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ABSTRACT 
 

Positioning and navigation applications have never been so accessible. Some of the 

most important positioning or localization techniques include satellite-based 

positioning (e.g. GPS), beacon-based positioning, dead reckoning and so forth. There 

are however, many unmet needs, especially for urban and indoor environments. 

Various strategies and sensors have been adopted to fill in this gap, within which 

vision is regarded to be one of the most promising but challenging approach.  This 

research is focused on developing vision-based navigation system for positioning and 

navigation in GPS degraded environments. The main research contributions are 

summarized as follows: 

a. A new concept of 3D map has been introduced. The new 3D map mainly consists 

of geo-referenced images, and provides reality-based visualization in terms of 

images as well as 3D geo-referenced geometric information. In this research, it 

provides the map-matching function for vision-based positioning. Its development 

process and applications have been discussed. Multi-image matching has been 

introduced into the 3D mapping procedure. 

b. A method of vision-based positioning with use of photogrammetric methodologies 

has been proposed. It mainly obtains geometric information of the navigation 

environment from the 3D map through SIFT based image matching and uses 

photogrammetric space resection to solve the position in 6 degrees of freedom. 

The algorithms have been tested in an indoor environment. The accuracy has 

reached around 10 cm. 

c. Vision sensor is inherently fragile against errors. In this research, a multi-level 

outlier detection scheme for the vision-based navigation system has been proposed. 

It mainly combines RANSAC, which deals with high percentage of mismatches, 

with data snooping, which removes a small number of outliers at the least squares 
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adjustment for both 3D mapping and positioning solution. 

d. The deficiency of using RANSAC for outlier detection in image matching and 

homography estimation has been identified. In this research, a novel method which 

combines cross correlation with feature based image matching has been proposed. 

It is able to evaluate the RANSAC homography estimation, detect poor ones and 

improve the image matching performance. The method has been successfully 

applied to the vision-based navigation solution to detect mismatched reference 

image(s) as well as the image matching for final positioning. Experiment proves 

such method has improved the system performance effectively.  

e. In this research, the positioning performance of the system has been evaluated 

through the mathematical model and experiments. The focus has been on various 

image matching conditions/methods and their impact on the system. The 

characteristics, including both strength and weaknesses of the system have been 

revealed and investigated.  

f. In recent years the low cost built-in sensors on mobile devices (e.g. smartphone), 

especially high resolution cameras have placed greater demand for a breakthrough 

in their applications for seamless positioning. In the later stage of research, the 

vision-based navigation system has been extended from indoor to outdoor with 

corresponding changes been made to cater for outdoor environments. It mainly 

uses visual input to match with geo-referenced images for positioning solution, and 

also takes advantage of multiple sensors onboard, including GPS receiver and a 

digital compass to assist visual methods. Experiments demonstrate that such 

system can largely improve the position accuracy in areas where stand-alone GPS  

is affected and can be easily adopted on mobile devices. 
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CHAPTER 1                          

INTRODUCTION 
 

1.1 MAPPING AND NAVIGATION CONCEPTS 

Navigation is a technique for the determination of position and velocity of a moving 

platform with respect to a known reference, but can also include the attitude of the 

platform (Groves, 2007). In this research, position and attitude have been mostly 

discussed and sometimes the term positioning is used instead of navigation.  

Methodologies used for navigation generally fall into two groups: position fixing and 

dead reckoning (DR). Position fixing is obtained by making observations with respect 

to known reference positions, also known as reference-based systems (e.g. GPS). Dead 

reckoning on the other hand determines the current position based on the previous one, 

therefore the initial position must be given. In the following, various navigation 

technologies are introduced with emphasis on the ones been adopted in this research. 

The dominating navigation technology has been satellite-based navigation: Global 

Navigation Satellite System (GNSS), which is a typical reference-based navigation 

system. GPS is the most popular and the first constellation that been developed (Figure 

1.1). In full operation it includes 31 satellites distributed uniformly around 6 circular 

orbits. These satellites transmit encoded radio frequency signals. Then the receivers on 

ground can calculate their own positions by the travel time of satellite signals and 

information from encoded signals. Three satellites are the minimum number to 

calculate the receiver‘s latitude, longitude and altitude, and four can help correct clock 

bias. Generally, a good positioning result requires sufficient satellite coverage, and 

redundancy can help improve the accuracy. Therefore, current trend of satellite-based 

navigation is moving towards multi-constellation period. The second system is the 
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GLONASS supported by the Russian Republic. It has 24 satellites in 3 orbital planes. 

The Galileo system is the third satellite-based navigation system that currently under 

development. It will have 10 circularly polarized navigation signals in 3 frequency 

bands. The BeiDou Navigation Satellite System is being developed by China, 

consisted of 27 medium earth orbit satellites. New constellations, signals and 

associated frequency diversity will help improve capabilities for calibrating 

ionospheric propagation delays, robustness against incidental interference and most 

importantly result in better accuracy (Groves, 2013). However, even with four or more 

satellite constellations, GNSS still suffer from outages due to signal blockage, 

interference, multi-path effects or jamming, which means there are places like indoors 

and urban canyons that unable to receive direct line-of-sight signals from satellites. 

Satellite-based system alone is unable to full-fill the need for ubiquitous navigation 

and alternative technologies are needed. 

 

Figure 1. 1 The GPS satellite constellation (Griffin, 2011) 

Navigation and mapping are intricately coupled problems. A map is consisted of a 

coordinate system with a set of information (e.g. location, scale, etc.) about the 

features in the mapped environment. Today digital maps have commonly been used 

together with GPS for navigation. It provides the visual information for drivers about 

the routes, and can also be used to impose constraints on the positioning solution since 
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a vehicle runs within road networks (Skog and Handel, 2009). However, the potential 

of maps for navigation hasn‘t been fully explored by such applications. As a matter of 

fact, map itself can be used as a position fix technique. It is called map-based 

positioning. This method can be adopted when the moving platform is navigating in a 

mapped environment. In this approach, the moving platform uses its sensors to 

perceive its local environment, and this perception is then compared to a map that 

previously stored. If a match is found, the position of this platform can be determined 

(Aboelmagd et al., 2013). Cameras and laser range finders are typical sensors used in 

map-based positioning. The map is constructed from prior knowledge of the 

environment.  

Magnetic sensors have been used for ‗navigation‘ for centuries. Today electronic 

compasses can be easily found on portable low cost equipment and measure at least 

two orthogonal axes X and Y of the earth magnetic field. In the strict sense, a digital 

compass alone does not give absolute position information like GPS, thus cannot be 

used for navigation on its own. However, it uses magnetometers to provide heading 

measurements relative to the Earth‘s magnetic north and can be applied to assist other 

systems for position fix.  

In some specific environments, active beacons are employed to provide accurate 

positioning information. Wireless communication is used, such as Wi-Fi and UWB 

networks. Triangulation and fingerprinting are typical algorithms used in position 

resolution. However, the problem with active beacons is that it requires high cost 

installation and maintenance, which limit the application to specific environments.  

Despite of various position-fixing methods, DR has also been used either 

independently or assist position-fixing systems. Typical examples of DR include 

inertial navigation systems (INS) and odometry. Inertial navigation origins from the 

Cold War and has been under development for decades. The basic idea is to compute 

the real-time state of a moving vehicle (object) using motion sensors. More 
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specifically, gyroscopes and accelerometers are motion sensors that measure the 

rotation rates and forces, which are used to define the translational motion of the 

vehicle with respect to the inertial reference frame. Then the position, velocity and 

orientation are calculated as the ―state‖ of the vehicle. Logically, the system requires 

inertial measurement units (IMUs) for measurement and a system to compute and 

update the state. With the development of micro-electromechanical system (MEMS), 

low-cost and light weight IMUs have been enabled. Since inertial navigation depends 

on the sensed measurements from IMU, the sensor error may accumulate and lead to 

solution failure. Therefore techniques to compensate for or mitigate the sensor errors 

are of significant value for research in INS. Odometry on the other hand measures the 

rotation of the wheel axes and the steer axes. Then wheel rotation is translated into 

linear displacement. In summary, such systems have the advantage of being 

self-contained, but subject to cumulative errors. Therefore in navigation systems, DR 

based technologies are usually used together with position fixed systems, an typical 

success has been GPS/INS integration. 

In order to provide more reliable and comprehensive navigation solution, integrated 

navigation has attracted growing attention in recent years. It means a combination of 

two systems or more from the two categories mentioned previously. Typical 

combination includes GNSS/ inertial navigation, or GNSS, odometry and 

map-matching combined. The basic role is that the wider the range of technologies 

deployed, the better the performance will be. Therefore, the corresponding 

development trend is to develop more components on a mobile platform that uses 

various positioning methods. For instance, a smartphone today contains a camera, 

inertial and magnetic sensors, mapping, a GNSS receiver, Wi-Fi transceiver and the 

phone itself, all of which could potential be used for navigation (Groves, 2013). 
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1.2 VISION-BASED NAVIGATION 

In the research domain of indoor navigation or more generally, navigation in a 

GPS-denied environment, vision is believed to be the most promising but challenging 

technology so far. It is an effective method to find the 3D position of a target. 

Compared with other sensors that may hold the promise to supplement satellite-based 

positioning, since vision sensors are cheap, ubiquitous, self-contained (no external 

infrastructure such as beacons, radio stations is required) and works well for both 

indoor and outdoor environment. In fact, vision-based navigation has begun to attract 

attention since late last century. Up today countless research contribution has been 

made. Most vision-based navigation systems depend on the exploitation of one or 

more cameras, either map-based or map less navigation is adopted. 

The main purpose of vision-based navigation is to determine the position (and 

orientation) of the vision sensor, then mobile vehicle‗s (the platform carrying the 

vision sensor) motion/trajectory can be recovered. However, it is not without its 

limitation. Vision sensor can measure relative position with derivative order of 0 but 

senses only a 2D projection of the 3D world – direct depth information is lost. Several 

approaches have been made to tackle such a problem. Some people use stereo cameras 

by which the distance to a landmark can be directly measured. Another way is to use 

monocular vision with the integration of data from multiple viewpoints (structure from 

motion) or rely on the prior knowledge of the navigation environment (e.g. map, or 

models). Sometimes a combined use of these methods is presented in the same system. 

For example in Christensen et al. (1994), CAD model is used together with stereo 

vision. Despite the various methods that have been used, generally any vision-based 

navigation system falls into two categories: the one that depends on prior knowledge 

of the navigation environment for positioning, and the one that do not need any 

previous knowledge of the environment but calculate its position as they perceive it. 

We refer to the former one as map-based approach and the later as mapless approach. 
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In this research, the map-based approach is used. Therefore the review will be focused 

on the former group and the later will be briefly discussed in the follow context. 

Different from previous literature review works made by Guilherme et al. (2002) and 

Francisco et al. (2008) that map is restricted to more specific forms, in this research 

map is referred to more general concept: pre-defined knowledge of the navigation 

environment.  

 

1.2.1 Map-based approaches 

The essential idea for map-based visual navigation is to store the information of the 

landmarks in the navigation environment first, then during navigation, the system use 

the visual input to match the map, identify the landmarks previously stored and 

estimate its own position. The four steps (Borenstein et al., 1996) the computation 

normally involved are: firstly acquire sensor information through camera(s); secondly 

detect landmarks through image processing; thirdly establish matches between 

observation and expectation by image/map matching; last step is to calculate its 

position according to the relationship between observed landmarks and its information 

stored in the map. The form of the map however is changing with the advance of the 

technology, from CAD models with varying complexity to simpler models, then 

models are replaced by appearance based approach, later even images are used as 3D 

map for navigation.  With the rich literature available, here we focused on the 

development of the maps that relevant to reality based 3D map. Some other forms of 

the maps, such as occupancy map and topological maps, which attempt to ―squeeze 

3D into 2D‖ are not included. More information on those topics can be found in 

Guilherme and Avinash (2002). 
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1.2.1.1  3D model as map 

Van Driel has realized in as early as 1989 that the advantage of 3D lies in the way we 

see the information. A 3D display of the environment simulates spatial reality, thus 

allowing the viewer to recognize and understand quickly. Therefore, a navigation 

system that contains a realistic map will certainly assist the users better. As Coors et al. 

(2004) point out: a more natural way to present route instructions is to use pseudo 

realistic instructions, i.e. three-dimensional maps. There has been some evidence that 

people recognize landmarks and find route in the cities easier using a 3D model than 

using a symbolic 2D map and that search and visualization of location-based 

information of a city becomes more intuitive with life-like 3D (Rakkolainen, 2000). 

Moreover, the high visual correspondence between objects on a 3D map and real 

world objects increases the 3D map‘s navigational value (CoorK, 2008).  Therefore, 

3D navigation, or the use of a 3D map for navigation purposes is of great value in the 

development of navigation systems.  

