
Cross-layer multi-cloud real-time application QoS monitoring
and benchmarking as-a-service framework

Author:
Alhamazani, Khalid

Publication Date:
2016

DOI:
https://doi.org/10.26190/unsworks/18945

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/55964 in https://
unsworks.unsw.edu.au on 2024-05-02

http://dx.doi.org/https://doi.org/10.26190/unsworks/18945
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/55964
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring

and Benchmarking As-a-Service Framework

Khalid Twarish Alhamazani

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering

The University of New South Wales

January 2016

The University of New South Wales
Thesis/Dissertation Sheet

Surname or Family name: Alhamazani

First name: Khalid

Other name/s: Twarish

Abbreviation for degree as given in the University calendar: PhD

School: School of Computer Science and Engineering

Faculty: Computer Science and Engineering

Title: Cross-Layer Multi-Cloud Real-Time Application QoS Moni-
toring and Benchmarking As-a-Service Framework

Abstract 350 words maximum: (PLEASE TYPE)

Cloud computing provides on-demand access to affordable hardware (e.g., multi-core CPUs, GPUs, disks, and networking equip-
ment) and software (e.g., databases, application servers and data processing frameworks) platforms with features such as elastici-
ty, pay-per-use, low upfront investment and low time to market. This has led to the proliferation of business critical applications
that leverage various cloud platforms. Such applications hosted on single/multiple cloud platforms have diverse characteristics
requiring extensive monitoring and benchmarking mechanisms to ensure run-time Quality of Service (QoS) (e.g., latency and
throughput). The process of monitoring and benchmarking cloud applications is as yet a critical issue to be further studied and
addressed.
 Current monitoring and benchmarking approaches do not provide a holistic view of performance QoS for distributed applica-
tions cross cloud layers on multi-cloud environments. Furthermore, current monitoring frameworks are limited to monitoring
tasks and do not incorporate benchmarking abilities. In other words, there is no unified framework that combines monitoring and
benchmarking functionalities. To gain the ability of both monitoring and benchmarking all under one framework will empower the
cloud user to gain more in-depth control and awareness of cloud services.
 The Thesis identifies and discusses the major research dimensions and design issues related to developing techniques that can
monitor and benchmark an application’s components cross-layers on multi-clouds. Furthermore, the thesis discusses to what ex-
tent such research dimensions and design issues are handled by current academic research papers as well as by the existing com-
mercial monitoring tools.
 Moreover, the Thesis addresses an important research challenge of how to undertake cross-layer cloud monitoring and bench-
marking in multi-cloud environments to provide essential information for effective cloud applications QoS management. It pro-
poses, develops, implements and validates CLAMBS: Cross-Layer Multi-Cloud Application Monitoring and Benchmarking, as-a-
Service Framework. The core contributions made by this thesis are the development of the CLAMBS framework and underlying
monitoring and benchmarking techniques which are capable of: i) performing QoS monitoring of application components (e.g.
database, web server, application server, etc.) that may be deployed across multiple cloud platforms (e.g. Amazon EC2, and Mi-
crosoft Azure); and ii) giving visibility into the QoS of individual application components, which is not supported by current moni-
toring and benchmarking frameworks. Experiments are conducted on real-world multi-cloud platforms to empirically evaluate the
framework and the results validate that CLAMBS can effectively monitor and benchmark applications running cross-layers on
multi-clouds.
 The thesis presents implementation and evaluation details of the proposed CLAMBS framework. It demonstrates the feasibility
and scalability of the proposed framework in real-world environments by implementing a proof-of-concept prototype on multi-
cloud platforms. Finally, it presents a model for analysing the communication overheads introduced by various components (e.g.
agents and manager) of CLAMBS in multi cloud environments.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proper-
ty rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

……………………………………………………………
 Signature

……………………………………..………………
 Witness Signature

28/05/2016
……….……………………...…….…
 Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for re-
striction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circum-
stances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY

Date of completion of requirements for Award:

 THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

Declaration

‘I hereby declare that this submission is my own work and to the best of

my knowledge it contains no materials previously published or written by

another person, or substantial proportions of material which have been

accepted for the award of any other degree or diploma at UNSW or any

other educational institution, except where due acknowledgement is

made in the thesis. Any contribution made to the research by others, with

whom I have worked at UNSW or elsewhere, is explicitly acknowledged in

the thesis. I also declare that the intellectual content of this thesis is the

product of my own work, except to the extent that assistance from others

in the project's design and conception or in style, presentation and lin-

guistic expression is acknowledged.’

Signature: Date____28/05/2016_________

i

Abstract

Cloud computing provides on-demand access to affordable hardware (e.g., multi-core CPUs,

GPUs, disks, and networking equipment) and software (e.g., databases, application servers

and data processing frameworks) platforms with features such as elasticity, pay-per-use, low

upfront investment and low time to market. This has led to the proliferation of business criti-

cal applications that leverage various cloud platforms. Such applications hosted on sin-

gle/multiple cloud platforms have diverse characteristics requiring extensive monitoring and

benchmarking mechanisms to ensure run-time Quality of Service (QoS) (e.g., latency and

throughput). The process of monitoring and benchmarking cloud applications is as yet a criti-

cal issue to be further studied and addressed.

 Current monitoring and benchmarking approaches do not provide a holistic view of per-

formance QoS for distributed applications cross cloud layers on multi-cloud environments.

Furthermore, current monitoring frameworks are limited to monitoring tasks and do not in-

corporate benchmarking abilities. In other words, there is no unified framework that com-

bines monitoring and benchmarking functionalities. To gain the ability of both monitoring

and benchmarking all under one framework will empower the cloud user to gain more in-

depth control and awareness of cloud services.

 The Thesis identifies and discusses the major research dimensions and design issues relat-

ed to developing techniques that can monitor and benchmark an application’s components

cross-layers on multi-clouds. Furthermore, the thesis discusses to what extent such research

dimensions and design issues are handled by current academic research papers as well as by

the existing commercial monitoring tools.

 Moreover, the Thesis addresses an important research challenge of how to undertake

cross-layer cloud monitoring and benchmarking in multi-cloud environments to provide es-

sential information for effective cloud applications QoS management. It proposes, develops,

implements and validates CLAMBS: Cross-Layer Multi-Cloud Application Monitoring and

Benchmarking, as-a-Service Framework. The core contributions made by this thesis are the

development of the CLAMBS framework and underlying monitoring and benchmarking tech-

niques which are capable of: i) performing QoS monitoring of application components (e.g.

ii

database, web server, application server, etc.) that may be deployed across multiple cloud

platforms (e.g. Amazon EC2, and Microsoft Azure); and ii) giving visibility into the QoS of in-

dividual application components, which is not supported by current monitoring and bench-

marking frameworks. Experiments are conducted on real-world multi-cloud platforms to em-

pirically evaluate the framework and the results validate that CLAMBS can effectively monitor

and benchmark applications running cross-layers on multi-clouds.

 The thesis presents implementation and evaluation details of the proposed CLAMBS

framework. It demonstrates the feasibility and scalability of the proposed framework in real-

world environments by implementing a proof-of-concept prototype on multi-cloud platforms.

Finally, it presents a model for analysing the communication overheads introduced by various

components (e.g. agents and manager) of CLAMBS in multi cloud environments.

iii

To My Parents

To My Family

To my loving memories of my grandfather and grandmother

iv

Acknowledgement

Supervision Team: Rajiv Ranjan, Fethi Rabhi, Karan Mitra, and Prem

Jayaraman

First and foremost, I would like to thank Allah for his blessings that allowed me to fin-

ish this thesis. I also would like to immensely thank my supervisors, Professor Fethi

Rabhi and Associate Professor (Reader) Rajiv Ranjan, for their guidance, patience,

financial support, and encouragement during the entire course of my PhD studies, es-

pecially during hardship times. Without them, this work would not have been com-

pleted. I also would like to acknowledge them for their valuable feedback, precious

technical comments, and enduring encouragement to target top international confer-

ences and journals. Their constant effort, motivation and advice have helped me face

some of the tough challenges during the PhD years.

 Special Thanks to my co-supervisors Prem Jayaraman and Karan Mitra who have

been very supportive and helpful to me. I am thankful to them for their valuable

comments and feedback during this work.

 Finally, words would not be enough to express my sincere gratitude to my family.

My parents, for their constant support, encouragement, and prayers to complete my

studies.

v

List of Publications

K. Alhamazani, L. Wang, F. Rabhi, K. Mitra, and R. Ranjan, "Cloud moni-

toring for optimizing the QoS of hosted applications," in Proceed-

ings of the 2012 IEEE 4th International Conference on Cloud Compu-

ting Technology and Science (CloudCom), 2012, pp. 765-770.

K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S. U. Khan,

et al., "An overview of the commercial cloud monitoring tools: re-

search dimensions, design issues, and state-of-the-art," Computing,

pp. 1-21, 2014.

K. Alhamazani, R. Ranjan, K. Mitra, P. P. Jayaraman, Z. Huang, L. Wang, et

al., "CLAMS: Cross-layer Multi-cloud Application Monitoring-as-a-

Service Framework," in Services Computing (SCC), 2014 IEEE Interna-

tional Conference on, 2014, pp. 283-290.

K. Alhamazani, R. Ranjan, P. P. Jayaraman, K. Mitra, M. Wang, Z. G.

Huang, et al., "Real-time qos monitoring for cloud-based big data

analytics applications in mobile environments," in Mobile Data

Management (MDM), 2014 IEEE 15th International Conference on,

2014, pp. 337-340.

K. Alhamazani, R. Ranjan, P. P. Jayaraman, K. Mitra, C. Liu, F. Rabhi, et al.,

"Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring

and Benchmarking As-a-Service Framework," IEEE Transactions on

Cloud Computing, 2015 , no. 1, pp. 1, PrePrints PrePrints,

doi:10.1109/TCC.2015.2441715

vi

Tables Contents

1. INTRODUCTION ... 1

1.1. PREAMBLE ... 1

1.2. RESEARCH MOTIVATION ... 4

1.3. RESEARCH OBJECTIVES AND CONTRIBUTIONS... 13

1.4. THESIS OUTLINE .. 17

2. CLOUD APPLICATIONS MONITORING, RESEARCH DIMENSIONS, DESIGN

ISSUES ... 20

2.1. INTRODUCTION .. 20
2.2. CLOUD COMPUTING BACKGROUND AND OVERVIEW ... 21

2.2.1. Resources Sharing .. 25
2.2.2. Resource Isolation .. 25

2.2.3. Resources Aggregation ... 25
2.2.4. Dynamics of Resources ... 26
2.2.5. Ease of Resource management ... 26

2.3. CLOUD APPLICATION DEPLOYMENT .. 26
2.3.1. Resource Selection .. 27

2.3.2. Resource Deployment ... 28
2.3.3. Resource Management ... 29
2.3.4. Resource monitoring and benchmarking .. 29

2.3.5. Resource auto-scaling .. 30

2.4. CLOUD RESOURCE PROVISIONING ... 30
2.4.1. Resource Provisioning .. 31
2.4.2. Application Provisioning .. 32

2.5. APPLICATIONS MANAGEMENT CHALLENGES IN CLOUD ENVIRONMENT 35
2.5.1. Resource Scenarios in Cloud environment ... 35

2.5.1.1 Task submission .. 35

2.5.1.2 Workload management .. 36

2.5.1.3 Advanced reservations ... 36

2.5.1.4 Co-scheduling .. 36

2.5.2. Resource Monitoring .. 37
2.5.3. Resource Benchmarking ... 37

2.6. CLOUD MONITORING ... 37

2.6.1. Monitoring Process .. 37
2.6.2. Monitoring, QoS, and SLA ... 38

2.6.3. Monitoring across Different applications, Cross-Layers, and Multi-Clouds .. 40
2.7. CLOUD BENCHMARKING ... 43

2.7.1. Benchmarking Definition .. 43
2.7.2. Benchmarking, QoS, and SLA .. 44
2.7.3. Cross-Layers Benchmarking on Multi-Clouds ... 45

2.8. EVALUATION FRAMEWORK ... 47

vii

2.8.1. Monitoring and Benchmarking Framework Architecture 47
2.8.1.1 Centralized Architecture .. 48
2.8.1.2 Decentralized Architecture .. 50

2.8.2. Interoperability ... 53
2.8.2.1 Cloud Dependent ... 54

2.8.2.2 Cloud Agnostic .. 55
2.8.3. Quality of Service (QoS) Matrix ... 56

2.8.3.1 Single Parameter .. 56
2.8.3.2 Composite Parameters ... 57

2.8.4. Cross-Layer Monitoring and Benchmarking .. 57

2.8.4.1 Layer specific .. 58
2.8.4.2 Layer Agnostic .. 58

2.8.5. Programming Interfaces and Communication Protocols 60
2.8.5.1 Application Programming Interface .. 60
2.8.5.2 Command-Line Interface (CLI) .. 62
2.8.5.3 Widgets .. 63

2.8.6. Communication Protocols .. 63
2.9. COMMERCIAL AND OPEN-SOURCE MONITORING AND BENCHMARKING TOOLS 64

2.9.1. Monitis .. 65

2.9.2. RevealCloud ... 65
2.9.3. LogicMonitor .. 66

2.9.4. Nimsoft .. 66
2.9.5. Nagios ... 66
2.9.6. SPAE by SHALB ... 67

2.9.7. Amazon CloudWatch .. 67

2.9.8. OpenNebula .. 68
2.9.9. CloudHarmony ... 68
2.9.10. Windows Azure FC ... 69

2.9.11. Lattice Framework ... 69
2.9.12. QoS-MONaaS ... 69
2.9.13. PCMONS .. 69

2.9.14. SBLOMARS .. 70
2.9.15. Apache CloudStack ... 70
2.9.16. Compuware’s Gomez .. 70

2.9.17. Cloud Object Storage Benchmark (COSBench) ... 71
2.9.18. C-MART .. 71
2.9.19. CloudGauge .. 71

2.9.20. CLIQr ... 72

2.9.21. Hawk-I .. 72
2.9.22. mOSAIC Benchmarker ... 72

2.10. CLASSIFICATION AND ANALYSIS OF CLOUD MONITORING AND BENCHMARKING TOOLS

- GAP ANALYSIS .. 72
2.11. SUMMARY ... 78

3. CROSS-LAYER MULTI-CLOUD APPLICATION MONITORING-AS-A-

SERVICE FRAMEWORK ... 79

viii

3.1. INTRODUCTION .. 79
3.2. CLAMS: CROSS-LAYER MULTI-CLOUD APPLICATION MONITORING-AS-A-SERVICE

FRAMEWORK ... 82
3.2.1. General Overview ... 82
3.2.2. CLAMS Data Collection Model .. 85

3.3. CLAMS ARCHITECTURE COMPONENTS .. 87
3.3.1. CLAMS Monitoring Manager ... 87
3.3.2. CLAMS Monitoring Agent .. 90
3.3.3. CLAMS Super-Manager ... 92

3.4. VISIBILITY AND INTEROPERABILITY .. 95

3.4.1. CLAMS: Cross-layers monitoring (Visibility vs. Black Box View) 95
3.4.2. CLAMS: Hierarchical Support for Multi-Cloud Environments (Interoperability)

 97
3.5. CLAMS APPLICATIONS SCENARIO ... 100

3.5.1. Big Data Analytics Application Scenario ... 100
3.5.2. How we detect failures using a Conventional Approach 102

3.5.3. Using CLAMS to detect and identify at which cloud layer a failure occurs

(Visibility) ... 103
3.5.4. Using CLAMS to detect and identify at which cloud platform a failure occurs

(Interoperability) .. 104
3.5.5. CLALMS Data Collection Model Scenario .. 106

3.6. CLAMS VS. OTHER MONITORING FRAMEWORKS ... 107
3.7. SUMMARY ... 108

4. CROSS-LAYER MULTI-CLOUD REAL-TIME APPLICATION QOS

MONITORING AND BENCHMARKING AS-A-SERVICE FRAMEWORK 111

4.1. INTRODUCTION .. 111
4.2. CLAMBS: CROSS-LAYER MULTI-CLOUD APPLICATION MONITORING AS A SERVICE

 113

4.3. CLAMBS ARCHITECTURE COMPONENTS ... 116
4.3.1. CLAMBS Architecture: Benchmarking Manager ... 117
4.3.2. CLAMBS Architecture: Benchmarking Agent .. 120

4.3.2.1 Workload Generator .. 120
4.3.2.2 Capabilities .. 121

4.4. CLAMBS AND THE CHALLENGES OF QOS AND SLAS .. 122

4.4.1. CLAMBS for Unpredictable QoS parameters .. 122
4.4.2. CLAMBS for Addressing SLAs Challenges .. 124

4.5. CLAMBS VS. BENCHMARKING FRAMEWORKS ... 125
4.6. SUMMARY ... 131

5. MODELLING AND IMPLEMENTATION OF CLAMS AND CLAMBS

FRAMEWORK ... 132

5.1. INTRODUCTION .. 132

5.2. PROOF-OF-CONCEPT IMPLEMENTATION .. 133
5.2.1. Development Tools and Techniques ... 133

5.2.1.1 JAVA ... 134

ix

5.2.1.2 Eclipse ... 134
5.2.1.3 Apache Tomcat .. 135
5.2.1.4 Simple Network Management Protocol (SNMP) .. 136
5.2.1.5 SIGAR (System Information Gatherer and Reporter) 138
5.2.1.6 Restlet .. 138

5.2.1.7 JMeter .. 139
5.2.2. Cloud Platforms Used .. 139

5.2.2.1 Amazon Web Services (AWS) Elastic Computing (EC2) 140
5.2.2.2 Microsoft Windows Azure Platform ... 140

5.2.3. CLAMBS: A Practical System Prototype ... 140

5.2.3.1 CLAMBS Monitoring Agent Implementation .. 143
5.2.3.2 CLAMBS Benchmarking Agent Implementation 147

5.2.3.3 CLAMBS Manager Implementation ... 148
5.2.3.4 CLAMBS Agent and Manager Communication ... 151

5.3. MODELING AND ANALYZING CLAMBS OVERHEADS IN MULTI-CLOUD

ENVIRONMENTS ... 153

5.3.1. Abstract Model for CLAMBS framework Deployment 155
5.3.2. Communication Overhead .. 158
5.3.3. CPU load, Response and Search Time ... 163

5.4. SUMMARY ... 169

6. EXPERIMENTATION AND EVALUATION ... 170

6.1. INTRODUCTION .. 170
6.2. HARDWARE AND SOFTWARE CONFIGURATION .. 172
6.3. EXPERIMENTAL SETUP .. 174

6.3.1. CLAMBS Monitoring Agent Setup .. 175

6.3.2. CLAMBS Benchmarking Agent Setup... 176
6.3.3. Runtime Configuration Monitoring Agent .. 178
6.3.4. Runtime Configuration Benchmarking Agent... 180

6.4. EXPERIMENTAL RESULTS AND DISCUSSION ... 181
6.4.1. CLAMBS Monitoring Agent ... 181
6.4.2. CLAMBS Benchmarking Agent .. 184

6.4.2.1 Data Download Latency Benchmark ... 184
6.4.2.2 Data Upload Latency Benchmark.. 185
6.4.2.3 Download/Upload Bandwidth Benchmark .. 186

6.5. EXPERIMENTS SCENARIOS ANALYSIS FOR CLAMBS VALIDATION AND FEASIBILITY

 187

6.5.1. Development Environment Limitations .. 188
6.5.2. CLAMBS Manager Scalability under Benchmarking 188

6.6. SUMMARY ... 190

7. CONCLUSION AND FUTURE WORK ... 192

7.1. CONTRIBUTIONS OF THE THESIS WORK ... 192

7.1.1. Research questions ... 192
7.1.2. Addressing First Research Question .. 193
7.1.3. Addressing Second Research Question .. 194

x

7.1.4. Addressing Third Research Question .. 195

7.2. LIMITATIONS ... 197

7.3. FUTURE WORK .. 198
7.3.1. CLAMBS: Cross-Layer Multi-Cloud Application Monitoring- and

Benchmarking-as-a-Service Framework .. 199
7.3.2. Monitoring big data security and privacy .. 200

REFERENCES .. 202

APPENDIX A: CLAMBS PROTOTYPE IMPLEMENTATION FILES ... 214
A.1: CLAMBS MONITORING .. 214
A.1.1: CLAMBS MONITORING AGENT SIGAR FUNCTIONS ... 214
APPENDIX B: SNMP MIBS TREE .. 223
APPENDIX C: BRAINSTORMING MIND MAP ... 224

GLOSSARY ... 225

xi

List of Figures

Figure ‎1.1: Cloud computing services layers. ... 3

Figure ‎1.2: ESA scenario. .. 12
Figure ‎1.3: Thesis outline. ... 18
Figure ‎2.1: Cloud architecture and virtualization. ... 24
Figure ‎2.2: Cloud application deployment in cloud environment. .. 27
Figure ‎2.3: Provisioning and deployment sequence diagram .. 33

Figure ‎2.4: Components across cloud platform layers. ... 42
Figure ‎2.5: Framework network architecture. ... 48

Figure ‎2.6: Centralized monitoring/benchmarking framework architecture. 49
Figure ‎2.7: Decentralized monitoring/benchmarking framework architecture. 51
Figure ‎2.8: Interoperability classification. ... 54
Figure ‎2.9: QoS matrix classification. ... 56

Figure ‎2.10: Components across cloud platform layers and QoS propagation. 59
Figure ‎2.11: Visibility categorization. ... 60

Figure ‎2.12: Different types of programming interfaces. .. 61
Figure ‎2.13: Evaluation Dimensions tree diagram. ... 75
Figure ‎3.1: CLAMS Framework overview. .. 83

Figure ‎3.2: CLAMS distributed components. ... 84
Figure ‎3.3:‎ER‎for‎the‎cloud‎layer,‎applications’‎components,‎and‎QoS‎parameters. 87

Figure ‎3.4: CLAMS Monitoring Manager component and CLAMS Monitoring Agent

components. ... 88

Figure ‎3.5: Interaction of the CLAMS Monitoring Manager and distributed Monitoring Agents

– Pseudo Code. .. 90
Figure ‎3.6: The CLAMS Monitoring Agent startup and monitoring process – Pseudo Code. . 92

Figure ‎3.7: CLAMS hierarchical approach. .. 93
Figure ‎3.8: CLAMS Super-Manager hierarchy approach – wider scope. 94

Figure ‎3.9: Interoperable CLAMS components communication. ... 95
Figure ‎3.10: Cross-layers monitoring (Visibility). .. 97
Figure ‎3.11: Cross multi-clouds monitoring (Interoperability). .. 99

Figure ‎3.12: Applications components and QoS metrics cross-layers. 104
Figure ‎3.13: Applications components and QoS metrics across multi-cloud platforms. 105
Figure ‎3.14:‎ER‎for‎the‎cloud‎layer,‎applications’‎components,‎and‎QoS‎parameters. 106
Figure ‎3.15: CLAMS – Cloud Monitoring Framework for cross-Layers applications

components on multi-cloud Environments. ... 109
Figure ‎4.1: Overview of CLAMBS framework. ... 114
Figure ‎4.2: CLAMBS distributed architecture. ... 116
Figure ‎4.3: CLAMBS framework Benchmarking Manager and Benchmarking Agent

components. ... 117

Figure ‎4.4: Visibility and interoperability of CLAMBS distributed components. 123
Figure ‎5.1: UML based description of the CLAMBS framework. .. 141
Figure ‎5.2: CLAMBS proof-of-concept Implementation. ... 142

Figure ‎5.3: SIGAR CLAMBSMonitoringAgent.java – Code Snippet. 145

xii

Figure ‎5.4: SNMP CLAMBSMonitoringAgent.java – Code Snippet. 146
Figure ‎5.5: Screenshots of CPU and MEM Usage. ... 150
Figure ‎5.6: Screenshots of the Curve of CPU Usage. ... 151
Figure ‎5.7: Assigning unique port number for each CLAMBS Monitoring Agent – Snippet

Code. .. 152

Figure ‎5.8: CLAMBS components communication based on RESTful and SNMP. 153
Figure ‎5.9: CLAMBS framework deployment class diagram. .. 157

Figure ‎5.10: Communications: 3 data centers, Manager located on 161
Figure ‎5.11: Communications: 3 data centers, Managers located on V1,2, V2,2, and V3,1. 161

Figure ‎5.12: Different management structures for 17 CLAMBS Agents – Model 1. 164
Figure ‎5.13: Different management structures for 17 CLAMBS Agents – Model 2. 164
Figure ‎5.14: Different management structures for 17 CLAMBS Agents – Model 3. 165

Figure ‎6.1: Distributed CLAMBS components across datacenters. .. 173
Figure ‎6.2: CLAMBS Manager/Agents run-time communication workflow. 179
Figure ‎6.3: Manager CPU consumption in percentage (Monitoring Scenario). 183

Figure ‎6.4: CLAMBS Manager Memory utilization in MB. ... 184
Figure ‎6.5: Data Download Network Latency (Time in Seconds). ... 185

Figure ‎6.6: Data Upload Network Latency (Time in Seconds). .. 186
Figure ‎6.7: Download/Upload Bandwidth (Kilobytes per Seconds). 187
Figure ‎6.8: CLAMBS Manager memory consumption (benchmarking scenario). 189

xiii

List of Tables

Table ‎2-1: QoS parameters at each cloud platform layer. ... 43
Table ‎2-2: Summary of studied monitoring and benchmarking frameworks. 77
Table ‎3-1: QoS parameters for relative cloud platform layers. ... 85
Table ‎3-2: QoS parameters for specific resources across cloud platform layers..................... 106
Table ‎5-1: Illustration of the CLAMBS monitoring console output. 143

Table ‎5-2: Model analysis notation. .. 156

Table ‎5-3: Two scenarios for CLAMBS deployment layout. ... 162

Table ‎5-4: Messages communications overheads. .. 163
Table ‎6-1: Experiments objectives and evaluation. ... 172

Table ‎6-2: Monitoring various resources across different layers. ... 176

Table ‎6-3: Benchmarking parameters measurements parameters. .. 178
Table ‎6-4: Experimental workload scenarios. ... 181
Table ‎6-5: The experimental outcomes summary. .. 191

1

11.. IInnttrroodduuccttiioonn

1.1. Preamble

“Cloud computing is a model for enabling convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications, and ser-

vices) that can be rapidly provisioned and released with minimal management effort or service

provider interaction [109].” _____NIST

The cloud computing paradigm is shifting computing from physical hardware and lo-

cally managed environments to virtualized services [4]. Hence, this paradigm shift has

the capability to reshape the Information Technology (IT) industry and it has been

coined as the next revolution[49]. In other words, cloud computing is a commonly

agreed name for an IT phenomenon. This phenomenon represents a significant change

in the way IT services can be invented, developed, deployed scaled, updated, main-

tained, and also paid for [107].

 Characteristics that describe cloud computing as summarized by the National Insti-

tute of Standards and Technology (NIST) are: on-demand self-service, ubiquitous net-

work access, resource pooling, rapid elasticity and pay-per-use [99]. As shown in figure

1.1, cloud service types can be abstracted into three layers: Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [62], [50], [182], and

[71].

2

 SaaS – refers to the model in which applications are provided as a hosted service

to cloud customers who access these services via the Internet.

 PaaS – is a cloud computing model to provide applications’ components over the

Internet. PaaS delivers hardware and software tools; mostly these tools are re-

quired for applications development.

 IaaS – provides access to fundamental computing, storage, and network re-

sources in a virtualized environment.

 For illustration, hardware and software resources form the basis for delivering IaaS

and PaaS. The top layer focuses on application services (SaaS) by making use of services

provided by the lower layers. PaaS resource and SaaS applications are often developed

and provided by third party providers who are different from the IaaS providers [73].

To illustrate further, WordPress application, which is a SaaS layer resource, has two

components: MySQL’s Database, and Apache Tomcat Server. In this scenario, PHP,

MySQL’s Database and Apache Tomcat server can be a PaaS offering and integrated

over Amazon EC (IaaS offering) to create the web application WordPress which is the

(SaaS offering).

 The term ‚Cloud Computing‛ has become widely used following the announcement

of collaboration between IBM and Google in this field [65]. Cloud computing is com-

posed of many technologies such as speed networks, a fast microprocessor, huge

3

memory, a high speed network and a reliable system architecture [65]. Virtualization,

which is the fundamental element of cloud computing, changes the way physical re-

sources are originally consumed. Virtualization is a software layer that manipulates the

hardware to enable the sharing concept. The resultant services out of this sharing consti-

tutes the cloud computing services [12].

 Conceptually, the principle of cloud computing is not absolutely new; it is commonly

considered the evolution of computing as a utility [184]. Utility computing was a vision

stated 40 years ago, which refers to the desire that computing resources and services be

delivered, utilized, and paid for as utilities such as water or electricity [171]. Throughout

this thesis, I adopt the cloud computing definition provided by the National Institute

Standards and Technology (NIST) as presented earlier.

Figure ‎1.1: Cloud computing services layers.

4

1.2. Research Motivation

Cloud computing architecture consists of four deployment models that can be identified

below [109] [189]:

 Private Cloud – The cloud platform is owned and managed by a private organi-

zation, which has an exclusive use of its infrastructure. This infrastructure can be

installed by a third party such as VMWare and GoGrid.

 Public Cloud – The cloud platform is owned and managed by an organization,

which sells cloud services to the general public or large industry groups (e.g.

Amazon1, Microsoft Windows Azure2).

 Community Cloud – The cloud platform provisions resources to a specific com-

munity/group that can be from different organizations for exclusive use. Such a

community shares common concerns (e.g. Mission, security requirements, Poli-

cy). Government and healthcare are good examples of organizations that can lev-

erage community cloud features.

 Hybrid Cloud – The cloud infrastructure is composed of two or more different

types of clouds (e.g. Private, and Public) to perform distinct functions within the

same organization. Furthermore, Cloudbursting is a practice of computing across

multiple datacenters (internal and external). In other words, it is the ability of a

cloud application to burst out of a private cloud into a public cloud as soon as the

resources on the private cloud run out [93]. Also, Cloudbursting is growing in

1
 http://aws.amazon.com/

2
 https://azure.microsoft.com/

http://aws.amazon.com/
https://azure.microsoft.com/

5

popularity because of the scalability and Pay-as-You-Go advantages offered by

public clouds [81]. For example, a cloud user (e.g. a corporation) can run its ser-

vices across private cloud infrastructure and Rackspace3 cloud.

 The major concepts underpinning cloud architecture and cloud services are [180]:

 Virtualization – the software technology that hides the physical characteristics of

cloud computing resources from the PaaS resources and SaaS-level application

users by providing an abstract computing platform. It is a method whereby a sin-

gle physical machine is distributed across autonomous and isolated software con-

tainers called virtual machines VMs [22]. A Virtual Machine Monitor (VMM) is

placed instead of the operating system layer in the virtualization environment to

manage the system resources across all available virtual machines.

 Multi-tenancy – an architecture in which a single instance of a software applica-

tion serves multiple customers. In this scenario, each customer is called a tenant

[111].

 Web Service –originally defined by the World Wide Web Consortium (W3C)4 as

a software system designed to support interoperable machine-to-machine interac-

tion over a network. Commonly, this refers to the ability of communication be-

tween clients and servers using the HTTP protocol over the Web and the Internet.

3
 http://www.rackspace.com/

4
 www.w3.org

http://www.rackspace.com/
http://www.w3.org

6

In cloud platform, the web service interface enables the managing of virtual re-

sources [127].

 Service Level Agreement (SLA) - SLA forms the services contract and defines par-

ticular aspects of the services (e.g. availability, performance, costs). In other

words, SLA defines the minimal guarantees for cloud services to a customer [20].

For illustration, Amazon S3 (storage service) is offered under an SLA5 that states

that Amazon will make commercially reasonable efforts to make S3 available

with a monthly uptime percentage of at least 99.999% during any monthly billing

cycle. Users are eligible to receive a service credit if Amazon fails to meet the SLA

commitment.

 Quality of Service (QoS) – QoS provides an assurance level of supporting a re-

source’s requirements for an application. A defined QoS is not limited to refering

only to performance and availability, but also, to other aspects such as security

and dependability [14].

 Pay-as-You-Go (PAYG) – Pay As You Go (PAYG) is a utility computing billing

method which is applied in cloud computing [79]. PAYG enables cloud users to

scale, customize and provision computing resources, including software, storage

and development platforms. Cloud resources are charged based on used services.

 As illustrated earlier, a cloud platform is usually composed of several layers namely,

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-

5
 http://aws.amazon.com/s3-sla/

http://aws.amazon.com/s3-sla/

7

Service (IaaS). Today, most of the heavily used applications are hosted on a cloud in one

of such layers. For example, Google Mail service is a SaaS offering, Amazon SimpleDb

(NoSQL Data Store) is a PaaS offering, Amazon Elastic Compute Cloud (EC2) is an IaaS

offering[6], Google App Engine is a PaaS offering [66], and Salesforce’s CRM an SaaS

offering [150]. Cloud computing has transformed existing IT systems as services ena-

bling the development of new and innovative applications. As more applications mi-

grate into the cloud, reliable and efficient management of theses application perfor-

mance hosted on the *aaS layers is critical for the business. System administrators have

to be fully aware of the computing, storage, networking resources, application perfor-

mance and their respective QoS across the layers. QoS parameters (e.g, latency, renting

cost, throughput, etc.) play an important role in maintaining the grade of services deliv-

ered to the application consumer and administrator as specified and agreed upon in the

SLA document. The SLA guarantees the scope and nature of an agreed QoS perfor-

mance objective (also referred to as the QoS targets) that the cloud application consumer

and administrators can expect from cloud service provider(s).

