeans
that, the Cogent BilbyFs cannot be used to mount a flash device that was previously created
with the C version of BilbyFs. Another adaptation made is that every time an object is read
from the buffer, it needs to be deserialised. This is because the buffer is already referenced by
a linear Buffer type, which includes the object in question, and the uniqueness type system
forbids aliasing. Similarly, we cannot update buffer elements in-place. When a new object is
written to the buffer, instead of filling in the data on the fly, we have to fully prepare all the
data, create an object in memory, and serialise it to the buffer. These steps are a major source
of performance overhead and implementation complexity. In particular, during (de)serialisation,
some data structures are too large to be kept on the stack, and requires heap memory allocation,
which is an expensive operation in terms of performance penalties. In the rest of this section, we
demonstrate how Dargent, the buffer API, and the pointer-reference operations can be used to
fix all these problems with the miniature data store as a prototype.

3.8.2 The Data Store

The data store keeps all the data entries in a pre-allocated fixed-sized buffer. The data entries and
the buffer mimic the Objs and the read buffer in BilbyFs respectively. The entry type is defined
as follows:

type Entry =

{ id : U32

, size : U32 -- size of the entire Entry

, data : Data

} layout record {id : 4B, size : 4B at 4B, data : LData at 8B}

type Data = < Person #TPerson | Addr #TAddr | Date #TDate >

layout LData = variant (2b) { Person(0) : LPerson at 1B

, Addr(1) : LAddr at 1B

, Date(2) : LDate at 1B }

type TPerson = {len : U8, gender : Gender, nationality : U8#[2], name : U8#[0]}

type TAddr = {len : U8, addr : U8#[0]}

type TDate = {yr : U16, mon : U8, day : U8}

layout LPerson = record { len : 1B

, gender : LGender at 1B

, nationality : array[1B] at 2B
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, name : array[1B] at 4B }

layout LAddr = record { len : 1B, addr : array[1B] at 1B }

layout LDate = record { yr : 2B, mon : 1B at 2B, day : 1B at 3B }

type Gender = < Male | Female >

layout LGender = variant (1b) { Male(0) : 0b, Female(1) : 0b}

As can be seen from the definitions above, the Entry type has all the key components of the
Obj type in BilbyFs. It has a size field which is the size of the entire entry, or, equivalently, the
offset of the next entry in the buffer to the beginning of the current entry. The data field is a
variant which can be one of Person, Addr, or Date, the first two among which have flexible array
members, indicated by the U8#[0] type. When not used with Dargent, Cogent compiles it to a
char[0] type in (GNU) C, which has a very similar semantics to the flexible array member feature
as per specified by the C standard [GCC n.d.]. This is because the C code generator that Cogent
uses does not support the flexible array member syntax. When used with Dargent, where all
the Cogent types are compiled to word arrays, the flexible array member will not be counted
towards the size of the word array. This is in line with the C compiler in which the sizeof()

function will consider the size of the flexible array member to be zero. A variant layout is given
to the Data type, so that the variant type is compiled to a type with the same layout as a C union
type with a tag field for disambiguating the union, instead of the space-inefficient default C struct
with all the alternatives as fields. A similar treatment is applied to the Gender type, which only
occupies one bit, rather than as a 12-byte struct (four bytes for the tag, and four bytes each for
the two payload types, which are both the unit type (), chosen to be the size of an int by default).

The algorithm itself is straightforward. The top-level function find_PersonInfo (Figure 3.12) is
composed of two focuses, each one iterating the elements in the buffer. The first loop tries to find
the Person entry with the queried name and returns the person’s id, and the second one uses the
retrieved id to find any other entries with the same id. The person’s information is aggregated
into a PersonInfo structure, which is a stack-allocated unboxed record which contains pointers
to the name and address strings residing in the buffer. The idea is clear: for small data types,
we copy them to the stack; for large ones (i.e. the strings), we instead follow pointers to their
original locations.

There is an important caveat, though. In order to return (read-only) pointers to any fragment
of the linear buffer type, the buffer object itself also has to be read-only. Recall that in Cogent,
we do not allow read-only references to coexist with writeable references to the same or over-
lapping regions of memory. This restriction therefore implies that, during the entire lifespan of
the returned PersonInfo object, the buffer object has to be read-only. It necessitate a read-only
variant of the focus function, which is the focus_ro used here. In practice, the input buffer ob-
ject is usually writable by construction and we need to let! the buffer object before we call the
focus_ro function to turn the object into read-only.
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type PersonInfo =

#{ name : CString!

, gender : Gender

, nationality : U8#[2]

, dob : Option (#TDate)

, addr : Option (CString!)

}

find_PersonInfo : (Buffer!, CString!) → Option PersonInfo

find_PersonInfo (buf, name) =

focus_ro #{buf, acc = (), obsv = name, f = find_person}

| None → None

| Some (id, info) → Some (focus_ro #{buf, acc = info, obsv = id, f =

collect_info})

Figure 3.12: The top-level function of the data store example

Each loop is implemented in terms of the iterate_do function provided by the Cogent stan-
dard library.16 It resembles a do-while style loop in C. The loop body is comprised of two sub-
procedures: a generator and a consumer. The generator takes inputs to the iteration and produces
some intermediate result, which can be one of Stop, Yield or Return. They respectively mean that
the loop is exhausted and should end naturally, an intermediate result has been generated and
further work remains to be done, or the loop decided to exit prematurely. In the case of Yield, the
consumer will consume the intermediate result and return one of Stop, Next or Return, where
Next means that the loop will continue to the next iteration and the other two with the same
meanings as above.

In our example, for both loops, the generators are the same function, which proceeds to the
next element in the buffer. For the reason explained above, we also need a read-only next_ro
function. The next_ro function behaves exactly the way we want for a generator: if there are
more elements, it proceeds to Yield the next element, otherwise it Stops as it has exhausted all
the elements.

Figure 3.13 shows the two consumer functions used in the two loops respectively. They
both first read the BUsed object and extract the element type Entry. Once the element object is
acquired, a custom getter function get_Entry_data for the data field is invoked. This function
is an emulation of the _→_ operator. We cannot use the primitive member operation provided
by Cogent, since we want to get a pointer to the (unboxed) field rather than make a copy.
After obtaining a reference to the Data object, the two loops both pattern match the BoxedData

16https://github.com/au-ts/cogent/blob/master/cogent/lib/gum/common/iterator.cogent
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cons_entry_Person : #{obj : (), acc : (BUsed!,()), obsv : (BFree!,CString!)}

→ ConsumerResult (U32, PersonInfo) () (BUsed!, ())

cons_entry_Person (r {acc = (bu, _), obsv = (_, name)}) =

let entry = read bu

and data = get_Entry_data entry

and (ret, _) = match_BoxedData #{scr=data, acc=(), obsv=(name, entry),

person=get_Person_id_info, addr=skip_Addr, date=skip_Date}

in ((bu, ()), ret)

cons_entry_by_id : #{obj : (), acc : (BUsed!,PersonInfo), obsv : (BFree!,U32)}

→ ConsumerResult () () (BUsed!, PersonInfo)

cons_entry_by_id (r {acc = (bu, info), obsv = (_, id)}) =

let entry = read bu

and data = get_Entry_data entry

and (ret, info) = match_BoxedData #{scr=data, acc=info, obsv=(id, entry),

person=is_Person, addr=get_Addr, date=get_Date}

in ((bu, info), ret)

Figure 3.13: The two consumer functions (explicit type applications omitted for brevity)

object (which emulates the boxed version of Data) by calling thematch_BoxedData function. This
function emulates a nested variant pattern matching construct involving case&-of and esac:

match_BoxedData : ∀ (acc, obsv :< DS, r).

#{ scr : BoxedData!

, acc : acc

, obsv : obsv

, person : (TPersonL!, acc, obsv) → (r, acc)

, addr : (TAddrL! , acc, obsv) → (r, acc)

, date : (#TDate , acc, obsv) → (r, acc)

} → (r, acc)

This function takes three continuations, each of which is executed should the corresponding tag
be matched. Note that for the Person and Addr cases, we use the pointer-reference version of
the pattern match, whereas we use the traditional payload-copying pattern match in the case
of Date, as it is a relatively small data structure. The functions passed to the continuations will
extract data from different types of the entries, utilising the relevant _→_ operations emulated
with abstract functions.

* * *
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To give C definitions to these abstract types such as Person, Data and Entry, we use bit-fields
and the __packed__ attribute to fine-tune the layouts. In fact, in a real-world application, these
C types are more likely to pre-exist. They may come from the system that the Cogent program
interfaces with, such as the Linux kernel. The job of the Dargent annotations on the Cogent
side is thus to serve as an FFI, so that the Cogent data types and their C counterparts are layout-
compatible, and can be converted back and forth with a single type cast. This is indeed the case
in this example. For instance, the C type for Entry is defined as:

struct __attribute__ ((__packed__)) DataC {

unsigned char :6;

unsigned char tag :2;

union {

PersonC Person;

AddrC Addr;

DateC Date;

} payload;

};

We can see that the Dargent annotation of the Cogent type Data shown at the beginning of
Section 3.8.2 correctly prescribes the layout of it in accordance with this C struct definition,
assuming the layout of the bit-fields in the C compiler that we use.

3.9 Related Work

The idea of describing low-level data layout with high-level languages is not new. The rich area of
research makes it challenging to fully contextualise our work within the space. We can roughly
bifurcate the literature into research on program synthesis and program abstraction.

For instance, Prolac [Kohler et al. 1999], PacketTypes [McCann and Chandra 2000],
DataScript [G. Back 2002], Melange [Madhavapeddy et al. 2007], the PADS family of lan-
guages [Fisher and Gruber 2005; Fisher and Walker 2011; Mandelbaum et al. 2007], Pro-
tege [Wang and Gaspes 2011], Nail [Bangert and Zeldovich 2014], the generic packet description
by Geest and Swierstra [2017], the verified Protocol Buffer [Ye and Delaware 2019] built upon
the Narcissus framework [Delaware, Suriyakarn, et al. 2019], EverParse [Ramananandro et al.
2019], and contiguity types [Slind 2021] are all concerned with synthesising a parser program
(and also a pretty-printer for some of them) from a high-level specification of the data format.

Dargent’s primary focus is on the data refinement of algebraic data types rather than se-
curely operating on wire formats. Even though our technology shares a lot in common, the
problem we try to solve is very different. In particular, Dargent is not a language for parsing or
converting between data formats. It is an extension to Cogent for its compiler to fine-tune the
target code generation so that compiled code is already in the desired format that is suitable for
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systems software. In many cases, Dargent can eliminate the need for such a data marshalling
tool entirely.

Along with Dargent, LoCal [Vollmer et al. 2019], SHAPES [Franco, Hagelin, et al. 2017;
Franco, Tasos, et al. 2019] and hobbit [Diatchki and Jones 2006; Diatchki, Jones, and Leslie
2005] fall in the program abstraction camp and are concerned with compiling data structures
in a program into specific layouts dictated by the user. Programmers can therefore still work
with high-level source code, while the compiler does the heavy-lifting to generate the low-level
mechanisms, retaining the separation of program logic from low-level concerns.

LoCal [Vollmer et al. 2019] is a compiler for a first-order pure functional language that can
operate on recursive serialised data by translation into an intermediate location calculus, LoCal,
mapping pointer indirections of the high-level language to pointer arithmetic calculations on a
base address. The final compiler output is C code which, interestingly, preserves the asymptotic
complexity of the original recursive functions, although this property is implementation-defined
and not assured by any formal theorem. Nonetheless, LoCal’s type safety theorem does ensure
a form of memory safety: each location is initialised and written to exactly once. The latter
property is a key difference to our work, since Dargent can operate on mutable data by virtue
of Cogent’s linear types. On the other hand, Cogent is a total language and purposely lacks
full support for recursion; we therefore do not yet support recursive layout descriptions. Primi-
tive recursive types for Cogent are under development and use records (see [E. Murray 2019]).
Sincewe already support layout descriptions on records, we believe, once recursive types are sup-
ported, adding support for recursive layouts would be a straightforward engineering task. As a
systems language, Cogent code often uses abstract types such as arrays and iteration constructs
over such types. Arrays and iteration constructs over arrays were recently verified through
Cogent’s FFI [Cheung et al. 2022]. We have ensured these proofs work with our Dargent ex-
tensions. The most significant difference with LoCal is that Dargent is a certifying data layout
language, with generated theorems that the translation is correct, whereas LoCal offers no veri-
fied guarantees about its final compiler output.

SHAPES [Franco, Hagelin, et al. 2017; Franco, Tasos, et al. 2019] is an extension to an object-
oriented language for fine-tuning the layout of class objects to improve cache performance. It
allows users to define layout-unaware classes and specify what layout to use at object instantia-
tion time. This class parameterisation mechanism shares some similarity with Dargent’s layout
polymorphism. The layouts that SHAPES is concerned with are primarily arrays of values, which
are key to better cache locality but are not how compilers of managed languages natively repre-
sent data in memory. Their layouts are not down to the bit-level, but rather on the level of record
fields. In contrast, Dargent’s layouts are lower-level and more flexible, and are less tailored
for a specific optimisation. SHAPES’s type system maintains memory safety properties of the
program when it splits and lays out boxed data types. This bears some resemblance to Cogent’s
uniqueness type system. In our work, these two aspects are independently managed: Dargent
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does not directly interfere with memory safety properties guaranteed by Cogent’s type system.
The hobbit interpreter [Diatchki, Jones, and Leslie 2005] extends a Haskell-like functional

language with first-class support for bit-level types and operations (e.g. bit concatenation and
splitting), supporting external representations of bit-level structures. Their work initially focused
on bit-data that can be stored within a single register and later gets extended to memory areas
realised as arrays [Diatchki and Jones 2006]. Instead of assigning a high-level type and a low-
level layout to an object in memory, their types already prescribe the layouts, by virtue of the
first-class bit-data support in the language. In that sense, it is more comparable to the bit-fields
feature in the C language, or to Cogent if the Dargent layout descriptors were subsumed by the
Cogent types. Their research novelty also lies in using advanced type system features that are
readily available in Haskell to encode the new language constructs and to perform sophisticated
typechecking, which is arguably an orthogonal matter to data layouts.

Floorplan [Cronburg and Guyer 2019] is also somewhat relevant to Dargent, but does not fit
in either category. It is a memory layout specification language for declaratively describing the
structure of a heap as laid out by amemorymanager. It therefore chiefly serves the implementors
of memory managers rather than systems developers and users in general, and the abstraction
it provides does not necessarily extends to algebraic types of heap objects. The compiler follows
the specification to generate memory safe Rust code to perform common tasks that are needed
in the implementation of a memory manager. The semantics of a heap layout specification is
denoted by the set of values that the heap can take. In contrast, the semantics of a Dargent
layout is characterised by the getter and the setter functions.

3.10 Conclusion

Systems code must adhere to stringent requirements on data representation to achieve efficient,
predictable performance and avoid costly mediation at abstraction boundaries. In many cases,
these requirements result in code that is error prone and tedious to write, ugly to read, and very
difficult to verify.

By using Dargent, we can avoid the need for having the glue code (be it manually writ-
ten or synthesised) that marshals data from one format into another, and eliminate error-prone
bit-twiddling operations for manipulating specific bits in device registers. Instead, we enable
programmers to provide declarative specifications of how their algebraic datatypes are laid out.
Given these specifications, our certifying compiler generates corresponding C code that operates
on these data types directly, along with proofs that the generated code is functionally correct.
We have shown the applicability of Dargent on a number of examples, showcasing its support
for low-level systems features including the formal verification of a timer device driver.
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Chapter 4

The Cogent-C Foreign Function
Interface

This chapter is derived from the following publication:

⋄ Zilin Chen and Christine Rizkallah. 2022. Why It’s Nice to be Quoted: A Cogent FFI. Unpub-
lished

All the technical development, except for the optimisation of the FFI compiler described in Sec-
tion 4.6.1 is done by the author of this thesis.

A foreign function interface (FFI) of a language typically exports function and type names, so
that programmers can refer to them in a guest language. These exported names are oftentimes
mangled to avoid name clashes. This name-based approach to FFI has serious drawbacks and it is
sometimes inadequate to use, for instance, if the host language has a structural type system and
the types are nameless. In this chapter, we present an alternative design of an FFI in the context
of Cogent, a structurally typed polymorphic language implemented in Haskell. The FFI lever-
ages ideas from Haskell’s quasiquoting mechanism: Instead of inventing names for the functions
and types of the host language, it allows programmers to include host language snippets in the
guest language directly. A lightweight FFI compiler will then process the guest language and
replace the host language snippets with appropriate guest language code. We provide a recipe
for constructing an FFI compiler using existing tools that only requires very little engineering
effort. We envision how this approach can be applied to a wide range of languages.

4.1 Introduction

Language interoperability is key in modern, large-scale software development. Employing mul-
tiple languages in a single project allows programmers to combine the advantages of each lan-
guage, and to use language-specific features to solve different problems. In some cases, language
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interoperation may be necessary because a program implemented in one language needs to com-
municate with existing components or systems that are implemented in a different language. A
foreign function interface (FFI) is a mechanism that allows for calling functions implemented in
a guest language, and it is widely available in most serious programming languages (both main-
stream languages and also many research languages).

Themost common and straightforward way of exporting host language objects, such as func-
tions and types, and importing guest language objects, is to reference them by name. For instance,
in Haskell’s C FFI [Marlow 2010b], function names declared in Haskell will be mirrored to the
C side. In the code snippet below, the functions strlen and addInt will be imported from and
exported to C respectively.

foreign import ccall "string.h strlen"

cstrlen :: Ptr CChar → IO CSize

foreign export ccall addInt :: Int → Int → Int

In other cases, such a simple naming scheme is inadequate to deal with name clashes and name
mangling is needed to further disambiguate language objects. In some languages, the name
resolution mechanism can be quite complicated. For example, Java Native Interface (JNI) can
produce very convoluted names for its methods. The documentation excerpt below specifies
how the method names are resolved [JNI 2022]:

A native method name is a concatenation of the following components:
• the prefix Java_

• a mangled fully-qualified class name
• an underscore (“_”) separator
• a mangled method name
• for overloaded native methods, two underscores (“__”) followed by the mangled argu-
ment signature

Name-based FFIs, in general, come with some (serious) drawbacks, and in some scenarios are
infeasible to build. In this chapter, we present an alternative solution to FFI design that avoids
the reliance on names. Specifically, we present our problems and show an elegant solution for
interfacing with the C language in the context of Cogent [O’Connor 2019b; O’Connor, Z. Chen,
Rizkallah, et al. 2016; O’Connor et al. 2021], a purely functional language for systems program-
ming implemented in Haskell. We dissect the limitations of name mangling in FFI and demon-
strate why it is highly unsatisfactory in our scenario. Our FFI between Cogent and C, which we
call antiquoted-C, connects the two languages via a totally different route.

Antiquoted-C is a dialect of C (see Figure 4.1 for a first impression), in which programmers
can quote Cogent types and terms directlywithout needing toworry about namemangling at all.
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The interface language is then lightly processed by a compiler. This FFI compiler is constructed
with Cogent compiler modules and tools that are readily available in the Haskell ecosystem
with no or little modification. Specifically, the tools it uses are a C parser and pretty-printer from
the language-c-quote library [Mainland 2021], and a generic programming library [Jeuring et al.
2008] for syntax tree traversal. The resulting interface system is not only easy to use and avoids
the drawbacks of name mangling, but also only requires minimal engineering effort to build.
To summarise, the main contributions presented in this chapter are:

• Based on our analysis and experience with name-based FFIs, we argue that name resolu-
tion schemes must meet five criteria to be considered practically usable and user-friendly.
We illustrate why the criteria cannot be met in the presence of some language features,
exemplified by Cogent (Section 4.2).

• We present antiquoted-C, our answer to the Cogent-C FFI problem, and introduce its key
features to demonstrate how antiquoted-C effectively satisfies the criteria that we set out
without actually taking the name mangling route (Section 4.3).

• We outline the compilation pipeline of antiquoted-C code, and show how the compiler is
constructed with minimal engineering effort by reusing existing tools (Section 4.5).

• We evaluate the Cogent-C FFI and the antiquoted-C compiler by performance, develop-
ment effort, user experience, and discuss alternative designs and future improvements (Sec-
tion 4.6).

• We share the recipe for building an antiquoted-C style FFI. We believe our approach is
transferable to other programming languages and can benefit more language designers
(Section 4.6.5).

4.2 Why Antiquoted-C: A Challenge in Assigning Names to
Types

Developing an FFI between Cogent and C is conceptually simple. Because Cogent compiles
to C, there is no need to be concerned about the calling conventions or the application binary
interface (ABI). Furthermore, because Cogent does not have a module system and it is compiled
down to a single C file, the FFI only needs to stitch the Cogent-generated C code and the man-
ually written C library together at the C program text level. After that, the combined code can
be compiled by an off-the-shelf C compiler like a regular C program.

Recall that a C function can be invoked from Cogent by defining an abstract Cogent func-
tion (i.e. a function signature without a definition). On the Cogent side, the abstract function is
treated similarly as any ordinary Cogent function. The Cogent compiler compiles the abstract
function down to a C function prototype, which is paired with its function body provided by
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the user in C. Calling a Cogent function from C is also conceptually straightforward because a
Cogent function is compiled to a regular C function. No matter which direction the function
call goes, the programmer only needs to know the name of the function, and the names of the
function’s input and output types.

Cogent employs a structural type system. In contrast to a nominal type system, which is used
in most mainstream programming languages [Pierce 2002], two types in a structural type system
are, by definition, equal if they have the same structure. Type synonyms (i.e. type names) can
usually be defined as shorthand for a structural type, but they are merely syntactic convenience
for the programmers and are semantically identical to spelling out the full structure of the type.
The user can opt not to define such type synonyms at all and stick with the structural definitions
throughout the program and bear with the verbosity.

The structural type system and polymorphism void our plan of exporting Cogent names to
C to build the FFI: Cogent types are structural, and can be parametric. It means that Cogent
types generally do not have names at all. Moreover, Cogent functions can be polymorphic, and
once they are monomorphised by the Cogent compiler, the functions’ names will necessarily
have to change. The former is in fact the more fundamental issue among the two. If we had a
way of naming types, we could subsequently devise a naming convention for monomorphised
functions by name mangling, such as appending the names of the type arguments to the function
name.

Unfortunately, it is generally a non-solution to demand users to prescribe names for all types
occurring at the language boundary. The types that the users may need to reference in their C
code are not limited to those of a function’s argument and resultant. When defining a Cogent
function in C, it is likely that many intermediate types will need to be mentioned. Consider the
following deeply nested record type:

type Nested = {f1 ∶ {g1 ∶ {⋯}, g2 ∶ {⋯},⋯}, f2 ∶ {⋯}}

To initialise an object of this type, several intermediate structural types are involved, such as the
type of the field f1. Giving the entire record a type name Nested is therefore inadequate, as the
user may want to declare variables and initialise a field such as g1 or g2 and subsequently also f1
or f2, which are themselves also structural but remain nameless. In fact, deeply nested types are
very common and abundant in real applications of Cogent. For this reason, although mandating
programmers to assign names to types only at the language boundary is a plausible idea, it is in
fact not practical to do in Cogent in light of its structural type system.

It is also not viable for users to define type synonyms for recurring algebraic types and rely
on the compiler to leverage the name abbreviations for all subsequent occurrences of the same
structure. In Cogent, type synonyms are top-level and global. For a common structural type,
say, a pair of U32, it may mean many different things in different parts of a program. It could be
a range with a lower and an upper bound, it could as well be an initial index and a step number
for a for-style loop. When a (U32, U32) is encountered, the compiler is unable to faithfully
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determine the actual meaning of the type, and using the wrong type synonym would be more
confusing than illuminating.

Additionally, type synonyms in Cogent are only present in the surface language, and types
in the core language are nameless, which makes the compilation and the verification much more
tractable. Choosing a structural type system in a research programming language is common
practice, and is justifiable [Pierce 2002]. The problem we are facing is how to create names for
nameless types in a principled manner. More specifically, we define the following criteria for a
valid, practically usable, and user-friendly name resolution scheme:

1. [injective] the generation of type names is injective—namely, if two types are different,
the names of the types are also different;

2. [concise] the length of the names are reasonably short and are practical to be used by
programmers;

3. [stable] the naming of types is stable—for any structural type, it is always compiled to
the same name regardless of the context and the ambient program;

4. [a priori] the name of a type can be inferred from the type’s definition, without needing
to run the compiler and inspect the result;

5. [indicative] the name of a type should be somewhat meaningful, which is critical to
make the program readable.

It is not obvious how to achieve these criteria using a name generation algorithm in the context of
Cogent. Simple strategies fail immediately. For instance, the current Cogent implementation
generates short names such as t1 or t2 for types. These names are not stable, as the numeric
component in the type name depends on the order in which types are processed. If the order
of type definitions in a program changes, the name mapping will change accordingly. Therefore
the generated names are not only uninformative, but also unstable, and a posteriori (namely, one
can only work out the name assignment by running the compiler and observing the output).

Another naïve attempt is to devise a scheme for name mangling that reflects the struc-
ture of a type. For instance, a record type #{ f1 ∶ U8, f2 ∶ (Bool, U32) } can be named
urec_f1_U8_f2_tp_Bool_U32____, where urec indicates that it is an unboxed record, and tp
indicates that f2 is a tuple. If the algorithm is very carefully designed, it is possible to make it
injective. Obviously, this naming scheme is stable, a priori, and indicative of the meaning of the
type. However, the generated name can be frustratingly long. In our experience, the names of
many types in a file system implemented in Cogent [Amani, Hixon, et al. 2016] can be several
thousand characters long.

In order to find a solution that fulfils the desired criteria, we have to deviate from the original
plan of referencing Cogent types by name. Instead, programmers can reference Cogent types
by directly writing Cogent concrete syntax in their C code. Using Cogent concrete syntax
trivially satisfies the five properties listed above. However, it requires compiling the C program
with the Cogent syntax snippets to ordinary C code. What we need, therefore, is a tool that can
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-- Cogent

type RepParam acc obsv =

#{ n : U64

, stop : (acc!, obsv!) → Bool

, step : (acc, obsv!) → acc

, acc : acc

, obsv : obsv! }

repeat: ∀ (acc, obsv). RepParam acc obsv → acc

// antiquoted-C

$ty:acc $id:repeat ($ty:(RepParam acc obsv) arg) {

$ty:(U64) i = 0;

$ty:(StepParam acc obsv) a;

a.acc = arg.acc;

a.obsv = arg.obsv;

for (i = 0; i < arg.n; i++) {

$ty:(Bool) b = (($spec:((acc!, obsv!) -> Bool)) arg.stop)(a);

if (b.boolean) { break; }

a.acc = (($spec:((acc, obsv!) -> acc)) arg.step)(a);

}

return a.acc;

}

Figure 4.1: An example of antiquote-C

(1) parse the C dialect that can embed Cogent syntax; (2) locate the Cogent code snippets and
compile them into valid C code fragments; and (3) coalesce the compiled C fragments and the
native portion of C code into a single valid C program.

