
Language extension via dynamically extensible compilers.

Author:
Seefried, Sean

Publication Date:
2006

DOI:
https://doi.org/10.26190/unsworks/17477

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/29524 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/17477
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/29524
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

The University of New South Wales

School of Computer Science and Engineering

Language Extension via

Dynamically Extensible Compilers

Sean Seefried

PhD Dissertation

June 2006

Supervisor: Dr. Manuel M. T. Chakravarty

Co-supervisor: Dr. Gabriele Keller

Abstract

This dissertation provides the motivation for and evidence in favour of an approach to
language extension via dynamic loading of plug-ins. There is a growing realisation that
language features are often a superior choice to software libraries for implementing appli-
cations. Among the benefits are increased usability, safety and efficiency. Unfortunately,
designing and implementing new languages is difficult and time consuming. Thus, reuse
of language infrastructure is an attractive implementation avenue. The central question
then becomes, what is the best method to extend languages?

Much research has focussed on methods of extension based on using features of the
language itself such as macros or reflection. This dissertation focuses on a complementary
solution: plug-in compilers. In this approach languages are extended at run-time via
dynamic extensions to compilers, called plug-ins. Plug-ins can be used to extend the
expressiveness, safety and efficiency of languages. However, a plug-in compiler provides
other benefits. Plug-in compilers encourage modularity, lower the barrier of entry to
development, and facilitate the distribution and use of experimental language extensions.

This dissertation describes how plug-in support is added, to both the front and back-
end of a compiler, and demonstrates their application through a pair of case studies.

Acknowledgements

In the Scsh manual Olin Shivers wrote the prototype for a new, more honest form of
acknowledgements. It finished with:

Oh yes, the acknowledgements. I think not. I did it. I did it all, by myself.

Of course he’s being unfair1 but he’s hit upon something that magnanimity usually
prevents people from saying: ultimately it’s up to the PhD candidate as to whether they
finish or not.

Doing a PhD has been a rollercoaster ride. At times it was hard not to feel like I
was jumping through yet another gigantic hoop, something I’d promised to swear off after
my undergraduate studies. But I was lucky, I had a pair of supervisors that showed me
the real academic world, actively encouraging me to publish papers, attend conferences,
present talks and collaborate with researchers from around the world. I still struggled with
feelings that doing a PhD was more about endurance than anything else but slowly these
feelings gave way to a perception of myself as an apprentice researcher being carefully
guided into the world of academia.

I’d like to offer genuine and heartfelt thanks to all those people who helped me succeed.
My greatest thanks go to my supervisors, Manuel Chakravarty and Gabi Keller. Within
days of beginning work on my topic I knew I had made the right decision to leave Brisbane
and come to Sydney to work with them. They have both been truly inspirational mentors
and supportive friends throughout my candidacy. They have also served as role models
demonstrating how to achieve the correct balance between theoretical rigour and practical
outcomes in research. Also their son, Leon, provided much needed moments of levity and
awe inspiring cuteness.

Next I would like to thank my peers. André Pang was the first in the PLS Research
Group to become interested in plug-ins in a statically typed functional programming set-
ting. I thank him for allowing me to shamelessly rip off his ideas and extend them. He
has also become one of my best friends. Don Stewart, the über-hacker of our group, was
also of immeasurable assistance in thrashing out the implications of plug-ins. My work
co-evolved with his popular hs-plugins library. Thanks also go to Stefan Wehr for his sref

1Actually he might take issue with that if he ever reads this.

6

tool which allowed me to include in my thesis code that was executable but also fancily
formatted. To Patryk Zardarnowski I offer an apology: I’m sorry I finished writing my dis-
sertation before you. I’d also like to thank, in no particular order, Sarah Webster, Simon
Winwood, Sean “Prime” Lee2, and Roman Leshchinskiy for all the interesting discussions
that formed my days as a researcher.

The third chapter of this dissertation is closely based on a paper I published called
Optimising Embedded DSLs using Template Haskell. Discussions with various researchers
from around the world helped improved the presentation of this paper immensely. In no
particular order they were Ian Lynagh, Simon Peyton Jones, John O’Donnell, Anthony
Sloane, and Nicolas Magaud.

Conal Elliot deserves particular mention. During my undergraduate degree I came
across his paper on Pan, a language for functional image synthesis. The sheer beauty
of this language and the images one can generate using it was what got me interested
in implementing domain specific languages in Haskell in the first place. This interest
continued, branching into general questions of language reuse. But it was Pan that got it
all started. Thank you for all the great discussions we had via email during the four years
I worked on this dissertation.

In keeping with tradition I have reserved thanks for the people outside my academic
circle until last. This is because you sustained me in ways different to, but in many ways
just as important as my academic peers.

First, my parents. You provided me with love, support (and occasionally money!). On
the brief occasions I was able to return to Brisbane I was rejuvinated by your obvious pride
in what I was doing. Toby Meadows, believe it or not but you steered me back onto the
path, on more than one occasion, when I’d lost all sense of direction. I’ll always admire
you for your commitment to truth and reason. Philippa Grahame, you journeyed with me
for almost two years of my PhD. With your love and support I felt like I could achieve
almost anything. I’m only sorry I put you off doing your own postgraduate degree. The
giant microbe stuffed toy you gave me, William Butler Yeast, still safeguards my desk and
overseas my daily activities.

2We couldn’t have two Seans in our research group without confusion. He got the name Sean′, which
in retrospect sounds a lot cooler. Anyone remember Optimus Prime?

Contents

1 Introduction 13

1.1 Contributions of the dissertation . 14

1.2 Structure of the dissertation . 15

1.3 Source code . 16

2 Background 17

2.1 Why extend languages? . 17

2.1.1 The complexity of languages . 18

2.1.2 The complexity of implementations 19

2.1.3 Programming environments and communities 20

2.2 What sorts of extension are we interested in? 20

2.3 Methods of language extension . 21

2.3.1 External extension . 21

2.3.2 Extension features . 22

2.3.3 Extending the compiler . 22

2.4 Plug-in compilers . 23

2.4.1 Advantages . 24

2.4.2 Classification and applications of plug-ins 26

2.4.3 Common criticisms of plug-in compilers 28

2.4.4 Limitations of plug-in compilers . 29

2.5 Meta-programming vs. plug-in compilers . 29

2.6 Why Haskell? . 29

2.7 Further related work . 30

3 Optimising Embedded DSLs with Template Haskell 31

3.1 Haskell for EDSLs and meta-programming 32

3.1.1 Haskell: a good host language for EDSLs 32

3.1.2 Compile-time meta-programming using Template Haskell 33

3.2 Introduction to the Pan DSL . 35

3.2.1 A simple image in Pan . 36

8 CONTENTS

3.2.2 The original Pan implementation . 37
3.3 PanTHeon . 37

3.3.1 Unboxing Arithmetic . 38
3.3.2 Inlining . 40
3.3.3 Algebraic Transformation . 42
3.3.4 Architecture of PanTHeon . 44

3.4 Benchmarks . 44
3.4.1 PanTHeon vs. itself . 44
3.4.2 PanTHeon vs. Pan . 45
3.4.3 Relative code base sizes . 45

3.5 Template Haskell specifics . 46
3.5.1 Reification of top-level functions . 46
3.5.2 Lack of type information . 47
3.5.3 Unboxing in the context of polymorphic data structures 47

3.6 Related Work . 48
3.7 Towards plug-in compilers . 49

3.7.1 Problems with compile-time meta-programming 49
3.7.2 The case for plug-in compilers . 50

4 Plug-in optimisations 51

4.1 Requirements and design alternatives for back-end plug-ins 52
4.1.1 Intermediate representations . 52
4.1.2 Compositional framework for scripting optimisations 54
4.1.3 Communication and control flow framework 54

4.2 Back-end plug-ins using dynamic loading and linking in GHC 57
4.2.1 Retrofitting GHC with back-end plug-ins 57
4.2.2 An image lifting optimisation for the Pan EDSL 58
4.2.3 High-level description . 59
4.2.4 Formal account . 61

4.3 Implementing the image lifting pass . 62
4.3.1 Isolating primitive images . 63
4.3.2 Lifting images . 64

4.4 Adding plug-in support and implementing the API in GHC 65
4.4.1 Adding plug-in support . 65
4.4.2 Implementing the API . 67

4.5 Reusing existing Core-to-Core passes . 68
4.5.1 Inlining . 68
4.5.2 Dead code elimination . 70
4.5.3 Beta reduction . 70
4.5.4 Scripting the optimisations . 71

4.6 Benchmarks . 72
4.7 Future work: a DSL for writing optimisations 72

CONTENTS 9

4.7.1 A note on implementing plug-in DSLs 73

4.8 Related work . 74

4.9 Summary . 75

5 Extensible data types in Haskell 76

5.1 Introduction . 76

5.2 Syntactic sugar for open abstract types . 78

5.3 A running example: the lambda calculus . 79

5.4 Läufer’s method and retrospective superclassing 80

5.4.1 The version problem . 83

5.4.2 Retrospective superclassing . 83

5.5 Translation of the running example . 85

5.5.1 Initial module . 85

5.5.2 Extension module . 87

5.5.3 Recursive dictionaries . 91

5.6 Formalisation . 92

5.6.1 The source and target languages . 92

5.6.2 The rules . 94

5.6.3 Base case: Translating open data . 96

5.6.4 Inductive step: Translating extend data 98

5.6.5 The link between the formalisation and the running example 104

5.6.6 Creating values of the EDT . 105

5.6.7 Implementation . 105

5.7 Pattern matching and Binary Functions . 106

5.7.1 Stratified pattern matching . 106

5.7.2 Binary functions . 107

5.8 Related work . 108

5.8.1 OCaml’s solution to the expression problem 109

5.8.2 Scala’s solution to the expression problem 113

5.8.3 Other solutions in Haskell . 116

5.9 Summary . 117

6 Front-end plug-ins 119

6.1 List comprehensions . 119

6.2 Adding front-end plug-in support for a compiler 120

6.2.1 The anatomy of a front-end plug-in 121

6.2.2 Extensible abstract syntax . 122

6.2.3 The front-end plug-in data type . 122

6.3 The list comprehension plug-in . 123

6.3.1 New variants . 123

6.3.2 Lexing and parsing . 123

6.3.3 Renaming . 124

6.3.4 Type Inference . 124
6.3.5 Desugaring . 125
6.3.6 The FrontEndPlugin . 126

6.4 A real implementation: PHRaC . 126
6.4.1 The PHRaC API . 126
6.4.2 Extensible abstract syntax in PHRaC 127

6.5 Related work . 129
6.6 Future work . 130

6.6.1 A plug-in DSL for type inference . 130
6.6.2 Desugaring through lengthening plug-ins 131
6.6.3 A client/server compiler . 131

6.7 Summary . 131

7 Conclusion 133

A Module Pan.Image 136

B Images used in image lifting benchmarks 138

B.1 WhiteOnRedOnBlack . 138
B.2 Stripes . 138
B.3 ColouredStripes . 139
B.4 StripesOnStripes . 139
B.5 StripesOfWidth . 140
B.6 CircleOnStripes . 140

C Dictionary translations of module F0 Alpha 141

D Plug-in functions in PHRaC 144

D.1 Class declarations in PHRaC . 144
D.1.1 Module SyntaxTransformation . 144
D.1.2 Module TypeInference . 144
D.1.3 Module Desugar . 145

D.2 The list-comprehension plug-in . 145
D.2.1 Renaming . 145
D.2.2 Type inference . 146
D.2.3 desugarExpr . 147

List of Figures

2.1 The difference between lengthening and widening plug-ins 27

3.1 An example of an arithmetic transformation. 34

3.2 Checker board imposed over swirled vertical blue and red stripes 36

3.3 Some algebraic properties of Pan primitives 42

3.4 Effect of optimisations on frame rate at resolution of 320x200. 45

3.5 M2TH imports M1 which splices in declarations in M1TH. 46

3.6 A comparison of three approaches to implementing DSLs 49

4.1 A monadic API for a typed lambda calculus with data types, pattern match-
ing and let-expressions. 53

4.2 Two possible architectures for back-end plugins. 1) Dynamically loaded
plug-ins 2) Plug-ins as stand-alone processes. 55

4.3 An augmented display function that incorporates lifted images 61

4.4 Creating the partial inner image . 62

4.5 Creating a constant image and lift context 63

4.6 The call graph of replaceIfLiftable . 64

4.7 getLiftedImages . 65

4.8 liftImageExpr . 66

4.9 The CPM monad . 68

4.10 The heart of the custom inlining pass . 70

4.11 A dump of the Core code generated for stripes. 71

4.12 How the optimisation pipeline is scripted 71

4.13 Results for six effects containing liftable images 72

5.1 The initial module. It defines the data structure to represent the simple
lambda calculus and an alpha conversion function. 80

5.2 The extension module. It extends the earlier data structure to represent let
expression, defines an extra equation on the alpha conversion function and
defines a new evaluation function. 81

5.3 Some helper functions that are also present in the extension module. 81

5.4a Preliminaries: the proxy type, Sat class and wrapper type 85
5.4b Initial component type and the base functionality class 85
5.4c Functionality instance . 86
5.4d Unwrapping instance . 86
5.4e Capping classes, capping types and capping instances 86
5.4f Smart constructors . 86
5.4g Regular declarations . 87
5.5a Module header and new component type . 87
5.5b Instances for new equations on existing functions 88
5.5c Functionality classes and explicit dictionary 88
5.5d Unwrapping instance . 88
5.5e Instances for new functions on all component types 89
5.5f Capping class, capping type and capping instances 89
5.5g Smart constructors . 90
5.5h Regular declarations . 90
5.6h A diagram of two recursive dictionaries produced by AlphaCap instances

on Exp and Exp 0. 91
5.7a Syntax of source language . 93
5.7b Concrete symbols of the source language . 95
5.7c Concrete symbols of the target language . 96
5.8a Translation for open data declaration in the initial module (m = 0). 97
5.8b Translation for regular declarations in the mth module. 98
5.8c Translation for new equations on existing functions in the mth extension

module. 98
5.8d Translation for extend data declaration and new function for the mth ex-

tension module. 99
5.8e Translation rules . 100
5.8f More translation rules . 101
5.9 A mapping from symbols in the formal translation to identifiers in the

running example. 105
5.10 The F0 Alpha module implemented OCaml. 110
5.11 New functionality defined on the alpha function in OCaml module F1 Eval .111
5.12 Function eval defined on ordinary lambda expressions and the let extension

in OCaml module F1 Eval. 112

6.1 Rules for translation list comprehensions into more primitive expressions. . 120
6.2 The structure of a compiler for a typical functional language 121

Chapter 1
Introduction

While, in principle, it is possible to program any application in a Turing complete
language some languages are better suited for certain tasks. That is, computational

possibility is not the only concern; we are also concerned with expressiveness, safety and
efficiency, things which cannot always be provided adequately through software libraries.
Within languages, expressiveness is provided through concise, elegant notations while
safety is provided through either static checks, which are machine checked as opposed
to being done by hand, or dynamic checks, which are tedious to manually implement.
Efficiency can be provided through the agency of clever optimisation or run-time support
for common implementation techniques. If we accept the aforementioned benefits, we are
faced with a conundrum: despite their utility, creating new languages is expensive both
in time and effort.

In an effort to mitigate this reality it has been suggested that languages should be
designed for extensibility. There are solid grounds for this approach. Established languages
are more likely to have high quality implementations, a suite of useful libraries and good
tool support such as IDEs, profilers and debuggers. There is also a higher likelihood
that they benefit from a well-established programmer community that can be used as a
resource to help train novices, give advanced help, and help improve and provide feedback
on software.

In this dissertation I tackle the issues arising from such a language implementation
approach. I provide one answer to the question of how one should design a language and
its implementation so that it can be extended with a minimum of extraneous effort. At
its heart, this approach is concerned with reuse.

The abstract space of solutions can be divided into halves:

• Add language extension mechanisms to the language. Here we focus on language
features that allow us to define new constructs that have equivalent functionality to
constructs that would normally be built into the language standard.

• Design the compiler to be extensible. There is always the option of extending a lan-
guage by modifying the source code of an existing compiler. Yet for some compilers,

14 Chapter 1: Introduction

given their size and complexity, this can be impractical. Therefore, the basic thrust
of this solution is to design extensibility into the compiler from the beginning.

The primary focus of this dissertation is on a specific instance of the latter solution: a
dynamically extensible compiler implementation, which I refer to henceforth as a plug-in
compiler. As we shall see this variant has many features to recommend it over its statically
extensible counterpart.

Initially, I investigated a solution based on language extension mechanisms because,
in many respects, it is more principled. The results of this research are included in this
dissertation for two reasons. First, the techniques developed can be used with little modi-
fication in a plug-in compiler and second, the problems encountered during the execution
of this approach are interesting in their own right and motivate the implementation of a
plug-in compiler.

Plug-in compilers provide the ability to extend languages without requiring the pro-
grammer to be intimately familiar with the source code of a particular compiler; all that
is necessary is a familiarity with the exposed plug-in API. Consequently, the barriers to
contribution are lowered. Simultaneously, the problem of code base forking is mitigated;
with plug-ins it should no longer be necessary to fork the development tree of a compiler
when testing experimental language extensions, only to be faced with the tediousness of
integrating them back into the trunk once they have become well established. Back-end
plug-ins also provide a means by which libraries can be distributed with their own opti-
misations; that is as active libraries.

1.1 Contributions of the dissertation

The main contributions of the dissertation are:

• I show how Template Haskell, a compile-time meta-programming extension to Haskell,
can be used to optimise user written code, thus allowing for domain specific optimi-
sations to be written for embedded domain specific languages (EDSLs). Benchmarks
for a specific EDSL, Pan, are provided. I also provide a comprehensive taxonomy of
the problems with this approach.

• I show how back-end plug-in support can be added to a compiler, GHC in our
case, and how this functionality can be used to optimise user written code. This
approach overcomes many of the shortcomings of the Template Haskell approach
while introducing a few of its own. One of these is the loss of portability but a
potential solution to this problem is investigated.

• I provide a solution to the well-known expression problem in Haskell using type
classes and existential types. The solution provides a way to extend data types
and functions that operate on those data structures without modifying existing code
while respecting separate compilation. Although a solution for Haskell has recently
been proposed by Löh and Hinze my solution works well in a plug-in environment. I

1.2. Structure of the dissertation 15

also suggest syntactic sugar for extending data types and provide a formal translation
from a language augmented with the new syntax to Haskell. This translation could
form the basis of an implementation.

• The ability to write front-end plug-ins, which extend the syntax and semantics of a
language, is added to a compiler for a Haskell-like language. The approach centres
around providing plug-in points within and between each phase of the front-end of
the compiler. This allows all aspects of the compiler’s functionality to be extended.
As a case study I present a plug-in that adds list comprehensions to the language.

1.2 Structure of the dissertation

The rest of the dissertation is organised as follows.

Background–Chapter 2. This chapter provides a more detailed motivation for the dis-
sertation. It begins by covering the benefits of language features and the complexity
of language implementations. I then present a survey of language extension mecha-
nisms and the pros and cons of this approach. Most importantly the chapter provides
an in depth motivation of plug-in compilers.

Optimising EDSLs using Template Haskell–Chapter 3. Pan, an embedded domain
specific language, is used as a vehicle to demonstrate an approach to domain specific
optimisation using a meta-programming language called Template Haskell. This
chapter provides the motivation for studying plug-in compilers.

Plug-in optimisation–Chapter 4. This chapter discusses the addition of back-end plug-
ins to a compiler. A plug-in optimisation that improves the quality of user-written
Pan code is then presented along with benchmarks proving its efficacy. A real im-
plementation exists for the Glasgow Haskell Compiler (GHC) and it is described.
Also, the concept of plug-in DSLs is introduced. Such DSLs make writing plug-ins
easier and improve the portability of a plug-in based approach.

Extensible data types–Chapter 5. In order to write front-end plug-ins it is necessary
to solve the expression problem. A novel solution is provided for the Haskell language.
It involves the use of type classes, existential types and recursive dictionaries. A
translation from a language augmented with syntactic sugar for extending data types
to the Haskell language is also presented. A comparison with other well-known
solutions to the expression problem in other languages is then made.

Front-end plug-ins–Chapter 6. With the expression problem now solved I show how
front-end plug-in support can be added to a compiler. The design centres around
providing plug-in points between and within each phase of the compiler. I then
present a simple, but powerful, plug-in that extends a simple functional programming
language with list comprehensions. A real implementation exists in the form of

16 Chapter 1: Introduction

PHRaC, a small compiler written in Haskell, for a Haskell-like language. It makes
use of the techniques introduced in Chapter 5 and a discussion of the issues that
arose during implementation is provided.

Conclusion–Chapter 7. This chapter summarises the results of the dissertation.

1.3 Source code

The source code is available for all of the implementations described in this dissertation.
The modifications made to GHC to provide back-end plug-in support are available from

the pluggable-1-branch fork of the GHC CVS repository. They can be browsed online at:

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/

To download and build the pluggable GHC compiler see the instructions at:

http://www.haskell.org/ghc/docs/latest/html/building/index.html

The back-end plug-in for the Pan DSL, the implementation of PHRaC and the cor-
responding list comprehension front-end plug-in are all available as darcs1 repositories
at:

http://www.cse.unsw.edu.au/∼sseefried/darcs/

The names for these projects are plugpan, plug phrac and listcomp phrac plugin re-
spectively.

1The revision control system, darcs, can be found at http://abridgegame.org/darcs/.

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
http://www.haskell.org/ghc/docs/latest/html/building/index.html
http://www.cse.unsw.edu.au/%E2%88%BCsseefried/darcs/
http://abridgegame.org/darcs/

Chapter 2
Background

This chapter provides the motivation for choosing a plug-in architecture to build ex-
tensible compilers. In turn, they may be used to extend languages or implement

domain specific languages (DSLs). The work is founded upon the assumption that more
programmers would try their hand at language design were it not for the high barrier to
entry. I claim, as others do [82], that writing new languages is an expensive task both
in time and effort. The difficulty of language implementation motivates an approach to
language construction based on reuse. I go on to describe two ways in which language
infrastructure can be reused. The first way, via language extension features, relies on a
sufficiently powerful host language within which it is possible to define terms which ad-
equately embody new language features. The second way is to extend a compiler. The
efficacy of this approach depends greatly on the manner in which the compiler is designed.
I argue that a plug-in compiler, a compiler which loads and runs code at program compile
time, provides a convenient and powerful mechanism for language extension.

2.1 Why extend languages?

A Turing complete language can express any computable function; thus, with adequate
support for I/O, it’s possible to do anything in any programming language. However,
computational possibility is not the only concern. Languages are also prized for their
conciseness, safety, efficiency, and reasoning properties (among other things). Sometimes
libraries can only offer so much and new language features become increasingly attractive.
A brief summary is provided below.

• Conciseness. Concise notations can remove the need to write verbose, idiomatic
code. This leads to a reduction in the number of lines that need to be written to
express a program.

• Safety. Safety relates to static or dynamic checks upon programs to ensure that
they do not perform certain types of unwanted behaviour. Features such as type
systems, exceptions, garbage collection and assertions all fall under the umbrella of

18 Chapter 2: Background

safety. A domain specific language can further enhance safety by providing checks
tailored to a particular application area.

• Efficiency. Static guarantees can often be made about code and sometimes lead
to optimisation opportunities. Also, support can be provided by the run-time sys-
tem for efficient programming of certain applications. e.g. light-weight threads for
concurrency.

• Reasoning. Some languages1 have elegant algebraic properties which can be ex-
ploited by programmers wishing to prove the correctness of their programs. These
properties can also be used to improve the efficiency of code.

Developing languages from scratch can be a daunting undertaking. Defining their
semantics and implementing them constitute a large part of the difficulty. It can be years
until a fully fledged implementation for a language is available. In this section we explain
these difficulties in detail, as well as providing further evidence in favour of language reuse.

2.1.1 The complexity of languages

New languages tend to evolve from older ones, a form of intellectual reuse. In the process
they may acquire features which may or may not interact well with existing features.
Making these new features “play well together” with existing ones constitutes one of the
main challenges of programming language design. A precise formal semantics for language
features provides a powerful tool for designing and checking the consistency of languages
but requires significant investment and is often not undertaken for this reason.

The complexity of languages is reflected in the fact that some in wide use today contain
semantic inconsistencies, or at least an inelegant semantics. For instance, Javascript is
well-known for its abundance of “gotchas” [24]. While the semantics of the language has
been defined [30] and a typing system has been developed for it [92], it is clear that more
thought should have been put into whether each feature was sufficiently well-defined before
being added to the language.

A good indication of the semantic complexity of a language is to measure the size
of the language standard. These can easily run into the hundreds of pages2 [6, 7]. The
current state of the art is that such standards are written almost exclusively in natural
language. Despite extensive research nearly all popular non-trivial languages have resisted
mathematical formalisation due to their sheer complexity, although it would be remiss to
omit a mention of the heroic work done in partially formalising Standard ML [69]. Clearly,
the sheer effort required to define a language’s semantics is a strong point in favour of their
reuse. Also, language design can be seen as a form of intellectual reuse, an exercise in
selecting the best features from earlier languages and combining them with novel additions.
As far as possible this should also be an exercise in software reuse.

1Cryptol [1] is an example.
2R5RS, the standards document for Scheme, is a notable exception running for only fifty pages. Much

effort was expended in reducing it to this size.

2.1. Why extend languages? 19

2.1.2 The complexity of implementations

Implementing a language to a level where it can be used productively can take many
months if not years. Although interpreters are, in general, easier to write than compilers,
either form of implementation requires a significant amount of effort.

Both compilers and interpreters must lex, parse, and analyse source code. The first
two of these phases are probably the most well understood. Lexing is usually done using a
lexer generator tool which generates code that encode a deterministic finite state automata
(DFA) to perform the task. Parsing, on the other hand, can be done using a number of
different algorithms. Each algorithm trades speed and/or space for expressiveness or vice
versa to some extent3. There is a lot of compiler infrastructure surrounding the parser
such as the definition of the representation data structure (often an abstract syntax tree),
a symbol table, and libraries for name generation, error reporting and graph manipulation.

After parsing comes analysis. This involves checking for errors in the source which can-
not be done during parsing, such as checking the scope of variables, and more sophisticated
analyses such as type checking, and data flow analysis.

And this is only the front-end. Interpreters must now execute the code directly while
compilers must optimise and generate code. Optimisations form a large part of modern
compilers and are often sophisticated. As a language develops it is this section of the
compiler more than any other that is likely to grow in size and complexity. This phase of
the compiler can also be divided into sub-phases in which the program is translated into
one or more intermediate forms upon which certain optimisations are particularly effective
or easy to specify. e.g. Static Single Assignment (SSA) form [25] or Administrative Normal
Form (ANF) [23].

This leaves only code generation. There are several factors which complicate this phase
of the compiler. First, there may be multiple architectures that need to be targeted. The
disparate nature of machines means that it is often difficult if not impossible to share code
generation routines; each platform must be targeted in isolation. Also, many hardware
architectures are designed with simplicity of processor design in mind. This often means
that functionality that would have been implemented in hardware in the past must now
be implemented in software.

Clearly, there is strong evidence that implementing compilers is a lengthy and ongo-
ing task. Fortunately, the need for reuse in the area of compiler implementation is well
recognised and has received much attention. One way in which the effort of a compiler
implementation is mitigated is through the use of compiler construction tools.

Parser generators are perhaps the most well-known instance of compiler construction
tools. They save the work of writing parsers by hand and have been in use for over
two decades. They process lexical tokens and specify the order in which they should be
combined into data structures which represent the structure of the source code. But this
is all most of them do. It is still up to the programmer to attach an action to each symbol

3At the fast but inexpressive end of the spectrum are recursive decent and LL parsers. At the other
end are LR and Earley parsers, the latter of which can parse any context free grammar but has a cubic
time complexity.

20 Chapter 2: Background

of the grammar. Such an action may, for instance, take two expressions and an operator
and combine them into an aggregate expression.

Other compiler construction tools focus on different phases of the compiler. Attribute
grammars can be used to generate and synthesise values in the abstract syntax tree.
They can be used to write program analyses and even do code generation. Another tool,
Stratego/XT [98, 97], provides a language for writing transformations on abstract syntax
trees using the paradigm of rewriting strategies.

There are also tools that can create large parts or even all of a programming envi-
ronment. Among these are (BEG) [35], a back-end generator that translates declarative
specifications to code-generators, ELI [44], which can be used to construct an entire com-
piler and Centaur [18] which can create a programming language environment (editor,
compiler, debugger, etc) from a formal specification of a language.

2.1.3 Programming environments and communities

A fully fledged language does not merely consist of an implementation. It is surrounded
by a suite of useful tools, often called the programming environment and a community of
programmers that use the language. The case for re-use is about more than just the effort
required to write a compiler.

Among the tools that can improve the productivity of programmers are profilers, de-
buggers, Integrated Development Environments (IDEs), and syntax highlighting packages.
There is likely to be a high degree of correlation between how widely used a language is
and how well-developed such tools are4. Thus, in choosing to use a particular language, a
programmer also benefits from the inheritance of its programming environment. However,
It should be kept in mind that an extensible language will require extensible tools.

One should also not underestimate the usefulness of a large (and often highly skilled)
programming community. They often take years to form but once present are a consider-
able resource which can be drawn upon for support of one’s own software projects. They
also provide a platform upon which the future development of the language can rest. When
dealing with the complexities of language semantics it can be of enormous benefit to have
a large body of interested and intelligent people check the soundness of one’s ideas.

Also, such communities can only form around languages which have demonstrated
their utility and are likely to continue being relevant into the foreseeable future. There is
only a slim likelihood that a one-off DSL will develop a rich community around it.

2.2 What sorts of extension are we interested in?

Before going on to discuss how languages may be extended a moment should be taken to
discuss the kinds of extension this dissertation is concerned with.

4Oliver Steele believes that languages tend to become either tool focused or feature focused [87]. This
does not contradict the relationship I postulated above as he is only concerned with well-established
languages. Even in feature focused languages there will be some tool support.

2.3. Methods of language extension 21

I do not use the term extension in the sense in which it can be used in other fields
(such as language semantics); our extensions do not necessarily increase the expressiveness
of the language, they may simply make them less verbose, more elegant, and/or safer to
use. I regard as extensions things such as new control flow constructs, additions to the
typing system, and syntactic sugar. Extensions can be divided into three broad categories:
expressiveness, safety and efficiency. Expressiveness extensions increase the capabilities
of a language, often allowing something that would have been idiomatic and verbose to
be concisely captured in a suitable syntax. Safety extensions improve the detection of
undesirable behaviour in programs or, as in the case of garbage collection method of
memory management, remove the need to consider certain behaviours at all. Efficiency
extensions are concerned with improving the quality of generated code.

2.3 Methods of language extension

Accepting the arguments for reuse the language designer is now faced with the problem
of how to achieve it. In this section I provide a survey of the ways in which a language
can be extended. There are three broad categories into which one can divide the methods
of language extension: language features for extensions, henceforth known as extension
features, extensible implementations and external extension (which is not considered in
this dissertation).

These methods of language extension are not mutually exclusive. There is nothing
stopping a language designer from using extension features and extending the compiler.
In fact a combination of the two may well be the most prudent path.

2.3.1 External extension

This method of extension covers pre- and post-processors. Pre-processors take source
code and re-write them to target an existing compiler or interpreter, while post-processors
take the output from an existing compiler and transform it some way. Pre-processing is
a popular way of extending languages but can end up duplicating a lot of work. The
parser for the pre-processor is often only a small extension to the parser for the target
language. Naturally, it is possible to find the parser for the target compiler/interpreter and
extend that but this means that the programmer must keep this extension synchronised
with the target language. Also, if one wishes to include static analysis done by the target
compiler/interpreter this must be painstakingly recreated in the pre-processor. Usually,
this is omitted which leads to incomprehensible error messages emitted by the target
language compiler when errors are made in the source code to be pre-processed.

Pre-processors are powerful but brute force approach to language extension. We do
not consider them further in this dissertation.

22 Chapter 2: Background

2.3.2 Extension features

At a glance familiar features such as function definitions and data type declarations do not
merit the status of extension feature but a closer inspection reveals no reason why they
should be excluded. The essence of an extension feature is that it allows a programmer
to imbue a language entity with a semantics expressible using existing language entities.
Macros, inheritance, aspects, higher order functions, reflection, and meta-programming
can all be perceived in this light. However, we focus on the more powerful features:
macros and meta-programming.

Macro systems have been part of LISP and Scheme for some time. They provide
a powerful mechanism for defining new syntactic entities in terms of existing ones. In
general, one of the major drawbacks they have is that names used inside the definition can
be bound to incorrect names in the local scope. Scheme introduced the notion of hygienic
macros [57] to solve this problem; they ensure that any free variables are looked up in the
scope of the macro definition not where it was used.

Meta-programming is another compelling choice for extending languages. This pro-
gramming technique was first studied by Smith [86] and then by others in the Lisp and
Scheme communities [40, 104, 28, 54]. During this period notions of name generation
and quasi-quotation were refined. Sheard, Taha and Pasalic [90, 91, 85, 76] introduced
reflection into a strongly typed setting thus further increasing the safety of this powerful
programming technique. Features such as extensible syntax and GHC’s rewrite rules fall
under the umbrella of meta-programming.

Sometimes extension features are entirely adequate for defining the primitive constructs
of an entire language. That is, it is possible to define distinct, syntactic entities that have
a one-to-one correspondence with semantics of entities in another language. Embedded
domain specific languages (EDSLs) are implemented as libraries in precisely this manner.
The richer the host language the more opportunity there is for this technique to be used5.

Meta-programming does have its limitations. It is constrained by the degree to which
one chooses safety over power. Also, the richer a language is syntactically, the more tedious
it is to write transformations using meta-programming since many syntactic cases need to
be considered.

Chapter 3 of this dissertation is concerned with the application of a compile-time meta-
programming language, Template Haskell, to an EDSL for image synthesis known as Pan
[32].

2.3.3 Extending the compiler

At its simplest this method of extension involves modifying the source code of a compiler,
so-called static compiler extension. However, a compiler can also be extended at run-time
via plug-ins; this is called dynamic compiler extension.

For this to be an effective method of reuse the compiler needs to be designed for

5Examples of EDSLs are abundant and include Pan [32], HaXML [103], Fran [31, 34, 22], FranTk [83],
FAL [49], Haskore [51], and Yampa [50, 71].

2.4. Plug-in compilers 23

extensibility. Extensibility depends on at least the following factors: the implementation
language, orthogonality of the implementation, coupling between modules, and the data
structures chosen. The choice of implementation language is probably the most important
of all. Features such as inheritance and extensible data structures have a clear utility.

The continuous scale of extensible implementations can be partitioned into three cate-
gories: rigid, statically extensible, and dynamically extensible. Each is an evolution of the
one before. In this dissertation the term rigid is used to describe language implementa-
tions that are hard to extend (for whatever reason). Although such implementations are
often monolithic, I use the term monolithic to describe applications which are compiled to
a single executable and do not load in plug-ins. A monolithic compiler could nevertheless
be quite extensible if designed well.

From rigidity to dynamic extensibility

If a programmer wishes to extend a language there is nothing stopping them from mod-
ifying the source code of a compiler. As has already been stated, this could be difficult.
Production quality compilers are often hundreds of thousands of lines of code, composed
of modules written by many people and of differing quality. But this is not the only hin-
drance. As soon as the modifications have been made, and assuming your extension is
not accepted by the mainstream, the implementer has locked themselves into one of two
possibilities: either the new version of the compiler must be developed in isolation from
the old version, never to be merged, or worse, new developments in the old version must
be periodically and tediously merged into the new version. Despite these difficulties the
lack of alternatives often drives people to extend languages in just this way.

A statically extensible compiler addresses the problem of badly designed, inextensible
code. Examples of such compilers include Polyglot 6 [72], Pizza [108] and Cetus [64].

They are designed with extension in mind from the beginning. If designed correctly the
problem of keeping variants in step with the original code base is ameliorated. However,
different versions of compilers built in this way must still be separately installed and used
on one’s system. Only a small step in functionality separates statically extensible compilers
from their dynamically extensible counterparts known as plug-in compilers: the ability to
load and run plug-ins at run-time.

However, this small boost in functionality opens up a large array of opportunities not
possible before. Describing these opportunities is the focus of the next section.

2.4 Plug-in compilers

Plug-in compilers are the central focus of this dissertation. Puzzlingly, only minimal
attention [82, 13, 36, 106] has been paid to the idea of a plug-in compiler even though
the utility of plug-ins is widely accepted in other applications. These include Firefox [2],
the GIMP [9], Adobe Photoshop, Winamp [10], and Emacs [3]. The essential idea is to

6abc [17], a compiler for AspectJ, is an extension of this.