Most of the early vision-based navigation systems rely on 3D geometric models that 

contain precise metric measurements of the objects in the environment. Firstly CAD 

model was used. For example in 1987, Tsubouchi and Yuta proposed a system that 

used both CAD models and color images for their map-assisted vision system. Later 

other forms of models are used to represent the geometry of the navigation 

environment. For instance in FINALE system (Kosaka and Kak, 1992) 3D geometric 

model of the hallways were built. Self-localization was realized by matching a 

sequence of image features and landmarks derived from the geometric model of the 

environment. Fukastu et al. (1998) proposed a manipulation technique to intuitively 

control the ―bird‘s eye‖ overview display of an entire large-scale virtual environment 

in a display system that enables efficient navigation even in enormous and 

complicated environments using both global and local views. Coors and Schilling 

(2004) presented routes on mobile devices using 2D and 3D maps, and the problem 
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with this approach is that their 3D maps are found to be slower to use both in initial 

orientation and route finding compared to 2D maps. According to the users the 3D 

model should be more detailed and realistic and the target should be highlighted in it. 

Meijers et al. (2005) propose their method for indoor navigation routing. And their 

problem is also in that the model still requires refinements.  

In the meantime, three-dimensional geo-information has grown to be an important 

subject within the GIS community. 3D navigation therefore benefits from such an act. 

Sharkawi et al. (2008) come with a 3D navigation system in virtual 3D (indoor and 

outdoor) environment by utilizing a freely available 3D game engine couple with GIS 

elements. But their system hasn‘t yet been able to provide real-time positioning 

capability. Li et al. (2008) discusses the framework regarding a 3D indoor navigation 

service, which aims at 3D GIS-based, BIM information-supported and topologic 

analysis-oriented indoor navigation. It points out the limitation in current research 

regarding 3D indoor navigation, and the need and importance to develop such systems 

in various application areas. Wang et al. (2008) use virtual reality technique to develop 

a 3D navigation system, which can be used for campuses, museums or art galleries, 

and more importantly, it includes user positioning mechanism using GPS and active 

RGID. 

The above development shows different technologies being used and various 

methodologies contributing to the research of 3D model based navigation. One 

relatively common shortcoming with these systems is that the 3D model of the 

environment is not good enough. The similarity between world model and the real 

world is not big enough to enable a user to quickly recognize and build up 

correspondence.  
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1.2.1.2  Appearance-based approaches 

Appearance-based method then emerged to provide an alternative approach for 

model-based methods. An appearance-based model is created by ―memorizing‖ the 

navigation environment using images or templates. By comparing the templates in the 

model with its current view, a robot can derive control commands to steer itself along 

a memorized route or to a goal position (Cobzas et al., 2003). The strength of 

appearance based models lies in their ability to represent the environment through 

high-level image features, using similarity measures to decide if new information can 

be added to the map (Zhang et al., 2012). It has attracted growing attention for both 

indoor and outdoor navigation. 

For indoor appearance-based navigation, mobile robot has been one of the major 

applications. One of the early approaches was developed by Turk and Pentland (1991). 

Their approach treats the recognition problem as an intrinsically two dimensional 

recognition problem rather than requiring recovery of the three dimensional geometry. 

Ohno et al. (1996) used the differences between the currently collected images and the 

pre-recorded image sequence to continuously estimate the robot‘s position and 

orientation shifts. While the orientation change can be obtained with relatively high 

accuracy, position change may not be accurately estimated. Another limitation with 

this approach is that it is based on the assumption that the correspondence between the 

current image and the reference image has always been found correctly, leaving 

mismatches a severe danger jeopardizing the reliability of the whole system. Rivlin et 

al. (2003) proposed a new algorithm for image-based robot navigation applications. At 

the core of this idea is to generate the translation and rotation shifts in a robot 

movement by matching the target image with the images taken in real time. While this 

idea makes a good point, another contribution of their approach is that RANSAC 

paradigm is used to deal with outliers caused by mismatches. However, it is not 

without its limitations. The algorithm is only able to provide three degrees of freedom. 
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The reason is that it only uses the epipolar geometry to estimate the relative position 

and orientation between query image and target image. The authors only consider a 

camera that is rigidly positioned on the robot, which means the difference in the 

positions of the two cameras is only regarded as motion in the plane parallel to the 

floor (the X and Z plane) and rotation about the Y axis. In several cases not enough 

correct matches can be found to compute the position shift. The limitation in the 

degrees of freedom can also be found in other approaches (e.g. Kitanov et al., 2007).  

In the meantime, outdoor image based navigation has also been developed over the 

years. The traditional approach is to match the real time query image with the 

reference images in the database. Whenever a match is found, the position information 

of this reference image is transferred to the query image and used as user position. 

This is essentially an object-recognition and image retrieval problem. A great variety 

of work has been done to address the location recognition aspect by using different 

image matching techniques (e.g. Schaffalitzky, 2002; Goedeme, 2004). A further 

improvement is to calculate the relative position between the query view and the 

identified reference view to obtain more accurate position estimation. In 2006 Zhang 

and Kosecka first used a wide-baseline matching technique based on SIFT features to 

select the closest views in the database, then the location of the query view was 

obtained by triangulation. In Robertson (2004) the orientation of the sensor was also 

estimated since the pose of the query view is obtained from plane-to-plane 

transformation. Building façade was used as dominant plane. 

One common shortcoming for the appearance-based approaches lies in that the 

pre-stored images can only provide 2D information, which limits the camera pose 

estimation to certain accuracy with only position information while orientation 

estimation has been lost.  
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1.2.1.3  Images used as 3D maps 

Images used as 3D maps for navigation purposes is a relatively new approach in the 

research domain, which has its origin from appearance-based methods and also retains 

the virtue of 3D model-based approach. Compared with its ancestor 

―appearance-based methods‖, it takes advantage of the 3D geometric information from 

the 3D map for pose estimation. And in the meantime their advantage over traditional 

model-based 3D navigation lies in that it provides more realistic view of the 

navigation environment and at the same time, do not require full 3D reconstruction, 

which is both time consuming and demand much space for storage. Monocular, stereo 

as well as panoramic images all have been used as 3D map for research on image 

navigation systems. And such systems have found their application in computer vision 

community in areas like mobile robot navigation, simultaneous localization and 

mapping (SLAM) and unmanned aerial vehicle (UAV). 

The earliest of such work can date back to 1987, when Harris and Pick (1987) propose 

a method to construct an explicit three-dimensional representation from feature points 

extracted from a sequence of images taken by a moving camera. The points are 

tracked through the sequence, and their 3D locations are accurately determined with 

Kalman filters. The ego-motion of the camera is also determined. But the limitation of 

this attempt is that it fails to notice the strong correlations caused by the camera 

motion. Manessis et al. (2000) proposed to reconstruct 3D structure of the 

environment through image sequence. The major contribution of the work is that it 

uses a recursive structure from motion to realize surface recovery. Different from 

Manessis‘s approach, Kidono and his colleagues (2002) used stereo vision to obtain 

range data for 3D reconstruction. More specifically, they used a human guided process 

to record images with a stereo camera and construct the 3D map on-line from these 

images. Then the robot can repeat the same route.  Following this trend, Royer et al. 

(2005) developed a system that is able to follow a pre-defined path based on a 3D map, 
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which was built off-line using video sequence obtained from pre-training period. We 

found this work is of significant importance to our research. It proposed the idea that 

interest points can be reconstructed in 3D and used as landmarks for the localization 

process. Royer et al. (2007) refined this previous work and evaluated the accuracy and 

robustness of the system under various environments. From then on, using images to 

build/as 3D map for navigation has attracted growing attention and more work can be 

found in recent years, (e.g. Li et al., 2011; Ruiz-Ruiz et al., 2012). 

It is worth mentioning that a close field to vision-based navigation: SLAM 

(Simultaneous Localization and Mapping) has also contributed to the image-based 3D 

map. Over the last 10 years, autonomous robot navigation community has seen much 

progress, especially on the topic of SLAM. It has used both monocular and stereo 

imaging to build 3D maps of the environment for navigation. Davison and Murray 

(2002) introduced their work as an improvement of previous work (Davison, 1998) by 

using a visual SLAM system that can operate in real-time. This system was able to 

build a 3D map of landmarks from images taken from different viewpoints. Jung and 

Lacroix (2003) presents an approach to build high resolution digital elevation maps 

from a sequence of unregistered low altitude stereovision image pairs. The limitation 

of the work is that it relies on a wide baseline fixed stereo rig to obtain depth 

information. Tardif et al. (2008) present a system for Monocular Simultaneous 

Localization and Mapping (Mono-SLAM) relying solely on video input. The main 

methodological contribution in this paper is that given the last image and a current 3D 

map of landmarks, they decouple the rotation estimation from the translation in order 

to estimate the pose of a new image. The image-based 3D mapping process will be 

further discussed in Chapter 2.  

1.2.2 Mapless approaches 
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For vision-based navigation, a mapless approach does not rely on any prior knowledge 

of the environment. Mainly there are two techniques that are used in mapless visual 

positioning: optical flow and feature tracking.  

A fundamental problem in the processing of image sequence is the measurement of 

optical flow (or image velocity). The goal is to compute an approximation to the 2D 

motion field- a projection of the 3D velocities of surface points onto the imaging 

surface – from spatiotemporal patterns of image intensity. Once computed, the 

measurements of image velocity can be used for a wide variety of tasks ranging from 

passive scene interpretation to autonomous, active exploration (Barron and 

Beauchemin, 1994). For vision-based navigation, the camera movement is perceived 

as a relative motion of the field of view. Two essential problems to solve are: what 

kind of image property to track, and how to track it.  

The basic idea for feature tracking is to form sets of correspondences between features 

on every frame of a sequence. Intensity correlation is usually used for feature tracking 

on a pixel basis. Two widely applied methods are cross correlation and sum of squared 

differences. By using dense optical flow algorithms, the optical flow between two 

consecutive frames is usually represented by a vector for every pixel. By comparison, 

sparse optical flow algorithms only calculate the displacement for certain selected 

region of pixels. Invariant image features such as SIFT (Lowe, 1999), Harris corners 

(Harris and Stephens, 1988), canny edges are usually used for the selection of such 

regions. The sparse optical flow is preferred in many scenarios since it is more robust 

against noise. 

Optical flow has been used for a variety of navigation applications. The major group is 

for mobile robot. In 1993 Santos-Victor and his colleagues developed an optical-flow 

based system inspired by the behaviour of bees. Antonis et al. (2004) presented a 

robotic centering behaviour based on the exploitation of a panoramic camera. Optical 

flow has also been used in UAV and other aerial based applications (e.g. Stefan et al., 



Chapter 1                                                   Introduction 

14 

 

2005). More detailed description on the optical flow techniques can be found in 

Barron et al. (1994). In this research, greater emphasis has been placed on map-based 

approach. Therefore in the following context, vision-based navigation normally refers 

to the methods depending on prior knowledge of the environments. 

 

1.3 IMAGE MATCHING FOR VISION-BASED 

NAVIGATION SYSTEMS  

Image matching techniques have been used in a variety of applications, such as 3D 

modelling, image stitching, motion tracking, object recognition and vision based 

localization. Over the past few years, many different methods have been developed, 

which can be generally classified into two groups: area-based matching (intensity 

based, like cross-correlation and least-squares matching (Gruen, 1985)) and 

feature-based matching, e.g. SIFT (Lowe, 2004). 

Area-based methods (Trucco and Verri, 1998) directly work on image intensity values, 

Area-based image matching usually adopts a two-step approach: first a cost function 

(error metric) is chosen to evaluate the similarity between candidate corresponding 

areas on two matching images; then a search function is used to find such 

corresponding scene from two images. The error metric can be intensity differences or 

the cross-correlation value. The former approach is trying to find the location with 

minimum intensity difference. Typical metric includes sum of squared differences 

(SSD) and sum of absolute differences (SAD). And the latter approach is to locate 

(pixel) positions that reach maximum similarity. After the goal has been set for certain 

cost function, suitable search techniques need to be used to find the best match. A 

straightforward way is to exhaustively search every pixel on the reference image. 

Considering the computation load, a coarse-to-fine strategy based on image pyramids 

has been proposed to accelerate the search process. Area-based methods thus may be 
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comparatively more accurate because they take into account a whole neighbourhood 

around the imagine points being analysed to establish correspondences.  

Feature based methods on the other hand uses symbolic descriptions of the images that 

contain certain local image information to establish correspondence. The general 

scheme usually involves three important steps. The first step is to use interest 

operators to extract salient features from both images, which can be in the form of 

points, corners, edges or regions. The first operator algorithm was developed by Hans. 

