
Host-Aware Routing in Multicast Overlay Backbone

Author:
Guo, Jun; Jha, Sanjay

Publication details:
IEEE/IFIP NOMS 2008, Proceedings of
pp. 915-918
9781424420667 (ISBN)

Event details:
20th IEEE/IFIP Network Operations and Management Symposium
Salvador, Bahia, Brazil

Publication Date:
2008

DOI:
https://doi.org/10.26190/unsworks/382

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/37846 in https://
unsworks.unsw.edu.au on 2024-03-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/382
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/37846
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Host-Aware Routing in Multicast Overlay Backbone
Jun Guo, Sanjay Jha

School of Computer Science and Engineering
The University of New South Wales, Australia

Email: {jguo, sjha}@cse.unsw.edu.au

Abstract— To support large-scale Internet-based broadcast of
live streaming video efficiently in content delivery networks
(CDNs), it is essential to implement a cost-effective overlay
multicast mechanism by exploiting peer-to-peer distribution ca-
pabilities among end hosts. This way, the access bandwidth
demand on CDN servers in the multicast overlay backbone can
be largely reduced. Such a streaming infrastructure gives rise to
an interesting host-aware routing problem (HARP). For a live
streaming video broadcast event, each participating CDN server
is made aware of the largest delay from it to end hosts within
its service area. The problem is to optimize routing among CDN
servers in the multicast overlay backbone such that the de facto
maximal end-to-end latency from the origin server to all end hosts
is minimized subject to access bandwidth constraints on CDN
servers. In this paper, we frame HARP as a constrained spanning
tree problem which is shown to be NP-hard. We present a
distributed algorithm for HARP. Simulation experiments confirm
that our proposed algorithm converges to good quality solutions
that are close to the optimum.

I. INTRODUCTION

Live streaming video broadcast has become a killer applica-
tion in content delivery networks (CDNs) [1]. For example, in
July 2005, Yahoo!’s broadcast of NASA’s Shuttle Discovery
launch reached more than 335,000 simultaneous online view-
ers at its peak. For such a popular Internet multimedia ap-
plication which is both resource-intensive and delay-sensitive,
a challenging design issue is how to address large-scale live
streaming video broadcast efficiently in CDNs.

Commercial CDNs such as Akamai Technologies [2] adopt
the infrastructure-based overlay multicast mechanism to sup-
port Internet-based live streaming video broadcast. This ap-
proach relies on a set of geographically distributed and ded-
icated proxy servers with large processing power and high
fanout capability. They are typically placed at co-location
facilities with high-speed connection to the Internet. During
a live streaming video broadcast session, these application-
layer servers create an overlay tree among themselves via
unicast connections and form a backbone service domain,
which we call multicast overlay backbone, for the overlay
multicast network.

Akamai’s streaming solution largely benefits from the wide
reach and large capacity of the Akamai platform, a CDN
that consists of over 20,000 servers distributed in more than
70 countries. The solution is, however, a pure infrastructure-
based approach, where each user is directly connected to one
CDN server in the multicast overlay backbone to fetch the live
streaming contents [2]. A more flexible and scalable approach
is to exploit peer-to-peer distribution capabilities among end

Fig. 1. Two-tier overlay multicast architecture.

hosts [3], which leads to a two-tier overlay multicast archi-
tecture as depicted in Fig. 1. This way, the access bandwidth
demand on CDN servers in the multicast overlay backbone
can be largely reduced.

The two-tier overlay multicast architecture gives rise to an
interesting routing problem in the multicast overlay backbone.
For a live streaming video broadcast event, each participating
CDN server is made aware of the largest delay from it to
end hosts within its service area. The problem is to optimize
routing among CDN servers in the multicast overlay backbone
so that the de facto maximal end-to-end latency from the
origin server to all end hosts is minimized subject to access
bandwidth constraints on CDN servers. We call such a problem
as the host-aware routing problem (HARP) in the multicast
overlay backbone. HARP is strongly motivated since the last-
mile latency between end hosts and their corresponding proxy
servers can be quite significant [3]. In this paper, we frame
HARP as a constrained spanning tree problem and show that it
is NP-hard. We present a distributed algorithm for HARP. We
also provide a genetic algorithm (GA) to validate the quality of
the distributed algorithm. Simulation experiments confirm that
the distributed algorithm converges to good quality solutions
that are close to the optimum.

The remainder of this paper is organized as follows. Section
II deals with the problem formulation. In Section III, we
present the distributed algorithm. In Section IV, we provide
the GA. Simulation experiments are reported in Section V.
Finally, we provide concluding remarks in Section VI.