 It is essential to note that the QoS parameters such as application components availa-

bility, application load, and application throughput have a direct impact on application

performance and can vary in unpredictable ways depending on several factors (e.g.,

number of application end-users connecting to application, physical resource or VM

failure, VM overload etc.). Therefore, QoS monitoring is an important task in ensuring

the fulfilment of SLA guarantees. QoS monitoring in this context refers to the continu-

ous observing of the status of such parameters, which provides the required respon-

siveness of the whole monitored application. Being aware of the system’s current soft-

ware and hardware resource status is vital to meeting QoS targets of cloud-hosted ap-

plications [25]. Besides, such applications hosted on single/multiple cloud provider plat-

8

forms have diverse characteristics. For example, Multi-Media applications such as Con-

tent Delivery Network (CDN) will require high network throughput; whereas, E-Science

applications such as ASKAP Radio Telescope [42] requires scalable storage to accom-

modate increasing amounts of data. Hence, monitoring the QoS characteristics is a chal-

lenging task.

 Another obstacle facing the migration of applications to cloud is performance and

predictability. Application migration can be rebuilding, redeploying, or re-hosting an

application on a cloud platform. For illustration, an organization would re-deploy its

web application on cloud platform for specific benefits such as scalability, automation,

and improved development productivity. It is, therefore, challenging to inspect the sta-

tus of such applications while re-hosting on a different platform. This may lead to the

application’s QoS parameters being in unwanted status without having the required

awareness of their status. To address the performance and predictability of applications,

benchmarking of cloud applications is being proposed. In a cloud environment, bench-

marking refers to the process of defining the most suitable and testing a cloud resource

(e.g. CPU, Memory utilization) [60]. Furthermore, benchmarking is applied to determine

where improvements are required for specific QoS parameters.

 However, performance unpredictability is the biggest obstacle facing the migration of

applications (e.g., multi-layered business application, scientific data processing applica-

tion, multi-media application, etc.) to clouds. While aforementioned applications are of-

ten held to strict QoS targets in terms of throughput, delay, or availability, little is

known about the performance of applications in the cloud [152] [76], the response time

variation induced by network latency, and cloud location. Since the QoS targets are en-

coded in legal SLA documents, determining these targets without understating the ap-

9

plication’s performance is challenging. Hence, benchmarking applications can help in

understanding the performance of applications when migrating to clouds.

 Moreover, it is not difficult to note that current SLA models supported by cloud pro-

viders are limited, since they do not cater for other complex QoS parameters which are

generally associated with different applications types, including eResearch applications

(e.g. data transfer latency, data transfer throughput, data security guarantee, data integ-

rity guarantee etc.). For instance, the high-profile crash of Amazon EC2 cloud [9], which

took down the applications of many SMEs, is a salient example of unpredictability in

cloud environments. Some applications were down for hours, others for days. Moreo-

ver, in 2014, Windows Azure cloud virtual machines were down for a total of 42.94

hours globally [39]. In both cases, monitoring on the right time and event could save

such resources from this failure. Also, benchmarking could provide an accurate inspec-

tion to the exact QoS parameter that caused that malfunctioning.

 Identical resources provided by two different cloud providers may have various

costs. This is one major factor where customer can opt resources from different cloud

platforms. There are a number of available tools that can help cloud users to choose

cloud resources. For instance, Cloudorado [183] calculates the price of IaaS-level CPU

resources based on static features (e.g., processor type, processor speed, I/O capacity,

etc.) [183]. Furthermore, different datacenter locations can be an important factor for

consumers of resources. Along with the Pay-as-You-Go (PAYG) model, consumers of

resources will have necessities and broad options to go for multi-cloud providers.

Hence, based on aforementioned factors, a cloud user may have specific considerations

and priorities preferences among such cloud resources’ providers.

10

 In the context of this thesis, I define multi-cloud hosting where applications compo-

nents are distributed among multiple cloud providers’ platforms. Therefore, enabling

cloud users to monitor such distributed resources across different cloud platforms (re-

ferred as multi-clouds) is complex. Existing tools for monitoring and benchmarking

cloud resources are mostly restricted to one provider and lack the ability to operate on

multiple cloud platforms. For instance, CloudWatch which is provided by Amazon.com

is limited to Amazon Elastic platform (EC2) [8]. Similarly, Microsoft Azure Fabric Con-

troller (FC) is limited to work only on Azure platform [18]. In case of having distributed

applications across multi-cloud platforms, the cloud user will need to have an inde-

pendent monitoring and benchmarking tool for each platform. Because of using multi-

ple tools, the users may face challenges in obtaining the holistic view of their applica-

tions’ performance in a multi-cloud environment.

 Another limitation of existing monitoring and benchmarking tools is that they only

provide VM performance data. Moreover, they do not drill down into different layers of

the application stack. In a cloud environment, the application stack is overlaid over mul-

ti-layers (e.g. IaaS, or PaaS). When hosting such distributed applications, users need to

gain performance information for the whole application at different layers. Users will

need to be able to monitor and benchmark the distributed application components. Cur-

rent monitoring and benchmarking tools do not provide the ability to monitor or

benchmark the distributed application components across different layers. For example,

Cloudwatch will only provide data for the whole running VM instance but not for the

applications’ components within such VM [164]. Consider the illustration of an Emer-

gency Situation Awareness (ESA) SaaS Application presented in figure 1.2. ESA is an

11

application that monitors mass gathering events in smart cities such as public demon-

strations. Applications such as ESA are required to efficiently manage and respond to

situations like public demonstrations, interior riot clashes, major festivals, and pub-

lic/national events. Furthermore, such applications are comprised of many components

deployed across the cloud layers. Thus, if users utilize existing limited tools, they will

only gain data for the application as a whole or only performance for the hosting VM.

As a result, the gained performance data is not adequate to ensure round-the-clock and

robust operation of such ESA applications. Hence, cloud users require an in-depth

understanding of the application performance across the cloud layers.

12

Figure ‎1.2: ESA scenario.

 Given the elasticity provided by cloud computing, a cloud platform can accommo-

date even unexpected changes in capacity by adding new instances of IaaS and PaaS re-

sources (e.g., CPU, storage, network, database, etc.) and reducing them based on de-

mand. The decisions to adjust capacity must be made frequently, automatically, and ac-

curately to be cost effective. In addition to the elasticity complexity, failures or conges-

tion of network links are sometimes inevitable, given the scale, dynamics, the crash or

malfunction of a hardware resource, changes in workload patterns, or overloading of a

hardware resource. Worse, hardware resource status can be changed intentionally

through malicious external interference. Accordingly, to take advantage of cloud elastic-

ity, there must be efficient mechanisms for monitoring and benchmarking cloud re-

sources and applications’ components. Also, knowing that cloud resources and applica-

tion components can be distributed among multi-cloud platforms and across cloud lay-

ers triggers the need of having monitoring and benchmarking that are able to capture

such distributed applications’ components individually.

 Being aware of application performance through continuous monitoring and

benchmarking will enable the user to manage and support any unwanted changes. Con-

sequently, cloud application provisioning and auto-scaling process could be made more

effective to guarantee the applications’ SLA. For illustration, application provisioning,

auto-scaling, monitoring, SLA, and QoS performance are all interconnected and can

cause an impact on each other. After application provisioning and deployment, contin-

uous monitoring is the key process which can trigger any required auto-scaling process

based on the application QoS performance. But, to detect the required application per-

formance, both cloud resources’ providers and customers need the SLA to define QoS

parameters.

13

 Determining how an application’s performance will be impacted due to unpredicta-

ble conditions is a complex problem and is the foundational research motivation for this

PhD.

1.3. Research Objectives and Contributions

Uncertainties in cloud environments can be tackled through the development of effec-

tive, scalable, inter-operable, easy-to-use monitoring and Benchmarking techniques.

 Accordingly, this PhD thesis, focuses on developing techniques and frameworks for

effective multi-layer monitoring and benchmarking of application performance de-

ployed on multi-clouds. This monitoring and benchmarking framework enables captur-

ing the QoS parameters that define the applications’ performance characteristics. Fur-

thermore, it also investigates technical challenges and dimensions pertaining to cloud

application engineering that have direct impact on the application’s performance and

QoS.

 In particular, it investigates a model that enables monitoring of applications’ compo-

nents and the associated QoS parameters to detect application performance variations

under uncertainties, which refers to the non-estimated actions or events. Furthermore,

the model is extended to enable real-time benchmarking of cloud-hosted applications.

 In summary, the aim of this PhD research is to investigate, propose, develop, implement

and validate novel techniques and frameworks for real-time cross layer monitoring and bench-

marking of QoS parameters of applications deployed on multi-cloud environment.

14

 To address the aim stated above, the following three research questions were formu-

lated:

1. What is the current state-of-the-art architecture dimensions and issues of cloud

applications’ monitoring and benchmarking? In particular:

 What is the body of the knowledge in current cloud monitoring and bench-

marking tools and techniques?

 What is the support for multi-cloud and cross layers monitoring and bench-

marking?

2. How to design a monitoring tool which is scalable, dynamic, agnostic to cloud

platform, agnostic to cloud layer, and agnostic to cloud application type? In par-

ticular:

 How to determine layer specific application monitoring requirements; i.e.,

how cloud consumers can stipulate at which cloud layer (SaaS or PaaS or

IaaS) his/her application should be monitored?

 How cloud consumers can stipulate on which cloud provider platform or

datacentre his/her application should be monitored?

 How to model QoS and SLA information to monitor applications’ perfor-

mance?

3. How to design a benchmarking tool which closely integrates with a monitoring tool

and is able to perform real-time benchmarking of applications’ components at SaaS,

PaaS, and IaaS layers?

15

 The thesis makes the following contributions which addresses the above research

questions:

In relation to research Question 1,

 Advancing the fundamental understanding of cloud resource and application

monitoring and benchmarking concepts.

 Identification of the main research dimensions for developing monitoring and

benchmarking techniques pertaining to multi-cloud hosted multilayers compo-

nents applications.

 By addressing research question 2 and 3, the thesis contribution is developing cross-

layer cloud monitoring and benchmarking techniques for multi-cloud environments. In

particular, it proposes the Cross-Layer Multi-Cloud Application Monitoring- and

Benchmarking-as-a-Service (CLAMBS) Framework. CLAMBS has the following novel

features:

o It provides the ability to monitor and profile the QoS of applications,

whose components are distributed across multiple heterogeneous public

and/or private clouds;

o It provides visibility into the QoS of individual components of application

stack (e.g., CPU at IaaS layer, Database server at PaaS layer, and web ap-

plication at SaaS layer). In particular, CLAMBS facilitates efficient collec-

tion and sharing of QoS information across SaaS, PaaS, and IaaS layers by

deploying a cloud provider agnostic intelligent multi-agent technique;

16

o It provides benchmarking-as-a-service that enables the establishment of

baseline performance of application deployed across multiple layers using

a cloud-provider agnostic technique; and

o It is a comprehensive framework allowing continuous (real-time) bench-

marking and monitoring of multi-cloud hosted multi-layered applications.

 Furthermore, to verify, validate and evaluate the proposed CLAMBS framework,

the thesis:

1. Implements the Cross-Layer Multi-Cloud Application Monitoring- and Bench-

marking-as-a-Service (CLAMBS) Framework in Java, SNMP, RESTlet technology,

and SIGAR. The total number of code lines was almost 4000 lines.

2. Demonstrates the scalability and efficiency of CLAMBS by conducting extensive

real-world experimentations on cloud platforms such as Amazon AWS, and Mi-

crosoft Azure platforms.

3. Presents an empirical evaluation of CLAMBS framework.

 The proposed techniques and frameworks can help system administrators and appli-

cations developers as follows:

(i) keeping the cloud services and applications operating at peak efficiency;

(ii) detecting variations in service and application performance;

(iii) accounting the SLA violations of certain QoS parameters; and

(iv) tracking the leave and join operations of services due to failures and other dy-

namic configuration changes.

17

It should however be noted that the developed framework is quite generic, and ag-

nostic to cloud platforms, applications, service and cloud layers.

1.4. Thesis Outline

The thesis is organized into 7 chapters. Figure 1.3 presents an illustration of the thesis

structure.

 Chapter 2 presents a literature background to cloud applications life-cycle, resources

provisioning, applications monitoring, and monitoring research and evaluation dimen-

sions. Moreover, it discusses the QoS and SLA in cloud environments. Furthermore, this

chapter provides a discussion about cloud resources benchmarking. In addition, a litera-

ture review of monitoring approaches identifying the need for monitoring across differ-

ent cloud applications and layers as well as monitoring in multi-cloud environments is

presented. Finally, it contains a classification and analysis for monitoring and bench-

marking tools based on the novel taxonomy. This chapter is based on a published paper

(K Alhamazani et al., 2014a).

18

Figure ‎1.3: Thesis outline.

 Chapter 3 presents in-depth discussion of the proposed applications monitoring

across cloud application and layers. The proposed framework is Cross-Layer Multi-

Cloud Application Monitoring-as-a-Service Framework (CLAMS). This chapter is based

on a published paper (K Alhamazani et al., 2014b, K Alhamazani et al., 2014c). The sys-

tem framework primarily targets the applications’ components distributed across cloud

layers and platforms.

 Chapter 4 introduces a new mechanism for application performance on multi-clouds

environments. The proposed system CLAMBS extends the CLAMS framework pro-

posed in chapter 3. The proposed framework is called Cross-Layer Multi-Cloud Real-

Time Application QoS Monitoring and Benchmarking As-a-Service Framework. The ex-

19

tension aims to apply benchmarking tasks across multi-cloud data-centers. This chapter

is based on my published paper (K Alhamazani et al., 2015).

 Chapter 5 presents a performance model and implementation of the proposed

CLAMBS framework. This chapter is based on my published paper (K Alhamazani et

al., 2015). This chapter mainly studies the scalability of CLAMBS in terms of communi-

cation messages complexity and overheads within CLAMBS framework. Moreover, this

chapter presents an implementation of the proposed system frameworks CLAMS and

CLAMBS. It provides detailed discussion of implementing the proposed frameworks in

a real-world environment. Finally, in this chapter the details of JAVA implementation

and the other harnessed technologies are presented.

 Chapter 6 presents extensive evaluations and experimental results of the system pre-

sented in Chapter 3, and Chapter 4 respectively. Real-world experimentations to prove

the feasibility of CLAMS are performed, supported by real-world outcomes to validate

the efficiency and scalability of the proposed framework. Similarly, the chapter presents

and discusses the results of extensive evaluation of CLAMBS in a real-world environ-

ment.

 Finally, chapter 7 concludes the thesis with pointers to possible future works. This

chapter is based on published papers (K Alhamazani et al., 2014b, K Alhamazani et al.,

2015). In this thesis, the term CLMABS framework is used to refer to both CLAMS and

CLAMBS.

20

22.. CClloouudd AApppplliiccaattiioonnss MMoonniittoorriinngg,,

RReesseeaarrcchh DDiimmeennssiioonnss,, DDeessiiggnn IIss--

ssuueess

2.1. Introduction

A major focus of this thesis is to address the challenges of application monitoring and

benchmarking in cross-layers and multi-cloud environments. Monitoring is managing

the performing condition of software and hardware resources in a cloud environment. It

provides data about the status/health of the monitored resource; for example, the CPU

and memory utilization for the application deployed in cloud platform. Benchmarking

is done to test and estimate the application’s performance before the cloud application

deployment. In a cloud environment, the process of application provisioning is to effec-

tively manage the configuration and deployment of applications in cloud environments.

Provisioning of applications in cloud computing environments is quite challenging con-

sidering the large number of heterogeneous cloud resources e.g. VM configurations and

QoS parameters (e.g. CPU, memory, and network I/O). Traditionally, the term resources

means denoting a physical entity, such as a computer, network, or storage. But, in this

thesis the term resources is used in a generic sense, to indicate any capability that may be

shared in a cloud environment (e.g. physical resources and virtualized resources).

21

 This chapter presents the current state-of-the-art in cloud applications monitoring

and benchmarking. An evaluation framework that identifies the research dimensions

and design issues in the current state-of-the-art is developed. The key challenges in de-

veloping cross-layer multi-cloud application performance monitoring and benchmark-

ing tools are highlighted. Finally, the chapter presents a comparative analysis and iden-

tifies the gaps in the current state-of-the-art.

 This chapter is organized as follows. Section 2.2 presents background on cloud com-

puting and its key technologies. Section 2.3 explores the aspects of cloud application de-

ployment. Section 2.4 presents some background on cloud resource provisioning. Sec-

tion 2.5 discusses and explores the challenges of application management in cloud envi-

ronments. Section 2.6 provides a definition of cloud monitoring and identifies the re-

spective challenges. Likewise, section 2.7 presents cloud benchmarking and the related

challenges. In section 2.8, the evaluation framework for monitoring and benchmarking

architecture in cloud environments is developed. In section 2.9, the current state-of-the-

art in commercial and open-source monitoring and benchmarking tools and approaches

is presented. Section 2.10 presents classification and analyses cloud monitoring and

benchmarking tools against the evaluation framework presented in section 2.8. Finally,

section 2.11 concludes the chapter.

2.2. Cloud Computing Background and Overview

The elasticity, pay-as-you-go model and low upfront investment offered by clouds, have

led to a proliferation of application providers. For example, popular applications such as

Netflix and Spotify use clouds such as Amazon EC2 to offer their services to millions of

22

customers worldwide. The success of cloud computing can be attributed to virtualiza-

tion that enables multiple instances of virtual machines (VMs) to run on a single physi-

cal machine via resource (CPU, storage and network) sharing, thereby leading to flexi-

bility and elasticity, as new instances can be launched and terminated as and when re-

quired.

 Virtualization is the key technology for cloud computing success and popularity. As

illustrated in chapter 1, cloud computing is divided into three layers, namely, Software

as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

The underlying physical machine is generally provided in the form of computing clus-

ters, grids or individual servers. Figure 2.1, presents the cloud platform architecture

and the virtualization concept. In this figure, the physical hardware resources are isolat-

ed by the virtualization layer. The hardware layer provides the actual computing, net-

work and storage resources and capability. The hypervisor or the virtual machine moni-

tor VMM provides the capability to create multiple VMs that are sharing and utilizing

the hardware resources.

 The virtualized computing infrastructure is created by installing a Virtual Machine

Manager (VMM) on the physical hardware [59]. Virtual machines (VMs) are virtual in-

stances managed by VMMs and isolated from each other. The VMM provides the neces-

sary isolation and security between the multiple virtual machines running in parallel on

a single physical computer (single physical server). The location where the physical

servers are installed and maintained is called a datacenter (e.g. Amazon has multiple

datacenters in Singapore, US Virginia, and Australia). Most widely adopted virtualiza-

23

tion technologies in the cloud computing paradigm include Xen, VMware, Hyper-V,

KVM, and OpenVZ.

 The advent of virtualization has led to the transformation of traditional data centers

into flexible cloud infrastructure. With the benefit of virtualization, data centers pro-

gressively provide flexible online application service hosting [70] such as: web hosting,

search, e-mails, and gaming. Largely, virtualization provides the opportunity to achieve

high availability of applications in datacenters at reduced costs.

24

 Figure ‎2.1: Cloud architecture and virtualization.

The following subsections discuss the key advantages of using virtualization in cloud

environment [78]:

25

2.2.1. Resources Sharing

Resource sharing is when multiple users take advantage of the same resource to share

its features. When a resource is not fully utilized by a single user, then it is better to

share it among multiple users. For example, in figure 2.1, multiple VMs are created for

multiple users and all are sharing the same underlying physical resources such as CPU,

memory and storage.

2.2.2. Resource Isolation

Resource isolation is when the performance of one resource does not affect another re-

source [19]. When there is sharing of resources among users, isolation of resources is

required. In figure 2.1, VM1, VM2, and VM3 are all sharing the same underlying physi-

cal resources but may belong to different users. Therefore, each VM has to be isolated

from being interfered with by non-authorized users. Users using one virtual component

should not be able to interfere with the activities of other users’ components. This is also

applicable even if different users belong to the same organization since different de-

partments of the organization may have various levels of data confidentiality.

2.2.3. Resources Aggregation

Resources aggregation is to form a cluster of resources to reduce their load. If the re-

source is too small, it is possible to construct a large virtual resource by combining small

resources. The combined resource may act as a single large resource instance. For exam-

ple, a large storage service can be made up using many small and inexpensive storage

resources.

26

2.2.4. Dynamics of Resources

A dynamic resource is a resource which is elastic during run-time and can adapt to sys-

tem changes and requirements. Virtual resources are much easier than using physical

resources where relocating is required to meet user requirements. For instance, relocat-

ing VMs across datacenters is one feature that is very challenging to apply to physical

resources.

2.2.5. Ease of Resource management

Resource management is the continuous maintaining of its performance condition.

However, physical resources are more difficult than virtualized resources to manage.

For example, it will be much more difficult and time-consuming to configure 10 physical

machines than configuring 10 virtual instances within a single physical machine.

2.3. Cloud Application Deployment

This section presents the phases of application deployment on clouds.

 The application deployment determines how, when, and which provisioning opera-

tions should be processed and applied on cloud resources. A typical cloud based appli-

cation (e.g. CDN applications) is multi-layered and consists of several components such

as load balancers, web servers, streaming servers, application servers, and database sys-

tems [136]. Notably, each component may instantiate multiple software resources across

the cloud layers as needed and when required. Such multiple instantiations can be allo-

cated to one or more hardware resources. Technically, the aforementioned application

components are distributed across cloud layers, so a number of provisioning operations

27

take place at design time as well as run-time. These provisioning operations should en-

sure SLA compliance by achieving the applications components’ QoS targets. Figure 2.2,

presents the application deployment in a cloud environment.

Figure ‎2.2: Cloud application deployment in cloud environment.

2.3.1. Resource Selection

Resource selection within the application deployment refers to the process where the

system administrator selects application components (web server, multimedia server,

database server, etc.) and hardware resources (CPU, storage, and network). This process

encapsulates the allocation of hardware resources to those selected application compo-

nents. Many resource selection algorithms have been developed and adapted for cloud

computing from grid computing [121]. The resource selection processes use workload

patterns to estimate and predict the resource availability[121].

 Similarly, algorithms were optimized for the problem of selecting resources such as a

host for the execution of cloud-based application [89]. Such optimized algorithms in-

crease the locality of a host; that is, selecting the host with minimum propagation delay

(short distance). In addition, in data-intensive environments, besides computational re-

28

sources, resources to be selected include data resources selection, which is equivalent to

replica selection in data grid [30]. Also, a framework in [15] was developed to cluster the

virtual machines to enable High Performance Computing (HPC) applications. This

framework considers the compute power of VMs and the bandwidth available between

VMs dynamically and selects the best set of VMs for the execution of HPC applications.

The framework is based on a well-known K-means data clustering algorithm to group

VMs.

2.3.2. Resource Deployment

During the resource deployment process, a system administrator instantiates the select-

ed application components on the respective hardware resources, as well as configuring

these resources for successful communication and inter-operation with the other appli-

cation components already running in the system.

 In cloud environments, applications require guaranteeing various SLA objectives to

satisfy their QoS targets. Besides, resource utilization is of dominant importance to the

cloud providers [56]. For instance, some utilization algorithms can be applied to im-

prove resources utilization (e.g. optimized algorithm for task scheduling based on ABC

(Activity Based Costing) [31]. Such an optimized algorithm considers the cost as the on-

ly SLA objective for scheduling tasks in a cloud environment. In other scenarios, the

dominant factor when deploying resources is profit. In [90], two algorithms are formu-

lated whereby the first one explicitly takes into account not only the profit achievable

from the current service, but also the profit from other services being processed at the

same resource instance. The second algorithm attempts to minimize the cost of renting

resources from other infrastructure vendors. Other mechanisms of resource deployment

29

consider computational cost and data transmission cost [128]. Mainly, such approaches

try to minimize the total execution cost of applications on cloud resources.

2.3.3. Resource Management

A resource is any physical or virtual component of limited availability within a comput-

er system. Resource management in a cloud environment is the technique for managing

resources, which can be controlling the access to this resource or releasing this resource

[5, 175]. Further, resource management in a cloud environment needs complete provi-

sioning, which includes resource selection and deployment. Besides, a resource provider

needs to be fully aware of the resources’ performing condition to apply any required au-

to-scaling or configuration such as adding cloud services when needed, and reducing

them during the periods of low demand. Gaining knowledge of the resource status re-

quires continuous monitoring and benchmarking which is the main focus of this thesis

and will be described in the next sections in more detail.

2.3.4. Resource monitoring and benchmarking

Monitoring and benchmarking processes are applied to gain the required knowledge of

the application components’ performance during provisioning. This is to ensure the re-

quired performance of deployed applications (based on QoS performance parameters

defined in SLA) and to avoid unwanted performing status. Moreover, cloud platform

resources need to be benchmarked prior to deploying applications to test certain QoS

parameters (e.g. availability, network bandwidth). Being aware of QoS will enable ap-

plications’ administrators to apply any required re-configuration and auto-scaling at the

right time.

30

2.3.5. Resource auto-scaling

Resource auto-scaling is modifying the resource capacity to ensure the required per-

forming condition. One of the key features of a cloud is elasticity where resources meet

the user’s needs dynamically. This cannot be applied without the right and accurate au-

to-scaling process, which can be increasing or decreasing capabilities of certain cloud

resources to meet the QoS targets in an SLA; for example, increasing the number of VMs

or decreasing this number according to the user’s requirements. To perform effective

auto-scaling, it is important to understand the performance of each individual applica-

tion component deployed across the cloud layers.

 Nevertheless, the current monitoring and benchmarking tools are not capable of

monitoring a specific component of an application (e.g. database component). Therefore,

auto-scaling may not take place for a specific application component; rather, it is only

based on the whole application or resource performing condition.

2.4. Cloud Resource Provisioning

Cloud resource provisioning is a complex task [29] and is referred to as the process of

application deployment and management on cloud infrastructure. Current cloud pro-

viders such as Amazon EC2, ElasticHosts6, GoGrid7, TerraMark8, and Flexiant9, do not

completely offer support for the automatic deployment and configuration of application

6
 www.elastichosts.com

7
 www.gogrid.com

8
 www.terramark.co.nz

9
 www.flexiant.com

http://www.elastichosts.com
http://www.gogrid.com
http://www.terramark.co.nz
http://www.flexiant.com

31

components [83]. Therefore, several companies, e.g. RightScale10 and Scalr11 provide

scalable managed services on top of cloud infrastructures to cloud consumers to support

automatic application deployment and configuration control [83].

 In order to ensure the provisioning goals are met at all times, a provisioning mecha-

nism runs continuously. The following are design goals for any provisioning approach

[174]:

Automation - All decisions related to provisioning should be made automatically with-

out the need for human intervention;

Adaptation - The application provisioner should adapt to workload uncertainties;

Performance assurance - The resource allocation in the system can be dynamically var-

ied for satisfying achievement of QoS targets.

 Furthermore, the three main steps for cloud provisioning are virtual machine provi-

sioning, resource provisioning, and application provisioning [138, 139, 174].

2.4.1. Resource Provisioning

Resource provisioning is allocating a specific cloud resource to an application or appli-

cation’s component [74]. For instance, the virtual machines provisioning process refers

to the process of creating VM instances on a cloud provider’s underlying physical re-

sources that match the critical characteristics (e.g. storage, memory), configurations

10

 www.rightscale.com
11

 www.scalr.com

http://www.rightscale.com
http://www.scalr.com

32

(software environment), and other requirements (availability zone) [54]. For illustration,

Bitnami12 enables consumers to provision a Bitnami stack that consists of VM and appli-

ances, which are completely configured and ready to use on any cloud platform [24]. On

the other hand, consumers of Amazon EC213 will first require the provision of a VM on

the cloud then may opt for the necessary appliances on the VM [24]. In [181], a proposed

mechanism named CA-PROVISION handles the set of available computing resources as

‘liquid’ resources which, can be configured into various types of VM instances based on

cloud customers’ requests. The CA-PROVISION mechanism regulates the allocation

based on the users’ valuations until all resources are allocated. Also, it involves a reserve

price indicated by the operating cost of the resources. Similarly, Shirako and NIMO are

two systems that complement each other to obtain demand provisioning of VM instanc-

es mainly for database applications [158]. Similarly, Shirako controls the VM provision-

ing process while NIMO guides Shirako through active learning models [68]. Another

example of the VM instances provisioning mechanism is the Business Process Execution

Language (BPEL) system proposed in [52]. Primarily, PBEL is on-demand resource pro-

visioning which supports scientific workflow by dynamically provisioning VMs in Am-

azon EC2.

2.4.2. Application Provisioning

Application provisioning is the process of application deployment on VMs on the cloud

infrastructure. For example, deploying a Tomcat14 server as an application component

on a VM hosted on the Amazon EC2 cloud. Applications provisioning can be done in

two ways. The first method consists of deploying the application components together

while hosting a VM. In the second method, the consumer may want to first deploy the

12

 https://bitnami.com
13

 https://aws.amazon.com/ec2/
14

 tomcat.apache.org/

https://bitnami.com
https://aws.amazon.com/ec2/

33

VM, and then as a separate step, the consumer may deploy the applications. Figure 2.3,

presents a sequence diagram to illustrate the applications and resources provisioning.

Figure ‎2.3: Provisioning and deployment sequence diagram

o Step 1 - from the VM repository, a consumer views the available VMs provided by the

cloud platform and selects the preferable VM instance type.

o Step 2 - the consumer sets up his/her preferences/configurations on this VM.

o Steps 3 and 4 - the user deploys this VM on the cloud platform successfully. Subse-

quently,

o Steps 5 and 6 - the consumer retrieves back a list of available applications from the

applications repository.

34

o Step 7 - the consumer simply opts for his/her desired application components that

he/she would like to provision.

o Step 8 - the cloud consumer deploys the application components and the VM on the

cloud platform.

 After the provisioning stage, a cloud workflow instance might be composed of mul-

tiple cloud resources, and in some cases resources from a number of different resources

providers. Therefore, monitoring the QoS performance of cloud applications’ on multi-

clouds become much more complex [101]. Furthermore, at run time, the QoS of the run-

ning instance needs to be consistently monitored to guarantee the SLA and

avoid/handle abnormal system behavior. Monitoring is the process of observing and

tracking applications/resources at run time. It is the basis of control operations and cor-

rective actions for running systems on clouds. Despite the existence of many commercial

monitoring tools in the market, managing service level agreements (SLAs) between mul-

tiple cloud providers still pose a major issue in clouds.

 In some way, cloud monitoring, benchmarking, SLA and dynamic configuration are

correlated in the sense that one has an impact on another. In other words, enhancing

monitoring and benchmarking functionalities will in turn assist meeting SLAs as well as

improving dynamic configuration operations at run time. Moreover, an SLA has to be

met by the cloud providers in order to reach the required reliability level required by

consumers. Also, auto-scaling and dynamic configurations are required for optimal use

of cloud technology. This all-together leads us to the conclusion that the cloud monitor-

ing and benchmarking process is a key element of cloud operations. However, the limi-

tation with current monitoring and benchmarking frameworks (e.g. Cloudwatch, Azure

35

FC which do not support cross-layers and multi-clouds monitoring and benchmarking)

render the need to further study and enhance the cloud monitoring and benchmarking

process.

2.5. Applications Management Challenges in Cloud Environment

Cloud resource management as presented in section 2.3.3 refers to the technique for

managing the resource, which can be controlling the access to this resource or releasing

this resource. In general, a cloud resource, which could be the application’s component

container in cloud platform, needs continuous management. Furthermore, resource

management may involve a wide range of different scenarios. In parallel to these scenar-

ios, management challenges may arise at any point in time.

2.5.1. Resource Scenarios in Cloud environment

The following examples characterize some of the different resource management situa-

tions that can take place in cloud environments [43]:

2.5.1.1 Task submission

Task submission is when a resource accepts responsibility to perform a specified task

(e.g. execute a program, move a file, or perform a database function). Ideally, this repre-

sents a basic type of resource management between a resource provider and a consumer

in which a resource provider commits to perform the agreed function with the resource

consumer.

36

2.5.1.2 Workload management

Workload management refers to the extension of task submission described earlier by

provisioning tasks to provide a specified level of capability (such as processors on a

computer, threads or memory in a server, bandwidth on a network, or disk space on a

storage system). This would enable the application manager to gain control over the as-

pects of how such a task is performed over time.

2.5.1.3 Advanced reservations

In which a resource capability becomes available by its local manager to other users to

be reserved for use [167]. This type of resource management can be particularly im-

portant for heterogeneous resource sharing where each resource is owned by a different

institution [131].

2.5.1.4 Co-scheduling

Co-scheduling refers to resources when they are made to be available simultaneously by

organizing advanced reservation agreements across the required resources. This type of

management function is characterized by data transfer services in which data source

and storage systems must be coordinated along with network bandwidth. In this condi-

tion, multiple compute resources should be available at the same period of time [44, 61].

 For the aforementioned resource scenarios, resource providers need to apply resource

management in the form of monitoring, benchmarking, and control, which is discussed

in the following sections.

37

2.5.2. Resource Monitoring

A continuous monitoring process is desirable to ensure that the deployed software and

hardware resources run at the required level of performance to satisfy the SLA. This

process involves detecting and gathering information about the running resources. In

case of the detection of any abnormal resource behavior, the resource administrator is

notified for policy-based corrective actions to be undertaken as a resource remedy. Sec-

tion 2.6 will discuss further the cross-layers and multi-clouds monitoring process.

2.5.3. Resource Benchmarking

Conceptually, benchmarking is a quantitative foundation of computer system and archi-

tecture research. Benchmarks are used to experimentally determine the benefits of new

designs [104]. Furthermore, benchmarking is a standard whereby a cloud resource can

be tested to determine its performance compared to its peers. Moreover, prerequisite

metrics and indicators for cloud resource have to be identified for the benchmarking

purposes. Section 2.7 will discuss further the cross-layers and multi-clouds benchmark-

ing process.

 The next section explores and discusses the features of commercial and open-source

monitoring and benchmarking frameworks.