The C language is quite complex and we would like to avoid the onerous work of developing
a parser and a pretty-printer for it. On the other hand, it is a widely used, well-established,
and relatively well-defined language. Both factors lead us to search for an existing library that
can parse and pretty-print C code, with the flexibility of handling the injected Cogent snippets.
Luckily, such a tool already exists: the C quasiquoting library language-c-quote [Mainland 2021]
in Haskell. Unsurprisingly, some extra work is needed for it to serve our purpose; after all, our
use case is not what the library is designed for. Although it does not work out of the box, it does
appear very promising to us, as the effort needed for repurposing the library is fairly minimal.

We call this C dialect with Cogent snippets antiquoted-C. An example of the repeat function
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Antiquotes Description
$id For function identifiers or type identifiers when defining them
$ty Refer to a Cogent type
$exp Call a Cogent function; any Cogent expressions
$spec Specify the type of a function callback (using typecast syntax)
$esc, $escstm Any code that should not be preprocessed before antiquoted-C is

compiled

Table 4.1: Antiquoted-C syntax: a summary

from Cogent’s standard library is shown in Figure 4.1. In the antiquoted-C code, we can see
that the function’s identifier follows a $id: symbol and Cogent types are enclosed in a $ty:()

or a $spec:() construct, and the rest is just vanilla C code. The quotation syntax is simply
the antiquotation syntax in Haskell [Mainland 2007]. The fact that we use the antiquotation
mechanism to include Cogent code is where the name antiquoted-C came from, as some readers
may well have wondered.

The high-level idea is relatively simple. The language-c-quote package comeswith a C parser
for C quasiquoting. Additionally, it also supports a wide range of antiquotes, allowing Haskell
code to be spliced into the C syntax. The key enabler of this solution is that, in the library’s
implementation, the content that can be enclosed by an antiquote is untyped—it is a bare string—
which means that we can embed Cogent code instead of Haskell code in the C program. We
will then use an FFI compiler to find all the Cogent snippets in the C code, compile them as
normal Cogent program texts, and substitute them in the C syntax tree with the corresponding
target C code.

As we have alluded to, programming in Cogent heavily relies on the capability of interfacing
with C, and this language interface is what we will primarily discuss throughout this chapter.
Aside from FFIs, the limitations of name mangling also manifest themselves in language em-
beddings. When the users work with the Isabelle/HOL and Haskell embeddings of Cogent
programs, they are also exposed to Cogent function and type names. We will briefly discuss
these embeddings in Section 4.6.4.

4.3 Antiquoted-C at a Glance

The interface between Cogent and C allows for access in both directions. Cogent supports
abstract types and abstract functions, whose declarations are given in Cogent and definitions
are given in C. It is essentially a means for Cogent to access C code. The other direction is also
supported: Cogent exports its functions and types so that they can be accessed from the C code.
In this section, we walk through the key features of the Cogent FFI with examples. Table 4.1
summarises the antiquoters, which will be explained in turn.
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4.3.1 Defining Cogent Types

Defining a non-parametric abstract Cogent type is easy, because the name of the defined type
is statically known and the users can refer to them directly. The trickier case is when defining
parametric types. Abstract parametric types can be defined parametrically or ad hoc. The latter
is similar to how associated types in a type class are instantiated in GHC/Haskell [Chakravarty
et al. 2005]. If the type is parametrically defined, then the Cogent compiler will scan for all
occurrences of the type instances in the program and will only generate those being used. In
antiquoted-C, we use the $id antiquoter to define Cogent abstract types. In the example below,
we give definitions to two contrived parametric abstract types R a b and T a b c:

-- Cogent

type R a b

type T a b c

// Antiquoted-C

struct $id:(R a b) { /* ... */ };

typedef struct $id:(R a b) $id:(R a b);

typedef struct $id:(T x y z) { /* ... */ } $id:(T x y z);

typedefs can also include the $id antiquotes. One restriction on typedef is that the type syn-
onym has to be identical to the type being defined. Cogent does not natively support recursive
data types, while they are key to many applications. This has to be done with antiquoted-C. For
instance, to define the linked list type:

-- Cogent

type List a

// Antiquoted-C

struct $id:(List a) {

struct $id:(List a)* next;

$ty:a val;

};

typedef struct $id:(List a) $id:(List a);

Inside the type definition, we can use antiquoter $ty to refer to the type parameter a.1 $ty

is arguably the most commonly used antiquoter. It can quote any Cogent types in C function
definitions and type definitions. A caveat is that the quoted typemust also be used in the Cogent
code. This restriction makes perfect sense: after all, the role of FFI is to relate guest code with
the code in the host language; an orphan antiquoted Cogent type obviously does not relate to
anything meaningful in the Cogent code.

1In Haskell’s antiquotation syntax, when the quoted string is a single identifier starting with a lower-case letter,
the parentheses around the quoted code can be omitted.

86



Chapter 4. The Cogent-C Foreign Function Interface

4.3.2 Defining Cogent Functions

When implementing a monomorphic abstract function in antiquoted-C, the name of the function
does not concern us. The name is known, so we can simply use the function name directly. To
refer to the argument and return types, we already have $ty from our toolbox. The more inter-
esting case is when defining polymorphic functions. Note that, in Cogent, it is not necessary to
define polymorphic functions parametrically; namely, programmers can implement instances of
a polymorphic function in an ad hoc manner, similar to function overloading. During verifica-
tion, they would (manually) prove that each monomorphic C instance refines the semantics of
the polymorphic function. This flexibility allows programmers to choose implementation strate-
gies that suit each particular type instantiation, and potentially achieve better performance by
implementing type-specific optimisations.

To define a function parametrically, we use the $id antiquoter to reference the name of the
function and the compiler will generate all the instances of the function that are used in a pro-
gram. For example, if we have a function signature in Cogent:

foo : all (a, b). a → b

Then in antiquoted-C, we can define the function foo by the following:

$ty:b $id:foo ($ty:a arg) { /* ... */ }

Note that inside the $id antiquote, we do not include the type parameters. The compiler is able
to figure out which type variables (a and b in the example above) are in scope.

To give ad hoc instantiations to the polymorphic function, type arguments should be included
inside the $id antiquote for the function name, where the square brackets is the syntax for type
application in Cogent. For example:

$ty:(U8) $id:(foo[(U8, U32), U8]) ($ty:((U8, U32)) arg)

{ /* ... */ }

The two types inside the square brackets are the type arguments supplied to the function. Ac-
cordingly, the argument type and the return type are necessarily (U8, U32) and U8 respectively.2

Once applied, the type parameters a and b are no longer in scope, and should not be referenced
inside the definition of the function, otherwise an error for unknown type variables will be raised
during typechecking.

4.3.3 Calling Cogent Functions

As we have seen earlier, Cogent types can be quoted with $ty. Another point of interaction is to
invoke a Cogent function from antiquoted-C. It can be done by using the $exp antiquoter, which
can enclose a Cogent function symbol. For polymorphic functions, the type application must be

2When the type itself has parentheses around them, such as tuples, the pair of parentheses for the antiquote should
not be forgotten.
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made explicit. In Cogent, type applications in many cases can be inferred by the typechecker.
However, inside an antiquote, there is not enough context for the inference to be fully functional.
Therefore explicit type applications are needed to allow the compiler to typecheck the quoted
code. For example:

int call_foo() {

$ty:(U32) a = 5;

$ty:(U8) b = $exp:(foo[U32, U8])(a);

// ...

}

Higher-order functions are handled differently, as Cogent compiles a higher-order function call
into an invocation of a dispatch function. Imagine a Cogent functionwhich takes two arguments
f ∶ A→ B and x ∶ A, and we woud like apply f to x in the function’s definition. In Cogent, with
no surprise, we just write a function application f x . The compiled code uses a dispatch function
to perform the function call:

B dispatch_t3 (func_enum f, A arg) {

switch (f):

case FUN_ENUM_bar:

return bar (arg);

case FUN_ENUM_foo_2:

return foo_2 (arg);

...

}

Depending on the input function symbol (of an enumeration type func_enum in the example
above), the dispatch function invokes the respective function with the given argument (arg).
The compiler will search through the program text and find all functions with the type A → B

(e.g. bar and foo_2) and include them in the dispatch table. The name of the dispatch function is
determined by the type of the functions that it dispatches.

To write a higher-order function call in antiquoted-C, we employ a different antiquoter than
the $exp for first-order function calls, while mimicking the syntax of an ordinary C function
application for better readability. We simply piggyback on the C typecast syntax to specify the
Cogent type of the high-order function with a $spec antiquoter. The syntax is otherwise just a
normal function call. In the following example, arg.p1 and arg.p2 are the first and the second
projections of the argument pair arg.

B hof_ex ($ty:((A -> B, A)) arg) {

// ...

(($spec:(A -> B)) arg.p1) (arg.p2);

// ...
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}

The $spec type annotation (“typecast”) is used to inform the FFI compiler which dispatch function
to use. We choose not to let the users call the dispatch functions directly for two reasons. Firstly,
the names of the dispatch functions are not known a priori, and the users would need to do
some name mangling with the help of antiquoters. The more important reason is that we want
to make the compilation strategy of high-order function calls fully transparent to the users, so
that changes to the Cogent compiler do not affect existing antiquoted-C code.

It is necessary to have a different syntax specifically for higher-order function calls. Using
the same syntax as first-order function applications is not viable. This is because, unlike first-
order functions, a higher-order function object can be an arbitrary C expression, while $exp can
only quote Cogent expressions (e.g. a function name).

4.3.4 Expressions

Besides function calls, we extend the $exp antiquoter to support any valid Cogent expressions.
However, its expressiveness is limited, because antiquotes cannot mention any C variables or
expressions. Albeit being very restrictive, it has been proved to be very convenient in construct-
ing constant Cogent expressions, especially when the expression’s type is also given by a $ty

antiquote. This gives an extra layer of abstraction over the low-level implementation details of
the Cogent compiler. In fact, in our experience, when the user strives for additional expressive-
ness from an $exp antiquote, it is usually an indication that the FFI code should be rearranged
by moving the antiquoted-C function to Cogent.

4.3.5 Escape Sequences

The antiquoted-C compiler works by first preprocessing (à la cpp) the input antiquoted-C source
files. This gives programmers more flexibility in their programming strategies and practices. For
example, #-directives (e.g. #define and #if) can be included for conditional compilation and gen-
erating code from templates. After preprocessing, the antiquoted-C code is further compiled to
ordinary C. There are situations where we want certain code to be hidden from the preprocessor
and bypass the antiquoted-C compilation altogether. There are several typical reasons why it is
desirable.

(1) When there is a solid chunk of plain C code not tinted by any antiquotes, we do not need
to pass them through the FFI compiler. This can improve the overall performance of the
compilation process.

(2) Even though the language-c-quote library, which we use to parse the antiquoted-C code,
supports a wide range of gcc extensions [Mainland 2021], it still falls short of full syntax
coverage, especially when we deal with exotic C code like the Linux kernel. We can sim-
ply hide the unsupported syntax from the antiquoted-C compiler, rather than extend the
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language-c-quote library.
(3) Sometimes we need to preserve the preprocessor directives in the output C code, thereby

the C compiler can subsequently observe them and use them accordingly. It is particularly
useful to preserve #if-conditions in the generated C code if the code is to be shipped to
downstream developers, so that they can choose their preferred compiler (e.g. gcc vs clang)
and target different versions of the Linux kernel.

To meet these user requirements, our antiquotation mechanism provides two more antiquot-
ers $esc and $escstm to escape the problematic code from being preprocessed and parsed by
language-c-quote. The difference between them is solely syntactic—the former works on the
declaration level, and the latter works on the statement level. They both preserve whatever text
that is enclosed in the antiquote.

They are in one way very different from all the other antiquoters that we have introduced
thus far: they quote C program texts rather than Cogent ones. So strictly speaking, they are on
a tangent to the rest of the FFI story that we present in this chapter. However, remarkably, they
hint towards a great potential of our antiquoted-C approach to language interoperability. It can
easily scale to a multilingual setup: the quoted contents do not necessarily need to be in the same
language. Imagine that we developed an experimental language Refulgent in preparation for
retiring Cogent. The language might be vastly different from Cogent but it also compiled to C.
We could then extend the antiquoted-C with a set of new antiquoters (e.g. $ty_ref and $exp_ref

for types and expressions) for Refulgent. This would allow us to phase out the old Cogent
code by incrementally replacing Cogent functionswith Refulgent ones. The antiquoted-C code
would house both sets of antiquotes from the two languages. The FFI compilation process would
be nearly identical to how it is now, as we shall see in Section 4.5; only step (4) in Figure 4.3 would
have to be done differently: two compilers would be used in parallel instead of one. Each compiler
would only compile the antiquotes of its own language, and the two compilation pipelines would
operate independently of each other.

4.4 The Ingredients for Antiquoted-C

In this section, we provide a brief overview on the programming techniques and tools that will
be needed in compiling the Cogent-C FFI. Readers who are already familiar with Haskell’s
quasiquotation mechanism and the language-c-quote library (Section 4.4.1) and generic pro-
gramming à la SYB in Haskell (Section 4.4.2) can skip the relevant subsections and fastforward
directly to Section 4.5.

4.4.1 Quasiquotation

The concept of quasiquotation is rooted from mathematical logic research and later saw fruitful
development in the Lisp family of languages [Bawden 1999]. It is a powerful tool primarily used
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in constructing language IR. It allows programmers to write literally in a language’s concrete
syntax to construct its abstract syntax tree. The resulting program is therefore a lot more read-
able, and also crucially, more relevant to the programmers. It hides the implementation details
of the abstract syntax tree, which typically contains a lot of irrelevant meta-information such as
line numbers, from the reasoning of the program. Antiquotation further augments the expres-
siveness of quasiquotation. It allows programmers to write a program template, so to speak, in
the concrete syntax, leaving some holes to be filled in later, much like what a printf function in
C would do with the %-modifiers.

When quasiquotationwas introduced to Haskell [Mainland 2007], it was designed for easing
the development of embedded languages in Haskell. For example, to write a generic function
which can be used for constructing a C code snippet of a variable declaration with initialisa-
tion, one has to know about the definitions of the abstract syntax, and the code is very verbose,
barely comprehensible and error-prone (e.g. the mkFnCallAssn function shown in Figure 4.2). In
contrast, the equivalent function which uses the quasiquotation technology (mkFnCallAssn') is
much more readable and easy to reason about. The [citem| ... |] is one of the quasiquoters
that the language-c-quote package provides for building the BlockItem construct in C. Within
the quoted snippet, it uses several antiquotes (e.g. $ty:(...), $id:(...)) which allow the pro-
grammer to splice the Haskell values into the abstract syntax tree at runtime. Apart from the
benefit that the developers can write directly in the concrete syntax of the guest language with-
out having to know the implementation details of the abstract syntax, antiquotation brings the
parsing of the guest language to compile time, rather than being a runtime check. It guarantees
that the constructed syntax tree is well-typed.

In the literature, a different variant of language quotation mechanism, such as that of
Scala [Shabalin et al. 2013] and F# [F# Language Reference 2021; Syme 2006], is sometimes
also referred to as quasiquotes (e.g. in [Parreaux et al. 2017], [Omar and Aldrich 2018]). These
quasiquotes, however, are more comparable to Haskell’s Template Haskell feature [Sheard and
Peyton Jones 2002] than Haskell’s quasiquotes [Mainland 2007], which extends on Template
Haskell. The major difference between these notions of quasiquotes is that, Template Haskell,
Scala’s quasiquotes as described by Shabalin et al. [2013] and F#’s code quotation all manipulate
the host language, turning a program text of the host language into its abstract syntax tree
representation. Haskell’s quasiquotes, on the other hand, is designed for handling languages
deeply embedded in the host language. It means that the quoted language does not have to be,
and in fact is rarely Haskell itself, but some embedded language in Haskell. In the context of
this thesis, when we refer to quasiquotes, it is always in the sense of Haskell’s quasiquotes,
which operate on an embedded language rather than the host language.

More relevant to our development is the language-c-quote package [Mainland 2021] in
Haskell. It is a library for quasiquoting C code. The library supports the C language with
several groups of extensions, which include GNU C extensions. The library provides a score of
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mkFnCallAssn :: (ToIdent a) ⇒ Type → a → Exp → [Exp] → BlockItem

mkFnCallAssn t lhs f es =

let Type declSpec decl _ = t

in BlockDecl

(InitGroup declSpec []

[Init (toIdent lhs noLoc) decl Nothing

(Just (ExpInitializer (FnCall f es noLoc) noLoc)) [] noLoc]

noLoc)

mkFnCallAssn' :: (ToIdent a) ⇒ Type → a → Exp → [Exp] → BlockItem

mkFnCallAssn' t lhs f es =

[citem| $ty:t $id:lhs = $exp:f ($args:es); |]

Figure 4.2: Haskell functions to construct a C initialisation statement without and with
quasiquotation

quasiquoters for different C language constructs (e.g. expressions, types, and statements). More
importantly, it also exports more than forty antiquoters. Although we use the quasiquotes exten-
sively for C code generation in the Cogent compiler, for the FFI development, we do not need
to quasiquote C code. What we need from the library are the C parser, the C pretty-printer, and
the antiquotation support. The antiquotes are what allow us to embed Cogent code in the C
template.

Table 4.2 is an excerpt of the package’s documentation [Mainland 2021] for the antiquoters.
The antiquotes are typed. The first part of each description says what type of C construct the
antiquoter produces. For example, $ty produces a C type, therefore this antiquoter can only be
used where a C type is expected. The second part further specifies what type of argument the
antiquoter expects: for example, $ty expects a Haskell term of type Type, which is the Haskell
type for C types.

4.4.2 Generic Programming

Generic programming à la Scrap Your Boilerplate (SYB) [Lämmel and Peyton Jones 2005, 2003] is
a technology to allow programmers to write code to easily traverse rich mutually recursive data
structures. The typical scenario where SYB should be considered is when a plethora of boiler-
plate code is needed solely for traversing the data structures, whereas only small individual bits
in the structures are relevant to the actual computation. The SYB technology is often used in
constructing and compiling embedded languages. The language’s AST is typically comprised of
multiple large mutually recursive data types for different language constructs (such as expres-
sions, patterns and types), but at a time the compiler only needs to inspect and manipulate a
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Antiquotes Description
$id A C identifier. The argument must be an instance of ToIdent.
$ty A C type. The argument must have type Type.
$exp A C expression. The argument must be an instance of ToExp.
$spec A declaration specifier. The argument must have type DeclSpec.
$esc An arbitrary top-level C “definition”, such as an #include or a #define. The

argument must have type String. Also: an uninterpreted, expression-level C
escape hatch, which is useful for passing through macro calls. The argument
must have type String.

$escstm An uninterpreted, statement-level C escape hatch, which is useful for passing
through macro calls. The argument must have type String.

Table 4.2: The documentation for some of the antiquoters

certain type of nodes. It is no surprise that we can also leverage the convenience that the SYB
approach brings to process the antiquoted-C syntax tree.

Using SYB in Haskell is straightforward. As an example, we sketch out how to traverse a C
AST to append two underscores ("__") to all C identifiers. We only need to define the computa-
tion on the Id type:

data Id = Id String Loc

append :: Id → Id

append (Id s l) = Id (s ++ "__") l

Apparently, the append function does not work on any other AST node types, but this is what SYB
can automate. For instance, Field and Exp are data types which contain Ids, either as immediate
child nodes or as deeply nested indirect sub-structures.

data Field = Field (Maybe Id) (Maybe Decl) (Maybe Exp) Loc

data Exp = Var Id Loc

| BinOp BinOp Exp Exp Loc

| Member Exp Id Loc

| ...

mkT :: (Typeable a, Typeable b) ⇒ (b → b) → a → a

The mkT (reads “make transformation”) function provided by SYB automatically lifts a transfor-
mation on any type b to that on any allowable type a, so that mkT append can be applied to other
node types in the syntax tree. When the type is Id, it applies the append function, otherwise
it applies the identity function id to the data type. So far, we have not yet traversed any data
types. We however do not need to handwrite any traversal functions ourselves. Note that the
mkT append function is not recursive. In order to traverse, the SYB library provides a large set
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of built-in traversal schemes, such as the everywhere combinator which performs a bottom-up
traversal.

everywhere :: (∀ a. Data a ⇒ a → a) → (∀ a. Data a ⇒ a → a)

appendDef :: Definition → Definition

appendDef = everywhere (mkT append)

We only need to call the traversal combinator everywhere on the top-level data type and it will
recursively apply the appropriate transformation depending on the type of the argument. All
the onerous work is hidden behind the scenes.

SYB is only one implementation (arguably the most widely known among Haskellers) of
generic programming libraries and we use it as an example to illustrate how generic program-
ming works in Haskell. These libraries can be vastly different in their structures, performance,
flexibility and usability (see [Hinze et al. 2007; Rodriguez et al. 2008] for comparisons). But as far
as the FFI compiler is concerned, it is not tied to any specific feature of a generic programming
library. This allows us to freely choose the most appropriate one for lower engineering effort
and better performance. In the actual FFI compiler’s implementation, we swapped out the SYB
library for the generic deriving infrastructure for Haskell [Magalhães et al. 2010] to exploit its
superior performance, at the cost of a moderate increase in code size (see Section 4.6.1).

4.5 Compilation of Antiquoted-C

As introduced in Section 2.4, the Cogent compiler is comprised of several stages, from parsing,
surface typechecking, desugaring, a series of core language transformations each followed by a
core language typechecking phase, and finally to the C code generation and Isabelle/HOL gen-
eration along the way. For the Cogent snippets in the antiquoted-C code, we need to follow
the same compilation process, so that the following coherence property is maintained: The com-
pilation result of a piece of Cogent code should be identical, regardless of whether the source code
is antiquoted or is in a regular Cogent program. Reusing the same compilation process is not
only necessary, but is in fact desirable. It eliminates the need for duplicate compiler code, and
guarantees coherence for free (with some caveat).

The compilation pipeline for antiquoted-C code is depicted in Figure 4.3. It consists of the
following steps:

(1) Firstly, the raw input code is preprocessed by an off-the-shelf C preprocessor (e.g. gcc’s
preprocessor), which will process the #-directives in the source code unless they are pro-
tected by the escape antiquotes (recall Section 4.3.5).

(2) The output of the last step is parsed by the C parser from language-c-quote (Section 4.5.1).
The C parser will preserve the antiquotes in the syntax tree.

(3) The syntax tree produced from the last step is traversed to find all antiquotes (Section 4.5.2).
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Antiquoted-C program

Preprocessed antiquoted-C

(1) cpp

Antiquoted-C AST

(2) language-c-quote parser
(Section 4.5.1)

Antiquotes

C AST

C program

Executable

(5) language-c-quote
pretty-printer

(6) cc

(3) tree traversal
(Section 4.5.2)

(4) Cogent compiler
(Section 4.5.3)

Figure 4.3: Antiquoted-C compilation pipeline

(4) For each piece of antiquoted Cogent code, it is compiled into C code using the main line
of the Cogent compiler (Section 4.5.3). Each piece of the output C code will be put back
into the AST to pointwise substitute for the corresponding antiquoted Cogent code.

(5) The plain C AST is then pretty-printed into ordinary C program text, using the printer
from the language-c-quote library.

(6) Finally, the C program is to be compiled with any compatible C compiler as normal. C
macros and language extensions may remain in the C code for the C compiler to process,
if they were protected in escape antiquotes.

The engineering effort in the FFI compiler chiefly goes into steps (2), (3) and (4), which we will
elaborate in turn.

4.5.1 Parsing Antiquoted-C

TheC parser from the language-c-quote library can nearly be used out of the box. The antiquot-
ers that we choose are all supported in the library, and in the case of unsupported C language
extensions, we also have the tool of the escape antiquotes that will help us circumvent the limi-
tations. The tricky part in parsing the antiquoted-C code is that the C language grammar is not
context-free [Aho et al. 2007]. As a result, the C parser needs to keep track of the types that
have been declared. The canonical example is the statement something * odd; in C, which is
ambiguous if the compiler does not know whether something is a type or a variable. If it is a
type, the code is declaring a pointer called odd to type something; if it is a variable, it is an ex-
pression calculating the multiplication of two variables something and odd. In light of the escape
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sequences introduced by $esc and $escstm, some type declarations may be absent or invisible to
the C parser. To rectify this problem, the Cogent compiler requires the user to provide a list of
type identifiers that the C parser should assume to exist.

4.5.2 Finding the Antiquotes

The FFI compiler not only needs to find all the antiquotes, but more crucially, needs to be able to
cherry-pick the relevant antiquotes and compile them accordingly. This process is made harder
because the AST traversal is not fully type-based: unlike the example that we showed earlier
in Section 4.4, we cannot sieve the antiquotes by their types. For example, the $id names and
for type names, but their respective compilation processes are totally different. Therefore, in
the FFI compiler, we further need to determine the context in which each antiquote is used, via
(sometimes deeply nested) pattern matching.

4.5.3 Reusing the Compiler

Whenwe extract a string inside an antiquote, it can be passed to the Cogent parser. The Cogent
parser is built using the monadic parser combinator library parsec [Leijen and Meijer 2001].
We can directly apply the relevant parser to different antiquoted Cogent constructs without
having to touch the parser code, contrary to a parser constructed by a parser generator (e.g.
happy [Marlow 2010a]), where additional parsers have to be specified.