II. PROBLEM FORMULATION

We model the multicast overlay backbone as a complete
directed graph G = (V,E), where V is the set of N nodes
and E = V ×V is the set of edges. Each node in V represents a
CDN server participating in the live streaming video broadcast

915978-1-4244-2066-7/08/$25.00 ©2008 IEEE

Fig. 2. Snapshot of the five different cases where an i → j transaction request from node i will be considered by node j. Both node i and node j are
marked by circles. Node j is pointed by the double arrow.

session. Let node r be the origin server. All other nodes in
V − r are noted as proxy servers. The directed edge 〈i, j〉 in
E from node i to node j represents the unicast path of latency
li,j from node i to node j. By {li,j}, we denote the matrix of
unicast latency quantities between each pair of nodes in G.

An overlay backbone routing tree can be represented by a
directed spanning tree T of G rooted at node r. For each sink
node in the set V −{r}, we define Rr,v as the set of directed
edges that form the overlay routing path from the root node
to node v in the multicast overlay backbone. Let Lr,v denote
the latency of the overlay routing path from the root node
to node v. Let γv denote the maximum latency from node v
to current end hosts within its service area. Let Lmax denote
the maximum host-aware end-to-end delay. Given the unicast
latency matrix {li,j}, we readily have

Lr,v =
∑

〈i,j〉∈Rr,v

li,j (1)

and
Lmax = max

v∈V−{r}
(Lr,v + γv) . (2)

Let d̂i denote the residual degree of node i. Let di denote
the out-degree of node i counted within the overlay backbone
tree only. Since a spanning tree with N nodes has exactly
N − 1 edges, the sum

∑
i∈V di of out-degrees in the overlay

backbone tree is N − 1.
Definition 1: Given the complete directed graph G =

(V,E), HARP is to find a constrained directed spanning tree
T of G rooted at node r, such that Lmax is minimized, and T
satisfies the residual degree constraint, i.e. di ≤ d̂i, ∀i ∈ V .

Such a constrained spanning tree problem is NP-hard. This
is shown by creating a dummy node for each node v in V
and forming an edge of weight γv between node v and its
corresponding dummy node. The resulting problem can be
reduced to finding a Hamiltonian path within the augmented
graph which is known to be NP-complete [4].

III. DISTRIBUTED ALGORITHM

Our proposed distributed algorithm for HARP requires each
node i in V to maintain the following state information during
the iterative tree update process except for those inapplicable
to the root node:

• î: Parent node of node i in the current tree.
• Φi: Set of ancestor nodes in the overlay path from the

root node to node i.

• Ωi: Set of child nodes of node i in the current tree.
• di: Out-degree of node i in the current tree, which is

equivalent to the cardinality of the set Ωi.
• Ki: Number of aggregate descendant nodes in the subtree

rooted at node i, which is given by

Ki =

⎧⎨⎩
0, if node i is a leaf node∑
j∈Ωi

(Kj + 1), elsewhere (3)

• Lr,i: Latency from the root node to node i, which is given
by

Lr,i = Lr,̂i + l̂i,i . (4)

• Γi: Maximum host-aware latency from node i to end
hosts within the service areas of all nodes (inclusive of
node i) in the subtree rooted at node i. This can be
iteratively computed by

Γi =

{
γi, if node i is a leaf node
max
j∈Ωi

(li,j + Γj), elsewhere (5)

Starting from the initial tree including the root node only,
we let nodes in V −r join the tree in a random order, which is
likely to be realistic in an actual live streaming video broadcast
session. Should multiple nodes arrive concurrently, they are
added to the tree in the decreasing order according to their
node IDs. When node i wishes to join the tree, it obtains the
list of all nodes in the current tree from the root node. For
each node j in the current tree, node i requests and obtains
the Lr,j value as well as the measurement of lj,i from node
j, given that d̂j > 0. Node i chooses node j with the smallest
value on Lr,j + lj,i as its parent node in the initial tree.

Let Δ denote the time period of each iteration, during which
nodes contact each other to make transaction requests for tree
update. This also allows each node i to measure the unicast
latency lj,i from each other node j to node i. Let i → j
denote a transaction request from node i to node j. Following
our distributed algorithm, if i ∈ Φj , i → j will be rejected by
node j. Node j considers i → j only if the current positions
of node i and node j in the tree match one of the five different
cases illustrated in Fig. 2.

a) If j = r, j �= î and dj > 0, a Type-C transaction (see
Section III-C) will be attempted by node j.

b) If j ∈ Φi, j �= î and dĵ > 0, a Type-A transaction (see
Section III-A) will be attempted by node j. If dĵ = 0 but
dj > 0, node j will instead attempt a Type-C transaction.