2.6. Cloud Monitoring

2.6.1. Monitoring Process

In clouds, monitoring is essential to maintain high system availability and performance

of a certain resource and it is important for both resource providers and consumers [47,

38

69, 116]. Primarily, monitoring is a key tool for (i) managing software and hardware re-

sources, and (ii) providing continuous information for those resources as well as for

consumer hosted applications on the cloud. Cloud activities like resource planning, re-

source management, datacenter management, SLA management, billing, troubleshoot-

ing, performance management, and security management essentially need monitoring

for effective and smooth operations of all the system’s resources [2]. Consequently, there

is a strong need for monitoring, looking at the elastic nature of cloud computing [157].

In cloud computing, monitoring can be of two types: high-level and low-level. High-

level monitoring is related to the virtual platform status [33]. Low-level monitoring is

related to information collected about the status of the underlying physical infrastruc-

ture [33, 163]. The cloud monitoring framework is a self-adjusting and typically multi-

threaded framework that is able to support monitoring functionalities [11]. It compre-

hensively monitors pre-identified instances/resources on the cloud for abnormalities. On

detecting an abnormal behavior, the monitoring framework attempts to auto-repair this

instance/resource if the corresponding monitor has a tagged auto-heal action [11]. In

case of auto-repair failure or an absence of an auto-heal action, a support team is noti-

fied. Technically, notifications can be sent by different means such as email, or SMS [11].

2.6.2. Monitoring, QoS, and SLA

As mentioned above, cloud monitoring is needed for continuous assessment of re-

sources or application components on cloud environments in terms of performance, re-

liability, power usage, ability to meet SLA, security, etc [87]. Fundamentally, the moni-

toring process can be computation based and/or network based. The computation based

monitoring process is concerned with the status of the real or virtualized platforms and

infrastructure running cloud application components. Data metrics considered in such a

process may include CPU speed, CPU utilization, disk throughput, VM acquisi-

39

tion/release time and system up-time. Network based measurements focus on network

layer data related metrics like jitter, round-trip time RTT, packets loss, traffic volume

etc. [166].

 At run-time, a set of operations takes place in order to meet the QoS parameters spec-

ified in an SLA document that guarantees the required performance objectives of the

cloud consumers. Being aware of the system’s current application components and

hardware resources status is imperative for handling such uncertainties to ensure the

fulfillment of QoS targets [155]. In addition, detecting exceptions and malfunctions

while deploying application components on hardware resources is essential e.g. show-

ing QoS delivered by each application component (software resource such as web server

or database server) hosted on each hardware resource. Uncertainties can be tackled

through the development of an effective, scalable, interoperable monitoring framework

with easy-to-use interfaces.

 Infrastructure providers try to utilize idle resources by renting them to other users in

order to gain profit. Hence, providers accept new requests aiming to increase the profit.

However, they must guarantee QoS targets based on the settled SLA with their custom-

ers. In this case, the SLA is acting as an association between both the service provider

and the service customer. For this purpose, an SLA summarizes a number of metrics, on

the basis of which users can specify their requirements. Characteristically, QoS targets

in cloud environment vary across application types. For example, QoS targets for eRe-

search applications are different from static, single-tier web applications (e.g. web site

serving static contents) or multi-tier applications (e.g., on demand audio/video stream-

ing). Based on application types, there is always a need to negotiate different SLAs.

40

Hence, the SLA document includes conditions and constraints that match the nature of

QoS requirements with each application type. For example, a bio-informatics applica-

tions running a genome analysis experiment on cloud resources will only care about da-

ta transfer (upload and download) network latency and processing latency. On the other

hand, for audio/video streaming applications, the quality of the transferred data over

network is more important. Hence, other parameters gain priority in certain situations.

Failing to track QoS parameters will eventually lead to SLA violations. Consequently,

monitoring is fundamental and responsible for an SLA’s compliance certification [108].

Moreover, the cross-layers application monitoring approach can provide significant in-

sights into the application performance to both the consumer and cloud provider. This is

essential for consumers as they can identify and isolate application performance bottle-

necks in specific layers. From a cloud provider point-of-view, the QoS statistics on ap-

plication performance across-layers can help them maintain their SLAs, delivering better

performance and higher consumer satisfaction.

2.6.3. Monitoring across Different applications, Cross-Layers, and Multi-Clouds

As mentioned previously, application components (e.g., streaming server, web server,

indexing server, compute service, storage service, and network) are distributed across

cloud layers including PaaS and IaaS. Thus, in order to guarantee the achievement of

QoS targets for the application as a whole, monitoring QoS parameters should be per-

formed across all layers of the cloud stack including Platform-as-a-Service (PaaS) (e.g.,

web server, streaming server, indexing server, etc.) and Infrastructure-as-a-Service

(IaaS) (e.g., compute resources, storage resources , and network). Figure 2.4 illustrates

how different components in a cloud platform are distributed across the cloud platform

layers. Table 2.1 shows the QoS parameters that a monitoring tool should consider at

each cloud layer.

41

 The current cloud-application monitoring frameworks such as Amazon Cloud-

Watch15 typically monitors the entire VM as a black box. This means that the actual be-

havior of each application’s component is not monitored separately. This renders appli-

cation monitoring with a limited scope where not all components distributed across

PaaS and IaaS layers are monitored and benchmarked holistically. This limiting factor

reduces the ability for fine-grained application monitoring and QoS control across-

layers. Moreover, current cloud monitoring frameworks are mostly incompatible across

multiple cloud providers. For example, Amazon CloudWatch does not allow monitoring

of application components hosted on non-AWS platforms. Furthermore, Windows Az-

ure Fabric Controller does not enable multi-clouds monitoring. This defeats the distrib-

uted nature of cloud application hosting. These drawbacks trigger the significance of

having interoperable and cross-layer multi-clouds enabled monitoring techniques and

frameworks.

15

 http://aws.amazon.com/cloudwatch/

http://aws.amazon.com/cloudwatch/

42

Figure ‎2.4: Components across cloud platform layers.

43

Cloud Layer Layer Components Targeted QoS Parameters

SaaS
Appliances x,y,z, etc. BytesRead, BytesWrite, Delay, Loss, Availabil-

ity, Utilization.

PaaS

Web Server, Streaming

Server, Index Server, Apps

Server, etc.

BytesRead, BytesWrite, SysUpTime, SysDesc,

HrSystemMaxProcesses, HrSystemProcesses,

SysServices.

IaaS

Compute Service, Storage

Service, Network, etc.

CPU Parameters: (Utilization, ClockSpeed, Cur-

rentState).

Table ‎2-1: QoS parameters at each cloud platform layer.

2.7. Cloud Benchmarking

2.7.1. Benchmarking Definition

The diversity of cloud providers leads to a practical question: how well does a cloud pro-

vider perform compared to the other providers? Answering this question will benefit both

cloud customers and providers. For a potential customer, the answer can help choose a

provider that best fits their performance and cost needs. For instance, a customer may

choose one provider for storage intensive applications and another for computation in-

tensive applications. For a cloud provider, such answers can point to the right directions

for improvements. For instance, a provider should pour more resources into optimizing

table storage if the performance of its store lags behind competitors.

44

A brief definition for benchmarking can be as following ‚A benchmark is a program which

generates a well-known workload on the system under test and enables the expert to measure a

set of predefined performance indexes‛ [135].

2.7.2. Benchmarking, QoS, and SLA

In a cloud computing environment, the QoS parameter values are stochastic and can

vary significantly based on unpredictable user workloads, hardware and software fail-

ures, thereby necessitating the awareness of system’s current software and hardware

service status such that QoS targets of cloud-hosted applications are met. Hence, besides

cloud monitoring, benchmarking in cloud can assist in the holistic monitoring and

awareness of applications’ components at *aaS layers to meet SLAs. Additionally,

benchmarking can be used for: (i) understanding application components’ performance

(resource and network) before application deployment; (ii) facilitating application base

lining; and (iii) enabling continual comparison of applications’ QoS performance against

baseline results. Recently, both industry and academia have focused on cloud monitor-

ing and benchmarking [16]. However, most of the approaches are limited to one cloud

provider and/or one cloud platform layer (IaaS/PaaS/SaaS).

 In addition, there are several benchmarks for evaluating High Performance Compu-

ting (HPC) servers, web servers, and database servers. However, these traditional

benchmarks are not essentially appropriate for evaluating cloud platform resources be-

cause of the differences between a cloud environment and traditional computer systems

[77].

45

2.7.3. Cross-Layers Benchmarking on Multi-Clouds

While there has been significant interest in the area of cloud monitoring by academia

and industry, most of the existing approaches [94, 185] suffer from several problems; for

example, they are tightly coupled to a particular cloud platform and can only perform

monitoring or benchmarking at a particular cloud layer (e.g., either IaaS or PaaS or

SaaS). There is no existing benchmark suite for evaluating cloud performance on the

whole system level. Furthermore, many other benchmarking efforts have been done

from the industry and research, like VMware VMmark, Intel vConsolidate. But, these

projects only address high-level performance’s characterization of co-located virtual

machines [55].

 Therefore, it is asserted that in a distributed application hosting environments such as

clouds, there is a need for application deployment across multi-cloud providers and

multi-layered environments to benefit from security, QoS, resiliency, availability and

economies of scale. For example, in terms of QoS, different public clouds may perform

differently. For instance, the recent results presented by Leitner and Cito [92] show that

Amazon EC2 and Google App Engine may perform differently with similar cloud con-

figurations, regions and cost. Thus, it may make sense to use a particular cloud provider

over another provider given the type of VM configuration and region requirements.

Further, in terms of availability and resiliency, it is also suggested that multiple cloud

providers are supported for deploying applications [92].

 Additionally, a study made over four different cloud providers show that these pro-

viders vary significantly in terms of performance and cost [96]. For illustration, this

study shows the following:

46

I. Cloud instances are not equally cost-effective. For example, while only 30% more

expensive, a fourth provider’s virtual instance can be twice as fast as that of first

provider’s.

II. The second provider allows its virtual instance to fully utilize the underlying

physical machine when there is no local resource competition. Therefore, an in-

stance can achieve high performance at low cost.

III. The performance of the storage service can vary significantly across the provid-

ers. For instance, the first provider’s table query operation is an order of magni-

tude faster than that of the others.

IV. The providers offer dramatically different intra-datacenter bandwidth, even

though intra-datacenter traffic is free of charge. For instance, the first provider’s

bandwidth is on average three times higher than the second provider’s.

 This necessitates QoS monitoring and benchmarking cross-layers. For example, the

failure of a particular VM (IaaS layer) affects the QoS of web application (PaaS layer) or

database application (PaaS layer) hosted within that VM. This ultimately affects the QoS

of the end-user of that web application offering (SaaS layer). This establishes the need

for the cloud monitoring and benchmarking framework that is capable of benchmarking

applications and components across multiple cloud layers and across multiple cloud

provider environments. Further, benchmarking aids in ensuring that the system’s cur-

rent performance is as good as its baseline performance.

47

2.8. Evaluation Framework

This section presents the basic components that can be considered as evaluation dimen-

sions in order to evaluate a monitoring or benchmarking framework in a cloud compu-

ting environment. This is motivated by the lack of work that evaluates monitoring or

benchmarking tools.

2.8.1. Monitoring and Benchmarking Framework Architecture

A monitoring and benchmarking technique architecture refers to the technique, which is

applied for communicating and processing monitoring and benchmarking related per-

formance QoS parameters. Technically, it is a way of connecting a monitoring and

benchmarking technique with an application’s components and cloud resources to col-

lect related statistical data. Typically, network monitoring and benchmarking can be

performed on centralized and de-centralized network architectures as shown in figure

2.5.

48

Figure ‎2.5: Framework network architecture.

2.8.1.1 Centralized Architecture

In the centralized architecture shown in figure 2.6, the PaaS and IaaS resources send QoS

status update queries to the centralized monitoring/benchmarking server. In this

scheme, the monitoring and benchmarking techniques continuously pull the infor-

mation from the components via periodic probing messages. In [11], the authors show

that a centralized architecture allows better management for cloud applications.

49

Figure ‎2.6: Centralized monitoring/benchmarking framework architecture.

 In Mobile Cloud Computing (MCC), an increased security level for mobile devices is

achieved by a centralized monitoring and maintenance of software [84].

Nevertheless, a centralized approach has several design problems, including:

o Being prone to a single point of failure;

o Lack of scalability;

o High network communication cost at links leading to the information server (i.e.,

network bottleneck, congestion); and

o A possible lack of the required computational power to serve a large number of

monitoring requests.

50

2.8.1.2 Decentralized Architecture

Peer-to-peer networking development have become of interest to both business and re-

search communities. Today, many peer-to-peer frameworks have been developed to

provide overlay infrastructures to create applications such as dynamic file sharing, con-

tent distribution, application multicast, VoIP services, and DNS systems [188]. Further,

some protocols of peer-to-peer started to enhance the overall performance of such over-

lay nodes [88, 177].

 New proposals for decentralized cloud monitoring and benchmarking tools have

gained momentum. Figure 2.7 shows the broad schematic design of a decentralized

cloud monitoring/benchmarking framework. The decentralization of monitor-

ing/benchmarking framework can overcome the issues related to current centralized

systems. A monitoring/benchmarking framework configuration is considered as decen-

tralized if none of the components in the framework is more important than the others.

In case one of the components fails, it does not influence the operations of any other

component in the framework.

51

Figure ‎2.7: Decentralized monitoring/benchmarking framework architecture.

 Structured peer-to-peer Overlay

 Looking forward, to have a network layout where a central authority is disabled has

led to the development of the structured peer-to-peer networks. In such a network over-

lay, a central point of failure is eliminated [45, 46]. Often, structured peer-to-peer

frameworks are denoted as Distributed Hash Tables (DHTs) [21]. In DHTs, a variant of

regular hashing is used to allocate the ownership of each file to an individual peer. This

enables peers to search for resources on the network using a hash table, which is,

(key, value) pairs that are stored in the DHT, and any joining node can efficiently regain

http://en.wikipedia.org/wiki/Consistent_hashing
http://en.wikipedia.org/wiki/Hash_table

52

the value associated with a given key [34]. The basic service of such protocols is named

Key-based Routing service (KBR). Further, such protocols are different in many charac-

teristics (e.g. overlay topology and routing table maintenance). Nevertheless, to route

traffic proficiently through the network, nodes in a structured overlay must continue

maintaining lists of neighbors that meet specific criteria [97]. Therefore, they are less ro-

bust in networks with large numbers of nodes frequently joining and leaving the net-

work. Examples of structured peer-to-peer networks include (e.g. CAN [140], Chord

[165], Pastry [147], and Tapestry [186]).

 Unstructured peer-to-peer Overlay

 Unstructured peer-to-peer networks overlay is meant to be a distributed overlay but

the difference is that the search directory is not centralized unlike structured peer-to-

peer networks overlay, which leads to absolute single point failure in such network

overlay [63]. In other words, the form of connections between nodes are random. Since

there is no compulsory structure applied globally on such networks overlay, they are

considered easier to build and allow for localized optimizations to different regions of

the overlay [35]. Well known examples of unstructured peer-to-peer networks include

(e.g. Napster [159], and Gnutella [144]). Unlike structured peer-to-peer overlay, unstruc-

tured peer-to-peer overlay are considered to be more robust because the role of all peers

in the network is the same.

 Hybrid peer-to-peer Overlay

 A Hybrid peer-to-peer network system is a combination of structured and unstruc-

tured peer-to-peer network systems. Super peers can act as local search hubs in small

portions of the network whereas the general scope of the network behaves as unstruc-

53

tured peer-to-peer system [91]. A typical model of a Hybrid peer-to-peer network is

having a centralized peer acting as a server which, helps peers find each other. Kazaa is

a hybrid of centralized Napster and decentralized Gnutella network systems [100].

Technically, Hybrid peer-to-peer network systems provide better performance over

pure structured networks and unstructured networks overlay since some specific func-

tions involve a centralized functionality and at the same time get advantage from the

decentralized aggregation of peers provided by unstructured networks [178].

2.8.2. Interoperability

The interoperability perspective in technology focuses on the system’s technical capabil-

ities to interface between organizations and systems. It also focuses on the resulting mis-

sion of compatibility or incompatibility between systems and data collation partners.

Modern business applications developed on cloud are often complex and require in-

teroperability capability. For example, an application owner can deploy a web server on

Amazon cloud while the database server may be hosted in Azure cloud. Unless data

and applications are integrated across multiple clouds properly, the results and benefits

of cloud adoption cannot be achieved. Furthermore, interoperability is also necessary to

avoid cloud provider lock-in. In order to achieve cooperation and federation, companies

and organizations’ cloud services must be able to effortlessly interact with different and

heterogeneous PaaS services. However, studies on existing cloud platforms show that

such PaaS services require the use of specific and proprietary APIs [154]. For example, to

interact with the Force.com PaaS Apex, REST API is provided, Cloud Foundry16 is deliv-

ered with a proprietary API (i.e. the Cloud Foundry core REST API), etc [151]. Further,

each existing PaaS exposes a different interface and no standardized API is reachable by

16

 http://www.cloudfoundry.com/

http://www.cloudfoundry.com/

54

PaaS resources consumers. Thus, the actual PaaS provider’s policy makes a seamless in-

teraction with their PaaS a very difficult task.

Figure ‎2.8: Interoperability classification.

 For the above issues and requirements, this dimension (Interoperability) refers to the

ability of a cloud monitoring framework to monitor and benchmark application compo-

nents that may be deployed on multi-clouds. While it is not difficult to implement a

cloud-specific monitoring/benchmarking framework, to design a generic cloud monitor-

ing/benchmarking framework that can work on multi-clouds remains a challenging

problem. Next, the interoperability (Figure 2.8) of monitoring/benchmarking frame-

works is classified into the following categories: Cloud Dependent and Cloud Agnostic.

2.8.2.1 Cloud Dependent

Currently many public cloud providers provide their consumers monitor-

ing/benchmarking tools to monitor or benchmark their application’s CPU, storage and

55

network usage. Often these tools are tightly integrated with the cloud provider’s exist-

ing tools. For example, CloudWatch [40], offered by Amazon is a monitoring tool that

enables consumers to manage and monitor their applications residing on AWS EC2

(CPU) resources. But, this monitoring tool does not have the ability to monitor an appli-

cation component that may reside on another cloud provider’s infrastructure such as

GoGrid or Microsoft Azure. Table 2.2 in section 2.10 illustrates some examples of cloud

monitoring and benchmarking frameworks that are specific to a cloud provider as well

as Cloud Agnostic.

2.8.2.2 Cloud Agnostic

In contrast to single cloud monitoring/benchmarking, engineering cloud agnostic moni-

toring/benchmarking tools is challenging. This is primarily due to the fact that there is

not a common unified application programming interface (API) for calling on cloud

computing services’ runtime QoS statistics. Though recent developments in cloud pro-

gramming API including Simple Cloud17, Delta Cloud18, JCloud19, and Dasein Cloud20

simplify inter-action of services (CPU, storage, and network) that may belong to multi-

ple clouds, they have limited or no ability to monitor run-time QoS statistics and appli-

cation behaviors. In this scenario, monitoring/benchmarking tools are expected to be

able to retrieve QoS data of services and applications that may be part of multiple

clouds. Cloud agnostic monitoring/benchmarking tools are also needed if one wants to

realize a hybrid cloud architecture involving resources from private and public clouds.

17

 www.simplecloud.info
18

 https://deltacloud.apache.org
19

 https://jclouds.apache.org
20

 www.dasein.org/api/dasein-cloud

http://www.simplecloud.info
https://deltacloud.apache.org
https://jclouds.apache.org
http://www.dasein.org/api/dasein-cloud

56

2.8.3. Quality of Service (QoS) Matrix

It is a non-trivial task for application administrators to understand what QoS parame-

ters and targets they need to specify to monitor or benchmark across each layer of a

cloud stack including PaaS (e.g., web server, streaming server, indexing server, etc.) and

IaaS (e.g., compute resources , storage resources, and network). As shown in figure 2.9,

this can be classified by one parameter or a group of parameters.

Figure ‎2.9: QoS matrix classification.

2.8.3.1 Single Parameter

In this scenario, a single parameter refers to a specific system QoS target. In each system,

there are major atomic/single values that have to be tracked closely and continuously.

For example, CPU utilization is basically expressed by only one single parameter in the

SLA. Such parameters can affect the whole system and a violation in SLA can lead to a

serious system failure. Unlike composite parameters where a single parameter might not

57

be of priority to the system administrator, single parameters in most cases gain high pri-

ority when monitoring SLA violations and QoS targets.

2.8.3.2 Composite Parameters

In a composite parameter scenario, a group of different parameters are taken into con-

sideration. In a cloud environment, deployed application is composed of several com-

ponents running on different resources. Thus, the performance quality can be deter-

mined by collective behaviors of those components [169]. After observing multiple pa-

rameters for estimating a functionality of one or more concerned processes, one result

could be obtained to evaluate the QoS. To illustrate this point, ‚loss‛ parameter can be

considered as a composite parameter of two single parameters: ‚one way loss‛ and

‚round trip loss‛. Similarly, ‚delay‛ can be considered as a composite parameter of

three single parameters: ‚one way delay‛, ‚RTT delay‛, and ‚delay variance‛. Table 2.2

in section 2.10 shows a list of some commercial tools for cloud monitoring and bench-

marking and it illustrates which of them support or do not support monitoring multiple

QoS parameters.

2.8.4. Cross-Layer Monitoring and Benchmarking

As shown in figure 2.10, application components (streaming server, web server, index-

ing server, compute service, storage service, and network) related to an audio/video

streaming application are distributed across cloud layers including PaaS and IaaS. In

order to guarantee the achievement of QoS targets for such an application as a whole, it

is critical to monitor or benchmark QoS parameters across multiple layers [122]. Hence,

the challenge here is to develop a monitoring framework that can capture and reason

about the QoS parameters of application components across IaaS and PaaS layers. As

58

demonstrated in figure 2.11, the visibility of commercial monitoring/benchmarking tools

are classified into following categories: Layer specific and Layer Agnostic.

2.8.4.1 Layer specific

Cloud resources are distributed among three layers namely, SaaS, PaaS, and IaaS. Moni-

toring/benchmarking tools originally are oriented to perform monitoring/benchmarking

tasks over resources only in one of the aforementioned layers. Most of present day

commercial tools are designed to keep track of the performance of resources provi-

sioned at the IaaS layer. For example, CloudWatch is not capable of monitoring infor-

mation related to load, availability, and throughput of each core of CPU resources and

its effect on the QoS (e.g., latency, availability, etc.) delivered by the hosted PaaS re-

sources (e.g., J2EE application server). Hence, there exists a considerable gap and re-

search challenges in developing a monitoring/benchmarking tool that can monitor or

benchmark QoS statistics across layers of the cloud stack.

2.8.4.2 Layer Agnostic

In contrast to the previous scenario, cross-layer monitoring/benchmarking enables the

consumers to gain insights to applications’ components performance across multiple

layers. For example, consumers can retrieve data at the same time from PaaS and IaaS

for the same application. This type of cloud monitoring/benchmarking is essential in all

cases but obviously it is more effective for consumers requiring complete awareness

about their cloud applications.

59

Figure ‎2.10: Components across cloud platform layers and QoS propagation.

60

Figure ‎2.11: Visibility categorization.

2.8.5. Programming Interfaces and Communication Protocols

In computer programming, a programming interface is a set of routines, protocols, and

tools for building software applications. A programming interface expresses a software

component in terms of its operations, inputs, outputs, and underlying types (figure

2.12).

2.8.5.1 Application Programming Interface

An application programming interface (API) is a particular set of rules (‘code’) and spec-

ifications that software programs follow to communicate with each other. It serves as an

interface between different software programs and facilitates their interaction, similar to

the way the user interface facilitates interaction between humans and computers.

61

Figure ‎2.12: Different types of programming interfaces.

 APIs allow accessing databases and/or computer hardware; in addition, APIs can fa-

cilitate the work of programming Graphical User Interface (GUI) components. For illus-

tration, APIs ease integration of new features into existing application, which are so

called plug-in APIs. Nowadays, software developers rely on pre-defined software

frameworks, which are presented mainly as APIs [173]. APIs enable developers to reuse

libraries, programming paradigms, and task delegation, in order to deliver useful sys-

tems rapidly and with high-quality code. Frameworks and libraries offer packaged solu-

tions for a set of common problems in some specific domain, for example, the signal

processing libraries of Matlab [27] or a GUI framework. They provide leverage in large

part because they are used by many applications through a published API [148].

62

 These days, most commercial monitoring tools such as Rackspace21, Nimsoft22, Re-

vealCloud23, and LogicMonitor24 provide their consumers with extensible open APIs en-

abling them to specify their own required system functionalities [98].

2.8.5.2 Command-Line Interface (CLI)

Usually known as Console User Interface and Character User Interface (CUI), a com-

mand line provides a means of communication between a consumer and a computer

that is based solely on textual input and output. Such inputs are converted into appro-

priate operating system functions. For example, in Unix, specification and parameters

are processed through the command line (e.g. argc, argv, and geropt) [41]. Typically,

command line arguments have different types (e.g. integer, string, input-file, output-file,

or flag). All these arguments except the flag argument can be followed by 0 or other pa-

rameters, which are not optional in some cases. A certain value is assigned to an argu-

ment, or otherwise, a user is requested to insert a value to an argument [41]. Advanced

computer users mostly prefer to use a command line as it provides them with more

powerful means and control over the operating system. In addition, with CLI, scripting

is a potential technique where users can save input and output of the shell commands

into a text file [160]. Basically, scripts are collections of commands which the shell can

read from the stored file and then process them as if they were inserted using the key-

board.

21

 www.rackspace.com
22

 https://support.nimsoft.com
23

 copperegg.com/tag/revealcloud
24

 www.logicmonitor.com

http://www.rackspace.com
https://support.nimsoft.com
http://www.logicmonitor.com

63

2.8.5.3 Widgets

In computer software, a widget is a software service available to consumers for running

and displaying applets via a graphical interface on the desktop. Basically, widgets can

be described as installed small applications with limited functionalities which can be ex-

ecuted within a web page. Widgets can be presented in toolkits to provide reliable and

configurable interface widgets known as groupware widgets [95]. Groupware widgets

include shared scrollbars, group text editors and shared canvas [146]. Users of such

groupware widgets can re-position and configure in few lines of code. Moreover,

groupware widgets promote group awareness and provide consistent views on shared

information [95, 130]. The Toolkit in [51] presented 3D widgets, which encapsulate ge-

ometry graphs and behavior graphs. Operations are performed on such 3D widgets

through a high-level interface, and they are linked using widgets ports. Monitis25 and

Reveal-Cloud are two popular commercial monitoring tools that provide performance

data to consumers on multiple customizable widgets.

2.8.6. Communication Protocols

Communication protocols and standards were first introduced to the industry in the late

1970’s [113]. Since then, these protocols were quickly adopted for power system applica-

tions. Primarily, communication protocols were designed to ensure interoperability be-

tween multi-vendor systems [113]. These protocols also simplify integration and com-

missioning of data communication networks, reduce the installment costs, and allow for

independent testing and validation, which in turn leads to more efficient designs.

25

 www.monitis.com

http://www.monitis.com

64

 Communication protocols can be described as well-defined format for data exchange

between communicating systems software or hardware. Each transferred data should

have specific meaning to be sent or received. Besides that, a communication protocol

must define a syntax, semantics and synchronization of conducted communication.

Moreover, standards are adopted in order to develop communication protocols. Special-

ized communication protocols may be considered as extensions of simple point-to-point

communication protocols [26]. Basically, layer-based architecture is frequently utilized

as the basic communication protocols. Similarly, a higher layer level protocols can be

designed (i.e. adding new layers of protocols) [26]. All monitoring and benchmarking

commercial tools adopt communication protocols for data transfer. Communication pro-

tocols vary and are different from one monitoring tool to another. For example, Monitis

and Rackspace follow HTTPs and FTP protocols. Another example is LogicMonitor,

which adopts the encrypted Simple Network Management Protocol (SNMP).

2.9. Commercial and Open-Source Monitoring and Benchmark-
ing Tools

Nowadays, there are a large number of monitoring and benchmarking frameworks and

products in the market, both commercial and open-source. Commercial products usual-

ly provide comprehensive characteristics but usually they are significantly costly. Alter-

natively, open-source frameworks come with no cost, but they usually have some limita-

tions, such as a limited number of devices and services to monitor or benchmark, and

most significantly no technical support. This section will explore and discuss the most

well-known monitoring and benchmarking products and frameworks.

65

2.9.1. Monitis

Monitis [115] founded in 2005, has one unified dashboard where consumers can open

multiple widgets for monitoring. A Monitis consumer needs to enter his/her credentials

to access the hosting cloud account. In addition, a Monitis consumer can remotely moni-

tor any website for uptime, in-house servers for CPU load, memory, or disk I/O, by in-

stalling Monitis agents to retrieve data about the devices. A Monitis agent can also be

used to collect data of networked devices in an entire network (behind a firewall). This

technique is used instead of installing a Monitis agent on each single device. Widgets

can also be emailed as a read only version to share the monitored information. Moreo-

ver, Monitis provides rich features for reporting the status of instances where consumers

can specify the way a report should be viewed e.g. chart, or graph. It also enables its

consumers to share the report publicly with others. Nevertheless, Monitis has no capa-

bilities to apply benchmarks to the networked devices.

2.9.2. RevealCloud

CopperEgg [142, 143] provides the RevealCloud monitoring tool. It was founded in 2010

and Rackspace is a main partner. RevealCloud enables its consumers to monitor across

cloud platform layers, e.g. SaaS, PaaS, and IaaS. It is not dedicated to only one cloud

platform; rather it is generic to allow a consumer to get its benefits within most popular

cloud providers e.g. AWS EC2, Rackspace, etc. RevealCloud is one of the very few moni-

toring tools that supports maintaining monitored historical data. It can track up to 30

days of historical data, which is considered as a prime feature that most commercial

monitoring tools lack. However, RevealCloud lacks the functionalities to benchmark

cloud resources.

66

2.9.3. LogicMonitor

LogicMonitor [102] was founded in 2008 and it is a partner with several third parties

such as NetApp, VMWare, Dell, and HP. Similar to RevealCloud, LogicMonitor enables

its consumers to monitor across cloud layers e.g. SaaS, PaaS, and IaaS. It also enables

them to monitor application operations on multi-cloud resources. The protocol used in

communications is SSL. Moreover, LogicMonitor uses SNMP as a method of retrieving

data about distributed virtual and physical resources. The LogicMonitor framework is

limited to monitoring capabilities and does not enable its users to benchmark their re-

sources.

2.9.4. Nimsoft

Nimsoft [123] was founded in 2011. Nimsoft supports cross-layers monitoring of both

virtual and physical cloud resources. Moreover, Nimsoft enables its consumers to view

and monitor their resources in case they are hosted on different cloud infrastructures;

for example, a Nimsoft consumer can view resources on Google Apps, Rackspace, Ama-

zon, Salesforce.com26 and others through a unified monitoring dashboard. Also, Nimsoft

gives its consumers the ability to monitor both private and public clouds. However,

Nimsoft does not provide any benchmarking features.

2.9.5. Nagios

Nagios [118] was founded in 2007 as an open-source network monitoring framework

that is broadly used by network administrators, ISPs, governments, as well as big enter-

prises, (e.g. Yahoo, Amazon, and Google) [119]. Nagios is confirmed to be scalable for a

large network with as many as 100,000 hosts and 1,000,000 services [119]. Technically,

Nagios enables its consumers to monitor their resources on different cloud infrastruc-

26

 www.salesforce.com

http://www.salesforce.com

67

tures as well as in-house infrastructure. Ideally, for monitoring network resources,

Nagios relies on SNMP [106]. Moreover, Nagios has been extended with monitoring

functionalities for both virtual instances and storage resources using a plugin-based ar-

chitecture. Typically, a Nagios server is required to collect the monitoring data, which

would classify it as a centralized solution. However, many possible configurations can

help create multiple hierarchical Nagios servers to reduce the disadvantages of a cen-

tralized server. A large number of plug-ins are available from the Nagios library, which

means a Nagios user can customize functionalities accordingly with requirements [23].

2.9.6. SPAE by SHALB

SHALB [162] was founded in 2002 and provides a monitoring solution called Security

Performance Availability Engine (SPAE). SPAE is a typical network monitoring tool

supporting a variety of network protocols such as HTTP, HTTPS, FTP, SSH, etc. It uses

SNMP [161] to perform all of its monitoring processes and emphasizes security monitor-

ing and vulnerability. However, SPAE does not support cross-layer monitoring (IaaS,

PaaS and SaaS).

2.9.7. Amazon CloudWatch

CloudWatch [67] is one of the most popular commercial tools for monitoring cloud re-

sources. It is provided by Amazon and it resides on EC2 to enable its consumers to mon-

itor their resources and to measure the level of usage [67]. Namely, Cloudwatch can

monitor Amazon resources such as Amazon EC2 instances, Amazon DynamoDB tables,

and Amazon RDS DB instances, as well as custom metrics generated by the user appli-

cations and services, and any log files these applications may generate [67]. However,

Cloudwatch does not support multi-cloud infrastructure monitoring but it has limited

68

infrastructure level metrics. Further, the Cloudwatch can keep up to only two weeks of

data history [129]. The user interface of Cloudwatch limits the user to view only metric

at a time. Moreover, the technical approaches used in CloudWatch to collect data are

implicit and not exposed to users. However, an API is provided for users to collect met-

rics at any cloud layer but requires the users to write additional code. Furthermore,

Cloudwatch does not provide benchmarking capabilities for its users.

2.9.8. OpenNebula

OpenNebula [112] is an open source monitoring system that provides the ability to

manage the complexity and heterogeneity of large and distributed infrastructures [126].

It uses SSH as the protocol permitting consumers to gain access and gather information

about their resources [126]. Mainly, OpenNebula is concerned with monitoring physical

infrastructures involved in data centers such as private clouds. OpenNebula toolkit

manages a data center's virtual infrastructure to build private, public and hybrid im-

plementations of infrastructure as a service [114]. Hence, OpenNebula is one of the most

commonly used open-source cloud management frameworks among research institu-

tions and enterprises.