Things start to be a bit hairy in the surface typechecking phase. Broadly speaking, we need
to check for type well-formedness and the typing of terms. Both of them require building up
some contexts. More precisely, the rules for the checks [O’Connor, Z. Chen, Rizkallah, et al.
2016] are Δ ⊢ 𝜏 wf and Δ; Γ ⊢ 𝑒 ∶ 𝜏 respectively, where Δ is the kind context and Γ is the type
context. When checking them in a normal Cogent program, the kind context is built up by
inspecting the type signature of the function 𝑓 ∶ ∀𝑎𝑖. 𝜏1 → 𝜏2, and the type context is constructed
as the typing tree grows. Here in antiquoted-C code, we may not have direct access to this
information. Typically, it requires us to find the type variables in the $id antiquotes and also
in the corresponding Cogent declarations. For abstract type definitions, if the Cogent type
declaration is T 𝑎𝑖 and the $id antiquote has T 𝜏𝑖 in it, then the type variables brought into the
kind context will be FV(𝜏𝑖/𝑎𝑖), where FV(⋅) returns a list of free type variables, and ⋅/⋅ denotes a
substitution. Similarly for abstract functions, if the type signature in Cogent is f ∶ ∀𝑎𝑖. 𝜏1 → 𝜏2
and the $id antiquoter carries f [𝜏𝑗] (𝑗 ≤ 𝑖, as Cogent allows for partial type applications), then
the kind context will include FV(𝜏𝑗/𝑎𝑖) (for 𝑎𝑘 where 𝑗 < 𝑘 ≤ 𝑖, 𝑎𝑘 will remain intact). The type
context is always empty in an antiquoted-C function definition, and consequently only constant
Cogent expressions can be antiquoted.

Besides the two contexts in the surface typechecking phase, each compilation stage uses
several states global to the whole program. These states are typically constructed as the com-
pilation progresses. To ensure coherence when compiling antiquotes, we want to perform the

96



Chapter 4. The Cogent-C Foreign Function Interface

compilation under the same states as in the normal Cogent compilation. For instance, the C code
generation phase keeps a mapping between Cogent types and their C type names. Obviously
this information will be needed when compiling the $ty antiquotes. What we do in the compiler
is that, after each stage of the compilation, the final state is cached, and the cached states will
then be fed to the respective stage of the antiquoted-C compilation.

4.6 Discussion

The Cogent FFI has been used extensively over several years for developing the Cogent stan-
dard library and systems code of various complexity, from simple device drivers to real-world
file systems, including the file systems reported in [Amani, Hixon, et al. 2016], which initially
used some ad hoc Python scripts for name mangling or reverse engineering the name genera-
tion. The application of antiquoted-C has been exemplified in Figure 4.1 by the Cogent library
function repeat, which performs general-purpose for-loops. Figure 4.4 presents two word ar-
ray functions3 from the library. No fundamental differences in the usage of antiquoted-C can be
observed between library code and systems implementation code.

In this section, we evaluate the FFI from performance, engineering effort and user experience
aspects. In particular, we discuss improvements that have been made and can be made for better
performance, especially compile-time performance. Then we outline how our approach to FFI
design can also be applied to other parts of Cogent, and more broadly, to other programming
languages.

4.6.1 Performance

The performance that concerns us primarily is the compiler’s runtime performance, namely how
fast antiquoted-C code can be processed by the FFI compiler. The memory footprint is not a
major bottleneck when the development happens on modern computers.

Having seen the compilation process, astute readers may have realised that the antiquoted-C
compilation is rather cumbersome, despite the lightweight engineering effort. It encompasses
loading multiple massive internal states from the Cogent compilation pipeline into the an-
tiquotes compilation, parsing antiquoted-C code, traversing the antiquoted-C AST and process-
ing each antiquote. From our experiments, it turned out, and to some extent surprisingly, that
the SYB tree traversal was in fact the biggest performance bottleneck among the tasks, by a long
way. We tackled this problem by switching out SYB for another traversal library.

In fact, various performance studies in generic programming libraries have noted that the
SYB library is on the slow end of the spectrum [Adams and DuBuisson 2012; Brown and Samp-
son 2009; N. Mitchell and Runciman 2007; Rodriguez et al. 2008] despite its popularity among

3We used the wordarray_length function in Section 2.2; we will discuss the wordarray_set function more in
Section 5.5.
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-- Cogent interface

type WordArray a

{-# cinline wordarray_length #-}

wordarray_length: ∀(a :< DSE). (WordArray a)! → U32

type WordArraySetP a = (WordArray a, U32, U32, a)

wordarray_set: ∀(a :< DSE). WordArraySetP a → WordArray a

// Antiquoted-C

struct $id:(WordArray a) {

int len;

$ty:a* values;

};

u32 $id:wordarray_length($ty:((WordArray a)!) array)

{ return array->len; }

$ty:(WordArray a) $id:wordarray_set($ty:(WordArraySetP a) args)

{

/*

* args.p1 : array

* args.p2 : start position

* args.p3 : length from start position

* args.p4 : element to set

*/

$ty:(U32) start = args.p2;

$ty:(U32) len = args.p3;

if (start > args.p1->len)

return args.p1;

if (start + len > args.p1->len)

len = args.p1->len - start;

memset(args.p1->values + start, args.p4, len);

return args.p1;

}

Figure 4.4: An excerpt of word array code from the standard library
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Haskell programmers. We refer the interested readers to the excellent lecture notes on generic
programming libraries by Jeuring et al. [2008] for more details.

In the antiquoted-C compiler, we choose to use the generic deriving approach [Magalhães
et al. 2010] in lieu of the SYB library as an optimisation. Even though we have to manually de-
clare the C syntax constructs to be instances of the Generic class, which converts C ASTs to and
from the generic representation, and also the instances of the generic function that processes
the C syntax, the performance gain has been tremendous. This optimisation brings the compila-
tion time of the entire BilbyFs file system [Amani 2016], which comprises of around 4k lines of
antiquoted-C code, from 142 seconds (s) down to under 33s. A breakdown shows that, around
30s is used in the main compilation pipeline, meaning that the FFI compilation time is reduced
from 112s to 3s. The test is performed on a laptop with AMD Ryzen 7 4700U CPU and 16 GiB of
RAM. Similar speed-up can be obversed on other platforms.

Other aspects of the FFI compiler can also be optimised to further boost the performance.
We list several potential improvements that we have considered, and analyse their effectiveness
and engineering costs.

Escape sequences The fact that we can bypass the C parsing via the $esc and its sister hints
to us that, we can use similar tricks to reduce the amount of code to be parsed, and to potentially
improve runtime performance. This however puts the burden on the users to includemore escape
sequences.

Custom parser One possibility is that, instead of using an off-the-shell parser, we build the
antiquoted-C parser in-house. Writing a parser for a C dialect is by no means easy, but it is a
trade-off that can be made if more flexibility is in demand. For example, we can define our own
antiquoters so that they are all distinct. It then will eliminate the need for deeply-nested pattern
matches to disambiguate the antiquoters. Similarly, we can define the C syntax in a way that each
antiquote has a different type. This will allow for a type-based traversal. Alas, thesemethods turn
out to be not very effective. The reason is that, the compilation of the antiquoted Cogent code
snippets depends on the program context: as we have seen in Section 4.5.3, antiquotes are not
independent of each other. We still need to traverse the AST as we do now in order to relate the
antiquotes to ensure that the contexts are reconstructed appropriately. Defining a streamlined C
AST in the style of CIL [Necula et al. 2002] may also help simplify tree traversal and analysis.

Partial parser We believe it is possible for the antiquoted-C parser to analyse the program
texts at a coarser granularity. One observation is that, we are in fact not very interested in the
tree structure of the syntax. It is almost adequate to tokenise the program text, with one exception
of the $id antiquoter. As discussed above, if we write our own antiquoted-C parser and introduce
distinct antiquoters for different language constructs, it is sufficient to sequentially process each
element in the list of tokens, and update the kind context on the fly aswe encounter the antiquotes
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that introduce type variables (the equivalent of the current $id). This approach should save the
effort in analysing the syntax, and also eliminate the need for the user-provided list of declared
C type names, as we do not construct the syntax tree. On the down side, fewer sanity checks can
be performed due to the absence of the tree structure. Moreover, pretty-printing the code will
become trickier for the same reason.

4.6.2 Engineering Effort

The Haskell code for the entire FFI compiler is around 550 LoC, which also includes around 220
LoC of auxiliary code for importing modules, defining datatypes for storing the states, handling
the FFI compiler’s command-line options, parsing input files for the assumed type declarations,
etc. With the Haskell generic optimisation described in Section 4.6.1, the code size grows by
around 130 LoC. Putting the numbers into perspective, the Cogent compiler consists of more
than 22k LoC, half of which is directly reused by the FFI compiler.

From the Haskell package dependency point of view, the use of language-c-quote and syb

does not add much overhead to the dependency footprint. Although language-c-quote itself
has a relatively large dependency footprint, it is already used by the Cogent compiler for C code
generation. The SYB library is an additional dependency, but it only depends on the Haskell
compiler’s base library [GHC base 2022], which is shipped with the compiler. The generic de-
riving mechanism that replaces SYB is even better in this regard: it is integrated with the base

library.

4.6.3 User Experience

As a research language, Cogent is primarily only used within the research group and among
research partners, and the user base is admittedly very small (a couple of dozens). The users,
however, range widely in knowledge level and research background, from undergraduate stu-
dents to professors, from systems engineers to formal methods experts. This allows us to grasp
a better picture when we study the user experience of the FFI.

The feedback from the users has been broadly positive. They report no issues in understand-
ing the antiquotation syntax, and the usage of each of them. The abstraction that the FFI provides
over the compiler internals also alleviates the steep learning curve of Cogent. The main com-
plaint about the FFI is that when the antiquoted-C file has errors, the compiler does not always
produce informative error messages. This is because very often, the error will be caught and re-
ported by the language-c-quoteC parser. A commonmistake in writing antiquoted-C is missing
parentheses when the antiquoted type is a tuple. Another typical situation is that the user an-
tiquotes the wrong Cogent type. In this case, the FFI compiler will readily accept the program
but the downstream C compiler will complain. The user is then forced to hunt for the bug in
the potentially long-winded preprocessed monolithic C file. This however is no worse than FFIs
with name mangling—if a wrong name is used, the error can only be caught during linking.
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As we have argued in Section 4.2, assigning names to all types at the language boundary is
not viable in general. However, if there are only a very small number of types to be exported, this
approach is lightweight and easy. Cogent does support user-designated type names, and if this
approach is chosen, the FFI compilation pipeline can be left out completely. In a more general
situation where antiquoted-C is required, transitioning from plain C to antiquoted-C is relatively
straightforward, and the infectiousness of antiquoted-C ought not be a major concern. The user
does not have to draw a firm line between vanilla C and antiquoted-C, if working within the
parameters set by the C parser (Section 4.5.1). It is usually harmless to include plain C code in
an antiquoted-C file. When vanilla C code is routed via the antiquoted-C compilation pipeline,
it inevitably puts more load on the Cogent compiler and affects the compile-time performance,
but the performance overhead is usually minor. It should be noted though, that the structure of
the build scripts (e.g. Makefiles) may need to be adjusted accordingly. This is because the Cogent
compiler behaves differently when antiquoted-C compilation is engaged. To compensate for the
different behaviour, the user needs to organise the build steps correspondingly. These changes
are only required when switching between the two different methods of interfacing with C code,
hence not a routine in using antiquoted-C.

4.6.4 Other Target Languages

The C language is not the only target language that the Cogent compiler generates. It also
produces Isabelle/HOL andHaskell embeddings (recall Chapter 2 and also see Chapter 5). When
the usermanually proves the refinement between the functional correctness specification and the
Isabelle/HOL shallow embedding (see Figure 2.1), they will necessarily need to know the names
of the Cogent types and functions in the embeddings. These names are unstable, meaningless,
and are not known a priori.

Alas, the antiquoted-C idea cannot be directly applied to Isabelle/HOL for several reasons.
Firstly, to the best of our knowledge, there is no general-purpose Isabelle/HOL parser library in
Haskell that readily supports antiquotes. Isabelle is known to be difficult to parse in general,
due to its support for user-defined inner syntax [Wenzel 2021, Chapter 8]. Secondly, because
of the interactive nature of Isabelle, it is not practical to add a hypothetical antiquoted-Isabelle
compiler into the development loop. In particular, once the Isabelle/HOL script is updated, the
theorem prover will reprocess the entire session, totally jeopardising the interactive theorem
proving experience. Thankfully, this is a less pressing issue than that of the C names. Unlike
writing C code to interface with Cogent, the manual Isabelle/HOL proofs (recall Figure 2.1) are
only possible to be developed when the embeddings have been produced. Therefore, the type and
function names in the Isabelle/HOL embeddings do not necessarily need to be known a priori.
Also, proof engineers oftentimes only attempt the proof when the Cogent code is relatively
mature and stable, hence more stable Isabelle/HOL embeddings to work with. Although the
generated names are less intelligible, they normally only need to work out the meaning of these
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names once. Dictating the names of the exported types partly helps improve readability.
Occasionally, the Cogent code is patched and the manual proofs need to be revised. It would

be more convenient if parts of the manual proofs that are not directly affected by the code change
could be recycled on these occasions. We implemented a feature in the compiler to retain name
stability in Isabelle/HOL. When compiling Cogent code, the compiler’s internal states are saved
in a binary file called a name cache. The cache can be loaded in subsequent compilations, so that
the names of all existing types and functions are consistent with earlier runs of the compiler.
Proof engineers only need to spend their mental energy on deciphering the names of new types
and functions.

Splicing Cogent code snippets into the Haskell embedding is easier to achieve and is also
more useful. Instead of using antiquotation, it can be implemented directly using Haskell’s
quasiquotation mechanism [Mainland 2007], which then invokes the relevant Cogent compiler
modules to generate Haskell embedding for the Cogent code snippets.

4.6.5 A Recipe for Antiquoted FFI

We envision that the antiquotation approach to FFI design is applicable to other languages as
well, when the name-based FFI is not desirable or infeasible to implement. We dissect the recipe
for building such an antiquoted FFI.

Firstly, the host language’s compilation target needs to coincide with the guest language, so
that the compilation of the quoted host language and that of the guest language are indepen-
dent of each other. This condition can be met in many real-world scenarios. Depending on the
application domain, there are many languages that serve as common backend languages. Some
examples include, C/C++ in systems programming, C# and JavaScript in web development, the
Common Intermediate Language [ISO 2012, Partition III] (CIL) for Microsoft’s .NET framework,
and SQL in databases.

Secondly, the guest language has a readily available parser that supports foreign code splices.
It is very likely that a parser already exists for the guest language, if it is a stable and well received
language. Language features similar to Haskell’s quasiquotation have seen their appearance
in other languages (Section 4.4.1). Augmenting an existing parser with antiquotation support
requires some effort, but it can be amortised in the long term if the augmented parser is to be
shared with the entire community for mutual benefits. Moreover, some programming languages
already provide libraries for extending the syntax, for example camlp5 [INRIA 2017] for OCaml.

Thirdly, an AST traversal mechanism is available, and preferably with automation to save the
users from writing boilerplate code. This is typically the case in modern mainstream program-
ming languages.

Lastly, the compiler for the host language should be constructed in a modular fashion, so that
the relevant modules can be reused in the FFI compiler. This is also in line with good software
engineering practices.
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This recipe offers an alternative approach to FFI design that does not rely on name-mangling.
It only consists of a few ingredients, none of which is rare to find in practice. This recipe is not
limited to FFIs; similar ideas can be applied to generate language embeddings (cf. Section 4.6.4).

4.7 Related Work

Thework on FFIs is vastly abundant andwe can by nomeans exhaustively survey them. However,
to our knowledge, FFIs predominantly rely on name mangling to cross the language boundary.
Even for strongly-typed languages with structural typing support (e.g. Ballerina [Ballerina 2022],
Go [Go 2022]), their type systems often have some nominal aspects (or coexist with a full-blown
nominal type system). Also, due to the underlying memory layout and runtime, they seldom
allow structures to be exported directly.

The idea of splicing one language into another is not new. For example, LuCa [Tanimura
and Iwasaki 2016] is a C language extension that allows Lua code to be embedded in C. LuCa is
designed to overcome the difficulties in using the CAPI of Lua. In contrast, antiquoted-C gives an
alternative to name mangling in FFIs. LuCa is arguably more flexible, in the sense that it allows
the quoted Lua code in LuCa to backquote C expressions, while antiquoted-C does not. The LuCa
compiler shares some commonality in the overall structure with the antiquoted-C compiler. But
unlike the antiquoted-C compiler, which repurposes the language-c-quote parser and reuses
the main Cogent compiler modules, the LuCa compiler has a dedicated parser, and performs
semantic analysis on the LuCa AST. The LuCa-generated API calls have some non-negligible
performance overhead.

Jeannie [Hirzel and Grimm 2007] can be considered an FFI language between Java and C.
In Jeannie, users can nest Java and C code in each other. Jeannie programs can be compiled to
JNI code. The objective of Jeannie is on language composition: Jeannie users can access features
from both languages, with reduced overhead in writing FFI and resource management code. The
compiler essentially consists of two independent compilation pipelines for the two languages,
while sharing some common infrastructures. Because it has knowledge about both languages, it
is capable of performing more checks on the programs, especially eliminating errors across the
language boundary. The Jeannie compiler heavily relies on the visitor design pattern for AST
traversal, and uses a catch-all visit method for the AST nodes that do not need to be processed.
This is comparable to the generic programming techniques used in our FFI compiler.

The quasiquotation mechanism in Haskell is also used for accessing foreign languages. For
example, language-c-inline [Chakravarty 2014] allows for inlined C and Objective-C code in
Haskell, offering programmers an alternative to writing bindings for foreign functions.
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4.8 Conclusion

In this chapter, we presented a novel application of Haskell’s antiquotation mechanism for
building an FFI between the structurally typed, polymorphic functional language Cogent and
C. The FFI language is a dialect of C, in which users can refer to Cogent types and expressions
using the concrete Cogent syntax, rather than relying on exported (potentially mangled) names
of the programobjects. It offers language developers an alternative to namemangling in language
interoperation. The FFI language, antiquoted-C, is intuitive to understand and easy to use, and its
compiler only requires minimal engineering effort to develop. We envisioned how this approach
to FFI design could be adopted by other languages and gave the recipe for its development.
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Chapter 5

Property-Based Testing for Cogent

This chapter is derived from the following publications:

⋄ Zilin Chen, Liam O’Connor, Gabriele Keller, Gerwin Klein, and Gernot Heiser. Oct. 28, 2017.
“The Cogent Case for Property-Based Testing.” In: Workshop on Programming Languages and
Operating Systems (PLOS). ACM, Shanghai, China, 1–7. isbn: 9781450351539. doi: https:
//doi.org/10.1145/3144555.3144556

⋄ Zilin Chen, Christine Rizkallah, LiamO’Connor, Partha Susarla, Gerwin Klein, Gernot Heiser,
and Gabriele Keller. Dec. 2022a. “Property-Based Testing: Climbing the Stairway to Verifi-
cation.” In: ACM SIGPLAN International Conference on Software Language Engineering (SLE
2022). ACM, Auckland, New Zealand, 14 pages. doi: 10.1145/3567512.3567520

The author of this thesis is the primary contributor to the technical development of the en-
tire property-based testing framework, except for the implementation of the prototype domain-
specific language described in Section 5.5.

Property-based testing (PBT) is a powerful tool that is widely available inmanymodern program-
ming languages. It has been used to reduce the effort required for formal software verification.
We demonstrate how PBT can be used in conjunction with formal verification to incrementally
gain greater assurance in code correctness by integrating PBT into the verification framework
of Cogent—a programming language equipped with a certifying compiler for developing high-
assurance systems components. Specifically, for PBT and formal verification to work in tandem,
we structure the tests in a fashion that mirrors the refinement infrastructure that is often used in
formal verification: the behaviour of the system under test is modelled by a functional correct-
ness specification, which mimics that of the formal proof, and we test the refinement relation
between the implementation and the specification. We exhibit the additional benefits that this
mutualism brings to developers and demonstrate the techniques we used in this style of PBT, by
studying two concrete examples.
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5.1 Introduction

Property-based testing (PBT), in the style ofQuickCheck [Claessen and Hughes 2000], is a popu-
lar testing methodology and has tool support in many modern programming languages [MacIver
2016b]. In PBT, tests are specified in the form of logical properties which are automatically exe-
cuted on randomly-generated inputs to find counter-examples. PBT is not only useful in finding
bugs in programs, it has also been leveraged to reduce the effort in formal verification [Bulwahn
2012; Dybjer et al. 2003; Hriţcu et al. 2013; Lampropoulos and Pierce 2018]. Subjecting code to
extensive PBT prior to verification reduces the number of defects and specification inconsisten-
cies, thus reducing verification cost. A proof engineer can first test a property, and will only
attempt to prove it after having gained reasonable confidence in its validity.

In program verification, it is common practice to prove the correctness of a program against a
formal specification. The specification can be given in various forms (e.g. state machines, process
calculi, modal logics), depending on the specific application domain. To show that the implemen-
tation conforms to the specification, the notion of refinement [R. J. R. Back 1988; Morgan 1990;
Roever and Engelhardt 1998] is frequently used to establish the formal connection.

In this work, we explore the combination of PBT and refinement-based formal verification.
We borrow from verification the functional correctness specification that is used to dictate the
behaviour of the system in question, and give it to PBT. Instead of testing logical properties about
the system, which is what PBT is typically designed for, we test the refinement relation between
the implementation and the specification. Using logical properties to describe the behaviour of
systems has been criticised for its practicality [Koopman, Achten, et al. 2012], especially if the
full functional correctness of the system is desired. The high-level properties of a system can
instead be proved on top of its functional specification.

We introduce PBT to our development loop, in parallel with the refinement-based verification
framework. Specifically, we formulate the refinement between the implementation and the func-
tional specification as the property to be tested, which is an under-explored application of PBT.
Employing PBT in the formal verification context brings additional benefits beyond detecting
bugs in the implementation of the systems.

In contrast to the high-effort all-or-nothing of a full functional correctness proof, PBT pro-
vides a continuum ranging from no assurance (no tests), to some assurance (good test coverage),
to better assurance (some properties proved, some tested), all the way to high assurance (all prop-
erties proved). This allows users to make trade-offs between cost and assurance according to the
criticality of a component.

Tests are more immune to program evolution than formal proofs. A proof may require sig-
nificant changes whenever the code changes, even in scenarios where the specification remains
the same (e.g. when an algorithm is optimised). On the contrary, PBT only requires developer
input when the specification changes. Therefore, PBT can provide quick feedback on the likely
correctness of the change, reducing code maintenance cost. Furthermore, all proofs depend on
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assumptions such as the correctness of the hardware or the external software involved. Some
of these assumptions can be tested to increase our confidence in the correctness of the overall
system.

It is usually not feasible to verify software that was not designed for verification, as the code
has to be designed in a modular fashion, around clearly stated correctness properties. This means
that it is vital to have an effective means for developers to express their design requirements, to
experiment with and evaluate the designs, and to have a good set of design guidelines [Breitner
et al. 2018] so that the programs they write are easy to specify and verify.

In large-scale software verification projects, such as seL4 [Klein, Elphinstone, et al. 2009], the
systems experts and the verification experts are typically two separate teams. We posit PBT will
enhance the communication between these two groups. We propose to use PBT specifications for
this purpose. While the properties are similar to formal specifications, they represent tests and,
as such, feel more familiar to software engineers than abstract proof requirements. Since PBT
gives almost immediate benefit to software engineers, there is an incentive for them to design
their code such that these properties are meaningful and easy to express, thereby structuring
their code for formal specification, making it amenable to verification.

We examine these benefits by integrating PBT in the Cogent framework. The BilbyFs file
system [Amani 2016], developed in Cogent, provides an example of this effect. The entire Bil-
byFs has been formally specified but only partially verified. By applying PBT, we uncovered bugs
in the specification and the implementation of BilbyFs. PBT has therefore already reduced the
cost of verifying the remainder of the system by uncovering mistakes early on.

To summarise, we make the following contributions:

• We demonstrate how to integrate PBT into a refinement verification framework by using
Cogent as the target platform. Unlike previous use of PBT, we test against specifications
that are defined as refinement properties (Section 5.3).

• We argue why PBT is suitable to be employed in parallel with formal verification, and
explain the important role that PBT plays in the design and implementation of the systems
in question (Section 5.4).

• We provide two concrete examples from the testing of components of the BilbyFs file sys-
tem to demonstrate techniques that we used for specifying refinement relations, modu-
larising the tests, using mocks, handling non-determinism, and efficiently generating test
data (Section 5.5 and Section 5.6).

• We discuss the engineering implications of our approach and lessons learnt and proposals
resulting from them (Section 5.7).

The full development can be found in [Z. Chen, Rizkallah, O’Connor, et al. 2022b] as a virtual ma-
chine image. It is a snapshot of themain Cogent project repository [TheCogent team 2023], and
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was submitted as the supplementary material to the SLE’22 paper [Z. Chen, Rizkallah, O’Connor,
et al. 2022a], on which this chapter is based.

5.2 Background

5.2.1 Property-Based Testing andQuickCheck

PBT is a quick and effective method for detecting bugs and finding inconsistencies in specifica-
tions [Hughes 2016]. Similar to formal verification, PBT uses logical predicates to specify the
desired behaviour of functions, by defining the allowed relations between inputs and outputs of
the functions. It evaluates the properties on a large set of automatically generated input values
in search for counter-examples.

While PBT is effective, it is not universally applicable. In practice, it is often hard to com-
pletely describe the behaviour of a system solely in terms of logical properties [Koopman, Achten,
et al. 2012], albeit being a very useful method in certain contexts (e.g. as shown by Ridge et al.
[2015]). In the context of formal verification, however, using a functional specification to de-
scribe the behaviour of a systems is very common. Thus proof engineers can first run extensive
tests on the conjectures before attempting any proof development. This technique is not new
and has witnessed great success in the verification community [Berghofer and Nipkow 2004].

QuickCheck [Claessen and Hughes 2000] is a combinator library in Haskell for PBT. While
theQuickCheck functionality is now available in many programming languages [MacIver 2016b]
and theorem provers [Bulwahn 2012; Dybjer et al. 2003; Lampropoulos and Pierce 2018], we
interface Cogent to the HaskellQuickCheck library, as it is mature, feature-rich and integrates
well with Cogent and C.

5.2.2 Data Refinement

Prior verification work in Cogent, e.g. of BilbyFs [Amani 2016], connects the functional spec-
ification to the Cogent implementation, and the Cogent implementation to the compiled C
code [Rizkallah et al. 2016] by proving refinement relations. The notation of refinement is also
central to our testing framework, in which they are expressed asQuickCheck properties. We use
a textbook definition of refinement [Roever and Engelhardt 1998]. Informally, a program 𝐶 is a
refinement of a program 𝐴 if every possible behaviour in the model of 𝐶 is observable in that of
𝐴.