P. Moravec in 1977. It is followed by various approaches, among which the most 

widely adopted algorithms are Forstner operator (Forstner and Gulch, 1987), the 

Harris operator (Harris and Stephens, 1988), and Lowe‘s SIFT (Lowe, 1999). As a 

result of applying an interest operator, an unstructured list of image points with 

associated attributes is generated for each image. More specifically, the second stage is 

the construction of feature descriptors around the salient points using mechanisms that 

aim to keep the region‘s characteristics insensitive to viewpoint and illumination 

changes (Alhwarin et al., 2008). Then the final step is to find correspondences based 

on these attributes (feature descriptors). While a full search of features from one image 

against all the features on the matching image is straightforward, a more efficient 

approach is to use an indexing scheme to find the nearest neighbour in high-dimension 

space.  

No single algorithm, however, has been universally regarded as optimal for all 

applications since they all have their pros and cons. Since image matching is regarded 

as the most important component for visual systems, in this research we first briefly 

explore the performance of various image matching techniques according to the 

specific needs of vision-based positioning systems, and we discuss the systems 

according to their choice of image matching methods. 

For stereo vision based approaches, stereo matching is employed to create a depth map 

(i.e. disparity map) for navigation. It belongs to map-based approach. Usually area 
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based algorithms are used to solve the stereo correspondence problem for every single 

pixel in the image. Therefore, these algorithms result in dense depth maps as the depth 

is known for each pixel (Kuhl, 2004). Typical methods include Census (Zabidh and 

Woodfill, 1994), SAD (Sum of Absolute Differences), and SSD (Sum of Squared 

Differences). The common drawback is that they are computational demanding.  To 

deal with the problem, some efforts have been made. In Nalpantidis et al. (2009) the 

authors proposed a quad-camera based system which used a custom tailored 

correspondence algorithm to keep the computation load within reasonable limits. 

Meanwhile, feature based methods are less error sensitive and require less work load. 

But the resulting maps will be less detailed as the depth is not calculated for every 

pixel (Kuhl, 2004). Therefore, how to achieve a disparity map which is both dense, 

accurate while the system maintains reasonable refresh rate is the cornerstone of its 

success, and still remains to be an open question. 

For monocular vision sensor, the two approaches: 1) ones that use the structure from 

motion (SFM) method, which is a mapless approach, and 2) map-based monocular 

visual navigation systems, also differ from each other. For the former group, 

consecutive frames present a very small parallax and small camera displacement. 

Given the location of a feature in one frame, a common strategy for SFM is to use 

feature tracker to find its correspondence in the consecutive image frame. 

Kanade-Lucas-Tomasi (KLT) tracker (Zhang et al., 2010) is widely used for small 

baseline matching.  The methodology for a feature tracker to track interest points 

through image sequence is usually based on a combined use of feature-based and 

area-based image matching methods. First interest points are extracted by operators 

from the first image, such as (Lowe, 2004; Harris and Stephens, 1988; Forstner, 1986). 

Then due to the very short baseline, positions of corresponding interest points in the 

second image are predicted and matched with cross-correlation, which can be further 

refined using least squares matching. Some approaches perform outlier rejection based 
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either on epipolar geometry (Remondino and Ressl, 2006) or RANSAC (Zhang et al., 

2010) for the last step.  

For monocular vision map-based navigation systems, one significant nature that 

differs them from other visual systems is that at positioning (second) stage the real 

time query image might be taken at substantially different viewpoint, distance or 

difference illumination conditions from the map images in the database, or using 

different optical devices. In other words, the two matching images may have a very 

large baseline, large scale difference and big perspective effects, which lead to a wide 

range of image transformation. Due to such significant changes, most image 

corresponding algorithms working well for short baseline (e.g. stereo, or video 

sequence) images will fail in this case. For area-based approach, cross correlation 

method can't get a good performance when rotation is greater than 20° or scale 

difference is greater than 30% (Lang and Forstner, 1995); an iterative search for least 

squares matching (LSM) will require a good initial guess of the two corresponding 

locations, which is not applicable in situations where image transformation parameters 

are unknown. Feature based algorithms on the other hand prove to be more robust 

against scene movement and potentially faster. Therefore, a feature-based approach 

suits the monocular vision-based navigation systems better.  

The development of image matching of using keypoints can be traced from Moravec‘s 

work in 1977. However, early matching methods based on corner detectors (Harris and 

Stephens, 1988) would fail because of the big perspective effects (Remondino and 

Ressl, 2006). Therefore, more distinctive and invariant features are needed. The first 

work for invariant feature was by Schmid and Mohr (1997) who used a jet of Gaussian 

derivatives to form a rotationally invariant descriptor around a Harris corner. Then a 

significant contribution to the field of feature-based matching is made by Lowe for his 

method: SIFT (Scale Invariant Feature Transformation). It is first introduced in 1999 

ICCV (Lowe et al., 1999) with some information on its application to object 
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recognition. From then on, it has been applied to a wide range of applications, such as 

object recognition, pose estimation, image retrieval and so forth. Particularly, SIFT 

has been used in image matching systems (Se et al., 2002; Boris et al., 2008) for 

accurate location estimation. The major virtue is that SIFT features are invariant to 

image scale and rotation, and are shown to provide robust matching across a 

substantial range of affine distortion, change in 3D viewpoint, addition of noise and 

change in illumination (Lowe, 2004).  Mikolajczyk and Schmid (2005) compared the 

performances of several local descriptors and their experiments revealed that the SIFT 

yielded the best matching results. Therefore, for map-based navigation systems, SIFT 

is one of the best choices. We have mainly chosen SIFT for image matching in our 

system. 

The algorithm bundles both a feature detector and a feature descriptor. The major steps 

to generate SIFT features are as follows: 

1) Scale-space extreme detection:  

Firstly, scale space is created to ensure scale invariance. Traditionally, Laplacian 

of Gaussian (LoG) is used to find interesting feature points. Instead of using 

Laplacian of Gaussian (LoG) here, the Difference of Gaussians (DoG) is used to 

help find potential interest feature points for SIFT. The benefit of DoG over LoG 

is that it retains scale invariance and computationally less intensive. More 

specifically, the maxima and minima in DoG images are located as candidate 

feature regions. 

2) Keypoint localization: 

In the second step, we obtain subpixel locations for the candidate features to 

increase the chances of matching and stability. Meanwhile, some candidates are 

rejected if they don‘t have enough contrast or lie on an edge. 

3) Orientation assignment: 
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In the third step, orientation is assigned to each selected key point to provide the 

nature of rotation invariance. The basic idea is to collect gradient directions and 

magnitudes in the small region around each key point. Then the most prominent 

orientation(s) is assigned to the feature point.  

4) Keypoint descriptor: 

The final step is to generate a unique signature for each key point to prepare for 

matching. The signature is a vector (128 dimensions by default) that describesthe 

local image gradients of the key point region.  

In summary, the detector extracts a number of regions from the images, then a 

descriptor is associated with each of the region, which contains properties that 

describe the appearance of the region.  As shown in Figure 1.2, 1195 keypoints are 

found in this image. They are displayed as vectors indicating scale, orientation and 

location. 

 

Figure 1. 2 SIFT Feature extraction 

In the next step, matching is performed based on the feature extracted. A new image is 

matched by individually comparing each feature from the new image to the previous 
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image and finding candidate matching features based on Euclidean distance of their 

feature vectors. In fact, the best candidate is the nearest neighbour from the reference 

descriptor vector. The determination of whether it is a correct match depends on a 

probability calculated by taking the ratio of distance from the closest neighbour to the 

distance of the second closest. Lowe (2004) rejected all matches in which the distance 

ratio is greater than 0.8, which eliminates 90% of the false matches while discarding 

less than 5% of the correct matches. Here we set the ratio to 0.6. Figure 1.3 illustrates 

one of the matching between two images, which have 67 matched keypoints. Then the 

image coordinates of these matched pairs are stored in the database. It should be noted 

that a number of mismatches are generated during the process, which need to be taken 

care at later stage (outlier detection function). The problem will be addressed in later 

chapters.  

  

 

Figure 1. 3 SIFT based image matching 
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1.4 CHALLENGING ISSUES AND OBJECTIVES 

Positioning and navigation applications have never been so accessible. Some of the 

most important positioning or localization techniques include satellite-based 

positioning (e.g. GPS), dead reckoning, beacon-based positioning and so forth. There 

are however, many unmet needs, especially in the area of indoor navigation. 

Nowadays, most localization services can only be provided for outdoor environments 

with an adequate GNSS signal availability. In urban and indoor environments the 

signal may be degraded due to various reasons, such as shadowing, signal attenuation, 

multipath, intentional denial or deception, and so forth. In order to strengthen and 

extend the positioning capabilities to provide a more robust navigation solution, 

alternative positioning techniques and navigation schemes are sought for. 

In the research domain of indoor navigation or more generally, navigation in a 

GPS-degraded environment, vision is regarded to be highly promising because of its 

ubiquitous and self-contained nature. Given the rich literature available, most existing 

vision-based navigation systems depend on the exploitation of one or more cameras, 

either map-based or mapless navigation is adopted. However, available vision-based 

approaches are still far from mature to supplement GNSS. Major challenging issues 

versus current limitations are identified in four aspects: mapping, poisoning accuracy, 

reliability, and coverage. 

1) Mapping 

Mapping and navigation are intrinsically coupled question.  As has been reviewed 

in previous section, map can be in various forms, from 2D to 3D, from models to 

images. However, current digital maps as well as maps developed in the navigation 

research are still limited to certain applications. The next generation of 

navigational maps require richer information to be provided and able to support 

various location-based services. Therefore in this research, one objective is to 
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develop a 3D map, which is capable of providing reality-based view and accurate 

geometric information of the environment for navigation. Moreover, it can be 

extended to support other location-based services, such as 3D geometry 

measurement of the landscapes. 

2, 3) Accuracy and reliability 

In the navigation community, the accuracy and reliability of the system are 

regarded as two priorities. For vision sensors, direct depth measurement is lost. 

The real world geometry information can only be indirectly obtained through 

photometric effects from images, which means a mathematical model needs to be 

built. Meanwhile, vision sensors have a very high input data rate and inherently 

fragile against error. Therefore, both systematic error and gross errors can easily 

affect the system performance. This will pose great challenge for the vision-based 

positioning function in terms of accuracy and reliability. 

 

Most of the available research on vision-based navigation came from the mobile 

robotic field. The techniques adopted are mostly based on algorithms developed by 

the computer vision (CV) community. CV makes certain contributions to the field, 

such as object recognition, structure from motion techniques, 3D modelling and so 

forth. However, the major limitation lies in that it focuses on fast, preferably linear 

techniques, which is insufficient to provide accurate estimation. In its application 

to vision-based navigation, much emphasis has been placed on enabling a robot to 

safely and effectively navigate in an indoor environment with a high level of 

autonomy. However, as long as the navigation performs without failure (hitting 

any obstacle or unable to follow the pre-defined path), self-localization process is 

considered as satisfactory. The accuracy and reliability aspects of positioning have 

hardly been paid much attention or fully investigated. On the other hand, 

photogrammetry has been developed to obtain the best possible accuracy with 
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certain imaging networks. It has also developed quality control measures to 

strengthen the reliability of the outcome. Photogrammetry has been widely applied 

to applications in mapping, industrial metrology, archaeological surveying. But its 

application in vision-based navigation has been rarely to be found.  

 

Therefore in this research, we aim to introduce photogrammetric methods into 

vision-based navigation. The basic idea is to jointly use technologies from the two 

fields to complement each other. More specifically, image matching algorithms 

from CV are used for feature recognition, and photogrammetric mapping is used to 

develop the 3D map, space resection is adopted for positioning. The objective is to 

improve the positioning accuracy.  

 

Meanwhile, quality control measures from both communities are adopted for the 

vision-based navigation system. The objective is to develop a dedicated outlier 

detection mechanism to strengthen the robustness of the system. 

4) Coverage 

Ubiquitous positioning is considered to be a highly demanding application for 

today‘s Location-Based Services (LBS). However, the significant difference 

between outdoor and indoor environments has divided the early stage of the 

research into two different groups: outdoor and indoor visual navigation. As a 

matter of fact, vision sensor is able to function in both environments. Therefore, it 

is high time that a consistent framework of vision-based navigation technology to 

be developed, which is capable of filling the gap in satellite-based system 

deficiencies, providing coverage from outdoors, urban canyons to indoor 

environments. 

In summary, the objective of this research is to develop a new system that is able to 

address these problems and bring the technology forward. 
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1.5 CONTRIBUTIONS OF THIS RESEARCH 

This research is focused on developing a new vision-based navigation system for 

positioning and navigation in GPS degraded environments. The main research 

contributions are summarized as follows: 

a. A new concept of 3D map has been introduced. The new 3D map mainly consists 

of geo-referenced images, and features in both reality-based visualization of the 

environment and 3D geo-referenced geometric information. In this research, it 

provides the map-matching function for vision-based positioning. Its development 

process and applications have been discussed. 

