
Applying FPGA Runtime Reconfiguration to Multi-Hash Proof-
of-Work Algorithms

Author:
Wu, Tong

Publication Date:
2022

DOI:
https://doi.org/10.26190/unsworks/25287

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/101580 in https://
unsworks.unsw.edu.au on 2024-05-03

http://dx.doi.org/https://doi.org/10.26190/unsworks/25287
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/101580
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Applying FPGA Runtime

Reconfiguration to Multi-Hash

Proof-of-Work Algorithms

Tong Wu

A thesis in fulfilment of the requirements for the degree of

Master of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

October 2022

2

Acknowledgement

I would like to express my immense thanks to my supervisor, Prof. Diessel, for his invalu-

able advice, support, and patience through my masters research.

I would also like to thank my parents, Lucy and Davis, and my girlfriend, Maddie, for

their unending love and support, without which I would not have been able to embark on

this work.

3

Abstract

In the cryptocurrency mining field, algorithms have been developed to discourage the

development of ASICs that greatly out-compete general-purpose hardware in both perfor-

mance and power efficiency. A class of algorithms that claims to be ASIC-resistant is the

class of randomised multi-hash proof-of-work algorithms, such as X16R. For these algo-

rithms, the result of one iteration depends on the chained application of several randomly

selected hash functions, which has the effect of disadvantaging fixed-function ASICs due

to their inflexibility. FPGAs lie between GPUs and ASICs in terms of raw performance

and flexibility. We investigate the use of FPGAs for this type of proof-of-work, in partic-

ular, by leveraging the ability of modern FPGAs to quickly reconfigure at runtime. We

implemented a design that runs the X16R algorithm by partially reconfiguring the FPGA

for every hash function in the chain and processing the data in batches. We show that our

system achieves better performance when compared to GPUs that are manufactured on

the same semiconductor process technology node, while being several times more power ef-

ficient. The two key takeaways from this work are that FPGA runtime reconfiguration can

be used to effectively accelerate algorithms for which the demand for different processing

elements changes over time, and that proof-of-work algorithm designers should consider

FPGAs as a class of computing device that is separate from fixed-function ASICs.

4

Contents

Acknowledgement 3

Abstract 4

1 Introduction 10

1.1 Overview . 10

1.2 Contributions . 11

1.3 Publications and awards . 12

2 Background 13

2.1 Cryptocurrency mining . 13

2.1.1 Proof-of-Work . 13

2.1.2 Pooled mining . 15

2.1.3 Evolution of mining hardware . 16

2.1.4 ASIC-resistance . 17

2.2 FPGA runtime reconfiguration . 21

2.2.1 FPGA hardware . 21

2.3 Related Work . 23

2.3.1 Applications of runtime reconfiguration 23

2.3.2 Runtime reconfiguration methodology 24

5

3 Design exploration 26

3.1 X16R algorithm . 26

3.1.1 Definition . 26

3.1.2 Properties . 27

3.2 Static design . 28

3.3 Dynamic full chain . 29

3.4 Time-sliced dynamic sub-chains . 30

3.5 Overheads . 31

3.5.1 Intra-batch overhead . 31

3.5.2 Inter-batch overhead . 32

3.5.3 Estimated performance . 34

4 Hash functions implementation 36

4.1 Is HLS auto-pipelining competitive with handcrafted RTL? 36

4.1.1 Languages . 37

4.1.2 Designs evaluated . 38

4.1.3 How results were collected . 39

4.1.4 AES results . 40

4.1.5 Keccak results . 40

4.1.6 Groestl results . 42

4.1.7 HLS vs RTL conclusion . 44

4.2 Hash core library implementation . 45

4.2.1 Input width optimization . 45

4.2.2 HLS coding . 45

4.2.3 Results . 47

6

5 X16R implementation 49

5.1 Target hardware . 49

5.2 System design . 50

5.2.1 PCIe subsystem . 51

5.2.2 Reconfiguration controller . 51

5.2.3 Hash buffer engine . 53

5.3 Single function per reconfiguration . 55

5.4 Multiple functions per reconfiguration . 56

5.5 Multi-SLR scaling . 57

5.6 Results . 57

6 Conclusion 61

6.1 Summary . 61

6.2 Discussion . 62

6.3 Future work . 63

A Appendix A 70

A.1 Ethash . 70

A.2 RandomX . 71

7

List of Figures

2.1 Bitcoin network hashrate . 17

3.1 Probability of X16R chain having a function that occurs N times, and all

other functions occurring at most N times 28

3.2 Intra-batch overhead versus batch size . 32

3.3 Inter-batch overhead . 34

3.4 Estimated hash rate vs batch size . 35

4.1 AES: achieved frequency . 41

4.2 AES: throughput/area . 41

4.3 KECCAK: achieved frequency . 42

4.4 KECCAK: throughput/area . 43

4.5 GROESTL: achieved frequency . 43

4.6 GROESTL: throughput/area . 44

5.1 ASUS B250 Mining Expert . 50

5.2 System overview . 51

5.3 Reconfiguration controller . 52

5.4 Hash buffer engine . 54

5.5 HBM channel configuration . 54

5.6 Two SLR system . 58

8

List of Tables

2.1 Bitcoin block structure . 14

2.2 Bitcoin block header . 14

4.1 Hash core resource utilization . 48

5.1 X16R performance and efficiency . 59

9

Chapter 1

Introduction

1.1 Overview

Blockchain based cryptocurrencies, such as Bitcoin, are distributed ledgers that require

many distributed bookkeepers in order to function. To protect the blockchain from spam,

a proof-of-work based consensus protocol is used to reach an agreement on the current

state of the ledger. Proof-of-work (PoW) algorithms require the bookkeepers to perform

some work, which usually involves executing a hashing algorithm many times. The book-

keepers doing this work are referred to as miners. Initially, on cryptocurrencies such as

Bitcoin, miners were able to use commodity hardware such as CPUs and GPUs to per-

form proof-of-work. However, over time, Application-Specific Integrated Circuits (ASICs)

were developed that offered an increase of orders of magnitude in performance and energy

efficiency over CPUs and GPUs. Today, many cryptocurrencies try to introduce ASIC-

resistance to their proof-of-work algorithms in order to maintain the viability of CPU or

GPU mining. One of these, ASIC-resistance methods, relies on multi-hash PoW algorithms

that chain together several different hash functions to ensure that there is additional com-

plexity when being implemented in hardware. Some multi-hash PoW algorithms, such as

X16R, also require the sequence of hash functions being executed to be randomly selected

at the start of every time window.

Field-Programmable Gate Arrays (FPGAs) are semiconductor devices that are based

around a reconfigurable matrix of lookup tables (LUTs), flip-flops (FFs) and intercon-

nects. They are capable of implementing any boolean logic circuit (given that the circuit

10

fits within the number of LUTs and FFs available) and are often used to accelerate al-

gorithms that are ill-suited for traditional processors (CPUs and GPUs). FPGAs differ

from ASICs in that they are reconfigurable, allowing a single device to be re-purposed for

many different applications, while sacrificing some performance and energy efficiency. It

is also possible to reconfigure portions of the FPGA at run time, allowing for the user to

change the functionality without a reboot. This feature is often referred to as dynamic

partial reconfiguration (DPR) or runtime reconfiguration.

Multi-hash chain PoW algorithms that randomize the order of hash functions have the ef-

fect of introducing a significant overhead within ASICs and static FPGA implementations.

This research aims to investigate the use of FPGA runtime reconfiguration to improve the

performance of these types of algorithms, by allocating FPGA resources as needed by the

algorithm during runtime.

1.2 Contributions

This thesis makes the following contributions:

1. A design exploration of potential FPGA-based designs for computing X16R and

multi-hash PoW algorithms in general. We find that a static, fixed-function design

is impractical to implement on the current generation of FPGAs and would be

bottlenecked in performance due to the inherent properties of the X16R algorithm.

We consider two dynamically reconfigurable architectures, dynamic full chain, and

time-sliced dynamic sub-chains, which allow for the elimination of the bottlenecks

apparent in the static design. We determine that the time-sliced approach can be

more practically implemented.

2. An analysis of the overheads within the time-sliced dynamic sub-chains approach to

X16R and the expected performance. We find that our time-sliced approach to X16R

does not lose much efficiency for blockchains with lower average block intervals, even

as low as 12 seconds.

3. A comparison of the maximum clock frequency achieved by using the auto-pipelining

features of PipelineC, Vitis HLS, and hand-optimized RTL. We find that Vitis HLS

11

performs comparably or better than hand-optimized RTL on small to medium de-

signs in general, and also when below 666MHz for large designs. PipelineC also

performs well for small and medium designs, however, the long compile times re-

quired make it infeasible to use for large designs.

4. Implementations of three variants of our time-sliced dynamic sub-chains architec-

ture, SFR, MFR, and SFR2. These achieved several times better power efficiency

than GPUs, even when comparing to GPUs that were manufactured on a more

recent technology node. Therefore, we demonstrate the utility of FPGA runtime

reconfiguration in speeding up and making possible the computation of multi-hash

PoW algorithms on widely available FPGA hardware.

1.3 Publications and awards

During the course of our research we published a portion of our work on the design and

implementation of our time-sliced approach to computing X16R. Specifically, we submit-

ted our Single-Function-per-Reconfiguration (SFR) design variant to The 30th IEEE

International Symposium On Field-Programmable Custom Computing Ma-

chines conference (FCCM2022) as a 4-page short paper where it was accepted. My

supervisor and co-author provided advice regarding the direction of research and editorial

support.

• Wu, T. and Diessel, O., 2022. Leveraging FPGA Runtime Reconfigurability to Im-

plement Multi-Hash-Chain Proof-of-Work. In: The 30th IEEE International Sym-

posium On Field-Programmable Custom Computing Machines.

We also submitted a simplified version of our SFR2 design variant to the AMD-Xilinx

2021 Adaptive Computing Challenge and it was awarded second place in the Big

Data Analytics category.

• Fast DFX for Multi-hash Algorithms — https://www.xilinx.com/developer/

adaptive-computing-challenge/contest-2021.html

12

https://www.xilinx.com/developer/adaptive-computing-challenge/contest-2021.html
https://www.xilinx.com/developer/adaptive-computing-challenge/contest-2021.html

Chapter 2

Background

2.1 Cryptocurrency mining

2.1.1 Proof-of-Work

Cryptocurrencies based on blockchains are in essence distributed data structures where

information is stored as ever-growing lists of transaction records, grouped into objects

called blocks. Each block contains a cryptographic hash of the previous block, thus linking

every block in a chain. Updates to the blockchain can only happen when a new block is

added to the chain. Bitcoin is designed such that a new block is added to the chain

approximately once every ten minutes. So as to allow any party to contribute, and to

prevent all participants from attempting to do so at the same time, the system must choose

a random participant to submit the next block. This is done by having the submitter attach

a Proof-of-Work (PoW) along with their submission. This proof-of-work is the solution

to a computationally intensive problem that everyone has a fair chance of solving and is

representative of the effort they have invested. The first to find the solution and submit

the new block is rewarded some freshly minted cryptocurrency (e.g. Bitcoin). Since there

is a promise of reward, many are willing to expend computational power and energy to

increase their chance of getting the reward. This is called mining, as it is analogous to

mining for gold.

As an example, we examine the proof-of-work system for the most popular cryptocurrency,

Bitcoin [23]. The data structure of a Bitcoin block is shown in Table 2.1.

13

Field Description Size
Block Size size of this block 4 bytes
Block Header other metadata 80 bytes
Transaction Counter number of transactions in this block 1-9 bytes
Transactions list of transactions variable

Table 2.1: Bitcoin block structure

For PoW mining, we are only concerned with the 80-byte block header which is the input

to the PoW algorithm. The data fields of a Bitcoin block header are shown in Table 2.2.

Field Description Size
Version number to track protocol updates 4 bytes
Previous Block Hash reference to previous block 32 bytes
Merkle Root Merkle tree root for transactions in this block 32 bytes
Timestamp approximate creation time of the block 4 bytes
Difficulty Target encoded PoW target for this block 4 bytes
Nonce a counter used for PoW 4 bytes

Table 2.2: Bitcoin block header

The Bitcoin PoW algorithm, called SHA256D, is a double application of the standard

SHA256 hash function, which takes the block header as input and outputs a 32-byte hash.

Specifically, SHA256D is defined as:

SHA256D(x) = SHA256(SHA256(x))

If the resulting hash is numerically smaller, when interpreted as an unsigned integer, than

a specific target value, then the block header input that produced the hash is considered a

valid proof-of-work. The target is a 256-bit value that is derived from the 4-byte difficulty

target that is contained within the block header. The difficulty target is encoded as a

24-bit significand and an 8-bit exponent, such that the actual target is calculated as:

significand × 256exponent - 3

Miners are able to change a few fields of the block header as a source of variation in order

to generate many different inputs to the PoW hash function. The miner is free to choose

to include or not any transactions in the block and their ordering in the list, as long as all

transactions are valid (i.e. correct accounting has been applied). This changes the Merkle

root value in the block header, as it is a digest of all transactions in a block. The miner is

14

also allowed to change the timestamp to a value that is greater than the median timestamp

of the previous 11 blocks and less than the network adjusted time1 plus 2 hours. Miners

are also free to change the nonce field to any value of their choosing.

The Bitcoin mining algorithm is simply:

def mine_bitcoin(block_header):

while sha256d(block_header) >= target:

block_header.nonce += 1

return block_header

Once a miner finds a wining hash (meaning a hash that is smaller than the target), it

broadcasts its version of the block to the rest of the network. If the network is satisfied

that the rules for including transactions have been followed and the PoW is valid, then

the winning miner will be credited with a freshly minted Bitcoin reward (6.25 Bitcoins as

of 2020-2024) and the transaction fees for each transaction included in the block, and then

that particular block is added to the blockchain. While it takes many trials for a miner to

find a valid PoW, it only takes one hash for others to verify its validity.