In an imperative setting, a simple model for both the abstract specification and the concrete
implementation would be relations on states, describing every possible behaviour of the program
as the manipulation of some global state. This means that if we prove a property about every
execution for our abstract specification, we know that the property holds for all executions of
our concrete implementation.
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This state-based model for specifying the behaviours of systems is a very common paradigm
in the world of model-based testing (MBT) [Gurbuz and Tekinerdogan 2018; Koopman, Achten,
et al. 2012; Utting et al. 2012]. However, as mentioned in Section 5.1, Cogent’s purely func-
tional semantics provides a simple formal model of a program’s behaviour; specifically, it enables
reasoning about programs using equational principles. The equational semantics is fortunately
widely available in PBT libraries, including QuickCheck.

Since Cogent is a purely functional, deterministic, total language, there is no global state,
and all functions are modelled as plain mathematical functions. In such a scenario, the only state
involved consists of the inputs and outputs to the function, simplifying the refinement statement.
Given an abstract function abs ∶∶ 𝑋𝑎 → 𝑌𝑎, and a concrete Cogent function conc ∶∶ 𝑋𝑐 → 𝑌𝑐,
then, assuming the existence of refinement relations 𝑅𝑋 and 𝑅𝑌, we can express the statement
that conc refines abs as:

𝑅𝑋 𝑖𝑎 𝑖𝑐 ⟹ 𝑅𝑌 (abs 𝑖𝑎) (conc 𝑖𝑐)

This, however, places unnecessary constraints on our abstract specification. While Cogent is
deterministic and total, our abstract specification need not be. In fact, it is often desirable to
allow non-determinism to reduce the complexity of the abstract specification. In the context of
testing, we are required to restrain the degree of non-determinism in the specification, for the
sake of efficient execution of the test script. This, however, does not preclude us from having a
non-deterministic specification.

We model non-determinism by allowing abstract functions to return a set of possible results.
Then, our refinement statement merely requires the single concrete result to correspond to one
of the possible abstract results:

𝑅𝑋 𝑖𝑎 𝑖𝑐 ⟹ ∃𝑜𝑎 ∈ abs 𝑖𝑎. 𝑅𝑌 𝑜𝑎 (conc 𝑖𝑐)

Defining a syntactic sugar for the correspondence relation between the outputs:

corres 𝑅 𝑎 𝑐
def
= ∃𝑜 ∈ 𝑎. 𝑅 𝑜 𝑐

the refinement statement can be formulated as:

𝑅𝑋 𝑖𝑎 𝑖𝑐 ⟹ corres 𝑅𝑌 (abs 𝑖𝑎) (conc 𝑖𝑐)

Theorems that capture correctness for Cogent systems typically have this corres format. We
therefore aim to encode these as machine-testable properties in Haskell.

5.3 The CogentQuickCheck Framework

The integration of PBT into the Cogent framework mirrors the verification tasks, as shown
in Figure 5.1. The developer manually writes a Haskell executable specification, which plays a
similar role to the Isabelle/HOL functional correctness specification. The compiler now generates
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Figure 5.1: An overview of the Cogent QuickCheck framework

aHaskell shallow embedding of the Cogent code for PBT. Although not formally connected, the
Haskell and Isabelle/HOL embeddings are very similar.

The framework supports testing the C implementation of ADTs against manually-written
Haskell, shown as arrow (2) in Figure 5.1; Section 5.5 provides an example. It furthermore sup-
ports testing the generated Haskell embedding of the Cogent program, which is combinedwith
the Haskell definition of any ADTs that the Cogent program uses, against a manually written,
more abstract Haskell executable specification. This is depicted as arrow (1) in Figure 5.1 (the
included ADTs are not shown in the figure); Section 5.6 provides a case-study. The ADTs to be
invoked by the Haskell shallow embedding can either be abstract or concrete, depending on
whether the ADTs are also considered the system under test.

The refinement relation between the C code and the Haskell embedding of the Cogent
program (arrow (4)) can also be tested, although it does not concern us as much, since it is
certified by the automatic proof. One scenario where this test can be carried out is during the
development of the Cogent compiler, before the automatic refinement proof pipeline is fully
restored.

The complete compiled executable, depicted in Figure 5.1 as the grey dotted box at the bottom,
can be tested against the executable specification in theory, as indicated by arrow (3). However,
we typically do not perform this test using the QuickCheck framework in Cogent, as the gap
between their state spaces is usually too large to handle effectively. The final system can normally
be deployed in the production environment and be tested against third-party test suites for their
specific application domain. In the context of the BilbyFs, for example, there exists tools such as
fstest [Behlendorf 2011].

The top-level Isabelle/HOL specification, written in higher-order logic, is not executable and
may be highly non-deterministic in order to model externalities. For example, the memory al-
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locator may non-deterministically fail to model out-of-memory errors, and disk device drivers
may non-deterministically fail to model hardware errors.

The Haskell specification must also model this non-determinism, but is more restrictive
than the Isabelle/HOL specification, as it must be executable. Simulating a non-deterministic
model can be exponential in time and space. To allow modelling a minimal amount of non-
determinism in the Haskell specification, the tester has to ensure that the search domain is
finite and reasonably small by carefully examining the needed quantifiers in the specification.

For example, in the Isabelle/HOL abstract specification of BilbyFs, the afs_get_current_time
function is defined as follows:

definition

afs_get_current_time :: afs_state ⇒ (afs_state × TimeT) cogent_monad

where

afs_get_current_time afs ≡ do

time′ ← return (a_current_time afs);

time ← select {x. x ≥ time′};

return (afsL a_current_time := time M, time′)

od

It picks non-deterministically a time, which is no earlier than the time stored in the file system
state afs. This abstract specification is not suitable for testing, due to the infinitely large set
of values. In contrast, on line 13 of Figure 5.3b, the specification non-deterministically chooses
an error code from a small set of {eIO, eNoMem, eInval, eBadF, eNoEnt}. This moderate state
explosion can potentially be handled by the testing framework, depending on the context in
which the afs_readpage function is applied.

For this reason, the Haskell executable specification is often strictly less abstract than the
Isabelle/HOL functional specification. Currently, the two specifications are not formally con-
nected, but they should bear a strong resemblance to each other and can be checked by manual
inspection. It is not necessary to formally connect the two, as the gap only affects the quality of
the tests. For instance, we cannot systematically evaluate the quality of tests (e.g. test coverage)
with respect to the formal Isabelle/HOL specification, even though such tools may be readily
available from the Haskell QuickCheck library. Ideally, it would be convenient if one speci-
fication could be generated from the other one. Automatic refinement mechanisms that allow
verified generation of Haskell from Isabelle/HOL have been explored by Lammich [2013] and
Lammich and Lochbihler [2018]. Generating the Haskell specification from the Isabelle/HOL
abstract specification is undoubtedly handy, when the Isabelle/HOL specification is developed
prior to the Haskell executable specification. This however is not always the case, and in fact
in the workflow that we proposed, the Haskell specification is used to guide the formulation of
the Isabelle/HOL one.
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5.4 PBT and Systems Design Go Hand-in-Hand

We argue that the employment of PBT and the design of the systems are interlinked with each
other: appropriate systems design assures the effectiveness of testing, and the use of PBT encour-
ages the programmers to design their systems in a fashion that is amenable to formal verification.

As a purely functional language, Cogent is in general well suited for PBT and verification:
function values only depend on input values, with no hidden state. However, system state must
be explicitly threaded through as an input and an output. If the functions are not designed
appropriately, it is possible that a PBT test suite hardly yields counter-examples. Systems code
often involves pretty large global states. However, a function typically only accesses a small
fraction of the state. If the entire state is passed in, any random variations to the parts of the
state that are not accessed by the function will have no effect on the behaviour of the function.
In this case a large portion of the randomly generated test cases in PBT will not actually test
anything and result in poor test coverage.

In practice, this means that to be suitable for PBT, the functions must be designed to keep
the inputs minimal and relevant, which is unlikely when simply translating existing C code with
global state into Cogent. While this may seem like a high price to pay, a verification-friendly
design has the same requirement for modularity and compartmentalisation [Amani 2016; Amani
and T. Murray 2015]. Thus PBT imposes few restrictions beyond existing requirements of verifi-
cation, and instead helps guide the system design.

In the context of Cogent, the systems that the developers implement typically do not have
a formal specification to start with. Systems programmers, together with verification engineers,
not only need to ensure that they are implementing the systems right, but also to ensure that
they are implementing the right systems. PBT provides guidance to them on how to structure the
specification and the implementation. Having good design decisions, such as keeping the states
threaded through small and relevant as we mentioned above, is doubly rewarding. It simplifies
the manually defined refinement relations that correlate the concrete state with the abstract one,
both in PBT and in verification.

Expressing design requirements for verification is an ongoing challenge, and we observed in
the past that when verifying real-world systems, it is difficult for proof engineers to communi-
cate these requirements effectively to the software engineers. The seL4 project [Klein, Elphin-
stone, et al. 2009] overcame this problem by using an executable Haskell specification of the
system as an interface between these two groups [Klein, Andronick, Elphinstone, et al. 2014].
We posit that QuickCheck properties is a highly suitable language for communicating design re-
quirements. They readily translate to formal specifications, but are expressed in a programming
language, and thus familiar to software developers. As they lead to effective test generation, soft-
ware developers get immediate benefit from using these specifications to structure their code to
maximize their use, which consequently makes the code easier to verify.
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prop_corres_wordarray_set_u8 :: Property

prop_corres_wordarray_set_u8 = monadicIO $

forAllM gen_wordarray_set_u8_arg $ \args → run $ do

let ia = mk_hs_wordarray_set_u8_arg args

oa = uncurry4 hs_wordarray_set ia

ic ← mk_c_wordarray_set_u8_arg args

oc ← cogent_wordarray_set_u8 ic

corresM' rel_wordarray_u8 oa oc

Figure 5.2: The refinement statement for wordarray_set (deallocation is omitted for simplicity).

5.5 Example: Testing Refinement of an ADT

We apply the CogentQuickCheck framework to the WordArray library, which implements com-
mon functions manipulating arrays of machine words and is shared by all of our systems imple-
mentations. Most of these WordArray functions are implemented in C, and are invoked via the
FFI mechanism available in Cogent.

We want to test whether each function observes the refinement property from Section 5.2.2.
For example, the behaviour of the ADT function wordarray_set1 (similar to memset in C)—which
fills the first n elements starting at a certain index frm into a word array arrwith a constant value
a—is manually specified in Haskell as follows:

-- Haskell spec.

type WordArray a = [a]

hs_wordarray_set :: WordArray a → Word32 → Word32 → a → WordArray a

hs_wordarray_set arr frm n a =

let len = length arr in

if | frm > len = arr

| frm + n > len = take frm arr ++ replicate (len - frm) a

| otherwise = take frm arr ++ replicate n a ++ drop (frm + n) arr

In Cogent, the function is defined as a foreign function, whose definition is given in C:

-- declared in Cogent

type WordArray a

wordarray_set : (WordArray a, U32, U32, a) → WordArray a

-- implemented in C

While Cogent and Haskell both support polymorphism, C does not, and QuickCheck cannot
perform genuine polymorphic testing [Bernardy, Jansson, et al. 2010]. In this example, we test

1The definition of this function in antiquoted-C has been given in Section 4.6.
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the U8 instance of the polymorphic wordarray_set function, whose refinement statement is given
in Figure 5.2. It can be read roughly as: for any type-correct concrete input ic and its abstrac-
tion ia, check that the result of applying the concrete function cogent_wordarray_set_u8 (i.e.
oc) and that of the abstract function hs_wordarray_set (i.e. oa) are related via the refinement
relation rel_wordarray_u8. The corresM' function is a monadic variant of our corres notation
for situations where the specification is also deterministic.

Although the corres predicate contains an existential quantifier for the result of the non-
deterministic abstract specification, our implementation does not require QuickCheck to guess
the quantified value from an infeasibly large set. In Section 5.6, we show how to restrict the
codomain of the abstract function to be relatively small for efficient testing. This enables our
implementation to enumerate over all possible output values of the abstract function execution
to find the existentially quantified value.

For the WordArray type, we relate the abstract input data and the concrete input data in the
following way: we randomly generate test data on a middle-ground type, and then use two thin
wrappers mk_hs_wordarray_set_u8_arg and mk_c_wordarray_set_u8_arg to convert the gener-
ated data to the types expected by the abstract and the concrete functions. The test data genera-
tion is not very involved, because the correspondence between the two types is straightforward,
and the C type is not very convoluted in its underlying representation, in particular it does not
heavily use pointers.

Although in the refinement statement, the refinement relation on the input data is expressed
as a predicate, this is usually not the way to relate the input data in practice. Checking a predicate
is often computationally less costly than computing the abstract input from the concrete one,
but it requires two sets of random data generators and forces the two generators to be coupled.
Otherwise the correspondence predicate is likely to reject the vast majority of the generated data,
rendering the test very inefficient (see Section 5.7.4).

Broadly speaking, it is more convenient to relate the input data if we implement the refine-
ment relation as an abstraction function, computing the abstract data according to its concrete
counterpart. This is contrary to model-based testing approaches [Utting et al. 2012], in which
the test cases are derived from the more abstract model. This is because refinement is usually
not unique: the concrete input type normally contains more information than its abstraction. In
order to derive a concrete input from the randomly generated abstract input, more data need to
be created and this calls for another set of random data generators. On the other hand, when we
generate a concrete input and abstract it, it only requires a potentially lossy abstraction function.

WordArray is such a case: we compute the abstract input data from the concrete one, relating
them by construction. However, not all values of a C type are valid inputs: for instance, a null
pointer does not correspond to a valid WordArray. To exclude invalid input data, we manually
implement a test data generator gen_wordarray_set_u8_args which generates values that are
isomorphic to valid concrete inputs only, and we convert them to Haskell inputs and C inputs
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using functions mk_hs_wordarray_set_u8_arg and mk_c_wordarray_set_u8_arg respectively.
The refinement statement as shown in Figure 5.2 is largely boilerplate code, therefore we

implement a tool to generate this code [Downing 2021]. The tool consists of a small domain-
specific language (DSL), in which the programmers can specify the function names, the definition
of the abstraction function for the inputs and the refinement relation between the outputs, and
other properties about the refinement statement, such as the determinism of the abstract function
and whether the concrete function needs to operate under the IO monad. The DSL is written in
JSON format, which can be easily parsed using third-party libraries such as aeson [O’Sullivan
2022]. A piece of sample code is give below.

{

"name" : "wordarray_set_u8",

"monad" : true,

"nondet": false,

"absf" : ... // (1) the abstraction function

"rrel" : ... // (2) ref. rel. between outputs

}

Haskell program texts can be embedded in the JSON structure as the values of the "absf" and
"rrel" attributes ((1) and (2) in the code above). This allows the programmers to either call a
Haskell function defined elsewhere, or directly write the definition in place. The lens style of
code [Kmett 2022] is particularly suitable for this task.

In the refinement statement, the Cogent-compiled C code can be called from Haskell using
its C FFI facility.

foreign import ccall unsafe "ffi_wordarray_set_u8"

cogent_wordarray_set_u8 :: Ptr Ct5 → IO (Ptr CWordArray_u8)

The foreign import ccall declares that the Haskell function cogent_wordarray_set_u8 is the
interface to the C function ffi_wordarray_set_u8. Ct5 and CWordArray_u8 are the Haskell
representations of the C types for the function’s input and output respectively. The Haskell
representation of C types, marshalling functions, and foreign function calls are generated by the
Cogent compiler and are further compiled by FFI tools such as hsc2hs [GHC User’s Guide 2019]
and c2hs [Chakravarty 1999].

Running a small number of randomly generated tests (by default 100 but this can be cus-
tomised) by passing prop_corres_wordarray_set_u8 to the quickCheck function, we get:

*WordArray> quickCheck prop_corres_wordarray_set_u8

+++ OK, passed 100 tests.

We have specified most of the ADT functions for WordArrays and tested them. We found bugs in
two C functions, which had not been uncovered by our earlier test suites nor the file systems built
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with them. The bugs went undetected as they involved invalid inputs and corner cases which
were handled by the callers, whereas the Haskell specification in our QuickCheck framework
does not preclude these input values.

For example, for the wordarray_copy function that copies a number of bytes from one mem-
ory area to another (similar to memcpy in C), the old implementation implicitly assumed that the
index into the source word array was always within bounds. This precondition was satisfied by
our file system implementations, but it was unspecified. In fact, the wordarray_copy function, as
part of a generic library, should not carry this implicit precondition in the first place. Otherwise
it may introduce bugs to other systems that invoke this library function.

PBT also helped us uncover problems in the Isabelle/HOL ADT specifications, which had
overly specific assumptions about inputs. While these assumptions are valid for the functions
we verified, they do not hold in general. Thus, the specifications we had written did not represent
a general purpose specification of the function.

The WordArray library in Cogent was initially axiomatised in the verification of the file sys-
tems [Amani, Hixon, et al. 2016], and then tested using the PBT framework, before they were
finally formally verified [Cheung et al. 2022]. This is an example of how the developers can pro-
gressively increase their confidence in the correctness of the code by upgrading PBT to formal
verification in a modular fashion.

5.6 Example: Testing a Top-Level File System Operation

Inspired by JFFS2 [Woodhouse 2001] and UBIFS [Hunter 2008], BilbyFs [Amani 2016] is a flash
file system that was designed from scratch, focusing onmodularity and verifiability; it has 19 top-
level file system operations. We formally verified two functions in Isabelle/HOL and used them
to demonstrate how Cogent facilitates equational reasoning. fsop_sync, a top-level function,
consists of about 300 lines of Cogent code and took approximately 3.75 person months to verify
with 5700 lines of proof. The other function, iget, directly called by the top-level fsop_lookup
function, consists of approximately 200 lines of code, and took about one person month to verify
with 1800 lines of proof.

We conduct PBT on one of BilbyFs’s top-level function, fsop_readpage, which had previously
been formally specified in Isabelle/HOL but not yet verified. Figure 5.3 shows the Isabelle/HOL
specification as well as the manually written Haskell executable specification; they are very
similar in this case. Therefore, testing gives us reasonably high assurance of the implementation
with respect to the Isabelle/HOL specification. As discussed in Section 5.3 , this is not always
the case, making it occasionally more difficult to connect the two specifications, and sometimes
requiring additional manual reasoning.
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1 hs_fsop_readpage :: AfsState

2 → VfsInode

3 → OSPageOffset

4 → WordArray U8

5 → NonDet (Either ErrCode (WordArray U8))

6 hs_fsop_readpage afs vnode n buf =

7 let size = vfs_inode_get_size vnode :: U64

8 limit = size `shiftR` bilbyFsBlockShift

9 in if | n > limit → return $ Left eNoEnt

10 | n == limit && (size `mod` bilbyFsBlockSize == 0) →

11 return $ Right buf

12 | otherwise → return (Right $ fromJust (M.lookup (vfs_inode_get_ino

inode) afs) !! n) <|>

13 (Left <$> [eIO, eNoMem, eInval, eBadF, eNoEnt])

(a) The Haskell executable specification

1 definition

2 afs_readpage :: afs_state

3 ⇒ vnode

4 ⇒ U64

5 ⇒ U8 WordArray

6 ⇒ (U8 WordArray × (unit, ErrCode) R) cogent_monad

7 where

8 afs_readpage afs vnode n buf ≡

9 if n > (v_size vnode >> unat bilbyFsBlockShift) then

10 return (WordArrayT.make (replicate (unat bilbyFsBlockSize) 0), Error eNoEnt)

11 else if (n = (v_size vnode >> unat bilbyFsBlockShift)) ∧ ((v_size vnode) mod

(ucast bilbyFsBlockSize) = 0)

12 then return (buf, Success ())

13 else do err ← {eIO, eNoMem, eInval, eBadF, eNoEnt};

14 return (WordArray.make (pad_block ((i_data (the $ updated_afs afs

(v_ino vnode))) ! unat n) bilbyFsBlockSize), Success ()) ⊓

15 return (buf, Error err)

16 od

(b) The Isabelle/HOL functional specification

Figure 5.3: Functional specifications of the fsop_readpage function
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data

(B)

(A)

block 0 block 1 block 2 block 3

data

Figure 5.4: An example of the read_page algorithm. In case (A), limit = 3. When n = 0, 1, 2 we
just read. When n = 3, because the size of the data is not perfectly aligned at the end, we still
read. When n ≥ 4, we return the no-entry error. In case (B), limit = 3. When n = 3, that’s the
special case. We return the old buffer unmodified.

5.6.1 The Haskell Executable Specification

In a nutshell, as shown in theHaskell specification in Figure 5.3a, the function hs_fsop_readpage

fetches a designated data block of a specific file to the buffer. afs is a map from inode numbers
to files, each of which is represented as a list of blocks of data. The hs_fsop_readpage function
looks up a file, whose inode number is given by vnode, in the map afs, and copies the n-th block
of the file to buf. It returns non-deterministically an updated buffer or an error code.

As the first step, hs_fsop_readpage calculates the number of blocks that the wanted file occu-
pies. If the block in question is out of bounds (n > limit), the function returns a no-entry error
eNoEnt. If the file size is a multiple of the block size, n points to the last block in the wanted file,
and the last block is empty (because the file data ends at the prior block boundary), then the func-
tion returns the original buffer as there is no data to read. Otherwise, hs_fsop_readpage reads
the block by looking up the inode number in the map (see Figure 5.4 for a pictorial example).

This, however, is not the only possible correct behaviour. As the implementation has to
access buffers and read from the physical medium, this may fail, in which case it should throw an
error. We specify this as a non-deterministic behaviour. The specification states that the function
can read a block or it can give one of the following five errors: eIO, eNoMem, eInval, eBadF, or
eNoEnt. The NonDetmonad used here is essentially a finite set containing all allowed behaviours.
This monad is commonly used in proving refinement (e.g. [Amani 2016; Cock et al. 2008]). The
alternative operator (<|>) acts as a non-deterministic choice, admitting the behaviour of either
of its operands by taking the union of their behaviours.

5.6.2 Mock Implementations

It is not always feasible to test systems code in its exact production environment [Mostowski
et al. 2017]. For instance, the fsop_readpage example has many low-level functions which call
into the operating system’s kernel, and it is currently not feasible to run QuickCheck tests in
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kernel mode. Instead of testing the monolithic object file obtained from compiling the C code,
we mock up parts of the code in Haskell. A mock abstracts from low-level kernel calls and can
be thought of as a black box, which provides to its caller the same observable effects as the actual
implementation.

Mocks can also be used as substitutes for unimplemented functions, enabling systems de-
velopers to test functionality before they have a full system implementation. The use of mocks
restricts the scope of debugging to a small number of functions, reducing the effort required to
locate bugs.

The Cogent implementation of fsop_readpage calls a read_block function to fetch one block
of file data, which in turn retrieves the data with the function ostore_read. The read_block func-
tion, which retrieves the file data from the physical medium, is conceptually simple. However it
is complicated in its internal implementation, which involves a red-black tree lookup to locate
the address, various layers of caching, and error-handling.

Because read_block relies on kernel-mode access to caches and complex data structures, it
is a good candidate for a mock implementation. In addition to the ostore_read function, we
also substitute some kernel ADT functions for mock implementations. For WordArray functions
invoked by fsop_readpage, we use the Haskell models described in Section 5.5 as mocks.

The implementation of a mock is simplified by the fact that it does not need to provide the
full functionality of the operation, as long as the callers in the specific test cases cannot observe
the difference in its behaviours.

For example, the original Cogent signature of the function ostore_read is:

type RR x a e = (x, <Success a | Error e>)

ostore_read : (SysState, MountState!, OstoreState, ObjId)

→ RR (SysState, OstoreState) Obj ErrCode

This means that the function takes a quadruple as input, containing a read-only (denoted by the
! operator) MountState, and returns the parametric RR type, which is further defined as a pair of
a variant type <Success a | Error e> and a result type x that is common to both cases.

The purely functional nature of Cogent makes it easy for the developers to identify the
observable behaviours—they are necessarily within the return type of a function. In the case of
the fsop_readpage function, the only behaviours of ostore_read that can be observed are the
returned Obj value or the error code ErrCode. Therefore, we can tailor the mock to the specific
use case of fsop_readpage. The mock ostore_read function can be modelled as a simple map
lookup: given a map OstoreState and a key of type ObjId, it returns the corresponding object
or an error. The relevant Haskell definitions are given as follows (the use of the Oracle can be
ignored for now; it will be explained shortly):

type OstoreState = Map ObjId Obj

data Res a e = Success a | Error e
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ostore_read :: Oracle → (OstoreState, ObjId) → Res Obj ErrCode

ostore_read orc (ostore_st, oid) =

if orc == 0 then

case M.lookup oid ostore_st of

Nothing → Error eNoEnt

Just obj → Success obj

else Error orc

5.6.3 Oracles and Non-determinism

The Cogent implementation of ostore_read interacts with the physical media and kernel data
structures, therefore its behaviour is dependent on that of the underlying systems and hardware.
However, as we have introduced in Section 2.1, Cogent is a total, purely functional language,
meaning that all functions in Cogent have to be deterministic. This non-determinism, therefore,
has to be modelled by threading through a global state SysState, similar to how the IO monad
in Haskell is implemented [GHC base 2022].

In the Haskell mock implementation of ostore_read, the non-determinism can be modelled
in a different manner for simplicity. When testing this function independently, we emulate the
non-determinism by adding an additional oracle input orc.2 This oracle can be thought of as an
input that models all external states on which the function depends, and the basis upon which all
non-deterministic choices are made. A similar oracle is passed to our mocks of many WordArray

functions, such as wordarray_create, which allocates memory and creates a fresh word array.
We have seen how oracles can be used in mock implementations to emulate non-

determinism. The oracle technique can be similarly applied to the Haskell executable
specification. When we test that an oracle-carrying mock refines a non-deterministic specifica-
tion, the specification can abstract over the values that the oracle can possibly possess with the
NonDet monad. If the specification is to be made more precise, we can also introduce an oracle
to it to ascribe the source of the non-determinism. In this case, care needs to be taken to ensure
that the oracle in the specification and that in the implementation are in synchronisation, so
that they do not make conflicting choices.