 

b. A method of vision-based positioning with use of photogrammetric methodologies 

and computer vision techniques has been proposed. It mainly obtains geometric 

information of the navigation environment from the 3D map and uses 

photogrammetric methods to solve the position. More specifically, a least squares 

based space resection is used to solve the position and orientation in 6 degree of 

freedom at high accuracy. Both function model and stochastic model have been 

built.  SIFT features have been used as 3D landmarks during map matching, and 

served as pseudo ground control points (PGCPs)  for positioning resolution. The 

algorithms have been implemented and tested in an indoor environment. The 

accuracy has reached around 10 cm. 

 

c. Vision sensor is inherently fragile against errors. Therefore, any vision-based 

system requires a robust quality control mechanism to ensure good performance. 

In this research, a multi-level outlier detection scheme for the vision-based 

navigation system has been proposed. It mainly combines RANSAC, which deals 

with high percentage of mismatches, with data snooping, which removes a small 

number of outliers at the final adjustments for both 3D mapping and positioning 
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resolution. 

 

d. The deficiency of using RANSAC for outlier detection in image matching and 

homography estimation has been identified. In this research, a novel method which 

combines cross correlation with feature based image matching has been proposed. 

It is able to effectively evaluate the RANSAC homography estimation, detect poor 

ones and improve the image matching performance. The method has been 

successfully applied to the vision-based navigation solution to find corresponding 

view with the query image from the database and improve the final positioning 

accuracy. 

 

e. Image matching has been the essential component for visual systems. However, 

given the rich literature on image matching, there‘s still lack of analysis on image 

matching in the context of vision-based navigation systems, especially for a 

map-based approach. In this research, factors that influence the positioning 

performance of the system have been evaluated through the mathematical model 

and experiments. The focus has been on various image matching 

conditions/methods and their impact on the geometry of PGCPs. The 

characteristics, including both strength and weaknesses of the system, have been 

revealed and investigated. Multi-image matching has been introduced into the 3D 

mapping procedure, and ASIFT has been used to deal with dramatic viewpoint 

changes. 

 

f. In recent years the low cost built-in sensors on mobile devices (e.g. smartphone), 

especially high resolution cameras have placed greater demand for a breakthrough 

in their applications for seamless positioning. In the later stage of research, the 

vision-based navigation system has been extended from indoor to outdoor with 

corresponding changes been made to cater for outdoor environments. It mainly 
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uses visual input to match with geo-referenced images for positioning resolution, 

and takes advantage of multiple sensors onboard, including GPS receiver and a 

digital compass to assist visual methods in various aspects. Experiments 

demonstrate that such system can largely improve the position accuracy in areas 

where stand-alone GPS (SPP) is affected and can be easily adopted on mobile 

devices.  
 

1.6 THESIS OUTLINE 

This thesis consists of eight chapters. The contents of each chapter are outlined as 

follows.  

Chapter 1 first gives a general overview of navigation technologies, including basic 

principles from position fixing and dead reckoning (DR) methods.  Then the 

literature of vision-based navigation is reviewed and divided into two categories in this 

research: map-based and maples approach. Image matching algorithms are introduced 

in the context of vision-based navigation system. 

Chapter 2 first provides an overview of 3D mapping methodologies with the emphasis 

on image-based methods. Then the newly defined 3D map is introduced with its 

development process. Geo-referencing procedure has been the essential step for the 

mapping process. Experiments focused on geo-referencing are presented. 

Chapter 3 introduces the methodology of the vision-based positioning resolution, 

including both mathematical model and implementation procedures. The algorithms 

have been implemented with results given in the experiment. 

Chapter 4 investigates different outlier detection strategies in the context of 

vision-based navigation. The multi-level outlier detection scheme proposed in this 

research is introduced. Experiments have revealed the nature of the outliers in the 

system and proved the efficiency of the outlier detection scheme. 
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Chapter 5 introduces the enhanced RANSAC homography estimation method 

proposed in this research. It integrates the cross-correlation information into feature 

based RANSAC combined image matching. Experiments prove that it can effectively 

mitigate for the random nature of RANSAC and identify the poor RANSAC 

estimation, so as to improve the performance of image matching. It largely improves 

the positioning accuracy of the system by optimizing the image matching procedure.  

Chapter 6 evaluates the performance of the vision-based navigation system through 

experiments with varying real world conditions and simulations. Factors that influence 

system performance are investigated. Two major components that determine 

positioning accuracy, geometry of PGCP and measurement accuracy are identified and 

discussed. 

Chapter 7 presents a comprehensive system that adopted hybrid vision-based method 

with combined use of onboard sensors (GPS, camera and digital compass) to achieve a 

seamless positioning from indoor to outdoor environments. It mainly extends the 

previous approach to outdoor environment. The system adopts the same strategy: 

geo-referenced images are used as 3D maps for vision-based positioning.  Due to the 

difference between two environments, corresponding changes to the algorithms are 

introduced.  

Chapter 8 summaries the contributions of this research, draw conclusions and makes 

recommendations for future research. 
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CHAPTER 2                              

3D MAP DEVELOPMENT BASED ON 

GEO-REFERENCED IMAGES 
 

2.1 INTRODUCTION 

Three-dimensional geo-information has become an important subject within the GIS 

community for many years. Research mostly has been concentrated on aspects such as 

3D data collection and modelling, data management (e.g. topological, geometrical 

models), 3D data analysis and visualization (e.g. virtual reality, augmented reality, 

etc.). The target application has mostly been 3D modelling of landscapes, urban and 

city models. As three-dimensional geo-information technique becomes so ubiquitous 

and shows good potential in navigation applications, researchers try to include 3D 

representations of the environment via different approaches for navigation purposes.  

The 3D map for navigation is optimally both realistic and geometrically accurate. 

Such a character differs the requirement and procedure of its development from other 

3D applications that mainly used for visualization, such as ones in the movie industry. 

Moreover, compared with 3D modelling of specific targets, such as heritage 

documentation, the 3D map for navigation usually do not require the acquisition of full 

detailed information of the target but need to cover greater areas. 

2.1.1 Range-based and image-based 3D mapping/modelling 

Currently, there are two main stream 3D modelling/mapping strategies: range-based 

and image-based modelling/mapping. The former one normally uses laser/sonar 

scanner to directly produce 3D point cloud and depth information in aerial and 

terrestrial mapping. It is able to provide highly detailed and accurate representation of 
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the target object. However, most of the systems only focused on the acquisition of the 

3D geometry, providing a monochrome intensity value for each range value. Few 

systems attached a colour camera to the instrument so that the acquired texture is 

registered with the geometry (Remondino, 2006). But the difference requirement for 

imaging and scanning also poses challenge for such an act. The procedure for 

range-based 3D mapping is shown in Figure 2.1. 

 

Figure 2. 1 Range-based 3D mapping 

For image-based 3D mapping, a mathematical model need to be built in order to 

derive the object coordinates (3D geometry). Compare the two approaches, the quick 

and direct solution of a laser scanner may be easily assumed to be superior to 

image-based methods. As a matter of fact, it remains to be a bulky instrument and 

suffers from the loss of semantic and colour information. Image-based methods, on the 

other hand, can provide an economical and efficient alternative with context and 

geometric information (Aguilera and Lahoz, 2006). Therefore in our approach, an 

image-based mapping method is adopted.  

2.1.2 Image-based 3D mapping procedure 
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Image-based 3D mapping often involves three major steps: image collection, image 

matching and derivation of 3D geometric information for 3D reconstruction.  

2.1.2.1  Image collection and matching 

In order to extract 3D information from images for mapping, corresponding points 

from different views need to be found. Usually, a stereo vision sensor can capture 

simultaneously several images of the same scene on a rigid frame at slightly different 

locations.  This is also called passive stereo. It allows the recovery of depth (or range) 

information based on the triangulation of the matching features in the stereo image 

pair. The disparities can be used to compute the relative positions of the landmarks in 

the images through triangulation.  When using a stereo vision to produce image data, 

one of the most essential elements is the length of the baseline. It will exert a big 

influence on the resolution of depth estimation. As has been mentioned in Chapter 1, 

Kidono and his colleagues (2002) used stereo vision to obtain range data to generate 

3D map and utilized the map and observation to realize safe and efficient navigation.  

Sabe et al. (2004) developed a humanoid robot named QRIO. Their approach is based 

on plane extraction from data captured by a stereo-vision system that has been 

developed for QRIO.  Using a 5cm baseline, the error of the depth measurement at a 

distance of 1.5 meter is over 80mm. The depth estimates of objects with the distances 

more than 2 meters are omitted. So the depth (range) measurement is limited by the 

baseline. As a result, many efforts use stereo vision to extract 3D information have 

been limited to indoor positioning applications. 

By combining the information from multiple views, a single camera can be used to 

generate 3D data. Huang et al. (2005) described a direct method (in the sense it does 

not use an iterative search) based on vision for localizing a mobile robot in an 

environment with only two observations along a linear trajectory. Most importantly, it 

demonstrates that when a robot moving straight, the estimation of a landmark range 

from a monocular vision can be abstained, and is actually very similar to the technique 
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used in a stereo vision. Such a technique is often named shape from motion (SFM). 

Generally, it refers to the process of building a 3D map of a static scene by a moving 

camera. With regard to the SFM methodology itself, Huang and Netravali (1994) 

present a review of algorithms and their performance for determining 

three-dimensional (3D) motion and structure of rigid objects when their corresponding 

features are known at different times or are viewed by different cameras. The idea is 

basically similar with stereo vision in that the 3D map is built from two images of the 

same landmark. In both cases, the same landmark is shot in several images, and the 

disparities of these images are used to compute the 3D information of the landmark. 

The only difference is that in stereo vision, images are taken simultaneously based on 

a rigid frame, while in SFM, images are taken at different time steps.  It should be 

noted that SFM overcome the limitation of stereo vision by having a flexible baseline.  

An omnidirectional camera can also be used to collect image data. It provides a 360 

degree panoramic view of the environment by either using dioptric fish-eye lenses, or 

catadioptric systems which combine cameras and mirrors. But it has the disadvantage 

of low image resolution, which makes it unsuitable to produce a 3D map for 

navigation purposes. 

No matter what kind of cameras is used for image collection, image matching is 

essential for 3D mapping. As has been discussed in Chapter 1, among the rich 

availability of image matching methods, a feature-based approach suits the monocular 

vision-based navigation systems better. In two dimensional intensity images, which 

are the most commonly used in photogrammetry, the automatic extraction and 

identification of features, such as targets, is one of the initial steps required to 

determine the three dimensional coordinates of points using a multitude of images. 

Once features are extracted, corresponding features can be found using image 

matching techniques. Provided the information of control points and corresponding 
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(tie) points, the 3D object coordinates of these tie points in the overlapping areas of 

images can be determined. 

2.1.2.2  3D mapping/modelling  

Both the field of photogrammetry and computer vision have contributed to 3D 

mapping/modelling. In the field of computer vision, the relation between 3D objects 

and 2D images is always expressed with central projection model, but a linear 

representation is used and achieved by means of projective geometry (Jazayeri, 2010). 

Most of the research has been focused on 3D object reconstruction and robotic 

applications.  Unlike photogrammetry, the accuracy of the 3D geometry obtained is 

not the priority. In robotic navigation for instance, much emphasis has been placed on 

enabling a robot to safely and effectively navigate in an indoor environment with a 

high level of autonomy. For our research, however, the positioning accuracy is 

considered as a very important aspect, thus the geometric accuracy of the map is of 

significant importance. 

In the field of photogrammetry, one of the main tasks is to reconstruct precisely 

certain object or region in 3D given a set of images.  The theory behind is 

photogrammetric geo-referencing. It is used to establish relationship between images 

and object coordinate systems. Direct geo-referencing and indirect geo-referencing 

approaches are both adopted for various mapping systems. The former approach 

collects data from multi-sensors platform which includes signal-synchronously 

integrated GPS, IMU and vision sensor. It is an efficient and direct process if the 

coupled sensors could work together cooperatively. The latter one needs ground 

control points to compute the exterior parameters of camera, which can yield high 

quality geo-referenced data but time consuming. In the following context, we briefly 

introduce both efforts with emphasis on the one we adopted for current research. 
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In outdoor environment, especially in applications like UAV and mobile mapping, 

direct geo-referencing is used. Normally GPS and IMU data is used to obtain the 

position and orientation information of the platform and then space intersection is used 

to calculate the object coordinates. The flowchart for direct geo-referencing procedure 

is shown in Figure 2.2.  Camera integrated with GPS is an important step for direct 

geo-referencing, which means the position of camera perspective centre can be 

directly collected from GPS. However, the time reference between vision sensor and 

GPS is quite different. To integrate GPS and camera, possible solution is to add a time 

stamp on each frame of images from CCD cameras, and an external trigger is 

implemented for synchronizing the camera with computer through National Marine 

Electronics Association (NMEA) GPS messages, or image time stamp synchronized to 

receiver via pulse per second (PPS). 