916

c) If j ∈ Φi, j = î and dĵ > 0, a Type-A transaction will
be attempted by node j.

d) If ĵ = î, a Type-C transaction will be attempted by
node j provided dj > 0. However, if dj = 0, node j
will instead attempt a Type-D transaction (see Section
III-D).

e) In all other situations, node j will subsequently attempt
a Type-A, B (see Section III-B), C or D transaction
depending on if the condition dĵ > 0, dĵ = 0, dj > 0,
or dj = 0 holds true.

A. Type-A transaction

Since dĵ > 0, node i (together with its subtree if any) is

switched to be a child node of node ĵ given that

L̆r,i = (Lr,̂j + lĵ,i) − (Lr,̂i + l̂i,i) < 0 , (6)

where L̆r,i denotes the amount of variation on Lr,i. This
transaction reduces the end-to-end latency of all nodes in the
subtree rooted at node i.

B. Type-B transaction

Since dĵ = 0, if (6) holds true, node j will check if

L̆′r,j = (Lr,̂i + l̂i,j) − (Lr,̂j + lĵ,j) < 0 . (7)

It will also check if

L̆′′r,j = (L̆r,i + li,j) − (Lr,̂j + lĵ,j) < 0 , (8)

given that di > 0, so that it is possible that node j can reduce
its latency by switching itself to be a child node of node i
after node i is connected to node ĵ.

If neither (7) nor (8) holds true, but

(Ki + 1) ·
∣∣∣L̆r,i

∣∣∣ > (Kj + 1) · min(L̆′r,j , L̆
′′
r,j) , (9)

node j will proceed with the transaction so long as Lmax = Γr

of the current tree will not be increased after the tree update.

C. Type-C transaction

This transaction is similar to the Type-A transaction by
instead checking if node i can obtain

L̆r,i = (Lr,j + lj,i) − (Lr,̂i + l̂i,i) < 0 (10)

by being connected to node j.

D. Type-D transaction

Given that dj = 0 in this case and (10) holds true, for all
c ∈ Ωj , node j will check if node c can obtain either

L̆′r,c = (Lr,̂i + l̂i,c) − (Lr,j + lj,c) < 0 , (11)

or
L̆′′r,c = (L̆r,i + li,c) − (Lr,j + lj,c) < 0 , (12)

given that di > 0. Let c′ denote the node that minimizes
min(L̆′r,c, L̆

′′
r,c).

If neither (11) nor (12) holds true, but

(Ki + 1) ·
∣∣∣L̆r,i

∣∣∣ > (Kc′ + 1) · min(L̆′r,c′ , L̆
′′
r,c′) , (13)

node j will approve the transaction so long as Lmax = Γr of
the current tree will not be increased after the tree update.

IV. GENETIC ALGORITHM

GAs are population-based stochastic search and optimiza-
tion approaches inspired by the mechanism of natural selection
which obeys the rule of “survival of the fittest” [5]. GAs have
been extensively used for solving various real-world complex
optimization problems due to their broad applicability, ease
of use and global perspective. In particular, they have found
successful applications in tree-based network optimization
problems (see e.g. [6] and references therein). In all cases,
it was observed that GAs can achieve near-optimal solutions
for fairly large-size problem instances with reasonable com-
putational effort. In this paper, we have chosen to implement
a weight-coded GA [7] for HARP, since it uses a node-
based encoding approach for chromosome representation of
candidate solutions to the problem, rather than an edge-based
encoding approach which is inefficient in the context of a
complete graph.

Implementing a weight-coded GA for HARP requires a
heuristic method for computing the overlay backbone tree. The
following low complexity tree computation algorithm suffices
for this purpose. Starting from the initial tree including the
root node only, at any iteration, for each unconnected node v,
we find node u with d̂u > 0 in the partial tree constructed so
far which minimizes δv = Lr,u + lu,v . We then identify node
v with the smallest value on such δv , and add it to the tree by
creating a directed edge from node u to node v.

V. SIMULATION EXPERIMENTS

The network topologies used in our experiments are ob-
tained from the transit-stub graph model of the GT-ITM
topology generator [8]. All topologies are with 12,000 nodes.
CDN servers are placed at a set of nodes, chosen uniformly at
random. Here we report experiment results for three topologies
(N = 100, 200, 300). Unicast latencies between different
pairs of nodes in these graphs vary from 10 to 1000 msec.
For each i, the value γi of node i is randomly generated.
In all experiments, we conduct the weight-coded GA with
ten independent runs and evaluate the performance of the
distributed algorithm against that of the weight-coded GA.

