
Implementing transparent shared memory on clusters using
virtual machines

Author:
Chapman, Matthew; Heiser, Gernot

Publication details:
2005 USENIX annual technical conference
pp. 383-386
1931971277 (ISBN)

Event details:
2005 USENIX annual technical conference
Anaheim, USA

Publication Date:
2005

DOI:
https://doi.org/10.26190/unsworks/520

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39910 in https://
unsworks.unsw.edu.au on 2024-04-25

http://dx.doi.org/https://doi.org/10.26190/unsworks/520
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39910
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Implementing Transparent Shared Memory on Clusters
Using Virtual Machines

Matthew Chapman and Gernot Heiser
The University of New South Wales, Sydney, Australia

National ICT Australia, Sydney, Australia
matthewc@cse.unsw.edu.au

Abstract

Shared memory systems, such as SMP and ccNUMA
topologies, simplify programming and administration.
On the other hand, clusters of individual workstations
are commonly used due to cost and scalability consider-
ations.

We have developed a virtual-machine-based solution,
dubbed vNUMA, that seeks to provide a NUMA-like en-
vironment on a commodity cluster, with a single operat-
ing system instance and transparent shared memory. In
this paper we present the design of vNUMA and some
preliminary evaluation.

1 Introduction
Many workloads require more processing power than
feasible with a single processor. Shared-memory mul-
tiprocessors, such as SMP and NUMA systems, tend to
be easier to use, administer and program than networks
of workstations. Such shared-memory systems often use
a single system image, with a single operating system in-
stance presenting a single interface and namespace. On
the other hand, clusters of individual workstations tend
to be a more cost-effective solution, and are easier to
scale and reconfigure.

Various techniques have been proposed to provide the
simplicity of shared-memory programming on networks
of workstations. Most depend on simulating shared
memory in software by using virtual memory paging,
known as distributed shared memory (DSM) [1]. At the
middleware layer there are DSM libraries available, such
as Treadmarks [2]. These libraries require software to be
explicitly written to utilise them, and they do not provide
other facets of a single system image such as transpar-
ent thread migration. Some projects have attempted to
retrofit distribution into existing operating systems, such
as the MOSIX clustering software for Linux [3]. How-
ever, Linux was not designed with such distribution in
mind, and while MOSIX can provide thread migration,
many system calls still need to be routed back to the
original node. Other projects have attempted to build
distributed operating systems from the ground up, such
as Amoeba [4] and Mungi [5]. In order to gain wide ac-

Fast interconnect

Node Node Node Node

vNUMA virtual machine monitor

Operating system

Figure 1: Cluster with vNUMA

ceptance, these operating systems need to provide com-
patibility with a large body of existing UNIX applica-
tions, which is no easy task.

In this paper, we present an alternative approach util-
ising virtualisation techniques. Virtualisation can be
useful for hiding hardware complexities from an operat-
ing system. A privileged virtual machine monitor inter-
poses between the operating system and the hardware,
presenting virtual hardware that may be different from
the real hardware. For example, Disco [6] simulates
multiple virtual SMP systems on a NUMA system.

vNUMA uses virtualisation to do essentially the op-
posite — simulating a single virtual NUMA machine on
multiple workstations, using DSM techniques to provide
shared memory. Unlike previous work, this can achieve
a true single system image using a legacy operating sys-
tem, without significant modifications to that operating
system.

We focus on Linux as the guest operating system,
since it supports NUMA hardware and the source code
is available. This means that there are already some op-
timisations to improve locality, and we can make further
improvements if necessary.

We chose to target the Itanium architecture [7] for our
virtual machine. Numerous IA-32 virtual machine mon-
itors already exist, and a number of the techniques are
encumbered by patents. Itanium is being positioned by
Intel as the next “industry standard architecture”, partic-
ularly for high-end systems. An Itanium virtual machine
monitor presents some research opportunities in itself,
independent of the distribution aspects.

First published in Proceedings of USENIX 05: General
Track Anaheim, CA, USA, April 2005.

1

2 Implementation overview

2.1 Startup
In order to achieve the best possible performance,
vNUMA is a type I VMM; that is, it executes at the low-
est system software level, without the support of an op-
erating system. It is started directly from the bootloader,
initialises devices and installs its own set of exception
handlers.