 
Figure 2. 2 Flowchart for 3D map direct geo-referencing 

 
Under circumstances that GPS signal, or GPS offset and INS drift angles are not 

available, direct geo-referencing cannot be applied. In case of imaging by the 

conventional metric/non-metric cameras located on the terrestrial stable stands, 

indirect geo-referencing of data is usually executed in the post-processing stage 

(Bujakiewicz et al., 2011).  
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For indirect geo-referencing, the main idea is to locate an object point in three 

dimensions through photogrammetric methods, which uses central projection imaging 

as fundamental mathematical model. In aerial photogrammetry, it makes satellite and 

aerial as well as terrestrial imagery useful for mapping. The main function for indirect 

geo-referencing is called bundle triangulation, or bundle block adjustment.  It means 

the simultaneous least squares adjustment of all bundles from all exposure stations, 

which implicitly includes the simultaneous recovery of the exterior orientation 

elements of all photographs and the positions of the object points (Faig, 1985). The 

technique was developed in the very early stage of the field. Tewinkel published his 

work on ―future of analytical aerial triangulation‖ in 1958. Then the method of bundle 

adjustment was introduced to close range applications (Brown, 1976). However, the 

two have certain differences in terms of camera networks, structure of normal system 

of equations, camera type and so forth. Today in close-range photogrammetry, bundle 

adjustment enables the production of accurate as-built measurements and 3D 

reconstruction. Examples of 3D geometry recovery can be found mostly in building 

documentation (e.g. Lisowska, 2007), traffic accident reconstruction, engineering 

measurement and so forth. For mapping and navigation, such an approach has rarely 

been found. The disconnection of two fields: mobile robotics and photogrammetry, 

has result in the fact that photogrammetric approach has rarely been introduced to 3D 

mapping for navigation purposes. However in this research, we adopt 

photogrammetric methods for both 3D mapping and navigation to increase the 

accuracy and reliability of the system. The flowchart of the bundle adjustment process 

we used is shown in Figure 2.3. 
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Figure 2. 3 Flowchart of bundle adjustment process for 3D map indirect 
geo-referencing 

 

2.2 NEWLY PROPOSED REALITY-BASED 3D MAP 

Most 3D maps we see today are more emphasized on the aspect that the map can be 

visualized in 3D, disregard its accuracy in terms of geometry. The newly proposed 3D 

map in this research on the other hand pays greater attention to the 3D information 

contained by the map. More specifically, feature points are extracted from the map 

images and their 3D spatial information are obtained in a geo-referenced coordinate 

system. Therefore the major function of the map depends on the geo-referenced 3D 

point cloud. Since the map is originated and produced both in the form of images, it 

also has a photo-realistic nature. 

The reality-based 3D map is defined as a sum of geo-referenced points with three 

dimensional (3D) local or global coordinates that are overlapped on images of the 

environment. Users of the 3D map will have the benefits of geo-referencing with 3D 

coordinates as well as realistic visualization (Figure 2.4). Since it contains 3D 

information and uses images as maps, we give it the name ―reality-based 3D map‖. 

One basic function of the 3D map is for positioning and navigation. Whenever a new 
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image is taken, it can be matched with the images stored in the 3D map database and 

therefore enables the user to locate its position. The main difference between our 

approach to the available image-based navigation methods lies in the fact that the  

map images are geo-referenced, which means they themselves can give absolute 

position information (local or global) in 3D, functioning like a sensor (eg.GPS), and at 

the same time can be used as a map for location-based services. 

 

Figure 2. 4 Newly defined reality-based 3D map 

The main purpose of photogrammetry is to achieve the 3D world coordinate from flat 

2D images and reconstruct objects in 3D in digital form or graphical form (images, 

maps, etc). Image geo-referencing has been one of the major processes, which matches 

features in the image to real world coordinates on the ground. In this research, an 

essential part of the mapping process is image geo-referencing. We produce the 

geo-referenced images by obtaining their feature information in 3D and overlapping 

the 3D point cloud to the original images.And an indirect geo-referencing method has 

been adopted. The 3D mapping process mainly consists of 3 steps: firstly, images of 

the navigational environment are collected and ground control points are set in the 

navigation environment; secondly, image matching between images with overlapped 

areas is performed to extract feature points; thirdly, these feature points on the map 

images are geo-referenced through photogrammetric bundle adjustment (indirect 
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geo-referencing). The quality of the map depends on the accuracy of geo-referencing. 

Detailed procedure is shown with flowchart in Figure 2.5.  

 

Figure 2. 5 Flowchart of 3D mapping procedure 

The final 3D map is presented in the form of geo-referenced images, including images 

and 3D feature point cloud overlapped on the map images. For better illustration, 

Wu‘s VisualSfM software (Wu, 2011) is used to visualize the features (in Figure 2.6 

and Figure 2.7), but this software has not been used in data processing. Although the 

resulting map is not in the form of 3D models, which can be visualized in 3D, it more 

emphasized on the fact that 3D geometric information is contained by the map. And it 

is the very 3D information from the map enables the vision-based positioning function 

to proceed. 
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Figure 2. 6 Visualization of SIFT features for geo-referencing (point 
cloud) produced by Wu‘s VisualSfM software from the reference images, 
which are shown by square patches. 

 

Figure 2. 7 Panorama view of the mapped area in Figure 2.6 

 

2.3 3D MAP DEVELOPMENT 

2.3.1 Image collection  

At the first stage of mapping, images of the navigational environment are collected 

using a calibrated camera with fixed focal length. In this research, single camera is 

used to take images with high percentage of overlapping areas. This is to make sure 

that the 3D information can be calculated for most of the feature points extracted at 

later stage. Meanwhile, object information of the environment is provided under a 

local/global coordinate system through the set up of ground control points (GCPs). It 

is important that these ground control points are widely and uniformly distributed over 

the area covered by the images, for the performance of geo-referencing can be 

improved with better geometry. Then these points can be related to images either 



Chapter 2                 3D map development based on geo-referenced images 

39 

 

manually or automatically.  Currently ―Photomodeller‖ software is utilized (Figure 

2.8). Up till now, the raw datasets are ready to be processed. The raw datasets mainly 

consist of image measurements of ground control points, their surveyed 3D 

coordinates and images.  Here follows an outlier detection process based on iterative 

data snooping, which will be further explained in Chapter 4. It is mainly used to 

remove gross errors from control point coordinates. Then these ground control points 

can be introduced as error-free reference points later in the bundle adjustment process 

(geo-referencing). Otherwise these errors will be interpreted as errors in observations 

at bundle adjustment and are difficult to be detected and removed. 

 

Figure 2. 8 Pre-processing 

 

2.3.2 Multi-image matching for 3D mapping 

It is noted that for this system, the image matching algorithms used for the 3D 

mapping and positioning process need to be kept in consistent, otherwise 

geo-referenced information cannot be transferred from map to real time query images 

for positioning. Therefore, we mainly adopt methods from feature based group for our 
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system in both 3D mapping and positioning, more specifically SIFT is used in indoor 

environments.   

Traditionally people carry out image matching between every pair of images that have 

overlapping areas and import the information from each pair to a bundle adjustment 

for geo-referencing. The major drawback is that the image geometry is weak 

especially when only neighbouring images are considered. Therefore here we 

introduce multiple image-matching based on the SIFT algorithm into the system. By 

definition, it means correspondences are located and matched over multiple images. 

One obvious benefit is that multi-view constraints are stronger than pair-wise 

constraints. This allows for more accurate solution for the image geometry and more 

incorrect matches to be rejected (Brown, 2005). Such an approach has been mostly 

applied for image stitching to produce panoramic mosaics (e.g. Brown, 2005) but to 

the authors' knowledge, it has not yet been used for vision-based navigation 

applications. This research represents a good example of improvement over pair-wise 

matching by introducing multi-image matching to the mapping process.  

The whole process takes 5 steps and here mapping process from one experiment is 

used as sample data for illustration. A total of 8 map images (No.5 -No.12) are used. 

First a feature database is generated. It is a collection of all SIFT features extracted 

from map images.  In the sample data (Figure 2.9), a total of 13187 SIFT features are 

found. The database in fact consists of two sub-databases: keypoint database 

(F_database) and descriptor database (D_database). For the keypoint database, each 

extracted keypoint creates a 4 parameters record, indicating its 2D location relative to 

the training image, the scale and orientation. Meanwhile, each feature (keypoint) is 

associated with a descriptor (128-dimension vector) and together to form a descriptor 

database. 
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Figure 2. 9 Feature database 

After the features have been extracted, multi-image matching is performed. Since 

multiple images may overlap a single ray, each feature may have multiple 

corresponding matches. SIFT features are described by 128 dimension vectors, 

therefore Euclidean distance is used to measure the similarity between features. More 

specifically, a K-NN search function is used to find nearest neighbours for each 

feature in the database. An exhaustive search is used for K-NN search since it works 

well on high dimensions. Other algorithm may also be considered such as LSH (Indyk 

and Motwani, 1998). It is performed on the 128 dimension feature descriptors in the 

D_database. The main difference from pair-wise comparison is that single feature may 

have several matches among the dataset. Therefore, in this approach, a 4-NN search is 

performed to find potential matches for each feature. It is noted that for the feature 

points that have no correspondence in the database, still some random points will be 

found as potential candidates. As shown in Figure 2.10, for every feature in the 

database, its 4 nearest neighbours (including itself) have been found and listed in a 

row.  
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Figure 2. 10 A 4-NN search is performed to find potential 
matches for each feature 

 

The next step is to find images with big overlapped areas that form an image group. In 

other words, we identify the images that have a large number of matches between each 

other. A voting strategy is used. First each map image is selected as current query 

image for once, the features that belong to it are grouped together. Four nearest 

neighbours found previously associated with each of these features are placed in a 

―bag‖. Within each bag, each candidate match votes for the image it comes from, 

therefore the one with biggest number of votes is the image that has biggest number of 

matching features with current query image. We find 3 images with the highest rank 

for each current query image.  And it can be expected that the map image itself 

comes first. It is also noted that points with no corresponding feature points or false 

matches are still involved in the vote, since they are randomly distributed in the 

images, when the database has large number of features, the final rank will not be 

affected. In the example (Figure 2.11) map image No.10 is selected as current query 

image. It can be seen that except itself, map images No. 9 and No. 11 are the images 

with the biggest number of votes (matches), which are the ones with the largest 

overlapping area. Map images No. 9 and No.11 together with No. 10 are grouped 

together as a unit. Using the sample data, a total 8 groups are generated with a few 

redundant groups (e.g. <5,6,7> and <6,5,7>), which are deleted afterwards. 
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After image groups have been generated, geometric constraint is used to remove 

mismatches among the dataset. Within each image group (consisted of 3 images with 

overlapping areas), RANSAC (Fischler and Bolles, 1981) is used pair-wise. It is a 

robust estimation method that use feature correspondence to compute homography 

between a pair of images and remove the matches that do not agree to the geometric 

model.  

Now from each image group we got a bunch of SIFT feature points, and each SIFT 

feature point actually has at least one counterpart (corresponding point) on another 

image and their image coordinates are known. Next, we use these SIFT feature points 

as tie points and put them into bundle adjustment for geo-referencing. 

Finally, bundle adjustment is used to geo-reference common feature points of the map 

images. Different from the previous attempt which imports only two images into a 

bundle adjustment, we use a multi-image approach. Bundle adjustment is performed 

on each image group.   

 

 

 

 

 

Figure 2. 11 Using voting strategy to find images that 
overlapped with map image No.10 
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2.3.3 Image geo-referencing  

After setting up ground control points and extracting tie points from image matching, 

bundle adjustment is performed to estimate 3D object coordinates, image orientation 

parameters together with related statistical information about accuracy and reliability 

(as shown in Figure 2.3 ).  

The mathematical model of the bundle adjustment is based on the collinearity 

equations:  

𝑥 − 𝑥0 = −𝑓
𝑎1 𝑋 − 𝑋𝑠 + 𝑏1 𝑌 − 𝑌𝑠 + 𝑐1 𝑍 − 𝑍𝑠 

𝑎3 𝑋 − 𝑋𝑠 + 𝑏3 𝑌 − 𝑌𝑠 + 𝑐3(𝑍 − 𝑍𝑠)
 

𝑦 − 𝑦0 = −𝑓
𝑎2 𝑋 − 𝑋𝑠 + 𝑏2 𝑌 − 𝑌𝑠 + 𝑐2(𝑍 − 𝑍𝑠)

𝑎3 𝑋 − 𝑋𝑠 + 𝑏3 𝑌 − 𝑌𝑠 + 𝑐3(𝑍 − 𝑍𝑠)
 

(2.1) 

These two equations describe the transformation of object coordinates (𝑋, 𝑌, 𝑍) into 

corresponding image coordinates (x ,  y)  as functions of the interior parameters 

(x0 , y0, 𝑓), which gives the principle points and focal length, and exterior orientation 

parameters (Xs , Ys , Zs,ω, υ , κ) of one image, which gives the camera position and 

orientation. 