The exact mechanism with which the winning miner is awarded Bitcoins is that, by pro-

tocol, every miner is allowed to set the first transaction in the block called the coin-base

transaction, which is a transaction that mints new Bitcoins to a specified address. Typi-

cally the miner will set the receiving address for the coin-base transaction to an address

they own.

The Bitcoin protocol adjusts the difficulty target every 2016 blocks in order to keep the

expected block interval (i.e. the time between blocks being added to the chain), as close

to 10 minutes as possible.

2.1.2 Pooled mining

Well-established blockchains are typically made up of thousands of individual miners.

Thus, the likelihood of an individual miner winning a block is extremely low, which leads to

a high variance in the frequency of their payouts. However, miners have regular operational
1The network adjusted time is the median of the wall clock times returned by all other nodes that are

connected to the miner.

15

costs, such as their electricity, maintenance, and labour costs. Therefore, it is common

practice for smaller miners to pool their computational power and internally distribute

their earnings according to the amount of computational power each miner brings to the

pool. With their combined hash rate, the pool is more likely to find a valid PoW, which

lowers the variance of payout frequency.

To prevent cheating by pool participants, called workers, the pool operator chooses which

transactions are included in the block and, in particular, sets the coin-base transaction

such that the payout is awarded to the pool itself, and not any of the workers. The pool

provides a block header template to each individual worker connected to the pool, where

the Merkle root is already set and the miners are only allowed to change the timestamp

and nonce fields. To keep track of the amount of computational power each worker is

contributing, the pool requires that the worker also reports any hashes that satisfy a

much easier target (called the pool target) than the global target. This way, the pool

is able to get frequent reports, called shares, which are essentially mini-PoWs that the

pool can use to verify that the workers are working on the correct block header and to

be able to estimate the hash rate contributed by each worker. Any hash that meets the

global target will generate a payout to the pool itself, which is then distributed among the

workers.

Pooled mining introduces the risk that the pool operator refuses to pay out. In such cases

the individual miner can only cut their losses and switch to a different pool.

2.1.3 Evolution of mining hardware

Initially, on blockchains such as Bitcoin, miners were able to use commodity hardware such

as CPUs and GPUs to perform proof-of-work. As cryptocurrency mining became more

financially lucrative, miners sought to gain efficiency advantages over their competitors by

utilizing specialized hardware. In [3] a timeline following the evolution of Bitcoin hardware

was summarised, with CPUs dominating the network until late 2010, after which GPUs

and FPGAs took over and then finally ASICs started dominating the network from 2013.

In Figure 2.1 we plot the historical Bitcoin network hashrate, marking the different mining

hardware eras2. The increase in total network hash rate is driven by a combination of
2data from https://www.blockchain.com/charts/hash-rate, eras from [3]

16

https://www.blockchain.com/charts/hash-rate

more miners coming onto the network (due to Bitcoin’s price increasing) and technological

advancements in mining hardware.

Figure 2.1: Bitcoin network hashrate

Typically for the SHA256D PoW algorithm, CPUs, GPUs, FPGAs, and ASICs are able

to achieve on the order of tens to hundreds of mega-hashes per second, hundreds of mega-

hashes to giga-hashes per second, giga-hashes to tens of giga-hashes per second, and tera-

hashes per second respectively.

2.1.4 ASIC-resistance

Due to ASICs having a high barrier to entry for the average consumer and the at-home

miner, it is feared by the crypto-community, as surveyed in [28], that cryptocurrency

mining will become increasingly centralized among large ASIC farms and ASIC manufac-

turers. Therefore, many cryptocurrencies (e.g. Ethereum [8] and RavenCoin [11]) decided

to introduce forms of ASIC-resistance into their PoW algorithms. We consider three main

classes of ASIC-resistant algorithms; multi-hash, memory-hard, and algorithmic.

17

2.1.4.1 Multi-hash

One example of a multi-hash PoW algorithm is X11 [10], which chains together eleven hash

functions in order; Blake, BMW, Grøstl, JH, Keccak, Skien, Luffa, Cubehash, Shavite,

Simd and Echo. A descendant of X11 is X16R [7] which uses up to sixteen different hash

functions (all SHA3 Round 2 candidates plus whirlpool and SHA512). However, while

X11 uses a fixed chain of hash functions, the sequence of hash functions is randomised

for every new block in X16R. Additionally, the same hash function can appear more than

once in the chain of sixteen, or not at all.

In [9], the author aimed to assess the ASIC-resistance of multi-hash proof-of-work algo-

rithms. Three types of multi-hash PoW algorithms were identified: fixed sequence hash

chains (e.g. X11), hash chains with a variable sequence per block (e.g. X16R), and hash

chains with a variable sequence per nonce.

The author then detailed three hardware platforms which were used for their experiments,

an Intel i7-8700K CPU, an NVIDIA GeForce GTX 1080 Ti GPU and a Xilinx Zynq

UltraScale+ ZU9EG FPGA. The FPGA platform was used to stand-in for ASICs, as

they are commonly used to prototype ASICs and have implementation characteristics

that allow prediction of ASIC performance. Due to the usage of an FPGA instead of an

ASIC and the difference in price of the three hardware platforms, the author measured

performance relative to a SHA256D baseline implementation for each of the three setups.

The author proposed a metric called the ASIC-disadvantage metric, which is the ratio of

the relative performance loss when going from SHA256D to a multi-hash chain algorithm

when implemented using an FPGA compared to the loss in performance when implemented

on other platforms. In order to demonstrate ASIC-resistance, a tested algorithm must have

an ASIC-disadvantage of greater than one, and ideally significantly greater than one.

In the experiment, the author implemented the following algorithms on an FPGA:

• a fixed hash chain sequence using a fixed pipeline,

• a hash chain sequence that varies per block, using a crossbar that connects the hash

cores, and

• a hash chain sequence that varies per nonce, using a crossbar that connects the hash

cores.

18

It was shown that both the fixed chain algorithm and a version of the hash chain sequence

that varies per block, but where no two hash functions were reused, were not able to

achieve an ASIC-disadvantage of 1.0. However the version of variable sequence hash chain

per block, where hash functions could be reused, achieved an ASIC-disadvantage of 1.33

relative to GPUs. In the case of variable sequence hash chain per nonce, the experiment

showed a significant performance loss for GPUs due to control flow divergence and was

therefore not able to achieve an ASIC-disadvantage of 1.0.

In the article, the author describes implementing the variable sequence hash chain algo-

rithm (with 15 hash functions) using a 16x16 crossbar to connect the hash cores. This

introduced a small overhead in resource usage, while offering low latency and high band-

width. However, if we design an algorithm that uses hundreds of different hash functions,

the resource overhead used up by a crossbar grows at an O(n2) rate, where n is the number

of hash functions. This overhead quickly becomes unsustainable. In such a situation an

ASIC must instead use a more scalable network topology, such as a ring, and thus sacri-

fice latency and bandwidth. For CPUs and GPUs, increasing the number of hash function

should only increase the program size and have an insignificant effect on performance.

ASIC mining hardware has been available for fixed-chain multi-hash algorithms since

2016. As of writing, the highest performing X11 miner is the Bitmain Antminer D73,

which achieves a hash rate of 1.157 TH/s.

A miner which was advertised as the OW1 ASIC4, was released in late 2019, which mar-

keted an X16R hash rate of 182 MH/s, while consuming 1400 watts. It is speculated by

the community that these OW1 ASICs have an FPGA-like, reconfigurable architecture.

2.1.4.2 Memory-hard

Memory-hard PoW algorithms are intentionally designed to require a large memory ca-

pacity or to be bottlenecked by memory bandwidth, and usually a combination of both.

The rationale for this is that fast on-chip memory is typically SRAM-based, which is low

in capacity, therefore if the algorithm requires access to a dataset (typically sized at sev-

3Bitmain Antminer D7:
https://shop.bitmain.com/product/detail?pid=00020210721103817933De3r7nxP06AD
4OW1 ASIC:

https://en.cryptonomist.ch/2019/09/17/mining-ravencoin-hashrate/

19

https://shop.bitmain.com/product/detail?pid=00020210721103817933De3r7nxP06AD
https://en.cryptonomist.ch/2019/09/17/mining-ravencoin-hashrate/

eral gigabytes) that is much larger than the amount of SRAM that can fit onto an ASIC,

an external memory is needed. However, external memory bandwidth is limited by the

number of I/O pins on the chip. The I/O limitation was thought to level the playing field

between ASICs and off-the-shelf hardware such as CPUs, GPUs, and FPGAs, as it was

thought that it would be impractical to build an ASIC with an order of magnitude more

I/O pins than is already generally available.

Examples of memory-hard PoW algorithms include, Ethash [8], Equihash [5], and Cuck-

ooCycle [32]. Ethash is currently the second most popular PoW algorithm, behind Bit-

coin’s SHA256D. A detailed description of Ethash can be found in Appendix A.1.

GPUs are most commonly used for mining memory-hard PoW. However, recently both

FPGA and ASIC miners for Ethash became available. Commercial implementations of

Ethash using the Xilinx Virtex Ultrascale+ HBM series of FPGAs5 are able to outperform

GPUs6 in efficiency by 1.8x. The Jingle Mining Jasminer X47 is an ASIC composed of two

silicon dies, a logic die and a DRAM die, which are vertically stacked. The device is able

to achieve 1TB/s memory bandwidth while consuming very little energy, and outperforms

FPGA implementations by 3.1x in efficiency.

2.1.4.3 Algorithmic

Algorithmic PoW algorithms work by generating a new instruction-based random program

for each block interval. The randomly generated programs are typically designed to stress

as many components of a standard x86 CPU as possible. Branch instructions are also used

so that a branch predictor is required to achieve good performance. This type of PoW is

CPU-biased and can not be efficiently mined by GPUs, FPGAs or ASICs.

The only example of an algorithmic PoW that is used in practice is RandomX [30], which

is the PoW for the Monero cryptocurrency. A detailed description of RandomX can be

found in Appendix A.2.

5Xilinx Varium C1100 card (with 460GB/s of memory bandwidth) achieves ~73MH/s in Ethash while
using ~81W.

https://github.com/todxx/teamredminer
6NVIDIA RTX 3070 (with 448GB/s of memory bandwidth) achieves ~60MH/s in Ethash while using

~120W.
https://www.nicehash.com/profitability-calculator/nvidia-rtx-3070
7Jasminer X4 achieves ~64MH/s while using ~23W.

https://www.jinglemining.com/pages/about-jasminer-x4

20

https://github.com/todxx/teamredminer
https://www.nicehash.com/profitability-calculator/nvidia-rtx-3070
https://www.jinglemining.com/pages/about-jasminer-x4

2.2 FPGA runtime reconfiguration

Modern FPGAs can be dynamically reconfigured at runtime without needing to be power-

cycled. Most basic resources in the FPGA fabric can be selectively and partially reconfig-

ured without disrupting the ongoing operation of the surrounding logic. FPGA configura-

tion data are called bitstreams, whereas configuration data that configures only a portion

of the FPGA are called partial bitstreams. In this section, we will examine the FPGA

architectures from Xilinx and Intel in regards to their runtime reconfiguration capabilities,

and outline some previous work in the area of runtime reconfiguration.

2.2.1 FPGA hardware

2.2.1.1 Xilinx Virtex Ultrascale+

The Xilinx Virtex Ultrascale+ family of FPGAs is manufactured on TSMC’s 16nm tech-

nology node and has been available since 2016. These devices are constructed from one to

four silicon dies called super logic regions (SLRs). The SLRs are stacked on top of a single

passive silicon substrate and are electrically connected to each other using through-silicon

vias (TSVs) and wires in the silicon substrate. The High-Bandwidth Memory (HBM)

variant of these devices also contains up to two DRAM dies, which are co-packaged in

the same manner alongside the SLRs. The amount of routing between SLRs is limited, so

care must be taken when partitioning large designs across SLRs. The maximum number

of LUTs contained within a Virtex Ultrascale+ SLR is ~440K.

These FPGAs can be reconfigured at runtime by writing a partial bitstream to the Internal

Configuration Access Port (ICAP). The time taken to reconfigure a module is equal to

the time it takes to load the partial bitstream. For Virtex Ultrascale+, the ICAP has a

maximum clock frequency of 200MHz and is 32-bits wide, giving a throughput of 800MB/s,

meaning that a 20MB partial bitstream, which is large enough to configure an entire SLR,

can be loaded in 25ms. Each SLR has a separate ICAP, one of which is designated the

master ICAP. The master ICAP can be used to reconfigure any SLR at a reduced clock

frequency of 125MHz (500MB/s). However, each ICAP can configure its local SLR at the

maximum clock frequency of 200MHz [38] and in parallel.

Chips from this family such as the VU9P, VU13P, and the HBM-enabled VU33P, VU35P,

21

and U55N are all popular in the cryptocurrency mining community. There have been

several mining targeted boards utilizing these chips, including the SQRL FK338, SQRL

JC-series, Bittware CVP-139, derivatives of the Xilinx VCU152510, and most recently the

Xilinx Varium C1100 blockchain accelerator card11.

2.2.1.2 Intel Stratix 10

Intel’s Stratix 10 family of FPGAs is manufactured on the Intel 14nm node and consists of a

single monolithic logic die, where the FPGA fabric resides, and several smaller surrounding

dies which can be memory, transceivers, or ASICs. The separate dies are connected using

a packaging technology called Embedded Multi-Die Interconnect Bridge (EMIB).

The FPGA fabrics of these devices consists of an array of identical logical sectors [18], such

that any module that fits completely within a sector can be relocated to any other sector

without the need for recompilation. This feature can be used to implement designs that

utilize course-grained module relocation. The FPGA fabric architecture is very suitable

for deeply pipelined designs due to the hyper-flex architecture, which adds millions of

pipeline registers within the switch fabric itself, allowing the designer to be more liberal

with pipeline register usage.

There is one dedicated secure device manager (SDM), which handles loading partial

bitstreams. However, the maximum clock frequency for the 32-bit configuration bus is

125MHz. The relatively slow configuration speed (especially if we consider parallel ICAP

usage) coupled with the fact that the maximum bitstream size for Stratix 10 is similar

to that of Virtex Ultrascale+, means that reconfiguration of Stratix 10 devices is much

slower than for Virtex Ultrascale+ devices.