Using oracles in the specification can be problematic if the implementation is not a mock,
and is genuinely non-deterministic due to, say, the hardware or the operating system. There is in
general no way to predict accurately which execution path the concrete implementation will take
(e.g. malloc failures). Hence, the specification and the implementation can make inconsistent
choices when they encounter non-determinism, which can lead to spurious test failures. In this
case, we have to step back and use a non-deterministic specification with the NonDet monad

2In our implementation, we pass the oracle around using GHC Haskell’s implicit parameter extension [Lewis
et al. 2000], making it more transparent to users. In the presentation of this chapter, however, we pass them explicitly
for clarity.
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instead. This, however, has a negative cosmetic effect on the entire Haskell specification, as the
NonDet monad is infectious and it would render all ancestor functions in the call graph monadic.

To address this problem, we can establish an equivalence relation between the non-
deterministic specification using NonDet and the oracle-based deterministic one by testing.
Concretely, we test that the two specifications return the same set of results, by enumerating
every possible oracle in the deterministic specification, collecting a finite set of results, and then
checking that set against the set of results produced by the non-deterministic specification.

The NonDet monad and the oracle approach are two extremes of the spectrum, and the de-
velopers can choose a suitable degree of non-determinism by combining these two to meet the
needs of a specific test case.

5.6.4 Test Data Generation

When using mocks, not only can we choose simpler algorithms to implement the same features,
but we can also fine-tune test data generators to restrict the domain of inputs given to the mock,
allowing us to implement only a partial mock of the original code.

When testing a cluster of functions and the mock function’s input depends on the output of
other functions, the aforementioned partial mock should be used with care. The input to a func-
tion can be directly controlled by the tester by defining appropriate test data generators, while
the output of a function is not as easy to predict as it may have been heavily processed and ma-
nipulated by the functions. When such an input value reaches the partial mock implementation,
it is less obvious to know a priori whether it falls into the unhandled sub-domain of the mock. It
poses a greater challenge in writing good test data generators to ensure the pre-condition of the
mock function is met even after the randomly generated data have flowed through other func-
tions in the system under test. More general remarks on this point can be found in Section 5.7.4.

Domain-specific knowledge can be leveraged towrite good test data generators, whichmakes
the checking process more efficient and practical to use. For example, when we generate the
OstoreState, all entries we generate belong to the same inode. In reality, there are many data
objects for other files, or other types of objects; but none of these facts will be observed by its
caller. This in turn simplifies the implementation of the mock and the abstraction functions.

5.6.5 Results

The shape of the top-level refinement statement for the Haskell shallow embedding of the Co-
gent fsop_readpage function (shown below) closely resembles that of the WordArray example.
An oracle is also generated and passed to the Haskell embedding, which will be further passed
to the mock implementation of ostore_read as discussed earlier.

prop_corres_fsop_readpage :: Property

prop_corres_fsop_readpage =
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forAll gen_fsop_readpage_arg $ \ic →

forAll gen_oracle $ \o →

let ia = abs_fsop_readpage_arg ic

oa = uncurry4 hs_fsop_readpage ia

oc = fsop_readpage o ic

in corres rel_fsop_readpage_ret oa oc

From the counter-examples produced by QuickCheck, we found that the Haskell executable
specification was flawed, which in turn exposed a problem with the Isabelle/HOL abstract spec-
ification, from which the Haskell specification was derived. These specifications did not take
errors returned from ostore_read into account. Testing the above property helped us rectify this
mis-specification.

5.7 Design Decisions and Key Takeaways

We have showcased two examples of using our PBT framework in Cogent. Since the examples
we examined are from a real file system, they have given us some good insights into how much
boilerplate code is required and which components of the testing infrastructure can be automat-
ically generated. They have also served as a vehicle for experimenting on correctly integrating
these different components.

5.7.1 Modular Testing and Whole-System Testing

Our QuickCheck machinery does not require the user to test the entire system at once. Instead,
the user may test refinement for each function or for a cluster of functions at a time. Typically,
the ADTs implemented in C form a common module, shared across many systems. Accordingly,
our framework allows developers to test the ADTs in isolation, with no regard to how they are
used within systems. This modularity is aided by Cogent’s functional semantics.

For the fsop_readpage example, we chose to employ modular testing as opposed to whole-
system testing, which would have required extra effort in developing the infrastructure to run
tests in kernel mode (see Section 5.7.3). Whole-system testing allows for more abstract top-level
properties to be specified: for instance, that read andwrite are inverse operations.3 Alternatively,
these logical properties can be tested on top of the executable specification rather than directly
on the concrete implementation.

As our specification becomes more abstract, the single step simulation style of refinement
becomes less relevant, because several low-level functions may be specified as a single function

3It might be surprising to some readers that we claim that this property is suitable for whole-system testing, instead
of PBT. After all, this kind of round-trip properties are typical in the realm of PBT.The reason is that, systems software,
or file systems in this case, are not implemented cleanly in a purely functional manner. They always involve heavy
I/O, kernel interaction, locking, etc., which cannot be precisely and concisely specified in the functional specification
and thus fall under the global state.
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on the abstract level. Modular testing, on the other hand, is more comprehensive, as it also
examines the interfaces among different components in a system. In this case, it uncovered
issues in the WordArray implementation that whole-system testing would have, and indeed had,
missed.

5.7.2 Functional Specification Versus Logical Properties

Traditional PBT tests specifications against a set of logical properties (e.g. get and set are inverse
operations on WordArrays). We instead test functions against a full executable specification that
models the functions. This is conceptually similar to model-based testing [Koopman, Achten, et
al. 2012] (also see Section 5.8). The functional specification is most akin to the functional notions
of model paradigm as classified in the work by Utting et al. [2012, § 3.3].

Our ADT functions, which are implemented in C, can be modeled using readily available
Haskell library functions or can be easily defined in terms of library functions. Moreover, low-
level file system operations are often pretty concrete and only perform simple tasks, making it
hard to specify traditional properties about them that are intuitive or easily comprehensible. In
both cases, it is easier to define a model rather than a set of properties that define the behaviour
of such functions [Koopman, Achten, et al. 2012].

In addition, a model of an ADT serves as a mock implementation when testing functions that
use these ADTs. This enables modular testing. For instance, in our fsop_readpage case study,
we used the previously defined Haskell model of the WordArray functions as mocks.

Furthermore, such models additionally serve as a communication interface between system
programmers and proof engineers. Themodels are key to designing verification-friendly systems
programs, whereas logical properties alone fall short for this purpose.

5.7.3 Testing Kernel Modules

A file system is typically compiled as a kernel module and runs in kernel mode, while our test
framework runs in user mode. To handle this discrepancy, for our prototype, we have ported our
file systems code to run in user mode, using mocks to simulate the kernel API. Emulating the
kernel is common practice in systems programming, with libraries such as FUSE [FUSE 2019]
facilitating the user-space execution of kernel code. However, these tools expect a complete ker-
nel module, thus precluding the use of mocks or other user-land code during testing. A possible
alternative to explore is using a system such as KML [Maeda 2015], House [Hallgren et al. 2005]
or HaLVM [HaLVM n.d.] to run PBT in kernel mode. This would allow the testing environment
to have a closer resemblance to the real run-time environment of the software. Other potential
solutions include the use of unikernels (or libraryOS) [Raza et al. 2019]. We leave them for future
investigation.
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5.7.4 Test Generation Strategies

There are two main factors to consider when generating test data for PBT. The first is how to
sample the data: In this work, we choose user-guided random test generation à la QuickCheck.
Exhaustive testing (for small values) is another popular strategy and has gained great popularity,
e.g. SmallCheck for Haskell [Runciman et al. 2008]. However, the small scope hypothesis on
which SmallCheck is based does not hold in general in the context of systems software4. For
instance, integer overflow, which is a common bug in systems code, can hardly be triggered by
small values. The second main concern is the effective generation of test data which satisfies
the premises of the properties. If the property is of the form 𝑝 ⟹ 𝑞 and the premise 𝑝 is very
strong (i.e. difficult to satisfy), and the test data is not sampled with great care, then a lot of them
will falsify the premise and thus be discarded in the test, rendering the test very inefficient. All
refinement statements in this work have the form 𝑝⟹ 𝑞with a strong precondition 𝑝. The Luck
framework by Lampropoulos, Gallois-Wong, et al. [2017] proposes coupling the predicates of the
property and the test data generation, which could simplify writing custom test data generators.
There is a rich body of research devoted to test generation techniques [Duregård et al. 2012]. In
the future, we plan to explore more options to automate our test data generators.

Domain-specific knowledge can be leveraged to generate test datamore efficiently. Currently
encoding this knowledge in the test data generator is a manual effort by the testers, and it is
decoupled from the program under test. User annotations on the program could be one way
to specify domain-specific knowledge, which can then be used for generating tests. This user
annotation can be given as refinement types, so that the test generators remain type-based. More
precise types like refinement types improves the overall productivity of testing as well, as the
input domain becomes smaller. In Chapter 6, we explore refinement types.

Higher-order functions are essential to functional languages, but testing high-order functions
usually requires some extra mechanism (e.g. [Koopman and Plasmeijer 2006; Xia 2022]). Cogent
supports higher-order functions and our testing framework supports generating functions. How-
ever, it takes a different approach to the QuickCheck library. QuickCheck essentially generates
a representation of an arbitrary function according to its domain and codomain, whereas our
framework exploits the technique with which the Cogent compiler generates functions in C.
Instead of compiling function objects to function pointers in C, the Cogent compiler generates
a numeric token for each declared function in the same program and uses static dispatch func-
tions to realise high-order function calls, as we have seen in Section 4.3.3. This design allows
us to simply choose an integer number randomly as the representation of the function object.
It makes the tests more efficient, as the test driver only tests the functions that can be passed
as arguments to higher-order functions. The limitation is that higher-order functions cannot be
tested in isolation from the rest of the program.

4The small scope hypothesis is stated in Runciman et al. [2008]’s paper as: “(1) If a program fails to meet its
specification in some cases, it almost always fails in some simple case. Or in contrapositive form: (2) If a program
does not fail in any simple case, it hardly ever fails in any case.”
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5.7.5 Shrinking

Counter-example shrinking reduces the size of counter-examples before reporting them to
testers, which plays an important role in helping the tester effectively understand and fix bugs.
For example, the Haskell QuickCheck comes with a customisable shrinking library with a
default shrinking algorithm for many datatypes. A rich body of research can be found on
more advanced shrinking algorithms. For example, test data shrinking that preserve invariants
about the generated data has been explored in [MacIver 2016a; Stanley 2019]. But due to the
lack of recursively defined datatypes in Cogent and thus in the Cogent-powered file systems,
the effectiveness of shrinking is dubious, as the size of the input data chiefly comes from the
sheer complexity of the (non-recursive) datatypes, rather than from recursion. Shrinking is
nevertheless useful for testing ADTs, but basic shrinking strategies work reasonably well in our
context.

5.8 Related Work

QuickCheck has been used for testing a variety of high-level properties, such as information flow
control [Amorim et al. 2014; Hriţcu et al. 2013], mutual exclusion [Claessen, Palka, et al. 2009],
and the functional correctness of AUTOSAR components [Arts et al. 2015; Mostowski et al. 2017].
To the best of our knowledge, our framework is the first to use PBT for testing refinement-based
functional correctness statements.

The hs-to-coq tool [Spector-Zabusky et al. 2018] translates Haskell code into the Coq proof
assistant [Bertot and Castéran 2004]. Breitner et al. [2018] used it to verify parts of Haskell’s
container library in Coq. In addition to proving the functional correctness of various functions in
the library, they also verified that theQuickCheck properties that the library is tested against are
correct. By contrast, ourQuickCheck properties are refinement properties that directly resemble
the those used for full verification. Verifying these properties is already a substantial step towards
proving functional correctness, and in some cases directly implies functional correctness.

A version ofQuickCheck is available as a built-in tool in Isabelle/HOL and is used for quickly
finding counter-examples to proposed lemmas [Berghofer and Nipkow 2004; Bulwahn 2012].
We chose to build on Haskell’s QuickCheck rather than Isabelle/HOL’s QuickCheck because
it is easier for Cogent programmers to use a testing framework that lies in the ecosystem of a
functional programming language rather than interact with a theorem prover. Haskell acts as
a good communication medium between programmers and proof engineers [Breitner et al. 2018;
Derrin et al. 2006]. Moreover, due to Isabelle/HOL’s interactive nature, testers would have to
wait for Isabelle to re-establish all the processed script and proven facts once anything changes
in the theory files, before they are able to test. For example, when the definition of SysState
(see Section 5.6) changes in BilbyFs, it can easily take up to several dozen minutes for Isabelle to

125



Chapter 5. Property-Based Testing for Cogent

reach the same conjecture that the tester is examining.5 A similar wait can also be expected even
though the changes are irrelevant to the testing task, which means during testing the developers
cannot do little in parallel. Even if Isabelle’s quick-and-dirty mode is used, which skips proofs,
testers would still have to wait for Isabelle/HOL to process definitions. In fact, a large portion
of the time is spent on reading in the deep embeddings of the Cogent program into Isabelle,
due to the large terms generated by the Cogent compiler. This would cause a significant and
unnecessary slowdown to their productivity, and destroy the user experience.

The SPARK language [SPARK Pro 2014], a formally defined subset of Ada, also uses a com-
bination of testing and verification to facilitate the development of reliable software. SPARK
developers can attach contracts, that is, specifications of pre- and postconditions, to critical pro-
cedures. Tools of the framework can use these contracts as input to automatically test the pro-
cedures, or attempt to formally prove that the implementation observes these contracts. Ada
language features which are hard to verify, such as side-effects in expressions, access types, al-
locators, exception handling and many others, are not permitted in SPARK. Others are, but can
lead to gaps in the verification. In contrast to Cogent, SPARK does not aim at fully verified
systems from high-level specification to machine code, but at selectively verifying safety critical
components.

DoubleCheck [Eastlund 2009] integrates PBT into Dracula [Vaillancourt et al. 2006], a ped-
agogic programming environment which enables students to develop programs and then prove
theorems about them in ACL2 [Kaufmann and Moore 2018], a theorem prover based on term
rewriting. As with our work, the motivation of this integration is to facilitate formal verifica-
tion, though its focus is on education, not on producing verified real-world applications.

In the PBT framework we presented, as we test the refinement statement between the im-
plementation and the Haskell executable specification, which can be considered a conformance
relation, it does appear that we are instead conducting model-based testing [Tretmans 2011; Ut-
ting et al. 2012]. Our approach does indeed share a lot in common with MBT, but we identify
our approach as PBT for the following reasons. Firstly, in MBT, the starting point of testing is
a model of the software under test. On the contrary, as we have demonstrated, testing in our
framework does not necessarily have an existing model to start with. In developing formally
verifiable operating systems components, which is the application domain that concerns us, it is
of paramount importance to find the right balance between verifiability and performance. PBT
gives developers insights in both aspects. Therefore, testing plays a role in the design of the
system, and subsequently its specification. This is similar to the iterative development process
reported in the seL4 formal verification work [Heiser, Andronick, et al. 2010]. Secondly, test
cases are systematically and algorithmically generated from the model in MBT. Test inputs are
typically concretised from the abstract test suite and the test results are abstracted to be validated
against the model by an adapter. In contrast, as we have shown in the examples, the test cases

5The experiment is done on a Dell Precision T1700 machine with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and
32GiB DDR3 1600MHz RAM, running Debian 4.9.130-2 x86_64 GNU/Linux.
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are not generated from the model. Test data is directly produced on the concrete level. Lastly,
from the tooling perspective, our approach uses a PBT library QuickCheck as the core of the
testing infrastructure.

5.9 Conclusion

In this chapter, we showed how we augmented the Cogent verification framework with PBT.
Testing and formal verification complement each other, which is well acknowledged among re-
searchers and developers. In this work, we further demonstrated this common belief in the spe-
cific context of PBT and interactive theorem proving. The central idea is to mirror the refinement
proof in testing, using a functional specification as the model instead of a set of logical properties
as commonly done in PBT.

Using this method, we tested an abstract data type from a library, as well as an operation of a
real-world file system. The tests exposed several bugs in the ADT implementation and uncovered
errors in the specification of the ADT and of the file system.

Besides the main purpose of testing—detecting bugs—we exhibited other benefits of employ-
ing PBT. They include reduced effort in formal verification, structured verification-ready specifi-
cation and implementation, and precise and effective communication media among developers.
We believe PBT offers developers the opportunity to gradually tackle the verification challenge
in large and complex systems development, serving as a helpful stepping stone in the endeavour
into full formal verification of high assurance software.
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Chapter 6

A Hoare-Logic Style Refinement
Types Formalisation

This chapter is derived from the following publication:

⋄ Zilin Chen. Sept. 2022. “A Hoare Logic Style Refinement Types Formalisation.” In: Proceed-
ings of the 7th ACM SIGPLAN International Workshop on Type-Driven Development (TyDe ’22).
ACM, Ljubljana, Slovenia, 14 pages. doi: 10.1145/3546196.3550162

Cogent is designed for formally verifying low-level systems code. It abstracts the semantics
of low-level C code to a purely functional semantics, on which proof engineers reason about
program behaviours. This proof is established fully manually (except the automation from the
Isabelle/HOL tactics), and it is typically done by proof engineers asynchronously, independent of
program development. Refinement types are a lightweight yet expressive tool for specifying and
reasoning about programs. Employing a refinement type system in Cogent allows more theo-
rems to be specified by systems developers in the program as types, automatically proved syn-
chronously with program development during typechecking. As a first step towards integrating
refinement types into Cogent, we explore refinement typechecking and verification condition
generation from a more theoretical angle, in a generic setting independent of Cogent.

The connection between refinement types and Hoare logic has long been recognised but
the discussion remains largely informal. In this chapter, we present a Hoare triple style Agda
formalisation of a refinement type system on a simply-typed λ-calculus restricted to first-order
functions. In our formalisation, we interpret the object language as shallow Agda terms and
use Agda’s type system as the underlying logic for the type refinement. To deterministically
typecheck a program with refinement types, we reduce it to the computation of the weakest pre-
condition and define a verification condition generator which aggregates all the proof obligations
that need to be fulfilled to witness the well-typedness of the program.
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6.1 Introduction

Program verification has been widely adopted by software developers in the past few decades,
and is becoming standard practice in the development of safety-critical software. Refinement
types1, due to its tight integration into the programming language, has seen a surge in popularity
among language designers and users in recent years [Lehmann, Kunkel, et al. 2021; Lehmann and
Tanter 2017; Pavlinovic et al. 2021; Polikarpova et al. 2016; Swamy et al. 2016; Vazou 2016]. It is
effective yet easy to harness for programmers who are less skillful at using manual verification
tools, such as interactive theorem provers. Programmers can annotate their code with types that
include predicates which further restrict the inhabitants of that type. For instance, {𝜈 ∶ ℕ ∣ 𝜈 > 0}

is a type that only includes positive natural numbers. We typically call the type being refined,
namely ℕ here, the base type, and the logical formula the refinement predicate. The typechecker of
a refinement type system will produce verification conditions, in the form of logical entailments,
to justify the specified refinements. In the typechecker, a Satisfiability Modulo Theories (SMT)
solver is responsible for automatically discharging these verification conditions. Although SMT-
solving is undecidable in general, language designers typically design their type systems carefully
so that all allowable refinement predicates fall under a decidable fragment of the logic, rendering
SMT-solving and consequently typechecking decidable.

As we have seen in earlier chapters, Cogent’s refinement verification framework provides
users with a nice purely functional semantics of the Cogent program, while they can still enjoy
the runtime characteristics of the target C language. Reasoning about the behaviour of a Cogent
program against a formal specification in Isabelle/HOL is made easy by this purely functional
abstraction: equational reasoning techniques can be applied in the proof. This proof, however,
still has to be constructed manually in an interactive manner. In Amani, Hixon, et al. [2016]’s
work, it is reported that the effort for verifying two BilbyFs functions sync() and iget() was
roughly 9.25 person months, and produced roughly 13,000 lines of proof for the 1,350 lines of
Cogent code. The amount of manual verification work is still significant, if a full system is to be
verified.

Extending Cogent with a refinement type system can alleviate this burden on developers.
Specifically, we propose adding a refinement type system to Cogent in the following way, in
addition to its current verification framework: Cogent developers can opt to write specifica-
tions as refinement types in Cogent, then the refinement type system will generate verification
conditions, which the SMT-solver will try to prove. The refinement predicate logic can be very
expressive and does not have to be decidable. The SMT-solver will try to solve as many theo-
rems as it practically can; the rest will be generated as lemmas in an interactive theorem prover,
say Isabelle/HOL, and verification engineers can manually verify them as they already do with
Cogent’s manual proofs. The employment of a mixture of SMT-solving and interactive theorem

1The term refinement types is unfortunately overloaded. In this chapter, we discuss refinement types in the sense
of subset types [Greenberg 2015].
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proving is similar to F* [Swamy et al. 2016].
Augmenting Cogent with a refinement type system has other potential benefits. In Chap-

ter 5, we proposed the use of Haskell’s QuickCheck library to test Cogent programs. One key
component in the QuickCheck framework is to generate test data automatically. The addition of
refinement types facilitates test data generation. As we would have more precise types, the type-
based test data generators can be tailored to only generate valid random input values. Similar
ideas have also been previously explored by Seidel et al. [2015] and Zhu et al. [2015].

Adding a refinement type system to Cogent is not straightforward. Indeed, a refinement
type system is already complicated on it own, especially if we want to formalise it in order
to include it in Cogent’s formal verification framework. Typically, a refinement type system
supports dependent functions, which are similar to those in a dependent type system [Martin-Löf
1984]. A dependent function allows the refinement predicate of the return type to refer to the
value of the function’s arguments. Such term-dependency also results in the typing contexts
being telescopic, meaning that a type in the context can refer to variables in earlier entries of
that context.

Another source of complexity in refinement type systems is solving the logical entailment
which determines the subtyping relation between two types. Usually, some syntactic or semantic
rewriting tactics will be employed to carefully transform the entailment into a certain form that
facilitates the automatic discharge of proof obligations using an SMT-solver. To ensure that SMT-
solving is decidable, language designers typically need to restrict the logic used for expressing
refinement predicates. For instance, in Liqid Haskell [Vazou et al. 2014], the quantifier-free
logic of equality, uninterpreted functions and linear arithmetic (QF-EUFLIA) is chosen to ensure
decidability.

In the rich literature on refinement types, while there are notable exceptions (e.g. [Lehmann
and Tanter 2016]), due to the complexity of refinement type systems, the development remains
largely informal2 and rather ad hoc. For instance, the typing rules of each variant of a refinement
type system can be subtly different, whereas the underlying reasons for the difference are not
always systematically analysed and clearly attributed.

The connections between refinement types and Hoare logic have long been recognised. For
example, the work by Jhala and Vazou [2021] indicates that “refinement types can be viewed as
a generalization of Floyd-Hoare style program logics.” The monolithic assertions on the whole
program states in Hoare logic can be decomposed into more fine-grained refinements on the
values of individual terms. Pre- and post-conditions correspond directly to functions’ input and
output types.

In a blog post [Jhala 2019], Jhala further explains why refinement types are different (and
in some aspects, superior to) Hoare logic, with the punchline that “types decompose quantified
assertions into quantifier-free refinements”, which is a recipe for rendering the logics decidable

2Informal in the sense that they are lacking machine-checked proofs.
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for SMT-solvers.

The formal connections between refinement types and Hoare logic deserve more systematic
studies. In this chapter, we present a unifying paradigm—aHoare logic style formalisation of a re-
finement type system on a simply-typed λ-calculus with primitive types, products and restricted
to first-order functions. Formalising refinement types in the Hoare logic style not only allows
us to study the connections between these two systems, it also makes the formalisation easier
by avoiding the aforementioned complications in refinement type systems. The formalisation
is done in Agda [Norell 2009, 2007], a dependently-typed proof assistant. In our formalisation,
shallow Agda terms are used to denote the semantics of the object language and Agda’s type
system is used as the underlying logic for the refinement predicates.

In a nutshell, we formulate the typing judgement of the refinement type system as Γ❴𝜙❵ ⊢

𝑒 ∶ 𝑇❴𝜆𝜈. 𝜓❵. When reading it as a regular typing rule, the typing context is split into two parts:
Γ is a list of term variables associated with their base types, and 𝜙 contains all the refinement
predicates about these variables in the context. The base type 𝑇 and the predicate 𝜆𝜈. 𝜓 form the
refinement type {𝜈 ∶ 𝑇 ∣ 𝜓} that is assigned to 𝑒. On the other hand, if we read the rule as a Hoare
triple, 𝑒 is the program and 𝜙 and 𝜓 are the pre- and post-conditions of the execution of 𝑒 under
the context Γ.

When we make the analogy between refinement type systems and Hoare logic, another anal-
ogy naturally arises. The type analysis with a refinement type system correlates to the weakest
precondition calculation in Hoare logic. In fact, the idea of using the weakest precondition for
refinement type inference is not new. Knowles and Flanagan [2007] have proposed, as future
work, calculating the weakest precondition for refinement type reconstruction. In this chapter,
we explore how to use backward reasoning for typechecking, with our machine-checked formal-
isation in Agda.

Specifically, this chapter presents the following technical contributions:

• We formalise a refinement type system (Section 6.3 and Section 6.4) à la Hoare logic and
prove, among other meta-theoretical results, that the type system is sound and complete
with respect to the denotational semantics (Section 6.5).

• We define a naïve weakest precondition function wp in lieu of a typechecking algorithm
and prove that it is sound and complete with respect to the typing rules (Section 6.6).

• We revise the formalisation above and present a variant of the refinement type system
which preserves the contracts imposed by functions (i.e. λ-abstractions). This requires a
more sophisticated weakest precondition function pre and a verification condition gener-
ator vc. We again establish the soundness and completeness results of pre and vc (Sec-
tion 6.7).

All the formalisation is developed in and checked by Agda (version 2.6.2.1). In fact, the main body
of this chapter is generated from a literate Agda file that contains all the formal development,
including the proofs of all the theorems presented in this chapter. The source file of this chapter
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can be obtained online (https://github.com/zilinc/ref-hoare).

6.2 The Key Idea

Typically, a refinement type can be encoded as a Σ-type in a dependently-typed host language.
For example, in Agda’s standard library, a refinement type is defined as a record consisting of a
value and an irrelevant proof of a property 𝑃 over the value.3

Embedding and working with a dependently-typed language is often quite tedious. Encod-
ing such an object language in another dependently-typed language can typically be done with
the help of inductive-recursive techniques [Dybjer 2000]. The dependent object language fea-
tures telescopic contexts in the typing rules. As a result, it poses extra challenges in manipulat-
ing typing contexts and in performing type inference, because the dependency induces specific
topological orders in solving type constraints.