Since HARP is NP-hard and our proposed distributed algo-
rithm uses a random approach for tree initialization, indepen-
dent runs of the distributed algorithm for the same experiment
setting converge to different solutions. In order to examine
the quality of the distributed algorithm, we randomly select
20 nodes as the root nodes for each topology. For each such
experiment setting, we solve the distributed algorithm for 100
independent runs each of which for 100 iterations. We compare
Lmax of each solution against that of the weight-coded GA.
The data points are presented in the form of percentage
deviation. We also note the last iteration where tree update
occurs. This is for us to investigate the convergence property
of the distributed algorithm. All data points are presented in
the form of cumulative percentage in Fig. 3 for the solution
quality on Lmax and in Fig. 4 for the convergence time.

To reduce the control message overhead at any time instant
in the multicast overly backbone, we adopt a probabilistic

917

0 5 10 15 20
0

20

40

60

80

100

Deviation from GA (%)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

N = 100

α = 0
α = 0.2
α = 0.4

0 3 6 9 12
0

20

40

60

80

100

Deviation from GA (%)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

N = 200

α = 0
α = 0.2
α = 0.4

0 2 4 6 8
0

20

40

60

80

100

Deviation from GA (%)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

N = 300

α = 0
α = 0.2
α = 0.4

Fig. 3. Solution quality on Lmax of the distributed algorithm.

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Convergence Time (Δ)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

N = 100

α = 0
α = 0.2
α = 0.4

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

Convergence Time (Δ)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

N = 200

α = 0
α = 0.2
α = 0.4

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

Convergence Time (Δ)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

N = 300

α = 0
α = 0.2
α = 0.4

Fig. 4. Convergence time of the distributed algorithm.

approach to restrain the amount of transaction requests in each
iteration. To that end, we introduce a parameter α in the range
of [0, 1). When a node wishes to make a transaction request for
tree update, it randomly draws a probability β within the range
of [0, 1). The node will deliver the transaction request only if
β > α. In our experiments, we consider α = 0, 0.2, 0.4 to
study the solution quality on Lmax and convergence time of
the distributed algorithm.

We observe in Fig. 3 that the majority of the solutions
from the distributed algorithm fell within 8% of those from
the weight-coded GA. Interestingly, the Lmax results are not
affected by the parameter α. Even under rather high probability
of restraining the amount of transaction requests in each itera-
tion, our proposed distributed algorithm statistically converges
to solutions of comparable quality in all circumstances, albeit
at the expense of slightly larger convergence time as shown
in Fig. 4.

VI. CONCLUSION

We have identified and addressed a strongly motivated
host-aware routing problem to support large-scale Internet-
based live streaming video broadcast in CDNs. Utilizing the
knowledge of the largest delay from each participating CDN
server to end hosts within its service area, HARP optimizes the
overlay routing among CDN servers in the multicast overlay
backbone, so that the de facto maximal end-to-end latency
from the origin server to all end hosts can be significantly re-
duced subject to access bandwidth constraints on CDN servers.

We have proposed a distributed algorithm for solving HARP
in a distributed iterative way. Simulation experiments have
confirmed that our proposed algorithm can yield sufficiently
good quality solutions with small convergence time.

ACKNOWLEDGMENT

This project is supported by Australian Research Council
(ARC) Discovery Grant DP0557519.

REFERENCES

[1] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the Internet,” in Proc. ACM IMC 04, Taormina,
Sicily, Italy, Oct. 2004, pp. 41–54.

[2] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,
“Globally distributed content delivery,” IEEE Internet Comput., vol. 6,
no. 5, pp. 50–58, Sep./Oct. 2002.

[3] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “Insights into
PPLive: A measurement study of a large-scale P2P IPTV system,” in Proc.
Workshop on Internet Protocol TV (IPTV) services over World Wide Web
in conjunction with WWW 2006, Edinburgh, Scotland, May 2006 2006.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco: W. H. Freeman, 1979.

[5] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[6] S.-M. Soak, D. W. Corne, and B.-H. Ahn, “The edge-window-decoder
representation for tree-based problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 2, pp. 124–144, Apr. 2006.

[7] J. Guo and S. Jha, “Placing multicast proxies for Internet live media
streaming,” in Proc. IEEE LCN 07, Dublin, Ireland, Oct. 2007, pp. 149–
156.

[8] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proc. IEEE INFOCOM 96, vol. 2, San Francisco, CA,
USA, Mar. 1996, pp. 594–602.

918