Compared to Xilinx FPGAs, there are not many Intel FPGAs that are currently being

used for mining.

8Squirrels Research Labs LLC is defunct as of 2021, their product page is no longer on the web.
9https://www.bittware.com/cvp-13/

10Such as the SQRL BCU1525, the Osprey Mining ECU200, and the TUL BTU9P.
https://shop.fpga.guide/products/btu9p-by-tul?variant=14315446861936
11https://www.xilinx.com/products/accelerators/varium/c1100.html

22

https://www.bittware.com/cvp-13/
https://shop.fpga.guide/products/btu9p-by-tul?variant=14315446861936
https://www.xilinx.com/products/accelerators/varium/c1100.html

2.3 Related Work

We do not know of any other academic work that has been done regarding the application

of FPGA runtime reconfiguration to proof-of-work algorithms. However, there has been

much previous work in the field of FPGA runtime reconfiguration.

2.3.1 Applications of runtime reconfiguration

With current FPGA hardware, it takes a significant amount of time, depending upon its

size, to reconfigure a module — typically on the order of several milliseconds. Therefore

there is a significant overhead involved when applying runtime reconfiguration. Still, there

are many applications that greatly benefit from runtime reconfiguration, as discussed in

the literature.

One common use case for runtime reconfiguration is for image or video processing pipelines,

where large amounts of data are streamed through multiple filter stages. In real-time cam-

era applications, where perhaps image quality changes throughout the day, different filters

may be needed. A static design, with all the potential filters already baked in, consumes

more power and requires a larger FPGA, when compared to a runtime reconfigurable ap-

proach, where only the filters that are needed are configured on the FPGA. In [4] the

authors implemented two video processing filters on a Virtex-4 FPGA and showed an

FPGA resource saving of almost 50 percent.

In [24] the authors demonstrated a time-shared computer vision pipeline, where multi-

ple different processing pipelines can be time-multiplexed to serve different users. Their

processing pipeline consists of several identically-sized reconfigurable partitions that are

connected to a crossbar interconnect. Each reconfigurable partition can implement several

reconfigurable processing modules, such as edge detection, colour-based object tracking,

and template tracking. Up to two 1080p video frames are processed at a time, which are

streamed from one reconfigurable module to another. Once the two frames have finished

processing, the reconfigurable modules are replaced by modules that are needed for a dif-

ferent pipeline. They showed that their time-multiplexed approach is capable of processing

a 1080p video through three different pipelines at 30Hz, when implemented on a Xilinx

ZC706 board, with a Zynq FPGA.

23

In [21] the authors presented a scalable H.264/AVC de-blocking filter that uses runtime

reconfiguration to adapt to changes in the video resolution or frame-rate. They did this

to improve throughput and save power by selecting the most performant processing im-

plementation for each situation.

Another common application for runtime reconfiguration is software-defined radio (SDR),

which is able to operate across multiple radio standards. Traditional custom ASICs with

fixed function processing units are not flexible enough to implement SDR. However, purely

software-based solutions have high latency and therefore can not be used for some appli-

cations. In [26], the authors present an end-to-end multi-standard OFDM transceiver

architecture, that uses FPGA runtime reconfiguration to support rapid switching between

three different standards: IEEE 802.11, IEEE 802.16, and IEEE 802.22. To avoid link

disruption, the incoming data is buffered in memory during reconfiguration.

In [25], a high performance DES encryption implementation is presented that takes ad-

vantage of FPGA runtime reconfiguration by specialising the encryption circuit on a key-

by-key basis. For symmetric key encryption, typically the encryption key, is the same for

the entire connected session. By substituting the key into the circuit as a constant, the

circuit can be greatly simplified. The author presents a tool JBits, which is capable of

creating and modifying bitstreams with LUT contents that are specialized to a certain

key. By this method, they observed better performance than a DES ASIC.

2.3.2 Runtime reconfiguration methodology

In [22], the authors describe three styles of layout for reconfigurable modules; island-style,

slot style and grid style. In an island style layout, the FPGA is divided into islands

that are capable of containing any reconfigurable module. However this method leads to

under-utilization of resources as islands must be sized according to the largest module.

In a slot-style layout, the FPGA is divided along one dimension (e.g. horizontally) into

smaller slots where reconfigurable modules are allowed to take up multiple slots. The grid

layout is similar to the slot layout with the difference being that the FPGA is divided in

two dimensions creating a grid of reconfigurable regions.

In [2], the authors present a tool for module relocation, that is the ability to move a

pre-implemented module from one location on the FPGA fabric to another. This can be

24

done without pre-defining the layout of boundaries for each reconfigurable partition as in

[22]. This allows for denser packing of reconfigurable modules and thus better utilisation

of FPGA resources.

25

Chapter 3

Design exploration

3.1 X16R algorithm

The X16R algorithm is a PoW algorithm that was primarily used by the cryptocurrency

RavenCoin [11], which had an average block interval of one minute. The algorithm was

used from January 2018 to May 2020, after which RavenCoin switched to a memory-hard

PoW called KawPow [19], due to the threat of ASIC and FPGA miners outcompeting

GPU miners [6].

3.1.1 Definition

The X16R algorithm is a hash algorithm, consisting of the chained application of these

sixteen hash functions: (0) Blake, (1) BMW, (2) Groestl, (3) JH, (4) Keccak, (5) Skein, (6)

Luffa, (7) Cubehash, (8) Shavite, (9) Simd, (A) Echo, (B) Hamsi, (C) Fugue, (D) Shabal,

(E) Whirlpool, and (F) SHA512. With the exception of Whirlpool [31] and SHA512 [29],

each hash function was submitted to the NIST SHA3 competition and passed to at least

round 2 [33]. Each hash function is assigned a hexadecimal identifier (0x0 - 0xF). The

order in which the hash functions are applied is determined by the last sixteen nibbles of

the hash of the previous block header. For example, if the previous block was:

0x0000006b444bc2f2ffe627be9d9e7e7a0730000870ef6eb6da46c8eae389df90

Then reading the right-most sixteen hexadecimal digits of the hash from left to right, we

find the hash chain ordering:

26

0xda46c8eae389df90

which translates to:

Shabal -> Echo -> Keccak -> Luffa -> ... -> Simd -> Blake

The X16R hash function is described by the following pseudo-code:

hash_functions = [

blake, bmw, groestl, jh, keccak, skein, luffa, cubehash,

shavite, simd, echo, hamsi, fugue, shabal, whirlpool, sha512

]

def x16r(header):

order = get_last_16_nibbles(header.prev_hash)

midstate = header

for i in order:

midstate = hash_functions[i](midstate)

return midstate

Note that the input into the first hash function is the 80-byte block header, which is the

typical header size for many blockchains. However, as all hash functions in X16R produce

a 64-byte digest, all subsequent function applications take a 64-byte input.

3.1.2 Properties

As the ordering of the hash functions is determined by the hash of the previous block

header, we can assume the that ordering is effectively uniformly random. We note that

there is the possibility of a hash function occurring more than once in the chain, we call

these occurrences repetitions.

The probability of there being no repetitions in an X16R chain is the number of chains

where each hash function is unique, i.e. 16!, divided by the total possible number of chain

permutations i.e. 1616:

16!
1616 ≈ 1.134 × 10−6

27

We can see that the case with no repetitions is extremely unlikely, around one in a million.

This presents a challenge for hardware implementation, as a design with only one hash

core per function will almost always be bottlenecked when that core is needed more than

once to complete processing the X16R chain.

Figure 3.1 shows the probability of an X16R chain having a function that occurs N times,

and all other functions occurring at most N times.

1 2 3 4 5 6 7 8 9

~0%

19.47%

57.42%

19.40%

3.24% 0.42% ~0% ~0% ~0%

Figure 3.1: Probability of X16R chain having a function that occurs N times, and all other
functions occurring at most N times

In the following sections, we will consider three different types of FPGA-based architec-

tures for implementing the X16R algorithm.

3.2 Static design

First we consider the naive approach of a static design, in which sixteen different hash

cores are instantiated on a single FPGA and are connected to each other through an in-

fabric network. A suitable means of transferring the output of one core to the input of

the next is therefore sought. As each hash core is fully unrolled, they can produce one

result for every clock cycle. Therefore, the communication between each subsequent core

in the chain is a continuous stream. One might initially consider a crossbar switch, which

allows non-blocking communication between any pair of cores. However, a crossbar has a

wiring complexity of O(n2) and requires 578 connections for a 17x17 bidirectional crossbar

(17x17 because there are 16 hash functions and 1 input/output port). If we assume that

28

each connection is 512-bits wide (a requirement for fully unrolled hash cores), we would

require 295,936 wires, which is a significant demand on an FPGA’s routing resources.

Moreover, most of the switches and wires are not utilized during the processing of any

particular instance of X16R. However, the network complexity is not the main concern

when implementing a static design. In Figure 3.1, we see that most of the time, there

are repetitions in the chain. One can calculate that, on average, a static design with

only one core per hash function is bottle-necked at 34.4% of its peak throughput. This

is because only a few cores are highly utilized (due to being needed multiple times in the

chain), while most other cores are under-utilized (waiting for data or not needed). Another

challenge is the amount of FPGA resources required to implement the fully static design.

It is possible to fit rolled-up versions of each hash core in a modern FPGA. We see in

[9] an implementation of X15R (X16R without Whirlpool) using a crossbar switch on a

Xilinx ZU9EG device, however the performance is poor, achieving only 2MH/s. In order

to achieve higher performance we need to unroll the hash cores. However, an X16R design

consisting of sixteen fully unrolled hash cores will require an extremely large FPGA.

If we take the resource utilization numbers from our own hash core library, described

in Section 4, we require a device with over 2.3M 6-input LUTs (not accounting for the

crossbar) in order to accommodate one instance of each function. By comparison, the

largest Xilinx Ultrascale+ device that is obtainable by miners, the VU13P, has 1.7M

LUTs. An even larger device, the VU19P with 4M LUTs, is sold by Xilinx, however,

they are likely to be too few in number and too expensive to be financially viable for

miners. In order to meet the area requirements for a fully static design, one may attempt

to team multiple FPGAs and spread the hash cores across them. However, it is difficult to

extend the crossbar off-chip due to the lack of wires (parallel approach) or lack of ser-des

bandwidth (serial approach).

3.3 Dynamic full chain

In order to avoid the shortcomings of the static design we may attempt to apply dynamic

partial reconfiguration in order to modify the hardware such that only the hash functions

that are needed for each block interval are included. By doing this, we are able to configure

multiple instances of hash cores for functions that are repeated in the hash chain, thereby

29

avoiding the bottleneck present in the static design. We can also avoid implementing a

full crossbar by reconfiguring the connections between the cores to suit the data-flow for

the current chain order.

While this method eliminates the bottleneck caused by repetitions, we still need an ex-

tremely large FPGA. In the worst case, when sixteen of the most resource expensive hash

functions (e.g. cubehash) are needed by a particular problem instance, we would need an

FPGA with over 5 million LUTs. Another problem is the number of permutations of the

chain that must be pre-compiled. It is not possible to compile and store all permutations

of the chain. A practical approach may be to break up the FPGA area into slots and break

up the hash chain into sub-chains, i.e. chains of two or three hash functions. Sub-chains

can be compiled into their respective slots, which are then stitched together at runtime

through a runtime reconfigurable network.

3.4 Time-sliced dynamic sub-chains

In order to implement X16R efficiently on smaller devices, we consider a time-sliced ap-

proach that is capable of handling every permutation of the X16R chain. Instead of having

one contiguous chain, which is configured onto the FPGA at the start of each block inter-

val, we divide the chain into sub-chains, of which only one is configured onto the FPGA

at any time. The outputs of the sub-chains are called mid-states which are buffered in

memory and are subsequently fed as inputs to the next sub-chain after it has been con-

figured. This method incurs a substantial reconfiguration overhead, as the FPGA must

be reconfigured 16/(subchain length) times before the result can be returned. In order to

lessen the impact of the reconfiguration overhead, we maximize the time spent comput-

ing hashes, by batching up as many mid-states in memory as possible before moving to

compute the next sub-chain.

We consider two implementation methods, Single hash Function per Reconfiguration (SFR)

and Multiple hash Functions per Reconfiguration (MFR). SFR divides the chain into 16

sub-chains with only one hash function per sub-chain. This leads to under-utilization of

FPGA resources when small functions are configured and higher reconfiguration overheads

per batch.

30

A more efficient method (MFR) is to include multiple hash functions per sub-chain. How-

ever, the number of permutations that must be compiled per sub-chain is exponential in

the number of functions in the sub-chain. As such, we only consider chains where every

sub-chain has exactly two hash functions, as these sub-chains take less compile time than

sub-chains of greater size. We can reduce the number of permutations that need to be

compiled from 162 = 256 to 136 by introducing a simple multiplexer, such that the order

of each function in the sub-chain can be selected at runtime. There are
(16

2
)

= 120 pairs of

distinct hash functions (order does not matter due to the multiplexer), and an additional

16 pairs of duplicated hash functions. Therefore there are 136 possible pairs that must be

compiled.

3.5 Overheads

3.5.1 Intra-batch overhead

There is an intra-batch overhead introduced by reconfiguring the FPGA between sub-

chain computations. The amount of overhead is related to the chosen batch size, the

throughput of the hash cores and the time to configure the sub-chain. If we assume

a constant reconfiguration time for every partial bitstream, the reconfiguration overhead,

which is the proportion of time wasted during reconfiguration, can be estimated as follows:

Let t be the time taken to process an entire batch of X16R hashes, n be the number of

hashes that is processed in a batch, f be the raw throughput (hashes per second) of the

sub-chain cores, r be the time required to configure a sub-chain, and s be the number of

sub-chains to be configured. Then:

t = s × (n/f + r)

And the intra-batch overhead is the complement of the amount of the time spent computing

hashes over the total batch time:

intra-batch overhead = 1 − s × n/f

t
= 1 − n

n + fr
= fr

n + fr

31

The maximum time required to reconfigure a single SLR on a Xilinx Virtex Ultrascale+

device is 35.41ms (obtained using the maximum bitstream size as listed in [37] and assum-

ing the maximum ICAP frequency of 200MHz). For our hash core implementations, we

targeted a frequency of 625MHz and each core is capable of producing a 64-byte output

every clock cycle, giving a throughput of 40GB/s. In Figure 3.2 we plot the reconfiguration

overhead versus batch size in gibi-bytes.