One of the nodes in the cluster is selected as the boot-
strap node, by providing it with a guest kernel as part of
the bootloader configuration. When the bootstrap node
starts, it relocates the kernel into the virtual machine’s
address space, and branches to the start address; all fur-
ther interaction with the virtual machine is via excep-
tions. The other nodes wait until the startup node pro-
vides a start address, then they too branch to the guest
kernel; its code and data is fetched lazily via the DSM.

2.2 Privileged instruction emulation
In order to ensure that the virtual machine cannot be by-
passed, the guest operating system is demoted to an un-
privileged privilege level. Privileged instructions then
fault to the virtual machine monitor. The VMM must
read the current instruction from memory, decode it, and
emulate its effects with respect to the virtual machine.
For example, if the instruction at the instruction pointer
is mov r16=psr, the simulated PSR register is copied
into the userspace r16 register. The instruction pointer
is then incremented.

The Itanium architecture is not perfectly virtualis-
able in this way and has a number of sensitive instruc-
tions, which do not fault but require VMM interven-
tion [8, 9]. These must be substituted with faulting in-
structions. Currently this is done statically at compila-
tion time, although it would be possible to do at runtime
if necessary, since the replacement instructions are cho-
sen so that they fit into the original instruction slots. The
cover instruction is simply replaced by break. thash
and ttag are replaced by moves from and to model-
specific registers (since model-specific registers should
not normally be used by the operating system, and these
instructions conveniently take two register operands).

2.3 Distributed Shared Memory
The virtual machine itself has a simulated physical ad-
dress space, referred to here as the machine address
space. This is the level at which DSM operates in
vNUMA. Each machine page has associated protection
bits and other metadata maintained by the DSM system.
When the guest OS establishes a virtual mapping, the
effective protection bits on the virtual mapping are cal-
culated as the logical AND of the requested protection
bits and the DSM protection bits. vNUMA keeps track

of the virtual mappings for each machine page, such that
when the protection bits are updated by the DSM sys-
tem, any virtual mappings are updated as well.

The initial DSM algorithm is a simple sequen-
tially consistent, multiple-reader/single-writer algo-
rithm, based on that used in IVY [10] and other systems.
The machine pages of the virtual machine are divided
between the nodes, such that each node manages a sub-
set of the pages. When a node faults on a page, the man-
ager node is contacted in the first instance. The manager
node then forwards to the owner (if it is not itself the
owner), and the owner returns the data directly to the re-
questing node. The copyset is sent along with the data,
and if necessary the receiving node performs any inval-
idations. Version numbers are used to avoid re-sending
unchanged page data.

3 Evaluation
Our test environment consists of two single-processor
733Mhz Itanium 1 workstations with D-Link DGE-
500T Gigabit Ethernet cards, connected back-to-back
with a crossover cable to form a two-processor cluster.
We also used a similar dual-processor (SMP) Itanium
workstation for comparison. Obviously it is intended
that the system will scale beyond two nodes, however
the software was not yet stable enough for benchmark-
ing on a larger cluster.

As the guest kernel, we used a Linux 2.6.7 kernel
compiled for the HP simulator platform. The only mod-
ifications to the kernel are a tiny change to enable SMP
(since the HP simulator is usually uniprocessor), and the
static instruction replacement described in section 2.2.

The SPLASH-2 benchmarks [11] are a well-known
set of benchmarks for shared memory machines. We
used an existing implementation designed to work with
the standard pthreads threading library. Here we
present results from three of the SPLASH-2 applica-
tions: Ocean, Water-Nsquared and Barnes. In each
case we measured the performance on four different
topologies: a single-processor workstation, a single-
processor workstation with vNUMA (to measure virtual
machine overhead), two single-processor workstations
with vNUMA, and a dual-processor SMP workstation.
We used the processor cycle counter to obtain timings,
since we did not want to place trust in the accuracy of
gettimeofday on the virtual machine.

3.1 Ocean
Ocean simulates large-scale ocean movements by solv-
ing partial diferential equations. The grid representing
the ocean is partitioned between processors. At each it-
eration the computation performed on each element of
the grid requires the values of its four neighbours, caus-
ing communication at partition boundaries.

First published in Proceedings of USENIX 05: General
Track Anaheim, CA, USA, April 2005.