24 Chapter 2: Background

expose the internals of the compiler through a rigorously defined API and to provide entry
points or hooks into the phases of the compiler. User-written plug-ins can be compiled
separately, dynamically loaded at compiler run-time (i.e. program compile-time) and run
as part of the compiler.

However, there are frameworks which provide functionality that overlaps to high degree
with that of plug-in compilers. An example of this is the CoSy compiler framework [15, 39]
which provides a principled way to write and combine stand-alone compiler units into
sophisticated compilers. (It is particularly useful for writing complex optimisation suites.)
Its architecture centers around engines which have access to a central, shared intermediate
representation of the program. The engines can be composed, and ordered using an Engine
Description Language (EDL). More about CoSy and its similarity to the work presented
in this dissertation is discussed in Chapter 4.

2.4.1 Advantages

Plug-ins can fundamentally change the way in which compilers are developed and main-
tained. The next few sections explain some of the manifold benefits of this approach to
compiler construction.

Complexity

One of the most daunting aspects of studying the source code for a compiler is its sheer
size. A plug-in compiler encourages the development of a minimal core compiler that is
then extended with functionality via plug-ins. This leads to an implementation which is
loosely coupled, in which module boundaries more accurately reflect functional boundaries.
Conversely, the current state of the art is beset by the problem of cross-cutting features.
For instance, the implementation of syntactic sugar in a traditional compiler cuts across the
lexing, parsing, analysis, type checking and sometimes even the code generation phases
of the compiler. Although it is too early to say with certainty, the ability to separate
the core compiler from a larger, fully-functional language implementation may lead to
an application that is less complex and easier to understand. This in turn could reduce
development times and improve maintainability.

Safety and Verification

Plug-ins encourage modularity. This reduces the chances that compiler bugs remain un-
detected by making it possible to test the compiler in layers. The core compiler can be
thoroughly tested before plug-ins are even considered.

A plug-in architecture may be of some assistance in achieving the dream of compiler
verification. Much of the difficulty associated with proving correctness is that there has
simply been too much extraneous detail present in the compiler. By moving some of this
detail out into plug-ins, the process of verification may be simplified.

2.4. Plug-in compilers 25

Distribution

Plug-ins allow language extensions to be distributed as libraries; hence they can be used
as a method of implementing active libraries [96, 26, 95]. Not only does this make their
distribution easier, it also fundamentally changes the marketability of extensions. For
instance, consider the development of a new optimisation technique. The current state of
affairs is that an optimisation is either included in a compiler or not at all. Optimisation
writers must show that their techniques are generally applicable, that they improve the
performance of a wide range of programs. If not, they cannot go in the compiler because
they may slow down existing programs. However, this misses the fact that they may be
particularly effective on a specific set of programs. Peyton Jones et al. [78] eloquently
phrases this:

Compiler optimisations are like therapeutic drugs. Some, like antibiotics, are
effective on many programs; such optimisations tend to be built into a compiler.
Others are targeted at particular “diseases”, on which they are devastatingly
effective, but have no effect at all on most other programs.

Plug-ins allow such “niche market” optimisations to exist and perhaps even flourish.
They can be used precisely where they are useful. A large collection of only-sometimes-
used optimisations leads to the idea of profile driven optimisation in which aggressive
profiling is used to decide which optimisations are used on a particular piece of code. This
is similar to the technique used in the FFTW library [41].

A similar reasoning applies to language extensions, purely syntactic or otherwise. Fea-
tures must be generally useful and more importantly non-disruptive to the entire language
community if they are to go into a compiler. At the moment such non-standard exten-
sions are baked into the compiler and enabled with command-line flags. However, having
little used extensions remain inside the compiler bloats it unnecessarily. It is semantically
cleaner to realise them as plug-ins.

Development

A language succeeds or fails based on whether it can acquire and sustain the attention of
a large group of programmers. Plug-in compilers motivate development on a language by
lowering the barrier to entry. No longer is it necessary to understand the intricate details
of the inside of the entire compiler in order to write extensions.

In this way the work of maintaining a language’s vibrancy is distributed more evenly
among its users7. This can only help improve its chances of survival.

Plug-ins can also be used to help develop the compiler via a process of bootstrapping.
Plug-ins can be used to create DSLs useful for writing key phases of the compiler such as
parsing, type checking or code generation. These DSLs can then be used inside the core

7And means that the probability of a “bus error” is reduced. “Bus error” is a comic term describing
the situation where an application’s development is halted due to unfortunate circumstances befalling one
of its key maintainers.

26 Chapter 2: Background

compiler source code. Henceforth we call such languages plug-in DSLs. (In Section 2.4.3
we see how plug-in DSLs can be used to mitigate a common criticism of plug-in compilers.)

Maintenance

We have already mentioned that plug-in compilers encourage stricter interfaces which, in
turn, encourages modularity. This is a simple consequence of the fact that it is hard to
change the exposed API. Hence, increased attention must be paid to the interface.

However, a plug-in compiler also benefits the development of and maintenance of lan-
guage variants; language implementations that add a key feature such as concurrency,
parallelism, or bounds checking to an existing language. Plug-in compilers should allow
such variants to stay in step with each other.

This point is illustrated by considering the bounds checking extension for the C lan-
guage8. It is implemented for the GNU Compiler Collection (GCC) as a collection of
patches, one for each version of the compiler. The maintenance of this extension would
be alleviated if it were possible to distribute it as a plug-in.

Flexibility

Plug-in compilers need not even be restricted to one language. A core compiler could
implement a small, but rich intermediate language suitable for implementing the features
of a range of different languages.

2.4.2 Classification and applications of plug-ins

In this dissertation compiler plug-ins are classified in two ways: front-end vs. back-end
and lengthening vs. widening.

A front-end plug-in is primarily concerned with extending expressiveness and safety of
languages while a back-end plug-in is concerned with either optimisation or code genera-
tion.

A widening plug-in is one which adds to the functionality of existing phases of the
compiler. A plug-in which added new syntactic sugar would be such a plug-in. A length-
ening plug-in introduces a new phase to the compiler. For instance, it may translate one
intermediate language into a second, new intermediate language, perform optimisations
on that representation and then translate it back into the old representation. Lengthen-
ing plug-in points exist between compiler phases; they take the output of the previous
phase and produce the input for the following one. Figure 2.1 presents the classifications
graphically.

Plug-ins for expressiveness and safety

Both the expressiveness and the safety features of a language are implemented within the
front-end of a compiler. Accordingly these facets of a language are extended via front-end

8The patches are available at http://gcc.gnu.org/extensions.html

http://gcc.gnu.org/extensions.html

2.4. Plug-in compilers 27

Phase n+1

Widening plug−in

Lengthening plug−in

Phase n

...

...
Figure 2.1: The difference between lengthening and widening plug-ins

plug-ins. The applications of these plug-ins are limited only by the language designers
imagination. A sample of the sorts of things that can be done are as follows:

• Syntactic sugar. The term syntactic sugar describes additions to the syntax of a
language which do not affect its expressiveness but make it “sweeter” for humans to
use. Such syntax is “desugared” into existing language constructs. Such a plug-in
involves extending the parser, extending the abstract syntax, and the addition of a
desugaring phase. We consider just such a plug-in in Chapter 6.

• New language features. This plug-in is identical to the one above except that it
genuinely increases the expressiveness of the language. It may need to be used in
conjunction with a back-end plug-in to generate new forms of code.

• Error messages. This form of plug-in extends the language with custom error
messages, perhaps for, but not limited to, domain specific syntactic extensions.

• New safety checks. These can be either static or dynamic. Front-end plug-ins can
be used to implement static checks. Examples include new kinds of static analysis
and checks for erroneous conditions not covered by the type system of the language
being extended. Back-end plug-ins can be used to instrument generated code with
run-time checks.

Plug-ins for optimisation and code-generation

Back-end plug-ins can be used to provide custom optimisations for DSLs and, in particular,
EDSLs. They can also be provided for libraries making them into active libraries [96, 26,
95]. In Chapter 4 we consider plug-in optimisations for the Pan EDSL [32].

28 Chapter 2: Background

2.4.3 Common criticisms of plug-in compilers

In this section I respond to some common criticisms of plug-in compilers.

Portability

Robinson states in a paper [82] on the economics of compiler optimisations:

[Writing plug-ins] requires detailed knowledge of the compiler’s internal repre-
sentation of a program, which is often strewn with decorations that must be
maintained for the sake of other optimizations.

This valid concern can be mitigated by careful attention to the API that is exposed.
However, an even more effective way is to re-introduce portability through the implemen-
tation of DSLs for writing plug-ins. Once it has become standard practice to implement
extensions via these DSLs the same forces—both social and technical—that cause widely
used languages to be standardised will inevitably extend themselves to these DSLs.

As an example, the CoSy compiler framework has a number of DSLs that are used
to write its compiler units. EDL has already been mentioned. It can be used to specify
dependencies between compiler units. There is also a structure definition language called
fSDL that can be used to specify visibility, side effects and data structures used by the
compiler units, that is, the interface between compiler units. This greatly clarifies the
relationship between compiler units.

Language Standards

The second common criticism of plug-in compilers is one of language volatility. The fear
is that the barrier to the modification of languages will be so low that language variants
will flourish to such an extent that the notion of language standards will suffer.

I respond to this criticism in two ways. First, the choice of more language variants in
no way diminishes any of the benefits of standardised languages. When the development
of an application in a standard variant of a language is perceived to be of great enough
value it can still occur.

Second, there is a perception in the programming community that some language
standards have become too rigid. This perception is reinforced by examining the time
between the release of versions of well-known language standards. For instance, there was
a nine year gap between the C89 [5] and C99 [6] standards.

Rather than damaging the notion of standards I envision that plug-ins will induce a
hierarchy of rigidity in standards. The most rigid standard would be the core language.
Presumably after that would come a language with standard syntactic sugar added, fol-
lowed by various user extensions to the language, and so on. It would be up to users of
the language and its extensions to decide how rigid they required their standards to be.
In turn this may mean that the success or failure of a language extension is determined
by natural selection (of its users), offering a refreshing alternative to the often criticised
style of development known as “design by committee”.

2.5. Meta-programming vs. plug-in compilers 29

2.4.4 Limitations of plug-in compilers

It is tempting to think that plug-in compilers allow one to extend languages in arbitrary
ways. Sadly this is not the case. The utility of plug-ins depends on two things: how
orthogonal the extensions are to existing features and how well the compiler is modularised.

For instance, a programmer may discover that a facet of a language is really a spe-
cial case of a much more general and powerful formalism. This frequently occurs when
extending the type systems of functional programming languages. This is an example of
a non-orthogonal change and in this situation a plug-in compiler is not much help. The
only sensible approach is to refactor the design of the compiler.

The focus in this dissertation is on extensions that can be made within the existing
framework of a compiler.

2.5 Meta-programming vs. plug-in compilers

Meta-programming is a relatively principled approach to language extension. However,
meta-programming languages are often not expressive enough to perform the kinds of
extensions we want. On the other hand, approaching the problem using plug-ins is more
powerful but not nearly as safe. Safety can be increased by carefully choosing which
portions of the compiler to expose.

The two approaches are complementary. Both approaches converge on an optimum
point which has both adequate expressiveness and safety. The development of meta-
programming languages moves from low expressiveness but high safety towards the op-
timum while the development of plug-in compilers moves from a position of (perhaps
excessive) expressiveness and low safety toward the optimum. However, the effort re-
quired to add features to a meta-programming language is greater than that required to
expose less of a plug-in compiler via the API. Ultimately, the techniques used in plug-in
compilers should be used to inform the design of meta-programming languages.

Chapter 3 is an experiment in the application of meta-programming for the optimisa-
tion of an EDSL. The chapter concludes with several reasons why the meta-programming
language used, Template Haskell, is inadequate for the task. This provides the motivation
to switch to the plug-in compiler solution which is described in the remaining chapters of
the dissertation.

2.6 Why Haskell?

The results contained within this dissertation can be implemented in any language with
sufficient expressiveness. However, almost all code that appears in the remainder will be
written in Haskell. The reasons for this are:

• Haskell has excellent support for data structures. They are easy to construct and in
conjunction with Haskell’s support for pattern matching it is easy to de-construct
and manipulate them. Memory allocation and memory layout are handled entirely

30 Chapter 2: Background

by the language so that the programmer is shielded from space leaks and compli-
cated pointer manipulation. Since a large portion of any compiler is concerned with
the handling of abstract syntax trees Haskell significantly simplifies their implemen-
tation. Languages from the ML family confer the same benefit.

• In Chapter 3, Template Haskell is used to optimise an embedded domain specific
language. This language is the culmination of many years of research into functional
meta-programming languages [90, 91, 84, 85]. Similar in power to C++ templates
[94] it is nevertheless more principled with support for quasi-quotation, automatic
handling of scoping and name generation, and the algebraic manipulation of code.
Even though I abandon the meta-programming approach after Chapter 3, techniques
such as the algebraic manipulation of abstract syntax and the use of monadic code
to adequately handle name generation, can be used in plug-ins.

• As mentioned earlier, some domain specific languages can be embedded as libraries
within another, albeit without the advantages of domain specific optimisations and
error messages. The more expressive the host language the more applicable this
technique becomes. Haskell’s syntactic control features, laziness, higher order func-
tions and rich type system make it an ideal candidate for EDSL implementation.
These features will be further discussed in Section 3.1.1.

2.7 Further related work

Each chapter of this dissertation is self-contained in the sense that they draw on relatively
disparate areas of programming language research. Hence, the related work shall be
deferred until the end of each respective chapter.

Chapter 3
Optimising Embedded DSLs with

Template Haskell

I
n contrast to the remainder of the dissertation this chapter attacks the problem of
language reuse using a language extension feature, specifically, compile-time meta-

programming. The primary purpose of this chapter is to motivate the plug-in com-
piler approach by highlighting the problems encountered using a state-of-the-art meta-
programming language, Template Haskell, on an embedded domain specific language called
Pan. Template Haskell is a sophisticated language incorporating many of the best de-
sign choices of earlier meta-programming languages—such as support for quasi-quotation,
static and dynamic scoping and convenient manipulation of abstract syntax—and improv-
ing upon them with features such as staged static typing.

This approach transforms user-written code according to its syntactic structure. The
key idea is to represent code as a data structure (preferably an abstract syntax tree),
manipulate this data so that it represents equivalent but faster code, and finally turn
this data back into code. It can be thought of as a principled or augmented form of
pre-processing. Language support is provided for generation of new symbols, static and
dynamic scoping, reification, and a novel staged type-checking algorithm (explained further
in Section 3.1.2). Thus, much of the tediousness of writing pre-processors is removed while
additional safety is introduced.

Despite Template Haskell’s sophistication, it falls short of being a suitable language
for library/EDSL optimisation. It turns out that an advantage of meta-programming over
plug-ins, namely its compiler independence, is also a problem. Meta-programs have fairly
limited access to internal information, which can lead to poor error messages and difficulty
in implementing safety features. Of course, we could design meta-programming languages
that expose more information, but then we raise similar questions to those raised when
designing plug-in compilers. Conversely, this indicates that meta-programming can inform
the design of APIs for plug-in compilers and maybe DSLs for compiler plug-ins, something
we will come back to in Chapter 4.

The chapter is organised as follows. We begin with a discussion of why Haskell is

32 Chapter 3: Optimising Embedded DSLs with Template Haskell

a good host language for EDSLs and follow this with a short introduction to Template
Haskell describing how it is used and what features make it state-of-the-art. We then
introduce the Pan EDSL—which is considered in both this chapter and the subsequent
one on plug-in optimisations—and my implementation of it, PanTHeon. We then describe
the implementation of three different source level transformations that were implemented
in PanTHeon. This is followed by two sets of benchmarks. One proves their efficacy by
comparing optimised code against unoptimised code while the other compares PanTHeon
against an earlier implementation of Pan by its designers.

An in depth discussion of my experience with Template Haskell follows, describing
areas where it falls short of what is required. This provides the background to motivate
the plug-in compiler approach.

In summary the contributions of the chapter are:

• The efficacy of compile-time meta-programming is demonstrated on a realistically
sized domain specific language, Pan. Three different optimisation techniques are
introduced and demonstrated. Benchmarks are provided.

• Drawbacks of the compile-time meta-programming approach are identified an ex-
plained.

• This provides the motivation for a plug-in compiler based approach to providing
domain specific optimisations.

3.1 Haskell for EDSLs and meta-programming

Before introducing the Pan DSL we focus upon the features of Haskell that make it suit-
able for implementing EDSLs and then introduce Template Haskell, a compile-time meta-
programming extension implemented in the Glasgow Haskell Compiler (GHC).

3.1.1 Haskell: a good host language for EDSLs

Haskell has a number of features that make it ideal for implementing EDSLs.

Laziness

Laziness can be used to provide the same behaviour as control flow constructs in other
languages. For instance consider what would happen in the following code if the if-then-
else construct was strict: f x = if x == 0 then 1 else f (x− 1). Using laziness, one can
define a function, ifF , in Haskell that provides the required behaviour.

ifF :: Bool → a → a → a
ifF True thenPart = thenPart
ifF False elsePart = elsePart

3.1. Haskell for EDSLs and meta-programming 33

Syntax control

Haskell has declarations that can change the precedence, fixity and associativity of user
defined functions. This allows the syntax of the EDSL to more closely resemble that of a
real language. For instance Haskell defines + and ∗ to be left associative with the former
having a lower precedence than the latter. This is done with the following declaration in
the Prelude.

infixl 7 ∗
infixl 6 +, −

This means that expressions such as 2 ∗ 3 + 7 parse and evaluate to the correct value,
13. Unlike other languages this is defined in Haskell’s libraries, not its compiler.

Higher order functions

Higher order functions allow powerful combining forms to be defined that offer the same
power as built-in operators in other languages.

Rich type system

Haskell has a rich type system that allows new, mutually recursive algebraic data types
to be defined. Used carefully one can disallow certain expressions in the EDSL simply by
making sure they lead to type errors in Haskell.

For instance, in a linear algebra setting we can make sure that only vectors can be
added to points by defining types and functions as follows.

newtype Vector = Vec (Int , Int)
newtype Point = Pt (Int , Int)
plus :: Vec → Pt → Pt
(Vec (dx , dy)) ‘plus‘ (Pt (x , y)) = Pt (x + dx , y + dy)

3.1.2 Compile-time meta-programming using Template Haskell

This section introduces Template Haskell. We start by showing how a useful algebraic
transformation can be implemented. Since the optimisations of PanTHeon are treated
more than adequately in the rest of the chapter we focus on a useful transformation in a
well-known domain: linear algebra.

A basic result of linear algebra is that an n × n matrix, M , multiplied by its inverse,
M−1, is equal to the identity matrix, I. This is just the sort of property that we cannot
expect most compilers to optimise away, due to the domain-specific knowledge that is
required to perform such an optimisation. Consider an expression m ∗ inverse m where
m is a matrix. (The precise details of how matrices are implemented is immaterial.) In
order to simplify this expression it must first be converted from code into a data structure
via a process known as reification [40].

34 Chapter 3: Optimising Embedded DSLs with Template Haskell

rmMatByInverse (InfixE (Just ’m) ’GHC .Num.∗ (Just (AppE ’inverse ’m))) =
VarE (mkName ”identity”)

rmMatByInverse (LamE pats exp) = LamE pats (rmMatByInverse exp)
rmMatByInverse (AppE exp exp′) =

AppE (rmMatByInverse exp) (rmMatByInverse exp′)
rmMatByInverse exp = exp

Figure 3.1: An example of an arithmetic transformation.

Once we have verified that this data structure matches the pattern

〈matrix〉 ∗ inverse 〈matrix〉

we can replace it with the data structure that represents identity . We then need to
convert the data structure back into code, via a process known as reflection [86]. This is
also known, particularly in Template Haskell, as splicing.

The expression, m ∗ inverse m ∗ n is reified into an algebraic data type. The transfor-
mation of this expression is then simple. A new data structure is created which represents
identity ∗ n and spliced. We now show how this is achieved using Template Haskell on a
(rather contrived) lambda expression with body equal to m ∗ inverse m ∗ n.

exp mat = [| λ m n → m ∗ inverse m ∗ n |]

exp mat makes use of the quasi-quote notation of Template Haskell, denoted by the [|
and |] brackets. These brackets reify code within.

Figure 3.1 presents the function rmMatByInverse which removes the redundancy in the
reified expression. The first case does the real work; it matches against infix expressions
of the form 〈matrix〉 ∗ inverse 〈matrix〉 and returns identity , while the second and third
(after matching against expressions of the form lambda p → e and f a respectively) re-
cursively apply to sub-expressions. (Note that we have only presented the cases necessary
to transform exp mat .)

Template Haskell’s splicing operator, $(. . .), runs meta-programs and converts the re-
sulting data structure back to code. In our case the expression $(rmMatByInverse exp mat)
evaluates to the code λ m n → n at compile-time. This is a key aspect of our approach;
by using a language which is restricted to compile-time meta-computation we guarantee
that there is no run-time overhead in the code generated.

Features of Template Haskell

Template Haskell has a number of features that make it particularly well suited to gener-
ating and manipulating programs.

First, it respects static scoping. The original paper on Template Haskell presents an
example of a meta-program that mimics the behaviour of C’s printf function by generating

3.2. Introduction to the Pan DSL 35

a function which takes the required arguments (of required types) as parameters. It is
defined as follows:

data Format = D | S | L String

printf :: String → Q Exp
printf s = gen (parse s) [| ”” |]

gen :: [Format] → Q Exp → Q Exp
gen [] x = x
gen (D : xs) x = [| λ n → $(gen xs [| $x + + show n |]) |]
gen (S : xs) x = [| λ s → $(gen xs [| $x + + s |]) |]
gen (L s : xs) x = gen xs [| $x + + $(lift s) |]

The n and s bound by lambdas in the third and fourth equations of gen are used
within the nested quasi quotes. Had a different variable name been used a scoping error
would have been signalled by the compiler.

Second, Template Haskell maintains type safety through staged typing. Traditionally,
a program is type checked, compiled and then executed. However, we now have execution
of code generators occurring at compile-time. In contrast to MetaML, which type-checks
all programs before code generation, Template Haskell chooses to interleave type checking
with generation. First, the meta-program is type checked at the abstract syntax level.
This is, it is determined whether the value produced will be of the type of a representation
of a declaration, expression, etc. Whether the program represented type checks or not is
another question. The meta-program is then executed and the final program type checked
as if the programmer had written it in the first place.

Third, quasi-quotation and nested splicing provide a convenient way to generate pro-
grams.

Finally, programs can be reified and manipulated using ordinary algebraic data types.
Without this capability transformations of the kind demonstrated above could not be
done. Also, there are times when the quasi-quote notation is not adequate to generate
expressions. For instance, this occurs when the programmer wishes to generate tuples of
variable length based on a numeric parameter. In this case algebraic data types can be
used to generate new expressions.

3.2 Introduction to the Pan DSL

Pan is a domain specific language founded upon the concept of modelling an image as a
function from continuous Cartesian coordinates to colour values. Images modelled have a
number of interesting features. They are:

• Continuous. Images are defined as mappings from Cartesian points to colours. This
means that they are resolution independent. For instance, a circle can be modelled

36 Chapter 3: Optimising Embedded DSLs with Template Haskell

Figure 3.2: Checker board imposed over swirled vertical blue and red stripes

ideally; the circumference will appear smooth at all scales, not jagged as one zooms
in.

• Infinite. Since the Cartesian domain is effectively infinite (up to the limits of floating
point arithmetic) it is easy to define images that are unbounded in extent.

• Interactive. We can choose what part of the image to look at and at what scale with
no difficulty. Images will not lose resolution as we zoom in, nor are there memory
management issues to contend with.

• Composable. Images are functions and functions can be composed. Hence it is
possible to combine images in arbitrary ways.

3.2.1 A simple image in Pan

Figure 3.2 presents a simple Pan effect that will be used as a running example throughout
the rest of the chapter. It is self-contained with respect to Appendix A.

checker (x , y) = if even e then blackH else whiteH
where

e = floor x + floor y

stripes (x , y) =
| even (floor x) =blue
| otherwise =red

checker on stripes = checker ‘over ‘ (empty ‘over ‘ swirl stripes)

Colours are represented as four-tuples containing red, green, blue and alpha (trans-
parency) components in the range [0, 1]. Functions whiteH and blackH are 50% transpar-
ent. The checker board (checker) is defined as a function which takes a coordinate (x, y)
and returns blackH if �x�+�y� is even and whiteH otherwise. The stripes function is even
easier to define. Here we simply check that that �x� is even and colour it blue if so, red if
not.

In checker on stripes we see the use of the image overlay combinator, over . This
function combines two images pointwise. Depending on the transparency of the top image

3.3. PanTHeon 37

a portion of the underlying image will show through. The Pan primitive swirl warps an
image by rotating points a distance proportional to their distance from the origin. The
empty image is completely transparent. See Appendix A for their implementation.

3.2.2 The original Pan implementation

The original implementers of Pan decided to implement it as an embedded compiler [33]
for performance reasons. In this approach the primitives of the DSL were defined as
functions over an abstract syntax tree (AST) representation. The ASTs generated by
programs written in the host language were then optimised and fed to a code generator
which produced efficient code in another language, C. The effort involved was equivalent
to writing a compiler back-end and although it was considerably more effort than my
implementation, the cost of writing the components of a compiler front-end (such as a
lexical analyser, parser, and type checker) was saved. The motivation in choosing to
re-implement Pan was to see if equivalent performance could be realised with a direct
implementation augmented with compile-time transformations. The results are discussed
in Section 3.4.2.

The main disadvantage of embedding a compiler is that access to the (often extensive)
general optimisations of the host language compiler are lost. Furthermore, if there is
disparity between the host language and the target language, generated programs may
not be able to use features of the host language. Finally, even though one ostensibly
writes programs in the host language it may not be possible to use language constructs
which require a base type of the language. (For instance, for if-then-else expressions to
be valid they typically require an expression of the built-in boolean type.) Unfortunately,
the representation of expressions as ASTs requires the use of user-defined types, which
precludes the use of such language constructs.

3.3 PanTHeon

PanTHeon is the name given to my implementation of the Pan DSL: a direct imple-
mentation augmented with compile-time optimisations. There are three main classes of
optimisation: the unboxing of arithmetic expressions, aggressive inlining and algebraic
transformations. The unboxing optimisation ensures that arithmetic expressions are eval-
uated using unboxed arithmetic which provides significant performance gains. Inlining
is an effective optimisation for Pan programs which GHC usually fails to do aggressively
enough; this is rectified by the aggressive inlining optimisation. Finally, the algebraic
transformations attempt to improve performance via algebraic simplification.

In the subsections below I describe why each is particularly applicable to our domain,
and its realisation in general meta-programming terms, without recourse to Template
Haskell specifics.

38 Chapter 3: Optimising Embedded DSLs with Template Haskell

3.3.1 Unboxing Arithmetic

Motivation and abstract approach

PanTHeon is a numerically intensive application, almost exclusively using floating-point
arithmetic. Hence unboxing can yield significant improvements in speed1. Unboxed code
also yields better memory locality as the arguments and results do not require an indi-
rection to a heap allocated object. In fact, it is possible that the arguments are placed
directly into registers.

Most compilers optimise away as much unnecessary boxing as is feasible, but as imple-
menters of an EDSL we have more knowledge than the compiler does and can consequently
do better. We can be certain of the validity of unboxing assuming that every function in
PanTHeon is also monomorphic. We lose a bit of Pan’s flexibility this way; a much nicer
solution would be to specialise each invocation of a polymorphic function based on the
type information gleaned from the context in which it is invoked. This is discussed further
in the next subsection.

This begs the question, why do we not simply define all the functions in terms of
unboxed arithmetic in the first place? Apart from the fact that the syntax of unboxed
arithmetic is ugly and cumbersome to use, there is a more important issue: abstraction.
When a colour is displayed, each of its component values is converted to an integral value
between 0 and 255 and combined into a single 32-bit integer that is placed into video
memory. Efficiency can be gained by converting the functions that operate on colours to
their integer arithmetic equivalents behind the scenes, while the user retains their view of
the current abstraction (i.e. floats of [0,1]). (Although early experiments indicated that
this arithmetic conversion measurably improved performance, there were technical reasons
that prevented it. The reasons are discussed in the section on implementation details.)

In general terms this optimisation requires that we traverse the representation of each
top level function replacing all boxed arithmetic operators and constants with their un-
boxed equivalents. The unboxing of arithmetic is an interesting transformation as it
changes the semantics of the program. Each type in the resulting program corresponds
exactly to a type in the original, but it is clear that the validity of this correspondence
relies upon our knowledge of the domain.

Implementation in Template Haskell

The process of replacing all boxed operators and constants with their unboxed equivalents
is generally a straightforward process in Template Haskell, although we run into difficulty
in the context of polymorphic data structures. Most cases written for the family of un-
boxing functions merely call unbox recursively on sub-objects (be they declarations, types,
bodies, expressions, etc). There are only a few interesting cases:

1Without unboxing, each arithmetic function must first unbox its arguments, perform a primitive
arithmetic operation upon these values, and re-box the result.

3.3. PanTHeon 39

1. Transforming type signatures. It is clear that any type signatures or type annotations
that existed in the original declarations will no longer be valid. For each type
synonym and data type declared for the boxed declarations we declare an unboxed
version. For ease of recognition the name of such types have a UB suffix appended.

2. Replacing arithmetic operators with unboxed equivalents. This code assumes that all
operators will be changed to their unboxed floating point equivalents. We recognise
this as an oversimplification and we discuss this further in this chapter.

3. Replacing tuples with stricter versions. We declared two new data types to ex-
press points and colours to increase strictness. Unlike built-in tuples, one can add
strictness annotations to the arguments of the constructor.

An example covering all three of these cases is the following:

checker :: ImageC
checker (x , y) = if even e then blackH else whiteH

where

e = floor x + floor y

becomes

checker :: ImageC UB
checker (Point UB x y) = if evenInt# e then blackH else whiteH

where

e = float2Int# x + # float2Int# y

The main problem with the implementation of the unboxing pass is the lack of easily
accessible typing information. It is problematic in three ways.

• as Lynagh [67] has already observed it is impossible to know what the type of a literal
is. Fortunately, nearly all literals in the definition of Pan functions are instances of
Fractional , so we could unbox them to primitive floating point numbers. However
there were a few instances where this was not true and special cases had to be written
for them.

• In the previous section we discussed converting the components of colours to the
range [0, 255]. Unfortunately, this would have necessitated a relatively complex
transformation on all functions which manipulated colours.

For instance consider the definition of cOver (a key component of the definition of
image overlay.)

cOver (r1, g1, b1, a1) (r2, g2, b2, a2) = (h r1 r2, h g1 g2, h b1 b2, h a1a2)
where

h x1 x2 = a1 ∗ x1 + (1 − a1) ∗ x2

Under our proposed transformation it would become

40 Chapter 3: Optimising Embedded DSLs with Template Haskell

cOver (Colour UB r1 g1 b1 a1) (Colour UB r2 g2 b2 a2) =
(Colour UB (h r1 r2) (h g1 g2) (h b1 b2) (h a1 a2))

where

h x1 x2 = (a1 ∗# x1 +# (255#−# a1) ∗# x2) ‘divInt#‘ 255#

Such a transformation is only feasible when one has knowledge of the type of each
variable. For instance, in the example above it is necessary to know that a1 is of
type ColourBit UB (i.e. in range [0, 255]).

• I have had to define all PanTHeon functions that contain arithmetic operations
monomorphically. A restriction that GHC imposes is that a function containing un-
boxed operations cannot operate on polymorphic data types. With type information
we could specialise such polymorphic functions at each call site.

Without the ability to reify the type of a fragment of an expression, some transfor-
mations simply cannot be written for the general case, and until a satisfactory solution
has been found, I regard this as one of the principle shortcomings of the implementation.
This issue is further discussed in section 3.5.2.

3.3.2 Inlining

Motivation and abstract approach

The style of embedding used in the original implementation of Pan has the effect of
inlining all definitions and β-reducing the resulting function applications before any further
simplification occurs. This greatly increases the opportunities for algebraic transformation
but has the drawback of introducing the possibility of code replication. Fortunately, the
effect of code replication can be mitigated by applying a common subexpression elimination
(CSE) pass after inlining. Based on the success Elliott, Finne, and de Moor [33] had with
it I investigated this approach to code improvement.

However, since GHC has its own passes for performing beta-reduction and CSE, it was
decided to leave these passes unimplemented and see how well the compiler performed.
The results of the experiment are encouraging and a concrete example is provided in next
section.

In general terms the ability to inline code relies upon two meta-programming facilities:
the ability to reify, transform and splice code, and the ability to look up the definition of
a top-level function declaration. Unfortunately, Template Haskell does not (yet) support
this second facility. In Section 3.5.1 I explain a solution to this problem which involves
the manual creation of a look-up table.

With this infrastructure in place, the inlining process is relatively straightforward.
We take as input the final animation or image function that PanTHeon will display and
traverse its definition. Each time we encounter the use of a function that has been de-
fined in PanTHeon2 we look up its definition, create an equivalent lambda expression and

2We do not inline functions that are part of other Haskell libraries.

3.3. PanTHeon 41

substitute it at that location. This is done recursively.
Clearly, this leads to non-termination in the presence of recursion. While we could

refuse to inline recursive function definitions, determining whether a function is recursive
is an involved process requiring the construction of a call graph and the determination of
strongly connected components, and in any case GHC already does this. Unfortunately
we do not have access to this information. (Perhaps Template Haskell should provide
it.) Instead we have chosen to limit the inlining process to a fixed depth which roughly
corresponds to loop unrolling in the context of recursion.

Implementation in Template Haskell

Most definitions in the inlining transformation are concerned with traversing the compo-
nents of a declaration. The function that actually does the real work is mkInlineExp. Its
implementation is quite cluttered with Template Haskell specifics so we discuss a stepwise
example of its effect on our running example (introduced in Section 3.2.1) rather than its
definition.

The inlining pass traverses the declaration of checker on stripes until it comes to the
variable sub-expression checker . At this point a look-up is performed upon its name and
the declaration for checker is retrieved. We then convert this definition to an equivalent
lambda expression. Note that where declarations are converted to let declarations. Also,
without typing information we cannot inline functions that have been overloaded using
Haskell’s type classes.

λ (x , y) →
let e = floor x + floor y
in if even e then blackH else whiteH

This expression is then substituted in place of the variable. Function definitions that
contain guards are also handled. This occurs during the inlining of stripes. It is replaced
with

λ (x , y) → if even (floor x) then red else blue

In the previous section I promised a concrete example of the effect of GHC’s common
subexpression elimination on inlined code. A fitting example to consider comes from the
original paper on the implementation of Pan [33]:.

swirlP r = λ p → rotate (distO p ∗ (2 ∗ pi/r)) p

The result of inlining clearly contains much redundancy:

λ (x , y) →
(x ∗ cos (sqrt (x ∗ x + y ∗ y) ∗ (2 ∗ pi/r))
− y ∗ sin (sqrt (x ∗ x + y ∗ y) ∗ (2 ∗ pi/r)),
y ∗ cos (sqrt (x ∗ x + y ∗ y) ∗ (2 ∗ pi/r))
+ x ∗ sin (sqrt (x ∗ x + y ∗ y) ∗ (2 ∗ pi/r)))

42 Chapter 3: Optimising Embedded DSLs with Template Haskell

empty ‘over ‘ image = image
image ‘over ‘ image = image
translate (x1 , y1) (translate (x2 , y2) im) = translate (x1 + x2 , y1 + y2) im
rotate a im = rotate (a − n ∗ 2 ∗ pi) im (where n = a ‘div ‘ 2 ∗ pi)
rotate a1 (rotate a2 im) = rotate (a1 + a2) im
scale (x1 , y1) (scale (x2 , y2) im) = scale (x1 ∗ x2 , y1 ∗ y2) im
fromPolar (toPolar f) = f

Figure 3.3: Some algebraic properties of Pan primitives

The following dump of the Core3 code produced shows that it is capable of removing
much of the redundancy.