10%

20%

30%

40%

50%

2 4 6 8 10 12 14 16
batch size (GiB)

in
tr

a−
ba

tc
h

ov
er

he
ad

Figure 3.2: Intra-batch overhead versus batch size

Clearly, for a given throughput and reconfiguration time, the batch size should be maxi-

mized to minimize the intra-batch overhead.

3.5.2 Inter-batch overhead

As we are considering batched computation, the hashes will be produced in regular inter-

vals, as opposed to continuously. Therefore, if a new block interval begins whilst we are

processing a batch, then that entire batch of hashes is discarded. We analyse how much

time on average is wasted computing hashes that must be discarded at the end of a block

interval and thus find the inter-batch overhead.

First we need to determine the distribution of block intervals that end when a miner finds

a valid proof-of-work. Recall that an individual miner is tasked with finding an input

32

whose hash gives an output that is numerically less than a particular target L. By design,

the hash outputs for X16R (and other PoW hash functions) are effectively random with

each output within the range (0, 2512 − 1) being equally likely. Thus, the probability of

a candidate input giving an output that is less than L is L/2512. It follows that the

required number of hashes an individual miner needs to compute before finding one that

gives an output less than L is geometrically distributed1 with parameter p = L/2512.

Since miners perform hashes at a very fast rate, the required time for a miner to find a

successful input is well-approximated by an exponential random variable, whose parameter

is a function of the miner’s hashing rate and the target difficulty. The time taken for a

community of miners to find a successful input is the minimum among all the times taken

for each individual miner to find a successful input, and in theory this time should also

be exponentially distributed, with parameter proportional to the inverse of the product of

the community’s hash rate (also called the network hash rate) and the target. The target

is adjusted at regular intervals to ensure that this parameter remains constant even if the

community’s hash rate changes.

Let T be the block interval and denote the average by E(T). T follows the exponential

distribution with parameter λ where λ = 1/(E(T)). Let t = t(n, f, r, s) be the batch time

for our chosen batch size, where n is the number of hashes that is processed in a batch, f is

the raw throughput of the sub-chain cores, r is the time required to configure a sub-chain,

and s is the number of sub-chains to be configured. Let N be the number of batches that

we process during the block interval T , so N = ⌊T/t⌋. Using properties of the exponential

distribution, we know that T/t ∼ Exp(tλ), and we know that N = ⌊T/t⌋ follows the

geometric distribution (taking values 0, 1, 2, ...) with parameter p = 1 − Exp(−tλ). Thus

the amount of time wasted during a block interval on a batch that we must discard

is T − Nt, and the proportion of time wasted during a block interval, the inter-batch

overhead, is given by 1 − (Nt)/T . It is difficult to analytically express the expectation of

this random variable, so we instead compute it by simulation.

In Figure 3.3, we plot the inter-batch overhead for batch times between 0.1 and 10 seconds.

There are two plots, one for an average block interval of 60 seconds (which we are most

concerned with) and one for 12 seconds (which is Ethereum’s block interval and is the

1This is equivalent to flipping a biased coin with a L/2512 chance of success. The number of trials until
success follows the geometric distribution.

33

shortest among popular PoW blockchains).

10%

20%

30%

0.0 2.5 5.0 7.5 10.0
batch time (s)

in
te

r−
ba

tc
h

ov
er

he
ad

E(T)=60s

E(T)=12s

Figure 3.3: Inter-batch overhead

3.5.3 Estimated performance

We can estimate the performance of our time-sliced X16R design by taking into account

both the intra-batch and inter-batch overheads. The combined overhead is given by the

sum of the times wasted within each batch in addition to that wasted computing the final

batch, divided by the block interval. We can express the total overhead as follows:

total overhead = 1 − N × (t − rs)
T

Where N × (t − rs) is the total time spent computing undiscarded hashes and T is the

block interval.

We can estimate the hash rate by multiplying the proportion of time that is used for

computing hashes (excluding the discarded batch) with the raw hash throughout of a

sub-chain divided by the number of reconfigurations that are required per batch.

hash rate = (1 − total overhead) × f

s
= nN

T

34

In Figure 3.4 we plot the estimated hash rate for various batch sizes. The blue lines

are plots for average block intervals of 60 seconds, while the red lines are for average

block intervals of 12 seconds. The solid and dashed lines represent plots for 8 and 16

reconfigurations per batch respectively.

0

20

40

60

2 4 6 8 10 12 14 16
batch size (GiB)

ha
sh

 r
at

e
(M

H
/s

)

E(T)=60s s=8

E(T)=60s s=16

E(T)=12s s=8

E(T)=12s s=16

Figure 3.4: Estimated hash rate vs batch size

We see that for SFR, where there are 16 reconfigurations per batch, we should be able to

achieve on average approximately 28.82MH/s, or 32.43MH/s for batch sizes of 4GiB and

8GiB respectively. Note that there are diminishing performance gains as we increase the

batch size and as evidenced by the E(T) = 12s plot; the performance actually decreases

above a certain batch size. This should be noted when selecting an FPGA-based mining

platform, as one with a larger memory, which is capable of supporting a larger batch

size, may not always be desirable. We also note that our time-sliced approach does not

suffer greatly in performance when used with a blockchain with a very short average block

interval of only 12 seconds.

35

Chapter 4

Hash functions implementation

In order to implement any X16R design, we must first obtain hardware implementations of

the sixteen hash functions that are required. We note that in [9] the author used fourteen

(out of sixteen) hash functions from [13], which were written in VHDL and optimized

for FPGAs. However, for cryptocurrency mining, extra optimizations are possible that

take advantage of the fixed input size (typically 640-bits or 512-bits) and allow us to

fully unroll the hash function. We decided to implement our own hash functions to take

advantage of these extra optimizations. To speed up the time to code these hash functions,

we investigated the suitability of using high-level-synthesis (HLS) tools to automatically

pipeline the designs.

4.1 Is HLS auto-pipelining competitive with handcrafted

RTL?

There have been previous studies: [15], and [16], comparing HLS and hardware description

languages (HDL) implementations of cryptographic functions. They concluded that the

performance of the circuits generated by HLS is comparable with that of HDL designs.

However, those studies concentrated on smaller designs with longer initiation intervals

(i.e. designs that are not fully unrolled). We investigated whether existing HLS tools are

able to compete with hand-optimized RTL when used to implement fully unrolled and

pipelined hash functions. Specifically we were interested in leveraging the auto-pipelining

capabilities of HLS in order to obtain high clock frequencies for the circuits, without

36

sacrificing portability. For our RTL baseline we chose to use Chisel [1] and for the HLS

candidates we chose Vitis HLS [35] and PipelineC [20].

4.1.1 Languages

4.1.1.1 Chisel

Chisel is an HDL that facilitates circuit generation within the Scala programming language.

Users of Chisel are able to use modern programming abstractions to create parameteriz-

able circuit generators that produce synthesizable Verilog. This improves the designer’s

productivity and the maintainability of the code. Chisel is fundamentally a HDL, as the

designer describes the circuit at the register transfer level (i.e. flip-flops/registers must be

explicitly defined).

On initial impressions, one may be concerned about whether the designer gives up any

ability to perform low level optimizations when using Chisel. Chisel does have some lim-

itations. One such limitation is that only synchronous circuits can be described. For

example, one cannot infer an asynchronous latch using Chisel. Additionally, as of writ-

ing, some FPGA-specific primitives cannot easily be inferred, such as true-dual-port block

memories and DSP blocks. However, users can easily integrate hand-crafted Verilog as

black-boxes into Chisel to use these resources.

For our purposes, that is, crafting fully unrolled and pipelined hash functions with an

initiation interval of one, we are not limited by Chisel’s expressivity. There have been

several published studies comparing the quality of results (QoR) between circuits generated

with Chisel and hand-crafted Verilog. In the original paper describing Chisel [1], the

authors concluded that there is no significant difference in results when comparing a fused

multiply-add unit circuit generated in Chisel with one that was hand-crafted using Verilog.

In [17] the authors compared the silicon area (for an ASIC) taken up by a RISC-V processor

generated with Chisel with one that was hand-crafted using Verilog. They found that the

circuit produced by Chisel was ~4% more area efficient, while only requiring ~47% of

the lines of code used to describe their hand-crafted design. In a study [14], that is more

relevant to our work, the authors implemented an AES core on a Xilinx Virtex Ultrascale+

FPGA. They found that both resource utilization and power consumption for the circuit

37

generated by Chisel was very close to that of a corresponding Verilog implementation.

4.1.1.2 Vitis HLS

Vitis HLS (previously Vivado HLS), as of writing, is the officially supported HLS tool

by Xilinx. Users can describe their circuit using a dialect of C/C++ or SystemC at an

algorithmic level and use tool-specific pragmas to steer the HLS compiler in order to meet

performance and resource utilization goals. The Vitis HLS compiler has internal timing

models of Xilinx FPGA devices and is able to estimate the latency of a circuit before it is

synthesised. When the pipelining option is enabled, the tool is capable of automatically

inserting registers to meet a user-specified target frequency. We call this capability auto-

pipelining. While the tool was recently partially open-sourced by Xilinx, the back-end,

which handles the device-specific optimizations, is still proprietary. This means that code

written in Vitis HLS is not portable to devices from other FPGA vendors.

4.1.1.3 PipelineC

PipelineC is a tool that can compile a subset of the C language to VHDL. For pure

functions (i.e. a function with no pointer arguments or global variables), it is able to

auto-pipeline the design. It does this by slicing the circuit and using vendor tools to

synthesise and determine the latency of each sub-circuit. Registers are inserted and the

design is iteratively re-synthesized until the circuit meets the designer’s specified frequency

requirements. It is also possible to compile the HLS code with the DO_PNR flag, which

uses post-place-and-route timings to inform circuit partitioning. However, this increases

the C-to-VHDL compile time substantially. Designs written in PipelineC are portable

across multiple FPGA vendor tools (e.g. Xilinx, Intel and Lattice).

4.1.2 Designs evaluated

We evaluated three designs with varying expected resource usage from the cryptographic

domain: an AES encryption core as a small-sized case (~10K LUTs), a Keccak hash

function core as a medium-sized case (~80K LUTs) and a Groestl hash function core as

a large-sized case (~300K LUTs). We chose AES as a small-sized case because it is used

38

internally by many hash functions (e.g. inside Groestl, and Echo). Only the main data-

path for each algorithm is considered (i.e. designs do not include control logic) and they

are designed to have an initiation interval of one (II = 1), i.e. they are able to accept a new

input every clock cycle. These designs only consist of bitwise logical operations (AND,

OR, XOR, NOT, etc.), shifts, rotates, and lookup tables (ROM). Therefore no DSPs are

inferred.

The Chisel designs were coded such that pipeline registers were inserted between as many

logical steps as possible without sacrificing code readability. These pipeline stages could be

turned on or off depending on compile time parameters. Typical pointer-free C code is used

for the Vitis HLS and PipelineC designs. PipelineC compiles the code with an initiation

interval of one by default. For Vitis HLS, a Pipeline II=1 directive was used at the top

level, the tool automatically unrolls loops and applies pipelining to all sub-functions. The

ap_control setting was set to none to ensure no control signals were generated and the

pipeline was free-running.

4.1.3 How results were collected

The designs were compiled on a PC with an Intel i9-9900KS with 8 cores (16 threads)

clocked at 5GHz, 64GB of DDR4 3200MT/s RAM and 128GB of SSD swap. We used

Vivado/Vitis 2020.2 running on Ubuntu 20.04. We targeted the xcvu33p-fsvh2104-2-e

device as it is the largest (440K LUTs) single SLR device in the Xilinx Virtex UltraScale+

family. Synthesis was done out-of-context (i.e. IO pins were not mapped) to ensure that

IO did not constrain the design at high frequencies, and with all other settings left at

their defaults. We compiled each design ten times with target clock periods ranging from

2ns (500MHz) to 1ns (1GHz), decreasing in 0.1ns intervals. Target periods were set in

Vitis HLS during the C Synthesis stage and were carried forward to RTL synthesis and

place-and-route. For PipelineC, the target period was set as a pragma in the source code.

Once the final VHDL was generated for the set of designs and target periods, the clock

constraint was carried forward to Vivado for RTL compilation. For the Chisel designs, we

used the same number of pipeline stages until the designs no longer met the target period

post-implementation, at which point we manually increased the number of pipeline stages

in the source code and recompiled to meet the target period.

39

4.1.4 AES results

As seen in Figure 4.1, the circuits produced by all three languages were able to achieve

nearly the same maximum frequency (i.e. maximum throughput). Chisel and PipelineC

achieved 939.85MHz, while Vitis HLS was able to achieve 932.24MHz. Upon inspection of

the timing reports, it was noticed that the designs were limited by a pulse-width timing

violation corresponding to the maximum frequency of the SRL (Shift Register Lookup

Table) primitive. While it may be possible to clock higher by forcing the synthesizer to

map shift registers as flip-flops, this is a reasonable frequency for high performance designs

implemented on Virtex Ultrascale+ devices.

When observing throughput over area in Figure 4.2, we see that Vitis HLS consistently

outperforms the hand-crafted HDL at every target period past 1.9ns and is 13.8% more

area efficient at the maximum frequency. There was a large range in throughput/LUT for

the PipelineC designs (18.74 to 112.10), however it was 5.7% more efficient than the Chisel

solution at the maximum frequency. PipelineC under-performs significantly at the 2ns and

1.9ns targets. However when compiled with the DO_PNR flag (which uses post-routing

timings to inform the partitioning algorithm), the result falls into line with the Vitis and

Chisel solutions.