2

 0

 5

 10

 15

 20

 25

 30

1 proc 2 proc
1026

1 proc 2 proc
514

1 proc 2 proc
258

S
im

ul
at

io
n

tim
e

(s
)

Simulation grid size

SPLASH-2 Ocean Application

SMP
vNUMA

Figure 2: Results of Ocean application

The results are shown in Figure 2. First consider
the single processor results, which demonstrate virtual
machine performance independent of the DSM. At the
smallest grid size, 258x258, the virtual machine per-
formance is very good, in fact the benchmark runs
marginally faster than without the virtual machine. This
is due to the fact that parts of the memory management
are done by the virtual machine monitor without involv-
ing the guest operating system, and the mechanisms im-
plemented in vNUMA (such as the long format VHPT)
are advantageous for some workloads compared to those
implemented in Linux [12]. As the grid size and hence
working set size increases, the number of TLB misses
and page faults that must involve the guest kernel in-
creases. Since these are significantly more expensive on
the virtual machine, they ultimately outweigh any mem-
ory management improvements. At the largest grid size
the virtual machine imposes a 7% overhead.

On the other hand, the distribution efficiency in-
creases with problem size. If the granularity was word-
based, communication should increase linearly with one
side of the grid. However, because of sparse access pat-
terns compared to the granularity of the DSM, we sim-
ply see greater utilisation of the pages being transferred,
and the overhead remains roughly constant, meaning
that the relative overhead is less. For the 258x258 grid,
the vNUMA overhead is significant compared to the ac-
tual amount of work being done, and it is clearly not
worthwhile. By 514x514, we have passed the “break-
even” point and the two-node vNUMA performs better
than a single processor. For the largest problem size, the
benchmark is largely computation-bound and vNUMA
works well. Relative to a single-processor workstation,
the vNUMA speedup is 1.60, compared to 1.98 for SMP.

3.2 Water-Nsquared
Water-Nsquared is an example of an application that
performs well in a DSM environment [13], and indeed it

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 proc 2 proc
4096

1 proc 2 proc
2744

1 proc 2 proc
1728

1 proc 2 proc
1024

S
im

ul
at

io
n

tim
e

(s
)

Number of molecules

SPLASH-2 Water-Nsquared Application

SMP
vNUMA

Figure 3: Results of Water-Nsquared application

also performs well on vNUMA. Water-Nsquared eval-
uates forces and potentials that occur over time in a sys-
tem of water molecules. Each processor needs all of the
data, but only does a subset of the calculations and stores
the results locally. At the end of each timestep, proces-
sors accumulate their results into the shared copy. Thus
there are alternating read-sharing and update phases.

The results are shown in Figure 3. Here the vir-
tual machine overhead is minimal, since the working
set sizes are much smaller than for Ocean (around 4MB
at the largest problem size, compared to over 220MB).
The distribution overhead scales with the number of
molecules (and hence the size of the shared data), as
might be expected, but again it is small. For the largest
problem size, the vNUMA speedup is 1.87, compared to
1.95 for SMP.

3.3 Barnes
On the other hand, Barnes is an example of an applica-
tion that is known not to perform as well in DSM envi-
ronments [13]. Barnes simulates the gravitational inter-
action of a system of bodies in three dimensions using
the Barnes-Hut hierarchical N-body method. The data is
represented as an octree with leaves containing informa-
tion on each body and internal nodes representing space
cells. Thus there are two stages in each timestep — cal-
culating forces and updating particle positions in the oc-
tree.

The results are shown in Figure 4. The force calcu-
lation phase distributes fairly well, certainly for larger
problem sizes. However the tree update does not — in
this phase the pattern of both reads and writes is fine-
grained and unpredictable, which results in significant
false sharing. False sharing is particularly problematic
because vNUMA currently uses a sequentially consis-
tent, multiple-reader/single-writer DSM, which means
pages cannot simultaneously be writable on multiple
nodes. Thus, overall, the benchmark does not perform

First published in Proceedings of USENIX 05: General
Track Anaheim, CA, USA, April 2005.