Realising the connections between refinement types and Hoare logic can be a rescue. When
assigning a refinement type to a function (we assume, without loss of generality, that a function
only takes one argument), the refinement predicate on the argument asserts the properties that
the input possesses, and the predicate on the result type needs to be satisfied by the output. This
mimics the structure of a Hoare triple: the predicates on the input and on the output correspond
to the pre- and post-conditions respectively.

Another correlation is that, as we have alluded to earlier, in a traditional refinement typing
judgement 𝑥𝑖 ∶ 𝜏𝑖 ⊢ 𝑒 ∶ 𝜏 (we use an overhead a⃗rrow to denote an ordered vector, and an over-
head line for an unordered list; 𝜏𝑖 and 𝜏 here are refinement types), the refinement predicates
in 𝜏𝑖 correlate to the precondition in a Hoare triple, and the predicate in 𝜏 corresponds to the
postcondition. Concretely, if each 𝜏𝑖 is in the form {𝜈 ∶ 𝐵𝑖 ∣ 𝜙𝑖}, we can take the conjunction of all
the 𝜙𝑖 to form a proposition about 𝑥𝑖, which becomes the precondition describing the program
state (i.e. the typing context) under which 𝑒 is executed. Similarly, if 𝜏 is {𝜈 ∶ 𝐵 ∣ 𝜓}, then 𝜓 is the
postcondition that the evaluation result 𝜈 of 𝑒 must satisfy.

The Hoare triple view of refinement types has many advantages. Firstly, it separates the
checking or inference of the base types and that of the refinement predicates, which is common
practice in languages with refinement types (e.g. [Knowles and Flanagan 2007; Pavlinovic et al.
2021; Rondon et al. 2008]). The base type information ensures that the refinement predicates are
well-typed. Secondly, the separation of types and predicates means that there is no longer any
term-dependency in types, and there is no telescopic contexts any more. It makes the formali-
sation and the reasoning of the system drastically simpler. In particular, the typing contexts no
longer need to maintain any particular order.

In this chapter, we study a small simply-typed λ-calculus with primitive types, products,
and only first-order functions. We assume that all programs are well-typed under the simple

3https://github.com/agda/agda-stdlib/blob/367e3d6/src/Data/Refinement.agda
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type system and only focus on the type refinement. We require all functions (λ-abstractions)
to be annotated with refinement types and they are the only places where type annotations are
needed. We only typecheck a program against the given annotations, without elaborating the
entire syntax tree with refinement types. We reduce the typechecking problem to the compu-
tation of the weakest precondition of a program and define a verification condition generator
which aggregates all the proof obligations that need to be fulfilled to witness the well-typedness
of the program. The proof of the verification conditions is left to the users, who serve as an oracle
for solving all logic puzzles. Therefore we do not concern with the decidability of the refinement
logic.

6.3 The Base Language 𝜆𝐵

Our journey starts with a simply-typed λ-calculus 𝜆𝐵 without any refinement. The syntax of the
𝜆𝐵 is shown in Figure 6.1. It has ground types of unit (𝟙), Booleans (𝟚) and natural numbers (ℕ),
and product types. These types are called base types, meaning that they are the types that can
be refined, i.e. they can appear in the base type position 𝐵 in a typical refinement type {𝜈 ∶ 𝐵 ∣ 𝜙}.
The language is restricted to first-order functions by excluding function arrows from the first-
class base types. The term language is very standard, consisting of variables (𝑥), constants of
the ground types, pairs, projections (𝜋1 and 𝜋2), function applications (denoted by juxtaposition),
if-conditionals, non-recursive local let-bindings, and some arithmetic and logical operators on
natural numbers and Booleans.

Although λ-abstractions can only be directly applied, we do not eschew them in the syntax.
This allows us to define top-level functions, which can be reused. This design decision is primarily
only for practical convenience and is otherwise unimportant. TheAgda formalisation follows this
design; it handles function and non-function terms separately. Whenever possible, however, we
merge the two when we present them in this chapter.

Since the typing rule for 𝜆𝐵 is very standard, we directly show its Agda embedding and
use it as a tutorial on how we construct the language in Agda. We use an encoding derived
from McBride’s Kipling language [McBride 2010], which allows us to index the syntax of the
object language with its type in Agda. Therefore, the object term language is type correct by
construction, up to simple types.

In Figure 6.2, we define a universe U of codes for base types, and a decoding function E ⟦⋅⟧Ty
(⟦_⟧τ in Agda) which maps the syntax to the corresponding Agda types. We do not include a
code constructor for function types; a (non-dependent) function type is interpreted according to
its input and output types.

McBride [2010] uses inductive-recursive definitions [Dybjer 2000] for embedding his
dependently-typed object language in Agda, which is a pretty standard technique (e.g. [Chap-
man 2009; Danielsson 2006]). In our base language (and also later with refinement types), since
the term-dependency in types has been eliminated by the Hoare logic style formulation, the
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base types 𝐵, 𝑆, 𝑇 ⩴ 𝟙 ∣ 𝟚 ∣ ℕ ∣ 𝑆 × 𝑇

func. types ∋ 𝑆⟶𝑇

expressions 𝑒 ⩴ 𝑥 ∣ () ∣ true ∣ false

∣ ze ∣ su 𝑒

∣ (𝑒, 𝑒) ∣ 𝜋1 𝑒 ∣ 𝜋2 𝑒 ∣ 𝑓 𝑒

∣ if 𝑐 then 𝑒1 else 𝑒2
∣ let 𝑥 = 𝑒1 in 𝑒2
∣ 𝑒1 ⊕ 𝑒2

binary operators ∋ ⊕

functions 𝑓 ⩴ 𝜆𝑥.𝑒

contexts Γ ⩴ ⋅ ∣ Γ, 𝑥 ∶ 𝑆

Figure 6.1: Syntax of the language 𝜆𝐵

data U : Set where

‵1′ ‵2′ ‵ℕ′ : U

_‵×′_ : U → U → U

⟦_⟧τ : U → Set

⟦ ‵1′ ⟧τ = ⊤

⟦ ‵2′ ⟧τ = Bool

⟦ ‵ℕ′ ⟧τ = ℕ

⟦ S ‵×′ T ⟧τ = ⟦ S ⟧τ × ⟦ T ⟧τ

Figure 6.2: The Agda definition of the base types and their interpretation
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data Cx : Set where

‵Ε′ : Cx

_▸_ : Cx → U → Cx

⟦_⟧C : Cx → Set

⟦ ‵Ε′ ⟧C = ⊤

⟦ Γ ▸ S ⟧C = ⟦ Γ ⟧C × ⟦ S ⟧τ

Figure 6.3: The syntax and the denotation of the typing context

data _∋_ : (Γ : Cx)(T : U) → Set where

top : ∀{Γ}{T} → Γ ▸ T ∋ T

pop : ∀{Γ}{S T} → Γ ∋ T → Γ ▸ S ∋ T

⟦_⟧∋ : ∀{Γ}{T} → Γ ∋ T → (γ : ⟦ Γ ⟧C) → ⟦ T ⟧τ

⟦ top ⟧∋ (_ , t) = t

⟦ pop i ⟧∋ (γ , _) = ⟦ i ⟧∋ γ

Figure 6.4: Variable indexing in contexts Γ and 𝛾

inductive-recursive definition of the universe à la Tarski and its interpretation is not needed.
Nevertheless, we choose to use the vocabulary from that lines of work since the formalisation is
heavily inspired by them.

With the denotation of types, we define what it means for a denotational value to possess a
type, following the work on semantic typing [Milner 1978]. A denotational value 𝑣 possesses a
type 𝑇, written ⊨ 𝑣 ∶ 𝑇, if 𝑣 is a member of the semantic domain corresponding to the type 𝑇.
This is to say, 𝑣 is a shallow Agda value of type E ⟦𝑇⟧Ty.

Next, we define the typing context for the language 𝜆𝐵, and the denotation of the context
in terms of a nested tuple of shallow Agda values (see Figure 6.3). The denotation of the typing
context gives us a semantic environment 𝛾, mapping variables to their denotational values in
Agda. A semantic environment 𝛾 respects the typing context Γ if for all 𝑥 ∈ dom(Γ), ⊨ 𝛾(𝑥) ∶ Γ(𝑥).

Variables in 𝜆𝐵 are nameless and are referenced by their de Bruijn indices in the context, with
the rightmost (also outermost) element bound most closely. Unlike in Kipling [McBride 2010],
the direction to which the context grows is largely irrelevant, since the context is not telescopic.
The variable indexing for the typing context Γ and the semantic context 𝛾 are defined in Figure 6.4
respectively.

Before we continue, we introduce a few combinators that are helpful in simplifying the pre-
sentation. ᵏ and ˢ are the K and S combinators from the SKI calculus. Infix operators ˄ and ˅ are
synonyms to the currying and uncurrying functions respectively.

The syntax of the language is defined in Figure 6.5, and the interpretation functions ⟦_⟧⊢

and ⟦_⟧⊢ ⃗are given in Figure 6.6. The deep syntax of the object language is indexed by the
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mutual

data _⊢_ (Γ : Cx) : U → Set where

VAR : ∀{T} → Γ ∋ T → Γ ⊢ T

UNIT : Γ ⊢ ‵1′

TT : Γ ⊢ ‵2′

FF : Γ ⊢ ‵2′

ZE : Γ ⊢ ‵ℕ′

SU : Γ ⊢ ‵ℕ′ → Γ ⊢ ‵ℕ′

IF : ∀{T} → Γ ⊢ ‵2′ → Γ ⊢ T → Γ ⊢ T → Γ ⊢ T

LET : ∀{S T} → Γ ⊢ S → Γ ▸ S ⊢ T → Γ ⊢ T

PRD : ∀{S T} → Γ ⊢ S → Γ ⊢ T → Γ ⊢ (S ‵×′ T)

FST : ∀{S T} → Γ ⊢ S ‵×′ T → Γ ⊢ S

SND : ∀{S T} → Γ ⊢ S ‵×′ T → Γ ⊢ T

APP : ∀{S T} → (Γ ⊢ S ⟶ T) → Γ ⊢ S → Γ ⊢ T

BOP : (o : ⊕) → Γ ⊢ →⊕ o → Γ ⊢ →⊕ o → Γ ⊢ ⊕→ o

data _⊢_⟶_ (Γ : Cx) : U → U → Set where

FUN : ∀{S T} → Γ ▸ S ⊢ T → Γ ⊢ S ⟶ T

Figure 6.5: The Agda embedding of 𝜆𝐵. ⊕ is the deep syntax for binary operators; →⊕ and ⊕→ return
the input and output types of a binary operator respectively.

typing context and the deep type. It therefore guarantees that the deep terms are type correct by
construction. There is little surprise in the definition of the typing rules. We only mention that
FUN has the same type as a normal first-class λ-abstraction does. It can be constructed under any
context Γ and does not need to be closed. A function application can be represented equivalently
as a let-binding up to simple types, but they have different refinement typing rules, as we will
see later in this chapter.

The interpretation of the term language is entirely standard, mapping object language terms
to values of their corresponding Agda types. On paper, we write E ⟦⋅⟧Tm for the denotation
function, which takes a deep term and a semantic environment and returns the Agda denotation.

As a simple example, if we want to define a top-level function

𝑓0 ∶ ℕ⟶ℕ

𝑓0 = 𝜆𝑥. 𝑥 + 1

it can be done in Agda as

f₀ : ∀{Γ} → Γ ⊢ ‵ℕ′ ⟶ ‵ℕ′
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mutual

⟦_⟧⊢ : ∀{Γ}{T} → Γ ⊢ T → ⟦ Γ ⟧C → ⟦ T ⟧τ

⟦ VAR x ⟧⊢ = ⟦ x ⟧∋

⟦ UNIT ⟧⊢ = ᵏ tt

⟦ TT ⟧⊢ = ᵏ true

⟦ FF ⟧⊢ = ᵏ false

⟦ ZE ⟧⊢ = ᵏ 0

⟦ SU e ⟧⊢ = ᵏ suc ˢ ⟦ e ⟧⊢

⟦ IF c e₁ e₂ ⟧⊢ = (if_then_else_ ∘ ⟦ c ⟧⊢) ˢ ⟦ e₁ ⟧⊢ ˢ ⟦ e₂ ⟧⊢

⟦ LET e₁ e₂ ⟧⊢ = ˄ ⟦ e₂ ⟧⊢ ˢ ⟦ e₁ ⟧⊢

⟦ PRD e₁ e₂ ⟧⊢ = < ⟦ e₁ ⟧⊢ , ⟦ e₂ ⟧⊢ >

⟦ FST e ⟧⊢ = proj₁ ∘ ⟦ e ⟧⊢

⟦ SND e ⟧⊢ = proj₂ ∘ ⟦ e ⟧⊢

⟦ APP f e ⟧⊢ = ⟦ f ⟧⊢ ⃗ ˢ ⟦ e ⟧⊢

⟦ BOP o e₁ e₂ ⟧⊢ γ = ⟦ e₁ ⟧⊢ γ ⟦ o ⟧⊢⊕ ⟦ e₂ ⟧⊢ γ

⟦_⟧⊢ ⃗ : ∀{Γ}{S T} → Γ ⊢ S ⟶ T → ⟦ Γ ⟧C → ⟦ S ⟧τ → ⟦ T ⟧τ

⟦ FUN e ⟧⊢ ⃗ = ˄ ⟦ e ⟧⊢

Figure 6.6: The Agda definition of the interpretation function for 𝜆𝐵. _⟦ o ⟧⊢⊕_ interprets the
deep operator o as its Agda counterpart.

f₀ = FUN (BOP [+] (VAR top) ONE)

where ONE is defined as SU ZE. Note that the function is defined under any context Γ. The deno-
tation of the f₀ function under any valid semantic environment 𝛾 is:

⟦f₀⟧⊢ : ∀{Γ}{γ : ⟦ Γ ⟧C} → ℕ → ℕ

⟦f₀⟧⊢ {γ = γ} = ⟦ f₀ ⟧⊢ ⃗ γ

Evaluating this term in Agda results in a λ-term: λ x → x + 1, independent of the environment 𝛾.

6.4 Refinement Typed Language 𝜆𝑅

We introduce a refinement typed language 𝜆𝑅 that is obtained by equipping 𝜆𝐵 with refinement
predicates. We first present the syntax of the language in Figure 6.7.4 The upcast operator for
non-function expressions is used to make any refinement subtyping explicit in the typing tree.

4A remark on the notation: when we talk about the dependent function types in the object languages, we use a
slightly longer function arrow ⟶ as a reminder that it is not a first-class type constructor. The typesetting is only
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ref. types 𝜏 ⩴ {𝜈 ∶ 𝐵 ∣ 𝜙}

func. types ∋ 𝑥∶𝜏⟶ 𝜏 (dep. functions)
expressions ̂𝑒 ⩴ … (same as 𝜆𝐵)

∣ ̂𝑒 ∷ 𝜏 (upcast)
functions ̂𝑓 ⩴ 𝜆𝑥. ̂𝑒

ref. contexts Γ̂ ⩴ Γ; 𝜙

predicates 𝜙, 𝜉, 𝜓 ⩴ … (a logic of choice)

Figure 6.7: Syntax of the language 𝜆𝑅

In contrast to the traditional formulation of refinement type systems, where a typing context
is defined as 𝑥𝑖 ∶ 𝜏𝑖, we split it into a base typing context Γ and a refinement predicate 𝜙 that
can be constructed by taking the conjunction of all predicates in 𝜏𝑖. This formulation is arguably
more flexible to work with. It does not enforce any ordering in the context entries, and it is easier
to add path sensitive constraints that are not bound to a program variable. For example, when
typechecking an expression if 𝑐 then 𝑒1 else 𝑒2, we need to add the constraint 𝑐 to the context
when we zoom in on 𝑒1. This can typically be done by introducing a fresh (ghost) variable 𝑥 of
an arbitrary base type, such as 𝑥 ∶ {𝜈 ∶ 𝟙 ∣ 𝑐}, where 𝜈 ∉ FV(𝑐), and add it to the typing context.
In our system, additional conjuncts can be added to the predicate 𝜙 directly.

Refinement predicates are shallowly embedded as Agda terms of type Set. We also define a
substitution function in Agda which allows us to substitute the top-most variable in a predicate
𝜙 with an expression 𝑒:

_[_]s : ∀{Γ}{T} → (ϕ : ⟦ Γ ▸ T ⟧C → Set) → (e : Γ ⊢ T)

→ (⟦ Γ ⟧C → Set)

ϕ [ e ]s = ˄ ϕ ˢ ⟦ e ⟧⊢

In Figure 6.8, we show the well-formedness rules for the refinement contexts and for the re-
finement types. They are checked by Agda’s type system and are therefore implicit in the Agda
formalisation. The typing rules can be found in Figure 6.9. Most of the typing rules are straight-
forward and work in a similar manner to their counterparts in a more traditional formalisation
of refinement types. We only elaborate on a few of them.

Variables The VARR rule infers the most precise type—the singleton type—for a variable 𝑥. In
many other calculi (e.g. [Jhala and Vazou 2021; Knowles and Flanagan 2009; Ou et al. 2004]), a

subtly different from the normal function arrow→ and in fact its semantics overlaps with that of the normal function
arrow. In reading and understanding the rules, their difference can usually be dismissed.
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Γ̂ wf

FV(𝜙) ⊆ dom(Γ)

Γ; 𝜙 wf
Ctx-Wf

Γ ⊢ {𝜈 ∶ 𝐵 ∣ 𝜓} wf

FV(𝜓) ⊆ dom(Γ) ∪ {𝜈}

Γ ⊢ {𝜈 ∶ 𝐵 ∣ 𝜓} wf
RefType-Wf

Figure 6.8: Well-formedness rules for contexts and types

different variant of the selfification rule is used for variables:5

(𝑥 ∶ {𝜈 ∶ 𝐵 ∣ 𝜙}) ∈ Γ𝜏

Γ𝜏 ⊢ 𝑥 ∶ {𝜈 ∶ 𝐵 ∣ 𝜙 ∧ 𝜈 ≡ 𝑥}
Self

We choose not to include the 𝜙 in the inferred type of 𝑥, as such information can be recovered
from the typing context via the subtyping rule SUBR.

Constants For value constants ((), true, false, ze) and function constants (⊕, (, ), 𝜋1, 𝜋2, su), the
typing rules always infer the exact type for the result. As with the VARR rule, we do not carry
over the refinement predicates in the premises to the inferred type in the conclusion. Again, no
information is lost during this process, as they can be recovered later from the context when
needed.

Function applications The typing rule for function applications is pretty standard. In the
work of Knowles and Flanagan [2009], a compositional version of this rule is used instead. To
summarise the idea, consider the typical function application rule, which has the following form:

Γ𝜏 ⊢ 𝑓 ∶ (𝑥∶𝜏1) → 𝜏2 Γ𝜏 ⊢ 𝑒 ∶ 𝜏′1 Γ𝜏 ⊢ 𝜏′1 ⊑ 𝜏1

Γ𝜏 ⊢ 𝑓 𝑒 ∶ 𝜏2[𝑒/𝑥]
App

In the refinement in the conclusion, the term 𝑒 is substituted for 𝑥. This would circumvent the
type abstraction 𝜏′1 of 𝑒, exposing the implementation details of the argument to the resulting
refinement type 𝜏2[𝑒/𝑥]. It also renders the type 𝜏2[𝑒/𝑥] arbitrarily large due to the presence of 𝑒.
To rectify this problem, Knowles and Flanagan [2009] propose the result type to be existential:
∃𝑥 ∶ 𝜏′1. 𝜏2. Which application rule to include largely depends on the language design. We use
the traditional one here and the compositional one later in this chapter to contrast the two.

5We use the subscript in Γ𝜏 to mean the more traditional 𝑥𝑖 ∶ 𝜏𝑖 context, where each 𝜏𝑖 is a refinement type.
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Γ̂ ⊢𝑅 ̂𝑒 ∶ 𝜏

(𝑥 ∶ 𝑇) ∈ Γ

Γ; 𝜙 ⊢𝑅 𝑥 ∶ {𝜈 ∶ 𝑇 ∣ 𝜈 = 𝑥}
VARR

Γ̂ ⊢𝑅 () ∶ {𝜈 ∶ 𝟙 ∣ 𝜈 = ()}
UNITR

𝑏 ∈ {true, false}

Γ̂ ⊢𝑅 𝑏 ∶ {𝜈 ∶ 𝟚 ∣ 𝜈 = 𝑏}
TTR/FFR

Γ̂ ⊢𝑅 ze ∶ {𝜈 ∶ ℕ ∣ 𝜈 = 0}
ZER

Γ̂ ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ ℕ ∣ 𝜓}

Γ̂ ⊢𝑅 su ̂𝑒 ∶ {𝜈 ∶ ℕ ∣ 𝜈 = suc( ̂𝑒)}
SUR

Γ; 𝜙 ⊢𝑅 ̂𝑐 ∶ {𝜈 ∶ 𝟚 ∣ 𝜓′}

Γ; 𝜙 ∧ ̂𝑐 ⊢𝑅 ̂𝑒1 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓} Γ; 𝜙 ∧ ¬ ̂𝑐 ⊢𝑅 ̂𝑒2 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}

Γ; 𝜙 ⊢𝑅 if ̂𝑐 then ̂𝑒1 else ̂𝑒2 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}
IFR

Γ; 𝜙 ⊢𝑅 ̂𝑒1 ∶ {𝑥 ∶ 𝑆 ∣ 𝜉} Γ ⊢ {𝜈 ∶ 𝑇 ∣ 𝜓} wf
Γ, 𝑥 ∶ 𝑆; 𝜙 ∧ 𝜉 ⊢𝑅 ̂𝑒2 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}

Γ; 𝜙 ⊢𝑅 let 𝑥 = ̂𝑒1 in ̂𝑒2 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}
LETR

Γ̂ ⊢𝑅 ̂𝑒1 ∶ {𝜈 ∶ 𝑆 ∣ 𝜓1} Γ̂ ⊢𝑅 ̂𝑒2 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓2}

Γ̂ ⊢𝑅 ( ̂𝑒1, ̂𝑒2) ∶ {𝜈 ∶ 𝑆 × 𝑇 ∣ 𝜈 = ( ̂𝑒1, ̂𝑒2)}
PRDR

Γ̂ ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑇1 × 𝑇2 ∣ 𝜓} 𝑖 ∈ {1, 2}

Γ̂ ⊢𝑅 𝜋𝑖 ̂𝑒 ∶ {𝜈 ∶ 𝑇𝑖 ∣ 𝜈 = 𝜋𝑖 ̂𝑒}
FSTR/SNDR

Γ; 𝜙 ⊢𝑅 ̂𝑓 ∶ 𝑥∶{𝜈 ∶ 𝑆 ∣ 𝜉}⟶ {𝜈 ∶ 𝑇 ∣ 𝜓}

𝑥 ∉ Dom(Γ) Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑆 ∣ 𝜉}

Γ; 𝜙 ⊢𝑅 ̂𝑓 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓[ ̂𝑒/𝑥]}
APPR

ty(⊕) = 𝐵1 → 𝐵1 → 𝐵2
Γ̂ ⊢𝑅 ̂𝑒1 ∶ {𝜈 ∶ 𝐵1 ∣ 𝜓1} Γ̂ ⊢𝑅 ̂𝑒2 ∶ {𝜈 ∶ 𝐵1 ∣ 𝜓2}

Γ̂ ⊢𝑅 ̂𝑒1 ⊕ ̂𝑒2 ∶ {𝜈 ∶ 𝐵2 ∣ 𝜈 = ̂𝑒1 ⊕ ̂𝑒2}
BOPR

Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑆 ∣ 𝜓} Γ, 𝑥 ∶ 𝑆; 𝜙 ⊨ 𝜓 ⇒ 𝜓′

Γ; 𝜙 ⊢𝑅 ̂𝑒 ∷ {𝜈 ∶ 𝑆 ∣ 𝜓′}
SUBR

Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑆 ∣ 𝜓} Γ ⊨ 𝜙′ ⇒ 𝜙

Γ; 𝜙′ ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑆 ∣ 𝜓}
WEAKR

Γ̂ ⊢𝑅 ̂𝑓 ∶ 𝑥∶𝜏1 ⟶𝜏2

Γ, 𝑥 ∶ 𝑆; 𝜉 ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}

Γ; 𝜙 ⊢𝑅 𝜆𝑥.𝑒 ∶ 𝑥∶{𝜈 ∶ 𝑆 ∣ 𝜉}⟶ {𝜈 ∶ 𝑇 ∣ 𝜓}
FUNR

Figure 6.9: Static semantics of 𝜆𝑅
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Jhala and Vazou [2021] stick to the regular function application rule, but with some extra re-
strictions. They require the function argument to be in A-normal form (ANF) [Sabry andMatthias
Felleisen 1992], i.e. the argument being a variable instead of an arbitrary expression. This reduces
the load on the SMT-solver and helps them remain decidable in the refinement logic. We do not
need the ANF restriction in our system for decidability, and the argument term will always be
fully reduced in Agda while conducting the meta-theoretical proofs.

Let-bindings In the LETR rule, the well-formedness condition Γ ⊢ {𝜈 ∶ 𝑇 ∣ 𝜓} wf implies that
𝜓 does not mention the locally-bound variable 𝑥, preventing the local binder from creeping into
the resulting type of the let-expression. The let-binding and the function application rule give
similar power in reasoning, thanks to the SUBR rule. The structure of the proofs are slightly
different though because the SUBR nodes need to be placed at different positions.

Subtyping andweakening Key to a refinement type system is the subtyping relation between
types. Typically, the (partly syntactic) subtyping judgement looks like:

Γ𝜏, 𝑥 ∶ 𝐵 ⊨ 𝜙 ⇒ 𝜙′

Γ𝜏 ⊢ {𝜈 ∶ 𝐵 ∣ 𝜙} ⊑ {𝜈 ∶ 𝐵 ∣ 𝜙′}
Sub

Γ𝜏 ⊢ 𝜎2 ⊑ 𝜎1 Γ𝜏, 𝑥 ∶ 𝜎2 ⊢ 𝜏1 ⊑ 𝜏2

Γ𝜏 ⊢ 𝑥 ∶ 𝜎1 → 𝜏1 ⊑ 𝑥 ∶ 𝜎2 → 𝜏2
Sub-Fun

In our language, since we only support first-order functions, the subtyping rule for functions is
not needed. It can be achieved by promoting the argument and the result of a function application
separately. Since function types are excluded from the universe U, subtyping can be defined on
the entire domain of U, and in a fully semantic manner. We directly define the subtyping-style
rules (SUBR,WEAKR) in terms of a logical entailment: 𝜙 ⊨ 𝜓 ⇒ 𝜓′

def
= ∀𝛾 𝑥. 𝜙 𝛾∧𝜓 (𝛾, 𝑥) → 𝜓′ (𝛾, 𝑥).