The throughput over area and achieved frequencies are generally increasing as we decrease

the target periods. However, we note that there are dips in the plots due to performance

regressions. This is because the tools do not know the optimal way to insert pipeline

registers in order to achieve the target frequency while also minimizing area. This leads

to some partitions that increase the area of the circuit (e.g. due to high fan-out), which

in turn lower the achievable frequency (e.g. due to routing-delay).

4.1.5 Keccak results

The results for Keccak are shown in Figures 4.3 and 4.4. Vitis HLS was able to achieve

the best maximum frequency of 922MHz, an improvement over the maximum frequency

achieved by Chisel and PipelineC (DO_PNR) of 3% and 9% respectively. The through-

put/LUT of the Vitis HLS solution is also better than that of Chisel at high frequencies.

The throughput and throughput/LUT of the PipelineC designs are consistently below the

40

353.73

400.00

500.00

600.00

700.00

800.00

900.00

939.85

2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1
Target Period (ns)

A
ch

ie
ve

d
F

re
qu

en
cy

 (
M

H
z)

chisel vitis pipelinec pipelinec_pnr

Figure 4.1: AES: achieved frequency

18.74

40.00

60.00

80.00

100.00

120.72

2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1
Target Period (ns)

T
hr

ou
gh

pu
t/A

re
a

(M
H

z/
LU

T
s)

chisel vitis pipelinec pipelinec_pnr

Figure 4.2: AES: throughput/area

41

others, however if the DO_PNR flag is turned on, the total throughput becomes very

similar to that of the others, while the best throughput/LUT outperformed Chisel by 56%

and is similar to the best Vitis HLS circuit. However, we found that PipelineC (DO_PNR)

was unable to converge on a circuit that met timing past the 1.2ns target.

340.83

400.00

500.00

600.00

700.00

800.00

900.00
922.51

2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1
Target Period (ns)

A
ch

ie
ve

d
F

re
qu

en
cy

 (
M

H
z)

chisel vitis pipelinec pipelinec_pnr

Figure 4.3: KECCAK: achieved frequency

4.1.6 Groestl results

The results for Groestl are shown in Figures 4.5 and 4.6. We see a clear difference, with

the hand-crafted Chisel solution outperforming both Vitis HLS and PipelineC at high

frequencies. Vitis HLS performed well when the target period was varied between 2ns

and 1.5ns. However, we found that performance dropped significantly below the 1.5ns

target. The Chisel HDL solution had 20% higher maximum throughput when compared

to Vitis HLS. However, Vitis HLS outperformed Chisel in throughput/LUT at lower target

frequencies. The PipelineC design consistently lagged behind both Chisel and Vitis HLS

and was unable to produce a design that fit into the target device past the 1.3ns target

period. We were unable to obtain Groestl data for PipelineC with the DO PNR flag due

to the long run time (> 48 hours per run).

42

4.31

6.00

8.00

10.00

12.00

14.00

16.00

17.66

2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1
Target Period (ns)

T
hr

ou
gh

pu
t/A

re
a

(M
H

z/
LU

T
s)

chisel vitis pipelinec pipelinec_pnr

Figure 4.4: KECCAK: throughput/area

343.29

400.00

500.00

600.00

700.00

807.75

2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1
Target Period (ns)

A
ch

ie
ve

d
F

re
qu

en
cy

 (
M

H
z)

chisel vitis pipelinec

Figure 4.5: GROESTL: achieved frequency

43

1.19

1.40

1.60

1.80

2.00

2.20

2.29

2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1
Target Period (ns)

T
hr

ou
gh

pu
t/A

re
a

(M
H

z/
LU

T
s)

chisel vitis pipelinec

Figure 4.6: GROESTL: throughput/area

4.1.7 HLS vs RTL conclusion

The HLS tools performed well when implementing the AES and Keccak algorithms. They

were able to match the HDL solution in terms of total throughput and had superior area

efficiency at the highest frequencies. However, for the larger Groestl design, the hand-

crafted solution was clearly the better choice when targeting frequencies above 666MHz.

This is reasonable to expect, as the auto-pipelining tools do not have an accurate estimate

of where the LUTs will be placed on the device (especially when there is significant routing

congestion), and Groestl uses far more of the available LUTs relative to AES and Keccak.

Through this comparative study, we conclude that both PipelineC and Vitis HLS offer

comparable or better performance than hand-crafted RTL when implementing fully un-

rolled small- to medium-sized circuits and when targeting frequencies between 500MHz

and 666MHz.

44

4.2 Hash core library implementation

We implemented the sixteen hash functions: (0) Blake, (1) BMW, (2) Groestl, (3) JH, (4)

Keccak, (5) Skein, (6) Luffa, (7) Cubehash, (8) Shavite, (9) SIMD, (A) Echo, (B) Hamsi,

(C) Fugue, (D) Shabal, (E) Whirlpool, and (F) SHA512. For our X16R implementation,

we were targeting frequencies between 450MHz (which is the native frequency of our

memory controller) to 625MHz (above which the Xilinx AXI-based IP ecosystem has

trouble meeting timing). Therefore, we chose to implement the hash functions using Vitis

HLS, which performed well at our target frequencies, as determined in the previous section.

Using Vitis HLS, we were able to produce a reusable library of hash cores, which can be

re-targeted to different Xilinx FPGA architectures. We chose not to use PipelineC, which

would have allowed us to target FPGAs from other vendors, because of the significant

compile time required for larger circuits, especially when using the DO_PNR flag.

4.2.1 Input width optimization

The input to the X16R function is the 80-byte (640-bit) block header. However, internally

the mid-states are 64-bytes wide as each hash function has a 64-byte output digest. This

provides an opportunity for optimization, as we can create two input-width-optimized

versions of every hash function: an 80-byte version, and a 64-byte version. We note for

the 80-byte version, only the last 4 bytes, the nonce, will vary for each input value within

a batch. Therefore, for hash functions that ingest less than 76-bytes of data at a time,

we can pre-compute a portion of the computation on the host CPU and load it as an

initial mid-state at runtime. This reduces the hardware resources required by some of the

80-byte hash cores. Hash functions that benefit from this optimization are: JH, Keccak,

Skein, Luffa, Cubehash, Hamsi, and Whirlpool.

4.2.2 HLS coding

There are three different hash core interfaces, 80-byte, 80-byte with mid-state, and 64-byte:

using header_t = struct header_t {

bool vld;

ap_uint<2> id;

45

ap_uint<640> data;

};

using hash_t = struct hash_t {

bool vld;

ap_uint<2> id;

ap_uint<512> data;

};

hash_t hash_80(header_t input, ap_uint<1600> midstate);

hash_t hash_80(header_t input);

hash_t hash_64(hash_t input);

The inputs to each function consist of a valid signal, an ID and the input data (either

640-bits or 512-bits). The output is always a valid signal and the 512-bit digest. Note that

there is no capability for back pressure (i.e. no ready signal), the cores are non-blocking

and always ready to accept data. The valid signal is simply passed through to the output

in sync with the data. The 80-byte interface has an alternate version that accepts a

1600-bit initial mid-state, which is sized according to the largest initial mid-state required

(Keccak). There is an accompanying HLS core that de-serializes a 32-bit stream and

presents the full 1600-bits to the hash core.

In the top-level HLS function for each hash core, we insert the HLS pipeline pragma. This

tells the HLS compiler to unroll and pipeline the function such that the initiation interval

is one clock cycle. This means that the top level function will accept a new input, while

outputting a result every clock cycle. The compiler is supposed to automatically apply

the pipeline directive down to sub-functions as necessary to meet the initiation interval for

the top level. However, we found that sometimes the tool fails to meet II=1 and we have

to apply the HLS pipeline pragma to sub-functions explicitly. We also apply the HLS

interface ap_ctrl_none and HLS interface ap_none pragmas to prevent HLS from

generating control signals for the input and output ports (we explicitly define a valid

signal for header_t and hash_t).

46

hash_t hash_64(hash_t input) {

#pragma HLS interface ap_ctrl_none port=return

#pragma HLS interface ap_none port=input

#pragma HLS pipeline II=1

}

Generally, for cryptocurrency mining, the latency of a hash core is not important, as

ideally the pipeline should be almost always filled. We do not put any latency constraints

on the hash cores. Finally we use the config_rtl -reset none directive in the TCL

compile script to prevent HLS from generating resets for the core. We do not use resets

as this adds additional routing and may affect timing closure. For our use case, that is,

dynamic reconfiguration, a global reset will reset all registers in the dynamic region every

time partial reconfiguration occurs.

4.2.3 Results

Table 4.1 shows the resource utilization for the hash cores when compiled for a 625MHz

clock target (passes timing after place and route). We see that the largest core takes up

327,106 LUTs.

47

Core LUTs FFs Core LUTs FFs

blake_80 90,189 133,269 shavite_80 199,605 64,504
blake_64 88,826 130,809 shavite_64 146,975 54,813

bmw_80 55,178 81,891 simd_80 324,806 428,267
bmw_64 56,632 81,524 simd_64 321,783 427,834

groestl_80 299,630 84,539 echo_80 201,244 107,892
groestl_64 297,938 84,196 echo_64 199,781 89,305

jh_80 97,794 173,738 hamsi_80 47,904 52,613
jh_64 97,832 171,900 hamsi_64 139,335 153,609

keccak_80 51,054 78,445 fugue_80 175,441 84,290
keccak_64 49,293 74,112 fugue_64 154,279 72,674

skein_80 93,959 113,926 shabal_80 84,471 74,398
skein_64 87,075 103,894 shabal_64 76,664 68,531

luffa_80 66,946 63,541 whirlpool_80 50,045 76,336
luffa_64 107,251 99,022 whirlpool_64 74,140 115,393

cubehash_80 270,925 369,668 sha512_80 79,371 128,062
cubehash_64 327,106 437,639 sha512_64 79,807 127,182

Table 4.1: Hash core resource utilization

48

Chapter 5

X16R implementation

5.1 Target hardware

In order to implement our time-sliced approach to the X16R algorithm, we must first

determine the hardware requirements for the FPGA, and the host computer. Our FPGA

device must have enough logic resources (ideally in one SLR) to fit the largest hash function

in our hash library, which takes up 327K LUTs. The FPGA board must have sufficiently

large DRAM capacity to buffer mid-states, and be able to support high-speed dynamic

partial reconfiguration.

The typical mining machine used by GPU miners consists of many GPUs connected to

an x86-based host over PCIe. Due to its relatively low cost, the host machine is typically

constructed from consumer grade hardware (e.g. Core-i7 instead of Xeon CPUs), which

have limited PCIe lanes and slots1. Miners commonly bifurcate the available PCIe lanes

into many x1 lanes, and use PCIe riser cables to adapt them into x16 slots (see Figure

5.1). Popular mining motherboards include: ASUS B250 Mining Expert2, and ASRock

H110 Pro BTC+3. These high slot density boards usually only support the PCIE Gen2

standard. In order to take advantage of the existing infrastructure of GPU miners, we

should consider backward compatibility for PCIe Gen2 x1 bandwidth (i.e. 500MB/s).

We chose to target the Xilinx Virtex Ultrascale+ HBM family of devices as they con-
1PCIe lanes refer to the electrical connections, whereas PCIe slots refer to the physical connector. GPUs

can only plug into a x16 slot, however, they can operate using just an x1 lane in reduced bandwidth mode.
2https://www.asus.com/au/Motherboards-Components/Motherboards/Others/B250-MINING-

EXPERT/
3https://www.asrock.com/mb/intel/h110%20pro%20btc+/

49

https://www.asus.com/au/Motherboards-Components/Motherboards/Others/B250-MINING-EXPERT/
https://www.asus.com/au/Motherboards-Components/Motherboards/Others/B250-MINING-EXPERT/
https://www.asrock.com/mb/intel/h110%20pro%20btc+/

Figure 5.1: ASUS B250 Mining Expert

tain approximately 440K LUTs per SLR, have up to 16GiB of High-Bandwidth-Memory

(HBM), and support DPR via the ICAP at a maximum bandwidth of 800MB/s. Specifi-

cally, we implemented our design on two different boards; the SQRL FK33, which is based

around the VU33P chip, and the Xilinx Varium C1100, which is based around the U55N

chip. The VU33P is a one-SLR device, while the U55N is a two-SLR device. They both

have 8GiB of HBM with a memory bandwidth of 460.8GB/s. Our host is an x86-based

system with an Intel Core i7-8700 and 64GiB of DDR4 ram.

5.2 System design

To realize the design, the FPGA resources are split between a static shell and a dynamic

hash region. The static shell is responsible for communication between the host and the

FPGA, loading and storing mid-states to and from the HBM, and orchestrating reconfig-

uration events that swap hash functions in and out. The dynamic region is where hash

functions are swapped in and out over time and is allocated the majority of the FPGA

area.

We chose the largest possible batch size of 62.9 million (i.e. considering each mid-state is

64-bytes, we need 7.5GiB) that can fit in the 8GB HBM, while reserving 512MB of space

50

for storing partial bitstreams on chip.

Figure 5.2: System overview

5.2.1 PCIe subsystem

The FPGA communicates with the host over PCI Express. We use the Xilinx DMA-

over-PCIe IP (XDMA) core included in Vivado [34]. This allows the host PC to transfer

large amounts of data from main memory onto an AXI4 bus on the FPGA with minimal

interaction from the CPU. This core also allows the host to peek and poke an AXI-Lite

bus at low speed. The AXI4 port is 256-bits wide and is connected to the HBM in order to

load partial bitstreams, while the AXI-Lite port is 32-bits wide and is used for low-speed

control signals. Both ports are clocked at 250MHz.

We configured the XDMA with a link speed of PCIE Gen3 x4 for a maximum bandwidth

of 4GB/s. When plugged into a PCIe Gen3 x1 riser or PCIe Gen2 x1 riser, the link speed

drops to 1GB/s and 500MB/s respectively. We note that the PCIe Gen2 x1 bandwidth is

insufficient to saturate the ICAP bandwidth. We should therefore store as many partial

bitstreams as possible in local memory (in the HBM) for maximum compatibility.