\w_se6i ww_se6l ww_se6m ->

let { a’334 = <core equivalent of x*x + y*y * (2*pi/r)>

} in

(# (GHC.Prim.minusFloat#

(GHC.Prim.timesFloat# ww_se6l (GHC.Prim.cosFloat# a’334))

(GHC.Prim.timesFloat# ww_se6m (GHC.Prim.sinFloat# a’334))),

(GHC.Prim.plusFloat#

(GHC.Prim.timesFloat# ww_se6m (GHC.Prim.cosFloat# a’334))

(GHC.Prim.timesFloat# ww_se6l (GHC.Prim.sinFloat# a’334)))

#)

GHC also performs β-reduction and constant folding (e.g. 2π is replaced with the
constant 6.283 . . .) which saves us yet more implementation effort.

3.3.3 Algebraic Transformation

Motivation and abstract approach

The principle behind algebraic transformation as an optimisation technique is simple:
expressions are substituted for semantically equivalent expressions which compile to faster
code, be it universally or on average. Considering our running example again, we can see
that overlaying the entirely transparent empty image on top of swirl stripes will have no
effect. (This is proved by examining the definition of over .)

checker on stripes = checker ‘over ‘ (empty ‘over ‘ swirl stripes)

The sub-expression may simply be replaced with swirl stripes. That is, the following
algebraic identity holds: empty ‘over ‘ 〈image〉 = 〈image〉. (For more examples of alge-
braic properties of Pan see Figure 3.3.)

What is interesting about our use of this technique in PanTHeon (and in the general
context of EDSLs) is that we are using it in a fairly novel context: outside the compiler.

3An intermediate representation used by GHC. Adding the flag -dverbose-core2core to the command
line will dump the code to standard output.

3.3. PanTHeon 43

A key advantage over an embedded compiler is that we only need to implement transfor-
mations specific to our EDSL, extending rather than overriding the optimisations of the
compiler.

In general terms algebraic transformations are easy to implement. For a given expres-
sion we attempt to match it against our known algebraic identities. When successful we
replace it with the equivalent optimised expression. To ensure that sub-expressions are
also optimised we recursively apply to the sub-expressions left unchanged by the original
transformation. This is also done when no algebraic transformation is applicable.

Implementation in Template Haskell

Template Haskell’s reification of code as algebraic data types in combination with its
pattern matching features make algebraic transformations easy to write (and this has
been noted by others [27]). Earlier I showed that the expression empty ‘over ‘ 〈image〉 can
be replaced with 〈image〉. This particular case is implemented via the following code.

algTrans (AppE (AppE (VarE ′over) (VarE ′empty)) image) =
algTrans image

One of the side effects of the rich syntax offered by modern programming languages,
including Haskell, is that there is often more than one way to write essentially the same
expression. This is very useful for program generation but in the context of program
transformation means that separate cases must be written to transform equivalent ex-
pressions. In order to reduce the number of patterns to be matched against, code needed
to be written that translated expressions to a canonical form. For instance, the example
above matches on the canonical (prefix) form, over empty〈image〉, of the algebraic identity
presented earlier.

Another tedious aspect of all transformations is the recursive cases. Since we wish our
transformations to be applicable not just to expressions but sub-expressions also, we must
have cases which recursively call on them. These cases are numerous and easily outnumber
the cases that actually do interesting work. However, a well-known paper [60] presents a
method by which the such boiler-plate code can be “scrapped”; that is the traversal can
be done in a handful of lines of code. These techniques have been used in the source code.

An example of the code reductions are shown below. The function inlineExp checks
whether an expression is a variable and inlines the appropriate function if so and returns
the expression unchanged if not.

The function inline is defined using the everywhereM combinator. It can be used
on any code representation data structure and will transform any component of such
data structure that contains an expression, no matter how deeply nested. The function
mkInlinedExp (not shown here) creates a lambda expression equivalent to the looked up
function definition.

inlineExp :: [(String , FunDecl)]
→ ([(String , FunDecl)] → (forall a. Data a ⇒ a → Q a))

44 Chapter 3: Optimising Embedded DSLs with Template Haskell

→ Exp → Q Exp

inlineExp tbl inline e@(VarE nm) =
case lookup (nameBase nm) tbl of

(Just (funDec,)) →mkInlinedExp (inline tbl) funDec
Nothing →return e

inlineExp exp = return exp

inline :: [(String , FunDecl)] → (forall a. Data a ⇒ a → Q a)
inline tbl = everywhereM (mkM (inlineExp tbl inline))

3.3.4 Architecture of PanTHeon

PanTHeon consists of three main parts—the language implementation, the optimisation
modules and a client for displaying effects. As mentioned above, the language implemen-
tation is a direct implementation of the combinators in the original paper on Pan [32].
Users write effects in Pan (which is really just Haskell) which can then be loaded directly
into the client via conventional file menu widgets. The user written code is imported into
an automatically generated module which transforms their code via functions present in
the optimisations modules. This file is then compiled in GHC and dynamically loaded
using Don Stewart’s hs-plugins library [75].

The client program is responsible for displaying images interactively. The client chooses
a bounding box for the images and then samples the image repeatedly from left to right
and then down, writing the resulting colour values to the screen. Using the mouse or
keyboard the user of the Pan client is able to pan the image in two dimensions and zoom
in or out. The manner in which images are sampled and displayed is discussed further in
Section 4.2.2.

3.4 Benchmarks

Performance testing on PanTHeon has been conducted in two ways—optimised effects
have been compared with their unoptimised counterparts as well as against the original
Pan implementation.

3.4.1 PanTHeon vs. itself

Figure 3.4 compares the frame rate of an effect for which different combinations of optimi-
sations have been applied. When both unboxing and inlining are applied the effects run
at least twice as fast, and for one particular example the optimisations led to a nine-fold
speed-up.

3.4. Benchmarks 45

Effect Base Inlined Unboxed Unboxed & Inlined
checker swirl 8.86 f/s 1.309x 2.190x 2.258x
circle 11.241 f/s 1.324x 2.126x 2.083x
checker on stripes 1.302 f/s 1.027x 8.361x 9.003x
four squares 2.512 f/s 1.366x 4.184x 4.152x
triball 1.244 f/s 1.914x 2.578x 2.707x
tunnel view 4.62 f/s 1.223x 2.042x 2.661x

Figure 3.4: Effect of optimisations on frame rate at resolution of 320x200.

The effects were run on a 1Ghz Apple Powerbook G4 with 512MB of RAM. We have
left out the effect of algebraic transformations only because our sample size is so small.
Naturally, we could contrive an effect with much computational redundancy which would
show off its effectiveness, but this would not tell us much. Only by collecting a large
number of effects can anything be said about its effectiveness.

3.4.2 PanTHeon vs. Pan

How well does the performance of PanTHeon compare with that of Pan? Unfortunately,
this is difficult to compare because of platform disparity. PanTHeon has been imple-
mented for *nix4 platforms while Pan only runs on Microsoft Windows. Nevertheless,
we performed measurements on PanTHeon and Pan on the same machine: a 733 MHz
Pentium III, 384 MB RAM, at 400x300 resolution.

Pan still outperforms PanTHeon. The checker swirl effect has performance that com-
pares favourably; at a resolution of 400x300 it runs at 4.78 frames/s in PanTHeon and at
10.61 frames/s in Pan. Other effects such as triball and four squares perform far better
in Pan (> 18 frames/s) and very slowly in PanTHeon (1.68 frames/s and 6.54 frames/s
respectively). Both these effects makes substantial use of the over primitive for layering
images on top of each other. Pan seems to do substantial unrolling of expressions, which
is an optimisation we have not yet implemented in PanTHeon. It is suspected that it will
significantly improve effects’ performance.

However, I have shown that the issue does not lie with any inherent deficiencies in the
quality of the code that GHC produces. I hand-coded (and optimised) a very simple effect
which ran at a speed comparable to the same effect in Pan (24 million pixels/s).

Another aspect of the Template Haskell implementation that has hindered further
tuning or creation of optimisations is the lack of support for profiling of programs which
contain splicing.

3.4.3 Relative code base sizes

Finally, the amount of code needed to implement Pan and PanTHeon is compared as
a crude means of comparing implementation effort. Both Pan and PanTHeon have two
components – a language definition and a display client. The PanTHeon library, plus
optimisations totals at about 3000 lines of code. The client is implemented in under 1000

4It has been successfully built on Debian GNU/Linux and Mac OS X.

46 Chapter 3: Optimising Embedded DSLs with Template Haskell

M1M1TH

M2TH

Figure 3.5: M2TH imports M1 which splices in declarations in M1TH.

lines of code. Pan, in its entirety, exceeds 13000 lines of code. The inheritance of a code
generator and host language optimisations by PanTHeon is the primary reason for this
difference.

3.5 Template Haskell specifics

Template Haskell was an excellent language for transformational meta-programming. Its
quasi-quote notation, its novel approach to typing and its ability to represent and inspect
code made the task of writing elegant compiler-like optimisations possible. However, there
are ways in which the language could be improved further and in this section we review
difficulties with the current Template Haskell implementation and any solutions that were
devised.

3.5.1 Reification of top-level functions

Both unboxing of arithmetic and inlining, require the ability to reify top-level function
declarations. Currently, such reification is unsupported in Template Haskell. There is,
however, a relatively simple work-around to this problem. We can create a look up table
in two steps. First, we place the entire module in declaration reification brackets and call
the resulting data structure something appropriate, such as moduleImageFuns. We can
then create the look-up table for this module by applying a function which creates a list
of pairs matching names to function declarations.

An interesting dilemma arises when one wishes to write a module, say M2TH, which
refers to functions defined in module M1TH. The functions in M1TH are not in scope
and will only become so if they are spliced in another module. So we create a module M1
which splices in the reified functions from this module and then import M1, not M1TH,
inside module M2TH. The basic idea is summarised in Figure 3.5.

There is just one more tiny problem. We wish to transform both the functions in
M1TH and M2TH before bringing them into scope for display in the PanTHeon client,
but the solution outlined above causes the functions in M2TH to refer to the functions
in scope in M1. The reified form of such functions contain original names which are of
the form M : f (where M and f are module and function names respectively). In order

3.5. Template Haskell specifics 47

to refer to whatever is in scope at post-transformation splice time we must remove the
module prefix from the original names.

The addition to Template Haskell of a native means to deal with the reification of
top-level function declarations would greatly simplify the implementation of PanTHeon
and similar programs, and would be less error prone.

3.5.2 Lack of type information

In Section 3.3.1 I mentioned that lack of type information prevented satisfactory imple-
mentation of the unboxing transformation. This is for three main reasons:

1. We require the type of literals in order to choose the correct primitive unboxed
arithmetic functions.

2. Knowing the type that an invocation of a polymorphic function would be instantiated
to is also necessary to choose the correct primitive unboxed arithmetic functions.

3. Polymorphic data structures cannot contain unboxed values. Therefore, specialised
data structures are required. Again, types are needed. The next subsection discusses
this further.

Template Haskell does provide some ability to reify type information by requesting
information for a particular variable. Unfortunately, this is only possible if the variable
name in question was brought into scope for one of the following reasons: it came from
another module, it was not generated by a splice and appears somewhere in the current
module, or it was generated by a top-level splice occurring earlier in the current module.

In fact, this is the only type information that can be available without splicing the
declaration in which the variable appears, for in general it is undecidable as to whether an
arbitrary meta-program, once run, will produce correctly typed code. (This was the moti-
vation behind the design of Template Haskell’s typing system which defers type checking
until meta-programs have been run.)

However, in the special case that the reified code was closed, in the sense that it
contained no further splices and all variable names were in scope, it is possible (in principle)
to type the code. This is precisely the sort of declaration in PanTHeon that we wish to
glean type information from.

3.5.3 Unboxing in the context of polymorphic data structures

Section 3.3.1 hinted at a problem with unboxed values in the context of polymorphic data
structures. One of the restrictions on unboxed values is that they may not be stored
in polymorphic data structures. This necessitates the specialisation of polymorphic data
structures to monomorphic counterparts. Disregarding the difficulty of doing this in the
absence of typing information there is an additional difficulty. While it is possible to reify
data type declarations in other modules (using the Template Haskell primitive reifyDecl)

48 Chapter 3: Optimising Embedded DSLs with Template Haskell

it is not possible to reify the definitions of functions in those modules. The following
example illustrates some of the difficulty arising from this.

weird :: Point
weird = head (zipWith (,) [1] [0.5])

Without the ability to reify the definitions of zipWith and head , and specialise them to
work on a monomorphic version of the list data type the only other solution is to marshal
data to and from unboxed/monomorphic representations at key points within the function
definition, which to be feasible also requires access to type information. At present, it is
not clear whether the ability to reify entire modules or functions in other modules will be
added to Template Haskell or not. The latter solution will be necessary in case it does
not.

3.6 Related Work

In his seminal paper Smith [86] introduced a well-defined concept of computational re-
flection. (Henceforth, this term is used as a synonym for meta-programming.) Reflection
was a novel and poorly understood concept when Smith began work on it, even though
Lisp had some support for it already. To put reflection on a sound foundation he defined
his own dialect called 3-Lisp. 3-Lisp modelled an infinite tower of interpreters; each level
of the interpreter was able to scrutinise, manipulate and generate expressions at the level
below it. Similar functionality is realised by Template Haskell’s support for nested splicing
and quasi-quotation.

A host of papers in the Lisp and Scheme communities followed in which simpler de-
scriptions of the tower were presented [40, 28, 54] and a continuation semantics proposed
[105]. During this period the notions of name generation and quasi-quotation were refined.

The work of Sheard, Taha and Pasalic [90, 91, 85, 76] introduced meta-programming
into a strongly typed setting thus further increasing the safety of this powerful program-
ming technique. The languages they developed, MetaML and then MetaOCaml are quite
different to Template Haskell. First, they support run-time meta-programming as well as
compile-time. However, for the purposes of optimising libraries and EDSLs we actually
prefer the restriction to compile-time. Second, they do not support a notion of reification
which means that transformations of the kind presented in this chapter are not possible.
However, a technique known as abstract interpretation can be used to achieve a similar
effect. Lastly, these two languages have powerful but restrictive typing systems. The
type of a generated program is reflected in the type of the meta-program that gener-
ates it. Unfortunately the type system is so restrictive that it disallows many interesting
meta-programs.

MetaML and MetaOCaml are often used to implement DSLs as staged interpreters but
in quite a different way. Here the essence of the approach is to remove “tagging”. Staged
interpreters use meta-programming annotations to traverse the representation of the inter-
preted program before the essence of the program is executed at run-time and amounts to

3.7. Towards plug-in compilers 49

a form of domain specific partial evaluation. It is an approach based on generation rather
than transformation. This approach also inherits the optimisations of the host language
(as they will be applied to the generated code) but introduces the expense of having to
implement the front-end of a compiler. If this merely involved the implementation of a
simple lexer and parser this expense would be acceptable. Unfortunately real languages
often require significant front-end infrastructure such as a symbol table, a complicated
abstract syntax tree representation and analysis phases. Figure 3.6 compares the three
approaches to implementing DSLs mentioned in this chapter.

Approach Inherit
front-
end

Inherit
back-
end

Optimise via

Embedded compiler
(Elliott et al)

yes no traditional compiler opts.

Staged interpreter
(MetaML)

no yes generation (through delayed
expressions)

Compile-time
meta-programming
(Template Haskell)

yes yes transformation

Figure 3.6: A comparison of three approaches to implementing DSLs

Finally we mention Metaborg. Metaborg [20] is a framework for defining new
syntactic forms in a language independent manner. Using this framework one writes
transformations using a term rewriting language called Stratego/XT. However, it may
be necessary to encode information about the language being transformed in the rewrite
rules. This effect is mitigated in Template Haskell which natively supports notions such
as syntactic correctness and scoping.

3.7 Towards plug-in compilers

In this chapter I have presented a case study in optimising an EDSL using compile-time
meta-programming. Although Template Haskell has performed an admirable job it has not
been without its difficulties. The following criticisms apply to all comparable compile-time
meta-programming systems.

3.7.1 Problems with compile-time meta-programming

Optimisations occur before compiler’s

There is a subtle problem with the interaction between GHC’s optimisations and those
presented in this dissertation: our optimisations are performed before any of GHC’s.
Unfortunately the order in which optimisations are done is often important; some increase
the effectiveness of others if performed at the correct time.

The only solution to this problem seems to be to provide an API for the optimisation
phases. Without a way to name optimisations, either to use an existing one, or add a

50 Chapter 3: Optimising Embedded DSLs with Template Haskell

new one, one cannot hope to script the optimisation pipeline. However, this seems a little
outside the scope of a meta-programming language.

User-level syntax

There are two things one usually wishes to do with meta-programming – generation and
transformation. Generation is best done on the user-level syntax of the programming
language since syntactic sugar is beneficial for writing concise program generators, not
a hindrance. However, transformation is better performed upon an intermediate repre-
sentation which has few constructs. Otherwise many cases need to be considered in any
transformation.

Thus, although sophisticated meta-programming languages provide useful features
such as name generation, reification and quasi quotation, it appears that user-level syntax
is not always the best level to use them at. The question arises, is transformation of an
intermediate representation really meta-programming?

Typing

Another problem arises because of the conflicting goals between program generation and
transformation. When generating a program one simply cannot always know the type of
the final program – it is undecidable in general. Either one restricts the programs that
can be generated, like MetaML does, or one implements staged type checking as Template
Haskell does.

On the other hand, when transforming code one already has the complete program.
There is no reason why the full types cannot be provided. Indeed, as mentioned in Section
3.3.1, types are sometimes necessary in order to transform expressions correctly. It would
probably be possible to provide two forms of typing to a meta-programming language
such as Template Haskell, traditional type inference for fully generated expressions and
staged type inference for everything else. However, the question must be asked once
again, is this discord in type checking goals indicative of a “fault line” upon which the
meta-programming language should be separated? Do we really wish to be transforming
user-level code?

3.7.2 The case for plug-in compilers

One could imagine that the first problem above, the lack of type information, could be
solved by extending the language. However it is not easy to imagine how a) the notion
of mixing optimisations written in Template Haskell with those that reside inside the
compiler and b) having those optimisations operate on the intermediate representation of
the compiler could be realised within the language. In fact, the natural solution appears to
be to abandon the meta-programming approach and to allow a solution based on writing
optimisation plug-ins. This approach is explored in the next chapter.

Chapter 4
Plug-in optimisations

I
n a seminal paper [82] on the economics of compiler optimisations Robinson notes:

Compile-time program optimizations are similar to poetry: more are written
than are actually published in commercial compilers. Hard economic reality
is that many interesting optimizations have too narrow an audience to jus-
tify their cost in a general-purpose compiler, and custom compilers are too
expensive to write.

The results of this chapter provide a means by which this problem can be redressed:
back-end plug-ins. They empower programmers to write optimisations without having to
recompile the compiler or know everything about its internals. More importantly, they
enable custom optimisations to be written for and distributed with libraries, elevating
them to the level of active libraries [96, 26, 95]. Finally, along with the ability to insert an
optimisation at any point within the pipeline of existing ones comes the ability to script
the optimisation pipeline, providing a level of control over the compiler only approximated
by command line flags.

The chapter begins by describing three requirements of any back-end plug-in enabled
compiler, followed by a more detailed survey of the design choices available. From among
these choices I have chosen an approach based on dynamic loading and linking of plug-
ins and retrofitted it into GHC. How this is accomplished and the manner in which the
aforementioned requirements are satisfied is then discussed. We continue with a case study
involving a custom optimisation for the Pan EDSL. This is done, in part, to compare the
techniques of this chapter with the meta-programming approach taken in the previous
chapter. Care has been taken to keep this discussion as high-level as possible in order to
high-light general lessons learned.

Following the high level presentation of the optimisation more details of the implemen-
tation are presented. I describe the implementation of back-end plug-in support GHC in
more detail, how the API was implemented, and present key functions of the optimisation
in full. I also briefly discuss the implementation of a plug-in DSL that can make the
writing of optimisations less tedious and error prone. The chapter concludes with some

52 Chapter 4: Plug-in optimisations

benchmarks demonstrating the efficacy of the optimisation and a survey of related work.

4.1 Requirements and design alternatives for back-end plug-

ins

In this section we describe three important requirements for a back-end plug-in architecture
followed by a discussion of design alternatives that satisfy these requirements.

The three requirements are:

• At least one small, elegant and well-understood intermediate representation exposed
via an API.

• A compositional scripting framework for the optimisation pipeline.

• A communication and control flow framework; a means for information to be passed
between plug-ins and from plug-ins to the other phases of the compiler.

4.1.1 Intermediate representations

A good intermediate representation can be difficult to design but once accomplished sim-
plifies the writing of optimisations considerably. This is already true in a monolithic
compiler but becomes more important in a plug-in setting since the idea is to lower the
barrier of entry for programmers, who may not necessarily be language design experts. A
small intermediate representation means there is less to learn. Ease of reasoning is another
desirable trait. Two examples of intermediate representations that are small, elegant and
easy to reason about are Static Single Assignment (SSA) (notably used in the Low-Level
Virtual Machine (LLVM) framework [62]) and the various lambda calculi such as System
F and Administrative Normal Form (ANF) [23]. The intermediate representation should
also be designed in such a way that it can be annotated with arbitrary information so that,
for instance, this can be used by later phases to aid a particular optimisation. In a static
setting this means that parametric polymorphism becomes a desirable. (In a dynamic
type setting there is no hindrance.)

As an example Figure 4.1 presents an API suitable for compiler written in a functional
language. The object language is a typed lambda calculus with support for let expressions,
data types and pattern matching. The API is monadic [70, 99, 100] due to the need for fresh
name generation. The simplicity of the intermediate representation makes transformations
easier. Representations in which it is possible to express the same programs in many
different ways are tedious to write optimisations for because of the multitude of different
cases that need to be considered.

The most important functionality provided by the API is the ability to look up existing
names (both in this module and others), generate new names and manipulate abstract
syntax. Some support for generic programming either through libraries [60] or through
query and transformation languages such as XPath [11] and XSLT [12].

4.1. Requirements and design alternatives for back-end plug-ins 53

Abstract syntax representation data Expr = Var Id
|Abs Id Expr
|App Expr Expr
| Con Id
| Let Id Expr Expr
. . .

New names newId :: String → Type → M Id
Look-up body of a binding lookupBind :: String → M (Maybe Expr)
Look-up name lookupId :: String → M Id
Free variables of expression exprFreeVars :: Type → [Id]
Representation of types data Type = TyVarTy Name

|AppTy Type Type
| TyConApp TyCon [Type]
. . .

Utilities on types such as — type of Id
idType :: Id → Type

— type of expression
exprType :: Expr → Type

— are two types equal?
eqType :: Type → Type → Bool

Name is a data type for names. TyCon represents type constructors. M is a monad with
support for name generation; a value of type M α represents a computation returning a
value of type α.
Figure 4.1: A monadic API for a typed lambda calculus with data types, pattern match-
ing and let-expressions.

54 Chapter 4: Plug-in optimisations

4.1.2 Compositional framework for scripting optimisations

Developing an optimisation phase that works well can be difficult. This section covers
a number of desirable traits that a framework for scripting optimisations should have.
However, before beginning we divide optimisations into three categories.

• Transformers. These optimisations do the real work. They transform one program
into another that is more desirable, either because it is faster, uses less space, etc.

• Representation changers. These plug-ins change a program in one intermediate rep-
resentation to another intermediate representation. Some representations are better
for certain kinds of optimisations hence the need for them.

• Analysers. These plug-ins annotate a program with information useful to other
plug-in optimisations.

In designing an optimisation pipeline there are many subtle factors that need to be
taken into account.

• The order in which optimisations are run can have great effect.

• Some optimisations are beneficial if run several times at different points in the
pipeline.

• The efficacy of optimisations varies between architectures. Generate-and-test or
automatic profiling techniques may be beneficial.

• There are often strict dependencies between optimisations. Analysers provide in-
formation for other optimisations while representation changers must appear before
other optimisations that work on the target representation of the changer.

Thus, it is desirable that such a framework allows a back-end plug-in programmer to
place existing and newly written optimisations in a pipeline wherever they are allowed to
be placed and as many times as necessary. It should not be possible to script the pipeline
in a such a way as to violate the dependencies between them. Above all the framework
should be compositional. It should be possible for optimisations to be combined with
others and, in turn, for these amalgamated optimisations to be composed still further. In
the extreme, it should not even be necessary for the order of the pipeline to be fixed at
plug-in link time. It would be nice if it were possible to write a pipeline that dynamically
responded to the software and hardware architecture of the system the compiler is run on.

4.1.3 Communication and control flow framework

Since, by definition, back-end plug-ins are written after the compiler there is the issue
of how the compiler controls and communicates with the optimisation phase. There are
two main possibilities; either the compiler is capable of dynamically loading, linking and
running the plug-ins or plug-in optimisations are standalone processes that communicate
with the compiler. Figure 4.2 shows the two alternatives.

4.1. Requirements and design alternatives for back-end plug-ins 55

Figure 4.2: Two possible architectures for back-end plugins. 1) Dynamically loaded
plug-ins 2) Plug-ins as stand-alone processes.

56 Chapter 4: Plug-in optimisations

Dynamic loading and linking

The ability for a program to load and remove object code at run-time is known as dynamic
linking and is well described in a paper [48] by Wilson and Olsson. A short summary is
presented here.

An object module is the machine code equivalent of a source module. It commonly
contains both a text segment, containing symbol names and machine code for functions
corresponding to those names, and a data segment containing constants and other static
data. Linking, is normally done statically, is the process of resolving references between
modules and relocating object modules into a final executable module. Relocation is the
act of changing memory addresses so that the executable can correctly reference symbols
in the object module.

Unlike static linking, dynamic linking allows a process to add, remove, replace or
relocate object modules within its address space during its execution. Adding an object
module involves allocating space in the heap and then resolving references. Removal is
the reverse process; all symbols that become unresolved are marked as undefined.

It is important to note that there is a one-time performance penalty in dynamic linking
as the object module needs to be read from the disk. When multiple plug-ins are loaded
this penalty can be substantial. This is exacerbated by the fact that when building a
program consisting of many modules the conventional practice is to invoke the compiler
once for each file. Good operating systems can mitigate this problem by temporarily
caching program code in memory after termination. Upon reloading the program time
can be saved by simply relocating the cached code.

Should this not suffice one could implement the compiler using a client/server model.
In this scenario the compiler and its plug-ins are loaded once and for all and then remain
resident in memory. Compilation of a source file is then achieved by sending a message to
the compiler.

Stand-alone processes

In the stand-alone process architecture each plug-in optimisation is compiled to a separate
binary executable. The processes then communicate with a component of the compiler
which I have called the optimisation manager. It is responsible for controlling the com-
munication between stand-alone processes, effectively directing the control flow of the
optimisation pipeline. The processes themselves can communicate with the manager ei-
ther by serialising data structures or using shared memory. How the optimisation manager
becomes aware of the stand-alone processes is an implementation choice. Some possibili-
ties are that they could register themselves, that they could be registered in a database or
that they could be registered via command line arguments to the compiler. One advantage
of stand-alone processes is the loose-coupling between them, but this comes at the cost of
increased communication between them. The processes could even communicate over a
network with the use of CORBA [8].

The infrastructure that needs to be developed to support stand-alone processes would

4.2. Back-end plug-ins using dynamic loading and linking in GHC 57

probably be a little more heavy-weight than in the dynamic loading and linking setting.
We cannot necessarily take advantage of safety features of the host language such as static
typing. (A notable exception is Java’s RMI technology.) Nor can we treat the plug-ins
as first class objects. It will be necessary to mediate their control using the operating
system’s support for inter-process communication. Conversely, this means the control and
communication manager could provide capabilities beyond that of the host language of
the compiler.

The CoSy compiler framework [15, 39] essentially takes this approach. Although ex-
plicitly focused on allowing end users to write custom optimisations, their framework could
easily be adapted for this use. More is said about this in Section 4.8.

4.2 Back-end plug-ins using dynamic loading and linking in

GHC

Now that we have surveyed requirements and design decisions for a back-end plug-in
architecture a specific case study is presented. This section describes the design and
implementation of a dynamic loading and linking based back-end plug-in architecture
for the Glasgow Haskell Compiler. This is followed by the design and implementation
of a domain specific optimisation for the Pan EDSL. In Section 4.6 the efficacy of this
optimisation is demonstrated.

4.2.1 Retrofitting GHC with back-end plug-ins

As it turned out GHC already had many features which made it easier retrofit it with
back-end plug-in support.The implementers of GHC chose a design based on the idea of
correctness preserving transformations. The principles of this approach are:

• Their intermediate language is Core — a simple, well-understood variant of the
lambda calculus.

• Each optimisation is just a transformation from the intermediate representation to
itself.

• Annotations that are added to the representation are not necessary for other optimi-
sations. Annotations may help improve the quality of code produced in later passes
but the lack of them will not cause the optimisation pipeline to stall.

In a paper [77] of the implementers’ experiences they state that a transformational
approach is attractive for two reasons. First, it means that each transformation can be
implemented, verified and tested separately. This is not only attractive but a necessity for
plug-in writers. Second, it makes it easy to “plug and play” by re-ordering transformations,
applying them more than once, or trading compilation time for code quality by omitting
some. They state that this “allows a late commitment to phase ordering.”

58 Chapter 4: Plug-in optimisations

The fact that transformations have no side-effects and that annotations are only op-
tional for later phases means that there are no hard dependencies between plug-in opti-
misations. This design, while perhaps not as powerful as one that handled dependencies
more thoroughly, is certainly safe to use in a plug-in environment. More is said about the
implementation in Section 4.4.2.

4.2.2 An image lifting optimisation for the Pan EDSL

This section draws upon the description of the Pan EDSL in Section 3.2. In this chapter
the name Pan is used to refer to our implementation of the EDSL as opposed to Elliot et
al.’s. Also, new types have defined to represent points and colours; tuples are no longer
used. This was mainly for performance reasons but it also provides additional type safety.

The image lifting optimisation exploits the fact that some images do not depend on
one of the Cartesian axes. An example of this is presented below: clearly, an image of
horizontal stripes only depends on the y axis.

stripes (Pt x y) = if even (floor y) then black else white

The manner in which Pan displays images is simple: starting at the bottom left hand
corner of the area to be displayed, the image is sampled repeatedly from left to right, and
then up; once for each pixel. The result of each sample is written to video memory. Other
point sampling orders are possible, but for efficiency reasons few others make sense. A
simplified version of the display function appears below; the real version is optimised for
speed, and hence less clear.

blitLoop 0 0 = return ()
blitLoop 0 n = blitLoop 〈screen width〉 (n − 1)
blitLoop m n = do

let (i , j) = 〈transform (m,n) to image co-ordinates〉
let col = image (Pt i j)
〈write col to video memory at position (m,n)〉
blitLoop (m − 1) n

An optimisation opportunity immediately presents itself. This occurs when portions of
an image are known to be the same as others. In such a case it makes sense to sample once
and write many times. A special case of this general optimisation technique occurs when
an image only depends on its y axis, that is, only the y coordinate is used to calculate the
colour displayed at a given point. One need only sample the point once for each row and
then repeatedly write that value to video memory.

The best way to do this is to lift images that are not dependent on their x axis to one
level of recursion higher in the display function. That is, in our display function, consisting
of a recursion across columns inside a recursion up the rows, we should lift images from
the former level to the latter. From this point we call such images liftable.

The display function now works as follows: the lifted image is applied to the first point
of each new row and the resulting colour is fed to the inner-most recursion, where it is

4.2. Back-end plug-ins using dynamic loading and linking in GHC 59

repeatedly written to video memory. Large gains in efficiency will result if the colour value
of the point is expensive to calculate.

4.2.3 High-level description

As it is described above the image lifting optimisation would hardly ever be applicable
since top-level liftable images are quite rare in practice. However, it is quite common for
images to be composed of other images that are liftable. We should lift out the sub-images
and leave behind a modified image function that, when given a list of colours as input,
yields the same image as before: this is called the partial inner image. The colour value
passed to the partial inner image are produced by applying the lifted images to the first
point1 in each row. An image with liftable sub-images appears below:

circleOnStripes = circle ‘over ‘ stripes

Applying the aforementioned transformation should lift out stripes and yield the fol-
lowing partial inner image.

circleOnStripes = λ [c1] → circle ‘over ‘ (λ → c1)

However, even this formulation has problems; lifting sub-images is complicated by
issues of scope.

Dealing with issues of scope

Some images, themselves part of the top-level image, may depend on variables that are
brought into scope elsewhere. For example, consider the expression below.

let w = 20 in circle ‘over ‘ 〈imageGen〉 w
where 〈imageGen〉 :: Int → ImageC 2.

The image, 〈imageGen〉 w , cannot be lifted out since w would no longer be in scope.
However, what we can do is η-expand 〈imageGen〉 yielding the following:

Lifted expression λpt w → 〈imageGen〉 w pt
Partial inner image λβ → let w = 20 in circle ‘over ‘ (λ → β w)

From this point on we refer to the result of lifting as a lifted expression, not a lifted
image, since it is only an image in the case where there are no variables that would become
out of scope. However, such expressions always have a target type of Colour .

The algorithm

With the last subtlety of lifting sub-images having been exposed (and dealt with) we
are ready to discuss the image lifting algorithm. The first thing to do is identify the

1It doesn’t actually matter which point in the row we apply lifted images to; the first is just convenient.

60 Chapter 4: Plug-in optimisations

images that can be lifted by examining the structure of the top-level image to see if it has
any sub-expressions that are also images; this is done by checking whether the type of the
expressions is the same as that for images: ImageC . Since images may contain sub-images
of their own, it is necessary to carry out this process recursively until a primitive image
is found: an image that contains no sub-images.

Having found such a candidate image it must now be inspected to see if it is liftable.
We do this by:

• looking for a pattern match of the form (Pt 〈x〉 〈y〉)

• retrieving the identifiers of 〈x〉 and 〈y〉. These have type Id and contain a unique
identifier to aid in comparison with other identifiers

• looking for uses of 〈x〉 and 〈y〉 within the image. If 〈x〉 is not used anywhere within
the body of the alternative3 then the image is liftable.

The lifting optimisation is conservative; it may not identify all liftable images but it will
never erroneously lift one that is fully dependent on both the x and y axes.

Each liftable image needs be replaced with a so-called constant image: an image that
ignores its point argument and returns a colour. This is done by first finding the variables
that would no longer be in scope, creating a fresh variable which stands in place of the
lifted expression, applying the variable to the out-of-scope variables and abstracting on a
dummy variable.

Once the liftable images have been replaced with constant images, the modified image
is no longer closed, since it contains fresh variables. Back at the top-level two things
happen:

1. The fresh variables, β1, . . . , βn, are used to create a lambda expression of the form:
λ β1, . . . , βn → 〈modified image〉 . This is the partial inner image referred to ear-
lier and the expression is now closed.

2. A function known as the row initialiser is created. Its purpose is, before recursion
on a row begins, to apply each lifted expression to the first point and then pass the
resulting values to the partial inner image.

These two expressions become the arguments to the augmented display function of
Figure 4.3. It applies the first point of each row to the row initialiser and passes the
resulting image to the inner-most recursion: innerBlitLoop.

This concludes the overview of the lifting process. In the next few sub-sections we go
into more detail, providing code examples and a formal account of the creation of constant
images and lifted expressions.

3Each pattern match and associated body in a case expression is known as an alternative.

4.2. Back-end plug-ins using dynamic loading and linking in GHC 61

blitLoop 0 = return ()
blitLoop n = innerBlitLoop w

where
let j = 〈transform n to image co-ordinate j〉
innerImage = 〈row initialiser〉 (Pt 0 j)
innerBlitLoop 0 = blitLoop (n − 1)
innerBlitLoop m = do

let col = innerImage pt
〈write col to video memory at position (m,n)〉
innerBlitLoop (m − 1)

Figure 4.3: An augmented display function that incorporates lifted images

4.2.4 Formal account

A formal account of the construction of the partial inner image and lifted expressions
is provided in Figures 4.4 and 4.5. However, before these can be understood some terms
must be defined. The precursor is an intermediate, unclosed expression that is constructed
while the partial inner image is being built. The lift context is a pair that is constructed
for each liftable image. It consists of an identifier and a lifted expression. Each identifier
corresponds precisely to one of the free variables in the precursor.

The remaining discussion closely follows the figures. The algorithm of Figure 4.4 is
responsible for creating the partial inner image. This is done, in turn, by repeatedly
following the algorithm in Figure 4.5. As mentioned earlier, it may well be the case
that once an expression is lifted outside of the context in which it was defined that some
variables may no longer be in scope. The free variables of a liftable image will be a superset
of those of the top-level image. In order to find those free variables that were brought into
scope by the top-level image it is only necessary to find the set difference of these two sets.
It is then possible to construct both the constant image and the lifted expression.