If we allowed refinement predicates over function spaces, it would require a full semantic
subtyping relation [Bierman et al. 2010; Castagna and Frisch 2005] that alsoworks on the function
space. This has been shown to be possible, e.g. interpreting the types in a set-theoretic fashion
as in Castagna and Frisch [2005]’s work. It is however far from trivial to encode a set theory
that can be used for the interpretation of functions in Agda’s type system (e.g. [Kono 2022] is an
attempt to define Zermelo–Fraenkel set theory ZF in Agda).

The subtyping rule (SUBR) and the weakening rule (WEAKR) roughly correspond to the left-
and right- consequence rules of Hoare logic respectively. All the subtyping in our system is
explicit. For instance, unlike rule App above, in order to apply a function, we have to explicitly
promote the argument with a SUBR node, if its type is not already matching the argument type
expected by the function. As a notational convenience, in the typing rules we write Γ̂ ⊢𝑅 ̂𝑒 ∷ 𝜏

to mean Γ̂ ⊢𝑅 ̂𝑒 ∷ 𝜏 ∶ 𝜏, as the inferred type is always identical to the one that is promoted to.
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Comparing the SUBR rule with the right-consequence rule in Hoare logic, which reads

{𝑃} 𝑠 {𝑄} 𝑄 → 𝑄′

{𝑃} 𝑠 {𝑄′}
Cons-R

we can notice that in the SUBR rule, the implication says 𝜙 ⊨ 𝜓 ⇒ 𝜓′. In Cons-R, in contrast, the
precondition 𝑃 is not involved in the implication. This is because of the nature of the underlying
language. In an imperative language to which the Hoare logic is applied, 𝑃 and 𝑄 are predicates
over the program states. A variable assignment statement or reference update operation will
change the state, and therefore invalidate the proposition 𝑃. The newly established proposition
about the updated program state is then captured by 𝑄 after the execution of the statement 𝑠.
In our purely functional language 𝜆𝑅, 𝜙 is a predicate over the typing context Γ, and a typing
judgement does not invalidate 𝜙. Moreover, in practice, when assigning a refinement type to an
expression, the refinement predicate typically only concerns the term being typed, and does not
talk about variables in Γ that are not directly relevant. Therefore it is technically possible not to
require 𝜙 in the implication, but it renders the system more cumbersome to use.

As for weakening, in contrast to the more canonical structural rule [Lehmann and Tanter
2016]:

⊢ Γ𝜏1, Γ𝜏2, Γ𝜏3 Γ𝜏1, Γ𝜏3 ⊢ 𝑒 ∶ 𝜏

Γ𝜏1, Γ𝜏2, Γ𝜏3 ⊢ 𝑒 ∶ 𝜏

the WEAKR rule only changes the predicates in the context and does not allow for adding new
binders to the simply-typed context Γ. It compares favourably to those with a more syntactic
refinement-typing context. For a traditional refinement-typing context 𝑥𝑖 ∶ 𝜏𝑖, if the weakening
lemma is to be defined in a general enough manner to allow weakening to happen arbitrarily in
the middle of the context, some tactics will be required to syntactically rearrange the context to
make the weakening rule applicable. Our weakening rule is purely semantic and therefore does
not require syntactic rewriting before it can be applied.

Functions The FUNR rule can be used to construct a λ-abstraction under any context Γ and
the λ-term does not need to be closed. The function body ̂𝑒 is typed under the extended context
Γ, 𝑥 ∶ 𝑆, but the predicate part does not include 𝜙. This does not cause any problems because 𝜉 is
itself a predicate over the context and the function argument, and also if more information about
the context needs to be drawn, it can be done via the SUBR rule at a later stage.

The pen-and-paper formalisation above leaves some aspects informal for presentation pur-
poses. One instance of the discrepancy is that, when we type the term ̂𝑒1 + ̂𝑒2, the resulting
predicate is 𝜈 = ̂𝑒1 + ̂𝑒2. What has been implicit in the rules is the reflection of object terms into
the logical system.

In our formal development, the underlying logical system is Agda’s type system, therefore
we want to reflect the refinement-typed term language into the Agda land. We do it as a two-step
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process: we first map the refinement-typed language to the simply-typed language by erasure,
and then reflect the simply-typed terms into logic using the already-defined interpretation func-
tion E ⟦⋅⟧Tm, with which we interpret the object language as Agda terms.

The erasure function ⌜⋅⌝R removes all refinement type information from a refinement-typed
term (also, typing tree) and returns a corresponding simply-typed term (also, typing tree). Es-
sentially, the erasure function removes the refinement predicates, and any explicit upcast (SUBR)
nodes from the typing tree.

Now we can define the deep syntax of the 𝜆𝑅 language along with its typing rules in Agda.
When an expression ̂𝑒 in the object language has an Agda type Γ ❴ ϕ ❵⊢ T ❴ ψ ❵ , it means that
under context Γwhich satisfies the precondition 𝜙, the expression ̂𝑒 can be assigned a refinement
type {𝜈 ∶ 𝑇 ∣ 𝜓}. For functions, we have Γ ❴ ϕ ❵⊢ S ❴ ξ ❵⟶ T ❴ ψ ❵ which keeps track of the
predicates on the context Γ, on the argument and on the result respectively. The datatypes and
the erasure function ⌜⋅⌝R are inductive-recursively defined. The Agda definition of the syntax
(and the typing rules) of 𝜆𝑅 is given in Figure 6.9.

The context weakening ruleWEAKR in Figure 6.9 is in fact admissible in our system, therefore
it is not included as a primitive construct in the formal definition of the language.

Lemma 6.1 (Weakening is admissible). For any typing tree Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ 𝜏, if 𝜙′ ⇒ 𝜙 under any
semantic environment 𝛾 that respects Γ, then there exists a typing tree with the stronger context
Γ; 𝜙′, such that Γ; 𝜙′ ⊢𝑅 ̂𝑒′ ∶ 𝜏 and ⌜ ̂𝑒⌝R = ⌜ ̂𝑒′⌝R.

Continuing on the f₀ function defined in Section 6.3, if we want to lift it to a function defi-
nition in 𝜆𝑅, we will need to add refinements and insert explicit upcast nodes:

𝑓R
0 ∶ (𝑥∶{𝜈 ∶ ℕ ∣ 𝜈 < 2})⟶ {𝜈 ∶ ℕ ∣ 𝜈 < 4}

𝑓R
0 = 𝜆𝑥. (𝑥 + 1 ∷ {𝜈 ∶ ℕ ∣ 𝜈 < 4})

In Agda, it is defined as follows:

f₀R : ‵Ε′ ❴ ᵏ ⊤ ❵⊢ ‵ℕ′ ❴ (_< 2) ∘ proj₂ ❵⟶
‵ℕ′ ❴ (_< 4) ∘ proj₂ ❵

f₀R = FUNR (SUBR (BOPR [+] (VARR top) ONER) _ prf)

The upcast node SUBR needs to be accompanied by an evidence (i.e. an Agda proof term prf

whose definition is omitted) to witness the semantic entailment 𝑥 < 2 ⊨ 𝜈 = 𝑥 + 1 ⇒ 𝜈 < 4. To
demonstrate the function application of f₀R, we define the following expression:

𝑒𝑥R
0 ∶ {𝜈 ∶ ℕ ∣ 𝜈 < 5}

𝑒𝑥R
0 = 𝑓R

0 (1 ∷ {𝜈 ∶ ℕ ∣ 𝜈 < 2}) ∷ {𝜈 ∶ ℕ ∣ 𝜈 < 5}

The inner upcast is for promoting the argument 1, which is inferred the exact type {𝜈 ∶ ℕ ∣ 𝜈 = 1},
to match 𝑓R

0 ’s argument type. The outer upcast is for promoting the result of the application from
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mutual

data _❴_❵⊢_❴_❵ (Γ : Cx) : (⟦ Γ ⟧C → Set) → (T : U)

→ (⟦ Γ ▸ T ⟧C → Set) → Set₁ where

VARR : ∀{ϕ}{T} → (i : Γ ∋ T) → Γ ❴ ϕ ❵⊢ T ❴ (λ (γ , ν) → ν ≡ ⟦ i ⟧∋ γ) ❵

UNITR : ∀{ϕ} → (Γ ❴ ϕ ❵⊢ ‵1′ ❴ (λ γ → proj₂ γ ≡ tt) ❵)

TTR : ∀{ϕ} → Γ ❴ ϕ ❵⊢ ‵2′ ❴ (λ γ → proj₂ γ ≡ true ) ❵

FFR : ∀{ϕ} → Γ ❴ ϕ ❵⊢ ‵2′ ❴ (λ γ → proj₂ γ ≡ false) ❵

ZER : ∀{ϕ} → Γ ❴ ϕ ❵⊢ ‵ℕ′ ❴ (λ γ → proj₂ γ ≡ 0 ) ❵

SUR : ∀{ϕ}{ψ}

→ (n : Γ ❴ ϕ ❵⊢ ‵ℕ′ ❴ ψ ❵)

→ Γ ❴ ϕ ❵⊢ ‵ℕ′ ❴ (λ γ → proj₂ γ ≡ suc (⟦ ⌜ n ⌝R ⟧⊢ (proj₁ γ))) ❵

IFR : ∀{ϕ}{ξ}{T}{ψ}

→ (c : Γ ❴ ϕ ❵⊢ ‵2′ ❴ ξ ❵)

→ (Γ ❴ (λ γ → ϕ γ × ⟦ ⌜ c ⌝R ⟧⊢ γ ≡ true ) ❵⊢ T ❴ ψ ❵)

→ (Γ ❴ (λ γ → ϕ γ × ⟦ ⌜ c ⌝R ⟧⊢ γ ≡ false) ❵⊢ T ❴ ψ ❵)

→ Γ ❴ ϕ ❵⊢ T ❴ ψ ❵

LETR : ∀{S}{T}{ϕ}{ξ : ⟦ Γ ▸ S ⟧C → Set}{ψ : ⟦ Γ ▸ T ⟧C → Set}

→ (Γ ❴ ϕ ❵⊢ S ❴ ξ ❵)

→ ((Γ ▸ S) ❴ (λ (γ , s) → ϕ γ × ξ (γ , s)) ❵⊢ T ❴ (λ ((γ , _) , ν) → ψ (γ , ν)) ❵)

→ Γ ❴ ϕ ❵⊢ T ❴ ψ ❵

PRDR : ∀{S T}{ϕ}{ψ₁ ψ₂}

→ (e₁ : Γ ❴ ϕ ❵⊢ S ❴ ψ₁ ❵)

→ (e₂ : Γ ❴ ϕ ❵⊢ T ❴ ψ₂ ❵)

→ Γ ❴ ϕ ❵⊢ S ‵×′ T ❴ (λ (γ , ν) → ν ≡ < ⟦ ⌜ e₁ ⌝R ⟧⊢ , ⟦ ⌜ e₂ ⌝R ⟧⊢ > γ) ❵

FSTR : ∀{S T}{ϕ}{ψ}

→ (e : Γ ❴ ϕ ❵⊢ S ‵×′ T ❴ ψ ❵)

→ Γ ❴ ϕ ❵⊢ S ❴ (λ (γ , ν) → ν ≡ proj₁ (⟦ ⌜ e ⌝R ⟧⊢ γ)) ❵

SNDR : ∀{S T}{ϕ}{ψ}

→ (e : Γ ❴ ϕ ❵⊢ S ‵×′ T ❴ ψ ❵)

→ Γ ❴ ϕ ❵⊢ T ❴ (λ (γ , ν) → ν ≡ proj₂ (⟦ ⌜ e ⌝R ⟧⊢ γ)) ❵

APPR : ∀{S}{T}{ϕ}{ξ}{ψ}

→ (f : Γ ❴ ϕ ❵⊢ S ❴ ξ ❵⟶ T ❴ ψ ❵)

→ (e : Γ ❴ ϕ ❵⊢ S ❴ ξ ❵)

→ Γ ❴ ϕ ❵⊢ T ❴ (λ (γ , t) → ψ ((γ , ⟦ ⌜ e ⌝R ⟧⊢ γ) , t)) ❵
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BOPR : ∀{ϕ}(o : ⊕){ψ₁ ψ₂}

→ (e₁ : Γ ❴ ϕ ❵⊢ →⊕ o ❴ ψ₁ ❵)

→ (e₂ : Γ ❴ ϕ ❵⊢ →⊕ o ❴ ψ₂ ❵)

→ Γ ❴ ϕ ❵⊢ ⊕→ o ❴ (λ (γ , ν) → ν ≡ (⟦ ⌜ e₁ ⌝R ⟧⊢ γ ⟦ o ⟧⊢⊕ ⟦ ⌜ e₂ ⌝R ⟧⊢ γ)) ❵

SUBR : ∀{T}{ϕ : ⟦ Γ ⟧C → Set}{ψ : ⟦ Γ ▸ T ⟧C → Set}

→ (e : Γ ❴ ϕ ❵⊢ T ❴ ψ ❵)

→ (ψ′ : ⟦ Γ ▸ T ⟧C → Set)

→ ϕ ⊨ ψ ⇒ ψ′

→ Γ ❴ ϕ ❵⊢ T ❴ ψ′ ❵

data _❴_❵⊢_❴_❵⟶_❴_❵ (Γ : Cx) : (⟦ Γ ⟧C → Set) → (S : U)

→ (⟦ Γ ▸ S ⟧C → Set) → (T : U)

→ (⟦ Γ ▸ S ▸ T ⟧C → Set) → Set₁ where

FUNR : ∀{S T}{ϕ}{ξ}{ψ}

→ Γ ▸ S ❴ ξ ❵⊢ T ❴ ψ ❵

→ Γ ❴ ϕ ❵⊢ S ❴ ξ ❵⟶ T ❴ ψ ❵

Figure 6.9: The syntax of the 𝜆𝑅 language

{𝜈 ∶ ℕ ∣ 𝜈 < 4} to {𝜈 ∶ ℕ ∣ 𝜈 < 5}. In Agda, two proof terms need to be constructed for the upcast
nodes in order to show that the argument and the result of the application are both type correct:

ex₀R : ‵Ε′ ❴ ᵏ ⊤ ❵⊢ ‵ℕ′ ❴ (_< 5) ∘ proj₂ ❵

ex₀R = SUBR (APPR {ψ = (_< 4) ∘ proj₂} f₀R

(SUBR ONER _ λ _ _ _ → s≡1⇒s<2))

_ λ _ _ _ → t<4⇒t<5

6.5 Meta-Properties of 𝜆𝑅

Instead of proving the textbook type soundness theorems (progress and preservation) [Harper
2016; Wright and M. Felleisen 1994] that rest upon subject reduction, we instead get for free the
semantic type soundness theorem à la Milner [Milner 1978] for the base language 𝜆𝐵 because of
the way the term language is embedded and interpreted in Agda.

Theorem 6.2 (Semantic soundness). If Γ ⊢ 𝑒 ∶ 𝑇 and the semantic environment 𝛾 respects the
typing environment Γ, then ⊨ E ⟦𝑒⟧Tm𝛾 ∶ 𝑇.

We take the same semantic approach to type soundness and establish the the refinement
soundness theorem for 𝜆𝑅. We use the notation 𝜙 ⊨ 𝜓 for the semantic entailment relation in the
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underlying logic, which, in our case, is Agda’s type system. To relate a semantic environment 𝛾
to a refinement typing context Γ̂, we proceed with the following definitions.

Definition 6.1. A semantic environment 𝛾 satisfies a predicate 𝜙, if FV(𝜙) ⊆ dom(𝛾) and ∅ ⊨ 𝜙 𝛾.
We write 𝜙 𝛾 to mean 𝜙[𝛾(𝑥𝑖)/𝑥𝑖] for all free variables 𝑥𝑖 in 𝜙.

Definition 6.2. A semantic environment 𝛾 respects a refinement typing context Γ; 𝜙 if 𝛾 respects Γ
and satisfies 𝜙.

We define what it means for a denotational value to possess a refinement type, and extend
the notion of semantic typing to refinement types.

Definition 6.3. A value 𝑣 posesses a refinement type {𝜈 ∶ 𝑇 ∣ 𝜓}, written ⊨ 𝑣 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}, if ⊨ 𝑣 ∶ 𝑇

and ∅ ⊨ 𝜓[𝑣/𝜈].

Definition 6.4 (Refinement semantic typing). Γ̂ ⊨ ̂𝑒 ∶ 𝜏 if ⊨ E ⟦⌜ ̂𝑒⌝R⟧Tm𝛾 ∶ 𝜏 for all 𝛾 that respects
Γ̂.

With the notion of refinement semantic typing, we can state the refinement (semantic) type
soundness theorem as follows.

Theorem 6.3 (Refinement soundness). If Γ̂ ⊢𝑅 ̂𝑒 ∶ 𝜏 then Γ̂ ⊨ 𝑒 ∶ 𝜏.

Proof. By induction on the structure of Γ̂ ⊢𝑅 ̂𝑒 ∶ 𝜏.

The converse of this theorem is also true. It states the completeness of our refinement type
system with respect to semantic typing.

Theorem 6.4 (Refinement completeness). If Γ ⊢ 𝑒 ∶ 𝑇 and for all semantic context 𝛾 that respects
Γ̂, ⊨ E ⟦𝑒⟧Tm𝛾 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}, then there exists a refinement typing Γ̂ ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓} such that
⌜ ̂𝑒⌝R = 𝑒.

Proof. By induction on the structure of Γ ⊢ 𝑒 ∶ 𝑇.

Note that for the completeness theorem, since we only need to construct one such refinement
typed expression (or equivalently, typing tree), the proof is not unique, in light of the SUBR and
WEAKR rules.

With the refinement soundness and completeness theorems, we can deduce a few direct but
useful corollaries.

Corollary 6.5. Refinement soundness holds for closed terms.

Proof. By setting Γ = ∅ in Theorem 6.3.

Corollary 6.6. For refinement typing judgements, the predicate 𝜙 over the context is an invariant,
namely, Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜆𝜈. 𝜙}.
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Proof. A direct consequence of Theorem 6.4.

Corollary 6.7 (Consistency). It is impossible to assign a void refinement type to an expression
Γ̂ ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ false}, if there exists a semantic environment 𝛾 that respects Γ̂.

Proof. A direct consequence of Theorem 6.3.

6.6 Typechecking 𝜆𝑅 by Weakest Precondition

A simple typechecking algorithm can be given to the 𝜆𝑅 language, in terms of the weakest pre-
condition predicate transformer [Dijkstra 1975]. Since all functions in 𝜆𝑅 are required to be
annotated with types, it is possible to assume the postcondition of a function and compute the
weakest precondition. If the given precondition in the type signature entails the weakest pre-
condition, we know that the program is well-typed according to the specification (i.e. the type
signature).

In an imperative language, when a variable 𝑥 gets assigned, the Hoare triple is {𝑄[𝑒/𝑥]} 𝑥 ∶=
𝑒 {𝑄}, which means that the weakest precondition can be obtained by simply substituting the
variable 𝑥 in 𝑄 by the expression 𝑒. The Hoare logic style typing judgement Γ❴𝜙❵ ⊢ 𝑒 ∶ 𝑇❴𝜓❵ in
our purely functional language can be considered as assigning the value of 𝑒 to a fresh variable 𝜈.
Therefore the weakest precondition function wp 𝜓 𝑒 can be defined analogously as a substitution
of the top binder 𝜈 in 𝜓 with the value of 𝑒, resulting in a predicate over a semantic environment
𝛾 that respects Γ.

wp : ∀{Γ}{T} → (⟦ Γ ▸ T ⟧C → Set) → Γ ⊢ T → (⟦ Γ ⟧C → Set)

wp ψ e = ψ [ e ]s

The completeness and soundness of the wp function with respect to the typing rules of 𝜆𝑅 are
direct corollaries of the refinement soundness and completeness theorems (Theorem 6.3 andThe-
orem 6.4) respectively.

Theorem 6.8 (Completeness of wp w.r.t. 𝜆𝑅 typing). If Γ; 𝜙 ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}, then 𝜙 𝛾 ⇒

wp 𝜓 ⌜ ̂𝑒⌝R 𝛾 for any semantic environment 𝛾 that respects Γ.

Theorem 6.9 (Soundness ofwpw.r.t. 𝜆𝑅 typing). For an expression Γ ⊢ 𝑒 ∶ 𝑇 in 𝜆𝐵 and a predicate
𝜓, there must exist a type derivation Γ;wp 𝜓 𝑒 ⊢𝑅 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓} such that ⌜ ̂𝑒⌝R = 𝑒.

The wp function checks that, when a type signature is given to an expression 𝑒, it can infer
the weakest precondition under which 𝑒 is typeable. Writing in natural deduction style, the
algorithmic typing rule looks like:

⋯

Γ; 𝜙 ⊢▶ 𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}
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Contrary to regular algorithmic typing rules (e.g. in bidirectional typing [Dunfield and Krish-
naswami 2021]), where the context and the expression are typically inputs, and the type is either
input or output depending on whether it performs type checking or synthesise, in our formu-
lation, the expression and the type are the inputs and (the predicate part of) the context is the
output.

The wp function only checks whether an expression is well-typed by inferring the weakest
context, but it does not elaborate the typing tree by annotating each sub-expression with a type,
nor does it automatically construct proof terms. Despite the limitation, this method can still
be applied to program verification tasks in which the exact refinement typing tree need not be
constructed, or when the automatic construction of proof terms is not required. Cogent is a
natural candidate application for this typing algorithm. In Cogent’s verification framework, a
fully elaborated refinement typing tree will not be necessary, and the functional correctness of
a system is manually proved in Isabelle/HOL. Since proof engineers are already engaged, we do
not have to rely on an SMT-solver to construct the all the proof objects. Proof engineers can
manually discharge the proof obligations, especially the difficult ones that an SMT-solver cannot
efficiently solve. Therefore the logic supported by the refinement predicates does not necessarily
need to be restricted to a decidable fraction, as is required by many refinement type systems. A
decidable logic is a bonus, but not a prerequisite.

6.7 Function Contracts with 𝜆𝐶

As we have seen, wp is easy to define and works uniformly across all terms. Yet it has a very
unfortunate drawback—it is defined on the simply-typed language and is oblivious to the func-
tion signatures, and consequently does not preserve function contracts. This is however not the
only problem. In the definition of wp, when it is applied to an expression containing function
applications, instead of β-reducing the applications, it should inspect the function’s type signa-
ture and produce verification conditions for the function contracts. To this end, the denotation
function E ⟦⋅⟧Tm and subsequently the refinement typing rules also need to be revised.

We define a variant of the language 𝜆𝐶, in which the function contracts are respected.6 It
is worth mentioning that the language is not yet compositional in the sense of [Knowles and
Flanagan 2009], as the weakest precondition computation still draws information from the im-
plementation of expressions, which we will see later in this section.

6.7.1 The 𝜆𝐶 Language

The syntax of 𝜆𝐶 is the same as 𝜆𝑅, and its typing rules are very similar to those of 𝜆𝑅 as well.
Despite the fact that the 𝜆𝐶 language will reflect its term language to Agda in a slightly different
way (more details in Section 6.7.2), we only make two changes in the typing rules for 𝜆𝐶:

6The superscript 𝐶 in 𝜆𝐶 means “contract”.
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Γ̂ ⊢𝐶 ̂𝑒 ∶ 𝜏

Γ; 𝜙 ⊢𝐶 ̂𝑒1 ∶ {𝑥 ∶ 𝑆 ∣ 𝜉} Γ ⊢ {𝜈 ∶ 𝑇 ∣ 𝜓} wf
Γ, 𝑥 ∶ 𝑆; 𝜙 ∧ 𝑥 = ̂𝑒1 ⊢𝐶 ̂𝑒2 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}

Γ; 𝜙 ⊢𝐶 let 𝑥 = ̂𝑒1 in ̂𝑒2 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}
LETC

Γ; 𝜙 ⊢𝐶 ̂𝑓 ∶ 𝑥∶{𝜈 ∶ 𝑆 ∣ 𝜉}⟶ {𝜈 ∶ 𝑇 ∣ 𝜓}

𝑥 ∉ Dom(Γ) Γ; 𝜙 ⊢𝐶 ̂𝑒 ∶ {𝜈 ∶ 𝑆 ∣ 𝜉}

Γ; 𝜙 ⊢𝐶 ̂𝑓 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ ∃𝑥 ∶ 𝜉[𝑥/𝜈].𝜓}
APPC

As suggested by Knowles and Flanagan [2009], the result of a function application can be made
existential for retaining the abstraction over the function’s argument. This idea is implemented
as the rule APPC. The choice of using this favour of function application is purely incidental—
offering a contrast to the other variant used in 𝜆𝑅. In practice, we believe both rules have their
place in a system. The existential version is significantly limited in the conclusions that it can
lead to, and renders some basic functions useless. For instance, we define an inc function as
follows:

inc ∶ (𝑥∶ℕ)⟶ {𝜈 ∶ ℕ ∣ 𝜈 = 𝑥 + 1}

inc = 𝜆𝑥. 𝑥 + 1

The function’s output is already giving the exact type of the result. With the APPC rule, we
cannot deduce that inc 0 is 1, which is intuitively very obvious. In fact, if the input type of inc is
kept unrefined, then we can hardly draw any conclusion about the result of this function. This
behaviour can be problematic when users define, say, arithmetic operations as functions.

The LETC rule differs from LETR in a way that the precondition of the expression 𝑒2 is 𝜙
in conjunction with the exact refinement 𝑥 = ̂𝑒1 for the new binder 𝑥 instead of the arbitrary
postcondition 𝜉 of 𝑒1. Intuitively, because the exact type of the local binder is added to the context
when typechecking 𝑒2, when we compute the weakest precondition of the let-expression (later
in Figure 6.10), we can assume the trivial postcondition 𝜆_. true of 𝑒1. This makes the LETC rule
significantly easier to work with. Unfortunately, we do not yet have formal evidence to conclude
with full confidence whether the LETR rule can be used in this system instead of LETC or not. Also
note that, LETC gives different reasoning power than APPC does, and they nicely complement
each other in the system.