5.2.2 Reconfiguration controller

The reconfiguration controller is a custom HLS-based block that is responsible for loading

the partial bitstreams from the HBM to the ICAP. The controller has a 64-bit wide AXI4

master port, which connects to the HBM, and a standard 32-bit wide AXI-Lite slave port,

51

which connects to the PCIE DMA subsystem. There are sixteen registers, which hold the

addresses in HBM where the partial bitstreams are stored. The addresses are loaded in

order, such that register zero always holds the address of the partial bitstream for the first

sub-chain (always an 80-byte version)4, and register fifteen always hold the address of the

partial bitstream for the last sub-chain.

An internal FSM, upon receiving a start signal from the host, fetches the first partial

bitstream and loads it into the ICAP. On completion, a signal is sent to the hash buffer

engine to start hashing. The FSM then waits for a done signal from the hash buffer engine

indicating that all mid-states have been processed. Then the next partial bitstream is

loaded. This process repeats until all mid-states for the last sub-chain in the chain have

been processed. The controller then wraps back to loading the first partial bitstream

again. The host can also issue a reset (indicating the start of a new block interval or a

change in the working block header), which brings the FSM back to idle.

The ICAPE3 primitive is inserted into the HLS code as a Verilog black box. A JSON

companion file is required that specifies the signal interface, initiation interval and pipeline.

As the ICAPE3 is a primitive, we treat it as a combinational module, with II=0 and

pipeline=0. A 32-bit wide, 1024 entry deep FIFO is inserted between the AXI4 input

and the ICAP. This adapts the 64-bit input to 32-bits and hides the AXI4 burst and DRAM

refresh overheads, so that there is no ICAP idle time when loading partial bitstreams. The

FIFO is sized at 1024x32-bit entries as this takes up one 36K BRAM block.

Figure 5.3: Reconfiguration controller

The reconfiguration controller logic and the AXI4 interface operate at 200MHz, which is

the maximum frequency for the ICAPE3. However, the AXI-Lite interface operates at

250MHz.

4In the current design, the zeroth register is always 0x0_F000_0000.

52

The partial bitstreams are stored in a 512MiB reserved region in the HBM. The address

range is split into two regions, one on the left HBM stack starting at 0x0_F000_0000

and one on the right HBM stack starting at 0x1_F000_0000. The maximum possible full

bitstream size for a single Virtex Ultrascale+ SLR is 27.02MiB, so this reserved region

can hold at least eighteen full bitstreams, and it is worth noting that in practice partial

bitstreams are smaller than full bitstreams.

5.2.3 Hash buffer engine

The hash buffer engine is responsible for reading the mid-states from HBM, feeding them

to the sub-chain that resides within the dynamic region and writing the resulting mid-

states back to HBM. The engine is connected to the HBM by eight AXI3 ports, four for

writing and four for reading. On the first pass, it initializes the first sub-chain with the

initial mid-state provided by the host (if needed) and feeds the sub-chain with the block

header, while incrementing the nonce field. On the last pass, instead of writing the mid-

states back to the HBM, the returning stream of hashes is filtered for hashes that meet

the target (golden nonces). Golden nonces are inserted into the golden nonce FIFO.

In Figure 5.4, we see that internally, the hash buffer engine consists of four FIFOs (one

for each AXI3 write port), a 4-to-1 multiplexer and a 1-to-4 de-multiplexer. Due to

the architecture of the hardened AXI HBM switch, the mid-states are read from HBM

over four 256-bit AXI3 channels using four load units. For each AXI3 channel, every two

consecutive 256-bit words read are recombined to form a 512-bit mid-state every two clock

cycles, which is then merged through a multiplexer to form one 512-bit stream that is fed

to the sub-chain.

Within each load unit, there is a counter that keeps track of how many mid-states it

has loaded. When a 512-bit mid-state is reconstructed, it is tagged with the ID (0-3)

that represents the load/store unit pair, which is carried with the mid-state through the

dynamic region. The output of the sub-chain is de-multiplexed to the appropriate write

channel, according to the ID. This way, we can guarantee that the mid-states return to

memory in order and therefore we can implicitly encode the nonce as the buffer index plus

some initial offset.

As the HBM consists of DRAM, bank refreshes can stall the read and write channels for

53

Figure 5.4: Hash buffer engine

up to 260ns every 3.9µs, therefore the FIFOs are needed to prevent mid-states from being

dropped. The reason we multiplex between four HBM ports instead of two is because the

hash buffer engine runs at a lower frequency (350MHz), while the sub-chains/hash-cores

are running at a higher the frequency (625MHz). We do not run the hash buffer engine

at the native HBM interfacing frequency (450MHz), to achieve timing closure as it is area

constrained (we want to allocate as much FPGA area to the dynamic region as possible).

Figure 5.5: HBM channel configuration

In Figure 5.4, we see that we split the load and store channels between the left and right

HBM stacks. This is due to a bandwidth limitation within the hardened HBM AXI switch.

In Figure 5.5, we see that between each AXI sub-switch there are two simplex channels

running right and two running left. As we use eight channels in total, we must carefully

arrange them such that no bottlenecks arise. As such, we split the memory into four

contiguous buffers, given IDs: 0, 1, 2, and 3. Buffers 0 and 1 reside in the left HBM

54

stack and buffers 2 and 3 reside in the right HBM stack. During hash computation, while

buffers 0 and 2 are being read from, buffers 1 and 3 are being written to. After each

reconfiguration, the buffers being read from and written to are swapped. We connect

the channels to the load and store units so that mid-states being stored always generate

right-bound memory transactions and mid-states being loaded always generate left-bound

memory transactions. This way there is no contention for lateral memory bandwidth, and

there is no contention between loads and stores within a buffer.

5.3 Single function per reconfiguration

In the single function per reconfiguration scheme (SFR), we only configure sub-chains con-

taining one hash function at a time. Thus there are thirty-two possible sub-chains, sixteen

80-byte input sub-chains and sixteen 64-byte input sub-chains. We do not have enough

space to load all thirty-two partial bitstreams into the 512MiB HBM region, therefore, we

opt to load the sixteen 64-byte sub-chains upon power-on of the FPGA via PCIe DMA

from the host. Then at the start of every block interval, we only load the one 80-byte

sub-chain that is needed. The partial bitstreams for the 80-byte sub-chains are kept in

the host DRAM to allow for low-latency copy. On our system, with a PCIe link speed

of Gen3 x4, we found that the worse-case total transfer time for a 27.02MiB bitstream is

7.82ms and is 6.4ms in the average case. This adds an additional ~0.02% overhead to the

system which is negligible. For PCIe Gen2 x1 speeds, the overhead increases to ~0.13%

which is also negligible.

At the start of every block interval, the host software (written in Python) receives a new

block header from a simulated mining pool. It extracts the hash ordering and copies the

first 80-byte sub-chain, to the FPGA HBM. It then loads the addresses in HBM for each

partial bitstream, in order, into the sixteen registers in the reconfiguration controller over

the AXI-Lite bus. It also loads the block header along with the starting nonce and the

target to the hash buffer engine. If required, the initial mid-state is computed on the

CPU (this is required for JH, Keccak, Skein, Luffa, Cubehash, Hamsi, and Whirlpool)

and loaded into the hash buffer engine. Then a start signal is sent to the reconfiguration

controller to start the system.

The reconfiguration controller starts by loading the first partial bitstream, and notifying

55

the hash buffer engine when done. The hash buffer engine loads the initial mid-state (if

required) and the first 608-bits of the block header to the newly configured sub-chain by

shifting the data in 32-bit chunks. Once complete, the four load units generate new data

by incrementing the nonce by one and adding an offset equal to the load/store unit ID (0-3)

multiplied by 15,728,640. Thus the load units generate non-overlapping nonces (memory

addresses). The nonces are fed through the pipeline as illustrated in Figure 5.4 and saved

into the HBM. Once all nonces have been processed, the hash buffer engine sends a done

signal to the reconfiguration controller to start configuring the next sub-chain.

For subsequent sub-chains, the mid-states are loaded from memory instead of being gen-

erated. On the last sub-chain, the outputs are not saved to memory, but are filtered for

ones that meet the target. Outputs that meet the target have their nonces (the memory

address they were stored in) placed into a 32-bit wide FIFO. The host continuously polls

this FIFO for golden nonces.

5.4 Multiple functions per reconfiguration

In the multiple functions per reconfiguration scheme (MFR), we configure up to two hash

functions at a time. The hardware components in the system stay the same, however the

software is changed. Instead of loading all sixteen 64-byte sub-chains at power on, we

load the sub-chains that are needed for the specific chain ordering at the start of every

block interval. The host software, upon receiving the block header, extracts the hash chain

ordering and divides it into sub-chains of at most two hash functions according to a list

of available pre-compiled sub-chains. The required partial bitstreams are loaded into the

FPGA’s HBM via DMA. The transfer is completed in ~97.5ms on average, which adds

an overhead of ~0.16%, as opposed to 0.02% for SFR. On PCIe Gen2 x1 systems, this

overhead increases to ~1.28%.

Each sub-chain contains up to two hash functions that can be selected via a switch, that

connects the sub-chain input to either of the hash function inputs and allows the output

of one hash function to be the input of the other. This cuts down on the number of

permutations that are required to be pre-compiled.

Not every combination of hash functions fits within one Virtex Ultrascale+ SLR, e.g. com-

56

binations such as Groestl-Groestl are too large. We were able to successfully compile 96,

of the 64-byte to 64-byte combinations, out of the possible 136. In total these partial

bitstreams take up 2.43GiB of memory on the host.

5.5 Multi-SLR scaling

Both SFR and MFR can easily be scaled to multiple SLRs, by duplicating another dynamic

region onto a second SLR and by extending the static region to encompass the second

ICAP. In this scheme, there is a separate reconfiguration controller for each SLR. The

bus that connects the reconfiguration controllers to the HBM is widened to 256-bits, thus

allowing up to seven (leaving room for DRAM overhead) reconfiguration controllers to

share a single 256-bit AXI3 port on the HBM. A round-robin arbiter is used to multiplex

between the reconfiguration controllers. This way, each reconfiguration controller is able to

reconfigure its local dynamic region independently and in parallel. As long as each ICAP

does not load a bitstream destined for a different SLR, they are able to operate at the

maximum 200MHz frequency. Therefore, there is no additional reconfiguration overhead

related to multi-SLR scaling.

We implemented a two SLR system on the Xilinx C1100 (U55N) board, where sub-chains

have only a single hash function. We call this scheme SFR2. The mid-states are loaded

and stored by the hash buffer engine as in the single SLR design. However, after they flow

through the first dynamic region, they cross the SLR boundary and are processed by the

next hash function configured in the dynamic region of the second SLR.

In this scheme, there are now two sets of sixteen 64-byte partial bitstreams and one set of

80-byte partial bitstreams. However, we only need to load at most eight partial bitstreams

for each dynamic region. This is because in the worse case, where all sub-chains are one

hash function long, we will need to configure each dynamic region eight times.

5.6 Results

We physically implemented our SFR, and MFR designs on the SQRL FK33 board and

our SFR2 design on the Xilinx C1100 board. We ran an 8-hour long mining session,

57

Figure 5.6: Two SLR system

with a simulated mining pool, with the block interval set to one minute. We used an

Elmor Labs Power Measurement Device5, to measure the average power consumption. We

measured the 12V rails on the PCIE slot and the 8-pin auxiliary power connector. Table

5.1 shows a comparison of performance measured, as mega-hashes per second, as well

as power consumption in watts, and power-efficiency in mega-hashes per joule, between

various NVIDIA GPUs (GTX and RTX), a previous FPGA-based solution from Altered

Silicon6, a commercial X16R ASIC (OW1) and our solutions (SFR, MFR, and SFR2).

We obtained the X16R performance for the RTX 2070 Super, and RTX 3090 GPUs by

benchmarking with commercial mining software, T-Rex version 0.19.14 [27]. All other

GPU performance figures were obtained from nicehash.com7, which maintains a database

of GPU mining performance for various PoW algorithms.

The times to complete a single batch for SFR, MFR, and SFR2 are on average 2.28s, 1.77s,

and 1.19s respectively. The time to reconfigure each bitstream on average is: 28.8ms for

SFR, 32.6ms for MFR, and 28.8ms for SFR2 (i.e. when configuring two regions in parallel).
5https://elmorlabs.com/product/elmorlabs-pmd-power-measurement-device/
6Product information is no longer available on the web.
7https://www.nicehash.com/profitability-calculator

58

https://elmorlabs.com/product/elmorlabs-pmd-power-measurement-device/
https://www.nicehash.com/profitability-calculator

Device MH/s Watts MH/J Node

GTX 1070 17.8 125 0.14 TSMC 16nm
GTX 1080 17.71 150 0.12 TSMC 16nm
GTX 1080 Ti 19.33 170 0.11 TSMC 16nm
RTX 2060 19.88 90 0.22 TSMC 12nm
RTX 2070 25.5 110 0.23 TSMC 12nm
RTX 2070 Super * 34 110 0.31 TSMC 12nm
RTX 2080 34 108 0.31 TSMC 12nm
RTX 2080 Ti 43 145 0.30 TSMC 12nm
RTX 3090 * 63.99 330 0.19 Samsung 8nm
OW1 ASIC 182 1400 0.13 Unkown
AS VCU1525 120 220 0.55 TSMC 16nm
ZU9EG 2 Unkown Unkown TSMC 16nm
VU33P (SFR) 27.07 26 1.04 TSMC 16nm
VU33P (MFR) 35.02 31 1.13 TSMC 16nm
U55N (SFR2) 52.35 48 1.09 TSMC 16nm

Table 5.1: X16R performance and efficiency

For MFR, we found that an average of 10.04 reconfigurations per batch is required. This

gives a reconfiguration overhead of 20.2%, 18.5% and 10.1% respectively.

The raw performance, without accounting for inter-batch overhead, for SFR, MFR, and

SFR2 is; 27.59MH/s, 35.54MH/s, and 52.87MH/s respectively. However, when we collect

the average hash rate over a longer period of time (i.e. 8 hours) we obtain slightly decreased

performance due to the inter-batch overhead.