2.9.9. CloudHarmony

CloudHarmony [156] started monitoring services in the beginning of 2010. It provides a

set of performance benchmarks of public clouds. It is mostly concerned in monitoring

the common operating system metrics that are related to (CPU, disk and memory).

Moreover, cloud to cloud network performance in CloudHarmony is evaluated in terms

of RTT and throughput.

69

2.9.10. Windows Azure FC

Azure Fabric Controller (Azure FC) [57, 58] provided by Microsoft adopts a centralized

network architecture. It applies cross-layers monitoring on Azure platform but, does not

support monitoring on multi-clouds. Moreover, Azure FC utilizes SNMP to perform

monitoring. Similar to Cloudwatch, the technical approaches used in Azure FC to collect

data are implicit and not exposed to users.

2.9.11. Lattice Framework

In [37], the Lattice monitoring framework is presented for monitoring virtual and physi-

cal resources. The Lattice framework is able to collect the information for CPU usage,

memory usage, and network usage of each Virtual Execution Environment (VEE) and

VEE host which is the physical resource. Nevertheless, Lattice lacks the functionality of

benchmarking cloud resources.

2.9.12. QoS-MONaaS

MONitoring as a Service (QoS-MONaaS) [145] [3] is a monitoring framework. It consists

of a cloud-based application which runs on top of a Stream Routing Technology for 2015

(SRT-15) platform, hence, QoS-MONaaS is exposed as a web service [145]. The focus of

QoS-MONaaS approach is to: (i) continuously monitor the QoS statistics at the Business

Process Level (SaaS); and (ii) enable trusted communication between monitoring entities

(cloud provider, application administrator, etc.).

2.9.13. PCMONS

A monitoring framework known as (PCMONS) is developed by incorporating previous

frameworks and techniques [86]. Mainly, PCMONS is developed for private clouds en-

vironments and is focused on virtual machines (PaaS layer). PCMONS proves that cloud

70

computing is a viable way of optimizing existing computing resources in datacenters.

Also, with PCMONS, orchestrating monitoring solutions on installed infrastructures be-

comes viable.

2.9.14. SBLOMARS

A number of frameworks have been proposed for VM management (PaaS layer), which

includes Simple Network Management Protocol (SNMP) for data retrieval. SBLOMARS

[105] implements several sub-agents called ResourceSubAgents for remote monitoring.

Each of SBLOMARS’s sub-agents is responsible for monitoring a particular resource. In-

side each of these sub-agents, SNMP is implemented for management data retrieval. In

its monitoring tasks, SBLOMARS focuses on enabling multi-constrain resource schedul-

ing in grid computing environments.

2.9.15. Apache CloudStack

CloudStack [80] is an open source software platform that focuses on IaaS of the cloud

layers. It provides monitoring capabilities to manage the large network of virtual ma-

chines, storage, and compute nodes that make up a cloud infrastructure. Furthermore,

CloudStack can run multiple hypervisors of multiple types, support multi-tenancy and

account management, and provide an easy-to-use web interface [80]. CloudStack is writ-

ten by Java and it has a command line mode and API mode based on REST [28]. Never-

theless, CloudStack does not enable monitoring applications across-layers nor bench-

marking capabilities.

2.9.16. Compuware’s Gomez

Compuware’s Gomez [176], is a solution for web performance optimization, (revenue

based web and mobile applications). Gomez focuses on monitoring web applications

71

(SaaS layer) from the end users’ perspective. Moreover, it focuses on cross-browser test-

ing and web load testing to optimize web-site performance. However, Compuware

lacks in its ability to monitor fine-grained application server and database events across

multiple layers of the cloud [32].

2.9.17. Cloud Object Storage Benchmark (COSBench)

COSBench [187] is a tool that is designed and implemented in Intel for benchmarking

cloud object storage services. However, COSBench lacks the monitoring capabilities re-

quired for applications components. Moreover, COSBench is restricted to cloud storage

services and therefore can only measure three metrics.

2.9.18. C-MART

For applications benchmarking C-MART [170] has a notable effect on the design and the

simplicity of a web application benchmarking tool. C-MART presents a significant tool

to emulate and then benchmark web applications such as online store or social network-

ing websites. Originally, C-MART is motivated by the fact that benchmarks need to cope

with the shift from the traditional environments to cloud environments. However, C-

MART is limited to benchmarking applications at the PaaS layer and resources at IaaS

layer.

2.9.19. CloudGauge

CloudGauge [168], presents an effective dynamic virtual machine (PaaS layer) bench-

marking tool. It provides automated scripts to provision and measure the performance

of the virtual environment setup. But, the focus of CloudGauge experimental bench-

mark was on the virtualization layer. Furthermore, the data collected was mainly CPU

usage and average load memory.

72

2.9.20. CLIQr

CliQr [38] is a benchmarking framework for optimizing cloud applications performance.

CliQr focuses on parameters pertaining to cost-performance among cloud platforms.

Hence, CliQr supports several cloud platforms such as Amazon, Microsoft Azure, and

Rackspace. However, CliQr does not consider other QoS parameters and lacks monitor-

ing capabilities. Moreover, CLIQr does not support cross-layers benchmarking.

2.9.21. Hawk-I

Hawk-I [117] is a project to study different VMs behaviors on cloud platforms. Mainly,

the implementation of Hawk-I was done on Amazon EC2. Hence, Hawk-I focuses only

on VMs (PaaS layer) but not on cloud applications (SaaS layer). Moreover, Hawk-I does

not enable users to apply monitoring functions.

2.9.22. mOSAIC Benchmarker

mOSAIC Benchmarker [17] enables users to compare different cloud providers offerings

to host applications. It stresses custom benchmarks for its users to be applied on differ-

ent cloud platforms. Similar to Hawk-I, mOSAIC Benchmarker focuses on VM instances

(PaaS layer) for benchmarking processes. However, it does not provide cross-layers

benchmarking. Further, it does not enable monitoring functionalities.

2.10. Classification and Analysis of Cloud Monitoring and bench-
marking tools - Gap Analysis

With increasing cloud complexity, efforts needed for monitoring and benchmarking

cloud resources need to be multiplied. The size and scalability of clouds when compared

73

to traditional infrastructures involve more complex monitoring and benchmarking

frameworks that have to be scalable, effective and fast. Technically, this would mean

that there is a demand for real-time reporting of performance measurements while mon-

itoring and benchmarking cloud resources and applications. Therefore, cloud monitor-

ing and benchmarking frameworks need to be advanced and customized according to

the diversity, scalability, and high dynamic cloud environments.

 In section 2.8, the main evaluation dimensions of monitoring and benchmarking

frameworks are presented. As discussed, not all of those dimensions are adopted by

monitoring and benchmarking frameworks in either open source or commercial do-

mains. However, most of these dimensions, which are basically related to performance,

have been addressed by the research community and have received some attention;

more considerable effort to achieve higher level of maturity is essential for cloud moni-

toring and benchmarking frameworks.

 Decentralized approaches are gaining more trust over centralized approaches. In con-

trast to unstructured P2P, structured P2P networks present a practical and more efficient

approach in terms of network architecture. Considering interoperability, either cloud-

dependent or cloud-agnostic, both of these monitoring and benchmarking approaches

have gained high importance. Currently, both approaches are supported by several

monitoring and benchmarking frameworks. This research finds that cloud-dependent

monitoring and benchmarking frameworks are mostly commercial; whereas cloud-

agnostic monitoring and benchmarking frameworks are typically open source.

74

 In addition, the matrix of the quality of service is the most important dimension of

monitoring and benchmarking frameworks. I elaborate on how those quality parameters

should be monitored, detected and reported and at which cloud layer a monitoring and

benchmarking frameworks should operate their processes. Further, the aggregation of

multiple parameters for a consumer application is a critical aspect of monitoring and

benchmarking. This means that a monitoring and benchmarking framework should not

be cloud layer specific or layer agnostic. This will determine the visibility characteristic

of a cloud monitoring and benchmarking framework. All of these issues in monitoring

and benchmarking need more study by the cloud community and are still in demand for

more technical improvements. Table 2.2 summarizes this research of monitoring and

benchmarking frameworks against evaluation dimensions explored in Section 2.8.

Moreover, Figure 2.13 presents a summary of all evaluation dimensions that were dis-

cussed in section 2.8.

75

Figure ‎2.13: Evaluation Dimensions tree diagram.

76

Framework
Network Arch.

(Centralized)

Network Arch.

(Decentralized)

Interoperability

Multi-Cloud

Visibility

Cross-Layers
SNMP

Extendable

APIs
Benchmarking

Monitis [115]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution) X
RevealCloud

[142, 143]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution)

Not-Stated
 X

LogicMonitor

[102]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution) X

Nimsoft [123]

Not-Stated
 X

Nagios [118] Not-Stated
 X

SPAE [162]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution) X X X

CloudWatch

[40]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution) X

Not-Stated
 X

OpenNebula

[112] X X X Not-Stated X X

CloudHarmony

[156]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution) X Not-Stated X

Azure FC [57,

58]

Not-Stated X X

SBLOMARS

[105]
 X X X X

77

Table ‎2-2: Summary of studied monitoring and benchmarking frameworks.

COSBench

[187] X X X

CliQr [38]

Not-Stated
(SaaS solution)

Not-Stated
(SaaS solution) X X

Hawk-I [117]
Not-Stated

(SaaS solution)
Not-Stated

(SaaS solution) X X X

mOSAIC

Benchmarker

[135]

Not-Stated
(SaaS solution)

Not-Stated

(SaaS solution) X X

Compuware’s‎

Gomez [176]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution X X X

C-MART [170]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution) X X

CloudGauge

[55]
Not-Stated

(SaaS solution)

Not-Stated

(SaaS solution) X X X

CLAMBS

78

2.11. Summary

To investigate existing research in cloud applications monitoring, this chapter has

reviewed the background literature on applications management in cloud environ-

ments. In addition, it discussed the state-of-the-art research in the area of cloud mon-

itoring. Also, it presented the evaluation dimensions which, by monitoring tools, can

be studied and evaluated. Furthermore, cloud benchmarking was given specific at-

tention in this review. In doing so, this chapter highlighted several design issues

and research dimensions that can help to evaluate cloud application monitoring and

benchmarking frameworks. Moreover, this chapter explored and presented several

cloud monitoring and benchmarking tools, their features and shortcomings. Finally,

the chapter presented an evaluation framework of current cloud monitoring tools.

79

33.. CCrroossss--LLaayyeerr MMuullttii--CClloouudd AAppppllii--

ccaattiioonn MMoonniittoorriinngg--aass--aa--SSeerrvviiccee

FFrraammeewwoorrkk

3.1. Introduction

A major focus of this thesis is to address the key challenges in performance monitor-

ing and benchmarking of cloud-based applications deployed across multiple cloud

providers and platforms.

 This chapter proposes CLAMS: Cross-Layer Multi-Cloud Application Monitoring as a

Service Framework. The CLAMS framework enables the monitoring of applications

components (e.g. streaming server, web server, indexing server, compute service,

storage service, and network) across-layers (Software as a Service (SaaS), Platform as

a Service (PaaS), and Infrastructure as a Service (IaaS)) on multi-clouds. CLAMS al-

lows effective capturing and sharing of QoS information. It employs an agent-based

approach that is cloud provider environment agnostic, i.e. making it compatible with

any cloud provider.

 The CLAMS framework stands as a solution framework to address the gaps in

existing monitoring approaches and a mechanism for improved cloud applications

monitoring. More specifically, CLAMS aims to address the following gaps in current

monitoring approaches:

80

o Performance monitoring for cloud applications’ components that are

distributed/hosted across different layers of the cloud platforms (e.g.

PaaS, IaaS). Research in this area of cloud applications monitoring is

still in its infancy. Current approaches do not allow cross-layers moni-

toring, hence lacking the visibility required to monitor QoS of individ-

ual components of the application (e.g., web server component, data-

base server component). The most monitoring approaches are layer-

specific.

o Current approaches lack the ability to monitor and profile QoS of ap-

plications, whose parts or components are distributed across multiple

heterogeneous public or private clouds, namely, multi-clouds. They do

not enable the users to monitor their distributed application’s compo-

nents on multi-clouds.

o Current approaches lack effective collection and sharing of QoS infor-

mation across cloud layers using a cloud provider agnostic technique;

 Summing up, current monitoring approaches do not support monitoring across

cloud platforms as well as cloud platform layers. Hence, there is a need for a moni-

toring framework that has the capability to perform cross-layer monitoring as well

as work across multiple cloud providers in a coordinated manner to deliver QoS re-

quirements of distributed cloud applications.

 The chapter is organized as follows. Section 3.2 presents an overview of CLAMS

framework and the CLAMS data collection model. Section 3.3 presents the CLAMS

architecture components. Section 3.4 illustrates the visibility and interoperability in

81

cross-cloud monitoring on multi-clouds. Section 3.5 discusses the use of CLAMS

with a real-world application scenario. Section 3.6 presents a comparison between

the CLAMS framework and current monitoring frameworks. Finally, section 3.7

concludes this chapter. Parts of this chapter have appeared in publications (K

Alhamazani et al., 2014b), (K Alhamazani et al., 2014c).

82

3.2. CLAMS: Cross-Layer Multi-Cloud Application Monitoring-
as-a-Service Framework

As argued in previous sections, monitoring is vital for: i) managing the QoS of re-

sources offered by the cloud; ii) providing continuous information on the status of

resources to cloud providers and application administrators; and (iii) detecting and

debugging software and hardware problems affecting applications’ QoS.

3.2.1. General Overview

Figure 3.1 presents an overview of the philosophy driving the proposed CLAMS

framework. As depicted in the figure, CLAMS employs an agent based approach for

cross-layer, multi-cloud resource/application monitoring. In this multi-cloud ap-

proach, Monitoring Agents are deployed in various cloud provider environments

based on application requirements. Each Agent is responsible for monitoring re-

source/application’s component information at various layers including SaaS, PaaS

and IaaS. A Manager Agent is responsible to collect QoS data from each Monitoring

Agent.

 CLAMS includes effective mechanisms for efficient cloud monitoring at different

*aaS layers. It provides standard interfaces and communication protocols that enable

an application/system administrator to gain awareness of the whole application

stack across different cloud layers in heterogeneous environments (monitor VMs

hosted on different cloud platforms). In this way, CLAMS also satisfies the challeng-

es related to interoperability between heterogeneous cloud resources.

83

Figure ‎3.1: CLAMS Framework overview.

84

 The CLAMS Monitoring Agents reside on various cloud layers e.g. IaaS, PaaS,

and SaaS. At each layer, one or more CLAMS Monitoring Agents can be allocated

according to the monitored components. For example, in figure 3.2, one CLAMS

Monitoring Agent can be allocated to monitor the web server component at PaaS

layer. Similarly, another CLAMS Monitoring Agent at IaaS layer can be allocated to

monitor the storage component. The CLAMS Monitoring Manager and the CLAMS

database component can reside on the same cloud platform where CLAMS Monitor-

ing Agents are running or they can be hosted on a different cloud platform. In addi-

tion, a CLAMS Super-Manager is incorporated to support the interoperability fea-

ture of the CLAMS framework.

 Figure ‎3.2: CLAMS distributed components.

85

3.2.2. CLAMS Data Collection Model

The CLAMS framework also includes a data collection model. This model classifies

the different collected QoS performance parameters. The QoS parameters are pre-

sented and classified in Table 3.1 for cloud applications (e.g., multi-tier web applica-

tions, content delivery networks, etc.) in general. Also, this table shows an applica-

tion’s components at each layer (Web Server, Streaming Server, Indexing Server at

PaaS layer, Compute resource, Storage resource at IaaS layer) and QoS parameters

for these components ate each layer (SystemUpTime, SystemServices at PaaS layer,

SpeedClock, RoundTripDelay at IaaS layer). Furthermore, figure 3.3 shows the Enti-

ty Relationship (ER) diagram for the data presented in Table 3.1.

Cloud Layer
Layer Applications’

Components
Targeted QoS Parameters

SaaS

User Applications (Servers App.
Web App, Microsoft Word. etc)

No. BytesRead
No. BytesWrite
Availability
CPU Utilization
Mem Utilization

PaaS

Web Server, Streaming Server,
Indexing Server, Apps Server,
etc

SystemUpTime
SystemServices
SystemDesc
Utilization

IaaS

Compute resource,
Storage resource,
Network, etc

CPU Network

SpeedClock

CurrentState

Utilization

Bandwidth

OnewayDelay

RoundTripDelay

TcpConnState

Table ‎3-1: QoS parameters for relative cloud platform layers.

86

 Furthermore, figure 3.3 shows the Entity Relationship (ER) diagram for the data

presented in Table 3.1. To illustrate, one block of the diagram shown in figure 3.3

represents the cloud platforms layers (e.g. SaaS, PaaS and IaaS). The second block of

the diagram represents the application's components that relate to each layer. That

is, for the SaaS layer we may have various applications' components (e.g. Servers

App. Web App, Microsoft Word. etc). Likewise, at the PaaS layer will have other

components (e.g. Web Server, Streaming Server, Indexing Server, Apps Server, etc).

Similarly, the IaaS layer will have different components (e.g. Compute resource,

Storage resource, Network, etc). The last block of the diagram links various QoS pa-

rameters to different components at each layer. That is, for the aforementioned ap-

plications' components at SaaS layer we may have different QoS parameters (e.g. No.

BytesRead, No. BytesWrite, Availability, CPU Utilization, Mem Utilization). Like-

wise, for the aforementioned applications' components at PaaS layer we may have

different QoS parameters (SystemUpTime, SystemServices, SystemDesc, Utilization).

Similarly, for the aforementioned applications' components at IaaS layer we may

have different QoS parameters (e.g. SpeedClock, CurrentState, Utilization, One-

wayDelay, RoundTripDelay).

87

Figure ‎3.3: ER for the cloud layer, applications’‎components,‎and‎QoS‎parameters.

3.3. CLAMS Architecture Components

As illustrated in figure 3.2 (section 3.2), the CLAMS framework comprises three

main components namely, CLAMS Monitoring Super-Manager, CLAMS Monitoring

Manager and CLAMS Monitoring Agent.

3.3.1. CLAMS Monitoring Manager

The CLAMS Monitoring Manager is a software component that collects QoS infor-

mation from CLAMS Monitoring Agents running on several virtual machines (VMs)

across multi-cloud environments. In particular, the Monitoring Manager collects the

QoS values from the Agents running at the SaaS, PaaS and IaaS layers. The commu-

88

nication between the Monitoring Manager and the Monitoring Agent can employ a

push or pull technique. In case of a pull technique, the Monitoring Manager pulls the

CLAMS Monitoring Agents at different frequencies, and collects and stores the QoS

statistics in a relational database (DB). When a push strategy is employed, the

Agents obtain the relevant QoS statistics and push the data to the Monitoring Man-

ager. As soon as the monitoring system is initialized on the cloud(s), the VMs run-

ning the CLAMS Manager(s) and the Agents boot up. Using discovery mechanisms

like broadcasting, selective broadcasting or decentralized discovery mechanisms

[137], the Agents and Manager discover each other. After discovering the address of

each Agent and Manager, depending on the available strategy (push/pull) QoS sta-

tistics are collected by the Manager from the Agents. Figure 3.4, presents the CLAMS

Monitoring Manager component and the Agent component of the CLAMS frame-

work.

Figure ‎3.4: CLAMS Monitoring Manager component and CLAMS Monitoring Agent components.

89

 To illustrate further, consider an audio/video streaming application running on

the cloud which has several distributed components (e.g. web server and an index-

ing server) at the PaaS layer and (e.g. storage server) at IaaS layer. Each component

of such application is running and hosted on different VMs. The web server has an

IP address say, 192.168.1.1, the indexing server has an IP address 192.168.1.2, and the

storage server has IP 192.168.1.3. Each VM also runs CLAMS Monitoring Agents that

monitor application’s components and VM parameters. In this case, the Monitoring

Manager can send a first request to the Monitoring Agent on the web server VM

specifying the IP address 192.168.1.1:8000 and stating the QoS target (e.g., CPU utili-

zation). Similarly, a second request is sent to the Monitoring Agent on the indexing

server VM specifying the IP address (192.168.1.2:8000) and stating the QoS target

(e.g. Packets In). In the same way, a third request is sent to the Monitoring Agent on

the storage server VM specifying the IP address (192.168.1.3:8000) and stating the

QoS target (e.g. actual used memory). Figure 3.5, presents a pseudo code describing

the interaction process between the CLAMS Monitoring Manager and the distribut-

ed CLAMS Monitoring Agents.

90

Figure ‎3.5: Interaction of the CLAMS Monitoring Manager and distributed Monitoring Agents –

Pseudo Code.

 The CLAMS Monitoring Manager employs the QoS data collection schema (de-

scribed in section 3.2.2) to store QoS statistics into the local database and an agent

schema to maintain the list of discovered agents. The CLAMS Monitoring Manager

also incorporates an API that is used by another Monitoring Manager or external

service to share the QoS statistics.

3.3.2. CLAMS Monitoring Agent

Another major component of the CLAMS framework is the Monitoring Agent. The

Monitoring Agent resides on a VM running on the cloud collects and sends QoS pa-

rameters’ values as requested by the CLAMS Monitoring Manager. After the moni-

toring system initialization, the Monitoring Agent waits for the incoming requests

from the manager or starts to push QoS data to the Monitoring Manager. Upon arri-

val of the request, the Monitoring Agent retrieves the stated QoS values belonging to

91

a given process and/or a system resource and sends them back as a response to the

Monitoring Manager.

 In addition, the Monitoring Agent has the capability to work in multi-cloud envi-

ronments. Agent/Manager communication can be established using any approach

that fits the application requirement e.g., publish- subscribe, client- server or web

services. It can also employ standardized protocols for communicating system man-

agement information like SNMP. Moreover, the proposed blueprint does not restrict

future developers from extending CLAMS to their purposes. In the proof-of-concept

implementation explained in chapter 5, a combination of SNMP and RESTful web

services have been used. The CLAMS Monitoring Agent also uses operating system

dependent code to fetch corresponding application QoS statistics, for example, use of

OS specific commands to get CPU usage in Linux and Windows systems. Figure 3.6,

presents a pseudo code describing the startup and interaction of the Monitoring

Agent.

92

Figure ‎3.6: The CLAMS Monitoring Agent startup and monitoring process – Pseudo Code.

3.3.3. CLAMS Super-Manager

The CLAMS Super-Manager is a software component that collects QoS information

from CLAMS distributed Monitoring Managers running across multi-cloud envi-

ronments. To achieve heterogeneity and multi-cloud functionality, a hierarchical ap-

proach can be applied using the Super-Managers as depicted in figure 3.7. The func-

tion of a Super-Manager is marginally different from a Monitoring Manager.

93

Figure ‎3.7: CLAMS hierarchical approach.

 The Super-Managers are responsible for coordinating between multiple Monitor-

ing Managers using the monitoring manager’s API. The Monitoring Managers (de-

picted as managers) will retrieve the monitored data from Monitoring Agents, and

then they will re-send the data to the Super-Managers. In a wider scope, a hierarchy

of Super-Managers can be formed where a Super-Manager instance can collect data

from multiple Super-Managers instances, see figure 3.8.

94

Figure ‎3.8: CLAMS Super-Manager hierarchy approach – wider scope.

 Figure 3.9 presents the procedure of interaction where the CLAMS framework

incorporates a Super-Manager component. In the figure, the CLAMS components

are distributed on multi-cloud platforms, namely, Amazon EC2, and Microsoft Az-

ure platforms. On the Azure platform, the CLAMS Monitoring Manager sends a re-

quest to the CLAMS Monitoring Agent for QoS parameter (e.g. CPU utilization). The

CLAMS Monitoring Agent responds back with a value of the CPU utilization to the

CLAMS Monitoring Manager. After that, the CLAMS Monitoring Manager sends the

retrieved response to the CLAMS Super-Manager, which resides on a different cloud

platform, namely, Amazon platform.

95

Figure ‎3.9: Interoperable CLAMS components communication.

3.4. Visibility and Interoperability

In this section, we will first discuss the monitoring across cloud platforms layers.

This monitoring process makes all application’s components visible during monitor-

ing. Second, I will discuss the interoperable feature of CLAMS where monitoring is

applied to distributed application’s components across multi-cloud platforms.

3.4.1. CLAMS: Cross-layers monitoring (Visibility vs. Black Box View)

Further, the CLAMS framework aimed is to be cloud layer agnostic. That is, CLAMS

distributed Monitoring Agents can operate across cloud platform layers individual-

ly. The QoS monitoring problem is cross-cutting as it extends across the multiple

96

cloud platform layers. For example, failure of VM (IaaS offering) affects the QoS of a

web application container (PaaS offering) or a database application (PaaS offering)

container hosted within that VM. This ultimately affects the end user QoS of end-

user of that web application (SaaS offering). A cloud provider can manage and ad-

minister the cloud-resources/applications more efficiently and effectively when it

gains in-depth status information of the application components cross-layers indi-

vidually as against a black box view.

 For example, an application such as WordPress27 will typically have a MySQL da-

tabase and an Apache Web Server as the underlying components. Current cloud ap-

plication monitoring frameworks like Amazon CloudWatch28 typically monitor the

entire virtual machine (hosting these components) as a black box. This means that

the actual behavior of each application’s component is not monitored separately. In

this particular scenario, application monitoring is limited in scope where not all

components that might be distributed across PaaS and IaaS layers are monitored.

This limiting factor reduces the ability for fine grained application monitoring and

QoS control cross-layers. Figure 3.10 demonstrates how CLAMS Monitoring Agents

are distributed to monitor the Wordpress application’s components, namely, Apache

Tomcat, and MySQL. The figure shows a dedicated CLAMS Monitoring Agent for

each of the Wordpress application’s components. Also, CLAMS Monitoring Agents

are distributed to monitor the IaaS resources (e.g., CPU resource).

27

 https://wordpress.org/
28

 http://aws.amazon.com/cloudwatch/

https://wordpress.org/
http://aws.amazon.com/cloudwatch/

97

Figure ‎3.10: Cross-layers monitoring (Visibility).

3.4.2. CLAMS: Hierarchical Support for Multi-Cloud Environments (Interopera-
bility)

Further, the CLAMS monitoring framework is cloud layer and provider agnostic.

That is, the CLAMS Monitoring Manager/Agent may run on heterogeneous cloud

platforms. Current cloud monitoring frameworks are mostly incompati-

ble/ineffective in multiple cloud provider environments. For example, Amazon

98

CloudWatch does not allow monitoring application components hosted on non-

Amazon platforms. This defeats the distributed nature of cloud application hosting.

 In case the monitoring framework is distributed across different cloud platforms

e.g., between Amazon cloud platform and Windows Azure platform, then one Man-

ager and multiple Agents will be residing on both of these cloud platforms. Figure

3.11 illustrates the interoperable CLAMS framework advantageous ability through

its components. In the figure, the Wordpress application’s components are distribut-

ed on multi-cloud platforms, namely, Amazon and Azure platforms. The CLAMS

Monitoring Agents as shown in the figure are distributed and dedicated to individu-

al components (e.g., Apache Tomcat, and MySQL). This enables the CLAMS Moni-

toring Manager to collect QoS performance information from these distributed ap-

plication’s components while they are hosted on two different cloud platforms.

Moreover, other CLAMS Monitoring Agents are allocated to monitor resources

components at IaaS layer (CPU performance).

99

Figure ‎3.11: Cross multi-clouds monitoring (Interoperability).

 The CLAMS framework components, namely, the CLAMS Super-Manager,

Monitoring Manager, and the CLAMS Monitoring Agent exemplify the advanta-

geous features of CLAMS framework, which provides a uniform, extensive and ef-

fective cross-layer monitoring. The CLAMS framework aids in controlling the appli-

cation QoS based on real-time monitoring of the status of application components

and underlying cloud platform (hardware and software).

100

3.5. CLAMS Applications Scenario

 Emerging trends in big data analytics supported by advances in cloud computing

have shifted the focus from ‚What data should we store‛ to ‚What can we do with

the data‛ [36] leading to Analytics-as-a-service model. Big data analytics offer valua-

ble insight into data that can offer a competitive advantage to organizations.

 To support an Analytics-as-a-service model in the cloud specifically in environ-

ments where floods of data generated from smart phone and sensors are increasing

by the day and unpredictable. Big data analytics in the cloud require real-time QoS

monitoring across the cloud layers to ensure an application’s availability and per-

formance. Consider an example of a crowd-sensing application that is supported by

a distributed big data analytics application (Hadoop + Mahout) in the cloud. The

volume and variety of data depends on the number of users contributing data which

in most cases is not known before-hand. Hence, it is essential to continuously moni-

tor individual system performance at different cloud platform layers such as Ha-

doop job tracker (PaaS offering), HDFS layer (PaaS offering) and VM perfor-

mance/failure (IaaS offering). The above QoS parameters cumulatively affect the QoS

of the end-user of the big data analytics application (SaaS offering).

3.5.1. Big Data Analytics Application Scenario

To illustrate the need and function of the proposed CLAMS framework, consider a

scenario of the Emergency Situation Awareness (ESA) as depicted in figure 1.2 in

chapter 1. Systems such as ESA are required to efficiently manage and respond to

situations like public demonstrations, interior domestic clashes, revolutions, major

festivals, and major public/national events. The system is a typical example of a big

101

data analytics system including functions such as continuous data mining on data

obtained from crowds and social media to detect potential danger, and machine

learning algorithms to predict future occurrences of events i.e. modeling of event

outcomes based on current data etc. In such situations, sidelining of danger and

emergency cases cannot be predicted. Hence, an immediate and continuous monitor-

ing is required by authorities e.g. Police, and National Guards.

 To support a system such as ESA (chapter 1, figure 1.2) that requires a round-the-

clock, figure operation, robust techniques are needed to ensure system performance

and availability. Based on historical inferences, ESA systems use certain policies and

procedures to define SLAs. Such policies and procedures are formulated to han-

dle/avoid ESAS bottlenecks in terms of known QoS parameters e.g. network traffic

hazards, VM failures etc. Furthermore, consider the following situations which fos-

ter the need for cross-layers monitoring on multi-clouds for optimized provisioning

of big data analytics applications.

 In some events, public users contributing data may increase phenomenally,

providing valuable inputs related to that event (Step 1), see (chapter 1, figure 1.2).

Such a burst of input data is hard to estimate or predict. Moreover, dynamic changes

in situation might require additional machine learning algorithms to be deployed

on-demand to process and filter incoming data. The ESA system will be required to

cope with such dynamic demands to changing data patterns maintaining high level

of system stability and availability.

102

3.5.2. How we detect failures using a Conventional Approach

When events described previously occur (section 3.5.1), the demand on the system

increases significantly. Furthermore, in such situations, the interactions between the

system and other users e.g. police, hospital etc. also increase as more critical events

are identified by the big data analytics algorithm running in the cloud. To cope with

such dynamic situations, monitoring the entire VM as a black-box is not sufficient to

guarantee a systems’ SLA. Moreover, current monitoring approaches do not provide

an insight detection of failures sources. Rather, current approaches will only pro-

vide a general non-holistic view of the application performance. The application

administrator is not able to inspect each failure origin precisely.

 As illustrated in figure 3.12, for an application’s distributed components, there are

different QoS parameters at each relative cloud platform layer, for example, CPU

and network QoS parameters at the IaaS layer; SystemProcesses. SystemUpTime, Sys-

Desc at PaaS layer, Availability, Delay at SaaS layer.

 Knowing individual component performance accurately greatly helps in auto-

scaling the corresponding layer at the right timing to avoid failure. To illustrate,

when input data load increases, the load on the corresponding system components

increase (e.g. queuing, Mahout, HDFS), which may lead to system failure. If the

monitoring approach being adopted cannot do cross-layers monitoring, none of the

aforementioned QoS parameters will be detected specifically as a failure source or

failure causing component. Monitoring the whole application does not lead to the

detection of the exact cause of any existing failure at which cloud layer. For example,

in case of application distributed components, the CPU performance statistics rela-

103

tive to the application will not determine on which platform it has occurred. Thus,

the required scaling and provisioning may not detect the issue until it impacts the

entire VM.

Therefore, current monitoring approaches encounter two critical monitoring issues:

1) Current monitoring approaches cannot detect at which cloud layer the failure

occurs. That is, the exact distributed application component which causes the

failure is not detected.

2) Current monitoring approaches cannot detect on which cloud platform the

failure exists. This means, the monitoring tool is not capable to determine on

which cloud platform the arising failure exists.

3.5.3. Using CLAMS to detect and identify at which cloud layer a failure occurs
(Visibility)

CLAMS, in such failure (monitoring issue 1, section 3.5.2) events, helps in identify-

ing and rectifying a specific QoS parameter which leads to the exact component. In

figure 3.12, components are associated with cloud layers and monitored individual-

ly. Hence, QoS parameters are identified specifically for each cloud layer. For exam-

ple, certain QoS parameters can be targeted specifically in case of failures (e.g. DB

component at PaaS layer). Consequently, CLAMS provides the means for more intel-

ligent system scaling.

104

Figure ‎3.12: Applications components and QoS metrics cross-layers.

3.5.4. Using CLAMS to detect and identify at which cloud platform a failure oc-
curs (Interoperability)

In situations where the ESA components are hosted across different regions by dif-

ferent cloud providers (such as monitoring issue 2, section 3.5.2), CLAMS can moni-

tor all application stack components distributed individually independent of the

cloud platforms. Therefore, system scaling can take the appropriate action eventual-

ly resulting in maintaining the agreed SLAs.

 Previously, figure 3.12 demonstrated how the QoS metrics distributed across the

cloud platform layers. Now, Figure 3.13, shows how different components are dis-

105

tributed across multi-cloud platforms. For illustration, the figure shows two different

platforms (e.g. Amazon, and Azure) that have identical layers (e.g. SaaS, PaaS, and

IaaS). Each layer of both platforms includes similar QoS performance parameters to

be monitored. If using the current monitoring approaches, it is challenging to deter-

mine the origin of QoS parameter at which layer or on which cloud platform.