The collinearity equations, linearised at approximate values, can be used as 

observation equations for a least squares adjustment according to the Gauss-Markov 

model. It is the basic principle for bundle adjustment. The approximate values served 

as initial values for the unknown in bundle adjustment are generated using combined 

intersection and resection.  

For the function model of the adjustment, the original model is used, which means 

coordinates of GCPs are introduced as error-free reference points and the camera 

external orientations are not surveyed by other device. Additional information about 

the object or additional non-photogrammetric measurements are not considered. The 

reason for it is as follows: 



Chapter 2                 3D map development based on geo-referenced images 

45 

 

1) In the mapping environment, ground control points can be set easily with a good 

distribution (widely and uniformly distributed) and stability. The coordinates of 

the ground control points are surveyed by a total station with high accuracy. 

2) The geo-referencing process is off-line post processing. Therefore the camera(s) 

used is pre-calibrated with known interior parameters. 

3) Outlier detection has been applied at every step of the process. Before bundle 

adjustment, the two groups of input: 3D coordinates of GCPs and image 

coordinates of tie points have gone through outlier detection processes at space 

resection and image matching respectively. More details can be found in Chapter 4. 

Therefore, the coordinates of GCPs are treated as fixed values. 

The least squares models are listed as Eq.2.2 and Eq.2.3. 

𝑨𝒄𝒕 − 𝑳𝟏 = 𝑽𝟏      ,  𝑳𝟏~ 𝟎, 𝝈𝟎
𝟐𝑷𝟏

−𝟏    (2.2) 

𝑨𝒖𝒕 + 𝑩𝒖𝑿𝒖 − 𝑳𝟐 = 𝑽𝟐   , 𝑳𝟐~(𝟎, 𝝈𝟎
𝟐𝑷𝟐

−𝟏) (2.3) 

in which 

•𝑨𝒄 is a 2n(number of control points on all images ) ∗ 6 matrix containing partial 

derivatives with respect to the exterior orientation parameters, and 𝒕 contains the 

incremental changes to the initial values of external orientation parameters; 

• 𝑨𝒖  is a 2m(number of tie points on all images) ∗ 6  matrix containing partial 

derivatives with respect to the exterior orientation parameters, and 𝒕 contains the 

incremental changes to the initial values of external orientation parameters; 

•𝑩𝒖 is a 2m ∗ 3p (number of tie points) matrix containing the partial derivatives 

with respect to the three coordinates of the tie points, and 𝑿𝒖  contains the 

incremental changes to the initial values of ground coordinates of tie points; 
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• 𝑳𝟏  is a 2n(number of control points on all images ) ∗ 1  matrix, which denotes 

the first group of observations, image measurement of control points in this case. P1 is 

its corresponding weight;  

• 𝑳𝟐  is a 2m(number of tie points on all images) ∗ 1  matrix, which denotes the 
second group of observations, image measurement of tie points in this case. P2 is its 
corresponding weight;  

• 𝑽𝟏     and 𝑽𝟐 denotes the residual. 

During the adjustment process, quality control measures have also been taken to 

improve the quality and reliability of the 3D map. Greater details can be found in 

Chapter 4. The output of bundle adjustment geo-referencing process are: 3D 

coordinates of sparse SIFT feature points, camera orientations of the mapping sites, 

and the geo-referencing accuracy in terms of the mean standard deviation for the 3D 

coordinates in each direction (X, Y and Z). 

 

2.3.3.1 DOP values for camera 6DOF 

The least squares models are listed as Eq.2.4 and Eq.2.5. 

𝒍 + 𝒗 = 𝑨𝒙 (2.4) 

𝑫 = 𝝈 𝟎
𝟐𝑸 (2.5) 

in which Eq. 2.4 denotes the function model, Eq.2.5 the stochastic model and σ0 the a 

priori standard deviation of measurements. In Eq. 2.4 𝒍 denotes the observation; 

𝑨 denotes the design matrix; 𝒙 denotes the unknowns; 𝒗 denotes the residual. In Eq. 

2.5 𝑫 denotes the variance covariance matrix of observations; σ0denotes a priori 

standard deviation and 𝑸 the cofactor matrix. Using this model, the covariance 

matrix for the estimated unknown parameters (𝑪𝒙)can be obtained using Eq.2.6, in 

which 𝑷 represents the weight matrix. It is listed as:  



Chapter 2                 3D map development based on geo-referenced images 

47 

 

𝑪𝒙 = 𝝈 𝟎
𝟐 𝑨𝑻𝑷𝑨 

−𝟏
  (2.6) 

In the GPS community, DOP values are used to represent the effect of satellite 

geometric distribution on the accuracy of a navigation solution. To evaluate the impact 

of geometry, the covariance of 𝒙 will be simplified to: 

𝑪𝒙 = 𝝈 𝟎
𝟐 𝑨𝑻𝑨 

−𝟏
    (2.7) 

In fact, the elements in the trace of the matrix  𝑨𝑻𝑨 −𝟏 are functions of the geometry 

only.  

Here DOP values are used to evaluate the geometric strength for camera 6DOF. For 

the function model in space resection, which is used for positioning calculation 

(Section 3.2.3), the diagonal of the matrix  𝑨𝑻𝑨 −𝟏 is calculated as: 

 

                 𝑨𝑻𝑨 
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                                                         (2.8) 

 

Then we give DOP values for 6DOF, which are calculated as follows: 

𝑋𝐷𝑂𝑃 = 𝐺𝑥
      𝑌𝐷𝑂𝑃 = 𝐺𝑦

     𝑍𝐷𝑂𝑃 = 𝐺𝑧  (2.9) 

𝑃𝐷𝑂𝑃 =  𝐺𝑥
2 + 𝐺𝑦

2 + 𝐺𝑧
2 

(2.10) 

𝜔𝐷𝑂𝑃 = 𝐺𝜔      𝜑𝐷𝑂𝑃 = 𝐺𝜑
    𝜅𝐷𝑂𝑃 = 𝐺𝜅  (2.11) 

𝐴𝐷𝑂𝑃 =  𝐺𝜔
2 + 𝐺φ

2 + 𝐺𝜅
2 

(2.12) 

in which the PDOP represents the Position DOP,  while the ADOP represents 
Attitude (Orientation) DOP. 
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It is noted that for the bundle adjustment, the unknown parameters not only include 
camera external parameters, but also 3D coordinates of tie points. Therefore, DOP 
values are obtained from part of the matrix  𝑨𝑻𝑨 −𝟏. 

2.4 EXPERIMENTS 

In the experiments, a 3D map was produced using a high resolution camera (Cannon 

EOS4500) with a focal length of 24.7 mm and image resolution of 4272×2848 pixels. 

A total of 21 images were collected to include the school hallway as mapping area 

(80m2), with approximately 60% overlap on neighboring images. Their SIFT feature 

points were also extracted and geo-referenced for each map image. Both pair-wise and 

multi-image matching were used during the mapping process. This 3D map was used 

for navigation at later stage. 

2.4.1 Comparison study of multi-image matching and 

pair-wise matching for 3D mapping 

First, a comparison study was carried out between pair-wise based mapping and 

multi-image based mapping. Then the two maps produced were used for positioning 

respectively. Here 8 out of 21 map images (the same 8 map images used as sample 

data in Section 2.3), which cover one side wall of the school hallway, are used for 

better illustration.   

The summary of the two sets of bundle adjustment results are shown in Table 2.1 and 

Table 2.2. It can be easily observed that a bigger number of image features are 

extracted and geo-referenced by the multi-image approach, offering better conditions 

for vision-based positioning. Meanwhile, it is also worth noticing that more outliers 

are detected when a bigger number of images are involved in the adjustment. One 

reason is more tie points are calculated, and another is that multi-view constraints are 

stronger than pair-wise constraints. 
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Table 2. 1 Summary of the geo-referencing results based on pair-wise image matching 

Number of images 2 
Image ID 5,6 6,7 7,8 8,9 9,10 10,11 11,12 

Observations 56 690 262 108 326 56 100 
Unknowns 39 516 180 69 237 39 66 

Number of detected outliers 0 0 0 0 0 0 0 
Number of Geo-referenced 

Feature Points 9 168 56 19 75 9 18 
 

 

Table 2. 2  Summary of the geo-referencing results based on multi-image matching 

Number of images 3 
Image ID 5,6,7 6,7,8 7,8,9 8,9,10 9,10,11 10,11,12 
Observations 854 1130 406 644 412 162 
Unknowns 633 822 291 459 300 123 
Number of detected outliers 0 1 3 0 1 19 
Number of Geo-referenced 
Feature Points 

205 268 91 147 94 35 
 

 

Secondly, imaging geometry was evaluated and compared by DOP values in 6 degrees 

of freedom.  Since each image can participate in more than one adjustment, they are 

shown in Figure 2.12 and Figure 2.13 at the same 'image ID' with separate icons. It can 

be observed that multi-image based approach provides generally smaller DOP values 

compared with their counterparts, which shows a better imaging geometry.  
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Figure 2. 12 Comparison of position DOP values 

 

Figure 2. 13 Comparison of attitude DOP values 

 

Finally the geo-referencing accuracy is compared. For every adjustment, first the mean 

standard deviation for the 3D coordinates in each direction (X, Y and Z) is calculated. 

For better comparison, then based on each single map image, the mean standard 

deviations for all its feature points were calculated and shown in Table 2.3. The result 

is not as expected, as the two groups produce close level of accuracy. Through further 

study, it is observed that most tie points produced by multi-image matching still come 
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from two images rather than three. The average number of image rays per feature 

(object) point is 2.03. However if a better accuracy is expected, the number of image 

rays per object point need to be largely increased. 

Table 2. 3 Comparison of geo-referencing accuracy using the mean standard 
deviation of feature points 

Pair-wise 

Map Image ID 5 6 7 8 9 10 11 12 

Average sigma_X 0.019 0.022 0.023 0.033 0.032 0.032 0.041 0.024 

Average sigma_Y 0.008 0.005 0.005 0.007 0.006 0.006 0.007 0.005 

Average sigma_Z 0.006 0.004 0.003 0.004 0.008 0.004 0.003 0.004 

Multi-Image 

Average sigma_X 0.026 0.023 0.024 0.025 0.024 0.022 0.017 0.006 

Average sigma_Y 0.007 0.006 0.006 0.006 0.005 0.006 0.012 0.015 

Average sigma_Z 0.007 0.005 0.005 0.005 0.005 0.006 0.010 0.013 
 

 

2.4.2 Controlled experiment for 3D mapping 

The second experiment was focused on the function of the 3D map used for navigation. 

It aims to evaluate the geo-referencing accuracy for mapping, both theoretically and 

against reality. The resulting positioning accuracy using the geo-referenced 3D map 

has also been analysed. An indoor controlled experiment with coded target was 

conducted, and the school hallway was used as the testing field. After coded targets 

have been attached to the wall, map images are collected covering those targets (e.g. 

Figure 2.14). Since coded targets have very distinctive variation on coded dots against 

background, there is big chance a feature point is extracted and geo-referenced on 
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those dots (e.g. Figure 2.15). The position of those target dots were surveyed by a total 

station and the data were used as true values.  

 

 
Figure 2. 14 Map image No. 5 with coded targets 

 

 
Figure 2. 15 SIFT feature shown with yellow dots are extracted 

on coded dots: tie point No. 410 and No. 11155 

 

Mapping was proceeded with SIFT feature extraction, matching and indirect 

geo-referencing based on the images collected. After the bundle adjustment process, 

the 3D coordinates for each feature have been calculated, and the average standard 

deviations of the 3D coordinates in each axis from feature points on each map image 

has also been calculated as shown in Table 2.4. The result indicated that the viewing 

direction X had the lowest geo-referencing precision. The reason behind is that the 

geometry of feature distribution has a large influence on geo-referencing accuracy. In 

our experiment, the depth of the features has the least variation since they are 

distributed on a plane wall. It can also be deduced that theoretically the 

geo-referencing precisions on Y and Z axis are at centimetre level, and the X axis is 

around 5 centimetres.  
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Table 2. 4 The average standard deviation of 3D coordinates of the feature points on 
X, Y, Z axis from each map image (m). 