The latter is constructed via η-expansion. The fresh variable, pt , becomes the first
argument of the lifted expression. This is done so that the row initialiser can partially
apply the lifted expression to the first point of each row during image display. The constant
image and the lift context are then returned.

Having repeatedly performed the algorithm of Figure 4.5 the constant images are used
to create the precursor. Then the free variables returned in the lift contexts, β1 . . . βm,
are used to create the partial inner image. In turn, the partial inner image and lifted
expressions, 〈lifted〉1 . . . 〈lifted〉m (also returned in the lift contexts) are used to create
the row initialiser. The row initialiser is the final product of the image lifting optimisation
and is passed to the augmented display function of Figure 4.3.

In order to see the connection between the lifted expression and the constant image
it is only necessary to consider what happens when the row initialiser partially applies
the lifted expression to the first point on the row and then passes the resulting expression
to the partial inner image. Once the resulting term has been substituted into the partial

62 Chapter 4: Plug-in optimisations

1. Take the original image and find the liftable images.

〈image〉 ≡ . . . 〈liftable〉1 . . . 〈liftable〉m . . .

2. Replace them with constant images generated by using steps from Figure 4.5, yielding
the precursor to the partial inner image.

〈precursor〉 ≡ . . . 〈const. image〉1 . . . 〈const. image〉m . . .

and collect the lift contexts: (βi , 〈lifted〉i) for i = 1, . . . ,m.

3. Close the precursor using the fresh variables returned in the lift contexts.

〈partial inner image〉 ≡ λ β1 . . . βm → . . . 〈const. image〉1 . . . 〈const. image〉m . . .

4. Create the row initialiser using the partial inner image and the lifted expressions
returned in the lift contexts.

〈row initialiser〉 ≡ λ pt → 〈partial inner image〉 (〈lifted〉1 pt) . . . (〈lifted〉m pt)

Figure 4.4: Creating the partial inner image

inner image we have the following:

. . . (λ a1 . . . an → 〈subst. point value for pt in 〈liftedBody〉〉) v1 . . . vn . . .

Further evaluation will clearly yield the correct result: each value vi is substituted for
the variable ai. That is, the values of the variables that would have been out of scope
have been restored.

4.3 Implementing the image lifting pass

We have yet to see how to implement the image lifting pass using the API provided
in Figure 4.1. Instead of merely presenting pseudocode I have included code from my
implementation for a plug-in enabled GHC. The code presented makes use of functions
with very similar names to those of the API given before; we leave discussion of how the
API was implemented in GHC until section 4.4.2. However, this code makes frequent use
of generic traversals implemented in Lämmel and Peyton Jones’ Scrap Your Boilerplate
(SYB) library [60].

Generic traversals simplify the implementation of transformations that operate on rich,
mutually recursive data structures. A generic traversal is constructed by defining one or
more type specific transformations—these are transformations that are only defined for a
specific type which resides somewhere within a rich, mutually recursive data structure—
and then using one of SYB’s traversal combinators to apply the type specific traversals in

4.3. Implementing the image lifting pass 63

1. Find a primitive image: 〈liftable〉

2. Find the η-set = FV (〈liftable〉) − FV (〈top-level image〉) = {v1, . . . , vn}

3. Create a fresh identifier, β and assign it the type τ1 → . . . → τn → Colour , where
typeof (vi) = τi .

4. Create the constant image: λ → β v1 . . . vn

5. Replace each occurrence of vi in 〈liftable〉 with a fresh variable ai and assign it type
τi (i.e. same type as vi). Call this 〈liftedBody〉.

6. Create a fresh variable pt of type Point

7. Create the lifted expression: 〈lifted〉 ≡ λ pt a1 . . . an → 〈liftedBody〉 pt .

8. Create the lift context: (β, 〈lifted〉)

Figure 4.5: Creating a constant image and lift context

a certain manner. For instance, one may choose to apply the type specific transformation
wherever possible and in a top-down manner, or one may choose to apply it at most once
in a bottom-up manner.

In the following code I make use of the following generic traversals:

• somewhere. This combinator takes a type specific transformation which has the ad-
ditional property that it may fail. It then tries to apply the transformation on a data
structure. If it fails at the root term it then recursively calls the transformation on
subterms. It stops when it has succeeded on a subterm or if it has failed everywhere.

• everything . This combinator takes a type specific query—queries can return arbi-
trary values but are most often used to return boolean values based on whether
a term satisfies a predicate—and applies it everywhere. The results of the query
are combined using a user supplied function. Among other things, it is useful for
checking that a particular property holds everywhere within a data structure.

The correspondence between the API presented earlier and the one used in the forth-
coming code is so close that it almost doesn’t require explanation. Functions such as
newId , lookupType, etc now have a cp prefix (e.g. cpNewId). Also, the monad in which
the image lifting pass is written is called LiftImageM .

4.3.1 Isolating primitive images

Isolating primitive images is no more difficult than explained in the Section 4.2.3. The
function isPrimImage returns True if and only if an expression is of image type and it
does not contain any sub-images.

isPrimImage :: CoreExpr → LiftImageM Bool
isPrimImage coreExpr = do

64 Chapter 4: Plug-in optimisations

replaceIfLiftable

getLiftedImages

liftImageExpr

Figure 4.6: The call graph of replaceIfLiftable

isIm ← isImage coreExpr
contains ← containsImage coreExpr
let result = isIm && not contains
return result

As can be seen isPrimImage dispatches to isImage and containsImage. The former
merely checks if an expression has the same type as an image. The latter performs a generic
traversal to see if there are any sub-images within the current expression. It makes use
of a custom generic traversal (not found in the SYB library) that works like everything
except that it only traverses sub-expressions, not the top-level one. The code for these
functions appears below.

isImage :: CoreExpr → LiftImageM Bool
isImage coreExpr
| Type ← coreExpr = return False
| otherwise = do

imageCType ← cpLookupType panImageModule "imageCType"

return (exprType coreExpr ‘tcEqType‘ imageCType)

containsImage :: Data a ⇒ a → LiftImageM Bool
containsImage = everythingButThis (∗||∗)

(return False)
(mkQ (return False) isImage)

4.3.2 Lifting images

I now present code that implements the algorithm presented in Figure 4.4. In order to
guide the following discussion I present a call graph (Figure 4.6) of the important functions
that make up the image lifting pass.

The function replaceIfLiftable does two things:

• It dispatches to getLiftableImages which is responsible for returning the precursor
to the partial inner image and a list of lift contexts.

4.4. Adding plug-in support and implementing the API in GHC 65

getLiftedImages :: CoreExpr → LiftImageM (CoreExpr , [LiftContext])
getLiftedImages coreExpr =

(do guardM (isPrimImage coreExpr ∗&&∗ notM (fullDepImage coreExpr))
(newExpr , lifted) ← liftImageExpr coreExpr
return (newExpr , [lifted]))

‘mplus‘
(do recursivelyGetLiftedImages coreExpr)

Figure 4.7: getLiftedImages

• It creates the partial inner image using the lift contexts, and then the row initialiser.

The function, getLiftedImages, yields the precursor and lift contexts by repeatedly
dispatching to liftImageExpr and gathering the results together. The “work horse” of the
image lifting pass is liftImageExpr and it is only applied to liftable images. It yields a
pair consisting of a constant image and a lift context. getLiftedImages uses the constant
images to replace the liftable images in the top-level image, and simply gathers the lift
contexts images together into a list which is passed back to replaceIfLiftable. Figures 4.7
and 4.8 present the complete definition of these functions.

The most salient points to note are as follows. The code for getLiftedImages (Figure
4.7) uses the mplus combinator to combine two monadic effects. The first checks whether
the current expression is a primitive image and uses liftImageExpr to attempt to lift it.
If the current expression is not a primitive image or the image is not liftable then the
second monadic effect will be run. This one recursively tries to apply getLiftedImages to
sub-expressions and combines the results. Its code is omitted.

The code for liftImageExpr (Figure 4.8) closely follows the algorithm of Figure 4.5.

4.4 Adding plug-in support and implementing the API in

GHC

Plug-in support was added by modifying the GHC compiler. The API was largely imple-
mented by exposing the internals of GHC to plug-in writers. However, effort went into
simplifying the interface as much as possible.

4.4.1 Adding plug-in support

For some time GHC has been able to run in an interactive mode known as GHCi. It differs
from a regular interpreter in that it can load both source files and pre-compiled object
files; for the latter to be loaded interface files must also be present. This requires that
GHC include support for dynamic loading and linking of object into its run-time address
space in the manner of Wilson and Olsson’s dld [48]. This infrastructure was leveraged
by Pang to create a run-time loader and then further extended by Stewart to create the
popular hs-plugins library [75].

66 Chapter 4: Plug-in optimisations

liftImageExpr :: CoreExpr → LiftImageM (CoreExpr ,LiftContext)
liftImageExpr coreExpr = do

topCoreExpr ← getCoreExpr
imageCType ← cpLookupType panImageModule "imageCType"
v ← cpNewId "v" imageCType
let topFVs = exprFreeVars topCoreExpr

expFVs = exprFreeVars coreExpr
fvs = varSetElems (expFVs ‘minusVarSet ‘ topFVs)

debug $ "Top free vars: " ++ showPpr topFVs
debug $ "Exp FVs: " ++ showPpr expFVs

--
-- fvs = variables that are in the top level expression but not
-- in the current one. i.e. they are in scope only because
-- they are defined somewhere else in the top-level expression.
--

fvVarPairs ← mapM varForFV fvs
colourType ← cpLookupType panImageModule "colourType"
pointType ← cpLookupType panImageModule "pointType"
let newExpr = replaceVars fvVarPairs coreExpr

newVars = map snd fvVarPairs
--
-- Creates type of form: a1 → ... an → Colour, where
-- a1...an are the types of the free variables.
--

colFunType = mkPiTypes fvs colourType
colFunId ← cpNewId "colFun" colFunType
dummy ← cpNewId "dummy" pointType
pointType ← cpLookupType panImageModule "pointType"
point ← cpNewId "pt" pointType
let colFun = Var colFunId

liftedExp = Lam point (foldr Lam (App newExpr (Var point)) newVars)
return (Lam dummy (foldl App colFun (map Var fvs))

, (colFunId , liftedExp))
where

--
-- Returns a pair consisting of the old free variable and a newly
-- generated replacement for it.
--

varForFV :: Id → LiftImageM (Id , Id)
varForFV fv = do

newVar ← cpNewId "fv" (idType fv)
return (fv ,newVar)

Figure 4.8: liftImageExpr

4.4. Adding plug-in support and implementing the API in GHC 67

Only a few relatively minor changes were necessary to introduce plug-in support to the
Glasgow Haskell Compiler. Angelov and Marlow have integrated GHC with Microsoft’s
Visual Studio IDE [16]. They provided the internals of GHC as an API to the IDE by
building it as a package4, henceforth referred to as package ghc.

Combining the dynamic linking capabilities provided by the GHCi infrastructure with
package ghc allowed plug-in support to be provided with a minimal implementation cost.
The basic idea is as follows:

• A plug-in point is defined within the source code. It loads the plug-in and expects
a function of a particular type.

• Users write a plug-in that imports package ghc and provides a function of the required
type.

• When the compiler is run it dynamically loads the user-written plug-in using the
infrastructure provided by GHCi . It is then run.

Writing and running optimisation plug-ins

Optimisation plug-ins are written as packages and loaded on the command line via a new
command line flag: -fcore-plugins. This can be done, either by registering it centrally,
using the ghc-pkg utility, or specifying the path to the package configuration file on the
command line using the flag -package-conf.

This package must export a single (nullary) function with signature:

corePasses :: [CorePass]

This list specifies the order in which the passes are to be run. The core-plugins package
is compiled against package ghc so that existing optimisations can be re-used. The user is
free to insert their own passes, at any point, and as many times as they wish, within the
list of passes. In this way the optimisation phases can be scripted. This is a key benefit
of using back-end plug-ins.

4.4.2 Implementing the API

GHC performs its optimisations upon an intermediate language known as Core: a typed
lambda calculus with support for pattern matching and data types. Its type system is
closely based on System F and hence, is more powerful than Haskell’s5. As might be
expected a substantial library of functions already exists to manipulate Core expressions.
However, the functionality required for the API was scattered among several modules and

4Packages are GHC’s mechanism for providing libraries. They consist of library binaries coupled to-
gether with interface files and dependency information and can be included on the command line using
the -package option.

5Incidentally this has turned out to be an excellent design choice. On more than one occasion when
considering a type extension to Haskell a System F encoding has been found to exist.

68 Chapter 4: Plug-in optimisations

type CPM s a = StateT (s,CPState) IO a
data CPState =

CPState{cpHscEnv :: HscEnv
, cpDynFlags :: DynFlags
, cpUniqSupply :: UniqSupply
, cpOrigNameCache :: OrigNameCache
}

runCPM :: HscEnv → UniqSupply → s → CPM s a → IO a
runCPM hscEnv uniq st cpM = do

nameCache ← readIORef (hsc NC hscEnv)
let dynFlags = hsc dflags hscEnv

origNameCache = nsNames nameCache
evalStateT cpM (st ,CPState{cpHscEnv = hscEnv

, cpDynFlags = dynFlags
, cpUniqSupply = uniq
, cpOrigNameCache = origNameCache })

Figure 4.9: The CPM monad

implemented inside different monads. For instance, the monad in which existing Core-to-
Core passes are written, SimplM provided functions for name generation but not for name
look-up.

It was decided that a new monad should be defined in order that all functionality
required could be provided in a single place. It is called the core pass monad (and is
abbreviated CPM in the code).

An important part of the domain specific optimisations we wish to write is the look-
up of names. In order to gain access to them it is necessary to look up the name cache
stored inside the global environment. Since the name cache is stored inside an IORef , it
is necessary to run our pass inside the IO monad. Hence CPM is defined as a stateful
extension of the IO monad.

The definition of the monad appears in Figure 4.9.

4.5 Reusing existing Core-to-Core passes

One of the key benefits of plug-in optimisations is that the programmer can script the
optimisation pipeline as they see fit; they can place their optimisations wherever they wish
and as many times as they want within it. In this way the optimisation infrastructure
of a compiler can be reused for maximum benefit. While writing this optimisation I
found that two existing Core-to-Core passes increased the applicability of image lifting
transformation: inlining and dead code elimination. This section covers the reasons.

4.5.1 Inlining

The astute reader may have noticed that unless a primitive image is inlined within the
body of the top-level image it will not be lifted. This is because the lifting pass only looks

4.5. Reusing existing Core-to-Core passes 69

at the expression available; it does not look up function definitions when it encounters a
variable. So, in fact, the stripes example from before would not be inlined unless it was
defined as follows:

circleOnStripes = circle ‘over ‘ (λ (Pt x y) → ifeven y then black else white)

Inlining is not the only solution. Since the rest of the module is able to be scrutinised
by the image lifting pass we could, in principle, examine the body of a declaration to see if
its use in the top-level image could be lifted. However, whether we implement this solution
or inline, some form of recursion is required. For instance, consider the situation where
only a sub-image of the declaration was liftable. Unless the body of stripes is also looked
up an optimisation opportunity is missed. This is demonstrated below.

squareOnStripes = square ‘over ‘ stripes
image = circle ‘over ‘ squareOnStripes

Even though it appears these approaches are very similar I have chosen to aggressively
inline. Not only is the process of looking up and examining the bodies of declarations
tedious it also complicates the lifting optimisation somewhat by forcing us to lift images
that are not the top-level image. To see why consider how stripes would be lifted in the code
above. This would require the construction of a partial inner image from squareOnStripes.
Inlining aggressively at the beginning simplifies the algorithm.

Although GHC has its own passes for inlining it was necessary to write a new one
because the existing pass changed the code in such a way that we could no longer find
the top-level effect expression. As part of the process of inlining it would introduce new
top-level bindings. Fortunately, the inlining pass benefited from existing compiler in-
frastructure. The simplifier already creates so-called unfoldings for bind identifiers. An
unfolding is the associated body of the top-level binding with that identifier. GHC decides
whether or not to use its inlining phase. Also, it will not create an unfolding for a recursive
function. By using unfolding information in our inlining pass we guarantee that it will
terminate.

Generic programming made this pass particularly easy to write. I defined a new generic
combinator that applies a transformation in a top-down manner. The transformation itself
inlined any use of what was dubbed an image generator—a function which had as target
type Colour . An excerpt of the code appears in Figure 4.10

Interestingly, inlining by itself may not be enough to catch all liftable images.

stripesWeird (Pt x y) = stripes (Pt x y)

Although we can determine that stripes is liftable, stripesWeird would not be consid-
ered liftable since we pattern match on x and y and use them in the body of the definition;
the optimisation is conservative. A combination of η-contraction and inlining would solve
the problem in this case. There are doubtless other opportunities for maximising the
liftability of images. This is left as future work.

70 Chapter 4: Plug-in optimisations

everywhereM ′ :: Monad m ⇒ GenericM m → GenericM m
everywhereM ′ f x = do x ′ ← f x

gmapM (everywhereM ′ f) x ′

inlineImageGenerators :: CoreExpr → InlineImageM CoreExpr
inlineImageGenerators = everywhereM ′ (mkM inlineImageGenerator)

where
inlineImageGenerator :: CoreExpr → InlineImageM CoreExpr
inlineImageGenerator exp =

(do
isImageGeneratorBool ← isImageGenerator exp
(Var id) ← return exp
guard (isImageGeneratorBool && coreBndrHasUnfolding id)
debug $ "Unfolding expression: " ++ showPpr exp
let unfolding = getCoreBndrUnfoldExpr id
debug $ "The unfolding is: " ++ showPpr unfolding
return unfolding)

‘mplus‘
(return exp)

Figure 4.10: The heart of the custom inlining pass

4.5.2 Dead code elimination

Dead code elimination is necessary in order for the detection of non-dependence on the
x-axis to work correctly. The reason for this is most clearly presented by looking at a
dump of the Core code generated for the stripes effect (Figure 4.11)

For performance reasons I defined the fields of the Point data structure to be strict.
GHC recognises that it can unbox the values. Of course, this means that they must be re-
boxed in order for them to be used, which GHC does, declaring two new identifiers inside
let-expressions. Now the problem is clear: the x identifier is used inside the let-expression
and then never again. Unfortunately, the lift images pass will detect this as dependence
on the x-axis.

Fortunately, running the pass that performs dead code elimination before the image
lifting pass removes the declaration in which the x value is boxed. This is a clear demon-
stration of the benefit of reusing existing Core-to-Core passes.

4.5.3 Beta reduction

It was also found that timely beta-reduction could lead to important opportunities for
code improvement. I now sketch an example. Consider a liftable effect of the form:

imageCombinator v1 . . . vn

where v1, . . . , vn are expressions that are constant with respect to the evaluation of the
image; they only need be calculated once before the image is displayed. Now, say the inlin-
ing of imageCombinator is a lambda expression of the form λa1 . . . an pt → 〈a colour〉.

4.5. Reusing existing Core-to-Core passes 71

(\ (ds_d28R :: PanziImage.Point) ->
case PanziImage.Colour ds_d28R of wild_B1 { PanziImage.Pt rb_d28T rb_d28U ->
let {

x_a1u8 :: PanziImage.Frac
[]
x_a1u8 = GHCziFloat.Fzh rb_d28T } in

let {
y_a1u9 :: PanziImage.Frac
[]
y_a1u9 = GHCziFloat.Fzh rb_d28U } in

__letrec {
} in

case PanziImage.Colour even_a28O (floor_a28P y_a1u9) of wild_B1 {
GHCziBase.False -> PanziImage.white; GHCziBase.True -> PanziImage.black

}
})

Figure 4.11: A dump of the Core code generated for stripes.

corePasses :: [CorePass]
corePasses = [-- Performs, among other things, dead code elimination

coreDoSimplify SimplGently [NoCaseOfCase,maxIterations]
, inlineImagesPass

-- Does some important beta reduction after inlining
, coreDoSimplify (SimplPhase 2) [maxIterations]
, liftImagesPass

-- other passes
...
]

Figure 4.12: How the optimisation pipeline is scripted

Without beta reduction the values of the expressions v1, . . . vn are not substituted for the
variables a1, . . . an in 〈a colour〉.

Without beta reduction the image lifting pass will detect a primitive image inside this
expression: λ pt → 〈a colour〉. It will be lifted out yielding the following partial inner
image.

λ f → λ a1 . . . an → λ → f v1 . . . vn

Unfortunately, this means that the expression f v1 . . . vn is evaluated in every iteration
of the inner loop of the display function. Since these values need only be calculated once
this is wasteful.

By inserting a beta reduction pass between the inlining and image lifting pass this
scenario can be avoided.

4.5.4 Scripting the optimisations

As mentioned in Section 4.4.1 the optimisation pipeline is scripted using the corePasses
value. For the image lifting optimisations it is scripted as per Figure 4.12.

72 Chapter 4: Plug-in optimisations

Number Effect name
1 WhiteOnRedOnBlack
2 Stripes
3 ColouredStripes
4 StripesOnStripes
5 StripesOfWidth
6 CircleOnStripes

Performance 1 2 3 4 5 6
with lifting (frames/s) 11.61 28.70 27.39 15.91 27.91 11.98
without lifting (frames/s) 12.25 20.45 2.30 1.31 3.68 3.76
speed up 0.95x 1.40x 11.92x 12.13x 7.58x 3.19x

Figure 4.13: Results for six effects containing liftable images

As can be seen we place the inlineImagesPass and liftImagesPass early in the pipeline,
so that the code has been minimally transformed. A special purpose optimisation such
as image lifting can only be applied to very specific forms of expressions. The more
optimisations that are run over the code, the less likely the image lifting pass will correctly
identify these patterns.

Before inlining we insert a call to the coreDoSimplify pass. This is responsible for dead
code elimination. The second call to this pass, this time with different arguments, perform
beta reduction among other things.

4.6 Benchmarks

The performance of the effects when optimised and un-optimised appear in Figure 4.13.
All examples contain liftable images. Collectively they cover cases such as liftable images
contained within others, mixtures of non-liftable and liftable images, and compositions
of liftable images. In all cases except WhiteOnRedOnBlack there are significant gains in
performance. The reason that WhiteOnRedOnBlack suffers a small performance hit is
that plain colour images are literal values. The overhead of calculating their value and
then passing them as function arguments to the inner loop of the display function reduces
performance.

4.7 Future work: a DSL for writing optimisations

As we mentioned in Section 2.4.3 one of the criticisms of plug-in compilers is that porta-
bility is lost due to the fact that the one is tied to the internals of a particular compiler.
One way to mitigate this problem is to define plug-in DSLs: small languages that are well
suited to particular phases of a compiler. GHC’s rewrite rules [78] can be seen in this light;
they provide a small language for writing limited source-to-source transformations. This
section covers some ideas on useful features that could be of aid in writing Core-to-Core
passes.

4.7. Future work: a DSL for writing optimisations 73

Features found in Template Haskell [85], notably quasi-quotation, would be benefi-
cial. Using a Template Haskell-like quasi-quotation notation a programmer could write
expressions such as

do

point ← newIdPanM ”pt” pointType
return (App body point)

using the much more natural syntax

[| λ pt → $(body) pt |]

Such a domain specific language extension would be implemented in manner very
similar to that of Template Haskell.

Also, we could add generic traversal as a native feature into the DSL. Not only would
this provide a more convenient syntax it would also mean that the performance of the
traversals could be improved. One of the problems with the SYB library at the moment is
that no static analysis is (or can be) done on a data type in order to determine whether it
is even worth descending recursively into a field of a data type for a particular traversal.
For example, consider the following data type.

data Foo = Foo Bar Baz
data Bar = Bar String
data Baz = Nil

| Baz Name Baz

Now consider the type specific function, transBar and the generic traversal transFoo
created from it.

transBar (Bar str) = str + + ” suffix”
transFoo = everywhere (mkT transBar)

When applying transFoo to a value of type Foo there is no point whatsoever in de-
scending into the Baz field. Unfortunately, SYB can’t know this and will attempt to do
so anyway. A simple static analysis should be able to detect this.

4.7.1 A note on implementing plug-in DSLs

Without presenting the techniques of Chapter 5 and 6, which allow a programmer to
extend the syntax and semantics of a language using front-end plug-ins, a full discussion
of the implementation of plug-in DSLs is not possible. However, we do note the following
important points now. Plug-in DSLs are implemented via a process of bootstrapping;
the DSL is to be used within the source code of the plug-in compiler, yet the compiler
is required to implement them in the first place. Thus, bootstrapping requires that the
compiler is self-hosting (i.e it must be written in the language it compiles). Then the
domain specific extensions are added using front-end plug-ins. Once these plug-ins have
been compiled to object code, it then becomes possible to write modules of the compiler
in the DSL.

74 Chapter 4: Plug-in optimisations

4.8 Related work

Although there has been a lot of research into extensible compiler frameworks [72, 108, 64],
little attention has been paid to plug-in compilers.

The SUIF2 Compiler Infrastructure [13] was designed to support collaborative research
and development of compilation techniques. Its design allows the dynamic loading of mod-
ules which can be applied to programs in memory. Despite not using the term themselves
this is the essence of plug-ins. Much like ours, the architecture can be used to write both
optimisations and script the order in which they are run. The authors also mention that
analysis phases can be written. This is also true of our plug-in compiler although generally
it is considered more preferable to do this on the abstract syntax of the full language not
just on the intermediate representation.

Engler [36] has also implemented a plug-in compiler called Magik. In this author’s
opinion he is one of the few researchers to have fully grasped the far reaching implications
of a plug-in based compiler.

It is the hope of the author that elevating [...] interfaces [...] to first class
citizenship (where they are optimized and checked easily and well by compilers)
will change programming practice in a non-trivial way. For decades, there
has been a clamor for higher and higher-level languages. But, in fact, these
languages are already prevalent, as a simple perusal of header files and module
definitions will show. There apparent absence is merely due to lack of compiler
support.

He notes that plug-in compilers allow domain specific checks, analysis and transforma-
tion to be done on libraries and, similar to Veldhuizen [96], states that the line between
languages and libraries becomes blurry once this is possible: “library design [becomes]
language design”. In a short discussion on the limitations of Magik he also discusses
the addition of syntactic sugar to make the construction of expressions both easier and
safer. In fact, he suggests using ‘C (“tick-C”) [37] a language that provides very similar
quasi-quotation capabilities to those of Template Haskell. He also notes, just as we have,
that one should choose a simple intermediate representation in order to keep the number
of cases small for transformation writers.

The benefits of plug-in based architectures were also advocated in a Wilson’s [106]
keynote address at the OOPSLA’98 conference. He states that next generation program-
ming systems can accomplish extensibility via tools that support plug-ins, languages that
allow extension of syntax, and, interestingly, the storage of source code in rich heteroge-
neous formats.

The CoSy compiler framework [15, 39], although never listing the ability for end users
to write plug-in as a design objective, would be eminently suitable for implementing a
back-end plug-in architecture. The basic idea is centered around “engines” which perform
analyses, transformations and code generation on a common (and extensible) intermediate
representation. Engines are run as stand-alone processes in parallel. The framework

4.9. Summary 75

defines a few DSLs the most notable being the Engine Description Language (EDL) which
is used to describe the control flow and interaction of engines. Most importantly, the
engines can be typed and dependencies between them can be defined.

The LLVM (Low-level Virtual Machine) Compiler infrastructure [62] was designed to
enable effective program optimisation across the entire lifetime of a program. Although
only statically extensible, it is an excellent example of a compiler infrastructure that pro-
vides a well-defined API for writing optimisation passes. The intermediate representation
is static single assignment ([25]) based and in conjunction with a number of sophisticated
analyses can be used to write global and inter-procedural optimisations.

4.9 Summary

The chapter began with a discussion of the requirements of a back-end plug-in architecture
and design choices to be made when implementing them. It then explained the architecture
we chose for our proof of concept: support for plug-ins in the Glasgow Haskell Compiler. A
domain specific optimisation for the Pan EDSL was then introduced and how it was realised
as a plug-in was demonstrated. Its effectiveness has been shown through benchmarking.
This optimisation benefits from pre-existing optimisations such as inlining and dead code
elimination. For the image lifting optimisation to benefit from these passes it must be
possible to place it after they have run. The ease with which this can be done can be
seen clearly in Figure 4.12. Indeed, the optimisation pipeline is completely scriptable by
plug-in writers; they can remove and add existing and newly written passes at will. They
can even schedule a pass to run multiple times.

However, without language support writing optimisations can be tedious and this is
true whether they are plug-ins or pre-existing. I have sketched a solution to this problem
in which the plug-in compiler itself is bootstrapped to provide a domain specific language
for writing optimisations. This provides a layer of abstraction between the internals of the
compiler and the plug-in writer, increasing the portability of the code. Standardisation of
such DSLs is a recommended practice.

Chapter 5
Extensible data types in Haskell

5.1 Introduction

I
n the last chapter we demonstrated the benefits of a compiler instrumented with plug-
in optimisations. However, for plug-in compilers to reach their full potential they must

allow programmers to extend the language they compile via new syntactic forms, new
semantics and domain specific error messages. In a traditional compiler this might be done
by modifying the source of the parser, desugaring phase and type checker and extending
the data structures and functions of these phases in the process.

When the source code is available modifying each function which operates on an ex-
tended data structure is merely time consuming, error prone and tedious. But it is impos-
sible when all that is available is object code. Plug-ins, by themselves, are of no help in
solving this problem as they can only add new declarations. They cannot modify or over-
ride existing code1. To go back to modifying source code is an intolerable option; to do so
is to immediately lose the benefit of the abstraction provided by a plug-in compiler. What
is required is a mechanism with which data types can be extended via new declarations
in new modules. This problem has been well-studied. It was coined the expression prob-
lem by Wadler [101] on the Java-Genericity mailing list. Although it originally described
a specific problem—extending a program that processes terms of a simple programming
language—it has come to represent the general problem of extensible data types. Solu-
tions in several languages have been proposed but few are entirely satisfactory. Zenger
and Odersky [109] provide a good definition of the problem and a list of attendant criteria
that a solution should satisfy. It is presented here essentially verbatim.

Suppose we have a data type which is defined by a set of cases and we have functions
which operate on this data type. There are primarily two directions along which we can
extend such a system:

• The extension of the data type with new data variants.

• The addition of new functions.
1A clever technique suggested by Stewart and Chakravarty[88] allows one to override function definitions

if the compiler is set up for it. Nevertheless data declarations cannot be overridden.

5.1. Introduction 77

Solving the expression problem requires an implementation technique which satisfies
the following four requirements. (They defined a fifth criterion which is described in
Section 5.8.)

• Extensibility in both dimensions: It should be possible to add new data variants
and adapt existing operations accordingly. Furthermore, it should be possible to
introduce new functions.

• Strong static type safety: It should be impossible to apply a function to a data
variant which it cannot handle.

• No modification or duplication. It should not be necessary to change existing code,
nor should it be necessary to re-implement functionality when extending since this
effectively amounts to duplication.

• Separate compilation: Compiling data type extensions or adding new processors
should not encompass re-type-checking the original data type or existing processors.

A key observation made by Reynolds [81] and later echoed by others ([107], [58]) was
that object-oriented and functional languages can be seen as complementary approaches
to data abstraction. In object-oriented languages variants of a data type are modelled
using classes; usually each variant is defined as a subclass of an abstract superclass. Thus
it is easy to add new variants. Unfortunately, the addition of new functionality on those
variants is difficult; the only way to add new methods to a class is by sub-classing and it
must be done for each variant. This quickly becomes unwieldy. In functional languages
the converse is true: it is easy to add new functionality by defining new functions on a data
type, but is difficult to add new variants. Another approach in object-oriented languages
is to use the visitor pattern which makes it easy to add new functionality. However, as is
the case with functional languages, adding new variants becomes difficult. Each of these
approaches solves one half of the problem space but not the other.

The expression problem involves many subtleties. Despite informal solutions being
proposed for the Haskell language (e.g. [59]) these only turn out to work on the small
examples the proposed solution was demonstrated upon. Recently a complete solution
was proposed by Löh and Hinze [66]. However, it falls short of our solution in two key
ways. First, it does not provide true separate compilation. Second, it relies on features
that have not yet been implemented in any Haskell compiler. This is discussed further in
Section 5.8.

Our solution, while reliant on extensions to Haskell 98, works as is and provides true
separate compilation. A solution satisfies this property if it is only necessary to recompile
the modules in which changes are made whether they be on ordinary declarations or
extensible ones. The solution is presented as a translation from a simple syntactic extension
to Haskell to existing Haskell syntax. However, the translation can, and should be, viewed
from more than one angle. First, the translation forms the basis for the implementation of
a pre-processor. However, the target of the translation can also be seen as a programming

78 Chapter 5: Extensible data types in Haskell

idiom which can be readily used by developers to implement extensible data types by hand.
In Chapter 6 a compiler called PHRaC is presented which can load front-end plug-ins. In
implementing it I successfully used the results of this chapter in just such an idiomatic
way. No automatic translation was used.

The solution, henceforth known as open abstract types, uses several experimental fea-
tures of Haskell: multi-parameter type classes, scoped type variables, kind annotations,
zero constructor data types and recursive dictionaries. All of these features have been
present from GHC 6.4 onwards.

Open abstract types will be presented as follows. First, syntactic sugar is introduced
for declaring extensible data types. Next, a running example is introduced, demonstrat-
ing the new syntax in action. At this point it is necessary to cover a (relatively complex)
technique that is instrumental in the translation. In Section 5.4 the concept of retrospec-
tive superclassing is introduced. Without presenting the formalisation of the translation,
Section 5.5, shows us the result of applying the translation and the most salient points of
the code are discussed. Section 5.6 introduces the formal translation, which can be used
as the basis for the implementation of a pre-processor. Throughout its description the
correspondence between the general rules and our running example are highlighted.

The chapter concludes with a comparison of solutions to the expression problem in
other languages. In addition, the only other solution to the expression problem in Haskell
is outlined and its shortcomings in a plug-in setting explained.

5.2 Syntactic sugar for open abstract types

Although the majority of this chapter is concerned with demonstrating an encoding of ex-
tensible data type support in Haskell we are ultimately interested in introducing syntactic
sugar to reduce its syntactic burden. In this section I present two new data declaration
forms as a means of motivating the rest of the chapter. In Section 5.6 an austere Haskell-
like language augmented with these declarations becomes the source language in a formal
translation to the encoding we are about to develop.

The two syntactic forms are open data and extend data declarations. A new extensible
data type is introduced with the open data keywords.

module F0 where

open data Exp = Var String
| Lam String Exp
| App Exp Exp

Functions can be defined upon these data types just like they can on ordinary algebraic
data types.

alpha :: Exp → (String , String) → String
alpha (Var v) = . . .

5.3. A running example: the lambda calculus 79

In another module we can then extend the data type using the extend data keywords
as follows:

module F1 where

extend data Exp = LetE String Exp Exp

As usual it is possible to define new functions on the data type in this new module but
in this case they can also be defined on the new Let variant.

eval :: Exp → Env → Exp
eval (Var name) = . . .

eval (Lam name body) = . . .

eval (App f x) = . . .

eval (LetE name body exp) = . . .

Unlike regular Haskell, new equations for the functions defined in the first module can
be defined. However, this can only be done for the new variants introduced. In this case
we would be limited to a new equation on the Let variant.

alpha (Let name body exp) = . . .

The semantics of pattern matching is slightly different than usual. Since new equations
can be introduced on existing functions whenever an extend data declaration the meaning
of the wild card pattern becomes ambiguous. Consider the situation where the wild card
pattern is used both in module F0 and F1. Which one should be used? Does the new
one equation override the old one? In order to simply the presentation of this chapter we
have opted to disallow the wild-card pattern altogether. However, the best-fit left-to-right
pattern matching solution devised by Löh and Hinze [66] could be implemented without
too much trouble.

There are a few more restrictions on the new syntax. An open data and extend data
declaration cannot appear in the same module. For a particular extensible data type
there is at most one extend data declaration per module. It was stated earlier that new
equations on existing functions could be defined. In fact, they must be; to omit them is
an error.

5.3 A running example: the lambda calculus

As a running example we implement a data type representing the lambda calculus and two
operations: alpha conversion and evaluation. At its simplest the lambda calculus consists
of three core concepts: variables, abstraction and application.

We define two modules, an initial and one than extends the previous. The initial
module appears in Figure 5.1 and defines the alpha function on a data type that represents
just the core concepts of the lambda calculus.