Whereas, the CLAMS framework can determine the exact origin of each QoS param-

eter at which layer it operates and on which platform.

 Eventually, the capabilities of CLAMS distributed Monitoring Agents enable the

system administrator to gain the required QoS performance of these distributed

components on multi-clouds. Therefore, the monitored system can take the appro-

priate auto-scaling actions ensuring the system performance level.

Figure ‎3.13: Applications components and QoS metrics across multi-cloud platforms.

106

3.5.5. CLALMS Data Collection Model Scenario

In section 3.2, we described the CLAMS data collection model. Table 3.2, presents

how this data collection model is implemented for this scenario in order to achieve

the visibility and interoperability of CLAMS monitoring. The table shows how

CLAMS detects a specific QoS parameter for relative application’s component and

cloud platform layer. Moreover, figure 4.14 presents an ER relationship of a cloud

platform provider, a specific Layer, a specific application‘s component, and a specific

QoS parameter.

Cloud Layer
Layer‎Applications’

Components
Targeted QoS Parameters

PaaS Apache Server Memory Utilization

Table ‎3-2: QoS parameters for specific resources across cloud platform layers.

Figure ‎3.14: ER for‎the‎cloud‎layer,‎applications’‎components,‎and‎QoS‎parameters.

107

3.6. CLAMS vs. Other Monitoring Frameworks

In cloud environments, recent efforts have been put into improving VMs monitoring

and controlling. A number of frameworks have been proposed for VM management,

which include Simple Network Management Protocol (SNMP) for data retrieval.

CloudCop is a conceptual network monitoring framework implemented using

SNMP [120]. Basically, CloudCop adopts Service Oriented Enterprise (SOE) model.

CloudCop framework consists of three components: Backend Network Monitoring

Application, Agent with Web Service Clients, and Web Service Oriented Enterprise.

While CloudCop focuses on network QoS monitoring, CLAMS is concerned with an

application’s components QoS performance monitoring. In addition to SNMP,

CLAMS uses RESTful technology as an additional method for communication proto-

cols.

 Furthermore, there is a Management Information Base (MIB) called Virtual-

Machines-MIB, that defines a standard interface for controlling and managing VM

lifecycle [72]. It presents SNMP agents, which are developed based on NET-SNMP29

public domain’s agent. Besides read-only objects, Virtual-Machines-MIB provides

read-write objects that enable controlling managed instances. To obtain the data of

Virtual-Machines-MIB, mostly Libvirt30 API and other resources such as VMM API

are used in this framework [72]. However, Virtual-Machines-MIB is only concerned

with monitoring IaaS-level (VM) QoS statistics. Unlike CLAMS framework, Virtual-

Machines-MIB does not cater for the QoS statistics of PaaS level application compo-

nents.

29

 http://www.net-snmp.org/
30

 http://libvirt.org/

http://www.net-snmp.org/
http://libvirt.org/

108

 Libvirt-snmp [72] is a project, which primarily provides SNMP functionality for

libvirt. Libvirt-snmp allows monitoring of virtual domains; as well, it allows setting

a domain’s attributes. Furthermore, Libvirt-snmp provides a simple table containing

monitored data about domain names, state, the number of CPUs, RAM, the RAM

limit, and CPU time. In comparison to CLAMS, Libvirt-snmp does not allow moni-

toring an applications’ components QoS performance across-layers.

 Chapter 2 already discussed the properties of Cloudwatch on Amazon cloud plat-

form and Azure FC on Microsoft Azure platform. Unlike CLAMS, both Cloudwatch

and Azure FC do not allow cloud applications monitoring on multi-clouds. Fur-

thermore, they do not enable the application’s administrator to apply cross-layers

monitoring, which CLAMS can do.

3.7. Summary

This chapter presented CLAMS—Cross-Layer Multi-Cloud Application Monitoring-

as-a-Service Framework. The CLAMS framework aimed to break free of current

black-box based cloud monitoring approaches [132] that give very little attention to

individual components of applications provisioned across cloud layers. Figure 3.15,

visualizes the features that CLAMS provides for an application’s components across-

layers on multi-cloud environments. The figure explains how an application’s com-

ponents could be distributed on different cloud platforms and also how the compo-

nents are deployed across-layers. These abilities of CLMAS to monitor distributed

applications’ components make it different to current monitoring approaches.

109

Figure ‎3.15: CLAMS – Cloud Monitoring Framework for cross-Layers applications components on

multi-cloud Environments.

The novel features of CLAMS include the:

(i) ability to monitor and profile QoS of applications, whose parts or components

are distributed across multiple public or private clouds; and

(ii) ability to provide visibility into QoS of individual components of an applica-

tion stack (e.g., web server, database server).

 Chapter 4 will present (CLAMBS), which is an extension to CLAMS framework,

which will incorporate benchmarking functionalities for cloud applications and re-

110

sources. Chapters 5 and 6 will present CLAMBS framework implementation using a

number of different technologies and tools.

111

44.. CCrroossss--LLaayyeerr MMuullttii--CClloouudd RReeaall--

TTiimmee AApppplliiccaattiioonn QQooSS MMoonniittoorriinngg

aanndd BBeenncchhmmaarrkkiinngg AAss--aa--SSeerrvviiccee

FFrraammeewwoorrkk

4.1. Introduction

This chapter proposes CLAMBS: Cross-Layer Multi-Cloud Real-Time Application QoS

Monitoring and Benchmarking As-a-Service Framework. CLAMBS represents an exten-

sion to CLAMS framework presented in chapter 3. Driven by the third research

question (Chapter 1, Section 1.3), this extension enables benchmarking functionali-

ties for cloud applications and resources based on the extensive study for monitoring

and benchmarking design architecture presented in chapter 2. The proposed frame-

work employs additional techniques to extend and enhance CLAMS framework in

order to apply Cross-Layer Multi-Cloud Real-Time Application QoS Benchmarking.

In particular, CLAMBS offers the following novel features:

112

 It provides benchmarking-as-a-service that enables the establishment of base-

line performance of an application deployed across multiple layers using a

cloud-provider agnostic technique; and

 It is a comprehensive framework allowing continuous cross-layers bench-

marking and monitoring on multi-clouds for hosted applications.

 The chapter is organized as follows. Section 4.2 presents CLAMBS: Cross-Layer

Multi-Cloud Application Monitoring as a Service. Section 4.3 presents CLAMBS ar-

chitecture components. Section 4.4 presents the CLAMBS and the challenges of QoS

and SLAs. Section 4.5 presents a comparison between CLAMBS framework and cur-

rent monitoring and benchmarking frameworks. Section 4.6 concludes this chapter

with a summary.

 The Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring and

Benchmarking framework presented in this chapter has been published in the fol-

lowing paper (K Alhamazani et al., 2015).

113

4.2. CLAMBS: Cross-Layer Multi-Cloud Application Monitor-
ing As a Service

This section describes the CLAMBS framework and its attributes as well as its differ-

ent components. Figure 4.1 presents an overview of the proposed CLAMBS frame-

work. As depicted in the figure, CLAMBS employs an agent based approach for

cross-layers, multi-clouds resource/application monitoring and benchmarking. The

CLAMBS framework is an extension of CLAMS framework by incorporating

Benchmarking Agents. For the purpose of guaranteeing performance QoS and sup-

porting the SLAs, the Benchmarking Agent adds new functionalities to CLAMBS as

will be explained in this chapter. In this multi-cloud approach, Benchmarking

Agents are deployed and distributed across various cloud provider environments

based on application requirements and deployments.

114

Figure ‎4.1: Overview of CLAMBS framework.

 A CLAMBS Benchmarking Agent is responsible for benchmarking application

QoS parameters such as resource consumption, network performance, storage per-

formance etc., at various layers including SaaS, PaaS and IaaS. On the other hand,

CLAMBS Benchmarking Manager is responsible for orchestrating and collecting QoS

data from each Benchmarking Agent.

115

 The CLAMBS Benchmarking Agents reside on various cloud layers, for example

IaaS, PaaS, and SaaS. At each layer, one or more CLAMBS Benchmarking Agents can

be assigned to benchmark hosted applications’ components.

 To illustrate, figure 4.2 describes how CLAMBS Benchmarking Agents are allocat-

ed on different various cloud platforms for monitoring applications’ components at

different cloud layers. The CLAMBS Benchmarking Manager and the CLAMBS da-

tabase component can reside on the same cloud platform where CLAMBS Bench-

marking Agents are running on different cloud platforms.

116

Figure ‎4.2: CLAMBS distributed architecture.

4.3. CLAMBS Architecture Components

CLAMBS includes mechanisms for efficient cloud monitoring and benchmarking

applications deployed at *aaS layers. Furthermore, CLAMBS provides standard in-

terfaces and communication protocols that enable the application/system adminis-

trator to gain awareness (benchmark and monitor against benchmarking outcomes)

of the whole application stack across different cloud layers in heterogeneous envi-

117

ronments (different resources constraints and operating systems). The CLAMBS ap-

proach also addresses the interoperability challenges among heterogeneous cloud

providers. As shown in figure 4.3, the CLAMBS framework comprises two main

components, namely, Benchmarking Manager and Benchmarking Agent.

Figure ‎4.3: CLAMBS framework Benchmarking Manager and Benchmarking Agent components.

4.3.1. CLAMBS Architecture: Benchmarking Manager

The CLAMBS Benchmarking Manager is designed to facilitate benchmarking of ap-

plications components distributed across *aaS layers on multi-cloud environments.

The Manager’s benchmarking function collects network and application perfor-

mance QoS information from CLAMBS Benchmarking Agents that are distributed

and running on several VMs hosted across multi-clouds environments in different

118

data centers. In particular, the Benchmarking Manager collects the traffic of QoS val-

ues from Benchmarking Agents hosted on VMs that are distributed across different

datacenters. The Benchmarking Manager could be residing on the same cloud plat-

form where Benchmarking Agents are running or it could be located on a different

cloud platform.

 The CLAMBS framework adopts the push/pull mode of communication as pre-

sented in section 3.3.1. Compared to the 'pull' mode, the main advantage of the

'push' mode is lowered Benchmarking Manager workload and faster response to er-

rors. To handle the surge of report messages, the Benchmarking Manager employs a

message queue to manage all incoming reports in a first-come-first-serve manner.

Through analysis of a series of messages with consecutive time stamps (with sender

agent ID), the Benchmarking Manager may also determine the Benchmarking

Agents' work status whilst gathering QoS information for the cloud platform re-

sources. Moreover, extending the above approach to a publish-subscribe paradigm is

straightforward and can provide the ability to isolate errors based on priority and

severity.

119

 Furthermore, the Benchmarking Manager is responsible for firing VMs at remote

data centers to perform application level benchmarking based on user requirements

that include data center locations. For example, consider a scenario where an end

user located in the Singapore datacenter, requests multimedia (audio/video) content

from the audio/video streaming application service. Typically, such application

components could be distributed across multiple datacenters (e.g. US Virginia, and

AU Sydney). The CLAMBS framework supported by the Benchmarking Manager is

able to dynamically fire a VM hosting the Benchmarking Agent at the end user loca-

tion, (Singapore). Then the CLAMBS Benchmarking Manager can repeatedly test

and benchmark the performance of the audio/video streaming application at both

the locations (US Virginia, and AU Sydney) to select the best location to serve the

streaming content to the end user.

 This approach serves the following two main purposes:

1) it allows users who use third-party cloud hosting services to benchmark applica-

tion performance for later comparison and evaluation; and

2) it allows users to test the system’s performance automatically and choose the best

performing datacenter for service delivery.

120

 Here, the key advantage of CLAMBS is the ability to dynamically run benchmark-

ing of applications at *aaS layers of multiple clouds automatically with very little

configuration required from the user. The CLAMBS Benchmarking Manager also

incorporates an API that is used by other Monitoring/Benchmarking Managers or

external services to share the QoS statistics.

4.3.2. CLAMBS Architecture: Benchmarking Agent

The Benchmarking Agent is the second major component of the CLAMBS frame-

work. Figure 4.1 presented the distributed CLAMBS Benchmarking Agents across

the cloud layers. This Benchmarking Agent has the capability to migrate from the

Manager VM to a VM that either hosts the application/service or acts as a client to

the service. The rest of this section describes the features and capabilities of the

CLAMBS Benchmarking Agent.

4.3.2.1 Workload Generator

The Benchmarking Agent incorporates standard functions to measure the network

performance between the datacenter(s) hosting the application component and the

client. The Benchmarking Agent incorporates a component that generates traffic to

benchmark the application based on a workload model. This is able to generate load

for different applications’ components such as DBMS and Web Servers. For example,

121

it is able to generate requests to a web server (N users and M requests/second) based

on a website workload model (e.g. football world cup trace -

http://ita.ee.lbl.gov/html/contrib/WorldCup.html).

4.3.2.2 Capabilities

The Benchmarking Agent has the capability to work in multi-cloud heterogeneous

environments. In essence, the objectives that require benchmarking process are:

1) Determining where and what type of performance improvements are needed.

2) Analyzing the available metrics of a performance.

3) Using benchmarking information in order to improve the services perfor-

mance.

4) Comparing the benchmarking information with the standard measurements.

 Thus, to benchmark cloud applications (e.g. a web application), providers can ap-

ply a generated workload on such application’s distributed components.

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

122

4.4. CLAMBS and the Challenges of QoS and SLAs

4.4.1. CLAMBS for Unpredictable QoS parameters

In a cloud computing environment, the QoS parameter values are stochastic and can

vary significantly based on unpredictable user workloads, hardware and software

failures. This necessitates the awareness of cloud applications’ current software and

hardware resources status to meet the QoS targets of cloud-hosted applications.

Cloud monitoring and benchmarking can assist in the holistic monitoring and

awareness of applications and components at *aaS layers to meet agreed QoS in

SLAs. Figure 4.4 describes how CLAMBS Benchmarking Agents are distributed

across cloud layers on multi-cloud environments. This enables the CLAMBS to facili-

tate benchmarking cross-layers QoS parameters on multi-clouds.

123

Figure ‎4.4: Visibility and interoperability of CLAMBS distributed components.

CLAMBS aimed to provide monitoring and benchmarking tasks for:

1. QoS management of software and hardware resources;

2. Runtime awareness of the applications and resources for cloud

providers and application developers/administrators;

3. Detecting and debugging software and hardware problems affect-

ing applications’ QoS performance;

4. Understanding application performance (resource and network) be-

fore application deployment;

124

5. Facilitating application base lining; and

6. Enabling continual comparison of applications QoS performance

against the targeted results.

4.4.2. CLAMBS for Addressing SLAs Challenges

 A cloud platform is logically composed of three layers (SaaS, PaaS, and IaaS), appli-

cations such as email and games are hosted on SaaS layer; applications such as data-

bases and web servers are hosted on the PaaS layer; and finally, IaaS include re-

sources such as VMs, network and CPU resources. For the effective use of cloud re-

sources and to meet SLAs, it is imperative that applications’ components deployed

across-layers on multi-clouds are monitored at runtime and benchmarked. In partic-

ular, application developers, system designers, engineers and administrators have to

be aware of the compute, storage, networking resources, application performance

and their respective quality of service (QoS) across all the cloud layers; this is be-

cause QoS parameters including latency and throughput play a critical role in up-

holding the grade of services delivered to the end customers based on the agreed

upon SLAs.

125

 To guarantee the SLA and to avoid failure, the challenge is to identify which

component of the application needs to be re-configured or what type of auto-scaling

is required. To this end, a better and accurate understanding of individual compo-

nent’s performance is needed to help a cloud orchestrator to effectively scale the cor-

responding layer at the appropriate time. The proposed CLAMBS framework

benchmarking and real-time monitoring as-a-service system is a practical method to

understand and evaluate how application components distributed across cloud lay-

ers on multi-cloud environments can essentially perform and handle their tasks.

4.5. CLAMBS vs. Benchmarking Frameworks

 Chapter 2 explored traditional benchmarking approaches and elaborated why they

cannot serve the users’ needs. Besides runtime performance, cloud specific attributes

such as elasticity, deployment, resiliency, and recovery are required to be reflected in

the benchmarking process. Further, benchmarking applications distributed on multi-

cloud environments is a complex task as each application requires evaluation of dis-

tinct QoS metrics from other QoS metrics in order to evaluate the targeted cloud per-

formance. Moreover, each application has its own workload requirements for each

individual component rendering the need for a general-purpose benchmark frame-

126

work. A specific purpose-built benchmarking component will not be able to serve

cloud users having a variety of use cases in a cloud environment.

 For web applications, a number of benchmarking frameworks have been de-

signed. C-MART is the outcome of a notable effort to design a web application

benchmarking tool. C-MART presents a significant tool, emulating, and then

benchmarking web applications such as online stores or social networking websites.

Originally, C-MART is motivated by the fact that benchmarks need to cope with the

shift from the traditional environments to cloud environments. However, C-MART

is limited to benchmarking web applications at the PaaS layer. Amazon EC2 compat-

ible C-Meter was the original prototype of the EC2 current extensible cloud bench-

mark framework [179]. It employs low level metrics that are typically not visible to

general cloud users. Therefore, C- Meter is unsuitable to evaluate higher levels of

cloud services (e.g. PaaS and SaaS) [179]. In contrast, the CLAMBS Benchmarking

Agents are not limited to benchmark web applications at the PaaS layer. This allows

the CLAMBS Benchmarking Agents to benchmark different types of applications

across layers.

127

 Similarly, Compuware’s Gomez [64], is a solution for web performance optimiza-

tion (revenue based web and mobile applications). Gomez focuses on monitoring

web applications from the end users’ perspective. Moreover, it focuses on cross-

browser testing and web load testing to optimize web-site performance. Further-

more, Gomez has released CloudSeuth as a web-based benchmark tool for the per-

formance of Cloud providers. The main focus of ClouSeuth is availability (e.g. up

time, downtime) [82], which measures the percentage of test transactions that com-

pleted successfully out of the set of transactions attempted. An unsuccessful test

transaction is a transaction that returns a status code other than ‚200" in the maxi-

mum allowable timeframe [82]. However, Compuware lacks in its ability to monitor

fine-grained application server and database events across multiple layers of the

cloud. Whereas, the CLAMBS framework provides the ability to benchmark differ-

ent applications components across the cloud platform. The CLAMBS Benchmarking

Agents can be assigned to different components across the cloud layers, which pro-

vide a fine-grained monitoring.

 An outstanding framework for cloud resources benchmarking is CloudCmp. For

both the cloud provider and the cloud customer, the following is a list of the major

features that CloudCmp can provide:

128

1) Provide performance and cost information about various cloud providers to a

customer. The customer can use this information to select the right provider

for its applications.

2) Enable the cloud provider to identify its under-performing services compared

to its competitors.

3) Provide a comparison between different cloud providers by characterizing all

providers using similar set of metrics. However, comparison is based on a

specific pre-determined set of common cloud resources and services offered

by all these cloud providers.

 CloudCmp [96] choses cost and performance metrics that are relevant to the typi-

cal cloud applications a customer deploys. Such metrics cover the main cloud ser-

vices, including elastic computing, persistent storage, and intra-cloud and wide area

networking. Nevertheless, some of the metrics provided by CloudCmp are too ex-

perimental to be meaningful to a cloud user, e.g. time to reach consistency. This limi-

tation is not encountered with the CLAMBS framework, which provides meaningful

QoS information to the cloud user. Moreover, CLAMBS Benchmarking Agents pro-

vide the application administrator with all the required explicit information for any

targeted QoS parameter.

 Additionally, efforts have been made for a virtualization layer and VMs man-

agement and benchmarking. CloudGauge presents an effective dynamic virtual ma-

129

chine benchmarking tool. It provides automated scripts to provision and measure

the performance of the virtual environment setup. But, the focus of CloudGauge ex-

perimental benchmark was on the virtualization layer. Furthermore, the data collect-

ed was mainly CPU usage and average load Memory. Unlike CloudGauge, the

CLAMBS Benchmarking Agents are not restricted to test only CPU usage or average

load memory; rather it has the ability to retrieve various QoS parameters. That is, a

CLAMBS Benchmarking Agent is not only restricted to a number of performance

QoS targets.

 Furthermore, COSBench is a benchmarking tool for characterizing object storage

services, thus allowing people to evaluate various implementations or configura-

tions of object storage service. Basically, Object storage services provide RESTful in-

terfaces to store and access files in a way that is similar to regular file systems but in

a simpler method. Thus, COSBench allows users to evaluate a number of implemen-

tations or configurations of object storage service. However, COSBench is only capa-

ble of measuring mainly three performance metrics (e.g. Response Time, Through-

put, and Bandwidth). This limitation is overwhelmed in the CLAMBS framework,

which is not restricted to benchmarking a certain number of QoS parameters. Fur-

thermore, COSBench currently has adaptors for only Amazon S3 and Rackspace

130

Cloud Files, which restricts the interoperability that CLAMBS framework can offer.

CLAMBS Benchmarking Manager and Agents are agnostic to cloud platforms.

 In addition to above the benchmarking frameworks, the mOSAIC benchmarking

tool is designed based on the mOSAIC platform, which provides a simple way to

develop cloud applications [133, 134]. In the mOSAIC, a cloud application is struc-

tured as a set of components running on cloud resources (i.e., on resources leased by

a cloud provider) and able to communicate with each other. Therefore, the main us-

ers for the mOSAIC benchmarking tool are the mOSAIC developer and the mOSAIC

application final user. In other words, mOSAIC benchmarking tools acquire the mO-

SAIC framework to run on different cloud platforms. This restriction does not exist

when using the CLAMBS framework for cloud application benchmarking. CLAMBS

components (e.g. CLAMBS Manager/Agents) are agnostic to any specific platform or

framework.

 Still, most of the current benchmarking interfaces are different among VM plat-

forms. Hence, there is a necessity for benchmarking frameworks that adopt unified

interface for multiple virtualization platforms, which CLAMBS framework adopts.

131

4.6. Summary

This chapter presented CLAMBS—Cross-Layer Multi-Cloud Application Monitoring

and Benchmarking-as-a-Service Framework. The novel features of CLAMBS in-

cludes:

(i) The distributed CLAMBS Benchmarking Agents (shown in figure 4.2) provide

benchmarking-as-a-service that enables the establishment of baseline per-

formance of application deployed across multiple layers using a cloud-

provider agnostic technique; and

(ii) It is a comprehensive framework allowing continuous benchmarking and

monitoring of multi-clouds, multi-layers hosted applications.

 Chapters 5 and 6 will present how the CLAMBS framework is implemented using

a number of different technologies and tools. Moreover, they will show a number of

experimental results and outcomes to validate CLAMBS framework.

132

55.. MMooddeelllliinngg aanndd IImmpplleemmeennttaattiioonn ooff

CCLLAAMMSS aanndd CCLLAAMMBBSS FFrraammeewwoorrkk

5.1. Introduction

Chapter 3 presented the proposed cloud applications monitoring framework, name-

ly, CLAMS framework that enables cloud users to monitor applications’ components

across-layers on multi-clouds. Chapter 4 presented the extension of the proposed ar-

chitecture to add benchmarking functionalities in order to benchmark cloud re-

sources and applications’ components, namely, the CLAMBS framework.

 This chapter presents a prototype implementation of the CLAMBS framework.

The prototype implementation is divided into two parts:

 Determining architecture and implementation technologies, (Section 5.2).

 Determining the optimal deployment on cloud platform, (Section 5.3).

 This chapter is organized as follows. Section 5.2 presents and discusses the proof-

of-concept of the implementation of the CLAMBS framework. Also, it explores the

development tools and prototype environment utilized for the implementation. Sec-

133

tion 5.3 presents modeling and analyzing CLAMBS overheads in Multi-Cloud Envi-

ronments. Section 5.4 concludes this chapter with a summary.

 The implementation, modelling and analyzing of the proposed framework pre-

sented in this chapter has been published in the following papers (K Alhamazani et

al., 2014b, K Alhamazani et al., 2014c, K Alhamazani et al., 2015).

5.2. Proof-of-Concept Implementation

The proposed framework does not rely on other frameworks or specialized hard-

ware. CLAMS and CLAMBS are both generic frameworks that are not restricted by

any hardware or software specifications.

5.2.1. Development Tools and Techniques

To begin with, this sub-section presents an overview of the development tools uti-

lized for implementing the proposed framework prototype. Furthermore, it will

provide details of the environment and cloud platforms that were used to process

the implementation throughout the framework progression.

134

5.2.1.1 JAVA

Formally, Java was first announced by Microsystems on 1995 [149]. The Java lan-

guage is both a conventional and rapid prototyping language. Java is a simple, object

oriented, distributed, interpreted, robust, secure, platform independent, portable,

high-performance, multi-threaded and dynamic language. Moreover, the Java Virtu-

al Machine (JVM) represents the Java run-time environment. Therefore, Java is an

architecture-neutral, or platform-independent, or multi-platform language. Java en-

ables web browsers to automatically download Java applets across the network.

These Java applets will be executed within the JVM of the local machine, which re-

leases the CPU of the remote machine that hosts the applets. Since Java is designed

to be used on the Internet, it comprises several networking libraries such as Trans-

mission Control Protocol/ Internet Protocol (TCP/IP) networking.

5.2.1.2 Eclipse

Eclipse is an integrated development environment (IDE) for Java development. It en-

compasses a base workspace and an extensible plug-in system for customizing the

environment. Eclipse is written mostly in Java and used for developing Java applica-

tions. Moreover, the Eclipse platform defines an open architecture so that each plug-

in development team can focus on their area of expertise [53].

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Workspace
https://en.wikipedia.org/wiki/Plug-in_(computing)

135

 Embedded plug-ins in Eclipse can also be used to develop applications in other

programming languages (e.g. Ada, ABAP, C, C++, COBOL, Fortran, Haskell, Ja-

vaScript, Lasso, Lua, Natural, Perl, PHP, Prolog, Python, R, Ruby, Sca-

la, Clojure, Groovy, Scheme, and Erlang).

5.2.1.3 Apache Tomcat

The Apache HTTP Server is a robust software development, which is a free open

source implementation of the HTTP web server [13]. Originally, the Apache project

is part of the Apache Software Foundation. In addition, a huge number of users have

contributed ideas, code, and documentation to the Apache project. Apache Software

provides robust and commercial-grade reference implementations of many types of

software. Hence, Apache Tomcat is a readily available and reachable platform which

can be utilized by developers and organizations to implement systems for both ex-

perimental and other targets.

https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/ABAP
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Lasso_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/NATURAL
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Groovy_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Erlang_(programming_language)

136

5.2.1.4 Simple Network Management Protocol (SNMP)

5.2.1.4.1 Overview

SNMP is a protocol that enables servers to share information about each other’s cur-

rent condition, and also a channel through which a network administrator can modi-

fy pre-defined values to specify the targeted shared information. While the SNMP

protocol itself is very simple, the structure of programs that implement SNMP can be

very complex [125].

 In concept, SNMP is a protocol that is implemented on the application layer of

the networking stack. Basically, SNMP was designed as a method of collecting in-

formation from very different systems in a consistent manner. Even though it can be

used in connection to a diverse array of systems, the method of enquiring data and

the paths to the relevant information are standardized.

 Originally, SNMP was first introduced in the late 1980s [153]. Today, there are

multiple versions of the SNMP protocol, and many networked hardware devices

implement some form of SNMP access. The most widely used version is SNMPv1,

but it is in many ways insecure. The enhanced version is SNMPv3, which provides

more advanced security features.

137

5.2.1.4.2 SNMP MIBs

The Management Information Base (MIB) is a database to manage the entities in

networks. MIB is a hierarchical structure that, in many areas, is universally standard-

ized, but also flexible enough to allow vendor-specific additions. An MIB structure

can be described as a top-down tree where each branch that forks is labeled with

both an identifying number (starting with 1) and an identifying string that are

unique for that level of the hierarchy. To refer to a specific node of the tree, you

must trace the path from the unnamed root of the tree to the targeted node. The line-

age of its parent IDs (numbers or strings) are strung together, starting with the most

general, to form an address. Each junction in the hierarchy is represented by a dot in

this notation, so that the address ends up being a series of ID strings or numbers

separated by dots. The entire address is known as an Object Identifier (OID).

5.2.1.4.3 SNMP4J

SNMP4J is the object oriented SNMP API for developing Java managers and agents.

SNMP4J is an enterprise class, free open source, and state-of-the-art SNMP v1/2c/v3

implementation using Java. SNMP4J is the core API for implementing any SNMP

service. Currently there is a lack of an affordable object oriented designed SNMP

implementation for Java. SNMP4J tries to fill this gap; hence, it is free to get the best

support and feedback from the Internet community.

138

5.2.1.5 SIGAR (System Information Gatherer and Reporter)

SIGAR (System Information Gatherer and Reporter) was designed and implemented

by Doug MacEachern at Covalent Technologies starting in September of 2002 and

has continued with Hyperic as a core component of the HQ product [75]. SIGAR is a

cross-platform, cross-language library and command-line tool for accessing operat-

ing system and hardware level information in Java, Perl and .Net [141]. For illustra-

tion, SIGAR APIs provide users to gather information such as [75] [141]:

 System memory, swap, cpu, load average, uptime, logins

 Per-process memory, cpu, credential info, state, arguments, environment,

open files

 File system detection and metrics

 Network interface detection, configuration info and metrics

 TCP and UDP connection tables

 Network route table

5.2.1.6 Restlet

Restlet is a lightweight, comprehensive, open source RESTful web API framework

for the Java platform. Restlet is suitable for both server and client Web applications.

It supports major Internet transport, data format, and service description standards

like HTTP and HTTPS, SMTP, XML, JSON, Atom, and WADL. A GWT port of the

http://www.covalent.net/
http://www.hyperic.com/
http://www.hyperic.com/products/index.html
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/SMTP
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Web_Application_Description_Language
https://en.wikipedia.org/wiki/Google_Web_Toolkit

139

client-side library is also available, as well as other editions for An-

droid, OSGi and Google App Engine.

5.2.1.7 JMeter

JMeter, which is implemented by Apache organization is an open source pressure

test tool based on Java. JMeter can be used on servers, networks or other objects to

simulate huge loading, and testing their strength and analyzing the overall perfor-

mance under different variety of pressure [172]. Originally, Apache JMeter was de-

signed and tested for Web Applications. Later on, it was extended to test other func-

tions. In addition, Apache JMeter can test performance on static and dynamic re-

sources [10]. Moreover, JMeter can generate reports of resulted data for the user.

5.2.2. Cloud Platforms Used

This section presents the environments on which the prototype is executed. For the

proof of concept objectives, the prototype was executed onto two major public cloud

platforms. Although, the prototype has no limitation and can be executed on any

other cloud platform. Thus, the main reason for our choice of platforms was made

due to their publicity and the offered services for new registered accounts.

https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Osgi
https://en.wikipedia.org/wiki/Google_App_Engine

140

5.2.2.1 Amazon Web Services (AWS) Elastic Computing (EC2)

Amazon Web Services (AWS) is a broad, evolving cloud computing platform pro-

vided by Amazon. Historically, the first AWS offerings were launched in 2006 to

provide online services for websites and client-side applications [7]. AWS is geo-

graphically spread over several regions. These regions have central hubs in the East-

ern USA, Western USA (two locations), Brazil, Ireland, Singapore, Japan, and Aus-

tralia. Each region includes multiple smaller geographic areas called availability

zones.

5.2.2.2 Microsoft Windows Azure Platform

Azure platform is provided by Microsoft. for building, deploying and managing ap-

plications and services through a global network of Microsoft managed, and Mi-

crosoft partner hosted, datacenters [110]. It was announced in October 2008 and re-

leased on 1 February 2010 as Windows Azure, before being renamed to Microsoft

Azure on 25 March 2014.

5.2.3. CLAMBS: A Practical System Prototype

This section presents how the full version of the CLAMBS prototype has been im-

plemented. The prototype has been developed using Java and is completely cross-

http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchenterprisedesktop.techtarget.com/definition/client
https://en.wikipedia.org/wiki/Datacenter

141

platform interoperable; that is, it works on both Windows and/or Linux operating

systems. Figure 5.1 shows the framework components deployment using a UML di-

agram.

Figure ‎5.1: UML based description of the CLAMBS framework.

 As illustrated in chapters 3 and 4, the CLAMBS Manager component is connect-

ing to CLAMBS Monitoring Agents and Benchmarking Agents hosted on a cloud

platform. For the first version (CLAMS) the main protocol used for communication

is SNMP, as shown in the figure. Whereas, in the extended version (CLAMBS) the

main protocol used for communication is through RESTful APIs (HTTP). Moreover,

the CLAMBS Manager profiles the data retrieved from CLAMBS Agents into

142

CLAMBS DB, which is MySQL DBMS. Moreover, the web server used for the

CLAMBS components to run and communicate is Tomcat Apache, as depicted in the

figure.

 Figure 5.2 presents a screenshot of the CLAMBS monitoring console. The figure

shows how distributed CLAMBS Agents run and retrieve data from two different

platforms (see figure 4.4), namely, the Azure platform and the Amazon EC2 plat-

form. The output in the screenshot demonstrates the values of targeted QoS of an

application’s component and the values relative to the CLAMBS Agent itself, e.g. the

name of the CLAMBS Agent, the location of the CLAMBS Agent, and utilized

memory by the application’s component.

Figure ‎5.2: CLAMBS proof-of-concept Implementation.

143

 Table 5.1 presents more illustration of the output of CLAMBS monitoring console

shown in figure 5.2. The table lists out some of the presented output and the mean-

ing of each output line.

Output Meaning

AzureAgent
Name of the CLAMBS Agent.

AzureAgent. AzureA-

gent.i1.internal.cloudapp.net
The CLAMBS Agent location

domain.
536

The monitored component ID.

taskhostex
The monitored component name.

64.74 Memory utilization by the moni-

tored VM.