 

IMID 3 4 5 6 7 8 9 10 

sigma X 0.037 0.036 0.034 0.051 0.064 0.066 0.057 0.040 

sigma Y 0.009 0.009 0.008 0.012 0.015 0.016 0.013 0.008 

Sigma Z 0.006 0.006 0.005 0.007 0.009 0.009 0.009 0.006 

To further evaluate the absolute accuracy of geo-referencing, and the impact of 

geo-referencing on final positioning accuracy, a controlled comparison experiment 

was conducted. First, the mapping was conducted twice to get two sets of results with 

different geo-referencing accuracy. More specifically, the geo-referenced coded dots 

produced from the two sets are identified and evaluated against their true values, as 

shown in Figure 2.15. The root mean square error (RMSE) was calculated. It is noted 

that different coded dots may be geo-referenced. The result is shown in Table 2.5. It 

can be observed that the accuracy trend confirmed the theoretical analysis in that X 

axis has the lowest accuracy. And the absolute accuracy on all the axis are centimetre 

level. From the results it is deduced that two 3D maps have different geo-referencing 

accuracy, with the one from Test A superior to that of Test B. 

 
Table 2. 5RMSE of 3D coordinates of the feature points on X, Y, Z axis  

 

RMSE(m) X Y Z Number of Points 

Coded Points Test A 0.043 0.037 0.008 13 

Test B 0.094 0.048 0.011 15 

 

Finally, vision-based positioning was carried out based on the geo-referenced 3D maps 

produced in Test A and B. The positions of the camera stations are both surveyed 

using a total station and calculated by the system. Therefore, the positioning accuracy 
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produced by the visual system using the 3D map can be evaluated. The difference 

between calculated camera positions and their true positions are obtained and 

compared in Table 2. 6. It can be observed that the position accuracy of the method 

varies from sub-centimetre to more than 10 centimetres. Comparing the two sets, we 

can observe that generally the positioning result from the 3D map with better 

geo-referencing accuracy is more accurate. Therefore, it is deduced that the 

geo-referencing accuracy exerts certain influence on the final positioning. Further 

study on such aspect can be found in Chapter 6. 

 
Table 2. 6 The difference between calculated camera positions and their surveyed 
positions 

Difference Test A Test B 

ST ID X0(m) Y0(m) Z0(m) X0(m) Y0(m) Z0(m) 
2 0.002 -0.020 -0.072 -0.125 0.012 -0.015 

3 -0.003 -0.062 -0.079 -0.076 0.022 0.133 

4 -0.023 0.038 -0.009 -0.104 -0.001 0.009 

5 0.011 0.006 0.075 -0.131 0.055 -0.051 
 

 

 

2.5 SUMMARY 

This Chapter first gave a brief review on the literature of 3D mapping.  Two main 

methodologies, range-based and image-based methods, are both discussed with the 

focus on image-based approach. Then the newly defined 3D map in this research was 

introduced. It features in both reality-based visualization of the environment, since it 

mainly consists of images, and also contains 3D geometric information. The 

development process was also described in great details. The main contribution lies in 

that geo-referenced images used as 3D map for navigation is a novel approach in the 

research domain. It enables the vision-based positioning at later stage to be resolved in 
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6 degrees of freedom with high accuracy. Meanwhile, multi-image matching was 

introduced into the system to improve the imaging geometry and geo-referencing 

accuracy. Experiments evaluated both the theoretical precision and absolute accuracy 

of geo-referencing, as been at centimetre level. Experiment has also revealed the 

impact of geo-referencing accuracy on final positioning accuracy.  

Currently, this research mainly uses the 3D map to support vision-based navigation. 

As a matter of fact, the geo-referenced 3D map aims to provide various location-based 

services with a realistic view. Another important function, for instance, is to support 

3D geometric measurement. While current image-based 3D maps like Google Street 

View only provide virtual experience in terms of photos, details concerning the 

topographic and terrain attributes are not available. Next generation of location based 

services will require much richer information to be provided, and geo-referenced street 

view is a promising approach. It is believed that such reality based 3D map, which 

provides both realistic visualization and accurate 3D geometric information of the 

view, will be of significant importance in next generation of location-based services. 

Further research to extend the 3D map‘s function in terms of better geometric 

accuracy and visualization can be conducted. 
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CHAPTER 3                

VISION-BASED NAVIGATION WITH 

THE USE OF SINGLE CAMERA AND 3D 

MAPS 
 

3.1 INTRODUCTION 

One key issue in solving a vision-based navigation problem is self-localization. SIFT 

(the Scale Invariant Feature Transformation) has been successful applied to a variety 

of vision-related problems based on image matching, such as object recognition, pose 

estimation, image retrieval and so forth. In Berretti et al. (2010) authors used SIFT for 

3D facial expression recognition. In recent years, growing number of researchers 

choose to use SIFT features as 3D natural landmarks for vision-based navigation 

applications.  

Two years after SIFT was proposed, Se et al. (2001) designed a vision-based 

localization and mapping algorithm by tracking SIFT natural landmarks and building a 

3D map simultaneously on their mobile robot, which was equipped with a trinocular 

stereo system. They improved this approach one year later (Se et al., 2002), in which 

sparse distinctive visual landmarks (SIFT landmarks) are used for 3D mapping 

together with an efficient map alignment algorithm. In 2003, Hofman-Wellenhof et al. 

developed a system that the robot ego-motion is estimated by matching with SIFT 3D 

landmarks. Experiments show that these features are robustly matched between views.  

In 2007, some authors (Gil et al., 2007) improve the data association among landmarks 

so as to improve the quality of the estimated path.  

The advantage of using SIFT features as 3D landmarks for vision-based navigation 

lies in that it is highly distinctive and invariant against many changes, such as scaling, 
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rotation, and partially invariant against illumination and viewpoint changes. Such a 

nature can provide reliable and stable image matching under different circumstances, 

making the self-localization process more effective. However, when previous 

researches have made good efforts, they are not without their limitations. When the 

robots‘ trajectories have been recovered, the orientation information is usually lost, 

and some challenging issues like mismatches have yet been properly addressed. 

 

3.2 VISION-BASED POSITIONING USING 

PHOTOGRAMMETRIC 6DOF POSE ESTIMATION 

3.2.1 Methodology 

After the 3D map has been constructed with geo-referenced SIFT feature list 

developed for each map image, a photogrammetric approach of vision-based 

positioning and navigation can be carried out.  

The main function for positioning (self-localization) is based on photogrammetric 

space resection. It is an algorithm that computes the exterior orientation of a single 

image based on collinearity equations, which gives 6 parameters that describe the 

spatial position and orientation of the camera coordinate system with respect to the 

global object coordinate system (Luhmann, 2009). Knowing the camera position and 

attitude, the vehicle position can therefore be determined. The requirement of space 

resection is that at least 3 control points with known object coordinates are measured 

on the image, in other words, a minimum of three points with image and object 

coordinates should be provided. 

In this research, a vision sensor will take either images or record a video during the 

navigation time, namely as query images. For each query image, first a SIFT based 
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voting strategy is used to localize the image search space. Then we match the query 

image with the geo-referenced map images in the localised search space. The aim is to 

locate SIFT feature points on the query image that have their corresponding feature 

points on the map images (Figure 3.1). It is noted that an outlier detection mechanism 

is used to first remove reference images that do not share common view with the query 

image, meanwhile mismatched feature points are removed. Further details are 

introduced in Chapter 4 and Chapter 5. When any of the SIFT feature points from the 

geo-referenced image(s) are found to correspond with the ones on the query image, the 

geo-information it carried can be transferred to its counterpart on the query image. 

Therefore, matched SIFT features on the query image obtain both image coordinates 

from matching process and 3D coordinates from the geo-referenced map images.  

Then these SIFT feature points can be used as control points for space resection. They 

are named as pseudo ground control points (PGCPs) in this research, an example is 

shown in Figure 3.2. By obtaining 3D points and their 2D positions on the query 

image, camera position and orientation of the query image can be determined through 

space resection. Thus the platform position can be obtained. The data flow of 

positioning process is shown in Figure 3.3. 

 

Figure 3. 1 Matching between real time query image with geo-referenced map image 
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Figure 3. 2 PGCPs (yellow dots) on the query image 

 

 

Figure 3. 3 Vision-based positioning 

3.2.2 SIFT based voting strategy 
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The first step is to use a SIFT based voting strategy to localize the search space of 

geo-referenced images. The mechanism is similar to multi-image matching. A feature 

database is generated. It is a collection of all SIFT features extracted from 

geo-referenced map images. Meanwhile SIFT features are extracted from the query 

image and matched with the feature database. Then a K-NN search function is used to 

find nearest neighbours in the feature database for each of the features on the query 

image. The next step is to identify the map images that have a large number of 

matches with the query image. A voting strategy is used. Each neighbour feature votes 

for the map image it belongs. The map image that has the largest number of votes 

therefore has the greatest chance / biggest overlapping area with the query image. In 

this research, the top 3 images are selected as candidate reference images. Since 

mismatches may affect the selection of candidates to include false reference images, 

the matching between the query image and candidate reference images is then 

evaluated using a newly proposed method, which will be introduced in Chapter 5. Not 

only bad matching performance can be avoided, reference map images that do not 

share common view with the query image are removed from the candidate list.  An 

example is shown in Figure 3.4, which is the first epoch of the query image sequence 

(image No.1). By using the voting strategy, the top 3 ranked candidate images are 

localised from the database containing 24 map images: reference image No.12, No.11 

and No.6 (Figure 3.5). Using the proposed method (Figure 3.6, Figure 3.7 and Figure 

3.8), false candidate image No. 6 has been identified, retaining only the correct ones: 

map image No. 11 and No. 12.  

One limitation for the approach is that if it votes on the basis of the whole database for 

every query image, the algorithm is less efficient. Therefore when the query image is 

from an image sequence, or the system performs self-localization with a context, the 

voting is based on a sub-feature database that has been narrowed down by the previous 

epoch. Only the initial epoch takes longer time. In this example, epoch No.2 is voted 

from the sub-database that consisted of features from map image No.7-12. 
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Figure 3. 4 Image No.1 from query image 
sequence 

 

Figure 3. 5 Geo-referenced image 
database, containing 24 images 

 

 

Figure 3. 6 The query image No. 1 matching with map image No. 12, evaluation test 
passed with pass rate at 94% (the threshold to pass the test is 0.8) 
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3.2.3 Generation of pseudo ground control points 

 

Figure 3. 7 The query image No. 1 matching with map image No. 11, evaluation test 
passed with pass rate at 80% (the threshold to pass the test is 0.8) 

 

 

Figure 3. 8 Query image No. 1 matching with map image No. 6, evaluation test failed. 
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The key component for positioning is to generate pseudo ground control points for 

positioning. Therefore in this section we use a simple example from our experiment to 

show the process of PGCP generation. A low resolution video camera is used for 

navigation and query images are extracted from the navigation video (image frame No. 

457 is used as an example) matched with geo-referenced 3D map images to generate 

PGCPs. Three best candidate geo-referenced images (No. 10, No. 11 and No 12) from 

a collection of 24 images of the navigation environment are located in previous step to 

match with query image No. 457, which have the same landmarks. Map image No.11 

is used as an example. First, matching between query image No. 457 and 

geo-referenced image No.11 is performed. As illustrated in Figure 3.9, SIFT based 

matching finds 37 candidate matches and RANSAC is used to remove outliers, as a 

result 14 pairs are retained as inliers. It is illustrated in Figure 3.9 and a detailed result 

is given in Table 3.1. 