80 Chapter 5: Extensible data types in Haskell

module F0 Alpha
where

data Exp = Var String
| Lam String Exp
| App Exp Exp

alpha :: Exp → (String ,String) → Exp
alpha (Var v :: Exp) =

λ(s :: (String ,String)) → Var (swap s v)
alpha (Lam v body :: Exp) =

λ(s :: (String ,String)) → Lam (swap s v) (alpha body s)
alpha (App a b :: Exp) =

λ(s :: (String ,String)) → App (alpha a s) (alpha b s)
swap :: (String ,String) → String → String
swap ((a, b) :: (String ,String)) = λ(o :: String) → if a == o then b else o

Figure 5.1: The initial module. It defines the data structure to represent the simple
lambda calculus and an alpha conversion function.

We then extend the module in Figures 5.2 and 5.3. We add a new variant to the
lambda calculus, let expressions. We then add a new equation for this variant to the
alpha function and define two new functions, eval and apply .

The reader may notice that the functions are not defined as they usually would be.
There is at most one pattern match for each function and in each case the pattern match
is flat (i.e. not nested). Also, the right-hand side of each function is a lambda expression
which while legal Haskell is not standard idiom. (Usually the parameters would appear
on the left hand side of the equations.) In addition, readers may wonder why there is an
apply function at all when this could easily be defined as a case expression inside eval .

The translation presented later in this chapter is complicated by many of the syntac-
tically friendly features of Haskell such as where clauses, nested pattern matches, etc. To
simplify the presentation the translation is assumed to be performed on an austere Haskell
which includes the syntactic sugar introduced in Section 5.2. This is discussed in more
detail in Section 5.6. By presenting our running example in this austere Haskell it is hoped
that the correspondence between the rules of the translation and the result of applying
them to Figures 5.1, 5.2, and 5.3 is much more readily apparent.

5.4 Läufer’s method and retrospective superclassing

In Section 5.5 a complete translation of the program in Figures 5.1 and 5.2 is presented.
The solution is based on an extension to the work of Läufer [63] and involves a technique
that I have dubbed retrospective superclassing. This section will outline Läufer’s work,
show a gap in the solution the expression problem and present retrospective superclassing
as a means of closing that gap. We also show why recursive dictionaries, a recent extension
to Haskell, are necessary in order for retrospective superclassing to work.

5.4. Läufer’s method and retrospective superclassing 81

module F1 Eval
where

import F0 Pretty
extend data Exp = Let String Exp Exp

alpha (LetE name body exp :: Exp) =
λ(s :: (String ,String)) →

LetE (swap s name) (alpha body s) (alpha exp s)
eval :: Exp → Env → Exp
eval (Var name :: Exp) = λ(env :: Env) → lookupEnv env name
eval (Lam name body :: Exp) = λ(env :: Env) → Lam name body
eval (App f x :: Exp) = λ(env :: Env) → apply x env (eval f env)
eval (LetE name body exp :: Exp) =

λ(env :: Env) → eval (App (Lam name exp) body) env
apply :: Exp → Env → Exp → Exp
apply (Var name :: Exp) =

λ(env :: Env) (x :: Exp) → error "Function expected"
apply (Lam name body :: Exp) =

λ(env :: Env) (x :: Exp) → eval body (extEnv env (name, eval x env))
apply (App f x :: Exp) =

λ(env :: Env) (x :: Exp) → error "Function expected"
apply (LetE name body exp :: Exp) =

λ(env :: Env) (x :: Exp) → error "Function expected"

Figure 5.2: The extension module. It extends the earlier data structure to represent let
expression, defines an extra equation on the alpha conversion function and defines a new
evaluation function.

type Env = [(String ,Exp)]
lookupEnv :: Env → String → Exp
lookupEnv ([] :: Env) =

λ(name :: String) → error $ "lookupEnv: Variable " ++
show name ++ " not found"

lookupEnv (hd : tl :: Env) =
λ(name ′ :: String) → lookupEnvAux hd tl name ′

lookupEnvAux :: (String ,Exp) → Env → String → Exp
lookupEnvAux ((name, term) :: (String ,Exp)) =

λ(rest :: Env) (name ′ :: String) →
if name == name ′ then term else lookupEnv rest name ′

extEnv :: Env → (String ,Exp) → Env
extEnv = λ(env :: Env) (x :: (String ,Exp)) → x : env

Figure 5.3: Some helper functions that are also present in the extension module.

82 Chapter 5: Extensible data types in Haskell

In Haskell, type classes are the only candidate for emphencoding extensible data types
since they are the only open declarations. Most declarations in Haskell are closed : their
meaning is fully determined once and for all in the module they are written in. Their
very nature precludes them from being used to encode extensible data types. However,
instance declarations, which define the functionality of class methods for a given type, are
open. They can be defined in a module that is not the same as the class declaration as
long as they do not overlap2 with an existing instance.

Läufer [63] introduced a technique similar to the dynamic dispatch mechanism of
object-oriented languages which can be used as the basis for a solution to the expres-
sion problem. The key idea is to treat a class declaration as the interface to an abstract
data type. Existential types are then used “wrap” specific implementations of the abstract
data type so that the only way to perform operations on the data type is through class
methods. These methods are available because the class context is “wrapped up” inside
the existential type. The technique is demonstrated on our running example. Below we
introduce a class for the alpha function and an existential type Exp wraps up differing
value behind the MkExp constructor. It shall be called the wrapper type from now on.

class Alpha a where

alpha :: a → (String , String) → Exp

data Exp = forall a. Alpha a ⇒ MkExp a

Methods can then be defined on various data types but with the aid of an unwrapping
instance can be applied to values of Exp and have the correct behaviour. The unwrapping
instance provides us with a function of type Exp → Exp as required. Its definition is
quite simple.

instance Alpha Exp where

alpha (MkExp e) s = alpha e s

We now define component types and corresponding instances of the Alpha class to
represent the core lambda calculus and the let expression extension. The component
types are called Exp 0 and Exp 1 respectively. Note that where we used to have recursive
occurrences of the data type we now refer to the wrapper type.

data Exp 0 = Var String
| Lam String Exp
| App Exp Exp

instance Alpha Exp 0 where . . .

Exp 1 can be defined along with its instance in an entirely new module. Instances are
open declarations.

2An overlap occurs when a given instance can be unified via substitution to another. e.g. C (a, Int)
overlaps with C (Bool , b).

5.4. Läufer’s method and retrospective superclassing 83

data Exp 1 = LetE String Exp Exp

instance Alpha Exp 1 where . . .

5.4.1 The version problem

Let us now consider extending the functionality of the Exp data type by defining an
interpreter on it. This will require a new class, Eval , to be defined. Using the inheritance
mechanism of type classes we can require that Alpha is a superclass of Eval .

class Alpha a ⇒ Eval a where . . .

Unfortunately, this requires that we introduce a new type, say EExp, to wrap up this
new class, since Exp only wraps up the Alpha class.

data EExp = forall a.Eval a ⇒ MkEExp a

Without going any further we can see that there is going to be a problem. Once we have
correctly defined instances on the component types and declared an unwrapping instance
we will have a data type for which eval and alpha are both methods. However, while the
type of eval is EExp → Env → EExp the type of alpha is EExp → (String , String) → Exp.
The return type is the original type. Unfortunately, this means the following expression
would not type check: eval (alpha (MkExp (Var ”a”)) (”a”, ”c”)) [].

5.4.2 Retrospective superclassing

Let us look more closely at why this problem occurs. When a value of type Exp is
unwrapped the value extracted has access to all of class Alpha’s methods and those of its
superclasses, and no more. At present there is no way that we can define the function
alpha to return values which will have access to methods that a programmer may write
in the future.

The first hint of a solution becomes evident when we restate the methods a value of
type Exp has access to, putting the emphasis in a different place this time: it has access
to all of Alpha’s methods and those of its superclasses, and no more. If it were somehow
possible to define Eval in such a way that it was a superclass of Alpha then values of
type Exp would have access to these methods. This would be a kind of retrospective
superclassing.

In fact, retrospective superclassing is possible using a technique due to Hughes [52]
and elaborated upon by Lämmel and Peyton Jones [61] which allows abstraction over
type classes. Hughes’ suggestion was to allow declarations like the following:

class cxt a ⇒ Alpha cxt a where

alpha :: a → (String , String) → Exp cxt

data Exp cxt = forall a. Alpha cxt a ⇒ MkExp a

84 Chapter 5: Extensible data types in Haskell

This is not valid Haskell since the second parameter, cxt , of the Alpha class stands
for a class, not a type or type constructor. However, let us assume for the moment that
such declarations are legal. Now type Exp has an extra parameter, cxt , which abstracts
over a class. Since this very same class is declared to be a superclass of Alpha we see that
method alpha now returns values which have access to the methods in any class that cxt
is instantiated to.

Fortunately, Hughes was successful in encoding just such an abstraction over classes
and the technique is now demonstrated. First, we define a class Sat with a single method
dict . This class is used to return an explicit dictionary whose values are taken directly
from the implicit one associated with a given class.

class Sat a where

dict :: a

Now, whenever the programmer defines a new class they also define a corresponding
data type that represents explicitly the implicit dictionary of the class. The programmer
also needs to define an instance that equates the methods of the explicit dictionary with
those classes we wish to abstract over. The following self-contained example demonstrates
this.

type Env = [(String ,Exp EvalD)]

class Sat (cxt a) ⇒ Alpha cxt a where

alpha :: a → (String ,String) → Exp cxt

class Alpha EvalD a ⇒ Eval a where

eval :: a → Env → Exp EvalD

data EvalD a = EvalD{eval ′ :: a → Env → Exp EvalD }
instance Eval a ⇒ Sat (EvalD a) where

dict = EvalD{eval ′ = eval }

Here is a quick summary of the salient points:

• The class head, class cxt a ⇒ Alpha a , has become class Sat (cxt a) ⇒ Alpha a.

• EvalD is the explicit analogue of the implicit dictionary that is associated with the
Eval class.

• The instance equates the methods of Eval with the explicit dictionary EvalD .

There is one remaining caveat – calls to extension methods must be done through
explicit dictionaries. The following expression will not type check since method eval is not
a member of any superclass of Alpha.

case alpha exp (”a”, ”b”) of MkExp exp′ → eval exp ′ []

However, dict is a method of Alpha’s superclass, Sat . All that is required is to replace
eval exp ′ [] with eval ′ dict exp′[] which only imposes minor syntactic inconvenience.

5.5. Translation of the running example 85

module F0 Alpha
where

data P d
class Sat a where

dict :: a
data Exp (cxt :: ∗ → ∗) =

forall b. Alpha cxt b ⇒ MkExp b

Figure 5.4a: Preliminaries: the proxy type, Sat class and wrapper type

class Sat (cxt b) ⇒ Alpha cxt b where
alpha :: P cxt → b → (String ,String) → Exp cxt

data Exp 0 cxt = Var String
| Lam String (Exp cxt)
| App (Exp cxt) (Exp cxt)

Figure 5.4b: Initial component type and the base functionality class

Retrospective superclassing relies on recursive dictionaries, a recently3 implemented
feature of GHC. These dictionaries allow cycles to occur while resolving the constraints
introduced by class and instance declarations. We defer an in depth discussion of this to
Section 5.5.3 but refer the reader to Lämmel and Peyton Jones’ paper [61] on extensible
generic functions where the technique was first described.

Notice that the explicit dictionary of the Sat instances “ties the knot” of constraint
resolution. Interestingly, this brings the functionality introduced by each class—in this
case Alpha and Eval— to the same semantic level. Obviously, the bodies of extension
methods can contain uses of existing methods but the opposite is also true. In Section
5.6.4 we will see that it is possible to call extension functions from new equations on
existing functions.

5.5 Translation of the running example

We are now ready to discuss the translation of the initial module (Figure 5.1) and the
extension module (Figures 5.2 and 5.3) of Section 5.3.

In order not to overwhelm the reader the translation has been broken up into several
sub-figures. The translation of the initial module appears in Figures 5.4a through 5.4g
and the translated extension module in Figures 5.5a through 5.5h.

5.5.1 Initial module

Figure 5.4a introduces the Sat class and the wrapper type which, this time, contains a
kind annotation. Although not strictly necessary in this case it is required when the open
data type has parameters. We also introduce a proxy type, P . An argument of the proxy

3Recursive dictionaries are available from GHC 6.4 onwards.

86 Chapter 5: Extensible data types in Haskell

instance (Sat (cxt (Exp cxt))
,Sat (cxt (Exp 0 cxt))
) ⇒ Alpha cxt (Exp 0 cxt) where

alpha (:: P cxt) (Var v :: Exp 0 cxt) =
λ(s :: (String ,String)) → var (u :: P cxt) (swap s v)

alpha (:: P cxt) (Lam v body :: Exp 0 cxt) =
λ(s :: (String ,String)) →

lam (u :: P cxt) (swap s v)
(alpha (u :: P cxt) body s)

alpha (:: P cxt) (App a b :: Exp 0 cxt) =
λ(s :: (String ,String)) →

app (u :: P cxt)
(alpha (u :: P cxt) a s) (alpha (u :: P cxt) b s)

Figure 5.4c: Functionality instance

instance Sat (cxt (Exp cxt))
⇒ Alpha cxt (Exp cxt) where

alpha (:: P cxt) (MkExp e :: Exp cxt) =
λ(s :: (String ,String)) → alpha (u :: P cxt) e s

Figure 5.4d: Unwrapping instance

data AlphaEnd b
class Alpha AlphaEnd b ⇒ AlphaCap b
instance AlphaCap (Exp 0 AlphaEnd)
instance AlphaCap (Exp AlphaEnd)
instance AlphaCap b ⇒ Sat (AlphaEnd b) where

dict = error "Capped at Alpha"

Figure 5.4e: Capping classes, capping types and capping instances

var :: forall cxt. (Sat (cxt (Exp cxt))
,Sat (cxt (Exp 0 cxt)))⇒

P cxt → String → Exp cxt
var (:: P cxt) =

λ(x1 :: String) → MkExp (Var x1 :: Exp 0 cxt)
lam :: forall cxt. (Sat (cxt (Exp cxt))

,Sat (cxt (Exp 0 cxt)))⇒
P cxt → String → Exp cxt → Exp cxt

lam (:: P cxt) = λ(x1 :: String) (x2 :: Exp cxt) →
MkExp (Lam x1 x2 :: Exp 0 cxt)

app :: forall cxt. (Sat (cxt (Exp cxt))
,Sat (cxt (Exp 0 cxt)))⇒

P cxt → Exp cxt → Exp cxt → Exp cxt
app (:: P cxt) = λ(x1 :: Exp cxt) (x2 :: Exp cxt) →

MkExp (App x1 x2 :: Exp 0 cxt)

Figure 5.4f: Smart constructors

5.5. Translation of the running example 87

swap :: (String ,String) → String → String
swap ((a, b) :: (String ,String)) =

λ(o :: String) → if a == o then b else o

Figure 5.4g: Regular declarations

module F1 Eval
where

import F0 Alpha
data Exp 1 (cxt :: ∗ → ∗) = LetE String (Exp cxt) (Exp cxt)

Figure 5.5a: Module header and new component type

type is required4 whenever the type signature of a method does not contain an occurrence
of the cxt parameter. It is required for the correct unification of types. This is described
in Section 5.6.4.

Figure 5.4b defines the initial functionality class, Alpha and the initial component
type Exp 0. The functionality instance of Figure 5.4c defines the three equations of the
alpha method on the Var , Lam and App variants of type Exp 0. There are two important
things to note. First, there are two Sat constraints in the instance head, one on the initial
component type and one on the wrapper type. The one for the wrapper type is necessary
since alpha returns a value of type Exp cxt . Second, use is made of the smart constructors
var , lam and app defined in Figure 5.4f. These simplify the presentation considerably and
are also useful when constructing concrete values of type Exp τ (for some type τ).

We call the swap function in Figure 5.4g a regular declaration since it is not defined
directly upon the open data type. Although it is unchanged in this translation this will
not always be the case. If a function uses one of the instance methods it will need to be
translated to a function containing a proxy argument necessitating the augmentation of
its type. More is said about this in Section 5.6.

The only remaining figure to explain is Figure 5.4e. A capping class is a null extension
that allows a programmer to use the EDT in its current state. A capping class is always
accompanied by a Sat instance featuring the capping class in its context. (In this case the
capping class is AlphaCap.)

5.5.2 Extension module

The first thing to notice about Figures 5.5a through 5.5h is that the type variable cxt has
been replaced almost wholesale by EvalD cxt . EvalD is the name of the explicit dictionary
defined in Figure 5.5c and its occurrence in the type Exp (EvalD cxt) gives a visual indi-
cation that evaluation is defined upon it. Although we present no more functionality for
the Exp EDT it is readily extensible. As more functionality is added the cxt type variable
is replaced with further explicit dictionaries, e.g. Exp (EvalD (Pretty cxt)) and so on.

4The proxy type is not strictly required for this example either.

88 Chapter 5: Extensible data types in Haskell

instance (Sat (EvalD cxt (Exp (EvalD cxt)))
,Sat (EvalD cxt (Exp 0 (EvalD cxt)))
,Sat (EvalD cxt (Exp 1 (EvalD cxt)))
) ⇒ Alpha (EvalD cxt) (Exp 1 (EvalD cxt)) where

alpha (:: P (EvalD cxt)) (LetE name body exp :: Exp 1 (EvalD cxt)) =
λ(s :: (String ,String)) →

letE (u :: P (EvalD cxt)) (swap s name)
(alpha (u :: P (EvalD cxt)) body s)
(alpha (u :: P (EvalD cxt)) exp s)

Figure 5.5b: Instances for new equations on existing functions

class (Sat (EvalD cxt b),Alpha (EvalD cxt) b) ⇒ Eval cxt b where
eval :: P (EvalD cxt) → b → Env (EvalD cxt) →

Exp (EvalD cxt)
apply :: P (EvalD cxt) → b → Env (EvalD cxt) →

Exp (EvalD cxt) → Exp (EvalD cxt)
data EvalD cxt b =

EvalD{eval ′ :: P (EvalD cxt) → b → Env (EvalD cxt) →
Exp (EvalD cxt)

, apply ′ :: P (EvalD cxt) → b → Env (EvalD cxt) →
Exp (EvalD cxt) → Exp (EvalD cxt)

, evalExt :: cxt b}

Figure 5.5c: Functionality classes and explicit dictionary

instance Sat (EvalD cxt (Exp (EvalD cxt)))⇒
Eval cxt (Exp (EvalD cxt)) where
eval (:: P (EvalD cxt)) (MkExp e :: Exp (EvalD cxt)) =

λ(x1 :: Env (EvalD cxt)) → eval ′ dict (u :: P (EvalD cxt)) e x1
apply (:: P (EvalD cxt)) (MkExp e :: Exp (EvalD cxt)) =

λ(x1 :: Env (EvalD cxt)) (x2 :: Exp (EvalD cxt)) →
apply ′ dict (u :: P (EvalD cxt)) e x1 x2

Figure 5.5d: Unwrapping instance

5.5. Translation of the running example 89

instance (Sat (EvalD cxt (Exp (EvalD cxt)))
,Sat (EvalD cxt (Exp 0 (EvalD cxt)))
,Sat (EvalD cxt (Exp 1 (EvalD cxt)))
) ⇒ Eval cxt (Exp 0 (EvalD cxt)) where

eval (:: P (EvalD cxt)) (Var name :: Exp 0 (EvalD cxt)) =
λ(env :: Env (EvalD cxt)) → lookupEnv env name

eval (:: P (EvalD cxt)) (Lam name body :: Exp 0 (EvalD cxt)) =
λ(env :: Env (EvalD cxt)) → lam (u :: P (EvalD cxt)) name body

eval (:: P (EvalD cxt)) (App f x :: Exp 0 (EvalD cxt)) =
λ(env :: Env (EvalD cxt)) →

apply ′ dict (u :: P (EvalD cxt)) x env
(eval ′ dict (u :: P (EvalD cxt)) f env)

apply (:: P (EvalD cxt)) (Var v :: Exp 0 (EvalD cxt)) =
λ(env :: Env (EvalD cxt)) (x :: Exp (EvalD cxt)) →

error "Function expected"
apply (:: P (EvalD cxt)) (Lam name body :: Exp 0 (EvalD cxt)) =

λ(env :: Env (EvalD cxt)) (x :: Exp (EvalD cxt)) →
eval ′ dict (u :: P (EvalD cxt))

body (extEnv env (name, eval ′ dict (u :: P (EvalD cxt)) x env))
apply (:: P (EvalD cxt)) (App f x :: Exp 0 (EvalD cxt)) =

λ(env :: Env (EvalD cxt)) (x :: Exp (EvalD cxt)) →
error "Function expected"

instance (Sat (EvalD cxt (Exp (EvalD cxt)))
,Sat (EvalD cxt (Exp 0 (EvalD cxt)))
,Sat (EvalD cxt (Exp 1 (EvalD cxt)))
) ⇒ Eval cxt (Exp 1 (EvalD cxt)) where

eval (:: P (EvalD cxt)) (LetE name body exp :: Exp 1 (EvalD cxt)) =
λ(env :: Env (EvalD cxt)) →

eval ′ dict (u :: P (EvalD cxt))
(app (u :: P (EvalD cxt))

(lam (u :: P (EvalD cxt)) name exp) body)
env

apply (:: P (EvalD cxt)) (LetE name body exp :: Exp 1 (EvalD cxt)) =
λ(env :: Env (EvalD cxt)) (x :: Exp (EvalD cxt)) →

error "Function expected"

Figure 5.5e: Instances for new functions on all component types

data EvalEnd b
class Eval EvalEnd b ⇒ EvalCap b
instance EvalCap (Exp (EvalD EvalEnd))
instance EvalCap (Exp 0 (EvalD EvalEnd))
instance EvalCap (Exp 1 (EvalD EvalEnd))
instance EvalCap b ⇒ Sat (EvalD EvalEnd b) where

dict = EvalD{eval ′ = eval
, apply ′ = apply
, evalExt = error "Capped at Eval"}

Figure 5.5f: Capping class, capping type and capping instances

90 Chapter 5: Extensible data types in Haskell

letE :: forall cxt. (Sat (EvalD cxt (Exp (EvalD cxt)))
,Sat (EvalD cxt (Exp 0 (EvalD cxt)))
,Sat (EvalD cxt (Exp 1 (EvalD cxt))))⇒

P (EvalD cxt) → String → Exp (EvalD cxt) →
Exp (EvalD cxt) → Exp (EvalD cxt)

letE (:: P (EvalD cxt)) =
λ(x1 :: String)

(x2 :: Exp (EvalD cxt))
(x3 :: Exp (EvalD cxt)) → MkExp (LetE x1 x2 x3 :: Exp 1 (EvalD cxt))

Figure 5.5g: Smart constructors

type Env cxt = [(String ,Exp cxt)]
lookupEnv :: Env (EvalD cxt) → String → Exp (EvalD cxt)
lookupEnv ([] :: Env (EvalD cxt)) =

λ(name :: String) → error ("lookupEnv : Variable " ++ show name ++
" not found")

lookupEnv (hd : tl :: Env (EvalD cxt)) =
λ(name ′ :: String) → lookupEnvAux hd tl name ′

lookupEnvAux :: (String ,Exp (EvalD cxt)) →
Env (EvalD cxt) → String →
Exp (EvalD cxt)

lookupEnvAux ((name, term) :: (String ,Exp (EvalD cxt))) =
λ(rest :: Env (EvalD cxt)) (name ′ :: String) →

if name == name ′ then term else lookupEnv rest name ′

extEnv :: Env (EvalD cxt) → (String ,Exp (EvalD cxt)) →
Env (EvalD cxt)

extEnv = λ(env :: Env (EvalD cxt))
(x :: (String ,Exp (EvalD cxt)))→ x : env

Figure 5.5h: Regular declarations

5.5. Translation of the running example 91

Figure 5.6h: A diagram of two recursive dictionaries produced by AlphaCap instances
on Exp and Exp 0.

The extension functionality class is shown in Figure 5.5c. In general there will be one
of these present in the translation whenever a new function is defined on the EDT.

Figure 5.5e, while much larger than the corresponding code in Figure 5.2 is a rela-
tively straightforward translation of what is present there. One key difference is that an
uses of eval and apply on the right hand sides of the equations have been replaced with
calls to eval ′ dict and apply ′ dict respectively. This occurs in any instances on extension
functionality classes.

Figure 5.5f introduces the capping classes, types and instances. Note that this time
the methods of class Eval , eval and apply are equated with the selector methods of EvalD ,
eval ′ and apply ′. The selector method evalExt is equated with an error, much like dict
was in Figure 5.4e. As more functionality is added to the Exp EDT the dict method of
the Sat instance will come to consist of nested explicit dictionaries. See Section 5.6 for
more detail.

The regular declarations of Figure 5.5h have changed in the translation. The Env
type now has a cxt parameter because it references the Exp type. Similarly the types of
lookupEnv , lookupEnvAux and extEnv have changed.

5.5.3 Recursive dictionaries

In conjunction with capping instances the “knot” of class constraint dependency is “tied”
via the Sat instance. Also, the capping type—in this case AlphaEnd—allows concrete
values of the EDT to be created.

A recursive dictionary is created for (and only for) each instance of the capping
class. Figure 5.6h graphically represents the structure of the two recursive dictionar-
ies created for the Exp 0 and Exp types. (Interestingly, one of the dictionaries con-
tains the other.) To see how they are built consider what happens when type checking
instance AlphaCap (Exp AlphaEnd). First, we must check if an instance of the superclass
exists. The leads to the following constraint chain.

Alpha AlphaEnd (Exp AlphaEnd)
� Sat (AlphaEnd (Exp AlphaEnd)

92 Chapter 5: Extensible data types in Haskell

� AlphaCap (Exp AlphaEnd)

We are back where we started. Fortunately, recursive dictionaries allow such cyclic con-
straints to be resolved. A similar line of reasoning shows us how the instance AlphaCap (Exp 0 AlphaEnd)
is typed and it is graphically represented in Figure 5.6h. The boxes outlined by broken
lines represent dictionary transformers (which correspond to instances with contexts).
One can also read the solid arrows as application to the box at its tip. Following Wadler
and Blott’s [102] original formulation of dictionary translation we can see the form of the
recursive dictionary in d .

d :: AlphaCapD (Exp AlphaEnd)
d = AlphaCapD { alphaD = dt1 (dt2 d }
dt1 :: SatD cxt (Exp cxt) → AlphaD cxt (Exp cxt)
dt1 = . . .

dt2 :: AlphaCapD b → SatD AlphaEnd b
dt2 = . . .

A full dictionary translation of the code in Figures 5.4a – 5.4g appears in Appendix C.

5.6 Formalisation

In this section I present a formal translation from the language described in Section 5.2 to
Haskell. However, so that we may concentrate on the important aspects we translate from
an austere source language to a target language equivalent in expressiveness to Haskell.
The running example, although legal Haskell, was written in a manner very close to the
source language which is essentially the lambda calculus with algebraic data types, flat
pattern matching and first order polymorphic types. It does not have type classes. Most
importantly, it contains two new forms of algebraic data type declarations: open data and
extend data.

The target language has type classes but the syntactic restrictions on them are less
stringent than Haskell 98 and are equivalent to the leniency provided by GHC’s “allow
undecidable instances” flag. However, there is nothing undecidable about the instances
introduced by the translation, they only fail a specific static test implemented in GHC.

The source language does not contain type classes only because they complicate the
presentation. There is no reason why they should conflict with the translation.

5.6.1 The source and target languages

Apart from the open data and extend data declarations the lexical structure of the source
language does not differ much from the lambda calculus extended with algebraic data
types and pattern matching. However there are a number of non-lexical restrictions on
the syntax. These have largely been put in place to simplify the presentation of the
translation and, in such cases, other translations from the richer language constructs of
full Haskell are known to exist. Some constraints are essential but these have already been

5.6. Formalisation 93

Symbol Classes
α, β, γ → 〈type variable〉
T, E → 〈type constructor〉
C, E → 〈data constructor〉
x, f → 〈term variable〉
ν → 〈Collection of pattern variables〉
Declarations
pgm → decl (whole program)
decl → data; tval (declaration)
data → data T α = C τ (data type decl)
val → x = e | x p = e (value binding)
vsig → x : σ (type signature)
tval → vsig ; val (top level binding)
Terms (Expressions)
e, b → e1 e2 | λx : τ.e | x | C
Patterns
p → C x1 . . . xn : τ (n ≥ 0)(pattern)
Types
τ , ξ → T | α | τ1 τ2 (monotype)
σ → τ | ∀α.σ (type scheme)

Figure 5.7a: Syntax of source language

enumerated in Section 5.2. This section will only describe those constraints that simplify
the presentation.

There is at most one pattern match per function and it must be flat, i.e. not nested.
The source language is explicitly typed. All functions have type signatures except new
equations on existing functions. This is because signatures already exist for such equations
albeit in a different module. It is an error to provide signatures for them.

Further, all value bindings in the source language are supercombinators. We overload
the terminology and allow both value bindings and expressions to be supercombinators.
An expression that is supercombinator has the form:

λx1 : τ1 . . . λxn : τn .e

It has the following properties.

• It has no free variables.

• Any sub-term in e that is a lambda abstraction is also a supercombinator.

• n ≥ 0.

A value binding that is a supercombinator has the form:

x p = λx1 : τ1 . . . λxn : τn .e

• It has no free variables.

• The pattern, p, is optional if the function is not defined on an EDT. Otherwise it is
required.

94 Chapter 5: Extensible data types in Haskell

• Any sub-term in e that is a lambda abstraction is a supercombinator.

This restriction was introduced so that it would not be necessary to deal with let
expressions and where clauses. Using lambda-lifting it is always possible to translate from
a language containing these to one of supercombinators.

Syntactic conventions

The syntax is provided in Figure 5.7a. Overbar notation is used extensively. The notation
αn means the sequence α1 . . . αn; the “n” may be omitted when it is unimportant. The
following notational shortcuts also apply:

τn → ξ ≡ τ1 → . . . → τn → ξ

∀αn .τ ≡ ∀α1 . . .∀αn .τ

Superscripts and subscripts make a difference to what overbars mean. Dm
i δ (1 ≤ i ≤

m) is shorthand for Di (Di+1 . . . (Dm−1 Dm) . . .) . Dm is shorthand for Dm
1 δ. Dm

i δ is the
type of an explicit dictionary for functionality class Fi with the explicit dictionaries for
functionality classes Fi+1, . . . , Fm nested within it. Also, we accommodate function types
τ1 → τ2 by regarding them as the curried application of the function type constructor to
two arguments, thus: (→)τ1τ2.

The following conventions apply to the symbols used. The first symbol appearing in
each symbol class is a generic symbol. Later symbols in the list often stand for explicit
language entities. For example E is reserved for the type constructor of the extensible
data type. The concrete symbols are listed in their entirety in Figure 5.7b.

The target language is the same as GHC Haskell 6.4 with the glasgow extensions5 and
allow undecidable instance options enabled, modulo the syntactic abbreviations we use.
In particular, it has type classes, existential types and allows recursive dictionaries to be
created during constraint resolution.

5.6.2 The rules

The translation is presented in an inductive manner. The “base case” concerns the transla-
tion of the open data declaration while the inductive step demonstrates the nth extension
of the data type and the mth new function on that data type.

We’ve already introduced the terms component type and functionality class, but due
to their specific meaning they are summarised again.

• Component type – A type that forms part of the EDT. There is the initial component
type which is introduced when translating the open data declaration. Then there are
the extension component types each introduced with the extend data declaration.

5We do not even require everything that this enables. We only need multi-parameter type classes,
scoped type variables, kind annotations and zero constructor data types.

5.6. Formalisation 95

E The extensible data type.
E i ,ji Constructor of EDT (0 ≤ i ≤ m, 1 ≤ ji ≤ ni).
fi ,ki Function defined on EDT (0 ≤ i ≤ m, 1 ≤ ki ≤ pi).

Figure 5.7b: Concrete symbols of the source language

• Functionality class – Classes that provide the functionality for the EDT. They con-
tain functions that correspond to functions written in the source language as well
as new functions that result from case translation process. They are introduced as
part of the translation.

There are three indexes, i, ji and ki used in the translation.

• The index i ranges over the component types and functionality classes. We have
made another presentation simplifying assumption that whenever an extension is
made to the open data type that a new function is also declared on the EDT6.

• Index ji ranges over the variants (constructors) of the component type and has values
1 ≤ ji ≤ ni, where ni is the number of variants for the ith component type

• Index ki ranges over the functions in a functionality class and has values 1 ≤ ki ≤ pi,
where pi is the number of functions in the ith functionality class.

T sort
description is the way we denote translation rules. The sort is the language entity

we are doing the translation on. For instance, T σ
method transforms σ-types. Some of the

translation rules take arguments e.g.T e
unwrap . A translation rule can also be mapped over

a sequence; this is denoted T sort
description .

The translation rules use a form of a pattern matching. Most symbols appearing
between the Oxford brackets (� . . .�) are generic; they bind to whatever is in their position.
However, some symbols are concrete and for a match to occur the symbol in the scrutinee
of a translation function must match with the symbol in the pattern. Just like Haskell,
a pattern match failure means that a match should be attempted on the next translation
rule. A list of the concrete symbols for the source language appears in Figure 5.7b.

A syntax has been introduced to range over multiple, similar declarations. An expres-
sion of the form 〈 expression〉mj=a means “range over the index j from a to m”. There can
be nested loops too. An expression of the form 〈 expression 〉m,n

j=a,k=b means that k ranges
over b to n for each j. When seen on the left hand side of a translation rule it matches on
declarations. On the right hand side it generates declarations.

Certain information is required by the translation.

• The name of the extensible data type, denoted E in the translation rules.

• A collection, Γ(E), of all type constructors whose definition directly or indirectly
contain occurrences of the type constructor E

6One could always define an identity function or an empty component type if they didn’t want one or
the other.

96 Chapter 5: Extensible data types in Haskell

E Wrapper type for the EDT .
E Constructor for the wrapper type.
Ei Component type of EDT.
E i ,ji Constructor of component type.

Ei (0 ≤ i ≤ m, 1 ≤ ji ≤ ni).
S Sat class.
Fi Functionality class (for functions fi ,ki (1 ≤ ki ≤ pi).
P Proxy type.
d1 Method of S class. Returns explicit dictionary.
di Selector method for next explicit dictionary in

explicit dictionary Dn−1 (1 ≤ i ≤ m).
Di Explicit dictionary for functionality class Fi

(1 ≤ i ≤ m).
F̂i Capping class for functionality class Fi .
D̂i Capping type for functionality class Fi .
εi ,ji Smart constructor for constructor E i ,ji

(0 ≤ i ≤ m, 0 ≤ ji ≤ ni).

Figure 5.7c: Concrete symbols of the target language

• A collection, Δ(E), of all functions that directly or indirectly contain occurrences of
a function, fi (i ≥ 0), defined on the EDT, E α.

For example, an analysis on the following module would yield Γ(E) = {T, T ′},Δ(E) =
{g, h}.

open data E a = . . .

data T b c = T1 b (T ′ c)
data T ′ a = T ′

1 (E a)

f :: E a → a
f = . . .

g = . . . f . . .

h = . . . g . . .

The translation of a module containing an extend data requires additional information
but we defer discussion of this until Section 5.6.4

5.6.3 Base case: Translating open data

The translation of a module containing an open data declaration is achieved using the rules
in Figures 5.8a and 5.8b. The rule in the former introduces the first component type, E0,
and corresponding smart constructors ε0,j (for 1 ≤ j ≤ n0), the proxy type P , the base
functionality class F0, the wrapper type E and a corresponding unwrapping instance, and
an instance for the first functions on the EDT, f0,k (where 1 ≤ k ≤ p0). A capping class,

5.6. Formalisation 97

T data� open data E α = 〈 E0,j0 τj 〉n0
j=1;

〈 f0,k0 : σ0,k0 〉p0

k0=1; 〈 f0,k0 (E0,j0 νj0 : E ξj0) = b0,j0,k0 〉n0,p0

j=1,k0=1 � =

Proxy type
data P δ ;

Sat class
class S α where

d1 : α

Wrapper type
data E (δ : T α

kind�α�) α = ∃β.F0 δ β ⇒ E (β α);

Initial component type
data E0 δ α = 〈 E0,j0 T τ

E �τj0� 〉n0
j0=1 ;

Initial functionality class
class S (δ β) ⇒ F0 δ β where
〈 f0,k0 : T σ

method (0, k0)�σ0,k0� 〉p0

k=1 ;

Initial functionality instance
instance (S (δ (E δ)), S (δ (E0 δ))) ⇒ F0 δ (E0 δ) where
〈 f0,k0 (: P δ) (E0 νj0 : E0,j0 δ ξj0) = T e

method�b0,j0,k0� 〉n0,p0

j0=1,k0=1 ;

Unwrapping instance
instance S (δ (E δ)) ⇒ F0 δ (E δ) where
〈 f0,k0 (: P δ) (E x : E δ ξ) = T σ

unwrap(f0,k0 , x ,P δ)�σ0,k0� 〉pi

k=1

Capping class, type and instances
data D̂0 β ;
class F0 D̂0 β ⇒ F̂0 β ;
instance F̂0 (E (D̂0)) ;
instance F̂0 (E0 (D̂0)) ;
instance F̂0 β ⇒ S (D̂0 β) where

d1 = ⊥

Smart constructors
〈 ε0,j0 : T τ

smart�τj0�; ε0,j0 (: P δ) = T e
smart(0, j0)�τj0� 〉n0

j0=1

Figure 5.8a: Translation for open data declaration in the initial module (m = 0).