Table ‎5-1: Illustration of the CLAMBS monitoring console output.

5.2.3.1 CLAMBS Monitoring Agent Implementation

The process of retrieving QoS targets (section 3.3) is done by utilizing functionalities

provided by SNMP, SIGAR31 and other custom built APIs. For instance, SNMP is

used in CLAMBS Monitoring/Benchmarking Manager to retrieve the QoS values re-

lated to networking, the number of packets in and out, the route information and,

the number of network interfaces. SIGAR is also used in CLAMBS Monitor-

ing/Benchmarking Manager to obtain access to low-level system information such as

31

 http://www.hyperic.com/products/sigar

http://www.hyperic.com/products/sigar

144

CPU usage, actual used memory, actual free memory, total memory, and process

specific information (e.g. CPU and memory consumed by a process). Moreover,

network information such as routing tables are also obtained using SIGAR in

CLAMBS Monitoring/Benchmarking Agents. Both SIGAR and SNMP packages have

their own operating system specific implementations to retrieve system information

e.g. system resources and user processes. To enable SNMP monitoring, new SNMP

Objects Identifiers (OIDs) are identified in a sequence within both CLAMBS Moni-

toring/Benchmarking Manager and Agents. For example, the function to get the CPU

usage of a specific process (tomcat) is assigned an OID .1.3.6.1.9.1.1.0.0. Similarly, the

function to get process memory is assigned an OID .1.3.6.1.9.1.1.0.1. Figure 5.3,

shows a code snippet for Monitoring Agent implementing SIGAR functionalities.

Similarly, figure 5.4 shows the code snippet for implementing SNMP in the Monitor-

ing Agent.

145

Figure ‎5.3: SIGAR CLAMBSMonitoringAgent.java – Code Snippet.

146

Figure ‎5.4: SNMP CLAMBSMonitoringAgent.java – Code Snippet.

Furthermore, the CLAMBS implementation also incorporates an HTTP based Restful

communication standard between Monitoring/Benchmarking Manager and Agents.

147

This allows greater flexibility to monitor an application that does not support the

network specific SNMP protocol.

5.2.3.2 CLAMBS Benchmarking Agent Implementation

Section 4.3 presented the CLAMBS Benchmarking Agent component. Benchmarking

Agents are bootstrapped with the VMs and distributed across different cloud plat-

forms e.g. Amazon and Azure. On booting VMs, CLAMBS Benchmarking Agents

start up and wait for incoming requests from the CLAMBS Manager to start bench-

marking. Typically, there is a unique IP address for each Agent representing the VM

location. The port used for communication by the Benchmarking Agents is 80, as the

protocol identifier in our implementation for communication is HTTP. The server

component integrated to run the CLAMBS Agents is Apache Tomcat. Upon requests

by the CLAMBS Manager, the CLAMBS Agent starts its role, which includes down-

load/upload objects from remote server. Essentially, the CLAMBS Agent is capable

of handling requests from more than one CLAMBS Manager in case a hierarchal ar-

chitecture is adopted (see section 3.3.3). The Benchmarking Agent also incorporates

the load generator functionalities. This load generator function of CLAMBS is essen-

tially implemented using the JMeter package developed in Java. In this implementa-

tion, the prototype is designed to generate web application server traffic using HTTP

requests. The load generator in CLAMBS framework also supports SQL load genera-

148

tion. In the case of HTTP workload, HTTP sampler is provided along with the do-

main, port number, path, and the request method (e.g. POST or GET). Similarly, in

the case of the SQL workload, SQL sampler, query, query type (insert, update, or se-

lect), database URL, and database driver are provided. A loop controller is specified

according to the aimed workload scenario. This also applies to the thread group and

the number of threads that will perform the intended workload. Seamlessly, the

CLAMBS load generator prototype is implemented to be able to reach the targeted

components across different cloud platforms.

5.2.3.3 CLAMBS Manager Implementation

The CLAMBS Manager was presented in section 3.3.1 and section 4.3.1. The

CLAMBS Manager uses MySQL database to store the QoS statistics collected from

the Monitoring and Benchmarking Agents. For the proof-of-concept implementation,

a pull approach is used when the CLAMBS Manager is responsible to poll for QoS

data from CLAMBS Agents distributed across multiple cloud provider VMs. The

CLAMBS Manager uses a simple broadcasting mechanism for CLAMBS Agent dis-

covery. On booting, a discovery message is broadcasted to the known networks.

CLAMBS Agents that are available respond to the Manager’s request. The CLAMBS

Manager then records CLAMBS Agent information to the Agent database. The

CLAMBS Manager then starts off threads to query each CLAMBS Agent in the

149

Agent database to obtain QoS parameters. Furthermore, the discovery method can

be used while run-time for recovery purposes when one Agent stops sending data or

fails. The polling interval is a pre-defined constant and can be changed using the

CLAMBS Manager configuration files.

 Utilizing Java functionalities, the CLAMBS Manager is implemented based on the

net package provided by Java libraries. This library is responsible for most network

communication functions and requirements. It provides the superclass URLConnec-

tion, which represents a communication link between applications and Uniform Re-

source Locator (URL). Therefore, each CLAMBS Manager’s request will have two

main components: the protocol identifier and resource name. The benchmarking

component of the CLAMBS Manager can measure the QoS parameters including

Network Latency, Network Bandwidth, Network download speed, and Network

upload speed.

 The CLAMBS Manager implements a RESTful API allowing other applications to

request QoS data of individual application components running in a multi-cloud en-

vironment. The web interface consumes the API to present the data about applica-

tions and Agents visually. The web interface is developed using HTML5 and Java

script. Figure 5.5, and 5.6 present the web interface screenshots.

150

Figure ‎5.5: Screenshots of CPU and MEM Usage.

151

Figure ‎5.6: Screenshots of the Curve of CPU Usage.

5.2.3.4 CLAMBS Agent and Manager Communication

For the proof-of-concept implementation, the communication between the CLAMBS

Agent and the Manager has been implemented using two techniques, namely REST-

ful Web services and SNMP. Having a RESTful approach enables easy lightweight

communication between CLAMBS Agents and Manager/Super-Manager. Using a

standardized SNMP interface makes CLAMBS completely compatible with existing

SNMP-based applications, tools and systems, and reduces the effort involved in col-

152

lecting QoS statistics. Figure 5.7 shows a snippet code for assigning a unique port

number for each CLAMBS Monitoring Agent.

Figure ‎5.7: Assigning unique port number for each CLAMBS Monitoring Agent – Snippet Code.

Furthermore, figure 5.8 demonstrates the communication flow based on multiple

protocols between the CLAMBS Manager and Agents.

153

Figure ‎5.8: CLAMBS components communication based on RESTful and SNMP.

5.3. Modeling and analyzing CLAMBS Overheads in Multi-

Cloud Environments

The abstract model and analysis of CLAMBS framework will enable:

 Evaluating the possible overheads of the CLAMBS framework.

 Evaluating the deployments model of the CLAMBS framework.

 Choosing the deployment model for the CLAMBS framework.

154

 The pervious section presented the CLAMBS prototype implementation using

various technologies. However, the deployment of the implemented prototype can

be done in multiple ways of deployment, mainly centralized or decentralized. This

section will firstly present an abstract deployment model of the CLAMBS prototype

in section 5.3.1. Moreover, this section will present a study of the overheads of the

CLAMBS framework. The overheads study will enable deciding which deployment

model to adopt to conduct the experiments (presented in chapter 6).

 The CLAMBS framework is agnostic of the underlying cloud platform; that is, the

CLAMBS Manager/Agent may run on heterogeneous cloud platforms (chapter 3). In

case the CLAMBS framework components are distributed across different cloud

platforms (e.g. Amazon cloud platform and Windows Azure platform), one

CLAMBS Manager and multiple CLAMBS Agents will be residing on each of these

cloud platforms. Hence, it is important to model the overheads introduced by the

distribution of CLAMBS in multi-cloud environments. As there are different perfor-

mance requirements for different cloud applications, the CLAMBS framework must

cope with the specific requirements with different deployments.

155

5.3.1. Abstract Model for CLAMBS framework Deployment

This section introduces an abstract model for the CLAMBS framework and analyzes

the performance of the CLAMBS framework itself. Table 5.2 lists all notation for this

analysis model.

Parameter Description

Cloud Infrastructure

A = {a1,… am} Set of applications.

C = {c1,… ci} Set of application components.

V = {v1,… vm} Set of m cloud VM images.

S = {s1,… Sn} Set of n cloud infrastructure services.

P = {p1,… po} Set of o cloud providers.

D = {D1,…Dn} Set of Datacentres.

L = {L1,… Li} Set of Datacentres’ Locations.

Applications

α Location of an application component.

β Location of a PaaS component e.g. VM.

 Location of Agent.

ζ Location of CLAMS user (CLAMS Manager).

Ѱ Set of QoS Parameters of Application.

Ω
Set of QoS Parameters of PaaS level com-
ponent e.g. (Network, Stor-age, and VM).

G Application workload.

CLAMBS

θ = {θ1, … θi} Set of incorporated CLAMBS Managers.

 Set of incorporated CLAMBS Agents.



Number of communication messages be-
tween CLAMS components.

156



Maximum Network Bandwidth for a data-
center.

M Size of CLAMBS message.

π
CLAMBS Agents located in same datacenter
of CLAMBS Manager.

Table ‎5-2: Model analysis notation.

 Furthermore, Figure 5.9, presents the class diagram for the proposed framework

CLAMBS deployment.

157

Figure ‎5.9: CLAMBS framework deployment class diagram.

158

5.3.2. Communication Overhead

The communication overhead depends on the physical locations of CLAMBS Man-

agers, i.e. datacenter where CLAMBS Agents are distributed across n datacenters.

. For a datacenter , there are VMs running: . As each VM is

accompanied by a CLAMBS Agent, the Agents are denoted as . The size

of one CLAMBS Agent message from is . The location and deployment of

CLAMBS Agents and Managers will vary. When there is one CLAMBS Manager

located on datacenter , (See Figure 5.10), each of the distributed CLAMBS

Agent on VMs has to communicate with the CLAMBS Manager independently

based on a pre-determined time frequency. Thus, the total communication overhead

from CLAMBS Agents to CLAMBS Manager in one report will be the total number

of messages produced by all CLAMBS Agents except those CLAMBS Agents run-

ning on the same datacenter where the CLAMBS Manager is hosted as following:

(1)

159

 Practically, the size of CLAMBS communication messages varies between 80-90

bytes. If the message size is a fixed value M, then CLAMBS messages communica-

tion overhead is:

 (2)

 In the above formulas, the messages of Agents located in (π) are excluded being

in the same datacenter where CLAMBS Manager is running. Furthermore, for opti-

mization, these messages may not be needed for every report. This scenario will take

place if CLAMBS Agent applies data analysis on the messages before sending them

to decide if they need to be sent or neglected. Therefore, when changes occur to data,

they will be reported to CLAMBS Manager. Thus, if only a subset of is reporting

each time, CLAMBS communication cost will be reduced greatly.

 If is the bandwidth (connection speed) for datacenter , the total time con-

sumption in communication (when all CLAMBS messages are sent simultaneously at

fixed time slots) is:

 (3)

160

 Therefore, it is possible to develop adaptive algorithms to reduce reports from

Agents with large to save time, at the cost of CLAMBS messages infor-

mation. As they are all variable, the criteria could be an average from history. This is

a possible way to decide for every Agent report.

 When there are n distributed CLAMBS Managers/Sub-Managers located across

different data centers (See Figure 5.11), the cost is significantly reduced. Ideally, n

managers are located in different data centers. Although management

task is distributed, a Super-Manager is still needed for maintaining a centralized da-

tabase. For example, if the Super-Manager is , in this case, if the

message size from is , then the total communication overhead for each round is

reduced to . However, the optimization in communication overhead also brings

other trade-offs or compromises such as in setting up and switching additional Man-

agers, CPU load, response time, etc. I now discuss this further in the following sec-

tion.

161

Figure ‎5.10: Communications: 3 data centers, Manager located on .

Figure ‎5.11: Communications: 3 data centers, Managers located on V1,2, V2,2, and V3,1.

162

 For further demonstration of the messages communication overheads in CLAMBS

framework, two scenarios studied. The first scenario is the centralized deployment

where CLAMBS deploys only one Super-Manager. The second scenario is decentral-

ized deployment where CLAMBS has multiple Super-Managers.

 Suppose there are a total of 90 nodes presenting the CLAMBS framework de-

ployment across 3 different datacenters as shown in table 5.3. In the first scenario

there will be one Super-Manager and 89 CLAMBS Agents. In second scenario, there

will be three Super-Managers and 87 CLAMBS Agents.

Table ‎5-3: Two scenarios for CLAMBS deployment layout.

Scenario
Deployment

layout

Datacenter

1
Datacenter 2

Datacenter

3

Number of

Super-

Managers

Location of

Super-

Managers

Scenario

1
Centralized 30 30 30 1 Datacenter 1

Scenario

2
Decentralized 30 30 30 3

Datacenter 1,

2, and 3

163

 Supposing that message size is fixed as 100 KB, the frequency is 1 second, then

according to equations 1 and 2, the messages communication overhead will be as

presented in table 5.4.

Scenario Communication Overheads

Scenario 1 6000 KB/Sec

Scenario 2 200 KB/Sec

Table ‎5-4: Messages communications overheads.

5.3.3. CPU load, Response and Search Time

The distributed CPU load will be determined by the layout of CLAMBS Agents. This

section will also compare the standard one-Manager layout (model (1), see Figure

5.12) against the hierarchical tree-typed manager structure (model (2 & 3), see Fig-

ures 5.13, and 5.14). The total number of CLAMBS Agents is N and the max number

of child nodes per node is n.

164

Figure ‎5.12: Different management structures for 17 CLAMBS Agents – Model 1.

Figure ‎5.13: Different management structures for 17 CLAMBS Agents – Model 2.

165

Figure ‎5.14: Different management structures for 17 CLAMBS Agents – Model 3.

 The CPU load for managing one CLAMBS message is C. If there are a total of l

levels of the tree control structure, then:

 (4)

the inequality turns into an equality when the tree is a complete tree in its top

levels. In model (1) (Figure 5.12), the CPU load for the Super-Manager per round is

 and other nodes is 0. In model (2) (Figure 5.13), the maximum CPU load for

Super-Manager will be , and at least other Managers will also take over

a maximum CPU load of each. Whatever the load distribution, as the same total

number of Agents are returning the same amount of CLAMBS data, the overall CPU

load will remain the same. In other words, a larger n will incur less Managers to par-

166

ticipate and increase the load for each Manager. A smaller n will improve the distri-

bution, but l will also increase so that the response time will grow.

 The response time will be determined by the time for a node used to reach the

Super-Manager for it to react on unusual behaviors. If the time for a node (Agent)

to contact its Manager is t (including processing and communication), then in (1) all

response time is t. In (2), the response time will grow for most nodes. The response

time for node will be where is the level of . Under this model, it is easy to

observe that a larger n will cause less number of higher-response-time nodes, there-

fore smaller total response time. As the response time for most individual nodes will

grow, the total response time for all N nodes will also grow. Instead of , the

total time satisfies:

167

 (5)

 Therefore, the average response time for nodes other than the Super-

Manager satisfies:

 (6)

 As before, the inequalities turn into equalities if and only if the tree is a complete

tree in the top levels. In case of a fixed N, when n decreases or l increases, the

average response time will grow. Note that here, t is considered a constant value. In

practice, communication overhead will also affect the response time of each node.

Therefore, minimizing inter-data center communications as shown in communica-

tion overhead analysis will also help in lowering response time.

168

 Another metric is the average search time. Similar to a search tree, the (minimum)

average search time for the Super-Manager to find a leaf node in (2) is (for a

complete tree), as opposed to in (1). Therefore, the search time will also

benefit from a larger n.

 To sum up, in this section we presented an evaluation of the possible overheads

of the CLAMBS framework. The overheads included communications, CPU load,

Response, and search time in two different scenarios. The aforementioned scenarios

presented the possible methods can be adopted to deploy CLAMBS. This will enable

the decision maker to choose how to deploy CLAMBS. The two deployments of

CLAMBS Agents have their own advantages and disadvantages. To achieve de-

served performance, the system setup will depend on the actual requests and differ-

ent metrics such as communication overhead, CPU load distribution, average re-

sponse time analyzed in this section.

169

5.4. Summary

This chapter has presented implementation details of the CLAMBS framework

proposed in chapters 3 and 4, namely, CLAMBS: Cross-Layer Multi-Cloud Real-

Time Application QoS Monitoring and Benchmarking As-a-Service Framework.

 A prototype of the CLAMBS framework has been implemented on real-world

cloud platforms, namely, Amazon EC2, and Microsoft Azure platforms. The devel-

opment programming language was mainly Java, utilizing its rich and supported

open-source packages: RESTlful, SNMP, and SIGAR. Moreover, the chapter pre-

sented modeling and analysis overheads of the prototype in Multi-Cloud Envi-

ronments. Also, the CLAMBS framework proved the real-world feasibility of cloud

applications’ components monitoring and benchmarking.

170

66.. EExxppeerriimmeennttaattiioonn aanndd EEvvaalluuaattiioonn

6.1. Introduction

Chapter 5, section 5.3 presented a modeling approach for analyzing CLAMBS Over-

heads in Multi-Cloud Environments. The analysis helps to choose a deployment

model for CLAMBS on a cloud environment. In this chapter, to evaluate the

CLAMBS framework, experiments were conducted on real-world platforms, namely,

Amazon AWS and Microsoft Azure platforms.

 To validate CLAMBS Monitoring Agents against overheads while monitoring (see

research question 2, section 1.3), we applied four different scenarios. The first scenar-

io is to test CLAMBS overheads incorporating 5 CLAMBS Agents. The second sce-

nario is to Test CLAMBS overheads incorporating 30 CLAMBS Agents. The third

scenario is to Test CLAMBS overheads incorporating 50 CLAMBS Agents. The

fourth scenario is to Test CLAMBS overheads incorporating 85 CLAMBS Agents.

These scenarios incorporate different number of running Agents in order to detect

the overheads while communications in each scenario.

171

 To validate CLAMBS Benchmarking feasibility during benchmarking network

performance between different locations (see research question 3, section 1.3), we

did different benchmarks. First we applied data download latency benchmark. Se-

cond, we applied upload latency benchmark. Third, we applied Download/Upload

bandwidth benchmark. The outcomes of these different benchmarks help to validate

how feasible is CLAMBS to conduct network benchmarking between distinct loca-

tions. The outcomes were different as expected depending on the locations of differ-

ent networks.

 To validate CLAMBS Manager Scalability under Benchmarking (see research

question 2, section 1.3), we measured the CLAMBS Manager performance. This is,

we measured the CLAMBS Manager CPU and Memory utilization while bench-

marking. By doing this, we could validate how CLAMBS is scalable and robust

while performing its tasks.

The summary of the aforementioned objectives are presented in Table 6.1 below.

172

Objectives Scenario Section

Validate CLAMBS Monitor-

ing Agents against overheads

while monitoring. (see re-

search question 2, section 1.3)

Test CLAMBS overheads incorporat-

ing 5 CLAMBS Agents.

6.4.1

Test CLAMBS overheads incorporat-

ing 30 CLAMBS Agents.

Test CLAMBS overheads incorporat-

ing 50 CLAMBS Agents.

Test CLAMBS overheads incorporat-

ing 85 CLAMBS Agents.

Validate CLAMBS Bench-

marking feasibility during

benchmarking network per-

formance between different

locations. (see research ques-

tion 3, section 1.3)

Data download latency benchmark. 6.4.2

Data upload latency benchmark.

Download/Upload bandwidth

benchmark.

CLAMBS Manager Scalability

under Benchmarking. (see re-

search question 2, section 1.3)

Measuring CLAMBS Manager CPU

and Memory utilization while

benchmarking.

6.5

Table ‎6-1: Experiments objectives and evaluation.

6.2. Hardware and Software Configuration

Standard small instances were used on each platform. The AWS instance has the fol-

lowing configurations: 619 MB main memory, 1 EC compute unit, 1 virtual core with

1 EC2 compute unit, 160 GB of local instance storage, and a 64-bit platform. The Az-

ure instance has the following configuration: 768 MB main memory, 1GHz CPU

(Shared virtual core) and a 64 bit platform. Three different datacenters are consid-

ered in this experiment, namely, Sydney, US-Virginia, and Singapore. The CLAMBS

Manager was located in Sydney. One CLAMBS Agent was hosted on a VM at US-

173

Virginia datacenter and another CLAMBS Agent was hosted on a VM in Singapore

datacenter. Figure 6.1 presents a view for the distributed CLAMBS components

across the aforementioned datacenters.

Figure ‎6.1: Distributed CLAMBS components across datacenters.

 All VMs in the experiments were running Microsoft Windows Operating System.

For persistent storage of CLAMBS Agent and Manager data (Figure 3.2), off storage

volumes such as Elastic Block Store (EBS) in Amazon EC2 and XDrive in Windows

Azure were used. Major advantages of architecting applications to adopt off instance

storage are: i) each storage volume is automatically replicated, and this prevents da-

ta loss in case of failure of any single hardware component; and ii) storage volumes

174

offer the ability to create point in time snapshots, which could be extended to the

cloud specific data repositories.

6.3. Experimental Setup

As discussed previously (see section 5.1), the CLAMBS framework has three main

components namely the CLAMBS Manager, CLAMBS Monitoring Agent and

CLAMBS Benchmarking Agent. This section presents the experimental scenario and

setup of the Monitoring and Benchmarking Agents. In both cases, the Manager is re-

sponsible for collecting monitored and benchmarked QoS parameters.

 To evaluate and validate CLAMBS prototype, the scenario of a web audio/video

streaming application that uses a content distribution network to distribute multi-

media content to end-users using a multi-cloud provider setup (e.g. combination of

Amazon AWS and Windows Azure) was considered. The CLAMBS prototype was

used to benchmark and monitor the performance of this audio/video streaming ap-

plication components, namely the search and indexing server (Tomcat web server

and MySQL database) and network QoS parameters including network latency and

download and upload performance.

175

6.3.1. CLAMBS Monitoring Agent Setup

Each Monitoring Agent comprises the corresponding SNMP and SIGAR package

dependencies to accomplish the monitoring task (see sections 5.2.1.4 and 5.2.1.5). In

the experiment, the Monitoring Manager triggered a request to Monitoring Agents,

which in turn retrieved the requested QoS parameters from the hosted VM. Each

Monitoring Agent running on the VM listened on a unique port e.g. VM1-IP: 8000,

VM1-IP: 8001, enabling them to respond to queries from the monitoring Manager

independently.

 The Agents send responses to the Monitoring Manager concurrently. For experi-

mental purposes and to demonstrate and validate CLAMBS cross-layers monitoring

capability, each Monitoring Agent monitored several resources including system re-

sources and user processes. Table 6.2 presents the list of monitored process-

es/resources. On retrieving QoS data from the Monitoring Agents, the Monitoring

Manager saves the data into a local database by classifying them as system perfor-

mance or user applications QoS performance parameters.

176

Process/Resource Description Owner

Tomcat7w.exe Apache Tomcat 7 User

MySqld.exe MySQL Workbench 6.0 User

Javaw.exe Monitoring Manager User

Lsass.exe Local Security Authority Process System

Winlogon.exe Windows Logon App. System

Services.exe Services and Controller App. System

VM CPU Usage CPU usage of the entire VM System

VM Memory Usage Memory usage of the entire VM System

Table ‎6-2: Monitoring various resources across different layers.

6.3.2. CLAMBS Benchmarking Agent Setup

The Benchmarking Agent is composed of two components which are network traffic

benchmarking and CLAMBS load generator (see section 5.2.3.2). Similar to Monitor-

ing Agent, each Benchmarking Agent comprises the corresponding required Java

package dependencies to accomplish the benchmarking task. In this experiment set-

up, the network QoS parameters that links between the CLAMBS Manager and the

Benchmarking Agents are tested. Benchmarking the network link connecting a

Benchmarking Agent and the CLAMBS Manager was accomplished by generating

bi-directional traffic to simulate download and upload processes. This experiment

177

was run to demonstrate CLAMBS ability to benchmark network performance be-

tween two different locations of datacenters.

 In the experiments, the CLAMBS Manager triggered the benchmarking requests

to CLAMBS Benchmarking Agents, which responded immediately to the Manag-

er’s request. Communications between CLAMBS Manager and Agents were con-

ducted using the RESTful HTTP protocol. Pre-defined files with varying sizes (50

MB, 100MB, and 200MB) were used during the experiment to measure network

performance over a download/upload process. Table 6.3 lists the measurements

parameters that were observed throughout the experiment. According to the pro-

posed conceptual framework, such measurements provide the user with the ability

to decide and choose a preference for what site/location a service is performing bet-

ter. Likewise, a service provider will acquire such knowledge in order to improve

the delivered service quality to clients.

178

Traffic Benchmarking Measurement

Parameter
Description

Download File Network Latency Time
Time consumed starting from a request up-till

download complete including Network Latency

Upload Network Bandwidth
Amount of data transferred per Second while

download process

Upload File Network Latency Time
Time consumed starting from a request up-till

upload complete including Network Latency

Upload Network Bandwidth
Amount of data transferred per Second while

upload process

Table ‎6-3: Benchmarking parameters measurements parameters.

6.3.3. Runtime Configuration Monitoring Agent

CLAMBS Monitoring Agents (section 5.2.3.2) as well as CLAMBS Manager are

packaged into jar files with corresponding dependencies and configured to run

during the VM boot process. The Agents use a configuration file that specifies pro-

cesses to monitor. Based on this information, at run-time, the Agent determines the

process ID of the respective process. After finding the process ID, the Agent starts

to retrieve specific QoS parameters for that process e.g. memory usage and CPU

consumption.

179

 Figure 6.2 provides a detailed workflow of communication between the

CLAMBS Monitoring Manager and Agents. The Monitoring Manager instantiated

parallel threads for each group of Agents in one VM; that is, each thread was dedi-

cated to only one VM to communicate with Agents running on that VM. The Man-

ager thread sent requests to Agents addressed by IP address and port numbers.

The request was for a list of QoS parameters Monitored by the Agent. After receiv-

ing the request, Agents computed the QoS parameter values from the hosting VM.

The Agents then responded to the Manager with corresponding QoS parameters.

Figure ‎6.2: CLAMBS Manager/Agents run-time communication workflow.

180

 The CLAMBS Agents and Manager were deployed on four virtual machine in-

stances (3 VM’s on AWS platform and 1 on Microsoft Azure platform). On VMs

that hosted the Agent, depending on number of Agents, the Agents were bound to

unique ports. For example, if VM-3 hosted 30 Agents, it was bound to ports 8001-

8030. Similarly if VM-4 hosted 10 Agents, it was bound to ports 8001-8010.

6.3.4. Runtime Configuration Benchmarking Agent

CLAMBS Manager and Benchmarking Agents (section 5.2.3.3) are packaged into

runnable jar and war files with corresponding dependencies and configured to run

during the VM boot process. The Agents use a configuration file that is required to

run and remain on standby waiting for the Manager requests. Intervals of requests

can vary, but initially it is set to 10 seconds for each request sent to a single CLAMBS

Agent. Agents in turn immediately respond to CLAMBS Manager requests. Fixed

data with pre-chosen sizes are stored locally in each VM hosting CLAMBS Manager

and CLAMBS Agents to be utilized for data transferred during the experiment. The

CLAMBS Manager instantiated parallel threads for each CLAMBS Agent (see section

5.2, figure 5.8) addressed by IP address and port number. Concurrently, CLAMBS

Manager sends similar requests to other registered CLAMBS Agents in different dat-

acenters which can also be for a different cloud platform provider.

181

6.4. Experimental Results and Discussion

6.4.1. CLAMBS Monitoring Agent

To validate that the CLAMBS Monitoring Agent does not introduce significant over-

heads while monitoring QoS parameters across-layers in multi-cloud environments,

experiments were executed on four typical multi-cloud workload scenarios de-

scribed in table 6.4. In all scenarios, Agents were deployed on multi-cloud environ-

ments (3 AWS instances and 1 Azure instance).

Workload

Scenario
VM-1 VM-2 VM-3 VM-4

I
hosts the

CLAMBS

Manager

Hosts 1 Agent Hosts 1 Agent Hosts 3 Agent

II
hosts the

CLAMBS

Manager

Hosts 10

Agents

Hosts 10

Agents

Hosts 10

Agents

III
hosts the

CLAMBS

Manager

Hosts 10

Agents

Hosts 20

Agents

Hosts 50

Agents

IV
hosts the

CLAMBS

Manager

Hosts 25

Agents

Hosts 30

Agents

Hosts 30

Agents

Table ‎6-4: Experimental workload scenarios.

 For each scenario, the CPU and memory consumption of the CLAMBS Manager

were monitored. Figures 6.3 and 6.4 present the results of the experiments. The av-

182

erage CPU and memory utilization by the Manager is computed for each scenario.

Each evaluation scenario involving communication between Agents and Manager

was run for a duration of 30 minutes. The frequency of querying the Agents for

QoS parameters was set to 1 second. The outcomes clearly indicate that the

CLAMBS Manager performance is stable with an increase in the number of active

Agents. The CPU utilization increased from 6.25% when Manager was communi-

cating with 5 Agents to 10.92% when the number of Agents was 85. Likewise, the

amount of memory consumed by the CLAMBS Manager increased marginally

from 177.5 MB with 5 Agents to 177.85 MB with 85 Agents. Moreover, it was noted

that, the CLAMBS Manager or the Agents during the experiment did not encounter

any crash or malfunction. These outcomes clearly validate the resource efficient

operation of the CLAMBS prototype and its ability and suitability to scale across

multi-cloud environments.

183

Figure ‎6.3: Manager CPU consumption in percentage (Monitoring Scenario).

184

Figure ‎6.4: CLAMBS Manager Memory utilization in MB.

6.4.2. CLAMBS Benchmarking Agent

To demonstrate CLAMBS benchmarking ability, the network performance between

datacenters in different locations is benchmarked based on the experimental setup

presented earlier.

6.4.2.1 Data Download Latency Benchmark

Concurrently, CLAMBS Manager started downloading data from Agents in Singa-

pore and US-Virginia datacenters. Each request indicates what size of data is to be

downloaded (50MB, 100MB, or 200MB). As presented in figure 6.5, the CLAMBS

185

Agent in Singapore datacenter provided faster data download compared to

CLAMBS Agent in US-Virginia. Moreover, it was observed that as the data size in-

creased, the data transfer latency from CLAMBS Agent in US-Virginia also in-

creased. Such observations are expected to have a major impact on both service pro-

vider and service client.

Figure ‎6.5: Data Download Network Latency (Time in Seconds).

6.4.2.2 Data Upload Latency Benchmark

Experiments, as shown in figure 6.6 demonstrates how network traffic benchmark-

ing has the potential to drive preferences of both service provider and service client.

Uploading 50MB, 100MB, and 200MB files from Sydney datacenter to Singapore dat-

186

acenter show shorter latency times compared to uploading the same size of data to

US-Singapore datacenter.

Figure ‎6.6: Data Upload Network Latency (Time in Seconds).

6.4.2.3 Download/Upload Bandwidth Benchmark

Experimental results as shown in figure 6.7, presents the outcome of up-

load/download bandwidth between Singapore, Sydney and US-Virginia datacenters.

With 50MB, 100MB, and 200MB size of data being transferred, network bandwidth

between Sydney and Singapore remains the same at 8 KB/s. Similarly, the network

bandwidth between Sydney and US-Virginia is 6 KB/s for the different data sizes

transferred. This demonstrates that the CLAMBS benchmarking capability enables

the user to prefer one location over another. In this experimentation scenario the

187

Singapore datacenter site measured a significantly better performance over the US-

Virginia datacenter.

Figure ‎6.7: Download/Upload Bandwidth (Kilobytes per Seconds).

6.5. Experiments Scenarios Analysis for CLAMBS validation
and Feasibility

This section will present analysis for CLAMBS scalability and demonstrates the en-

countered limitation during the experiments.

188

6.5.1. Development Environment Limitations

Referring to AWS documentation32, network performance for small instance types

are low. Moreover, such types of instances are not listed under eligible instances for

enhanced network performance. Unlike other instance types (e.g. c3.large, c3.xlarge,

c3.2xlarge, c3.4xlarge, c3.8xlarge, i2.xlarge, i2.2xlarge, i2.4xlarge, i2.8xlarge, r3.large,

r3.xlarge, r3.2xlarge, r3.4xlarge, or r3.8xlarge), small instance types do not have a fea-

ture of enabling enhanced network performance. This limitation was addressed in

the experiments by having low network bandwidth across different datacenters. Fur-

thermore, VM requests serving priority by the hosting server on Amazon platform

are low, which means that the performance is minimal for such small instances.

6.5.2. CLAMBS Manager Scalability under Benchmarking

The average CPU and memory utilization by the CLAMBS Manager was computed

while performing benchmarking of an application’s network performance. A file size

of 100 KB enabled the operation of data transfer between CLAMBS Manager and

Agents located in different remote datacenters locations to be repeated. In this sce-

nario, a CLAMBS Monitoring Agent to monitor the performance of the CLAMBS

Manager was used. As indicated by the experimental outcome, and similar to the

32

 https://aws.amazon.com/documentation/aws-support/

https://aws.amazon.com/documentation/aws-support/

189

CLAMBS Manager’s performance (see figures 6.3, and 3.4) while monitoring, the

overheads imposed by the benchmarking component of the CLAMBS Manager on

the underlying system memory consumption are not very significant as shown in

figure 6.8 . Moreover, the CPU consumption of CLAMBS Manager during bench-

marking scenario was also not significant and ranged between 2 – 5%.

Figure ‎6.8: CLAMBS Manager memory consumption (benchmarking scenario).

 The experimental outcomes validate the CLAMBS framework’s ability to be re-

liable in benchmarking network traffic across multiple datacenters using different

190

sizes of transferred data. The next section will present a summary of all outcomes

of the experiments stated earlier in this chapter.