6.7.2 Annotated Base Language 𝜆𝐴

To typecheck of 𝜆𝐶, we define 𝜆𝐴, a variant of the base language 𝜆𝐵. It differs in that the functions
are accompanied by type signatures. We denote function expressions in 𝜆𝐴 as 𝑓 ∷ (𝑥∶𝜉) ⟶ 𝜓,
instead of a bare unrefined 𝑓.

To establish the connection between 𝜆𝐶 and 𝜆𝐴, an erasure function ⌜⋅⌝C is defined, taking a
𝜆𝐶 term to the corresponding 𝜆𝐴 term. It preserves the function’s type annotations in 𝜆𝐶, so that
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we know that when a 𝜆𝐴 term is typed, the functions are typed in accordance with their type
signatures.

One reason why 𝜆𝑅 does not preserve the function contracts is because the way we interpret
function calls. Imagine an expression ((𝑓 ∷ (𝑥 ∶ 𝜉) ⟶ 𝜓) 1) + 2 in the language 𝜆𝐶 where
𝑓 ≡ 𝜆𝑥. 𝑥 + 1, 𝜉 ≡ 𝜆𝑥. 𝑥 < 2 and 𝜓 ≡ 𝜆𝜈. 𝜈 < 4, which is well-typed. Ideally, the only knowledge
that we can learn about the function application should be drawn from its type signature, namely
𝜆𝜈. 𝜈 < 4 here. Therefore, the most precise type we can assign to the whole expression is {𝜈 ∶
ℕ ∣ 𝜈 < 6}. However, according to the typing rule ADDC, the inferred refinement predicate of
the result of the addition will be an Agda term E ⟦f 1⟧Tm𝛾 + E ⟦2⟧Tm𝛾 for any 𝛾. As the predicate
reduces in Agda, it means that we can in fact conclude that the result is equal to 4, which is more
precise than what the function contract tells us—we again lost the abstraction over 𝑓.

To fix the problem, we revise the definition of E ⟦⋅⟧Tm. Instead of interpreting functions as
their Agda shallow embedding, we postulate the interpretation of functions as 𝛿:

postulate

δ : ∀{Γ}{S T}{ξ}{ψ} → Γ ⊢A S ❴ ξ ❵⟶ T ❴ ψ ❵ → ⟦ Γ ⟧C → ⟦ S ⟧τ → ⟦ T ⟧τ

It allows us to reflect functions in the object language into the logic as uninterpreted functions. In
the example above, it will stop the shallow postcondition from reducing to 4, retaining a symbolic
representation of the function 𝑓. We define a new interpretation function E ⟦⋅⟧𝐴Tm for 𝜆𝐴 terms
(⟦_⟧⊢A and ⟦_⟧⊢A ⃗ in the Agda formalisation). It is defined in the same way as E ⟦⋅⟧Tm, with the
exception of functions:

⟦ f ⟧⊢A ⃗ = δ f

On the other hand, when we type any expressions in the language 𝜆𝐶, we need to add the known
function contracts to the precondition 𝜙. The function contract can be extracted automatically
by a mkC function defined as follows:

mkC : ∀{Γ}{S T}{ξ}{ψ} → Γ ⊢A S ❴ ξ ❵⟶ T ❴ ψ ❵ → Set

mkC {Γ = Γ}{S = S}{ξ = ξ}{ψ = ψ} f =

{γ : ⟦ Γ ⟧C} → (x : ⟦ S ⟧τ) → ξ (γ , x) → ψ ((γ , x) , δ f γ x)

6.7.3 Typechecking 𝜆𝐴

In order to typecheck 𝜆𝐴, which is a language that is already well-typed with respect to simple
types, and all functions are annotated with refinement types, we want to have a similar de-
terministic procedure as we had in Section 6.6. Unfortunately, in the presence of the function
boundaries, the weakest precondition computation cannot be done simply by substituting in the
expressions.
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We borrow the ideas from computing weakest preconditions for imperative languages with
loops. Specifically, we follow the development found in Nipkow and Klein [2014, §12.4]’s book.
In standard Hoare logic, it is widely known that the loop-invariant for a WHILE-loop cannot
be computed using the weakest precondition function wp [Dijkstra 1975], as the function is
recursive and may not terminate. In Nipkow and Klein [2014]’s work, for Isabelle/HOL to deter-
ministically generate the verification condition for a Hoare triple, it requires the users to provide
annotations for loop-invariants. It then divides the standardwp function into two functions: pre
and vc. The former computes the weakest precondition nearly as wp, except that in the case of
a WHILE-loop, it returns the annotated invariant immediately. The latter then checks that the
provided invariants indeed make sense. Intuitively, for a WHILE-loop, it checks that the invari-
ant 𝐼 together with the loop condition implies the precondition of the loop body, which needs
to preserve 𝐼 afterwards, and that 𝐼 together with the negation of the loop-condition implies the
postcondition. In all other cases, the vc function simply recurses down the sub-statements and
aggregates verification conditions.

Although there is no recursion—the functional counterparts to loops of an imperative
language—in our language, the situation with functions is somewhat similar to WHILE-loops.
We also cannot compute the weakest precondition according to the expressions, but have to
rely on user annotations, for a different reason. We can also divide the wp computation into
pre and vc. The function pre immediately returns the precondition of a function, which is the
refinement predicate of the argument type. Then vc additionally validates the provided function
signatures. In particular, we need to check that in a function application: (1) the function’s actual
argument is of a supertype to the prescribed input type; (2) the function’s prescribed output
type implies the postcondition of the function application inferred from the program context.
Additionally, vc needs to recurse down the syntax tree and gather verification conditions from
sub-expressions, and, in particular, descend into the function definition to check that it meets
the given type signature. The definitions of the pre and the vc functions are shown in Figure 6.10
and Figure 6.11 respectively.7

Unlike the development in the book of Nipkow and Klein [2014], in our language 𝜆𝐴, the
definition of pre deviates from wp by quite a long way. For example, the typing rule for su looks
like:

Γ; 𝜙 ⊢𝐶∶ ̂𝑒 ∶ {𝜈 ∶ ℕ ∣ 𝜉}

Γ; 𝜙 ⊢𝐶∶ su ̂𝑒 ∶ {𝜈 ∶ ℕ ∣ 𝜈 = suc ̂𝑒}
SUC

Intuitively, when we run the wp backwards on su ̂𝑒 with a postcondition 𝜓, it results in
𝜓[E ⟦suc ̂𝑒⟧𝐴Tm𝛾/𝜈] for a semantic environement 𝛾. The inferred refinement 𝜉 of ̂𝑒 in the premise
is arbitrary and appears to be irrelevant to the computation of the weakest precondition of
the whole term. Therefore we can set 𝜉 to be the trivial refinement (true) and there is nothing
to be assumed about the context to refine ̂𝑒. This is however not the case in the presence of

7∩ is the intersection of predicates defined in Agda’s standard library as: 𝑃 ∩𝑄 = 𝜆𝛾 → 𝑃 𝛾 ×𝑄 𝛾.
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pre : ∀{Γ}{T}(ψ : ⟦ Γ ▸ T ⟧C → Set) → (e : Γ ⊢A T) → (⟦ Γ ⟧C → Set)

pre ⃗ : ∀{Γ}{S T}{ξ}{ψ} → Γ ⊢A S ❴ ξ ❵⟶ T ❴ ψ ❵ → (⟦ Γ ▸ S ⟧C → Set)

pre ψ (SUA e) = pre (ᵏ ⊤) e ∩ ψ [ SUA e ]sC

pre ψ (IFA c e₁ e₂) = pre (ᵏ ⊤) c

∩ (if_then_else_ ∘ ⟦ c ⟧⊢A) ˢ pre ψ e₁ ˢ pre ψ e₂

pre ψ (LETA e₁ e₂) = pre (ᵏ ⊤) e₁

∩ ˄ (pre (λ ((γ , _) , t) → ψ (γ , t)) e₂) ˢ ⟦ e₁ ⟧⊢A

pre ψ (PRDA e₁ e₂) = pre (ᵏ ⊤) e₁ ∩ pre (ᵏ ⊤) e₂ ∩ ψ [ PRDA e₁ e₂ ]sC

pre ψ (FSTA e) = pre (ᵏ ⊤) e ∩ ψ [ FSTA e ]sC

pre ψ (SNDA e) = pre (ᵏ ⊤) e ∩ ψ [ SNDA e ]sC

pre _ (APPA {ξ = ξ}{ψ = ψ} f e) = pre ξ e

pre ψ (BOPA o e₁ e₂) = pre (ᵏ ⊤) e₁ ∩ pre (ᵏ ⊤) e₂ ∩ ψ [ BOPA o e₁ e₂ ]sC

pre ψ e = ψ [ e ]sC -- It's just subst for the rest

pre ⃗ {ξ = ξ}{ψ = ψ} (FUNA e) = ξ ∩ pre ψ e

Figure 6.10: The Agda definition of pre

function contracts. In general, a trivial postcondition does not entail a trivial precondition:
pre 𝜙 (𝜆_. true) ̂𝑒 ≠ (𝜆_. true). For instance, if ̂𝑒 is a function application, then we also need to
compute the weakest precondition for the argument to satisfy the contract.

Our vc function also differs slightly from its counterpart in the imperative setting: it addition-
ally takes the precondition as an argument. This is because in a purely functional language, we
do not carry over all the information in the precondition to the postcondition, as the precondition
is an invariant (recall that in the subtyping rule SUBR, the entailment is 𝜙 ⊨ 𝜓 ⇒ 𝜓′).

To see it in action, we consider the following definitions again:

𝑓A
0 = (𝜆𝑥. 𝑥 + 1) ∷ {𝜈 ∶ ℕ ∣ 𝜈 < 2}⟶{𝜈 ∶ ℕ ∣ 𝜈 < 4}

𝑒𝑥A
2 = (𝑓A

0 1) + 2

If we assign 𝑒𝑥A
2 a postcondition 𝜆𝜈. 𝜈 < 6, then pre computes the weakest precondition to be

1 < 2 ∧ 𝛿(𝑓A
0 , 1) + 2 < 6. It checks the argument 1 against 𝑓A

0 ’s input type, and the whole expres-
sion against the given postcondition. The vc function validates that 𝑓A

0 correctly implements its
specification as the type signature sets out.

6.7.4 Meta-properties of pre and vc

We first state monotonicity lemmas of pre and vc.
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vc : ∀{Γ}{T} → (⟦ Γ ⟧C → Set) → (⟦ Γ ▸ T ⟧C → Set) → Γ ⊢A T → Set

vc ⃗ : ∀{Γ}{S T}{ξ}{ψ} → (⟦ Γ ⟧C → Set) → Γ ⊢A S ❴ ξ ❵⟶ T ❴ ψ ❵ → Set

vc ϕ ψ (SUA e) = vc ϕ (ᵏ ⊤) e

vc ϕ ψ (IFA c e₁ e₂) = vc ϕ (ᵏ ⊤) c

× vc (λ γ → ϕ γ × ⟦ c ⟧⊢A γ ≡ true) ψ e₁

× vc (λ γ → ϕ γ × ⟦ c ⟧⊢A γ ≡ false) ψ e₂

vc ϕ ψ (LETA e₁ e₂) = vc ϕ (ᵏ ⊤) e₁

× vc (λ (γ , s) → ϕ γ × s ≡ ⟦ e₁ ⟧⊢A γ)

(λ ((γ , _) , t) → ψ (γ , t)) e₂

vc ϕ ψ (PRDA e₁ e₂) = vc ϕ (ᵏ ⊤) e₁ × vc ϕ (ᵏ ⊤) e₂

vc ϕ ψ (FSTA e) = vc ϕ (ᵏ ⊤) e

vc ϕ ψ (SNDA e) = vc ϕ (ᵏ ⊤) e

vc {Γ} ϕ ψ′ (APPA {S = S}{T = T}{ξ = ξ}{ψ = ψ} f e)

= vc ⃗ ϕ f

× vc ϕ ξ e

× (∀(γ : ⟦ Γ ⟧C)(s : ⟦ S ⟧τ)(t : ⟦ T ⟧τ)

→ ϕ γ → ξ (γ , s) → ψ ((γ , s) , t) → ψ′ (γ , t))

vc ϕ ψ (BOPA o e₁ e₂) = vc ϕ (ᵏ ⊤) e₁ × vc ϕ (ᵏ ⊤) e₂

vc _ _ _ = ⊤

vc ⃗ {Γ = Γ}{S = S}{T = T} ϕ (FUNA {ξ = ξ}{ψ = ψ} e)

= (∀(γ : ⟦ Γ ⟧C)(s : ⟦ S ⟧τ) → ϕ γ → ξ (γ , s) → pre ψ e (γ , s))

× vc (λ (γ , s) → ϕ γ × ξ (γ , s)) ψ e

Figure 6.11: The Agda definition of vc

Lemma 6.10 (pre is monotone). For an annotated expression Γ ⊢𝐴 𝑒 ∶ 𝑇 in 𝜆𝐴, if a predicate 𝜓1
implies 𝜓2, then pre 𝜓1 𝑒 implies pre 𝜓2 𝑒.

Proof. By induction on the structure of Γ ⊢𝐴 𝑒 ∶ 𝑇.

Lemma 6.11 (vc is monotone). For an annotated expression Γ ⊢𝐴 𝑒 ∶ 𝑇 in 𝜆𝐴, if a predicate 𝜙2
implies 𝜙1, and under the stronger precondition 𝜙2, a postcondition 𝜓1 implies 𝜓2, then vc 𝜙1 𝜓1 𝑒

implies vc 𝜙2 𝜓2 𝑒.

Proof. By induction on the structure of Γ ⊢𝐴 𝑒 ∶ 𝑇.

With the monotonicity lemmas, we can finally prove the soundness and completeness of pre
and vc with respect to the typing rules of 𝜆𝐶.
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Theorem 6.12 (Completeness of pre and vc w.r.t. 𝜆𝐶 typing rules). If Γ; 𝜙 ⊢𝐶 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}, then
vc 𝜙 𝜓 ⌜ ̂𝑒⌝C and 𝜙 𝛾 ⇒ pre 𝜓 ⌜ ̂𝑒⌝C 𝛾 for any semantic environment 𝛾 that respects Γ.

Proof. We separately proof the completeness of the preand vcfunctions. Both of them can be
proved by induction on the structure of Γ; 𝜙 ⊢𝐶 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓}, with the help of Theorem 6.10 and
Theorem 6.11 respectively.

Corollary 6.13. For an expression Γ ⊢𝐴 𝑒 ∶ 𝑇 in 𝜆𝐴, if vc 𝜙 𝜓 𝑒 and 𝜙 𝛾 ⇒ pre 𝜓 𝑒 𝛾 for any semantic
environment 𝛾 that respects Γ, then there is a type derivation Γ; 𝜙 ⊢𝐶 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓} such that
⌜ ̂𝑒⌝C = 𝑒.

Proof. By induction on the structure of Γ ⊢𝐴 𝑒 ∶ 𝑇.

Theorem 6.14 (Soundness of pre and vc w.r.t. 𝜆𝐶 typing rules). For an expression Γ ⊢𝐴 𝑒 ∶ 𝑇 in
𝜆𝐴, if vc (pre 𝜓 𝑒) 𝜓 𝑒, then there is a type derivation Γ;pre 𝜓 𝑒 ⊢𝐶 ̂𝑒 ∶ {𝜈 ∶ 𝑇 ∣ 𝜓} such that ⌜ ̂𝑒⌝C = 𝑒.

Proof. A direct consequence of Theorem 6.13.

6.8 Related Work, Future Work and Conclusion

There is a very long line of prior work on refinement types, e.g. [Knowles and Flanagan 2009;
Lehmann and Tanter 2017; Pavlinovic et al. 2021; Rondon et al. 2008; Vazou 2016], just to name
a few. We find the work by Lehmann and Tanter [2016] most comparable. They define the
language and the logical formulae fully deeply in Coq, and assumes an oracle that can answer
the questions about logical entailment. In our formalisation, we interpret the language as shallow
Agda terms, and the underlying logic is Agda’s type system. Programmers serve as an oracle to
construct proof terms. Knowles and Flanagan [2007]’s work is also closely related. It develops
a decidable type reconstruction algorithm which preserves the typeability of a program. Their
type reconstruction is highly influenced by the strongest postcondition predicate transformation.
Prior work on formalising Hoare logic or separation logic is also very rich [Charguéraud 2020;
Michael J. C. Gordon 1989; Jung, Krebbers, et al. 2018; Kleymann 1998; Nipkow and Klein 2014;
Schirmer 2005; Shankar 2018], but they typically lack a formal connection with refinement types.

F* [Swamy et al. 2016] is a verification-oriented programming language, and it features a
refinement type system. F* users can mix interactive theorem proving and SMT-based automatic
verification methods to prove properties about their programs. One of the main research contri-
butions of the F* work is its support for an extensible lattice of monadic effects. In that regard,
F* is more expressive than Cogent, especially in its capability of handling effectful, exceptional
and divergent programs; Cogent is a pure and total functional language and focuses on unique-
ness types. The refinement types in both languages are formalised differently. In F*, expressions
are given monadic types that are indexed by predicate transformers. Our work explores the
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connection between Hoare logic and refinement typing rules, especially how to encode the pre-
conditions in the typing contexts. We also use our Agda formalisation to study different designs
of refinement typing rules. It is yet to be seen whether F*’s type system subsumes the core cal-
culus we formalised, if we restrict F*’s monadic effects to PURE—the monad for pure, recursive
functions. The total correctness meta-theorem of F* is very similar to our refinement soundness
results.

* * *

Admittedly, our attempt in formalising refinement type systems is still in its infancy. We list a
few directions for future exploration.

Language features The languages that we presented in this paper are very preliminary. They
do not yet support higher-order functions. Variants of Hoare style logics that deal with higher-
order language features [Charlton 2011; Jung, Krebbers, et al. 2018; Régis-Gianas and Pottier
2008; Schwinghammer et al. 2009; Yoshida et al. 2007] will shed light on the extension to higher-
order functions. It remains to be seen which techniques are compatible with the way in which
the language is embedded and interpreted in Agda. General recursion is also missing from our
formalisation. We surmise that recursion can be handled analogously to how a WHILE-loop is
dealt with in Hoare logic. Hoare logic style reasoning turns out to be instrumental in languages
with side-effects or concurrency. How to extend the unifying paradigm to languages with such
features is also an open question. An equivalent question is how to formulate proof systems that
support these features in terms of refinement type systems.

Delaying proof obligations As we have seen in the examples, constructing a typing tree for
a program requires the developer to fill the holes with proof terms. The typechecking algorithm
with pre and vc collects the proof obligations along the typing tree. This is effectively deferring
the proofs to a later stage. It shares the same spirit as the Delay applicative functor by O’Connor
[2019a]. It is yet to be seen how it can be applied in the construction of the typing trees in our
formalisation.

Compositionality We stated in Section 6.7 that the 𝜆𝐶 language is not yet fully compositional
in the sense of [Knowles and Flanagan 2009]. The interpretation function E ⟦⋅⟧𝐴Tm is used in
the definition of pre, and that effectively leaks the behaviour of the program to the reasoning
thereof, penetrating the layer of abstraction provided by types. We dealt with it for functions:
the implementation details of the function body and those of the argument are hidden from
the reasoning process. We would like to further extend the compositional reasoning to other
language constructs (via user type annotations) in future work.
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Other program logics Lastly, in our formalisation, we use Hoare logic as the foundation for
the typing rules. There are other flavours of program logics, most notably the dual of Hoare
logic—Reverse Hoare Logic [de Vries and Koutavas 2011] and Incorrectness Logic [O’Hearn
2019]. We are intrigued to see if we can mount these logics onto our system, and how it in-
teracts with a functional language that is, say, impure or concurrent.

* * *

In this chapter, we presented a simple yet novel Agda formalisation of refinement types on a
small first-order functional language in the style of Hoare logic. It provides a testbed for studying
the formal connections between refinement types and Hoare logic. We believe that our work is a
valuable addition to the formal investigation into refinement types, and we hope that this work
will foster more research into machine-checked formalisations of refinement type systems, and
the connection with other logical systems such as Hoare style logics.

This work is a first step towards integrating refinement types into the Cogent framework.
The Cogent typechecker can generate verification conditions for refinement typing as Is-
abelle/HOL theorems, and they can be manually proved by verification engineers with the help
of SMT-solvers. It does not necessarily increase the amount of verification work, as the extra
theorems originated from the refinement type system replace those previously in the manual
functional correctness proof. Prior research has provided answers to the question of how to
couple dependent types with linear types [Atkey 2018; McBride 2016]. We expect the interaction
between refinement types and uniqueness types to resemble that. The extra expressive power
from refinement types can be beneficial to Cogent users. They will allow the programmers to
specify and document their designs more easily and precisely, as well as to reduce the amount of
dead code in the programs. They also build an extra channel for programmers and verification
engineers to communicate, as refinement types in programs directly become proof obligations.
We posit that this addition is a perfect fit for Cogent.
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Conclusion

Developing low-level systems code and formally proving interesting properties about programs
are individually challenging tasks. Combining the two—verifying low-level systems code—is
even harder, let alone doing it at scale. Each of systems programming and formal verification
has its own curriculum, with unique ideology andmethodology. Thework done byAmani [2016],
O’Connor [2019b] and colleagues yielded the Cogent language and its verification framework,
which was a major theoretical breakthrough in the search for a solution to this problem. While
practising the Cogent methodology in real-world development, we identified several shortcom-
ings of the Cogent framework:

• the compiled algebraic data types did not meet performance and conformance expecta-
tions;

• the language interface between Cogent and C was inadequate for real-world applications;
• Cogent gave developers little guidance or early feedback on the design and verifiability
of their systems;

• a communication gap between systems programmers and verification engineers could be
seen.

These shortcomings range from theoretical limitations to highly pragmatic matters. This thesis
attempts to address these most pressing issues of Cogent that could be observed when it was
deployed in a more realistic context. Also, as we have pointed out throughout the thesis, many
of these solutions (and the techniques used in them) that we have presented can be applied more
widely to solve similar problems, out of the context of Cogent. We showcased their construction
and application, using Cogent as a vehicle for demonstration.

In this thesis, we presented Cogent, a high-level functional language for low-level systems
programming and a code/proof co-generation framework for formally verifying systems pro-
grams. We extended the core Cogent language and enriched its ecosystem to meet the needs of
systems programmers in real-world development. These additions are essential to make Cogent
a practical programming language for developing high-assurance systems software.

In Chapter 2, we introduced the Cogent language, its uniqueness type system, the com-
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pilation pipeline and its verification framework. Cogent is the research platform on which we
experimented with extensions and explored new ideas to answer the research questions we asked
in Chapter 1.

One major theoretical contribution of prior work on Cogent is that it elevated the abstrac-
tion level onwhich programmers write systems code to a purely functional semantics. The purely
functional abstraction, however, imposed serious limitations on output programs, as they typi-
cally did not respect the memory layout used by existing hardware and protocols, which could
impair the design, performance, compatibility and usefulness of the resulting systems. In Chap-
ter 3, we presented a data layout description language Dargent and its data layout refinement
framework to address this problem. Dargent provides users with the much-needed features to
fine-tune the memory representation of algebraic data types. We demonstrated, with real-world
examples, that Dargent is indispensable for writing high-performance, compliant low-level pro-
grams.

Transitioning from a purely research platform to a real-world application revealed limitations
in Cogent’s simplistic design. The structural type system used by Cogent became a bottleneck
for its deployment at scale, as it hindered the integration of Cogent and C programs, which is es-
sential for any non-trivial Cogent programs. In Chapter 4, we represented antiquoted-C—our so-
lution to the design and implementation of Cogent’s foreign function interface. Antiquoted-C is
an intuitive and simple language interface, allowing Cogent and C to interoperate smoothly. We
explored a different point in the design space that does not rely on name-mangling. Antiquoted-C
composes existing tools in a novel way and thus requires minimal engineering effort to build.

Another challenge that arose when using Cogent to verify large-scale programs was due
to the binary nature of formally verified software: fully verified or not. This is not only a huge
gap in the trustworthiness of the software, but also an appreciable mental gap for the develop-
ers. More interim milestones for developers would help them pursue fully verified software in
a more progressive and tractable fashion. To this end, in Chapter 5, we added a property-based
testing framework to the Cogent ecosystem, which nicely complements Cogent’s verification
framework. Instead of testing logical properties directly, we used property-based testing in a
novel way to test refinement relations. We argued that doing so helps the developers quickly
reach the design that is amenable to formal verification. It also enables an incremental approach
to full verification. With case studies, we showed the techniques we used for specifying the tests
in various scenarios.

To open up avenues for more automation opportunities during formal verification of systems
programs, which would further strengthen Cogent as a verification tool in real-world deploy-
ment, we experimented with integrating refinement types to Cogent. In Chapter 6, we explored
refinement types from the theoretical end, by formalising a refinement type system in Agda. The
encoding we used is unconventional: we represented the refinement types in terms of Hoare
logic. It results in an encoding of the object language that is non-dependent and can be eas-
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ily typechecked with backward reasoning. This exploration is a first step towards integrating
refinement types into Cogent’s type system, which we leave for future work.

The research on verifying low-level systems code has not finished, and there are more tech-
nologies that we want to experiment with using Cogent as a platform. In Chapter 3, we have
seen that in several cases, the expressiveness of the Cogent language becomes the bottleneck. A
richer type system that supports dependent types, finer-grained capabilities and first-class point-
ers is a big step forward. Concurrency has always been a question, a big one indeed, that can be
asked about nearly any new research results. Cogent is no exception. Cogent itself relies on
a single-threaded C semantics and does not support concurrency in its current form. A concur-
rent variant of the C semantics is formulated in the work of Amani, Andronick, et al. [2017]. A
memory model for Cogent programs is an interesting topic for future research. Also relevant
is the semantics of the Dargent extension in a multi-threaded setting, and the memory access
patterns on modern architectures. All of these are exciting and useful research questions that are
worth pursuing further. Adding refinement types is another lines of future work. As we have
mentioned throughout the thesis, refinement types can have substantial impact on many other
features of Cogent. Its interaction with Dargent layout, test data generation and the overall
verification workflow have not been adequately studied in this thesis and they are all interesting
territories in the design space. We plan to tackle these research challenges in the future.
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