We see that our SFR design achieves 27.07MH/s while consuming only 26W and our

MFR design increased the hash rate to 35.02MH/s while consuming 31W. We see that

MFR has 8.7% better power efficiency than SFR, which can be attributed to the fact that

there is a baseline idle power usage when the FPGA is power on, and as we do more

computations on the FPGA, this idle power usage becomes a smaller proportion of the

total power consumption. Our SFR2 design achieves 52.35MH/s, which is 93% higher

than SFR, while consuming 48W.

When comparing our designs with GPUs with similar hashing performance, we see that

our SFR hash rate is similar but a bit higher than that of the RTX 2070. However, our

SFR design is 4.52x more power efficient. Our MFR design has a slightly higher hash rate

than the RTX 2080, but is 3.65x more power efficient. Our SFR2 design falls between the

RTX 2080 Ti and RTX 3090 in terms of hash rate, but is respectively 3.63x and 5.74x

more power efficient. It is likely that lower-end GPUs within the RTX 30-series family

59

will be more power efficient than the RTX 3090. However, we did not have any on hand

to test, nor could we find the performance numbers on nicehash.com.

We should also note that the FPGAs used in our experiments were manufactured on the

TSMC 16nm technology node, while the GTX 10-series, RTX 20-series, and RTX 30-series

were manufactured on TSMC 16nm, TSMC 12nm, and Samsung 8nm respectively. The

largest GPUs from each family are the GTX 1080 Ti with 12 billion transistors, the RTX

2080 Ti with 18.6 billion transistors, and the RTX 3090 with 28.3 billion transistors. We

could not find the exact transistor count for the FPGAs we used, however, the largest

FPGA within the Xilinx 16nm Virtex Ultrascale+ family is the VU19P which is manufac-

tured with 39 billion transistors. The VU19P device contains 4.086 million LUTs, which

is 9.29x the number of LUTs we used for SFR and MFR, and 4.64x the number of LUTs

we used for SFR2. Therefore it may be fairer from a manufacturing technology point of

view to compare our FPGA-based designs to the GTX 10-series. When we compared to

the most efficient GPU in the GTX 10-series that we tested, the GTX 1070, our MFR

design is 8.07x more power efficient.

Our designs are also more power efficient than a proprietary FPGA-based solution, listed

as AS VCU1525, from Altered-Silicon. Their system requires two Xilinx VCU1525 boards,

which are teamed together using two QSFP28 direct attach copper cables. However, in

Table 5.1 we reported the hash rate and power consumption for one board (half the

total system). We also note that our designs are more power efficient than the OW1

“ASIC” mining unit, which uses 72 separate chips to run X16R. We suspect that the

chips in the OW1 are most likely manufactured on an older technology node. We warn

readers to take the AS VCU1525 and OW1 performance numbers with a grain of salt, as

publicly available information is scarce, aside from claims from third party blog sites8 and

anonymous sources9.

8https://en.cryptonomist.ch/2019/09/17/mining-ravencoin-hashrate/
9Users who bought the AS VCU1525 solution reported the results shown in Table 5.1.

60

https://en.cryptonomist.ch/2019/09/17/mining-ravencoin-hashrate/

Chapter 6

Conclusion

6.1 Summary

The aim of this research was to demonstrate that FPGA runtime reconfiguration could be

used to speed up multi-hash proof-of-work mining, and in particular, to produce a more

competitive implementation of the X16R algorithm. We examined why a static, ASIC-like

architecture would be inefficient when implementing multi-hash PoW. We considered two

strategies, Dynamic Full Chain, and Time-sliced Dynamic Sub-chains, which use dynamic

partial reconfiguration to address the bottlenecks that appear in the static architecture.

For dynamic full chain, we considered reconfiguring the FPGA at the start of every block

interval with a full chain of sixteen hash cores. While this method would in theory be the

most efficient, as it has very little overhead, it is impractical to implement with current

FPGAs due to the large amount of logic resources required, not to mention the challenge

of producing the bitstreams needed. We chose to implement our X16R algorithm on an

FPGA using the time-sliced dynamic sub-chains method, which divides the X16R chain

into sub-chains, of which only one sub-chain at a time is required to be configured. This is

a more practical approach as it lowers the minimum resource requirements when choosing

an FPGA mining platform, and therefore lowers the barrier to entry for miners.

To obtain a fair comparison with commercial implementations of X16R, we required a

reasonably performant implementation ourselves. To this end we required sixteen high

performance hash cores that are optimized for cryptocurrency mining. We were unable

to find hash cores that fit our requirements within the public domain, therefore we chose

61

to implement our own library of hash cores. During this process, we investigated whether

the auto-pipelining feature provided by various higher-level tools were good enough to

use instead of manual pipelining at the RTL level. We compared our hand-optimized

designs for AES, Keccak, and Groestl, which were written in the Chisel HDL, to an auto-

pipelining tool called PipelineC, as well as Xilinx’s officially supported high-level synthesis

tool, Vitis HLS. We found that the circuits generated by Vitis HLS offered comparable

and sometimes better performance than our hand-optimized RTL at the target frequencies

we care about. This informed our decision to implement all sixteen hash functions using

Vitis HLS.

We implemented three different configurations of our time-sliced dynamic sub-chains ar-

chitecture: SFR — where sub-chains are of length one, MFR — where sub-chains are of

length one or two, and SFR2 — where we extended our SFR design to use two SLRs. Our

designs achieved much better power efficiency than any GPU solution that we were able

to obtain performance metrics for, and in terms of hash throughput, our SFR2 solution

outperforms an RTX 2080 Ti but falls short of an RTX 3090. The latter comparison could

be considered unfair since we compared our 16nm FPGA against a theoretically superior

8nm GPU.

6.2 Discussion

We successfully demonstrated that by using the unique feature of FPGAs to reconfigure at

runtime, one can speed up certain classes of algorithms, in particular multi-hash PoW al-

gorithms. Thus, FPGAs are a practical platform for mining cryptocurrencies that employ

this kind of PoW, and are more suitable than GPUs, especially when considering power

efficiency. The power efficiency is an important factor for miners as it factors into the

total-cost-of-ownership (TCO) for a device. For example, using the May 2022 New South

Wales electricity reference price1 of $0.3782 AUD/kWh, a miner would be expected to pay

$1093.30 AUD per year in electricity cost when mining with an RTX 3090, as opposed to

only $159.03 AUD per year when mining with a Xilinx C1100 FPGA (U55N) card with

our SFR2 solution.
1As given by the AER DMO price for 2022-2023: https://www.aer.gov.au/news-release/aer-sets-

energy-price-cap-to-protect-consumers .

62

https://www.aer.gov.au/news-release/aer-sets-energy-price-cap-to-protect-consumers
https://www.aer.gov.au/news-release/aer-sets-energy-price-cap-to-protect-consumers

We hope that the cryptocurrency community will consider FPGAs as a separate class of

computing device from ASICs. Runtime reconfiguration gives FPGAs the flexibility to

optimize an algorithm in both the space and time dimensions. PoW algorithm designers

should therefore also consider whether they want properties of FPGA-resistance, separate

from ASIC-resistance.

We note that there is still room for improvement upon the SFR, MFR, and SFR2 solu-

tions we presented, while using the same hardware. During our experiments with auto-

pipelining, we observed that it is possible to pipeline the Keccak and Groestl cores to

obtain a maximum clock frequency of 922MHz and 807MHz respectively. For Keccak,

this can be done using auto-pipelining. However for Groestl, hand optimization would be

required. If we had set our target clock frequency to 800MHz, as opposed to 625MHz, and

hand-optimized those designs that underperformed when auto-pipelined, this would lead

to an approximate 28% increase in performance. Alternatively, we can compile each sub-

chain such that they operate at their own maximum clock frequency, and have the clock

generator to be dynamically adjusted after each reconfiguration. We did not implement

MFR2 (i.e. MFR that spans two SLRs, similar to SFR2 but with up to two hash functions

per sub-chain) due to the complexity of compiling 96 additional partial bitstreams for each

of the two SLRs.

In this work we implemented a time-sliced X16R algorithm on an FPGA manufactured us-

ing TSMC’s 16nm technology node. We hypothesise that by re-implementing our method

on the latest Xilinx Versal family of devices (TSMC 7nm) we will be able to achieve at

least a two-fold increase in performance when using devices with the same number of

SLRs. This is due to a doubling in the number of LUTs available in an SLR, coupled with

an eight-fold improvement in configuration bandwidth[12].

6.3 Future work

In order to reduce the number of partial bitstreams required for MFR, we need to inves-

tigate the use of techniques such as nested reconfiguration [36] where the dynamic region

is configured in multiple stages and module relocation where modules can be moved from

one part of the FPGA to another without the need for recompilation.

63

Applying nested reconfiguration to our X16R design would entail splitting the reconfigu-

ration process into two stages. The first stage configures a sub-chain template containing

a number of slots that can be further reconfigured with our hash cores. This way, we can

have templates that allow for a single slot, dual slots, three slots, etcetera. We could have

templates where the slots are equal in size or unbalanced such that slots are of different

sizes. The hash cores can then be compiled into these slots independently, such that the

scheduler is able to mix and match hash cores at run time. By using nested reconfiguration

we can significantly reduce the compilation time and reduce the partial bitstream storage

requirements.

Module relocation allows us to move our hash cores in a more fine-grained manner, in

an X-Y grid. This is done by modifying an existing partial bitstream at runtime. By

introducing module relocation, we can further reduce the number of partial bitstreams

that must be pre-compiled, thus allowing us to combine more hash cores into a sub-chain

and improving performance. Module relocation is a field in which there have been many

previous studies. However, there have been few practical applications of the method,

due to the need for very low level and precise floor-planning. However, due to recent

advancements in both FPGA hardware and compiler technologies, we believe it is time to

revisit the idea of practical module relocation.

The new generation of FPGA hardware, specifically the Xilinx Versal ACAP (built on

TSMC 7nm) family have significantly improved runtime reconfiguration capabilities [12],

allowing for eight times faster loading of partial bitstreams compared to the devices we

used in our experiments. The FPGA fabric in Versal is more regular and thus more

amenable to module relocation. Additionally, a dedicated network-on-chip (NoC) that is

embedded in the fabric, allows user modules to communicate with each other and with

memory without needing a soft-network. A dedicated reconfiguration controller and ARM

cores eliminates the need for a static shell, which allows the designer to concentrate on

the compute architecture rather than the supporting infrastructure.

64

References

[1] Jonathan Bachrach et al. “Chisel: Constructing Hardware in a Scala Embedded

Language”. In: DAC Design Automation Conference 2012. DAC Design Automation

Conference 2012. June 2012, pp. 1212–1221. doi: 10.1145/2228360.2228584.

[2] Christian Beckhoff, Dirk Koch, and Jim Torresen. “Portable Module Relocation and

Bitstream Compression for Xilinx FPGAs”. In: 2014 24th International Conference

on Field Programmable Logic and Applications (FPL). 2014 24th International Con-

ference on Field Programmable Logic and Applications (FPL). Sept. 2014, pp. 1–8.

doi: 10.1109/FPL.2014.6927480.

[3] Michael Bedford Taylor. “The Evolution of Bitcoin Hardware”. In: Computer 50.9

(2017), pp. 58–66. issn: 1558-0814. doi: 10.1109/MC.2017.3571056.

[4] Sheetal U. Bhandari et al. “Real Time Video Processing on FPGA Using on the Fly

Partial Reconfiguration”. In: 2009 International Conference on Signal Processing

Systems. 2009 International Conference on Signal Processing Systems. May 2009,

pp. 244–247. doi: 10.1109/ICSPS.2009.32.

[5] Alex Biryukov and Dmitry Khovratovich. “Equihash: Asymmetric Proof-of-Work

Based on the Generalized Birthday Problem”. In: Jan. 1, 2016. doi: 10.14722/ndss.

2016.23108.

[6] Tron Black. Ravencoin — ASIC Thoughts Round Two. Medium. Apr. 6, 2020. url:

https://tronblack.medium.com/ravencoin-asic-thoughts-round-two-f4f743942656

(visited on 05/08/2022).

[7] Tron Black and Joel Weight. X16R-Whitepaper.Pdf. 2018. url: https://ravencoin.

org/assets/documents/X16R-Whitepaper.pdf (visited on 05/28/2022).

65

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/FPL.2014.6927480
https://doi.org/10.1109/MC.2017.3571056
https://doi.org/10.1109/ICSPS.2009.32
https://doi.org/10.14722/ndss.2016.23108
https://doi.org/10.14722/ndss.2016.23108
https://tronblack.medium.com/ravencoin-asic-thoughts-round-two-f4f743942656
https://ravencoin.org/assets/documents/X16R-Whitepaper.pdf
https://ravencoin.org/assets/documents/X16R-Whitepaper.pdf

[8] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized

Application Platform.

[9] Hyungmin Cho. “ASIC-Resistance of Multi-Hash Proof-of-Work Mechanisms for

Blockchain Consensus Protocols”. In: IEEE Access 6 (2018), pp. 66210–66222. issn:

2169-3536. doi: 10.1109/ACCESS.2018.2878895.

[10] Evan Duffield and Daniel Diaz. Dash: A PrivacyCentric CryptoCurrency.

[11] Bruce Fenton and Tron Black. Ravencoin: A Peer to Peer Electronic System for the

Creation and Transfer of Assets.

[12] Brian Gaide et al. “Xilinx Adaptive Compute Acceleration Platform: Versal TM

Architecture”. In: Proceedings of the 2019 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. FPGA ’19: The 2019 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays. Seaside CA USA: ACM,

Feb. 20, 2019, pp. 84–93. isbn: 978-1-4503-6137-8. doi: 10.1145/3289602.3293906.

url: https://dl.acm.org/doi/10.1145/3289602.3293906 (visited on 05/28/2022).