6.6. Summary

This chapter has presented the outcomes of experiments performed to verify and

validate the CLAMBS framework proposed in chapters 3, 4 and 5. Table 6.5 presents

the outcomes summary for the stated objectives of the CLAMBS framework during

the experiments.

Objectives Outcomes Section

Validate CLAMBS Moni-

toring Agents against

overheads while monitor-

ing.

The CLAMBS Manager performance is

stable with an increase in the number of

active Agents. The CPU utilization grows

up from 6.25% when Manager is com-

municating with 5 Agents to 10.92% when

the number of Agents is 85. Likewise, the

amount of memory consumed by the

CLAMBS Manager increased marginally

from 177.5 MB with 5 Agents to 177.85

MB with 85 Agents.

6.4.1

Validate CLAMBS

Benchmarking feasibility.

CLAMBS Agent in Singapore datacen-

ter provided faster data download

compared to CLAMBS Agent in US-

Virginia.

6.4.2

Uploading data from Sydney datacen-

ter to Singapore datacenter show

shorter latency times comparing to up-

loading the same size of data to US-

Singapore datacenter.

Network bandwidth between Sydney

and Singapore remains the same at 8

191

KB/s. Similarly, the network band-

width between Sydney and US-

Virginia is 6 KB/s for the different data

sizes transferred.

CLAMBS Manager Scala-

bility under Benchmark-

ing.

The overheads imposed by the bench-

marking component of the CLAMBS

Manager on the underlying system

memory consumption is not very sig-

nificant.

6.5

Table ‎6-5: The experimental outcomes summary.

 The experimental evaluations of the proposed CLAMBS framework leveraging

different development technologies, tools and in real-world environment have sig-

nificant potential for monitoring and benchmarking cross-layers applications’

components on multi-cloud environments. Experimentation and the prototype im-

plementation show that CLAMBS is flexible, scalable and resource efficient and can

be used to monitor and benchmark several applications and cloud resources dis-

tributed across multiple clouds.

192

77.. CCoonncclluussiioonn aanndd FFuuttuurree WWoorrkk

Cloud applications monitoring and benchmarking is a key research area that raises a

number of unique technical challenges. Cloud applications monitoring and bench-

marking plays a vital role in developing provisioning techniques for guaranteeing

SLAs. Cloud applications’ components are distributed across multiple-layers and on

multi-clouds. Hence, this thesis proposed, designed, formulated, and developed a

unique and novel monitoring and benchmarking framework and techniques which

provide the required awareness of performance SLA QoS targets for cloud hosted

applications.

 This thesis has successfully addressed the challenges of cross-layered application

monitoring and benchmarking in multi-cloud environments. The thesis ends by

highlighting the major contributions and future research directions that can build

upon outcomes of this research.

7.1. Contributions of the Thesis Work

7.1.1. Research questions

In chapter 1, section 3.1, three research questions were formulated to address the aim

of this thesis:

193

1. What is the current state-of-the-art architecture dimensions and issues of

cloud applications’ monitoring and benchmarking? In particular:

 What is the body of the knowledge in current cloud monitoring and

benchmarking tools and techniques?

 What is the support for multi-cloud and cross layers monitoring and

benchmarking?

2. How to design a monitoring tool which is scalable, dynamic, agnostic to cloud

platform, agnostic to cloud layer, and agnostic to cloud application type? In

particular:

 How to determine layer specific application monitoring requirements; i.e.,

how cloud consumers can stipulate at which cloud layer (SaaS or PaaS or

IaaS) his/her application should be monitored?

 How cloud consumers can stipulate on which cloud provider platform or

datacentre his/her application should be monitored?

 How to model QoS and SLA information to monitor applications’ per-

formance?

3. How to design a benchmarking tool which closely integrates with a monitor-

ing tool and is able to perform real-time benchmarking of applications’ com-

ponents at SaaS, PaaS, and IaaS layers?

7.1.2. Addressing First Research Question

In relation to the first research question, the thesis surveyed and investigated the

body of knowledge in context of cloud application monitoring and benchmarking

tools and techniques. Furthermore, it analyzed how current approaches support

194

cross-layers multi-clouds monitoring and benchmarking. Based on the investigation

of the available literature, a taxonomy for classifying current monitoring and

benchmarking approaches was developed. Further, some research dimensions that

aid in understanding the technical capabilities and limitation of the current genera-

tion of monitoring and benchmarking frameworks and techniques were proposed.

7.1.3. Addressing Second Research Question

To address the core technical challenges involved with developing techniques and

frameworks that can monitor cloud applications in multi-cloud environments, the

thesis in chapter 3 developed and designed a monitoring framework which is scala-

ble, dynamic, agnostic to cloud platforms, agnostic to cloud layer, and agnostic to

cloud application type. In particular, the core contributions in this part of the thesis

included that:

 The CLAMBS framework, which is able to determine layer specific appli-

cation monitoring requirements i.e., SaaS, PaaS, and IaaS specific QoS pa-

rameters to be monitored.

 The CLAMBS framework enables the user to stipulate how an application

should be monitored on a specified cloud provider platform or datacen-

tre.

 A proof-of-concept implementation (chapter 5) was presented to validate the fea-

sibility of the proposed framework in real-world scenarios based on the experiments

and prototype implementation. In particular, the novel features of CLAMBS include:

195

o Ability to monitor and profile QoS of applications, whose hardware

and software components are distributed across multiple public or pri-

vate clouds; and

o Ability to provide visibility into QoS of individual components of giv-

en application stack (e.g., web server and database server in context of

multi-tiered web applications).

7.1.4. Addressing Third Research Question

The CLAMBS framework closely integrates with monitoring tools and is able to per-

form real-time benchmarking of applications’ components at SaaS, PaaS, and IaaS

layers in multi-cloud environments.

 As demonstrated in chapters three and four, the CLAMBS framework was in-

tended to be cross-layers multi-cloud monitoring and benchmarking framework.

Thus, it is worth noting that CLAMBS framework has the following novel features:

o It provides visibility into QoS of individual components of application

stack (e.g., CPU at IaaS layer, Database server at PaaS layer, and web

application at SaaS layer). In particular, CLAMBS facilitates efficient

collection and sharing of QoS information across SaaS, PaaS, and IaaS

layers by deploying a cloud provider agnostic intelligent multi-agent

technique;

196

o It provides benchmarking-as-a-service that enables the establishment

of baseline performance of application deployed across multiple layers

using a cloud-provider agnostic technique; and

o It is a comprehensive framework allowing continuous (real-time)

benchmarking and monitoring of multi-cloud hosted multi-layered

applications.

 Further, to verify, validate and evaluate the proposed CLAMBS framework, in

chapters 4 and 5, I;

1. Implemented the Cross-Layer Multi-Cloud Application Monitoring- and

Benchmarking-as-a-Service (CLAMBS) Framework in Java, SNMP,

RESTlet technology, and SIGAR.

2. Demonstrated the scalability and efficiency of CLAMBS by conducting ex-

tensive real-world experimentations on cloud platforms such as Amazon

AWS, and Microsoft Azure platforms.

3. Presented an empirical evaluation of CLAMBS framework.

 As a result of the aforementioned features and capabilities of the CLAMBS

framework, system administrators and applications developers have the following

capabilities:

I. keeping the cloud services and applications operating at peak effi-

ciency;

197

II. detecting variations in service and application performance;

III. accounting the SLA violations of certain QoS parameters; and

IV. tracking the leave and join operations of services due to failures and

other dynamic configuration changes.

 It should however be noted that the developed framework is quite generic, as it is

agnostic to cloud platforms, applications, service and cloud layers.

 In addition, an evaluation study was presented to evaluate the CLAMBS perfor-

mance (section 6.1). Based on different scenarios presented in (table 6.5) and de-

ployments methods, we could evaluate how CLAMBS can perform. The perfor-

mance was measured through different factors like the communication, CPU load,

and Memory utilization. The outcomes provided promising results that validate how

CLAMBS is scalable and robust.

7.2. Limitations

Based on the discussed facts and on the aforementioned monitoring and benchmark-

ing aspects and approaches, I believe that considerable effort is required to have

more reliable cloud monitoring and benchmarking approaches. Because I found that

there is a lack of reachable standards on procedure, format, and metrics to assess the

development of cloud monitoring and benchmarking. Mainly, commercial monitor-

ing and benchmarking tools do not provide such technical information for publish

access, which makes it challenging to formulate and advancing a new monitoring

198

and benchmarking tool. For instance, although rich documentation for Cloudwatch

monitoring tool is provided by Amazon, the technical information that explain how

Cloudwatch performs are hidden. Likewise, Microsoft Azure do not reveal any

technical data for the Azure FC.

 For the purpose of conducting the experiments, I needed to have access to several

VMs provided by at least two major cloud providers. Amazon and Microsoft cloud

platforms provide various type user accounts to access the cloud platform resources.

Nevertheless, the affordable type of accounts I used provide limited resources ac-

cordingly and hence, have the following limitations:

 Limited network resources, this means the VMs will have the very lowest

network bandwidth that could be provided. This impacts the communication

performance between the distributed VMs among different datacenters dur-

ing the experiment.

 Limited VM RAM capacity, which presents slowness in the performance of

the running applications and the CLAMBS components on a VM. For exam-

ple, slowness in the CLAMBS database and web server components was no-

table.

 Limited CPU features and capabilities, that impacts the overall performance

of the VM and the required applications running on that VM.

7.3. Future Work

Based on the aforementioned limitations, I recommend having more collaborative

use of research facilities in which tools, lessons learned and best practices (and moni-

199

tored data logs) can be shared among all interested researches and professions.

Moreover, the research questions addressed in this thesis have created new oppor-

tunities for further research. I highlight some of them in this section.

7.3.1. CLAMBS: Cross-Layer Multi-Cloud Application Monitoring- and Bench-
marking-as-a-Service Framework

CLAMBS framework can be improved by incorporating additional development

technologies. Furthermore, CLAMBS can be integrated within a cloud orchestration

framework to provide QoS-awareness for cloud admission control and scheduling of

Big Data applications in a highly distributed multi-cloud environment.

 Data mining and application programming frameworks provide the ability to

formulate a big data analytics application architecture. Largescale data mining

frameworks (e.g. GraphLab [103] FlexGP [48] Apache Mahout33, and MLBase [85],

apply many data mining algorithms such as clustering, decision trees, regression,

and Bayesian for mining datasets simultaneously by leveraging distributed sets of

machines. However, such complicated, dynamic configurable large scale frame-

works require novel monitoring and QoS control techniques. Ensuring QoS for such

frameworks across cloud layers on multi-cloud environments is a challenging task.

QoS parameters are diverse for each computing platform hosting a large scale

framework. Key quality factors include throughput and latency in a distributed mes-

saging system, response time in the batch processing platform, and precision recall

in the scalable data mining platform. Consequently, we need to know:

33

 http://mahout.apache.org

http://mahout.apache.org

200

 how these QoS could be defined consistently across layers;

 how the various measures should be combined to give a holistic view of the

stream of data flows end-to-end; or

 how optimal optimization would be realized in cases with large sets of varia-

bles and constraints, such as with heterogeneous resources, non-steady work-

loads, and so on.

 To this end, future research efforts must take an end-to-end QoS view of large

scale frameworks and develop techniques that address all components rather than

handling them as one black-box.

7.3.2. Monitoring big data security and privacy

In cloud environments, while implementing the security controls framework, the

cloud platform provider can only conduct and process the type of data a customer

will actually generate and use. Consequently, the cloud service provider is not

aware of the additional security and privacy requirements or custom security con-

trols that are considered to be necessary to protect the customer’s data. Equally, cus-

tomers can obtain only a rough view of the cloud service provider’s security policies

and the implemented mechanisms. Such limitations are challenging for deploying

innovative features such as monitoring and end-to-end security assurance in multi-

cloud platforms.

 NIST and the European Commission (EC) consider SLAs as the most important

element for cloud service providers to establish their sincerity and attract cloud cus-

tomers because SLAs will be used as a mechanism for service variation. They sug-

201

gest the use of cloud SLAs to develop better assessments and inform customer deci-

sions, and eventually to advance trust and transparency among cloud users. To em-

power the SLAs from security and privacy perspectives, multiple users in the cloud

community such as the European Network and Information Security Agency (ENI-

SA) [124], the International Standards Organization/International Electro-technical

Commission (ISO/IEC) [1], NIST, and the EC have identified that determining securi-

ty parameters in SLAs, or secSLA, is useful for establishing common semantics to

provide and manage security assurance for both cloud service providers and cloud

customers.

 Based on agreed secSLA between the cloud service provider and the cloud service

customer, the cloud customer will have a mechanism to monitor the QoS parameters

defined in this secSLA. This mechanism helps to assess the fulfillment of agreed se-

curity and privacy objectives or any potential violations.

 To the best of my knowledge, few efforts have been made to explore this area.

CLAMBS framework with its current cross-layers and multi-cloud monitoring and

benchmarking capabilities can be further extended to assess the feasibility of the

aforementioned security monitoring approach. Defined secSLA parameters can be

QoS targets for CLAMBS to monitor for assuring secSLA objectives and avoiding vi-

olations.

202

References

[1] "Cloud Service Level Agreement Standardization Guidelines," EC Cloud Select

Industry Group (CSIG), European Commission, 2014.

[2] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, "Cloud monitoring: A survey,"

Computer Networks, vol. 57, pp. 2093-2115, 2013.

[3] O. Adinolfi, R. Cristaldi, L. Coppolino, and L. Romano, "QoS-MONaaS: A Portable

Architecture for QoS Monitoring in the Cloud," in Signal Image Technology and

Internet Based Systems (SITIS), 2012 Eighth International Conference on, 2012, pp.

527-532.

[4] M. Ahmed, A. S. M. R. Chowdhury, M. Ahmed, and M. M. H. Rafee, "An Advanced

Survey on Cloud Computing and State-of-the-art Research Issues," International

Journal of Computer Science Issues(IJCSI), vol. 9, 2012.

[5] A. Alexandrescu and P. Marginean, "Generic: Change the Way You Write Exception-

Safe Code Forever," Dr. Dobb’s Journal, CMP Media LLC, 2003.

[6] Amazon, "Amazon Web Services," http://aws.amazon.com/, 2013.

[7] Amazon, "AWS," http://aws.amazon.com/pricing/?nc2=h_ql_reinvent, 2015.

[8] Amazon, "CloudWatch," http://aws.amazon.com/whitepapers/, 2015.

[9] Amazon, "Crash of Amazon EC2 Cloud Services,,"

http://www.businessinsider.com/amazon-lost-data-2011-4,

, 2011.

[10] M. Anala and G. Shobha, "Comparative study of application performance on virtual

machine and physical machine," in Computational Intelligence & Computing

Research (ICCIC), 2012 IEEE International Conference on, 2012, pp. 1-6.

[11] M. Anand, "Cloud Monitor: Monitoring Applications in Cloud," Cloud Computing in

Emerging Markets (CCEM), 2012 IEEE International Conference on

Communication, Networking & Broadcasting, pp. 1-4, 2012.

[12] S. Angeles, "Virtualization vs. Cloud Computing: What's the Difference?,"

http://www.businessnewsdaily.com/5791-virtualization-vs-cloud-computing.html,

2015.

[13] Apache.org, "Apache Project," http://httpd.apache.org/ABOUT_APACHE.html, 2015.

[14] D. Armstrong and K. Djemame, "Towards quality of service in the cloud," in Proc. of

the 25th UK Performance Engineering Workshop, 2009.

[15] J. Ashwini, C. Divya, and H. Sanjay, "Efficient resource selection framework to

enable cloud for HPC applications," in Computer and Communication Technology

(ICCCT), 2013 4th International Conference on, 2013, pp. 34-38.

[16] L. Atzori, F. Granelli, and A. Pescapè, "A network-oriented survey and open issues in

cloud computing," Cloud computing: methodology, system, and applications, CRC,

Taylor & Francis group, 2011.

http://aws.amazon.com/
http://aws.amazon.com/pricing/?nc2=h_ql_reinvent
http://aws.amazon.com/whitepapers/
http://www.businessinsider.com/amazon-lost-data-2011-4
http://www.businessnewsdaily.com/5791-virtualization-vs-cloud-computing.html
http://httpd.apache.org/ABOUT_APACHE.html

203

[17] G. Aversano, M. Rak, and U. Villano, "The mOSAIC benchmarking framework:

Development and execution of custom cloud benchmarks," Scalable Computing:

Practice and Experience, vol. 14, 2013.

[18] Azure.Microsoft, "Azure FC," http://azure.microsoft.com/en-

us/documentation/videos/fabric-controller-internals-building-and-updating-high-

availability-apps/, 2015.

[19] G. Back, "Isolation, resource management and sharing in the KaffeOS Java runtime

system," The University of Utah, 2002.

[20] S. A. Baset, "Cloud SLAs: present and future," ACM SIGOPS Operating Systems

Review, vol. 46, pp. 57-66, 2012.

[21] I. Baumgart and B. Heep, "Fast but economical: A simulative comparison of

structured peer-to-peer systems," in Next Generation Internet (NGI), 2012 8th EURO-

NGI Conference on, 2012, pp. 87-94.

[22] H. A. Bheda and J. Lakhani, "QoS and performance optimization with VM

provisioning approach in Cloud computing environment," in Engineering

(NUiCONE), 2012 Nirma University International Conference on, 2012, pp. 1-5.

[23] M. A. A. bin Mohd Shuhaimi, "The new services in Nagios: Network bandwidth

utility, email notification and sms alert in improving the network performance," in

Information Assurance and Security (IAS), 2011 7th International Conference on,

2011, pp. 86-91.

[24] Bitnami.org, "Bitnami Cloud Images," http://bitnami.org/faq/cloud_amazon_ec2,

2012.

[25] I. Brandic, D. Music, P. Leitner, and S. Dustdar, "Vieslaf framework: Enabling

adaptive and versatile sla-management," Grid Economics and Business Models, pp.

60-73, 2009.

[26] F. Brasileiro, F. Greve, M. Hurfin, J.-P. Le Narzul, and F. Tronel, "Eva: an event-

based framework for developing specialised communication protocols," in Network

Computing and Applications, 2001. NCA 2001. IEEE International Symposium on,

2001, pp. 108-119.

[27] J. Brindza, J. Szweda, Q. Liao, Y. Jiang, and A. Striegel, "WiiLab: bringing together

the Nintendo Wiimote and MATLAB," in Frontiers in Education Conference, 2009.

FIE'09. 39th IEEE, 2009, pp. 1-6.

[28] B. Cai, F. Xu, F. Ye, and W. Zhou, "Research and application of migrating legacy

systems to the private cloud platform with cloudstack," in Automation and Logistics

(ICAL), 2012 IEEE International Conference on, 2012, pp. 400-404.

[29] R. N. Calheiros, R. Ranjan, and R. Buyya, "Virtual machine provisioning based on

analytical performance and QoS in cloud computing environments," in Parallel

Processing (ICPP), 2011 International Conference on, 2011, pp. 295-304.

[30] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, K. Stockinger,

and F. Zini, "Evaluating scheduling and replica optimisation strategies in OptorSim,"

in Proceedings of the 4th International Workshop on Grid Computing, 2003, p. 52.

[31] Q. Cao, Z.-B. Wei, and W.-M. Gong, "An optimized algorithm for task scheduling

based on activity based costing in cloud computing," in Bioinformatics and

Biomedical Engineering, 2009. ICBBE 2009. 3rd International Conference on, 2009,

pp. 1-3.

http://azure.microsoft.com/en-us/documentation/videos/fabric-controller-internals-building-and-updating-high-availability-apps/
http://azure.microsoft.com/en-us/documentation/videos/fabric-controller-internals-building-and-updating-high-availability-apps/
http://azure.microsoft.com/en-us/documentation/videos/fabric-controller-internals-building-and-updating-high-availability-apps/
http://bitnami.org/faq/cloud_amazon_ec2

204

[32] W. Cappelli and J. Kowall, "Magic Quadrant for Application Performance

Monitoring," Technical report, UC Berkeley2011.

[33] E. Caron, L. Rodero-Merino, F. d. r. Desprez, and A. Muresan, "Auto-scaling, load

balancing and monitoring in commercial and open-source clouds," 2012.

[34] M. Castro, M. Costa, and A. Rowstron, "Should we build Gnutella on a structured

overlay?," ACM SIGCOMM Computer Communication Review, vol. 34, pp. 131-136,

2004.

[35] A. Chervenak and S. Bharathi, "Peer-to-peer approaches to grid resource discovery,"

in Making Grids Work, ed: Springer, 2008, pp. 59-76.

[36] S. N. T.-c. Chiueh and S. Brook, "A survey on virtualization technologies," RPE

Report, pp. 1-42, 2005.

[37] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino, L. M. Vaquero, et

al., "Monitoring service clouds in the future internet," Towards the Future Internet-

Emerging Trends from European Research, pp. 1-12, 2010.

[38] CLIQR, "CLIQR MAKES CLOUD BENCHMARKING AVAILABLE TO ALL

USERS, PROVIDING CRITICAL INFORMATION NEEDED TO OPTIMIZE

APPLICATION DEPLOYMENTS ON THE CLOUD,"

http://www.cliqr.com/company/news-events/cliqr-makes-cloud-benchmarking-

available-to-all-users-providing-critical-information-needed-to-optimize-application-

deployments-on-the-cloud/, 2015.

[39] cloudharmoney, "Azure Downtime," https://cloudharmony.com/status-1year-of-

storage-and-compute-group-by-regions-and-provider, 2013.

[40] CloudWatch, "CloudWatch,"

http://awsdocs.s3.amazonaws.com/AmazonCloudWatch/latest/acw-dg.pdf., 2014.

[41] T. Crawford and R. Pettus, "A Unix command line argument processor," in

Southeastcon'88., IEEE Conference Proceedings, 1988, pp. 484-487.

[42] CSIRO, "CSIRO's ASKAP Radio Telescope,"

http://www.atnf.csiro.au/projects/askap/index.html, 2015.

[43] K. Czajkowski, I. Foster, and C. Kesselman, "Agreement-based resource

management," Proceedings of the IEEE, vol. 93, pp. 631-643, 2005.

[44] K. Czajkowski, I. Foster, and C. Kesselman, "Co-allocation services for

computational grids," in Proc. 8th IEEE Symposium on High Performance

Distributed Computing, 1999.

[45] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, "Towards a common

API for structured peer-to-peer overlays," in Peer-to-Peer Systems II, ed: Springer,

2003, pp. 33-44.

[46] C. R. Davis, S. Neville, J. M. Fernandez, J.-M. Robert, and J. Mchugh, "Structured

peer-to-peer overlay networks: Ideal botnets command and control infrastructures?,"

in Computer Security-ESORICS 2008, ed: Springer, 2008, pp. 461-480.

[47] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, "Toward an architecture for

monitoring private clouds," Communications Magazine, IEEE, vol. 49, pp. 130-137,

2011.

[48] O. C. Derby, "FlexGP: a scalable system for factored learning in the cloud,"

Massachusetts Institute of Technology, 2013.

http://www.cliqr.com/company/news-events/cliqr-makes-cloud-benchmarking-available-to-all-users-providing-critical-information-needed-to-optimize-application-deployments-on-the-cloud/
http://www.cliqr.com/company/news-events/cliqr-makes-cloud-benchmarking-available-to-all-users-providing-critical-information-needed-to-optimize-application-deployments-on-the-cloud/
http://www.cliqr.com/company/news-events/cliqr-makes-cloud-benchmarking-available-to-all-users-providing-critical-information-needed-to-optimize-application-deployments-on-the-cloud/
https://cloudharmony.com/status-1year-of-storage-and-compute-group-by-regions-and-provider
https://cloudharmony.com/status-1year-of-storage-and-compute-group-by-regions-and-provider
http://awsdocs.s3.amazonaws.com/AmazonCloudWatch/latest/acw-dg.pdf.
http://www.atnf.csiro.au/projects/askap/index.html

205

[49] T. Dillon, C. Wu, and E. Chang, "Cloud computing: issues and challenges," in

Advanced Information Networking and Applications (AINA), 2010 24th IEEE

International Conference on, 2010, pp. 27-33.

[50] S. Distefano, A. Puliafito, M. Rak, S. Venticinque, U. Villano, A. Cuomo, et al., "Qos

management in cloud@ home infrastructures," in Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), 2011 International Conference on,

2011, pp. 190-197.

[51] J. Dollner and K. Hinrichs, "Interactive, animated 3D widgets," in Computer

Graphics International, 1998. Proceedings, 1998, pp. 278-286.

[52] T. Dornemann, E. Juhnke, and B. Freisleben, "On-demand resource provisioning for

BPEL workflows using Amazon's elastic compute cloud," in Cluster Computing and

the Grid, 2009. CCGRID'09. 9th IEEE/ACM International Symposium on, 2009, pp.

140-147.

[53] Eclipse, "What is Eclsipe?," http://help.eclipse.org/, 2015.

[54] A. C. Edwin and A. N. Madheswari, "Job Scheduling and VM Provisioning in

Clouds," in Advances in Computing and Communications (ICACC), 2013 Third

International Conference on, 2013, pp. 261-264.

[55] M. A. El-Refaey and M. A. Rizkaa, "CloudGauge: a dynamic cloud and virtualization

benchmarking suite," in Enabling Technologies: Infrastructures for Collaborative

Enterprises (WETICE), 2010 19th IEEE International Workshop on, 2010, pp. 66-75.

[56] V. C. Emeakaroha, I. Brandic, M. Maurer, and I. Breskovic, "SLA-Aware application

deployment and resource allocation in clouds," in Computer Software and

Applications Conference Workshops (COMPSACW), 2011 IEEE 35th Annual, 2011,

pp. 298-303.

[57] A. FC, "Azure Configuration and APIs,"

http://snarfed.org/windows_azure_details#Configuration_and_APIs., 2015.

[58] A. FC, "Azure Fabric Controller," http://www.techopedia.com/definition/26433/azure-

fabric-controller., 2014.

[59] M. Firdhous, S. Hassan, and O. Ghazali, "A Comprehensive Survey on Quality of

Service Implementations in Cloud Computing," International Journal of Scientific &

Engineering Research, vol. 4, pp. 118-123, 2013.

[60] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun,

"Benchmarking in the cloud: What it should, can, and cannot be," in Selected Topics

in Performance Evaluation and Benchmarking, ed: Springer, 2013, pp. 173-188.

[61] I. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler, "End-to-end quality of

service for high-end applications," Computer Communications, vol. 27, pp. 1375-

1388, 2004.

[62] I. Foster, Y. Zhao, I. Raicu, and S. Lu, "Cloud computing and grid computing 360-

degree compared," in Grid Computing Environments Workshop, 2008. GCE'08, 2008,

pp. 1-10.

[63] C. Gkantsidis, M. Mihail, and A. Saberi, "Hybrid search schemes for unstructured

peer-to-peer networks," in INFOCOM 2005. 24th Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings IEEE, 2005, pp. 1526-

1537.

http://help.eclipse.org/
http://snarfed.org/windows_azure_details#Configuration_and_APIs.
http://www.techopedia.com/definition/26433/azure-fabric-controller.
http://www.techopedia.com/definition/26433/azure-fabric-controller.

206

[64] S. V. Gogouvitis, V. Alexandrou, N. Mavrogeorgi, S. Koutsoutos, D. Kyriazis, and T.

Varvarigou, "A monitoring mechanism for storage clouds," in Cloud and Green

Computing (CGC), 2012 Second International Conference on, 2012, pp. 153-159.

[65] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, "The characteristics of cloud

computing," in Parallel Processing Workshops (ICPPW), 2010 39th International

Conference on, 2010, pp. 275-279.

[66] Google, "Google App Engine," https://cloud.google.com/appengine/, 2014.

[67] A. B. Grant and O. T. Eluwole, "Cloud resource management—Virtual machines

competing for limited resources," in AFRICON, 2013, 2013, pp. 1-7.

[68] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, "Virtual machine hosting for

networked clusters: Building the foundations for autonomic orchestration," in

Proceedings of the 2nd International Workshop on Virtualization Technology in

Distributed Computing, 2006, p. 7.

[69] B. Grobauer, T. Walloschek, and E. Stocker, "Understanding cloud computing

vulnerabilities," Security & privacy, IEEE, vol. 9, pp. 50-57, 2011.

[70] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, "Dcell: a scalable and fault-

tolerant network structure for data centers," in ACM SIGCOMM Computer

Communication Review, 2008, pp. 75-86.

[71] A. M. Hammadi and O. Hussain, "A framework for SLA assurance in cloud

computing," in Advanced Information Networking and Applications Workshops

(WAINA), 2012 26th International Conference on, 2012, pp. 393-398.

[72] R. Hillbrecht and L. C. E. d. Bona, "A SNMP-Based Virtual Machines Management

Interface," in Proceedings of the 2012 IEEE/ACM Fifth International Conference on

Utility and Cloud Computing, 2012, pp. 279-286.

[73] C. N. Hoefer and G. Karagiannis, "Taxonomy of cloud computing services," in

GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010, pp. 1345-1350.

[74] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, "Resource provisioning for cloud

computing," in Proceedings of the 2009 Conference of the Center for Advanced

Studies on Collaborative Research, 2009, pp. 101-111.

[75] hyperic, "SIGAR," https://support.hyperic.com, 2015.

[76] A. Iosup, N. Yigitbasi, and D. Epema, "On the performance variability of production

cloud services," in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th

IEEE/ACM International Symposium on, 2011, pp. 104-113.

[77] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, et al.,

"Performance analysis of high performance computing applications on the amazon

web services cloud," in Cloud Computing Technology and Science (CloudCom), 2010

IEEE Second International Conference on, 2010, pp. 159-168.

[78] R. Jain and S. Paul, "Network virtualization and software defined networking for

cloud computing: a survey," Communications Magazine, IEEE, vol. 51, pp. 24-31,

2013.

[79] C. Janssen, "PAYG," http://www.techopedia.com/definition/26951/pay-as-you-go-

payg, 2015.

[80] K. Junhom, S. Semkham, P. Lumlert, P. Niampoonthong, and V. Visoottiviseth,

"Cloudbroid: An Android Mobile Application for CloudStack Management System,"

https://cloud.google.com/appengine/
https://support.hyperic.com/
http://www.techopedia.com/definition/26951/pay-as-you-go-payg
http://www.techopedia.com/definition/26951/pay-as-you-go-payg

207

in Student Project Conference (ICT-ISPC), 2014 Third ICT International, 2014, pp.

121-124.

[81] S. Kailasam, N. Gnanasambandam, D. Janakiram, and N. Sharma, "Optimizing

Service Level Agreements for Autonomic Cloud Bursting Schedulers," in ICPP

Workshops, 2010, pp. 285-294.

[82] A. Kaur, L. Singh, and H. Singh, "STUDY OF PARAMETERS FOR EVALUATION

OF SOFTWARE AS A SERVICE."

[83] J. Kirschnick, J. M. Alcaraz Calero, L. Wilcock, and N. Edwards, "Toward an

architecture for the automated provisioning of cloud services," Communications

Magazine, IEEE, vol. 48, pp. 124-131, 2010.

[84] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, "Access schemes for

mobile cloud computing," in Mobile Data Management (MDM), 2010 Eleventh

International Conference on, 2010, pp. 387-392.

[85] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan,

"MLbase: A Distributed Machine-learning System," in CIDR, 2013.

[86] D. Kreutz, A. Casimiro, and M. Pasin, "A trustworthy and resilient event broker for

monitoring cloud infrastructures," in Distributed applications and interoperable

systems, 2012, pp. 87-95.

[87] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. Wolf,

"Monalytics: online monitoring and analytics for managing large scale data centers,"

in Proceedings of the 7th international conference on Autonomic computing, 2010,

pp. 141-150.

[88] K. Lai, M. Feldman, I. Stoica, and J. Chuang, "Incentives for cooperation in peer-to-

peer networks," in Workshop on economics of peer-to-peer systems, 2003, pp. 1243-

1248.

[89] J. Lakhani and P. Kumar, "Resource selection strategy based on propagation delay in

Cloud," in Communication Systems and Network Technologies (CSNT), 2012

International Conference on, 2012, pp. 710-713.

[90] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, "Profit-driven service request

scheduling in clouds," in Proceedings of the 2010 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, 2010, pp. 15-24.

[91] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, "Deconstructing the kazaa network," in

Internet Applications. WIAPP 2003. Proceedings. The Third IEEE Workshop on,

2003, pp. 112-120.

[92] P. Leitner and J. Cito, "Patterns in the Chaos-a Study of Performance Variation and

Predictability in Public IaaS Clouds," arXiv preprint arXiv:1411.2429, 2014.

[93] P. Leitner, Z. Rostyslav, A. Gambi, and S. Dustdar, "A framework and middleware

for application-level cloud bursting on top of infrastructure-as-a-service clouds," in

Utility and Cloud Computing (UCC), 2013 IEEE/ACM 6th International Conference

on, 2013, pp. 163-170.

[94] A. Letaifa, A. Haji, M. Jebalia, and S. Tabbane, "State of the Art and Research

Challenges of new services architecture technologies: Virtualization, SOA and Cloud

Computing," International Journal of Grid and Distributed Computing, vol. 3, 2010.

208

[95] P. Leung and S.-C. Cheung, "A CSCW framework for the flexible coupling of

groupware widgets," in Engineering of Complex Computer Systems, 1999.

ICECCS'99. Fifth IEEE International Conference on, 1999, pp. 9-20.

[96] A. Li, X. Yang, S. Kandula, and M. Zhang, "CloudCmp: comparing public cloud

providers," in Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement, 2010, pp. 1-14.

[97] D. Li, H. Liu, and A. Vasilakos, An efficient, scalable and robust p2p overlay for

autonomic communication: Springer, 2009.

[98] J. Li, Y. Xiong, X. Liu, and L. Zhang, "How Does Web Service API Evolution Affect

Clients?," in Web Services (ICWS), 2013 IEEE 20th International Conference on,

2013, pp. 300-307.