98 Chapter 5: Extensible data types in Haskell

T data�data T α = C τ� =
{

data T δ α = C T τ
E �τ� , if T ∈ Γ (E)

data T α = C τ , otherwise

T data�type T α = τ� =T τ
E �τ�

T tval�x : σ; val� = x : T σ
E �σ� ; T val�val�

T val�x p = e� =
{

x (: P (Dm
δm) p = T e

method�e� , if x ∈ Δ(E)
x p = e , otherwise

T val�x = e� =
{

x (: P (Dm
δm) = T e

method�e� , if x ∈ Δ(E)
x = e , otherwise

T σ
E �∀ α.τ� =

⎧⎨
⎩

∀ α. S (Dm
δm (E (Dm

δm))) ⇒
T τ

E �τ� , if x ∈ Δ(E)
T τ

E �τ� , otherwise

Figure 5.8b: Translation for regular declarations in the mth module.

T data� 〈 f0,k0 (Em,jm νjm : E ξjm) = b0,jm ,k0 〉nm ,p0

jm=1,k0=1;
. . . ;
〈 fm−1,km−1 (Em,jm νjm : E ξjm) = bm−1,jm ,km−1 〉

nm ,pm−1

jm=1,km−1=1 � =
〈 instance (S (Dm

δm (E (Dm
δm)))

, S (Dm
δm (E0 (Dm

δm)))
, . . .
, S (Dm

δm (Em (Dm
δm)))

) ⇒ Fi (Dm
i δm) (Em (Dm

δm)) where
〈 fi ,ki (: P (Dm

δm))
(Em,jm νjm : Em (Dm

δm) ξjm) = T e
method�bi ,jm ,ki � 〉nm ,pi

jm=1,ki=1

〉m−1
i=0

Figure 5.8c: Translation for new equations on existing functions in the mth extension
module.

F̂0, and capping type, D̂0 are introduced. (There is no explicit dictionary for the base
functionality class.) The Sat class, S is also introduced, once and for all.

Smart constructors are introduced so that the translation of regular data constructors
in the source language is simplified; an occurrence of a constructor becomes a smart
constructor instead. The proxy type is introduced for the purposes of type checking in the
target language. Without it, the type checker does not have enough information. This
is discussed in the next section. An extra argument of the proxy type is added for all
functions, fi,k, defined on the EDT and to the smart constructors.

5.6.4 Inductive step: Translating extend data

The translation of a module containing an extend data declaration is done using the rules
in Figures 5.8b, 5.8c, and 5.8d. These rules introduce the mth new variant on the EDT
and the mth function. It is assumed that the following information is available.

5.6. Formalisation 99

T data� extend data E α = 〈 Em,j τj 〉nm
jm=1 ;

〈 fm,km : σm,km 〉pm

km=1; 〈 fm,km (Em,jm νm,jm : E ξm,jm) = bm,jm ,km 〉nm ,pm

jm=1,km=1 � =

The mth extension component type
data Em (δ : T α

kind�α�) α = 〈 Em,jm T τ
E �τj � 〉nm

jm=1;

The mth functionality class
class (S (Dm

δm β), Fm−1 (Dm δm) β) ⇒ Fm δm β where
〈 fm,km : T σ

method�σm,km � 〉pm

km=1;

The mth explicit dictionary
data Dm δm β = Dm { 〈 f ′m,km

: T σ
method�σm,km �; 〉pm

km=1

, dm+1 : (δm β) }
;

Unwrapping instance
instance S (Dm

δm (E (Dm
δm))) ⇒ Fm δm (E (Dm

δm)) where
〈 fm,km (: P (Dm

δm)) (E x : E (Dm
δm) ξ) =

T σ
unwrap(fm,km , x , P (Dm

δm))�σm,km � 〉pm

km=1

Functionality instances (for component types 0 ≤ i ≤ m)
〈 instance (S (Dm

δm (E (Dm
δm)))

, S (Dm
δm (E0 (Dm

δm)))
, . . .
, S (Dm

δm (Em (Dm
δm)))

) ⇒ Fm δm (Ei (Dm
δm)) where

〈 fm,km (: P (Dm
δm)) (E i ,ji νji : Ei (Dm

δm) ξji) = T e
method�bi ,ji ,km � 〉ni ,pm

ji=1,km=1

〉mi=0

Capping class, type and instances
data D̂m β ;
class Fm D̂m β ⇒ F̂m β ;
instance F̂m (E (Dm D̂m)) ;
〈 instance F̂m (Ei (Dm D̂m)) ; 〉mi=0

“Knot tying” instance
instance F̂m β ⇒ S (Dm D̂m β) where

d1 = D1 { 〈 f ′1,k = f1,k 〉p1

k=1

d2 = D2 { 〈 f ′2,k = f2,k , 〉p2

k=1

. . .
. . . dm = Dm { 〈 f ′m,k = fm,k 〉pm

k=1, dm+1 = ⊥} . . . }
Smart constructors
〈 εm,jm : T τ

smart�τjm �; εm,jm (: P δ) = T e
smart(m, jm)�τjm � 〉nm

jm=1

Figure 5.8d: Translation for extend data declaration and new function for the mth ex-
tension module.

100 Chapter 5: Extensible data types in Haskell

T α
kind�α1, . . . , αk � =

k+1︷ ︸︸ ︷
(� → . . . → �) → �

T σ
method�∀α.E τ → ξ� = ∀α. P(Dm

δm) → β τ → T τ
method�ξ�

T τ
method�α� = α

T τ
method�T � =

{
T (Dm

δm) , if T ∈ Γ(E)
T , otherwise

T τ
method�E� = E (Dm

δm)
T τ
method�τ1 τ2� = T τ

method�τ1� T τ
method�τ2�

T e
method�fi ,ki � =

{
f ′i,ki

T dict(i) (⊥ : P (Dm
δm)) , if i > 0

fi,ki
(⊥ : P (Dm

δm)) , otherwise

T e
method�x� =

{
x (⊥ : P (Dm

δm)) , if x ∈ Δ(E)
x , otherwise

T e
method�λx : τ.e� = λx : T τ

method�τ�. T e
method�e�

T e
method� E i ,ji � = εi ,ji (⊥ : P (Dm

δm))
T e
method� C� = C
T e
method�e1 e2� = T e

method�e1�T e
method�e2�

T σ
unwrap(fi ,ki , x , γ)�∀α. E τ → τ1 → . . . → τn → τn+1� =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λx1 : T τ
method�τ1�

. . .
λxn : T τ

method�τn�.f0 (⊥ : γ) x x1 . . . xn , if i = 0
λx1 : T τ

method�τ1�
. . .
λxn : T τ

method�τn�.fi,ki
T dict(i) (⊥ : γ) x x1 . . . xn , otherwise

Figure 5.8e: Translation rules

5.6. Formalisation 101

T τ
smart�τ� = ∀ δm .∀ α. (S (Dm

δm (E (Dm
δm)))

, S (Dm
δm (E0 (Dm

δm)))
, . . .
, S (Dm

δm (Em (Dm
δm)))) ⇒

connect (P (Dm
δm), T τ

method � τ �, E (Dm
δm) α)

T τ
smart�T � =

{
T (Dm

δm) , if T ∈ Γ(E)
T , otherwise

T τ
smart�E� = E (Dm

δm)
T τ
smart�τ1 τ2� = T τ

smart�τ1� T τ
smart�τ2�

connect � τ1, . . . , τk � = τ1 → · · · → τk

T e
smart(i , j)�τ1, . . . , τk � = λx1 : τ1 . . . λxk : τk . E (E i ,j x1 . . . xk : Ei ,j (D i

δi) α)

T dict(i) = (di (. . . (d2 d1) . . .))
T τ
E �α� = α
T τ
E �E� = E δ

T τ
E �T � =

{
T (Dm

δm) , if T ∈ Γ(E)
T , otherwise

T τ
E �τ1 τ2� = T τ

E �τ1� T τ
E �τ2�

Figure 5.8f: More translation rules

102 Chapter 5: Extensible data types in Haskell

• A list of m existing functionality classes [F0, ..., Fm−1], functions [f0,k0 , . . . , fm−1,km−1]
(where 1 ≤ ki ≤ pi) and explicit dictionaries [D0, . . . , Dm−1].

• A list of m existing component types [E0, ..., Em−1] and the variant constructors
[E0,j0 , . . . , Em−1,jm−1] (where 1 ≤ ji ≤ ni) .

• A list of capping classes, [F̂1, . . . , F̂m−1] and capping types, [D̂1, . . . , D̂m−1]. A cap-
ping type is just a zero constructor dummy type.

How this information would be acquired and passed around in an implementation is
discussed in Section 5.6.7.

Similar to the base case, the rule that transforms an extend data declaration introduces
a new component type and smart constructor, a new functionality class, function, and
capping class. An instance is introduced for each existing component type and the newly
introduced one.

This rule does more. It introduces instances to handle new equations on old functions
(i.e. fi ,ji (i < m, 1 ≤ ji ≤ ni)). (Remember, there is a syntactic restriction on the source
language specifying that these must have been declared.) This rule also brings into being
an explicit dictionary and associated capping type.

In many ways the inductive step of the translation is much more interesting. Conse-
quently we spend some time explaining the subtleties of the rules.

The need for proxy arguments

Proxy arguments are required in order to guide the type checker for the target language.
Consider the following function in the source language:

data E = E0 String (E String)
f0,1 :: E → String
f0,1 (E0 s e) = s ++ f0,1 e

Now consider what we would get if the translation omitted to add proxy arguments.

class S (δ β) ⇒ F0 δ β where

f0 :: β → String

instance S (δ (E δ)) ⇒ F0 δ(E δ) where

f0,1 (E x) = f0,1 x
instance (S (δ (E δ)), S (δ (E0 δ))) ⇒ F0 δ (E0 δ) where

f0,1 (E0 s e) = s ++ f0,1 e

Among the constraints raised by the use of f0,1 on the right hand side of the instance
method equation is F0 δ′ (E δ). The problem is that the δ′ and δ aren’t equal. The proxy
ensures that they are equated. To see this consider the translation with proxy arguments
attached.

5.6. Formalisation 103

class S (δ β) ⇒ F0 δ β where

f0,1 :: P δ → β → String

instance (S (δ (E δ)), S (δ (E0 δ))) ⇒ F0 δ (E0 δ) where

f0,1 (: P δ) (E0 s e) = s ++ f0,1 (⊥ : P δ) e

The constraint raised by the expression f0,1 (⊥ : P δ) e is now F0 δ (E δ).

S constraints in instance heads

The instance heads for new equations on existing component types and the instance heads
for new functions both contain many occurrences of S constraints. This may seems strange
considering that each functionality class has S as a superclass. The reason is that the S
instance that “ties the knot” will be declared at some point in the future (possibly in
another module). The S constraints in the instance head “promise” that this will happen.

These constraints mention the latest explicit dictionary (i.e. Dm). The purpose of this
is to allow the body of the instance method to contain occurrences of any of the functions
so far (f1,k1 , . . . , fm−1,km−1) and the latest ones – fm,km). This is possible even inside new
equations on existing functions, which may seem counter-intuitive at first. To see why
consider the translation of the following new equation where a < m, b <= m, and a < b.

T data�fa,1 (Em,2 x) = . . . fb,1 . . .� =
. . .

instance (S (Dm
δm (E (Dm

δm)))
, S (Dm

δm (E0 (Dm
δm)))

, . . .

, S (Dm
δm (Em (Dm

δm)))
) ⇒ Fa (Dm

a+1 δm) Em (Dm
δm) where

fa,1 (Em,2 x) = . . . f ′b,1 (dm . . . (d2 d1) . . .) . . .

. . .

The expression f ′b,1 (db . . . (d2 d1) . . .) raises the following constraints.

S (Dm D̂m (Em (Dm D̂m)))
� F̂m (Em (Dm D̂m))

This instance for the capping class has been declared. The considerably involved way
in which this is type checked is covered in the next section.

Capping classes

Instances of the capping class, and the associated S instance, are used to “tie the knot”
during constraint resolution. They do this, not just for the mth functionality class, but
for all the others.

For each of the capping class instances we need to check for the existence of an instance
of its super class, the mth functionality class. Because constraint resolution is cycle aware

104 Chapter 5: Extensible data types in Haskell

we first add the constraints F̂m (Ei (DmD̂m)) (for 0 ≤ i ≤ m) to the current collection
of assumptions. (Each of these constraints will only be resolved if a chain of resolutions
reaches it again.) Now let’s consider a particular superclass constraint for component type
Eb (for some 0 ≤ b ≤ m). It produces m + 1 S constraints.

Fm D̂m (Eb (Dm D̂m))
� S (Dm D̂m (Ej (Dm D̂m))) for each (0 ≤ j ≤ m)

Each one of these S constraint is resolved by

S (Dm D̂m (Ej (Dm D̂m)))
� F̂m (Ej (Dm D̂m))

But these are in the collection of assumptions, so they get resolved. Thus, a recursive
dictionary is created for each component type and the wrapper type. This “ties the knot”
for all of the functionality classes, not just the mth one. To see why, consider how we type
check

f ′a,c (di . . . (d2 d1) . . .) :: Eb (Dm D̂m) → . . .

for some 0 ≤ a ≤ m, 0 ≤ b ≤ m, and 0 ≤ c ≤ pi. This leads to the following
constraint resolution. (The initial constraint comes from substituting δ = Dm

i+1 D̂m into
S (D i

δ (Eb (D i
δ))) .

S (Dm D̂m (Eb (Dm D̂m)))
� F̂m (Eb (Dm D̂m))

But this constraint has been provided by the capping class instance which type checks
for the reasons stated earlier.

Translating regular declarations

Any type declaration in the source language that directly or indirectly contains a reference
to E must be translated to contain an occurrence of the wrapper data type E in the target
language. Any function which directly or indirectly contains an occurrence of a function
fi ,k (for a specific 0 ≤ i ≤ m, 0 ≤ k ≤ pi) must also have its body transformed to contain
an occurrence of f ′i ,k di (. . . (d2 d1) . . .) . More importantly, an S constraint must be added
to the type. However, this only needs to be done for the wrapper data type, E, as these
are the only values that will be passed to such functions. S constraints on component
types are only ever seen in the class and instance heads of functionality classes.

5.6.5 The link between the formalisation and the running example

To further the reader’s understanding they are encouraged to apply the rules from Figures
5.8a and 5.8b to the initial module of the running example (Figure 5.1) to yield the result
in Figures 5.4a–5.4f. By applying the rules in Figures 5.8c, 5.8d and 5.8b to to Figure 5.2
they will get the result in Figures 5.5a–5.5h.

5.6. Formalisation 105

S Sat F1 Eval
δi cxt f1,1 eval
β b f1,2 apply
E Exp F̂0 AlphaCap
E0 Exp 0 D̂0 AlphaEnd
F0 Alpha d1 dict
E MkExp d2 expExt
E0,1 Var D1 Eval
E0,2 Lam F̂1 EvalCap
E0,3 App D̂1 EvalEnd
f0,1 alpha (n0 = 3, p0 = 1, n1 = 1, p1 = 2)
E1,1 LetE (m = 2)
E1 Exp 1

Figure 5.9: A mapping from symbols in the formal translation to identifiers in the
running example.

However, the translation rules use an abbreviated syntax. In order to aid the reader
Figure 5.9 shows the correspondence between the abbreviated syntax and the syntax used
in the translation of the running example.

5.6.6 Creating values of the EDT

For an extensible data type to be created and used, it is necessary for the translator to
insert the latest capping type in place of the δm in the type E (Dm) δmτ). However,
the only functions that can be called on a value of this type are those that have the
constraint S (Da

δa (E Da
δa)) (where a ≤ m) in their types. The translation ensures

that the functions fi,ki
(where 0 ≤ i ≤ m, 1 ≤ ki ≤ pi) and any function which directly or

indirectly call them satisfy this condition.

5.6.7 Implementation

At this point, an implementation of this translation does not yet exist. However, these
rules were applied by hand to implement extensible abstract syntax in the PHRaC compiler
in Chapter 6. In this section I sketch some of the features that an implementation would
need to have.

For the translation rules to be applied certain information is assumed to be available.
The information specific to each rule has already been covered in a piecemeal fashion in
the preceding text. Here is a summary:

• A list of m existing functionality classes [F0, . . . , Fm−1], functions [f0,k0 , . . . , fm−1,km−1]
(for each 1 ≤ ki ≤ pi) and explicit dictionaries [D0, . . . , Dm−1].

• A list of n existing component types [E0, ..., Em−1] and the variant constructors
[E0.j0 , . . . , Em−1,jm−1] (for each 1 ≤ ji ≤ ni).

• A list of capping classes, [F̂1, . . . , F̂m−1] and capping types, [D̂1, . . . , D̂m−1].

106 Chapter 5: Extensible data types in Haskell

• A list of functions that either directly or indirectly reference a function on the EDT.
This is contained in the function environment, Γ (E), which is just a list of names.

• A list of types the either directly or indirectly reference the EDT type. This is a list
of type constructors: Δ(E).

In the presence of separate compilation the constraint resolution for type classes re-
quires that interface files be generated for each module. Since the encoding of EDTs relies
heavily upon constraint resolution a natural place to put the information required is in
the interface files.

5.7 Pattern matching and Binary Functions

There are two remaining questions. The first is how pattern matching is done on Haskell
augmented with syntactic sugar for open abstract types. The second is, can we handle
binary functions? This section provides answers to both these questions.

5.7.1 Stratified pattern matching

For Haskell to be augmented with open data and extend data declarations it is also neces-
sary to introduce a slight change to the pattern matching semantics for equations written
on open data types. Consider the following declaration:

module M 1 where

open data E = E0 String

. . .

module M 2 where

extend data E = E1 Int

The translation would create two component types, E0 and E1 to contain the construc-
tors E0 and E1. When a function is called on a value of type E in the target language
the value is unwrapped and the internal value dispatched to the appropriate instance. It
is only at this point that Haskell’s regular pattern matching algorithm, which dispatches
to the body associated with the first matching pattern, would come into effect.

From the perspective of augmented Haskell this amounts to a slightly different form
of pattern matching: stratified pattern matching. The semantics of pattern matching in
augmented Haskell is as follows. Equations in the modules are grouped according to
which open data or extend data declaration introduced the constructors they are defined
over. The relative order is preserved. Pattern matching is done by first finding the group
of equations corresponding to the value a function is being applied to and then doing
pattern matching as usual within that group.

5.7. Pattern matching and Binary Functions 107

5.7.2 Binary functions

An important question that arises repeatedly when evaluation solutions to the expression
problem is “can one write extensible binary functions?” By binary function we mean those
that take two occurrences of the open data type as parameters (in addition to any other
parameters). Although our source language is restricted to at most one pattern match per
function it is possible to encode binary functions simply by dispatching to others. The
technique is illustrated now. Consider a data type that represents shapes and let us define
an equality function on it.

open data Shape = Square Int

eq :: Shape → Shape → Bool
eq (Square s) shape = eqSquare shape s

eqSquare (Square s ′) s = s == s ′

By dispatching to eqSquare we are able to complete the definition of eq . Extending
this definition is also possible.

extend data Shape = Rect Int Int

eq (Rect l w) shape = eqRect shape l w

eqSquare (Rect l w) s = l == s && w == s

eqRect (Square s) l w = l == s && w == s
eqRect (Rect l ′ w ′) l w = l == l ′ && w == w ′

These definitions, while legal in augmented Haskell, are not what a programmer would
expect to write. It is also fairly obvious into which type class instances the equations
will go during translation; the eqRect equations matching on Square s and Rect l ′ w ′ will
be defined in separate instances because the component types containing the Square and
Rect variants are different.

A more Haskell-like definition would start with:

open data Shape = Square Int
eq :: Shape → Shape → Bool
eq (Square s) (Square s ′) = s == s ′

And it would be extended as follows:

extend data Shape = Rect Int Int

eq (Square s) (Rect l w) = l == s && w == s

108 Chapter 5: Extensible data types in Haskell

eq (Rect l w) (Square s) = l == s && w == s
eq (Rect l w) (Rect l ′ w ′) = l == l ′ && w == w ′

A more straightforward translation of from this into the target language in which two
pattern matches appear inside instance methods is not possible—Square and Rect are part
of different component types in the target language. However, providing that the compiler
keeps track of suitable information, it is always possible to translate from such definitions
to ones that are single pattern-match based. For instance, it is clear that the first new
equation on eq would become a new equation for eqSquare while the next two would be
for eqRect .

The crucial factor that makes such a pre-translation possible is that we have a named
handle on the patterns. For instance, in the example above we associate the name eq with
the two patterns on the left hand sides of the equations. Unfortunately there is no way
in which the pattern match introduced by the case expression in the example below could
be extended.

eq :: Shape → Shape → Bool
eq (Square s) shape = case shape of

(Square s ′) → s == s ′

A programmer would have to avoid definitions such as this if they wanted them to be
extensible. I do not provide any further details of the pre-translation would be done but
note that the approach generalises easily to n-ary functions.

5.8 Related work

Several papers ([107], [58], [72], [21]) have focused on extending object-oriented languages
in order to make the addition of extra functionality easier. (Of these, only Zenger and
Odersky’s and Bruce’s solutions can be statically type checked.) However, I wish to do the
converse by making the addition of variants easier in a functional language. Fortunately,
solutions in functional languages have also been studied. Two notable solutions have been
proposed for OCaml [42] and the hybrid object-oriented/functional language, Scala [109].
Initially only informal solutions [59] were provided for Haskell. Unfortunately, these only
work on the small examples the techniques were demonstrated upon. However, recently
Löh and Hinze [66] proposed a complete solution.

In this section we compare the aforementioned solutions in OCaml, Scala and Haskell
with our own. The first two solutions satisfy a property that mine does not – independent
extensibility. This property was defined by Zenger and Odersky [109] as the fifth criterion
that any solution to the expression problem should satisfy. Independent extensibility is the
ability to combine independently developed extensions so that they can be used jointly.
Although this property is desirable, providing a useful form of modularity for writing
extensions, it is not necessary for implementing a front-end plug-in enabled compiler.

5.8. Related work 109

5.8.1 OCaml’s solution to the expression problem

Polymorphic variants[42], a novel feature of the OCaml language, provide a solution to
the expression problem. Unlike normal data type variants in functional languages, poly-
morphic variants can be shared between several data types. For example, the following
function takes arguments of type [< ‘Var of string | ‘Lam of string * ’a]

let f = function ‘Var s -> s | ‘Lam name body -> n

Types containing polymorphic variants come in three sorts: lower bounded, upper
bounded and fully determined. A notion of subtyping is associated with such types; for
example, a type containing more polymorphic variants than a lower bounded variant type
is a subtype of it. The function above takes an upper bounded type; this is indicated
by the < character after the left square bracket. This means that the function accepts
arguments of any type which has at most the polymorphic variants ‘Var of string and
‘Num of int. For instance, it accepts the variant type [‘Num of int] (which incidentally
is a fully determined type). Functions which match on polymorphic variants accept upper
bounded types, while functions which a yield a polymorphic variant yield a type that is
lower bounded. Polymorphic variants also support recursion. By way of example, the type
of a map function of a variant type for lists is:

let rec map f = function

‘Nil -> ‘Nil;

| ‘Cons(x, xs) -> ‘Cons(f x, map f xs);;

val map:

(’a -> ’b) ->

([< ‘Cons of ’a * ’c | ‘Nil] as ’c) ->

([> ‘Cons of ’b * ’d | ‘Nil] as ’d) = <fun>

The type, [< ‘Cons of ’a * ’c | ‘Nil] as ’c, is an equi-recursive type7.
The nature of lower bounded variant types makes them ideal for extending existing

data types with new variants. Figures 5.10, 5.11, and 5.12 fully implement the running
example in OCaml. For a similar example see Garrigue’s paper [42].

Function alpha_f0 (Figure 5.10) implements the alpha functionality on the variable,
abstraction and application variants of the lambda calculus. Note that it takes a recursive
processor as an argument. This technique is known as open recursion. The fixed point
of the function is defined only once all of the required functionality has been defined.
In this module this is done by function alpha_exp_0. In general, this must be done in
every extension module for all functions defined on the open data type so far. Note the
close similarity of this with our requirement for capping classes. Capping classes close the
recursion on type classes while defining functions such as alpha_exp_0 closes the recursion
on values and types.

Figures 5.11 defines extensions to the alpha function on let-expressions while 5.12
defines the eval function on ordinary lambda expressions and let-expressions. Note the

7An equi-recursive type, as opposed to an iso-recursive type, is one whose one-step unfolding is equal
to itself. An iso-recursive type is merely isomorphic to its one-step unfolding.

110 Chapter 5: Extensible data types in Haskell

type ’a exp_0 = [‘Var of string | ‘Lam of string * ’a | ‘App of ’a * ’a]

let swap (a,b: string * string) (o: string): string =
if a = o then b else o

let alpha_f0 (alpha_rec: ’a -> string * string -> ’a)
(expr: [< ‘Var of string

| ‘Lam of string * ’a
| ‘App of ’a * ’a])

(s: string * string): ’a =
match expr with

| ‘Var v -> ‘Var (swap s v)
| ‘Lam (v, body) -> ‘Lam (swap s v, alpha_rec body s)
| ‘App (a, b) -> ‘App (alpha_rec a s, alpha_rec b s)

(* Closes function [alpha] on the [exp_0] data type *)
let rec alpha_exp_0 (expr: ’a exp_0 as ’a) (s: string * string) =

alpha_f0 alpha_exp_0 expr s

Figure 5.10: The F0 Alpha module implemented OCaml.

special syntax used in the matches: #exp_0 as term. This matches on the variants inside
the type exp_0.

The recursion is closed at the value and type level—by equating ’a with ’a exp_1—
simultaneously with the following declaration.

let rec eval_exp_1 expr env = eval_f1 eval_exp_1 expr env

It is important that this fixed point is only found at the point where one wishes to
use the extensible data type. For instance, eval_exp_1 cannot be further extended. In
the case of using polymorphic variants inside a plug-in compiler one would have to ensure
that that the fixed point was defined inside the plug-in and not in the source code of the
compiler.

This solution satisfies the four base requirements of a solution to the expression problem
proposed by Zenger and Odersky. In particular, separate compilation is satisfied because
the function alpha_f0 and the functions eval_f0 and eval_f1 can be written in separate
modules and type checked independently. The solution also satisfies the extra requirement
of independent extensibility. How it achieves this is discussed in the next section.

Comparison

One disadvantage of open abstract types is that they do not satisfy the independent ex-
tensibility criterion while polymorphic variants do. The key feature of polymorphic vari-
ants that makes this possible is their ability to define a coalesced sum of types. Type
’a let_lambda is just such a coalesced sum of the type ’a lambda and the following.

[> ‘Lam of string * ’a * ’a] as ’a

5.8. Related work 111

exception Lookup_Failure of string
exception Eval_Failure of string
open F0_Alpha

(* Extend [exp_0] with let expressions *)
type ’a exp_1 = [‘Var of string | ‘Lam of string * ’a | ‘App of ’a * ’a

| ‘Let of string * ’a * ’a]

let alpha_f1 alpha_rec expr s =
match expr with

| ‘Let (name, body, exp) ->
‘Let (swap s name, alpha_rec body s, alpha_rec exp s)

(* Closes function [alpha] on [exp_1] data type *)
let rec alpha_exp_1 expr s = alpha_f1 alpha_exp_1 expr s

Figure 5.11: New functionality defined on the alpha function in OCaml module F1 Eval
.

It is not a strict sum in the usual sense because the constructors of both types are
merged. The following ordinary data type declaration demonstrates this. In order to
include lambda terms in type ’a let_lambda it is necessary to wrap them in the Lam

constructor.

type ’a lambda = VarL of string | Abs of string * ’a | App of a’ * ’a

type ’a let_lambda = Lam of ’a lambda | Let of string * ’a * ’a

Although I have not found a way to provide for independent extensibility using open
abstract types a comparison with OCaml has provided some insight. In some sense we are
encoding a form of subtyping using Haskell’s unification. This subtyping relationship is
present natively in the type system for polymorphic variants. Unfortunately, our form of
encoded subtyping is rather primitive and only allows for linear extensibility. To illustrate
this we refer to the example of the previous chapter.

The heads for the Eval class and Exp instance are:

class(Pretty (EvalD cxt) a
, Sat ((EvalD cxt) a) ⇒ Eval cxt a where

. . .

instance Sat (EvalD cxt (Exp (EvalD cxt)))
⇒ Eval cxt (Exp (EvalD cxt)) where

. . .

The type variable cxt is what allows for the extension. The capping class, EvalEnd
has the following head (and associated Exp instance head):

class Eval EvalEndD a ⇒ EvalEnd a

112 Chapter 5: Extensible data types in Haskell

type ’a env = (string * ’a) list

let rec lookup_env (env: ’a env) (name: string): ’a =
match env with

[] -> raise (Lookup_Failure ("Variable " ^ name ^ " not found"))
| ((name’, term)::rest) ->

if name = name’ then term else lookup_env rest name

let ext_env (env: ’a env) (x: string * ’a): ’a env = x :: env

let eval_f0 (eval_rec: ’a -> ’a env -> ’a)
(expr: [< ‘Var of string

| ‘Lam of string * ’a
| ‘App of ’a * ’a])

(env: ’a env) =
match expr with

| ‘Var name -> lookup_env env name
| ‘Lam (name, body) as lam -> lam
| ‘App (f, x) ->

match eval_rec f env with
| ‘Lam (name, body) ->

eval_rec body (ext_env env (name, eval_rec x env))
| _ -> raise (Eval_Failure "function expected")

let eval_f1 (eval_rec: ’a -> ’a env -> ’a)
(expr: [< ‘Var of string

| ‘Lam of string * ’a
| ‘App of ’a * ’a
| ‘Let of string * ’a * ’a])

(env:’a env) =
match expr with

#exp_0 as term -> eval_f0 eval_rec term env
| ‘Let (x, exp, body) ->

eval_f0 eval_rec (‘App (‘Lam (x,body), exp)) env

(* Closes the [eval] function on type [exp_1] *)

let rec eval_exp_1 expr env = eval_f1 eval_exp_1 expr env

Figure 5.12: Function eval defined on ordinary lambda expressions and the let extension
in OCaml module F1 Eval.

5.8. Related work 113

instance EvalEnd (Exp (EvalD EvalEndD))

In practice this means that the type Exp (EvalD EvalEndD) is a subtype of the poly-
morphic type Exp (EvalD a). Unfortunately, this particular encoding of a subtyping rela-
tionship forces us to extend in a linear manner even if the functionality of the extension
is orthogonal to the original. It is an open question as to whether an encoding of another
subtype relationship is even possible.

I mentioned before that the fixed point of each open function needs to be declared
for every function that has been defined on an open data type and that this is a close
analogue of capping classes in Haskell. Recent work by Garrigue [43] has removed the
aforementioned shortcoming from OCaml via the use of recursive modules and private
row variables. Private row variables provide a mechanism to abstract on lower bounded
variant types. Previously, the programmer had to rely on type inference for such types
as only fully determined variant types could be given type synonyms. Combining this
feature with recursive modules, and the ability to find the fixed-points of functors, the
programmer is able to close the recursion at the module level. The reader is referred to
the paper for more details.

OCaml has support for dynamic loading of byte-code (and even native code on some
platforms). It would also be suitable as the implementation language for a plug-in compiler

5.8.2 Scala’s solution to the expression problem

Scala [73], like OCaml, is a hybrid of object oriented and functional language features.
However, while OCaml adds a relatively lightweight object system to the functional lan-
guage ML, Scala does the converse by adding functional language features to a Java-like
object oriented language.

As with OCaml’s polymorphic variants it is the notion of subtyping that makes a
solution to the expression problem possible. Notably, independent extensibility is also
possible in Scala using mixins.

Scala’s solution using subtyping and mixins

The solution is demonstrated by programming our running example in Scala. First, we
start with the definition of alpha renaming functionality.

trait Alpha {

type exp <: Exp;

trait Exp {

def alpha(s:Pair[String,String]): exp;

}

class Var(name: String) extends Exp {

def alpha(s:Pair[String,String]) =

new Var(swap (s,name)).asInstanceOf[exp];

}

class Lam(name: String, body: exp) extends Exp {

114 Chapter 5: Extensible data types in Haskell

def alpha(s:Pair[String,String]) =

new Lam(swap(s,name), body.alpha(s)).asInstanceOf[exp];

}

class App(a: exp, b: exp) extends Exp {

def alpha(s:Pair[String,String]) =

new App(a.alpha(s), b.alpha(s)).asInstanceOf[exp];

}

}

The pertinent aspects of this declaration are as follows. First, a trait is like a class (in
OO languages) but has neither constructors nor state. Second, the declaration type exp <: Exp

declares that exp is constrained to be a subtype of the nested trait Exp declared just below
it. In the nomenclature of Scala exp is known as an abstract type.

Extending the functionality of the Var, Lam and App classes is done using mixin com-
position. Mixins are a mechanism by which the member declarations of one class can be
included into another class. Mixin declarations have the form:

class extends class with class

In the following code mixins are used to extend each of the variants with the eval method.

trait Eval extends Alpha {

type exp <: Exp;

type Env = List[Pair[String, exp]];

def lookup(name: String,env: Env) : exp = env match {

case List() => throw new Error("Could not find variable " + name);

case pair :: rest => pair match {

case Pair(name1, term) =>

if (name1 == name) {term} else {lookup(name, rest)};

}

}

def extEnv(env: Env, pair: Pair[String, exp]) : Env = {

return pair :: env;

}

trait Exp extends super.Exp {

def eval(env: Env) : exp;

}

case class Var(name: String) extends super.Var(name) with Exp {

def eval(env: Env) = lookup(name, env) ;

}

case class Lam(v: String, body: exp) extends super.Lam(v, body) with Exp {

def eval(env: Env) = this.asInstanceOf[exp];

}

5.8. Related work 115

case class App(f: exp, x: exp) extends super.App(f, x) with Exp {

def eval(env: Env) = {

f.eval(env).asInstanceOf[Exp] match {

case Lam(name, body) => {

def value = body.eval(extEnv(env,

new Pair(name, x.eval(env))));

value.asInstanceOf[exp];

}

case _ => throw new Error("Function expected");

}

}

}

}

Another thing to note is that although the first line of the Eval trait appears to be
the same as the one in the Alpha trait, it actually declares exp to be a subtype of the Exp

declared in the Eval trait. In Scala, new declarations merely shadow existing declarations
of that name. The old trait is still able to be referenced, in this example as super.Exp.

Finally, the manner in which a Let variant can be added is demonstrated.

object ExpLet {

trait EvalLet extends Eval {

case class Let(name: String, body: exp, exp: exp) {

def alpha(s:Pair[String,String]) =

new Let(swap(s,name), body.alpha(s), exp.alpha(s));

def eval(env: Env) = App(Lam(name, exp).asInstanceOf[exp], body).eval(env);

}

}

}

There is one important final point. To create, and use the values requires that the ab-
stract type exp be made concrete. The first line of the body of the object: type exp = Exp

in the following declaration identifies the abstract type with the concrete Exp class that
was declared in the Eval trait.

object ExpTest extends EvalLet with Application {

type exp = Exp;

val test0 = Lam("x",Var("x"));

}

Zenger and Odersky [109] also provide a more functional solution to the expression
problem using the Visitor pattern. Whether a programmer uses the approach above or one
based on the Visitor pattern depends on whether they feel adding variants or functionality

116 Chapter 5: Extensible data types in Haskell

is more common; in each approach extension in one direction is easy but hard in the other.
We elide the details here as they do not add to the merit of the comparison.

Comparison

The Scala language is founded upon a recently developed calculus and dependent type
system: νObj. νObj [74] is a nominal theory and describes objects and classes which
can have types and nested classes as members. The system is highly expressive and can
support via encodings most concepts of Standard ML-style module systems, System F<:

and the virtual types and family polymorphism of Ernst’s GBeta [38] language. Like F<:

subtyping is a key feature of νObj.