[13] Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski. “Fair and Comprehensive

Methodology for Comparing Hardware Performance of Fourteen Round Two SHA-3

Candidates Using FPGAs”. In: Aug. 17, 2010, pp. 264–278. isbn: 978-3-642-15030-2.

doi: 10.1007/978-3-642-15031-9_18.

[14] Xinfei Guo et al. “Agile-AES: Implementation of Configurable AES Primitive with

Agile Design Approach”. In: Integration 85 (July 1, 2022), pp. 87–96. issn: 0167-

9260. doi: 10.1016/j.vlsi.2022.04.005. url: https://www.sciencedirect.com/science/

article/pii/S0167926022000426 (visited on 05/05/2022).

[15] Ekawat Homsirikamol and Kris Gaj. “Hardware Benchmarking of Cryptographic

Algorithms Using High-Level Synthesis Tools: The SHA-3 Contest Case Study”.

In: Applied Reconfigurable Computing. Ed. by Kentaro Sano et al. Lecture Notes

in Computer Science. Cham: Springer International Publishing, 2015, pp. 217–228.

isbn: 978-3-319-16214-0. doi: 10.1007/978-3-319-16214-0_18.

[16] Ekawat Homsirikamol and Kris Gaj. “Toward a New HLS-based Methodology for

FPGA Benchmarking of Candidates in Cryptographic Competitions: The CAESAR

Contest Case Study”. In: 2017 International Conference on Field Programmable

66

https://doi.org/10.1109/ACCESS.2018.2878895
https://doi.org/10.1145/3289602.3293906
https://dl.acm.org/doi/10.1145/3289602.3293906
https://doi.org/10.1007/978-3-642-15031-9_18
https://doi.org/10.1016/j.vlsi.2022.04.005
https://www.sciencedirect.com/science/article/pii/S0167926022000426
https://www.sciencedirect.com/science/article/pii/S0167926022000426
https://doi.org/10.1007/978-3-319-16214-0_18

Technology (ICFPT). 2017 International Conference on Field Programmable Tech-

nology (ICFPT). Dec. 2017, pp. 120–127. doi: 10.1109/FPT.2017.8280129.

[17] Jaekyung Im and Seokhyeong Kang. “Comparative Analysis between Verilog and

Chisel in RISC-V Core Design and Verification”. In: 2021 18th International SoC De-

sign Conference (ISOCC). 2021 18th International SoC Design Conference (ISOCC).

Oct. 2021, pp. 59–60. doi: 10.1109/ISOCC53507.2021.9614007.

[18] Intel. Intel Stratix 10 Configuration User Guide.

[19] Kawpowminer (Ethminer Fork with ProgPoW Implementation). RavenCommunity,

May 23, 2022. url: https://github.com/RavenCommunity/kawpowminer (visited

on 05/28/2022).

[20] Julian Kemmerer. PipelineC. May 2, 2022. url: https : / / github . com /

JulianKemmerer/PipelineC (visited on 05/05/2022).

[21] Rakan Khraisha and Jooheung Lee. “A Scalable H.264/AVC Deblocking Filter Ar-

chitecture Using Dynamic Partial Reconfiguration”. In: ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings. Apr. 19, 2010,

pp. 1566–1569. doi: 10.1109/ICASSP.2010.5495525.

[22] Dirk Koch et al. “Partial Reconfiguration on FPGAs in Practice — Tools and Ap-

plications”. In: ARCS 2012. ARCS 2012. Feb. 2012, pp. 1–12.

[23] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

[24] Marie Nguyen and James C. Hoe. “Time-Shared Execution of Realtime Computer

Vision Pipelines by Dynamic Partial Reconfiguration”. In: 2018 28th International

Conference on Field Programmable Logic and Applications (FPL). 2018 28th Inter-

national Conference on Field Programmable Logic and Applications (FPL). Aug.

2018, pp. 230–2304. doi: 10.1109/FPL.2018.00046.

[25] C. Patterson. “High Performance DES Encryption in Virtex/Sup TM/ FPGAs Us-

ing JBits/Sup TM/”. In: Proceedings 2000 IEEE Symposium on Field-Programmable

Custom Computing Machines (Cat. No.PR00871). Proceedings 2000 IEEE Sym-

posium on Field-Programmable Custom Computing Machines (Cat. No.PR00871).

Apr. 2000, pp. 113–121. doi: 10.1109/FPGA.2000.903398.

67

https://doi.org/10.1109/FPT.2017.8280129
https://doi.org/10.1109/ISOCC53507.2021.9614007
https://github.com/RavenCommunity/kawpowminer
https://github.com/JulianKemmerer/PipelineC
https://github.com/JulianKemmerer/PipelineC
https://doi.org/10.1109/ICASSP.2010.5495525
https://doi.org/10.1109/FPL.2018.00046
https://doi.org/10.1109/FPGA.2000.903398

[26] Thinh Hung Pham, Suhaib A. Fahmy, and Ian Vince McLoughlin. “An End-to-End

Multi-Standard OFDM Transceiver Architecture Using FPGA Partial Reconfigura-

tion”. In: IEEE Access 5 (2017), pp. 21002–21015. issn: 2169-3536. doi: 10.1109/

ACCESS.2017.2756914.

[27] Release T-Rex 0.19.14 · Trexminer/T-Rex. GitHub. url: https ://github .com/

trexminer/T-Rex/releases/tag/0.19.14 (visited on 05/28/2022).

[28] Ashish Rajendra Sai et al. “Taxonomy of Centralization in Public Blockchain Sys-

tems: A Systematic Literature Review”. In: Information Processing & Management

58.4 (July 1, 2021), p. 102584. issn: 0306-4573. doi: 10.1016/j.ipm.2021.102584. url:

https://www.sciencedirect.com/science/article/pii/S0306457321000844 (visited on

05/28/2022).

[29] National Institute of Standards and Technology. FIPS PUB 180-2. url: https://

csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/

fips180-2.pdf (visited on 05/28/2022).

[30] tevador. RandomX. May 27, 2022. url: https ://github.com/tevador/RandomX

(visited on 05/28/2022).

[31] The Whirlpool Hash Function. Nov. 29, 2017. url: https://web.archive.org/web/

20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (visited

on 05/28/2022).

[32] John Tromp. Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 49–62. doi: 10.1007/978-

3-662-48051-9_4. url: http://link.springer.com/10.1007/978-3-662-48051-9_4

(visited on 05/28/2022).

[33] Meltem Sonmez Turan et al. Status Report on the Second Round of the SHA-3 Cryp-

tographic Hash Algorithm Competition. NIST IR 7764. Gaithersburg, MD: National

Institute of Standards and Technology, 2011, NIST IR 7764. doi: 10.6028/NIST.IR.

7764. url: https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7764.pdf (visited on

05/28/2022).

[34] Xilinx. DMA/Bridge Subsystem for PCI Express v4.1 Product Guide. 2021.

68

https://doi.org/10.1109/ACCESS.2017.2756914
https://doi.org/10.1109/ACCESS.2017.2756914
https://github.com/trexminer/T-Rex/releases/tag/0.19.14
https://github.com/trexminer/T-Rex/releases/tag/0.19.14
https://doi.org/10.1016/j.ipm.2021.102584
https://www.sciencedirect.com/science/article/pii/S0306457321000844
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://github.com/tevador/RandomX
https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
https://doi.org/10.1007/978-3-662-48051-9_4
https://doi.org/10.1007/978-3-662-48051-9_4
http://link.springer.com/10.1007/978-3-662-48051-9_4
https://doi.org/10.6028/NIST.IR.7764
https://doi.org/10.6028/NIST.IR.7764
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7764.pdf

[35] Xilinx. Getting Started with Vitis HLS • Vitis High-Level Synthesis User Guide

(UG1399) • Reader • Documentation Portal. url: https://docs.xilinx.com/r/en-

US/ug1399-vitis-hls (visited on 05/08/2022).

[36] Xilinx. Technology Advancements for Dynamic Function eXchange in Vivado ML

Edition. 2021, p. 13.

[37] Xilinx. UltraScale Architecture Configuration User Guide. 2022.

[38] Xilinx. Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching Characteristics.

2021, p. 81.

69

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls

Appendix A

Appendix A

A.1 Ethash

Ethash, which is sometimes referred to as Dagger-Hashimoto, is a memory-hard algorithm

that was developed for the Ethereum blockchain. It consists of the following high-level

steps:

Preparation:

1. A new seed is computed every epoch, which is 30,000 blocks. The seed for the current

epoch is the Keccak-256 hash of the previous epoch.

2. From the seed, 16MiB pseudo-random data, called the cache is computed.

3. A pseudo-random N GiB dataset is generated from the cache. N starts at 1GiB for

the first epoch, and grows linearly over time, increasing for each new epoch. The

exact values of N for each epoch can be found on the Ethereum wiki1.

Mining:

1. The block header and a 64-bit nonce is first hashed using Keccak-256 to produce a

256-bit digest.

2. A mix variable is used to index and fetch a 128-byte page from the dataset, and is

initially set to the output of step 1.
1https://eth.wiki/en/concepts/ethash/ethash

70

https://eth.wiki/en/concepts/ethash/ethash

3. The mix variable is then updated by combining it with the page which was fetched

from the dataset, using a mixing function.

4. Steps 2-3 are repeated 64 times.

5. The resulting mix value is post-processed into a final 256-bit digest.

6. This final digest is compared with the target to determine if this is a winning hash.

We can see that each iteration of Ethash requires 64 memory reads of 128-bytes each,

totalling 8KiB. Meaning that a chip with a maximum memory bandwidth of 500GB/s is

limited to a maximum hash rate of 61MH/s. Currently, as of May 2022, the size of the

dataset N for the Ethereum blockchain is 4.8672GiB.

A.2 RandomX

While most proof-of-work algorithms operate by executing a fixed algorithm on random

data, RandomX makes the algorithm pseudo-randomly determined. The current block

header, and a nonce, generates the current algorithm. By iterating the nonce, a miner

can generate many valid programs to prevent overlapping work. However, to prevent

miners from cherry-picking easy programs by iterating through nonces and performing

static analysis, a chain of programs is used. The generation of each subsequent program is

dependent on the result of the former. Therefore, a hypothetical ASIC designed to mine

a programmatic PoW must be fully reprogrammable. The RandomX developers take this

concept further by making their algorithm take advantage of the following features of

modern CPUs:

• super-scalar execution, the ability to execute multiple instructions in one clock cycle,

• out-of-order execution, the ability to re-order instructions to minimize stalls due to

data availability, and

• multi-level caching, the ability to store small amounts of data close to the CPU cores

to reduce latency incurred by data movement.

Thus, an ASIC designed for mining RandomX will likely resemble a modern desktop

or server CPU. A RandomX program executes on a virtual machine with the following

specifications:

71

• 64-bit integer arithmetic unit with:

– 8 x 64-bit registers

• 64-bit floating-point arithmetic unit with:

– 4 x 128-bit read-only registers (constant for a particular instance of a program)

– 4 x 128-bit additive registers (can only store results after additions or subtrac-

tions)

– 4 x 128-bit multiplicative registers (can only store results after multiplications,

divisions or, square roots)

– where each 128-bit register stores two 64-bit floating-point numbers (the two

are not independently addressable)

• 2MB scratchpad consisting of:

– 2MB L3 cache (inclusive of L1 and L2)

– 256KB L2 cache (inclusive of L1)

– 16KB L1 cache

• 2GB RAM (read-only dataset)

Any random program will only modify the state of the register file and scratchpad. The

2GB dataset only changes once every 2048 blocks (~2 days for Monero) with a 64-block

forewarning. The dataset is generated using a SuperscalarHash function specifically de-

signed to burn as much power as possible. This is done to prevent ASICs from computing

parts of the dataset on the fly, bypassing the 2GB memory requirement.

At a high level, RandomX does the following. It takes the input (header and nonce),

hashes it, and uses the hash as a seed to generate a random program. It then executes

this program a large number of times (such that the time spent running the random

program dominates). We obtain an output that is to be used as a seed to generate a new

random program (also to be executed a large number of times). The series of steps is done

several times to prevent cherry-picking as referred to earlier.

One iteration of RandomX is computed as follows:

72

1. The input to RandomX (block header and nonce) is hashed using Blake2b-512 to

produce an initial seed.

2. This initial seed is used to initialize the scratchpad using an AES-based pseudo-

number generator (PRNG), with the last 64 bytes of the scratchpad used as the seed

for the next part.

3. The seed is used to generate (also using an AES-based PRNG) a random 256 in-

struction program.

4. The program is executed 2048 times in a loop, producing a 256-byte result (the state

of the register file).

5. Do steps 3-4 eight times, using the Blake2b-512 hash of the result as the seed.

6. The scratchpad is hashed using an AES-based hash function producing a 64-byte

digest.

7. The Blake2b-256 hash of the scratchpad digest, concatenated with the final state of

the register file, is considered the output for one iteration of RandomX.

73

	Acknowledgement
	Abstract
	Introduction
	Overview
	Contributions
	Publications and awards

	Background
	Cryptocurrency mining
	Proof-of-Work
	Pooled mining
	Evolution of mining hardware
	ASIC-resistance

	FPGA runtime reconfiguration
	FPGA hardware

	Related Work
	Applications of runtime reconfiguration
	Runtime reconfiguration methodology

	Design exploration
	X16R algorithm
	Definition
	Properties

	Static design
	Dynamic full chain
	Time-sliced dynamic sub-chains
	Overheads
	Intra-batch overhead
	Inter-batch overhead
	Estimated performance

	Hash functions implementation
	Is HLS auto-pipelining competitive with handcrafted RTL?
	Languages
	Designs evaluated
	How results were collected
	AES results
	Keccak results
	Groestl results
	HLS vs RTL conclusion

	Hash core library implementation
	Input width optimization
	HLS coding
	Results

	X16R implementation
	Target hardware
	System design
	PCIe subsystem
	Reconfiguration controller
	Hash buffer engine

	Single function per reconfiguration
	Multiple functions per reconfiguration
	Multi-SLR scaling
	Results

	Conclusion
	Summary
	Discussion
	Future work

	Appendix A
	Ethash
	RandomX