[99] X.-Y. Li, L.-T. Zhou, Y. Shi, and Y. Guo, "A trusted computing environment model

in cloud architecture," in Machine Learning and Cybernetics (ICMLC), 2010

International Conference on, 2010, pp. 2843-2848.

[100] J. Liang, R. Kumar, and K. Ross, "The kazaa overlay: A measurement study," in

Proceedings of the 19th ieee annual computer communications workshop, 2004, pp.

17-20.

[101] X. Liu, Y. Yang, D. Yuan, G. Zhang, W. Li, and D. Cao, "A generic QoS framework

for cloud workflow systems," in Dependable, Autonomic and Secure Computing

(DASC), 2011 IEEE Ninth International Conference on, 2011, pp. 713-720.

[102] LogicMonitor, "LogicMonitor " http://www.logicmonitor.com/why-logicmonitor.,

2014.

[103] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,

"Distributed GraphLab: a framework for machine learning and data mining in the

cloud," Proceedings of the VLDB Endowment, vol. 5, pp. 716-727, 2012.

[104] C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, et al., "CloudRank-D:

benchmarking and ranking cloud computing systems for data processing

applications," Frontiers of Computer Science, vol. 6, pp. 347-362, 2012.

[105] E. Magana, A. Astorga, J. Serrat, and R. Valle, "Monitoring of a virtual infrastructure

testbed," in Communications, 2009. LATINCOM'09. IEEE Latin-American

Conference on, 2009, pp. 1-6.

[106] S. M. Magda, A. B. Rus, and V. Dobrota, "Nagios-based network management for

Android, Windows and Fedora Core terminals using Net-SNMP agents," in Roedunet

International Conference (RoEduNet), 2013 11th, 2013, pp. 1-6.

[107] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, "Cloud

computing—The business perspective," Decision Support Systems, vol. 51, pp. 176-

189, 2011.

[108] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger, and M. Villari, "A

monitoring and audit logging architecture for data location compliance in federated

cloud infrastructures," in Parallel and Distributed Processing Workshops and Phd

Forum (IPDPSW), 2011 IEEE International Symposium on, 2011, pp. 1510-1517.

[109] P. Mell and T. Grance, "The NIST definition of cloud computing (draft)," NIST

special publication, vol. 800, p. 145, 2011.

[110] Microsoft, "Azure " http://azure.microsoft.com/en-in/overview/what-is-azure/, 2015.

[111] Microsoft, "Multi-Tenant Data Architecture," https://msdn.microsoft.com, 2015.

http://www.logicmonitor.com/why-logicmonitor.
http://azure.microsoft.com/en-in/overview/what-is-azure/
https://msdn.microsoft.com/

209

[112] D.‎Milojičić,‎I.‎M.‎Llorente,‎and‎R.‎S.‎Montero,‎"Opennebula:‎A‎cloud‎management‎

tool," IEEE Internet Computing, vol. 15, pp. 0011-14, 2011.

[113] S. Mohagheghi, J. Stoupis, and Z. Wang, "Communication protocols and networks for

power systems-current status and future trends," in Power Systems Conference and

Exposition, 2009. PSCE'09. IEEE/PES, 2009, pp. 1-9.

[114] A. Moniruzzaman, K. W. Nafi, and S. A. Hossain, "An experimental study of load

balancing of OpenNebula open-source cloud computing platform," in Informatics,

Electronics & Vision (ICIEV), 2014 International Conference on, 2014, pp. 1-6.

[115] Monitis, "Monitis Monitoring Portal," http://portal.monitis.com/. 2014.

[116] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos, "Shared resource

monitoring and throughput optimization in cloud-computing datacenters," in Parallel

& Distributed Processing Symposium (IPDPS), 2011 IEEE International, 2011, pp.

1024-1033.

[117] V. Muraleedharan, "Hawk-i HPC Cloud Benchmark Tool," Msc in high performance

computing, University of Edinburgh, Edinburgh, 2012.

[118] Nagios, "Nagios " http://www.nagios.com., 2014.

[119] nagios.org, "Nagios User Profiles," http://users.nagios.org/. 2014.

[120] M.‎K.‎Nair‎and‎V.‎Gopalakrishna,‎"‚ÄòCloudCop‚Äô:‎Putting‎network-admin on

cloud nine towards Cloud Computing for Network Monitoring," in Internet

Multimedia Services Architecture and Applications (IMSAA), 2009 IEEE

International Conference on, 2009, pp. 1-6.

[121] L. N. Nassif, J. M. Nogueira, and F. V. de Andrade, "Distributed resource selection in

grid using decision theory," in Cluster Computing and the Grid, 2007. CCGRID 2007.

Seventh IEEE International Symposium on, 2007, pp. 327-334.

[122] R. Nathuji, A. Kansal, and A. Ghaffarkhah, "Q-clouds: managing performance

interference effects for qos-aware clouds," in Proceedings of the 5th European

conference on Computer systems, 2010, pp. 237-250.

[123] Nimsoft, "Nimsoft," http://www.nimsoft.com/solutions/nimsoft-monitor/cloud., 2014.

[124] NIST, "Security and Privacy Controls for Cloud-based Federal Information

Systems,," Nat’l Inst. of Standards and Technology, vol. 800-174, 2014.

[125] D. Ocean, "SNMP," https://www.digitalocean.com/community/tutorials/an-

introduction-to-snmp-simple-network-management-protocol, 2015.

[126] OpenNebula.org, "OpenNebula Overview,"

http://opennebula.org/documentation:rel4.0., 2014.

[127] Oracle, "Cloud Infrastructure APIs and CLI," http://docs.oracle.com/, 2015.

[128] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, "A particle swarm optimization-based

heuristic for scheduling workflow applications in cloud computing environments," in

Advanced Information Networking and Applications (AINA), 2010 24th IEEE

International Conference on, 2010, pp. 400-407.

[129] H. A. Patel and A. D. Meniya, "A Survey on Commercial and Open Source Cloud

Monitoring," International Journal of Science and Modern Engineering (IJISME),

ISSN, pp. 2319-6386, 2013.

[130] J. F. Patterson, R. D. Hill, S. L. Rohall, and S. W. Meeks, "Rendezvous: An

architecture for synchronous multi-user applications," in Proceedings of the 1990

ACM conference on Computer-supported cooperative work, 1990, pp. 317-328.

http://portal.monitis.com/
http://www.nagios.com./
http://users.nagios.org/
http://www.nimsoft.com/solutions/nimsoft-monitor/cloud.
https://www.digitalocean.com/community/tutorials/an-introduction-to-snmp-simple-network-management-protocol
https://www.digitalocean.com/community/tutorials/an-introduction-to-snmp-simple-network-management-protocol
http://opennebula.org/documentation:rel4.0.
http://docs.oracle.com/
http://portal.monitis.com/.2014
http://portal.monitis.com/.2014
http://users.nagios.org/.2014
http://users.nagios.org/.2014

210

[131] L. Pearlman, C. Kesselman, S. Gullapalli, B. Spencer Jr, J. Futrelle, K. Ricker, et al.,

"Distributed hybrid earthquake engineering experiments: Experiences with a ground-

shaking grid application," in High performance Distributed Computing, 2004.

Proceedings. 13th IEEE International Symposium on, 2004, pp. 14-23.

[132] Y.-S. Peng and Y.-C. Chen, "SNMP-based monitoring of heterogeneous virtual

infrastructure in clouds," in Network Operations and Management Symposium

(APNOMS), 2011 13th Asia-Pacific, 2011, pp. 1-6.

[133] D. Petcu, C. Craciun, M. Neagul, I. Lazcanotegui, and M. Rak, "Building an

interoperability API for sky computing," in High Performance Computing and

Simulation (HPCS), 2011 International Conference on, 2011, pp. 405-411.

[134] D. Petcu, C. Craciun, and M. Rak, "Towards a cross platform cloud API," in 1st

International Conference on Cloud Computing and Services Science, 2011, pp. 166-

169.

[135] M. Rak and G. Aversano, "Benchmarks in the cloud: The mosaic benchmarking

framework," in Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), 2012 14th International Symposium on, 2012, pp. 415-422.

[136] R. Ranjan and B. Benatallah, "Programming cloud resource orchestration framework:

operations and research challenges," arXiv preprint arXiv:1204.2204, 2012.

[137] R. Ranjan, L. Chan, A. Harwood, S. Karunasekera, and R. Buyya, "Decentralised

resource discovery service for large scale federated grids," in e-Science and Grid

Computing, IEEE International Conference on, 2007, pp. 379-387.

[138] R. Ranjan, A. Harwood, and R. Buyya, "Peer-to-peer-based resource discovery in

global grids: a tutorial," Communications Surveys & Tutorials, IEEE, vol. 10, pp. 6-

33, 2008.

[139] R. Ranjan, L. Zhao, X. Wu, A. Liu, A. Quiroz, and M. Parashar, "Peer-to-peer cloud

provisioning: Service discovery and load-balancing," Cloud Computing, pp. 195-217,

2010.

[140] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable content-

addressable network vol. 31: ACM, 2001.

[141] P. V. V. Reddy and L. Rajamani, "Evaluation of different hypervisors performance in

the private cloud with SIGAR framework," International Journal of Advanced

Computer Science and Applications, vol. 5, 2014.

[142] RevealCloud, "The Cloud Advantage for Smaller Enterprises,"

http://sandhill.com/article., 2014.

[143] RevealCloud, "RevealCloud " http://copperegg.com/. 2014.

[144] M. Ripeanu, "Peer-to-peer architecture case study: Gnutella network," in Peer-to-Peer

Computing, 2001. Proceedings. First International Conference on, 2001, pp. 99-100.

[145] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer, "A novel approach to QoS

monitoring in the cloud," in Data Compression, Communications and Processing

(CCP), 2011 First International Conference on, 2011, pp. 45-51.

[146] M. Roseman and S. Greenberg, "GroupKit: A groupware toolkit for building real-time

conferencing applications," in Proceedings of the 1992 ACM conference on

Computer-supported cooperative work, 1992, pp. 43-50.

[147] A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems," in Middleware 2001, 2001, pp. 329-350.

http://sandhill.com/article.
http://copperegg.com/
http://copperegg.com/.2014
http://copperegg.com/.2014

211

[148] C. R. Rupakheti and D. Hou, "Evaluating forum discussions to inform the design of

an API critic," in Program Comprehension (ICPC), 2012 IEEE 20th International

Conference on, 2012, pp. 53-62.

[149] C. L. Sabharwal, "Java, java, java," Potentials, IEEE, vol. 17, pp. 33-37, 1998.

[150] Salesforce, "CRM," http://www.salesforce.com/, 2013.

[151] Salesforce.com.,‎"Force.com‎Apex‎Code‎Developer’s‎Guide.,"‎

http://www.salesforce.com/us/developer/docs/apexcode/salesforce_apex_language_re

ference.pdf, 2013.

[152] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, "Runtime measurements in the cloud:

observing, analyzing, and reducing variance," Proceedings of the VLDB Endowment,

vol. 3, pp. 460-471, 2010.

[153] J. Schönwälder, A. Pras, M. Harvan, J. Schippers, and R. van de Meent, "SNMP

traffic analysis: Approaches, tools, and first results," in Integrated Network

Management, 2007. IM'07. 10th IFIP/IEEE International Symposium on, 2007, pp.

323-332.

[154] M. Sellami, S. Yangui, M. Mohamed, and S. Tata, "PaaS-independent Provisioning

and Management of Applications in the Cloud," in Cloud Computing (CLOUD), 2013

IEEE Sixth International Conference on, 2013, pp. 693-700.

[155] C. R. Senna, L. F. Bittencourt, and E. R. Madeira, "Service workflow monitoring in

private clouds: The user point of view," in Cloud Computing and Communications

(LATINCLOUD), 2012 IEEE Latin America Conference on, 2012, pp. 25-30.

[156] C. Services, "Cloudharmony " https://cloudharmony.com/services, 2014.

[157] J. Shao, H. Wei, Q. Wang, and H. Mei, "A runtime model based monitoring approach

for cloud," in Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference

on, 2010, pp. 313-320.

[158] P. Shivam, A. Demberel, P. Gunda, D. Irwin, L. Grit, A. Yumerefendi, et al.,

"Automated and on-demand provisioning of virtual machines for database

applications," in Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, 2007, pp. 1079-1081.

[159] Y. Shu, L. Zhang, W. Zhao, H. Chen, and J. Luo, "P2P-based data system for the

EAST experiment," Nuclear Science, IEEE Transactions on, vol. 53, pp. 694-699,

2006.

[160] A. Solomon, D. Santamaria, and R. Lister, "Automated testing of unix command-line

and scripting skills," in Information Technology Based Higher Education and

Training, 2006. ITHET'06. 7th International Conference on, 2006, pp. 120-125.

[161] SPAE, "Server Monitoring cloud," http://www.rackaid.com/resources/server-

monitoring-cloud., 2014.

[162] SPAE, "SPAE Features," http://shalb.com/en/spae/spae_features/, 2014.

[163] J. Spring, "Monitoring Cloud Computing by Layer, Part 1," Security & Privacy,

IEEE, vol. 9, pp. 66-68, 2011.

[164] StackDriver, "Getting the Most out of CloudWatch,"

https://storage.googleapis.com/stackdriverdotcom.appspot.com/Best_Practices_for_A

WS_CloudWatch___Stackdriver_Ebook.pdf, 2014.

http://www.salesforce.com/
http://www.salesforce.com/us/developer/docs/apexcode/salesforce_apex_language_reference.pdf
http://www.salesforce.com/us/developer/docs/apexcode/salesforce_apex_language_reference.pdf
https://cloudharmony.com/services
http://www.rackaid.com/resources/server-monitoring-cloud.
http://www.rackaid.com/resources/server-monitoring-cloud.
http://shalb.com/en/spae/spae_features/
https://storage.googleapis.com/stackdriverdotcom.appspot.com/Best_Practices_for_AWS_CloudWatch___Stackdriver_Ebook.pdf
https://storage.googleapis.com/stackdriverdotcom.appspot.com/Best_Practices_for_AWS_CloudWatch___Stackdriver_Ebook.pdf

212

[165] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A

scalable peer-to-peer lookup service for internet applications," ACM SIGCOMM

Computer Communication Review, vol. 31, pp. 149-160, 2001.

[166] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford, and A.

Pescapè, "Broadband internet performance: a view from the gateway," in ACM

SIGCOMM computer communication review, 2011, pp. 134-145.

[167] A. Takefusa, H. Nakada, T. Kudoh, and Y. Tanaka, "An advance reservation-based

co-allocation algorithm for distributed computers and network bandwidth on qos-

guaranteed grids," in Job Scheduling Strategies for Parallel Processing, 2010, pp. 16-

34.

[168] A. Tchana, B. Dillenseger, N. De Palma, X. Etchevers, J.-M. Vincent, N. Salmi, et al.,

"Self-scalable benchmarking as a service with automatic saturation detection," in

Middleware 2013, ed: Springer, 2013, pp. 389-404.

[169] R. Tolosana-Calasanz, J. Á. BañAres, C. Pham, and O. F. Rana, "Enforcing qos in

scientific workflow systems enacted over cloud infrastructures," Journal of Computer

and System Sciences, vol. 78, pp. 1300-1315, 2012.

[170] A. Turner, A. Fox, J. Payne, and H. S. Kim, "C-mart: Benchmarking the cloud,"

Parallel and Distributed Systems, IEEE Transactions on, vol. 24, pp. 1256-1266,

2013.

[171] S. Vijayakumar, Q. Zhu, and G. Agrawal, "Automated and dynamic application

accuracy management and resource provisioning in a cloud environment," in Grid

Computing (GRID), 2010 11th IEEE/ACM International Conference on, 2010, pp. 33-

40.

[172] F. Wang and W. Du, "A test automation framework based on web," in Computer and

Information Science (ICIS), 2012 IEEE/ACIS 11th International Conference on, 2012,

pp. 683-687.

[173] W. Wang and M. W. Godfrey, "Detecting API usage obstacles: A study of iOS and

Android developer questions," in Mining Software Repositories (MSR), 2013 10th

IEEE Working Conference on, 2013, pp. 61-64.

[174] E. Wibowo, "Cloud management and automation," in Rural Information &

Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T), 2013

Joint International Conference on, 2013, pp. 1-4.

[175] wikipedia.org, "Resource management (computing),"

https://en.wikipedia.org/wiki/Resource_management_(computing), 2015.

[176] L. Wonham, "Compuware APM,"

http://www.websitemagazine.com/content/blogs/posts/archive/2011/05/30/compuware

-gomez-introduce-new-apm-solution.aspx, 2011.

[177] C.-H. Wu, "Differentiated admission for peer-to-peer systems: incentivizing peers to

contribute their resources," 2003.

[178] B. Yang and H. Garcia-Molina, "Comparing hybrid peer-to-peer systems," in

Proceedings of the 27th Intl. Conf. on Very Large Data Bases, 2001.

[179] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann, "C-meter: A framework for

performance analysis of computing clouds," in Proceedings of the 2009 9th

IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009, pp.

472-477.

https://en.wikipedia.org/wiki/Resource_management_(computing)
http://www.websitemagazine.com/content/blogs/posts/archive/2011/05/30/compuware-gomez-introduce-new-apm-solution.aspx
http://www.websitemagazine.com/content/blogs/posts/archive/2011/05/30/compuware-gomez-introduce-new-apm-solution.aspx

213

[180] L. Youseff, M. Butrico, and D. Da Silva, "Toward a unified ontology of cloud

computing," in Grid Computing Environments Workshop, 2008. GCE'08, 2008, pp. 1-

10.

[181] S. Zaman and D. Grosu, "Combinatorial auction-based dynamic vm provisioning and

allocation in clouds," in Cloud Computing Technology and Science (CloudCom),

2011 IEEE Third International Conference on, 2011, pp. 107-114.

[182] L.-J. Zhang and Q. Zhou, "CCOA: Cloud computing open architecture," in Web

Services, 2009. ICWS 2009. IEEE International Conference on, 2009, pp. 607-616.

[183] M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, and P. Strazdins, "Investigating

decision support techniques for automating cloud service selection," in Cloud

Computing Technology and Science (CloudCom), 2012 IEEE 4th International

Conference on, 2012, pp. 759-764.

[184] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud computing: state-of-the-art and research

challenges," Journal of Internet Services and Applications, vol. 1, pp. 7-18, 2010.

[185] S. Zhang, S. Zhang, X. Chen, and X. Huo, "Cloud computing research and

development trend," in Future Networks, 2010. ICFN'10. Second International

Conference on, 2010, pp. 93-97.

[186] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, "Tapestry: An infrastructure for fault-

tolerant wide-area location and routing," 2001.

[187] Q. Zheng, H. Chen, Y. Wang, J. Duan, and Z. Huang, "Cosbench: A benchmark tool

for cloud object storage services," in Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on, 2012, pp. 998-999.

[188] S. Zhou, G. Rogers, M. Hogan, S. Ardon, T. Hu, and A. Seneviratne, "An Incentive

based routing Algorithm for improving message forwarding in structured Peer-to-Peer

Networks," in Wireless Broadband and Ultra Wideband Communications, 2007.

AusWireless 2007. The 2nd International Conference on, 2007, pp. 58-58.

[189] D. Zissis and D. Lekkas, "Addressing cloud computing security issues," Future

Generation Computer Systems, vol. 28, pp. 583-592, 2012.

214

Appendix A: CLAMBS Prototype Implementation Files

A.1: CLAMBS Monitoring

A.1.1: clambs monitoring agent sigar functions
public class SigarHelper {

 private static Sigar sigar = new Sigar();

 public static void getInformationsAboutMemory() {

 Mem mem = null;
 try {
 mem = sigar.getMem();
 } catch (SigarException se) {
 se.printStackTrace();
 }

 System.out.println("Actual total free system memory: "
 + mem.getActualFree() / 1024 / 1024+ " MB");
 System.out.println("Actual total used system memory: "
 + mem.getActualUsed() / 1024 / 1024 + " MB");
 System.out.println("Total free system memory: " + mem.getFree()
 / 1024 / 1024+ " MB");
 long trymem = mem.getFree() / 1024 / 1024;
 System.out.println("Total free system memory:"+trymem);
 System.out.println("System Random Access Memory....: " + mem.getRam()
 + " MB");
 System.out.println("Total system memory............: " + mem.getTotal()
 / 1024 / 1024+ " MB");
 System.out.println("Total used system memory.......: " + mem.getUsed()
 / 1024 / 1024+ " MB");

 }

 public static long getProcessId(String procName) throws SigarException
 {
 ProcessFinder find=new ProcessFinder(sigar);
 long pid=find.findSingleProcess("State.Name.eq="+procName);
 ProcMem memory=new ProcMem();
 memory.gather(sigar, pid);
 return pid;
 }

 public static void main(String[] args) throws Exception{

 getInformationsAboutMemory();
 long pid = getProcessId("eclipse");
 System.out.println("PId: "+pid);

 }

215

}

A.1.2 CLAMBS MONITORING AGENT SNMP FUNCTIONS

public SNMPAgent(Map args)
 {
 //initialize the agent from AgentConfig.properties
 this.configFile = (String)((List)args.get("c")).get(0);
 this.bootCounterFile = new File((String)((List)args.get("bc")).get(0));
 this.server = new DefaultMOServer();
MOServer[] moServers = new MOServer[] { server };//MOServer for managed objects
 //read AgentConfig.properties
 InputStream configInputStream =

 SNMPAgent.class.getResourceAsStream("AgentConfig.properties");
 if (args.containsKey("cfg")) {
 try {
configInputStream = new
FileInputStream((String) ArgumentParser.getValue(args, "cfg", 0));
 }
 catch (FileNotFoundException ex1) {
 ex1.printStackTrace();
 }
 }
 final Properties props = new Properties();
 try {
 props.load(configInputStream);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 MOInputFactory configurationFactory = new MOInputFactory() {
 public MOInput createMOInput() {
 return new PropertyMOInput(props, SNMPAgent.this);
 }
 };
 //read AgentTableSizeLimits.properties
 InputStream tableSizeLimitsInputStream =

 SNMPAgent.class.getResourceAsStream("AgentTableSizeLimits.properties");
 if (args.containsKey("ts")) {
 try {
 tableSizeLimitsInputStream =
 new FileInputStream((String) Argument-
Parser.getValue(args, "ts", 0));
 }
 catch (FileNotFoundException ex1) {
 ex1.printStackTrace();
 }
 }
 tableSizeLimits = new Properties();
 try {

216

 tableSizeLimits.load(tableSizeLimitsInputStream);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 //MessageDispatcher for Message between agent and manager
 MessageDispatcher messageDispatcher = new MessageDispatcherImpl();
addListenAddresses(messageDispatcher, (List)args.get("address"));
agent = new AgentConfigManager(new OctetString(MPv3.createLocalEngineID()),
 messageDispatcher,
 null,
 moServers,
 ThreadPool.create("SNMPAgent", 500),
 configurationFactory,
 new DefaultMOPersistenceProvider(moServers,
 configFile),
 new EngineBootsCounterFile(bootCounterFile));
 }
//add a ListenAddresses with given MessageDispatcher and a list of addresses
 protected void addListenAddresses(MessageDispatcher md, List addresses) {
 for (Iterator it = addresses.iterator(); it.hasNext();) {
 Address address = GenericAddress.parse((String)it.next());
 TransportMapping tm =
 TransportMap-
pings.getInstance().createTransportMapping(address);
 if (tm != null) {
 md.addTransportMapping(tm);
 }
 }
 }

 public void run() {

 agent.initialize();

 registerMIBs();
 agent.setupProxyForwarder();
 agent.setTableSizeLimits(tableSizeLimits);
 agent.run();
 }

A.2: CLAMBS WORK LOAD GENERATOR

A.2.1: SQL WORK LOAD GENERATOR

public class SQL extends Thread{

 BOOLEAN SETUPFORMFILE = TRUE;
public void run(){
 if(setupformfile){

217

 StandardJMeterEngine jmeter = new StandardJMeterEngine();

 // Initialize Properties, logging, locale, etc.
JMeterUtils.loadJMeterProperties("C:\\Users\\Khalid\\Downloads\\ZIPs\\jakarta-
jmeter-2.5.1\\bin\\jmeter.properties");
JMeterUtils.setJMeterHome("C:/Users/Khalid/Downloads/ZIPs/jakarta-jmeter-2.5.1");

 JMeterUtils.initLogging();
 JMeterUtils.initLocale();

 // Initialize JMeter SaveService
 try {
 SaveService.loadProperties();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();

 }

// Load existing .jmx Test Plan
 FileInputStream in;
 try {
 in = new FileInputStream("SQL_Request.jmx");
 HashTree testPlanTree = SaveService.loadTree(in);
 in.close();

 SampleResult sampleResult = new SampleResult();
 testPlanTree.add("sampleResult", sampleResult);
 // Run JMeter Test
 jmeter.configure(testPlanTree);
 jmeter.run();
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();

 }

System.out.println("Type of result will be : Thread ID,Sample Time(ms),JDBC Re-
quest,code,Status,Thread Group ,type return,Bytes,Latency");
 BufferedReader br;
try {
 br = new BufferedReader(new FileReader("SQL_result.jtl"));
 String line;
 int result = 1;
 while ((line = br.readLine()) != null) {
 // process the line.
 System.out.println("Result of you QUERY "+result+": "+line);
 result++;
 }
 br.close();
 } catch (FileNotFoundException e) {

218

 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Path path = Paths.get("SQL_result.jtl");
 try {
 Files.delete(path);
 } catch (NoSuchFileException x) {
 System.err.format("%s: no such" + " file or directory%n", path);
 } catch (DirectoryNotEmptyException x) {
 System.err.format("%s not empty%n", path);
 } catch (IOException x) {
 // File permission problems are caught here.
 System.err.println(x);
 }

 }else {
 // Engine
 StandardJMeterEngine jm = new StandardJMeterEngine();
 // jmeter.properties
 JMeterU-
tils.loadJMeterProperties("C:\\Users\\Khalid\\Downloads\\ZIPs\\jakarta-jmeter-
2.5.1\\bin\\jmeter.properties");

 HashTree hashTree = new HashTree();

 // HTTP Sampler
 JDBCSampler sqlSampler = new JDBCSampler();
 sqlSampler.setName("VN running");
 sqlSampler.setVariableNames("MYSQL");
 sqlSampler.setQuery("select * from net_qos.net_qos");
 sqlSampler.setQueryType("Select Statement");
 ConstantTimer timer = new ConstantTimer();
 timer.setDelay("300");
 sqlSampler.addTestElement(timer);

 DataSourceElement confi = new DataSourceElement();
 confi.setName("MYSQL");
 confi.setUsername("root");
 confi.setPassword("1234");
 confi.setDbUrl("jdbc:mysql://localhost:3306/net_qos");
 confi.setDriver("com.mysql.jdbc.Driver");

 // Loop Controller
 TestElement loopCtrl = new LoopController();
 ((LoopController)loopCtrl).setLoops(100);
 ((LoopController)loopCtrl).addTestElement(sqlSampler);
 ((LoopController)loopCtrl).setFirst(true);

 // Thread Group

mysql://localhost:3306/net_qos

219

 SetupThreadGroup threadGroup = new SetupThreadGroup();
 threadGroup.setNumThreads(1);
 threadGroup.setRampUp(1);
 threadGroup.setSamplerController((LoopController)loopCtrl);

 // Test plan
 TestPlan testPlan = new TestPlan("MY TEST PLAN");
 //testPlan.setTestPlanClasspath("E:/workspace/jmeter/test.jmx");

 SampleResult sampleResult = new SampleResult();
 //sampleResult.getLatency();

 hashTree.add("testPlan", testPlan);
 hashTree.add("loopCtrl", loopCtrl);
 hashTree.add("threadGroup", threadGroup);
 hashTree.add("jdbcSampler", sqlSampler);
 hashTree.add("sampleResult", sampleResult);

 jm.configure(hashTree);

 jm.run();
 }

 }

}

A.2.2: HTTP WORK LOAD GENERATOR

public class HTTP extends Thread{

 @Override
 public void run(){

 // Engine
 StandardJMeterEngine jm = new StandardJMeterEngine();
JMeterUtils.loadJMeterProperties("C:\\Users\\Khalid\\Downloads\\ZIPs\\jakarta-
jmeter-2.5.1\\bin\\jmeter.properties");
 JMeterUtils.setJMeterHome("../jakarta-jmeter-2.5.1");
 JMeterUtils.initLocale();

 HashTree hashTree = new HashTree();

 // HTTP Sampler
 HTTPSampler httpSampler = new HTTPSampler();
 httpSampler.setDomain("www.unsw.edu.au");
 httpSampler.setPort(80);
 httpSampler.setPath("/");
 httpSampler.setMethod("GET");

http://www.unsw.edu.au

220

 // Loop Controller
 TestElement loopCtrl = new LoopController();
 ((LoopController)loopCtrl).setLoops(3);
 ((LoopController)loopCtrl).addTestElement(httpSampler);
 ((LoopController)loopCtrl).setFirst(true);

 // Thread Group
 SetupThreadGroup threadGroup = new SetupThreadGroup();
 threadGroup.setNumThreads(1);
 threadGroup.setRampUp(1);
 threadGroup.setSamplerController((LoopController)loopCtrl);

 // Test plan
 TestPlan testPlan = new TestPlan("MY TEST PLAN");

 SampleResult sampleResult = new SampleResult();
 sampleResult.getLatency();

 hashTree.add("testPlan", testPlan);
 hashTree.add("loopCtrl", loopCtrl);
 hashTree.add("threadGroup", threadGroup);
 hashTree.add("httpSampler", httpSampler);
 hashTree.add("sampleResult", sampleResult);

 jm.configure(hashTree);

 jm.run();

 }

}

A.3: CLAMBS DATABASE CONNECTION

public class MySQLConn {
 public Connection conn = null;
 public Statement stmt = null;
 public ResultSet rs = null;
 public int ChangedRow = 0;
 public MySQLConn()
 {
 try
 {
 Class.forName("com.mysql.jdbc.Driver").newInstance();

 conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/net_qos", "root", "1234");
 }
 catch(Exception e)
 {

mysql://localhost:3306/net_qos

221

 System.out.println("DataBase Connect Failed! "+e);
 }

 }
 public static void main(String args[])
 {
 MySQLConn dbconn=new MySQLConn();
 }
 public Statement getConn()
 {
 return stmt;

 }
 public ResultSet getDBrs(String sql)//select
 {
 try
 {

 rs=stmt.executeQuery(sql);
 }
 catch (Exception e) {
 System.out.println("(select)Exception Catcher:
"+e);
 e.printStackTrace();
 }
 return rs;

 }
 public boolean exec(String sql)//exce a sql statement
 {

 boolean flag=false;
 try
 {
 stmt = conn.prepareStatement(sql);
 flag=stmt.execute(sql);
 }
 catch (Exception e) {
 System.out.println("(execc)Exception Catcher:
"+e);
 }
 return flag;
 }
 public int setDBupdate(String sql)
 {
 try
 {
 ChangedRow=stmt.executeUpdate(sql);
 }
 catch (Exception e) {
 System.out.println("(update)Exception Catcher:
"+e);
 }
 return ChangedRow;
 }
 public void setDBclose() //close

222

 {
 try
 {
 if(rs!=null)
 {
 rs.close();
 rs=null;
 }
 if(stmt!=null)
 {
 stmt.close();
 stmt=null;
 }
 if(conn!=null)
 {
 conn.close();
 conn=null;
 }
 }
 catch(Exception e)
 {
 System.out.println("(Close DataBase)Exception Catch-
er:
"+e);
 }
 }
 public void setDBStatementClose()//close the statement after up-
date,delete,or insert
 {
 try
 {
 stmt.close();
 }
 catch (Exception e) {
 System.out.println("Exception Catcher:
"+e);
 }
 }
 public int getRowCount(ResultSet rs)//count of result
 {
 int RowCount=0;
 try {
 rs.last();
 RowCount = rs.getRow();
 rs.beforeFirst();
 } catch (SQLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return RowCount;
 }

}

223

Appendix B: SNMP MIBs Tree

224

Appendix C: Brainstorming Mind Map

225

Glossary

QoS: Quality of Service

SLA: Service Level Agreement

Multi-clouds: multiple cloud platforms

Cross-layers: across multiple cloud platform layers

SaaS: refers to the model in which applications are provided as a hosted service

 to cloud customers who access these services via the Internet.

PaaS: is a cloud computing model to provide applications’ components over the In-

ternet. PaaS delivers hardware and software tools mostly these tools are required for

applications development.

IaaS: provides access to fundamental compute, storage, and network resources in a

virtualized environment.

VM: Virtual Machine

VMM: Virtual Machine Monitor

PAYG: Pay As You Go model is a utility computing billing method which is applied

in cloud computing

EC2: Elastic computing platform provided by Amazon.com

SIGAR: System Information Gatherer and Reporter

SNMP: Simple Network Management Protocol

MIBs: Management Information Base

RESTful: REST stands for Representational State Transfer

FC: Fabric Controller of Azure platform

JVM: Java Virtual Machine

	Title Page - Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring and Benchmarking As-a-Service Framework
	Thesis/Dissertation Sheet
	Abstract
	Acknowledgement
	List of Publications
	Table of Contents
	List of Figures
	List of Tables

	1. Introduction
	2. Cloud Applications Monitoring, Research Dimensions, Design Issues
	3. Cross-Layer Multi-Cloud Application Monitoring-as-a-Service Framework
	4. Cross-Layer Multi-Cloud Real- Time Application QoS Monitoring and Benchmarking As-a-Service Framework
	5. Modelling and Implementation of CLAMS and CLAMBS Framework
	6. Experimentation and Evaluation
	7. Conclusion and Future Work
	References
	Appendix A - CLAMBS Prototype Implementation Files
	Appendix B - SNMP MIBs Tree
	Appendix C - Brainstorming Mind Map
	Glossary