In fact, in both OCaml and Scala it is this feature of the type system that provides
the functionality for a solution to the expression problem. While subtyping can be used in
OCaml without explicit declaration, to solve the expression problem in Scala it is necessary
to explicitly declare a subtyping relation using the notion of abstract types.

Abstract types in Scala are similar to our notion of open abstract types. In Scala,
the constraint on an abstract type guarantees that the object contains certain methods.
Similarly, a value of an open abstract type is also guaranteed to have certain methods
defined upon it. Indeed, just like an object in Scala the methods are contained within
it because dictionaries are packed inside existentially quantified values. In fact, Läufer
[63] notes that this is similar to the dynamic dispatch mechanism of many object-oriented
languages.

Since Scala is interoperable with Java, its compiler generates Java byte-code. The
JVM is quite capable of loading code dynamically so in principle Scala should be another
fine candidate for implementing a plug-in enabled compiler.

5.8.3 Other solutions in Haskell

To date, the only published (Haskell) solution to the expression problem is Löh and Hinze
[66]. Their syntax is very similar to the syntactic sugar proposed in this chapter. The basic
idea is to separate out the open declarations from the closed declarations and place all of
them in a single module (Main) via a source to source translation. A naive implementation
requires recompilation of the entire program each time an open declaration was extended.
This is because the translation is applied to the entire program.

However, the authors describe a method whereby the amount of recompilation can be
kept to a minimum. Each module M is translated to a module M’ which contains all
the original declarations except the declarations of open entities. (In particular, Main
is translated to Main’ and if M imports N then M’ imports N’. The resulting program
consists of an additional module, a new Main module which contains all the collected open
entities of the program.

Unfortunately, this often results in a mutual dependency with each module that con-
tained open declarations. Each module M that defines an open entity results in a module
M’ that imports Main which in turn depends on many modules of the program. Although

5.9. Summary 117

the modules can be compiled separately they cannot be re-compiled independently; a
change to an open entity necessitates recompilation of all modules depending on Main.

To prevent this, the left and right hand sides of all open equations are separated into
two new equations. The first does the pattern matching and dispatches to the second which
is moved back to the module it was originally declared in. As long as the interface between
this module and the Main module remains stable a change to open entities only results
in a re-compilation of the Main module. Unfortunately, this fact disqualifies the solution
from achieving true separate compilation. It is unclear how well Löh and Hinze’s solution
works in a plug-in environment. It may be possible to use Stewart and Chakravarty’s [88]
method to re-load the entire application but this seems much more complicated that our
solution and would require loading the entire program not just the plug-in module.

Also the aforementioned solution to separate compilation relies on an unimplemented
feature of Haskell’s module system – the ability to specify constructors as single entities
within an interface. There are no theoretical difficulties in lifting this restriction, but
nevertheless remains an impediment to an implementation.

A number of informal type-classed based (e.g. [59]) have also been proposed for Haskell.
However, there is a crucial difference with our solution. Where these solutions lift con-
structor values to the type level, ours does not. This means that functions can still be
written in a natural way using the full power of Haskell’s pattern matching. Also, there
is still a clear relation between a constructor and the data type it creates; a constructor
creates values of its component type.

Another notable solution to the expression problem is provided by Kiselyov and Lämmel
[56]. This requires that programs be written in an object oriented style. In our solution,
functions on open data types are merely overloaded functions and the construction of
values by smart constructors is almost as natural as with regular constructors. It is also
a very heavy weight solution relying on the HList library which utilises Haskell’s type
system beyond what it was designed for.

5.9 Summary

In this chapter I have introduced a method for encoding extensible data types in Haskell
using type classes. It relies upon several non-standard features of Haskell: multi-parameter
type classes, overlapping instances and recursive dictionaries. I have also shown that it
can encode binary (and, in general, n-ary) functions on such data types. The encoding
is undeniably heavy but certainly no heavier than the solution of Kiselyov and Lämmel
(which is the only other currently usable solution).

We have also surveyed two solutions in other languages to the expression problem
which both rely on the notion of subtyping. This has been observed before by Bruce [21]
who notes that System F<: (also known as F-bounded polymorphism) adequately solves
many of the typing problems thrown up by the expression problem. In fact, Scala is based
upon a calculus which is even more expressive, νObj [74], and can encode System F<:.

This leads us inexorably to the conclusion that our approach to implementing exten-

118 Chapter 5: Extensible data types in Haskell

sible data types relies on an encoding of a subtyping relationship. Unfortunately, this
encoding is rather primitive, relying as it does on the unification of types. The fact that
it is inferior to the native subtyping notions in OCaml and, particularly, Scala should
not surprise us as both have sophisticated type systems that were designed to allow both
functional and an object oriented style of programming.

Haskell’s type classes are based upon a theory of qualified types [55]. The theory is
quite general and can be used to model more than just type classes. Interestingly, it can
be used as a foundation for subtyping. However, this requires a rule for subsumption
be added to the type checker. Nevertheless, this opens up the possibility that a modest
extension to Haskell’s type system might allow a cleaner solution to the expression problem
and in particular allow for independent extensibility.

Chapter 6
Front-end plug-ins

N
ow that an encoding of extensible data types has been developed we are ready to
put them to use. Front-end plug-ins can be used to extend the syntax, semantics and

safety checks of a language. In this chapter the ease with which a new form of syntactic
sugar1 and additional safety checks can be added to an existing language via a front-end
plug-in is demonstrated. In particular, list comprehensions are implemented.

At first, it may seem like this is merely a syntactic extension. However, the type
checking rules are extended by the plug-in. This presents the opportunity for a custom
error message for list comprehensions to be displayed to the user rather than a less intuitive
one thrown up by type checking the equivalent desugared program.

There is also the question of what to do when a more sophisticated extension is re-
quired. e.g. Generalised Algebraic Data Types [79]. When the new type system is more
general than the old one there is no choice but to replace the old one. In such a setting
plug-ins are of limited value. However, the more general a type system becomes the greater
the chance in future that one can make many useful extensions to it via plug-ins.

The chapter is organised as follows. First, the basic structure of a front-end plug-in
is described, followed by a high-level description of how the list comprehension plug-in is
implemented. Code is provided but it has been written using the extensible data type
syntax introduced in Section 5.2. A real implementation exists which contains a hand
translation of the code presented in this chapter. The compiler is called PHRaC and a
section is devoted to describing issues encountered such as how well the extensible data
type encoding works in practice. The chapter concludes with a discussion of related and
future work.

6.1 List comprehensions

List comprehensions [80] are a useful syntactic feature of the Haskell language2. They
provide a convenient syntax for defining lists via the use of guards (or predicates) and

1This is not to be confused with the syntactic sugar introduced in Section 5.2. This is syntactic sugar
for the language being compiled.

2They are also found in Python and Erlang.

120 Chapter 6: Front-end plug-ins

[e |] = [e]
[e | b, Q] = if b then [e |Q] else []
[e | p ← xs , Q] = let

ok p = [e |Q]
ok = []

in
concatMap ok xs

Figure 6.1: Rules for translation list comprehensions into more primitive expressions.

generators (i.e. functions that generate lists of values). They are of the following form:
[exp | qual1, . . . , qualn] where quali is short for a qualifier. A qualifier is either a generator
or a guard. Generators have the form p ← e where p is a pattern and e is an expression.
Guards are arbitrary expressions of type Bool .

A simple demonstration of their power (in Haskell) is:

> [(x , y) | x ← [1..4], odd x , y ← [1..4], even y]
[(1, 2), (1, 4), (3, 2), (3, 4)]

The generators x ← [1..4] and y ← [1..4] provide the lists of numbers from which the
values (x , y) are drawn from. The guards odd x and even y filter out values. Only values
for which the guards evaluate to True are kept. This example also implicitly demonstrates
the scoping rules of list comprehensions. Each generator introduces a number of bound
variables, those of the pattern, which are in scope in all subsequent qualifiers and on the
left hand side of the vertical bar: |. Any variables occurring on the left hand side must
either be already in scope or appear on the right hand side of the list comprehension.

List comprehensions are a classic example of syntactic sugar; they can readily be
translated to simpler expressions in the language. The list comprehensions implemented
in this chapter are the same as those defined in the Haskell 98 Report [80] except that we
omit local bindings (i.e. the ability to define local functions inside list comprehensions).
Fig 6.1 presents the translation rules.

As an example, the expression [x | x ← [1..4], even x] would be translated to:

let

ok x = if even x then [x] else []
ok = []

in

concatMap ok [1..4]

6.2 Adding front-end plug-in support for a compiler

A sensible design for a front-end plug-in is for it to closely follow the structure of the
front-end of a compiler. Figure 6.2 shows the structure, which is organised into phases, of
a typical compiler for a functional language.

6.2. Adding front-end plug-in support for a compiler 121

Back−end

Lexer

Parser

Renamer

Type inference/checking

Figure 6.2: The structure of a compiler for a typical functional language

The lexer and parser are responsible for reading in the plain text of source files and
translating them into abstract syntax. Collectively, these phases can detect purely syn-
tactic errors. The renamer traverses over the abstract syntax tree assigning a unique
identifier to all binding occurrences (or definitions) of variables and assigning the correct
unique identifier to all uses of those variables. In the process it checks scope according to
the rules of the language and signals an error whenever a variable is free (i.e. not in scope).
The renaming function translates from an abstract syntax data type in which names are
not unique to another which contains unique identifiers. Next, the type inference/checking
phase checks the types of declarations that have programmer declared signatures and in-
fers the type of those that do not. The greatest proportion of detectable errors are caught
in this stage. The type checked code is then passed onto the back-end of the compiler.

The back-end of the compiler has been left intentionally abstract in Figure 6.2 because
it has no bearing on the design of a front-end plug-in.

6.2.1 The anatomy of a front-end plug-in

A front-end plug-in does not simply affect a single phase; it necessarily affects many. We
must do the following things:

• perhaps extend the lexer with new tokens. Often this is not necessary.

• extend the grammar, and hence the parser, with the new syntax.

• extend the data type used to represent abstract syntax with new variants.

• extend the renaming function to handle the new abstract syntax variants.

122 Chapter 6: Front-end plug-ins

• extend the type checking code. Portions of the new syntax may have special type
constraints upon them; this part of the plug-in checks those.

• add a desugaring function that translates the new syntax into the intermediate
language. This is the least straightforward of all the parts of the plug-in and should
be carefully scrutinised—or better yet, proved—for correctness by the plug-in writer.

The reader may wonder why desugaring comes so late in the pipeline and not before
the renaming and type checking phases. This way there would be no need to extend the
functionality of these two phases via plug-ins. However, better error messages can be
generated by deferring desugaring until later.

It is widely recognised that error messages heavily affect the usability of a language and
improving their understandability is an active area of research [46, 45]. One way in which a
compiler can improve the readability of its errors messages is to provide program fragments
with its error output. However, this means that abstract syntax must be available when
checking errors. This allows for error messages tailored to a particular sort of syntax.
Providing this functionality through the agency of a plug-in captures the essence of domain
specific error messages as the plug-in writer has provided a custom message for their new
syntax.

6.2.2 Extensible abstract syntax

In order to extend the abstract syntax data type it is necessary to declare it as extensible
using the syntactic sugar defined in Section 5.2. To implement list comprehensions it is
only necessary that expressions be extensible.

open data Exp = VarE Name
| AppE Exp Exp
| LamE Name Exp
| . . .

6.2.3 The front-end plug-in data type

A front-end plug-in is composed of several functions which are used instead of the default
scanning, parsing, renaming, type inference and desugaring functions. In PHRaC the data
structure representing a front-end plug-in is as follows:

data FrontEndPlugin token =
FrontEndPlugin{plugScan :: String → [token]

, plugParse :: [token] → PS .Program
, plugRename :: PS .Program → SymTabM AS .Program
, plugTypeInfer :: Gamma → AS .Program → SymTabM AS .Program
, plugDesugar :: AS .Program → SymTabM IntermediateRep
}

6.3. The list comprehension plug-in 123

We parameterise on the type of tokens to increase the flexibility of front-end plug-
ins. The PS .Program is a data type representing the abstract syntax of the program
but that doesn’t use unique identifiers for names; AS .Program uses unique identifiers.
Gamma refers to an environment (or type assignment) for type inference while SymTabM
is a symbol table monad containing support for name generation and look-up of names.
IntermediateRep is the data type of the intermediate representation for the compiler.

6.3 The list comprehension plug-in

We are now ready to take a detailed look at how a list comprehension plug-in is imple-
mented. The presentation of the plug-in has been simplified by using the syntax introduced
in Section 5.2. The actual implementation appears in Appendix D. It should be stressed
that plug-ins are developed entirely independently of the compiler; it is only necessary to
have the plug-in API available.

A value of type PS .Program is produced by the parser, renamed and the resulting
value, of type AS .Program, then has type inference and desugaring applied to it.

6.3.1 New variants

List comprehensions are represented by extending the Exp data type and introducing a
new data structure for qualifiers.

extend data Exp = ListCompE Exp [Qual]

data Qual = GenQual Pat Exp
| GuardQual Exp

The constructor, ListCompE , bundles together an expression with a list of Quals,
which represent either generators or guards. The equations which provide the functionality
for this new variant of the Exp data type will appear in subsequent sections.

A note should be made here about function names. The phases of the compiler each
have a top-level driver function. These have names parseProgram, renameProgram, etc.
Since abstract syntax is represented using a large, mutually recursive data structure it
is necessary, within a phase, to declare a function for each data type that makes up
the representation. For example, within the renaming phase there are functions such as
renameBind , renameExp, renamePat , etc. We follow the convention that each one of these
functions is prefixed with the phase name.

6.3.2 Lexing and parsing

For the purposes of this case study we are not concerned with extending the parser.
This is because, more often than not, parsers are generated using tools. Work has been
done on extensible parser specification [68, 19] and where available such tools should
be used in plug-in compilers. (PHRaC’s parser is generated using the happy [4] parser

124 Chapter 6: Front-end plug-ins

generator, which unfortunately is inextensible. For the real implementation I just replaced
the parser.)

Another option would be to use parser combinators [53, 89, 65] to write the parser. It
should be relatively easy to design them in such a way that they could support grammar
extension. In fact, a similar problem has already been solved by Stewart and Chakravarty
[88]; they have designed a library of lexer combinators for specifying keystroke interfaces
for the Yi text editor. Using these combinators it is possible to extend and override existing
keystroke mappings.

6.3.3 Renaming

The renaming is straightforward. We simply need to call renameExp and renamePat
recursively on the components of ListCompE variant.

renameExp (ListCompE exp quals) = do

enterBlock
quals ′ ← mapM renameQual quals
exp ′ ← renameExp exp
exitBlock
return (AS .ListCompE exp′ quals ′)

renameQual (GenQual pat exp) = do

exp′ ← renameExp exp
pat ′ ← renamePat pat
return (AS .GenQual pat ′ exp′)

renameQual (GuardQual exp) = do

exp′ ← renameExp exp
return (As.GuardQual exp′)

6.3.4 Type Inference

Let us assume (for now) that our language uses Hindley-Milner type inference. We wish
to extend the algorithm to handle list comprehensions. It must:

• check that generators are of list type, be it a polymorphic type or a specific one.

• check that guards are of type Bool

• check that the expression on the left hand side of list comprehension is of the same
type as the elements of the list types of generators

tiExpr :: Gamma → Exp → TI (Subst , Type)
tiExpr gamma (ListCompE exp quals) =

6.3. The list comprehension plug-in 125

do

gammaQuals ← mapM (tiQual gamma) quals
alpha ← freshTypeVar
(sub, tau) ← tiExpr (gamma + + gammaQuals) exp
unifier ← unify tau alpha
return (unifier ‘composeSubst ‘ sub, TyApp ListTyCon alpha)

tiQual :: Gamma → Qual → TI Gamma
tiQual gamma (GuardQual exp) =

do

(sub, tau) ← tiExpr gamma exp
if appSubst sub tau ‘eqType‘ BoolType then

return emptyGamma
else

fail 〈custom error message〉
tiQual gamma (genQual pat exp) =

do

(sub, tau) ← tiExpr gamma exp
alpha ← freshTypeVar
unifier ← unify (TyApp ListTyCon alpha) tau
return (appSubst unifier alpha)

6.3.5 Desugaring

The desugaring phase transforms list comprehensions into calls to ok and concatMap as
per the rules in Figure 6.1.

desugarExpr (ListCompE exp []) = do

exp′ ← desugarExpr exp -- parser never produces this case
return (Con consDataId [exp ′,Con nilDataId []])

desugarExpr (ListCompE exp (GenQual pat bindExp : quals)) = do

bindExp ′ ← desugarExpr bindExp
okId ← freshValVar
x ← freshValVar
okBody ← do

alt1Body ← desugarExpr (ListCompE exp quals)
return (Case (Var x)

[Alt{alt pat = pat
, alt exp = alt1Body }
,Alt{alt pat = PWildcard
, alt exp = Con nilDataId []}

])
return $

Letrec

126 Chapter 6: Front-end plug-ins

[ValBind{vbind name = okId
, vbind type = Nothing
, vbind pats = [PVar x]
, vbind exp = okBody
, vbind info = emptyInfo}]

(Var concatMapId ‘App‘ Var okId ‘App‘ bindExp′)
desugarExpr (ListCompE exp (GuardQual bexp : quals)) = do

bexp′ ← desugarExpr bexp
rest ← desugarExpr (ListCompE exp quals)
return $ (If bexp′ rest (Con nilDataId []))

6.3.6 The FrontEndPlugin

Perhaps surprisingly, the value that defines the plug-in does not differ much from the
default. The only fields of the record that have non-standard values are those for lex-
ing (i.e.scanning) and parsing. Let’s call these newly defined values listCompScan and
listCompParse.

frontEndPlugin =
FrontEndPlugin{plugScan = listCompParse

, plugParse = listCompScan
, plugRename = renameProgram
, plugTypeInfer = tiProgram
, plusDesugar = desugarProgram

The other fields simply do not require replacement in this case. We have extend the
functionality of these phases simply by extending the Exp data type and defining new
equations on the new ListCompE variant.

6.4 A real implementation: PHRaC

In this section I describe the issues encountered while implementing front-end plug-in
support for PHRaC a compiler for a small, Haskell-like language. Extensible data types
were implemented by hand using the translation from Chapter 5.

6.4.1 The PHRaC API

Plug-in writers must compile against the PHRaC API. Due to PHRaC’s prototypical
nature its API actually exposes everything. However, during the implementation use was
only made of the following aspects:

• Abstract Syntax – all types representing abstract syntax including smart construc-
tors.

6.4. A real implementation: PHRaC 127

• Symbol table – functions for creating fresh variables on the type and value level,
look-up functions.

• Renaming – functions for entering and leaving scopes. e.g. enterBlock , exitBlock .

• Type inference – functions for unification, substitution, extension of environments,
etc.

Since PHRaC is compiled with GHC, and seeing that GHC has a package system, I
chose to compile PHRaC as a package—package phrac-1.0. Plug-in writers then sim-
ply need to include this package on the command line using a command line flag when
compiling.

6.4.2 Extensible abstract syntax in PHRaC

Although we focus on adding a new form of expression to a Haskell-like language in
this chapter, one could easily imagine adding new forms of declarations. Unfortunately,
retrofitting PHRaC for each new language entity comes with a reasonably heavy syntactic
cost to the implementation of the compiler. It must be stressed that this syntactic overhead
only exists because extensible abstract syntax was encoded by hand. An implementation
of the translation presented in Section 5.6 would remove the overhead completely.

To see just how much overhead the encoding introduces consider the type of the ex-
pression desugarer. (The DesugarCxt is a type synonym for a hierarchy of functionality
including overloading resolution, type inference and desugaring.)

data DesugarD cxt a =
DesugarD{desugarExprD :: a → ST ′ cxt ExpInterp

, desugarExt :: cxt a }
type DesugarCxt cxt = OverD (InferD (DesugarD cxt))

class (Sat (DesugarCxt cxt a)
, Inference (DesugarD cxt) a
) ⇒ Desugar cxt a where

desugarExpr :: a → ST ′ cxt ExpInterp

Even worse, the syntactic cost is cross-cutting, asserting itself in a systematic way
across many modules and upon many functions. Sat predicates are a necessity of our
encoding of EDTs. They allow for a newly defined class to become, in effect, the superclass
of an existing one; this also allows for cyclic dependencies among classes. While this allows
for the functionality on an EDT to be extended without the necessity of modifying existing
code, it has an annoying side effect. This results from the fact that any expression that
refers to overloaded identifiers (e.g. renameExpr) requires Sat instances to be available or
a context to be supplied. Thus, when an instance has not been provided a context must
be added to every function which directly or indirectly refers to an overloaded identifier.
For instance, consider the top-level driver for the desugaring phase:

128 Chapter 6: Front-end plug-ins

desugarProgram :: Sat (DesugarCxt cxt (EXP (DesugarCxt cxt)))
⇒ Program (EXP (DesugarCxt cxt))
→ ST ′ cxt (Program ExpInterp)

desugarProgram prog = do

instances ← mapM desugarClassInst (prog instances prog)
bindings ← mapM desugarValBind (prog bindings prog)
return $ prog{prog instances = instances

, prog bindings = bindings
}

There is no way around this problem. The only case in which we can provide Sat
instances is after a capping class (see Section 5.6.4) has been written. For a phase, such as
renaming, which is later extended in the module declaring type inference functions, this
is simply not possible.

As a result only a single member of the mutually recursive data types that represent
abstract syntax was made extensible: expressions. The syntactic burden would have been
too great otherwise. Also, in making expressions extensible it was important the original
expression data type was not lost because the back-end of the compiler accepts this data
structure as input. (This is because PHRaC is actually an interpreter.) It was declared
exactly the same way but was not made extensible.

Loading plug-ins

The user specifies that they wish to use a plug-in on the command line with the com-
mand line flag --front-end-plugin=<name>3. Plug-ins themselves are compiled as GHC
packages. PHRaC expects this package to expose a module Phrac.FrontEndPlugins con-
taining the function phracPlugins. This design was motivated purely by simplicity. A
package is essentially a library plus accompanying interface files, with information on the
paths to these files included. Since the hs-plugins library uses GHC’s package manage-
ment system in a fundamental way, the choice to compile plug-ins as packages immensely
simplified the code I wrote to load plug-ins. It also increases the ease with which future
plug-in writers can make them known to PHRaC. They just use the package management
tool: ghc-pkg.

The front-end plug-in data structure for PHRaC is almost the same as the one defined
earlier in the chapter but is complicated by our EDT encoding. It is defined as follows:

data PhracPlugins token cxt ascxt =
PhracPlugins
{plugScan :: String → [token]
, plugParse :: [token] → PSProgram cxt ascxt
, plugTransform :: PSProgram cxt ascxt → IO (ASProgram ascxt)

3Another flag --package-conf=<conf> allows the user to provide a path to alternative package config-
uration file.

6.5. Related work 129

, plugTiMain :: Assumps
→ ASProgram ascxt
→ ST (ASEXP ascxt)

(Assumps,ASProgram ascxt)
, plugDesugar :: ASProgram ascxt

→ ST (ASEXP ascxt) (AS .Program AS .ExpInterp)
}

As it stands, this data type is unsuitable for loading dynamically because it is poly-
morphic. To remedy this, either we can make it an instance of class Typeable and use
hs-plugins’ dynload function, or wrap the type in an existential data type. I have opted
for the latter approach as writing a Typeable instance, although not too hard in itself, re-
quires the plug-in writer to implement Typeable instances for whatever the type variables
token, cxt and ascxt are instantiated with.

6.5 Related work

We begin by examining the Magik [36] plug-in compiler which we previously mentioned
in section 4.8. Magik, apart from allowing domain specific optimisations to be written,
can also be used to add safety checks to a language. However, this is done by analysing the
intermediate representation and adding code to it. My approach differs in that additional
safety checks are added directly after parsing in the phases in which the abstract syntax
tree has a direct correspondence with the source code. This allows better error messages
to be generated. We are by no means limited by this; using the techniques of Chapter 4,
we can add Magik-like safety checks.

At first glance it also seems as if Magik has the ability to extend the compiler’s internal
data structures. This capability is crucial in PHRaC allowing us to easily extend renaming,
type checking and desugaring code to provide new semantics and safety checks. However
closer examination reveals that Magik only allows one to modify the data structures
declared in the source code being transformed. The plug-in enabled GHC, as introduced
in Chapter 4, also has the same capability.

The SUIF2 Compiler Infrastructure [13] provides a high level specification language
for describing abstract syntax. The paper claims that new nodes can be defined but that
modules that operate on the old abstract syntax will not be affected by this. Unfortunately,
too little information is provided in the paper to assess with conviction whether the Hoof
language solves the expression problem.

The work of Dijkstra [29] is relevant in two ways. First, he presents an extensible
Attribute Grammar system called AG. It is possible to introduce new variants and rules
for inherited and synthesised attributes in new files. AG then collects these variants and
rules, does basic consistency checks and generates a full attribute grammar. Second, a
system called Ruler is presented for incrementally developing a type inference and checking
system. However, the focus is more on maintaining an incremental description than in

130 Chapter 6: Front-end plug-ins

making facilitating extension a type checker. Differences between versions of the type
checker are more like diffs than plug-ins. Still, the possibility exists that the ideas could
be adapted to a plug-in setting.

The remaining systems we consider in this section all extend expressiveness (and some-
times safety) via purely syntactic means. The as yet unimplemented Fortress language
[14] provides a language feature known as syntax expanders that allow a mapping between
user-defined syntax and existing terms in the language to be defined. This expansion
occurs before the traditional parsing phase.

Metaborg [20] is a language independent system which allows syntax—defined using
the Syntax Definition Formalism (SDF) [47]—to be translated to concrete syntax in a
particular language using a term rewriting system called Stratego/XT. The system is
general, any language specific knowledge must be encoded into the term rewriting rules.
The metafront [19] system provides a similar capability. One useful aspect of it is that
it is designed to support the gradual extension of grammars in a modular fashion. This
is done through the use of a novel parsing algorithm in which ambiguities are resolved
through a notion of specificity.

The drawback of these syntactic techniques is that they lack knowledge of the se-
mantics of the language being extended. However, PHRaC’s front-end plug-ins allow the
programmer to extend the compiler’s knowledge of structural properties, such as scope
and type. These need to be encoded from scratch when using any of the purely syntactic
methods above.

6.6 Future work

There are a number of areas in which this work could be improved.

6.6.1 A plug-in DSL for type inference

There is a marked difference between the presentation of type systems in the literature
and their implementation in programming languages. Almost uniformly type systems are
presented in a relational or judgement style. Sometimes, but not always, this may be
accompanied by a type checking algorithm written in pseudocode. The advantage of the
relational style of presentation is that they are more amenable to proofs of preservation
and progress. They are also more concise.

An intriguing paper [93] by Tomb and Flanagan presents a method in Prolog to take
a type system specified using relations and generate, using partial evaluation, a type
inference algorithm. Using the techniques from this paper it may be possible to develop
a type inference DSL that allows a programmer to write the type checker in a relational
style. This should make it easier to write type system extensions and possible even make
the type checker amenable to automated proof.

6.7. Summary 131

6.6.2 Desugaring through lengthening plug-ins

In retrofitting PHRaC with front-end plug-in capability I added a new phase: desugaring.
It is a fundamental phase of other compilers, such as GHC, which justifies its addition to
some extent. However, there is a more generic manner in which new phases can be added:
through the use of lengthening plug-ins. These plug-in points should be placed between
each of the phases. Plug-ins written for these points take the input of the last phase and
output data suitable for the next phase. In this way arbitrary code can be run between
phases. Thus, desugaring could be implemented as a lengthening plug-in between type
inference and the back-end.

6.6.3 A client/server compiler

There is a performance hit associated both with loading plug-ins and making PHRaC

dynamic from the ground up. Each time a program is compiled, PHRaC is dynamically
loaded along with any plug-ins specified on the command line. There is no way of surpass-
ing this necessity. Unfortunately, when multiple files are compiled this performance hit is
taken multiple times. Operating systems often provide support for precisely this problem
by ensuring that program code is not immediately removed from memory upon termina-
tion. When a program is reloaded and makes use of system calls for dynamic linking the
program code is still available and does not need to be reloaded. Unfortunately, PHRaC

uses GHC’s dynamic linker which does not provide this functionality.
Another solution would be to design PHRaC as a client/server application so that the

performance hit would only be taken once. The idea would be load PHRaC as a resident
program and invoke it by sending messages to it. Multiple plug-ins could even be resident
even though only one of them might be used.

6.7 Summary

This chapter has presented a design for front-end plug-ins and shown its effectiveness via
a case study. To the author’s knowledge, PHRaC is the first compiler that has taken the
approach of defining a front-end plug-in as a collection of extensions on multiple phases.
Using front-end plug-ins one can extend the syntax, semantics and safety checks of the
compiler. As opposed to purely syntactic methods, this approach allows the plug-in writer
to reuse much of the language knowledge encoded in the various phases of the compiler.

To summarise, PHRaC is designed as follows:

• A front-end plug-in is made up of components, stored in a record data structure,
that may extend each phase of the front-end. Functionality can also be extended
simply by introducing new data types and writing instances for renaming, dictionary
resolution, type inference and desugaring.

• At present the API exposes everything that each module in PHRaC does. PHRaC

is compiled as a GHC package so that plug-in writers can easily compile against it.

132 Chapter 6: Front-end plug-ins

• PHRaC is dynamic from the ground-up. It consists of a small boot-loader that
dynamically loads the rest of the compiler. The compiler can in turn load plug-ins.

• Plug-ins are compiled as GHC packages which must, at the very least, expose a
module called Phrac.FrontEndPlugins containing a function, phracPlugins of type
WrappedPlugins.

• Plug-ins are loaded on the command line by providing the name of the package; a
new flag has been introduced.

Chapter 7
Conclusion

Programming languages are the medium of expression for writers of software. Hence,
the features that a particular language provides directly affect the manner in which

software is written. A good language should allow the programmer to write applications
easily using abstractions that are appropriate to the domain they are working in. They
should also allow code to be written that is safe, maintainable, portable and efficient, either
when interpreted or translated to machine code. At present general purpose languages are
a popular choice for writing software. They promise a feature set that is sufficient to write
code suitable for a wide range of applications. However, there has been an increasing
recognition that no single language can ever achieve this ideal. The mere fact that a
multitude of languages exist many being used in niche application domains is evidence of
this claim.

New language features provide concise notations, improved safety checks, and improved
efficiency. Unfortunately, language design and implementation is difficult and time con-
suming. On the one hand developing and formalising the semantics of languages involves
extensive experimentation, rigorous reasoning and widespread advocacy among the gen-
eral programming community. On the other hand the implementation of a language is
challenging. They must lex, parse and analyse source code, optimise the intermediate
representation and the generate machine code for a variety of architectures. This is not
all; language implementations also require a suite of tools such as debuggers, profilers, and
language aware editors. Collectively this known as the programming environment.

Chapter 2 covered these points and suggested a solution based on reuse of language
infrastructure. The basic idea is that domain specific features be added to existing general
purpose programming languages. In fact entire languages can be implemented in this
manner, via a combination of embedding—implementing a language as a library in a rich
host language; known as EDSLs or DSELs—and additional safety checks and domain
specific optimisations. Two high-level approaches to language extension were surveyed:
extension via language extension features and via compiler extension. Both approaches are
promising. More importantly they can be used in conjunction. However, the primary focus
of this dissertation is on the second approach, that of compiler extension. In particular it

134 Chapter 7: Conclusion

focuses on a specific kind of extensible compiler: the plug-in compiler. These compilers
load modules dynamically to extend the language and provide new optimisations, also
allowing the safety and efficiency of the language to be improved in the process.

Chapter 3 included a case study where we used language extension features, in the form
of meta-programming, to optimise an embedded domain specific language called Pan. This
chapter was included for two reasons. First, it demonstrated that meta-programming lan-
guages still have a way to go before they can be used actively for language extension. A
number of shortcomings in a state-of-the-art compile-time meta-programming language,
Template Haskell, were covered. This provided a good motivation for plug-in compilers;
they approach the problem of extension from the unsafe, yet powerful space of solutions.
Second, the techniques used in this chapter were, for the most part, readily applicable
inside a plug-in compiler. The similarities between meta-programming and plug-in opti-
misations are interesting in their own right.

Chapter 4 began with a survey of techniques that could be used to provide back-
end plug-in optimisation capability. I then presented a case study in back-end plug-ins,
specifically plug-in optimisations, for the same EDSL as the previous chapter. A monadic
API that provides functionality similar to Template Haskell was presented and followed
by an explanation of a new domain specific optimisation for Pan called image lifting.
I then showed how this optimisations was implemented using the API. For those that
were interested implementation details specific to the Glasgow Haskell Compiler were
present. I showed how back-end plug-in support was added, and the manner in which the
API was implemented. Additionally, benchmarks proving the efficacy of the image lifting
optimisation were provided. Finally, suggestions were put forward for a plug-in DSL that
would make the writing of optimisations convenient and safe.

Chapter 5 tackled the issue of extensible data types, also known as the expression
problem. The expression problem poses the question of how one can extend the variants
of a mutually recursive data type without modifying existing source code and while still
allowing new functions to be easily defined on the data type. We also required that
the solution to this problem be statically typeable. Several solutions to this problem have
been proposed for languages with advanced type systems. I have provided a solution to the
expression problem for the Haskell language using a combination of multi-parameter type
classes with recursive dictionaries and existential types. This work provides a foundation
upon which front-end plug-ins can be written. Although another solution to the expression
problem exists for Haskell it is not obvious how well it would work in a plug-in setting.

Chapter 6 directly used the solution to the expression problem for Haskell. I showed
how front-end plug-in support was added to a compiler, written in Haskell, for a small
Haskell-like language. Using this infrastructure a case study was presented in which list
comprehensions were added to the language. This particular plug-in is typical of front-end
plug-ins; it extends the code in a number of phases of the compiler namely the lexer/parser,
renamer, and type checker. The new abstract syntax for list comprehensions is then
desugared into existing language constructs.

The results of Chapters 4, 5 and 6 provide a generic framework for extending the

135

expressiveness, safety and efficiency of languages and the case studies provide a broad,
but not deep, demonstration of their use. The most promising direction for future work
lies in the design and implementation of useful plug-in DSLs that make writing front-end
and back-end plug-ins easier and less error prone.