3

 0

 5

 10

 15

 20

 25

 30

 35

1 proc 2 proc
65536

1 proc 2 proc
32768

1 proc 2 proc
16384

S
im

ul
at

io
n

tim
e

(s
)

Number of particles

SPLASH-2 Barnes Application

SMP
vNUMA

 0

 5

 10

 15

 20

 25

 30

 35

1 proc 2 proc
65536

1 proc 2 proc
32768

1 proc 2 proc
16384

S
im

ul
at

io
n

tim
e

(s
)

Number of particles

SPLASH-2 Barnes Application - Force Calculation Only

SMP
vNUMA

Figure 4: Results of Barnes application

well on vNUMA.

4 Conclusions

These results show that, at least for scientific applica-
tions such as those in the SPLASH-2 suite, vNUMA per-
formance can be surprisingly good and is dominated by
application DSM costs rather than virtualisation or ker-
nel paging overheads. Applications that behave well on
conventional DSM systems, such as Water-Nsquared,
perform best on vNUMA. These are typically applica-
tions which are computation-intensive and share pages
mostly for reading rather than writing.

However vNUMA has significant advantages over
middleware DSM systems, providing a true single sys-
tem image and a simple migration path for SMP appli-
cations. Since it utilises networks of commodity work-
stations, it is more cost-effective and reconfigurable than
specialised ccNUMA hardware. We believe that, at least
for some classes of applications, vNUMA could provide
a useful alternative to these systems. There are still im-
provements to be made, and we need to perform bench-
marks on larger clusters to prove scalability.

5 Acknowledgements
This work was supported by a Linkage Grant from the
Australian Research Council (ARC) and a grant from
HP Company via the Gelato.org project, as well as hard-
ware from HP and Intel. National ICT Australia is
funded by the Australian Government’s Department of
Communications, Information Technology and the Arts
and the ARC through Backing Australia’s Ability and the
ICT Research Centre of Excellence programs.

References
[1] K. Li. Shared Virtual Memory on Loosely Coupled Mul-

tiprocessors. Phd thesis, Yale Univ., Dept. of Computer
Science, 1986. RR-492.

[2] P. Keleher, S. Dwarkadas, A. L. Cox, W. Zwaenepoel.
Treadmarks: Distributed shared memory on standard
workstations and operating systems. In Proc. of the Win-
ter 1994 USENIX Conference, p 115–131, 1994.

[3] A. Barak, O. La’adan, A. Shiloh. Scalable cluster com-
puting with MOSIX for Linux. In Proceedings of the 5th
Annual Linux Expo, p 95–100, 1999.

[4] S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van
Renesse, H. van Staveren. Amoeba: A distributed operat-
ing system for the 1990s. IEEE Computer, 23(5):44–53,
1990.

[5] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell,
J. Liedtke. The Mungi single-address-space operating
system. Softw.: Pract. & Exp., 28(9):901–928, Jul 1998.

[6] E. Bugnion, S. Devine, M. Rosenblum. Disco: Running
commodity operating systems on scalable multiproces-
sors. In Proc. 16th SOSP, p 27–37, 1997.

[7] Intel Corp. Itanium Architecture Software Developer’s
Manual, Oct 2002. http://developer.intel.com/
design/itanium/family/.

[8] C. Gray, M. Chapman, P. Chubb, D. Mosberger-Tang,
G. Heiser. Itanium — a system implementor’s tale. In
Proc. 2005 USENIX Techn. Conf., Anaheim, CA, USA,
Apr 2005.

[9] D. J. Magenheimer, T. W. Christian. vBlades: Opti-
mised paravirtualisation for the Itanium processor fam-
ily. In Proc. 3rd Virtual Machine Research & Technology
Symp., p 73–82, 2004.

[10] K. Li, P. Hudak. Memory coherence in shared virtual
memory systems. Trans. Comp. Syst., 7:321–59, 1989.

[11] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. In Proc. 22nd ISCA, p 24–36,
1995.

[12] M. Chapman, I. Wienand, G. Heiser. Itanium page ta-
bles and TLB. Technical Report UNSW-CSE-TR-0307,
School Comp. Sci. & Engin., University NSW, Sydney
2052, Australia, May 2003.

[13] L. Iftode. Home-based Shared Virtual Memory. PhD
thesis, Princeton University, Dept of Computer Science,
1998.

First published in Proceedings of USENIX 05: General
Track Anaheim, CA, USA, April 2005.

4