Appendix A
Module Pan.Image

Below is a listing of just the parts of module Image needed to understand the examples
presented in Chapter 3.

module Pan.Image
where

type Point = (Float ,Float)
type Colour = (Float ,Float ,Float ,Float)
type Image c = Point → c
type ImageC = Image Colour
type Warp = Point → Point

whiteT :: Colour
whiteT = (0, 0, 0, 0)

whiteH , blackH :: Colour
whiteH = (1, 1, 1, 0.5)
blackH = (0, 0, 0, 0.5)

lift0 h = λp → h
lift1 h f1 = λp → h (f1 p)
lift2 h f1 f2 = λp → h (f1 p) (f2 p)

empty :: ImageC
empty = lift0 whiteT

distO :: Point → Float
distO (x , y) = sqrt (x ∗ x + y ∗ y)

swirl :: Float →Warp
swirl r p = rotateP ((distO p) ∗ (2 ∗ pi / r)) p

cOver :: Colour → Colour → Colour
cOver (r1 , g1 , b1 , a1) (r2 , g2 , b2 , a2) = (h r1 r2 , h g1 g2 , h b1 b2 , h a1 a2)

where h x1 x2 = a1 ∗ x1 + (1− a1) ∗ x2

over :: ImageC → ImageC → ImageC

137

over = lift2 cOver

Appendix B
Images used in image lifting benchmarks

B.1 WhiteOnRedOnBlack

Three cheap, liftable images are placed on top of each other in this effect. Since each
image is so cheap to compute the extra overhead of pre-computing the values of lifted
images and passing that to the inner loop of the display function actually results in 5%
slow down.

effect :: UI DisplayFun
effect = imageToDisplayFun $ whiteI ‘over ‘ redI ‘over ‘ blackI

whiteI , redI , blackI :: ImageC

whiteI = Col 1 1 1 0.5
redI = Col 1 0 0 0.5
blackI = Col 0 0 0 1

B.2 Stripes

The simplest example of an image that is only dependent on its y axis. Use has been made
of faster versions of even and floor in this example. If we use the library definitions of
these functions it leads to a larger speed difference between the two, although naturally
both images are displayed slower.

effect :: UI DisplayFun
effect = imageToDisplayFun stripesImage

stripesImage :: ImageC
stripesImage (Pt y) = if even ′ (floor ′ y) then red else white

floor ′ :: Float → Int
floor ′ (F # f) = case ltFloat # f 0.0 # of

True → I # ((float2Int # f)−# 1#)
→ I # (float2Int # f)

B.3. ColouredStripes 139

even ′ :: Int → Bool
even ′ (I # n) =

case modInt # n 2 # of

0# → True
→ False

B.3 ColouredStripes

The computation of the row colour for each stripe is a little more expensive in this example.

effect :: UI DisplayFun
effect = do

imageToDisplayFun $ colouredStripes 20

colouredStripes barWidth (Pt y) =
if even (floor (y / barWidth)) then blueShade v else redShade v
where

v = (abs y ‘realMod ‘ barWidth) / barWidth

blueShade v = Col 0 0 v 0.5

redShade v = Col v 0 0 0.5

realMod :: RealFrac a ⇒ a → a → a
x ‘realMod ‘ y =

let (i , f) = properFraction (x / y)
in x − (fromIntegral i ∗ y)

B.4 StripesOnStripes

We layer coloured stripes of differing widths on top each other in this example. The image
lifting pass correctly lifts both stripe images.

effect :: UI DisplayFun
effect = do

imageToDisplayFun $ colouredStripes 7 ‘over ‘ colouredStripes 11

colouredStripes barWidth (Pt y) =
if even (floor (y / barWidth)) then blueShade v else redShade v
where

v = (abs y ‘realMod ‘ barWidth) / barWidth

blueShade v = Col 0 0 v 0.5

redShade v = Col v 0 0 0.5

realMod :: RealFrac a ⇒ a → a → a
x ‘realMod ‘ y =

140 Appendix B: Images used in image lifting benchmarks

let (i , f) = properFraction (x / y)
in x − (fromIntegral i ∗ y)

B.5 StripesOfWidth

This example was added to show that the image lifting pass correctly handles the fact the
top-level image generator, stripesOfWidth, is applied to various arguments.

effect :: UI DisplayFun
effect = imageToDisplayFun $ stripesOfWidth 10 red green

stripesOfWidth :: Frac → Colour → Colour → ImageC
stripesOfWidth width colour1 colour2 (Pt y) =

if even (floor $ y / width) then colour1 else colour2

B.6 CircleOnStripes

A mixture of liftable and un-liftable images appears in this example. The image lifting
pass correctly lifts only the stripe image.

effect = imageToDisplayFun $ circle 20 ‘over ‘ stripes

circle r (Pt x y) = if x ∗ x + y ∗ y < r ∗ r then blue else invisible

stripes (Pt y) = if even (floor y) then red else invisible

Appendix C
Dictionary translations of module

F0 Alpha

The code demonstrates the resulting of performing dictionary translation (in the style of
Wadler and Blott [102]) on the code in Figures 5.4a – 5.4g. It makes it clear where the
recursive dictionaries are built.

module Alpha
where

data P d

u = ⊥
{-DI stands for dictionary implicity. D is an explicit dictionary -}
{-class Sat a where dict :: a -}

data SatDI a = SatDI {dict :: a }
data Exp (cxt :: ∗ → ∗) = forall b. MkExp (AlphaDI cxt b, b)

data Exp 0 cxt = Var String
| Lam String (Exp cxt)
| App (Exp cxt) (Exp cxt)

{-class Sat (cxt b) ⇒ Alpha cxt b where -}
{-alpha :: P cxt → b → (String, String) → Exp cxt -}

data AlphaDI cxt b =
AlphaDI {alpha :: P cxt → b → (String ,String) → Exp cxt }

{-instance (Sat (cxt (Exp cxt)), Sat (cxt (Exp 0 cxt))) ⇒ Alpha cxt (Exp 0 cxt) -}
alphaDExp0 :: forall cxt. (SatDI (cxt (Exp cxt)),SatDI (cxt (Exp 0 cxt)))→

AlphaDI cxt (Exp 0 cxt)
alphaDExp0 (satExp, satExp0) = AlphaDI {alpha = alpha ′}

where

alpha ′ (:: P cxt) (Var v) =
λs → var (satExp, satExp0) (u :: P cxt) (swap s v)

142 Appendix C: Dictionary translations of module F0 Alpha

alpha ′ (:: P cxt) (Lam v body) =
case body of

MkExp (alphaD , body ′) →
λs → lam (satExp, satExp0) (u :: P cxt) (swap s v)

(alpha alphaD (u :: P cxt) body ′ s)
alpha ′ (:: P cxt) (App a b) =

case a of

MkExp (alphaDa, a ′) →
case b of

MkExp (alphaDb, b ′) → λs →
app (satExp, satExp0)

(u :: P cxt) (alpha alphaDa (u :: P cxt) a ′ s)
(alpha alphaDb (u :: P cxt) b′ s)

{-instance Sat (cxt (Exp cxt)) ⇒ Alpha cxt (Exp cxt) -}
alphaDExp :: forall cxt. SatDI (cxt (Exp cxt)) → AlphaDI cxt (Exp cxt)
alphaDExp satExp = AlphaDI {alpha = alpha ′}

where

alpha ′ (:: P cxt) exp =
case exp of

MkExp (alphaD , e) →
λs → alpha alphaD (u :: P cxt) e s

swap :: (String ,String) → String → String
swap ((a, b) :: (String ,String)) = λ(o :: String) → if a == o then b else o

var :: forall cxt. (SatDI (cxt (Exp cxt))
,SatDI (cxt (Exp 0 cxt)))→ P cxt → String → Exp cxt

var (satExp, satExp0) (:: P cxt) =
λ(x1 :: String) → MkExp (alphaDExp0 (satExp, satExp0),Var x1)

lam :: forall cxt. (SatDI (cxt (Exp cxt))
,SatDI (cxt (Exp 0 cxt)))→ P cxt
→ String → Exp cxt → Exp cxt

lam (satExp, satExp0) (:: P cxt) =
λ(x1 :: String) (x2 :: Exp cxt)
→ MkExp (alphaDExp0 (satExp, satExp0),Lam x1 x2)

app :: forall cxt. (SatDI (cxt (Exp cxt))
,SatDI (cxt (Exp 0 cxt)))→ P cxt → Exp cxt
→ Exp cxt → Exp cxt

app (satExp, satExp0) (:: P cxt) =
λ(x1 :: Exp cxt) (x2 :: Exp cxt)
→ MkExp (alphaDExp0 (satExp, satExp0),App x1 x2)

143

--
-- Capping class
--

data AlphaEnd b

{-class Alpha AlphaEnd b ⇒ AlphaCap b -}
data AlphaCapDI b = AlphaCapDI {alphaD :: AlphaDI AlphaEnd b}

--
-- d and d0 are the recursive dictionaries for ”instance AlphaCap (Exp
-- AlphaEnd)” and ”instance AlphaCap (Exp0 AlphaEnd)” respectively.
--

{-instance AlphaCap (Exp0 AlphaEnd) -}
d0 :: AlphaCapDI (Exp 0 AlphaEnd)
d0 = AlphaCapDI {alphaD = alphaDExp0 (satD d , satD d0)}
{-instance AlphaCap (Exp AlphaEnd) -}

d :: AlphaCapDI (Exp AlphaEnd)
d = AlphaCapDI {alphaD = alphaDExp (satD d)}
{-instance AlphaCap b =¿ Sat (AlphaEnd b) -}

satD :: AlphaCapDI b → SatDI (AlphaEnd b)
satD = SatDI {dict = error "Capped at Alpha"}
{-test = alpha (var (u::P AlphaEnd) ”x”) (”x”, ”y”) -}

test = let p = u :: P AlphaEnd
in alpha (alphaDExp (satD d)) p

(var (satD d , satD d0) p "x") ("x", "y")

Appendix D
Plug-in functions in PHRaC

This appendix presents the plug-in functions as they were actually implemented. The
syntactic verbosity would be greatly reduced by an implementation of the translation
presented in Chapter 5.

D.1 Class declarations in PHRaC

D.1.1 Module SyntaxTransformation

data TransD ascxt cxt a =
TransD{rwExpD :: Proxy cxt → a → NA (AS .EXP ascxt)

, rwApp1D :: a → EXP (TransD ascxt cxt) → NA (AS .EXP ascxt)
, rwApp2D :: a → EXP (TransD ascxt cxt)
→ EXP (TransD ascxt cxt)
→ NA (AS .EXP ascxt)

, transExt :: cxt a }
type TransCxt ascxt cxt = TransD ascxt cxt
type EXPTrans ascxt cxt = EXP (TransD ascxt cxt)

class (Sat (TransD ascxt cxt a)
,Expr (TransD ascxt cxt) a
) ⇒ Transform ascxt cxt a where

rwExp :: Proxy cxt → a → NA (AS .EXP ascxt)
rwApp1 :: a → EXP (TransD ascxt cxt) → NA (AS .EXP ascxt)
rwApp2 :: a → EXP (TransD ascxt cxt) → EXP (TransD ascxt cxt)

→ NA (AS .EXP ascxt)

D.1.2 Module TypeInference

type InferCxt cxt = OverD (InferD cxt)

type Infer ′ cxt a =

D.2. The list-comprehension plug-in 145

Assumps → a → TI cxt ([Constraint],Type,EXP (InferCxt cxt))

data InferD cxt a = InferD{tiExprD :: Infer ′ cxt a
, inferExt :: cxt a }

class (Sat (InferCxt cxt a)
,Overload (InferD cxt) a
) ⇒ Inference cxt a where

tiExpr :: Infer ′ cxt a

D.1.3 Module Desugar

data DesugarD cxt a =
DesugarD{desugarExprD :: a → ST ′ cxt ExpInterp

, desugarExt :: cxt a }
type DesugarCxt cxt = OverD (InferD (DesugarD cxt))

class (Sat (DesugarCxt cxt a)
, Inference (DesugarD cxt) a
) ⇒ Desugar cxt a where

desugarExpr :: a → ST ′ cxt ExpInterp

D.2 The list-comprehension plug-in

D.2.1 Renaming

instance (Sat (TransD ascxt cxt (ExpLC (TransD ascxt cxt)))
,Sat (TransD ascxt cxt (Exp (TransD ascxt cxt)))
,Sat (TransD ascxt cxt (EXP (TransD ascxt cxt)))
,AS .Sat (ascxt (AS .ExpLC ascxt))
,AS .Sat (ascxt (AS .Exp ascxt))
) ⇒ Transform ascxt cxt (ExpLC (TransD ascxt cxt)) where

rwExp (:: s) (ListCompE exp quals) = do

-- renaming of Quals needs to go first so that
-- variables bound by patterns are in scope.

enterBlock
quals ′ ← mapM rw qual quals
exp′ ← rwExp (⊥ :: s) exp
exitBlock
return (AS .listCompE exp′ quals ′)

rwApp1 e1 (e2 :: EXP (TransD ascxt cxt)) =
do e1 ′ ← rwExp p e1

e2 ′ ← rwExp p e2

146 Appendix D: Plug-in functions in PHRaC

return (AS .appE e1 ′ e2 ′)
where p = ⊥ :: Proxy cxt

rwApp2 f1 (f2 :: EXP (TransD ascxt cxt)) e2 =
do let e1 = appE (mkExpLC f1) f2

e1 ′ ← rwExp p e1
e2 ′ ← rwExp p e2
return (AS .appE e1 ′ e2 ′)

where p = ⊥ :: Proxy cxt

rw qual :: Sat (TransCxt ascxt cxt (EXP (TransCxt ascxt cxt)))
⇒ Qual (EXP (TransCxt ascxt cxt)) → NA (AS .Qual (AS .EXP ascxt))

rw qual (GenQual pat (exp :: EXP (TransCxt ascxt cxt))) = do

exp ′ ← rwExp (⊥ :: Proxy cxt) exp
pat ′ ← rw pattern pat
return (AS .GenQual pat ′ exp′)

rw qual (GuardQual (exp :: EXP (TransCxt ascxt cxt))) = do

exp ′ ← rwExp (⊥ :: Proxy cxt) exp
return (AS .GuardQual exp′)

D.2.2 Type inference

tiExpr

instance (Sat (OverD (InferD cxt) (ExpLC (InferCxt cxt)))
,Sat (OverD (InferD cxt) (EXP (InferCxt cxt)))
) ⇒ Inference cxt (ExpLC (InferCxt cxt)) where

tiExpr as (ListCompE exp quals) = do

(ps, as ′, quals ′) ← tiQuals as quals
alpha ← liftST $ freshTypeVar KindStar
(ps ′, t , exp′) ← tiExpr (as ′ ‘merge‘ as) exp
ecs ← unify [] t alpha
return (ps ′ ++ ps ++ map EC ecs, tyList alpha, listCompE exp′ quals ′)

tiQual :: Sat (InferCxt cxt (EXP (InferCxt cxt)))
⇒ Infer cxt (Qual (EXP (InferCxt cxt))) Assumps

tiQual as (GenQual pat exp) = do

(ps1 , as1 , t1) ← tiPat pat
(ps2 , t2 , exp′) ← tiExpr as exp
alpha ← liftST $ freshTypeVar KindStar
ec1 ← unify [] t1 alpha
ec2 ← unify [] t2 (tyList alpha)
return (ps1 ++ ps2 ++ map EC (ec1 ++ ec2), as1 ,GenQual pat exp′)

tiQual as (GuardQual exp) = do

D.2. The list-comprehension plug-in 147

(ps, t , exp′) ← tiExpr as exp
qs ← unify [] t boolType
return (ps ++ map EC qs, emptyAssumps,GuardQual exp′)

tiQuals

tiQuals :: Sat (InferCxt cxt (EXP (InferCxt cxt)))
⇒ Infer cxt [Qual (EXP (InferCxt cxt))] Assumps

tiQuals as [qual] = do

(ps, as ′, qual ′) ← tiQual as qual
return (ps, as ′, [qual ′])

tiQuals as (qual : quals) = do

(ps ′, as ′, qual ′) ← tiQual as qual
(ps ′′, as ′′, quals ′) ← tiQuals (as ′ ‘merge‘ as) quals
return (ps ′ ++ ps ′′, as ′ ‘merge‘ as ′′, qual ′ : quals ′)

D.2.3 desugarExpr

desugarExpr (ListCompE exp []) = do

exp′ ← desugarExpr exp -- parser never produces this case
return (Con consDataId [exp ′,Con nilDataId []])

desugarExpr (ListCompE exp (GenQual pat bindExp : quals)) = do

bindExp ′ ← desugarExpr bindExp
okId ← freshValVar
x ← freshValVar
okBody ← do

alt1Body ← desugarExpr (ListCompE exp quals)
return (Case (Var x)

[Alt{alt pat = pat
, alt exp = alt1Body }
,Alt{alt pat = PWildcard
, alt exp = Con nilDataId []}

])
return $

Letrec
[ValBind{vbind name = okId

, vbind type = Nothing
, vbind pats = [PVar x]
, vbind exp = okBody
, vbind info = emptyInfo}]

(Var concatMapId ‘App‘ Var okId ‘App‘ bindExp′)

148 Appendix D: Plug-in functions in PHRaC

desugarExpr (ListCompE exp (GuardQual bexp : quals)) = do

bexp′ ← desugarExpr bexp
rest ← desugarExpr (ListCompE exp quals)
return $ (If bexp′ rest (Con nilDataId []))

Bibliography

[1] Cryptol. http://www.cryptol.net/.

[2] Firefox browser. http://www.mozilla.org/.

[3] GNU Emacs. http://www.gnu.org/software/emacs/emacs.html.

[4] Happy. http://haskell.org/happy/.

[5] International Standard. ISO 9899:1990:Information technology – Programming Lan-
guages – C.

[6] International Standard. ISO 9899:1999:Information technology – Programming Lan-
guages – C.

[7] International Standard. ISO/IEC 8652:1995(E): Information technology – Program-
ming Languages – Ada.

[8] Object Management Group. Common Object Request Broker Architecture
(CORBA). http://www.omg.org.

[9] The GIMP. http://www.gimp.org/.

[10] Winamp. http://www.winamp.com/.

[11] XML Path Lanaguage (XPath) Version 1.0. W3C Recommendation 16 November
1999. http://www.w3.org/TR/xpath.

[12] XSL Transformations (XSLT) Version 1.0. W3C Recommendation 16 November
1999. http://www.w3.org/TR/xslt.

[13] Gerald Aigner, Amer Diwan, David L. Heine, Monica S. Lam David, L. Moore,
Brian R. Murphy, and Constantine Sapuntzakis. An Overview of the SUIF2 Compiler
Infrastructure. Technical report, Stanford University, 2000.

[14] Eric Allen, David Chase, Victor Luchangco, Sukyoung Ryu, Guy L. Steele Jr, and
Sam Tobin-Hochstadt. The Fortress Language Specification. Technical report, Sun
Microsystems, Inc., 2005.

http://www.cryptol.net/
http://www.mozilla.org/
http://www.gnu.org/software/emacs/emacs.html
http://haskell.org/happy/
http://www.omg.org
http://www.gimp.org/
http://www.winamp.com/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

150 BIBLIOGRAPHY

[15] Martin Alt, Uwe Aßmann, and Hans van Someren. Cosy Compiler Phase Embedding
with the CoSy Compiler Model. In Computational Complexity, pages 278–293, 1994.

[16] Krasimir Angelov and Simon Marlow. Visual Haskell: A full-featured Haskell de-
velopment environment. In Haskell’05: Proceedings of the 2005 ACM SIGPLAN
workshop on Haskell, pages 5–16, Tallinn, Estonia, September 2005. ACM Press.

[17] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. abc: an extensible AspectJ compiler. In AOSD ’05: Proceedings
of the 4th international conference on Aspect-oriented software development, pages
87–98, New York, NY, USA, 2005. ACM Press.

[18] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V.Pascual. Centaur: the system. In SDE 3: Proceedings of the third ACM SIG-
SOFT/SIGPLAN software engineering symposium on Practical software develop-
ment environments, pages 14–24, Boston, USA, November 1988. ACM Press.

[19] C. Brabrand, M. Schwartzbach, and M. Vanggaard. The metafront System: Ex-
tensible Parsing and Transformation. In LDTA’03: Proceedings of the 3rd ACM
SIGPLAN Workshop on Language Descriptions, Tools and Applications, April 2003.

[20] Martin Bravenboer and Eelco Visser. Concrete Syntax for Objects: Domain-Specific
Language Embedding and Assimilation without Restrictions. In OOPSLA ’04: Pro-
ceedings of the 19th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 365–383, New York, NY, USA,
2004. ACM Press.

[21] Kim B. Bruce. Some Challenging Typing Issues in Object-Oriented Languages:
Extended Abstract. In , volume 82.8 of Electronic Notes in Theoretical Computer
Science, pages 1–29, 2003.

[22] Helen Cameron, Peter King, and Simon Thompson. Modeling Reactive Multimedia:
Events and Behaviors. Multimedia Tools and Applications, 19(1):53–77, 2003.

[23] Manuel M. T. Chakravarty, Gabriele Keller, and Patryk Zardarnowski. A functional
perspective on SSA optimisation algorithms. In Proceedings of the 2nd International
Workshop on Compiler Optimisation Meets Compiler Verification (COCV 2003),
volume 82.2 of Electronic Notes in Theoretical Computer Science. Elsevier Science,
2003.

[24] Douglas Crockford. Javascript: The World’s Most Misunderstood Programming
Language . http://javascript.crockford.com/javascript.html.

[25] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-

http://javascript.crockford.com/javascript.html

BIBLIOGRAPHY 151

dence graph. ACM Transactions on Programming Language Systems (TOPLAS’91),
13(4):451–490, 1991.

[26] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glück, David Vanderboorde, and
Todd Veldhuizen. Generative Programming and Active Libraries. In Generic Pro-
gramming: International Seminar on Generic Programming, volume 1766 of Lecture
Notes in Computer Science, pages 25–39, Dagstuhl Castle, Germany, April/May
1998. Springer.

[27] Krzysztof Czarnecki, John O’Donnell, Jörg Striegnitz, and Walid Taha.
DSL Implementation in MetaOCaml, Template Haskell, and C++. URL:
http://www.cs.rice.edu/˜taha/publications.html, 2003.

[28] Olivier Danvy and Karoline Malmkjaer. Intensions and Extensions in a Reflective
Tower. In Proceedings of the 1988 ACM conference on LISP and Functional Pro-
gramming (LFP), pages 327–341. ACM Press, 1988.

[29] Atze Dijkstra. Stepping through Haskell. PhD thesis, Department of Information
and Computing Sciences, 2005.

[30] ECMAScript. Standard ECMA-262 ECMAScript Language Specification 3rd
edition (December 1999)
http://www.ecma-international.org/publications/standards/Ecma-262.

htm.

[31] Conal Elliott. Functional Implementations of Continuous Modeled Animation. Lec-
ture Notes in Computer Science, 1490:284–, 1998.

[32] Conal Elliott. Functional Image Synthesis. In Proceedings Bridges 2001, Mathemat-
ical Connections in Art, Music, and Science, 2001.

[33] Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded languages.
Journal of Functional Programming, 13(3):455–481, May 2003.

[34] Conal Elliott and Paul Hudak. Functional Reactive Animation. In International
Conference on Functional Programming, pages 163–173, June 1997.

[35] H. Emmelmann, F.-W. Schröer, and L. Landwehr. Beg: a generation for efficient
back ends. In PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on
Programming language design and implementation, pages 227–237, New York, NY,
USA, 1989. ACM Press.

[36] Dawson R. Engler. Interface Compilation: Steps toward Compiling Program In-
terfaces as Languages. IEEE Transactions in Software Engineering, 25(3):387–400,
1999.

http://www.cs.rice.edu/%CB%9Ctaha/publications.html
http://www.ecma-international.org/publications/standards/Ecma-262

152 BIBLIOGRAPHY

[37] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: a language for
high-level, efficient, and machine-independent dynamic code generation. In POPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 131–144, New York, NY, USA, 1996. ACM Press.

[38] Erik Ernst. Family Polymorphism. In Jørgen Lindskov Knudsen, editor, Proceedings
of the 15th European Conference on Object Oriented Programming (ECOOP’2001),
volume 2072 of LNCS, pages 303–326, Heidelberg, Germany, 2001. Springer-Verlag.

[39] ACE Associated Compiler Experts. CoSy Compilers: Overview of Construction and
Operation. CoSy System Documentation, ACE Associated Compiler Experts 2003.

[40] Daniel P. Friedman and Mitchell Wand. Reification: Reflection without Metaphysics.
In Proceedings of the 1984 ACM Symposium on LISP and Functional Programming
(LFP), pages 348–355, 1984.

[41] Matteo Frigo and Steven G. Johnson. FFTW: An Adaptive Software Architecture
for the FFT. In Proceedings of the International Conference on Acoustics, Speech
and Signal Processing: (ACASSP’98), pages 1381–1384, Seattle, Washington, USA,
May 1998. IEEE Service Center.

[42] Jacques Garrigue. Code reuse through polymorphic variants. In Workshop on Foun-
dations of Software Engineering, Electronic Notes in Theoretical Computer Science,
Sasaguri, Japan, November 2000. Elsevier Science.

[43] Jacques Garrigue. Private row types: abstracting the unnamed. Electronic Notes in
Theoretical Computer Science, 2005.

[44] Robert W. Gray, Steven P. Levi, Vincent P. Heuring, Anthony M. Sloane, and
William M. Waite. ELI: A Complete, Flexible Compiler Construction System.
CACM’92: Communications of the ACM, 35(2):121–130, 1992.

[45] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the Type
Inference Process. In Eighth ACM Sigplan International Conference on Functional
Programming, pages 3 – 13, New York, 2003. ACM Press.

[46] Bastiaan Heeren, Johan Jeuring, S. Doaitse Swierstra, and Pablo Azero Alcocer. Im-
proving type-error messages in functional languages. Technical Report UU-CS-2002-
009, Institute of Information and Computing Science, University Utrecht, Nether-
lands, February 2002. Technical Report.

[47] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition
Formalism SDF: Reference Manual. SIGPLAN Notices, 24(11):43–75, 1989.

[48] W. Wilson Ho and Ronald A. Olsson. An Approach to Genuine Dynamic Linking.
Software—Practice and Experience, 24(4):375–390, April 1991.

BIBLIOGRAPHY 153

[49] Paul Hudak. The Haskell School of Expression: Learning Functional Programming
through Multimedia. Cambridge University Press, New York, NY, USA, 2000.

[50] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, Robots,
and Functional Reactive Programming. In Summer School on Advanced Functional
Programming 2002, Oxford University, volume 2638 of Lecture Notes in Computer
Science, pages 159–187. Springer-Verlag, 2003.

[51] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore Music No-
tation - An Algebra of Music. Journal of Functional Programming, 6(3):465–483,
1996.

[52] R.J.M Hughes. Restricted data types in Haskell. In Proceedings of the 1999 Haskell
Workshop, 1999.

[53] Graham Hutton. Higher-order functions for parsing. Journal of Functional Pro-
gramming, 2(3):323–343, July 1992.

[54] Stanley Jefferson and Daniel P. Friedman. A Simple Reflective Interpreter. In
IMSA’92 International Workshop on Reflection and Meta-level Architecture, Tokyo,
November 92.

[55] Mark P. Jones. A theory of qualified types. In European Symposium on Programming
(ESOP’92), volume 582 of LNCS, Rennes, France, 1992. Springer-Verlag.

[56] Oleg Kiselyov and Ralf Lämmel. Haskell’s overlooked object system. Draft; Online
since 30 Sep. 2004; Updated 13 June 2005.

[57] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hy-
gienic macro expansion. In LFP ’86: Proceedings of the 1986 ACM conference on
LISP and functional programming, pages 151–161, New York, NY, USA, 1986. ACM
Press.

[58] Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman. Synthesizing
Object-Oriented and Functional Design to Promote Re-use. In ECOOP’98 – Object
Oriented Programming, volume 1445 of Lecture Notes in Computer Science, pages
91–113. Springer Berlin / Heidelburg, 1998.

[59] Ralf Lämmel. Extensible grammars, on the comp.compilers newsgroup,
http://compilers.iecc.com/comparch/article/04-12-111, 2004.

[60] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. ACM SIGPLAN Notices, 38(3):26–37, March
2003. Proc. of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

http://compilers.iecc.com/comparch/article/04-12-111

154 BIBLIOGRAPHY

[61] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: extensible
generic functions. In Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP 2005). ACM Press, September 2005.

[62] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International Sym-
posium on Code Generation and Optimization (CGO’04), Palo Alto, California, Mar
2004.

[63] Konstantin Läufer. Type Classes with Existential Types. Journal of Functional
Programming, 6(3):485–517, May 1996.

[64] Sang-Ik Lee, Troy A. Johnson, and Rudolf Eigenmann. Cetus – An Extensible Com-
piler Infrastructure for Source-to-Source Transformation. In LCPC’03: Proceedings
of the 16th Annual Workshop on Languages and Compilers for Parallel Computing,
volume 2958 of Lecture Notes in Computer Science, pages 539–553, College Station,
TX, USA, October 2003.

[65] Daan Leijen and Erik Meijer. Parsec: Direct Style Monadic Parser Combinators
for the Real World. Technical Report UU-CS-2001-27, Department of Computer
Science, Universiteit Utrecht, 2001.

[66] Andres Löh and Ralf Hinze. Open data types and open functions. In PPDP’06:
Eighth ACM-SIGPLAN International Symposium on Principles and Practice of
Declaritive Programming, Venice, Italy, July 2006.

[67] Ian Lynagh. Unrolling and Simplifying Expressions with Template Haskell. URL:
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/, May 2003.

[68] R. Marti and T. Murer. Extensible Attribute Grammars. Technical Report TIK-
Report 92-6, Laboratory of Computer Engineering and Networks, Swiss Federal
Institute of Technology, Gloriastrasse 35, ETH-Zentrum, CH-8092 Zürich, Switzer-
land, 1992.

[69] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1997.

[70] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[71] Henrik Nilsson, John Peterson, and Paul Hudak. Functional Hybrid Modeling. In
Proceedings of PADL’03: 5th International Workshop on Practical Aspects of Declar-
ative Languages, pages 376–390. Springer Verlag LNCS 2562, January 2003.

[72] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
Extensible Compiler Framework for Java. In Proc. 12th International Conference
on Compiler Construction, number 2622 in Lecture Notes in Computer Science,
pages 138–152. Spring-Verlag, April 2003.

http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/

BIBLIOGRAPHY 155

[73] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erike Stenman, and Matthias
Zenger. An Overview of the Scala Programming Language. Technical Report
IC/2004/64, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzer-
land, 2004.

[74] Martin Odersky, Vincent Cremet, Christine Rockl, and Matthias Zenger. A Nominal
Theory of Objects with Dependent Types. Technical Report IC/2002/070, Écolé
Polytechnique Féderalé de Lausanne, 2002.

[75] André Pang, Don Stewart, Sean Seefried, and Manuel M. T. Chakravarty. Plugging
Haskell in. In Proceedings of the ACM SIGPLAN workshop on Haskell, pages 10–21.
ACM Press, 2004.

[76] Emir Pasalic. The roll of Type Equality in Meta-programming. PhD thesis, OGI
School of Science and Engineering, 2004.

[77] Simon Peyton Jones. Compiling Haskell by Program Transformation: A Report
from the Trenches. In ESOP’96: The 6th European Symposium on Programming,
volume 1058 of Lecture Notes in Computer Science, pages 18–44, 1996.

[78] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the Rules:
Rewriting as a practical optimisation technique in GHC. International Conference
on Functional Programming (ICFP 2001). Haskell Workshop., September 2001.

[79] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly types:
Type inference for generalised algebraic data types. Technical Report MS-CIS-05-26,
University of Pennsylvania, Computer and Information Science Department, Levine
Hall, 3330 Walnut Street, Philadelphia, Pennsylvania, 19104-6389, July 2004.

[80] Simon Peyton Jones et al. The Haskell 98 Report. http://www.haskell.org, 1998.

[81] J. C. Reynolds. User-defined types and procedural data structures as complemen-
tary approaches to data abstraction. In S. A. Schuman, editor, New Directions in
Algorithmic Languages, pages 157–168, 1975.

[82] Arch D. Robinson. The Impact of Economics on Compiler Optimization. In Pro-
ceedings of the ACM 2001 Java Grande Conference, Standford, pages 1–10, June
2001.

[83] Meurig Sage. FranTk – a declarative GUI language for Haskell. ACM SIGPLAN
Notices, 35(9):106–117, 2000.

[84] Tim Sheard. Accomplishments and Research Challenges in Meta-programming. In
Proceedings of the Second International Workshop on Semantics, Applications, and
Implementation of Program Generation, volume 2196 of Lecture Notes in Computer
Science, pages 2–44. Springer, 2001.

http://www.haskell.org

156 BIBLIOGRAPHY

[85] Tim Sheard and Simon Peyton Jones. Template Meta-Programming for Haskell.
ACM SIGPLAN Notices: PLI Workshops, 37(12):60–75, 2002.

[86] Brian Cantwell Smith. Reflection and Semantics in Lisp. Conf. Rec. 11th ACM
Symp. on Principles of Programming Languages, pages 23–35, 1984.

[87] Oliver Steele. The IDE Divide. http://osteele.com/archives/2004/11/ides.

[88] Don Stewart and Manuel M. T. Chakravarty. Dynamic Applications From the
Ground Up. In Proceedings of the ACM SIGPLAN Workshop on Haskell. ACM
Press, September 2005.

[89] Doaitse Swierstra. Combinator Parsers: From Toys to Tools. In Graham Hutton, ed-
itor, Electronic Notes in Theoretical Computer Science, volume 41. Elsevier Science
Publishers, 2001.

[90] Walid Taha and Tim Sheard. Multi-Stage Programming with Explicit Annotations.
In Partial Evaluation and Semantics-Based Program Manipulation, pages 203–217,
Amsterdam, The Netherlands, June 1997. New York: ACM.

[91] Walid Taha and Tim Sheard. MetaML and Multi-Stage Programming with Explicit
Annotations. Theoretical Computer Science, 248(1–2):211–242, 2000.

[92] Peter Thiemann. Towards a Type System for Analyzing JavaScript Programs. In
Programming Languages and Systems: 14th European Symposium on Programming
(ESOP 2005), number 3444 in Lecture Notes in Computer Science, pages 408–422,
2005.

[93] Aaron Tomb and Cormac Flanagan. Automatic Type Inference via Partial Evalua-
tion. In PPDP’05: Seventh ACM-SIGPLAN International Symposium on Principles
and Practice of Declarative Programming, Lisbon, July 2005. ACM Press.

[94] Todd Veldhuizen. Techniques for Scientific C++. Technical Report 542, Indiana
University Computer Science, 2000.

[95] Todd L. Veldhuizen. Active Libraries and Universal Languages. PhD thesis, Indiana
University Computer Science, May 2004.

[96] Todd L. Veldhuizen and Dennis Gannon. Active Libraries: Rethinking the roles
of compilers and libraries. In Proceedings of the SIAM Workshop on Object Ori-
ented Methods for Inter-operable Scientific Engineering and Computing (OO’98),
Yorktown Heights, New York, 1998. SIAM Press.

[97] Eelco Visser. Stratego: A Language for Program Transformation Based on Rewrit-
ing Strategies. In RTA 2001: The 12th International Conference on Rewriting Tech-
niques and Applications, volume 2051 of LNCS, page 357, Utrecht, The Netherlands,
May 2001. Spring-Verlag.

http://osteele.com/archives/2004/11/ides

BIBLIOGRAPHY 157

[98] Eelco Visser. Program Transformation with Stratego/XT: Rules, strategies, tools
and systems in Stratego/XT 0.9. In Domain Specific Program Generation, volume
3016 of LNCS, page 216, Dagstuhl Castle, Germany, March 2004. Spring-Verlag.

[99] Philip Wadler. Comprehending monads. In LFP ’90: Proceedings of the 1990 ACM
conference on LISP and functional programming, pages 61–78, New York, NY, USA,
1990. ACM Press.

[100] Philip Wadler. Monads for Functional Programming. In Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Programming
Techniques-Tutorial Text, pages 24–52, London, UK, 1995. Springer-Verlag.

[101] Philip Wadler. The expression problem, Discussion on the Java Genericity mailing
list, 1998.

[102] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.
In Conference Record of the Sixteenth Annual Symposium on Principles of Program-
ming Languages (POPL’89), pages 60–76, Austin, Texas, January 1989. ACM Press.

[103] Malcolm Wallace and Colin Runciman. Haskell and XML: Generic Combinators
or Type-Based Translation? In Proceedings of the Fourth ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP‘99), volume 34–9, pages
148–159, N.Y., 27–29 1999. ACM Press.

[104] Mitchell Wand and Daniel P. Friedman. The Mystery of the Tower Revealed: A Non-
reflective Description of the Reflective Tower. In Proceedings of the 1986 ACM con-
ference on LISP and Functional Programming (LFP), pages 298–307. ACM Press,
1986.

[105] Mitchell Wand and Daniel P. Friedman. The Mystery of the Tower Revealed: A
Nonreflective Description of the Reflective Tower. Lisp and Symbolic Computation,
1:11–37, 1988.

[106] Gregory V. Wilson. Extensible programming for the 21st century. Queue, 2(9):48–
57, 2005.

[107] Matthias Zenger and Martin Odersky. Extensible Data Types with Defaults. In
International Conference on Functional Programming (IFCP’01), pages 241–252,
Firenze, Italy, September 2001.

[108] Matthias Zenger and Martin Odersky. Implementing Extensible Compilers. In Work-
shop on Multiparadigm Programming with Object-Oriented Languages, volume 7 of
NIC Series, pages 61–80, Budapest, Hungary, June 2001. NIC-Directors.

[109] Matthias Zenger and Marting Odersky. Independently Extensible Solutions to the
Expression Problem. Technical Report IC/2004/33, École Polytechnique Fédérale
de Lausanne, Lausanna, Switzerland, 2004.

	Title page - Language Extension via Dynamically Extensible Compilers
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures

	Chapter 1 - Introduction
	Chapter 2 - Background
	Chapter 3 - Optimising Embedded DSLs with Template Haskell
	Chapter 4 - Plug-in optimisations
	Chapter 5 - Extensible data types in Haskell
	Chapter 6 - Front-end plug-ins
	Chapter 7 - Conclusion
	Appendix A - Module Pan.Image
	Appendix B - Images used in image lifting benchmarks
	Appendix C - Dictionary translations of module F0 Alpha
	Appendix D - Plug-in functions in PHRaC
	Bibliography