 

Figure 3. 9 Matching real time image (left) with map image(right) 

 



Chapter 3      Vision-based navigation with the use of single camera and 3D maps 

64 

 

Table 3. 1 Image coordinates of matching pairs between real time image and map image 

x- real time 

image(pixel) 

y- real time 

image(pixel) 

x- reference 

image(pixel) 

y- reference 

image(pixel) 

36.493 98.854 741.414 1366.080 

36.493 98.854 741.414 1366.080 

36.470 79.206 722.977 1152.396 

262.883 105.455 3493.045 1152.387 

276.724 117.700 3665.363 1281.670 

119.953 119.620 1693.345 1511.543 

276.382 117.710 3665.363 1281.670 

222.689 109.868 2935.955 1271.122 

282.397 129.787 3771.242 1423.177 

282.397 129.787 3771.242 1423.177 

202.715 103.427 2681.376 1175.795 

279.949 70.735 3712.411 649.131 

279.949 70.735 3712.411 649.131 

220.040 74.220 2898.836 804.392 

 

 

Then the image coordinates (pixel value) of these 14 features on the reference image 

(the right two columns) are compared with the image coordinates of the map image 

feature list. If the same value is found from the list, that feature is identified to be 

candidate of PGCP. The following table (Table 3.2) is part of the feature list of map 

image No. 11. 
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Table 3. 2 Part of feature list of map image No.11 

 

…… 

 

…… 

 
It is noticed that the red circled pixel coordinates are the same with the three red 

signed values appeared in Table 3.1. It means the 3 geo-referenced feature points from 

map image No.11 are matched by the query image, therefore, the 3D coordinates can 

be transferred and the 3 corresponding points on the query image can be used as 

PGCPs. It is noted that 3 PGCPs is not enough for accurate positioning, thus this 

matching process will be repeated between the query image and other candidate map 

images in order to generate more PGCPs. The result is shown in Table 3.3-Table 3.5: 

Table 3. 3 Matched pairs between real time image No.457 and geo-referenced Image 
No. 11 

x- real time 

image(pixel) 

y- real time 

image(pixel) 

x- reference 

image(pixel) 

y- reference 

image(pixel) 

222.689 109.868 2935.955 1271.122 

220.040 74.220 2898.836 804.392 

202.715 103.427 2681.376 1175.795 
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Table 3. 4 Matched feature points found from feature list of Image No. 11 

 

TPtID 

Image 

coordinates_x 

(mm) 

Image 

coordinates_y 

(mm) X(m) Y(m) Z(m) pixel-x pixel-y 

1121 4.034 0.698 3.161 6.125 -1.349 2935.955 1271.122 

1122 3.841 3.129 3.220 6.088 -1.862 2898.836 804.392 

1139 2.709 1.194 3.208 5.858 -1.457 2681.376 1175.796 

 

Table 3. 5 PGCP generated from this matching process 

Image coordinates of 

 real time image 3D object coordinates 

x(Pixel) y(pixel) Z(m) Y(m) Z(m) 

222.689 109.868 3.161 6.125 -1.349 

220.040 74.220 3.220 6.088 -1.862 

202.715 103.427 3.208 5.858 -1.457 

 

 

It is noted that after the voting process, the query image has already been matched 

with the candidate map images to remove misidentified reference map image(s). To 

save the computation power, during the positioning stage, image matching is 

performed only once, which both removes the mismatched reference images and 

generates PGCPs from image pairs that pass the test (introduced in Chapter 5). 
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3.2.4 Mathematical model for positioning function 

Once pseudo ground control points (PGCPs) have been generated, positioning 

calculation can be carried out. Here we use the classical method for position solution: 

space resection based on a least squares solution of linearised collinearity equations 

(Eq.2.1). This method is normally used to compute the exterior orientation of a single 

image. This procedure requires known coordinates of at least three object points which 

do not lie on a common straight line. Here pseudo ground control points are used in 

the same way ground control points are used for traditional space resection. The theory 

lies in that the bundle of rays through the perspective center from the reference points 

can fit the corresponding points in the image plane in only one unique (camera) 

position and orientation (Luhmann et al., 2006). The central projection in space is at 

the heart of photogrammetric calculations, including space resection as well as bundle 

adjustment used in Chapter 2.  

The least squares models can provide highly accurate results in 6 degrees of freedom 

with the presence of redundant measurements. Primarily the accuracy of camera 

external parameters is a function of point distribution and relative positions between 

the reference objects and the camera (Luhmann, 2009). In this research, the relative 

positions change during navigation process, therefore the accuracy of positioning 

largely depends on the geometry of PGCPs. 

In the vision-based positioning system, we give DOP values for resolved camera 

external parameters (position and orientation) to evaluate the precision, which is 

influenced by PGCP geometry. More details can be found in Section 2.3.3.1. 

One major difference between traditional space resection and this approach is that the 

3D object space coordinates of PGCPs are transferred from the 3D map, which are 

photogrammetrically determined by the mapping process. They are not accurate 

enough to be used as error-free reference. Therefore some modification on the 
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function model of space resection has been made to make it suit the scenario. We gave 

it the name ―Soft Space Resection‖ since control point values are not held fixed. The 

3D object space coordinates of PGCPs are introduced into the system as observed 

unknowns (pseudo observations) with a corresponding weight. They receive 

corrections during the adjustment. The Gauss-Markov Model of the modified space 

resection for indoor positioning solution is introduced as follows: 

𝑨𝒕 + 𝑩𝑿 − 𝒍𝟏 = 𝒗𝟏   , 𝒍𝟏~(𝟎, 𝜎0
2𝑷𝟏

−𝟏) (3.1) 

in which 

•𝑨 is a 2n(number of points) ∗ 6 matrix containing partial derivatives with respect 

to the exterior orientation parameters, and t contains the incremental changes to the 

initial values of external orientation parameters; 

•𝑩 is a 2n ∗ 3n matrix containing the partial derivatives with respect to the three 

coordinates of the (pseudo) ground control points, and X contains the incremental 

changes to the initial values of ground coordinates of PGCP; 

It should be noted that it is still a multi-solution equation when geo-referencing 

information from ground coordinates is not available, and design matrix  [𝑨  𝑩] is 

rank-deficient. Therefore, absolute orientation information needs to be introduced into 

the adjustment with stochastic constraints: 

𝑰𝑿 − 𝒍𝟐 = 𝒗𝟐      , 
 𝒍𝟐~ 𝟎, 𝜎0

2𝑷𝟐
−𝟏  

   (3.2) 

Combine (3.2) with (3.3): 

 
𝑨 𝑩
𝟎 𝑰

  
𝒕
𝑿
 −  

𝒍𝟏
𝒍𝟐

 =  
𝒗𝟏

𝒗𝟐
  ,  

𝑷𝟏   𝟎

𝟎    𝑷𝟐
     

(3.3) 

in which 𝒍𝟏 denotes the observation, image measurement of PGCP points in this 

case, 𝑷𝟏 is its corresponding weight; 𝒍𝟐 denotes the pseudo observation, object space 
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coordinates of PGCPs in this case, 𝑷𝟐 is its corresponding weight; 𝒗𝟏 and 𝒗𝟐 denotes 

the residuals. The modified space resection is named as ―Soft Space Resection‖. 

Such an act will benefit the outlier detection process since outliers in pseudo 

observations can be detected and removed. More detailed explanation on outlier 

detection mechanism of the system can be found in Chapter 4. 

 

3.3 EXPERIMENT 

An indoor vision-based positioning experiment was carried out in the mapped indoor 

area of EE building of UNSW. Prior to the experiments, a 3D map has been produced 

using a high resolution camera (Cannon EOS4500) with a focal length of 24.7 mm and 

image resolution of 4272×2848 pixels. A total of 24 images are collected to include 

the school hallway as mapping area. A local orthogonal right-handed coordinate 

system is used with the Z axis pointing downward. 

A calibrated video camera (Logitech Webcam Pro2000) was mounted on a moving 

vehicle with sampling rate of 1 Hz during navigation.  Its relative position to the 

vehicle was fixed, which means the experiment was partially controlled: camera height 

Z:-0.725m.  

Table 3. 6 Camera property 

Focal Length: 5.01 mm  
principal point x: 2.92 mm  
principal point y:  2.18mm  
format width: 6.03mm  
format height: 4.50 mm  
format width: 1280 pixel  
format height: 1024 pixel  

 

 



Chapter 3      Vision-based navigation with the use of single camera and 3D maps 

70 

 

We did the positioning by extracting image frames from the video (query image 

sequence) and match with the geo-referenced images (3D map) frame by frame. Each 

frame is an epoch; a position in 6 degrees of freedom (6DOF) was calculated. This 

experiment aims at testing the performance of the navigation system and evaluating 

the indoor positioning accuracy.  

 

Figure 3. 10 Query image sequence 

From the video, a total 83 epochs (frames) were generated & calculated, 20 epochs 

failed to provide a reasonable result, which is failure rate at 24.1%. As GPS GCPs are 

not available in indoor areas, commercial software Photomodeller is used to determine 

camera positions and then use them as references to evaluate the system produced 

results. Within 10m distance, the software can normally achieve centimeter level 

accuracy. From Photomodeller 60 reference epochs were generated and the two 

systems have 55 epochs in common. The trajectory of indoor navigation is shown in 

Figure 3.11 (horizontal) and Figure 3.12 (vertical). The RMSE of the calculated 

positions is shown in Table 3.7. It can be observed that the accuracy of this indoor 

positioning experiment is round 10- 20cm level. 
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Figure 3. 11 Two dimensional trajectory of indoor navigation recovered 
by the vision-based system (blue line) with reference to the 
Photomodeller results (red line) 

 

 

Figure 3. 12 Z positions of indoor navigation calculated by the system 
(blue dots) with reference to the controlled value (red line). 
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Table 3. 7 RMSE for indoor positioning 

RMSE X(m) Y(m) Z(m) 

Calculated 0.126 0.281 0.137 

 

 

Then we investigate the nature of the positioning results. For better comparison, three 

typical epochs with adjacent views are chosen for illustration (Figure 3.13-3.15). The 

PGCPs are shown as yellow dots. The positioning results are shown in Table 3.8 and 

DOP values in Table 3.9. Since the navigation camera face one side of the wall, 3 

camera exterior parameters (Z, ω and ψ ) out of 6 are (approximately) controlled.  

 

Table 3. 8 Positioning results in 6DOF for epoch No.13, No.14 and No.15 

Epoch ID 

 

13 14 15 Controlled 

value 

Positioning result in 

6DOF 

Unit :m & degree 

X 

 

-0.890 -0.541 - 

Y 

 

4.366    3.988 - 

Z 

 

-2.191     -0.9 -0.725 (m) 

ω 

 

110.581   91.902 ≈90 (°) 

ψ 

 

-2.750 -0.573 ≈0 (°) 

κ 

 

-88.350 -91.158 - 
 

 

Table 3. 9 DOP values in 6DOF for epoch No. 13, No.14 and No.15 

Epoch ID 

 

13 14 15 

DOP values in 6DOF 

 

X 

 

11974 1069 
Y 

 

36223 2158 
Z 

 

50478 3652 
ω 

 

11612 985 
ψ 

 

5305 152 
κ 

 

8161 516 
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Figure 3. 13 Epoch No. 13 with 1 PGCP 

 

Figure 3. 14 Epoch No. 14 with 5 PGCPs 

 

Figure 3. 15 Epoch No. 15 with 34 PGCPs 
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Comparing the three epochs, we can deduce the main characters of the positioning 

function. It can be observed that for epoch No. 13, only one PGCP has been generated, 

which is inadequate to give a solution. In fact, one limitation for the space resection 

based method is that it requires a minimum number of observations. For epoch No. 14, 

5 PGCPs are able to get a positioning result. However, the result largely deviates from 

the true values. Epoch No.15 has both a better distribution and greater number of 

PGCPs compared to the other two epochs. It provides a reasonable positioning result. 

Table 3.9 also shows that epoch No. 15 has much smaller DOP values than those of 

No.14, which means a better PGCP geometry. Therefore, it is deduced that the 

accuracy of the positioning result is closely related to the number and distribution of 

PGCPs. In other words, the geometry of PGCPs is of significant importance to the 

system. The investigation of the impact of PGCP geometry on positioning 

performance is introduced in Chapter 6. Since PGCPs are generated from the matched 

features on the query image and 3D map images, a rich texture of mapping and 

navigation environment is required for vision-based navigation. The factors that 

influence positioning performance are further discussed in Chapter 6. 

3.4 SUMMARY 

In this Chapter, the methodology of the vision-based positioning solution is introduced, 

including both mathematical model and implementation procedures. By matching the 

query image with the 3D map, the 3D information is transferred from the map to 

corresponding SIFT features on the query image. The main contribution is the 

adoption of geo-referenced SIFT feature points as 3D landmarks for positioning.  In 

this way, the 3D feature points are used as pseudo ground control points and the final 

positioning result can be resolved based on photogrammetric space resection, which 

gives highly accurate result in 6 degrees of freedom.  
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It‘s worth mentioning that instead of space resection, relative orientation can also be 

considered to solve exterior orientation of a query image. Relative orientation 

describes the relative position and attitude of two images with respect to one another. 

Therefore, the exterior orientation of a query image, which overlapped with certain 

geo-referenced map image(s), can be calculated based on known parameters of the 

map image(s). However, to properly control the relative orientation, at least 8-10 well 

distributed tie points should be measured (Luhmann, 2009). Thus such methodology 

has normally been used for stereo image analysis. In close-range photogrammetry, in 

contrast, often involves arbitrary convergent multi-image configurations. Significant 

rotation and scaling differences challenges the use of relative orientation considerably. 

For instance, if the overlapping image pair have insufficient spatial ray intersections, 

uncontrollable model errors may occur. In our application, the query image is 

supposed to be taken randomly, the position and orientation of which can vary 

significantly from the map images with overlapping areas. Therefore, we believe such 

a method is not the optimal choice. The introduction of PGCPs and the use of space 

resection on the other hand help avoiding the problems. Rather than relying on solely 

one partner, it takes advantage of multiple overlapping map images. It provides a 

better geometry and greater redundancy for the least squares solution. Most 

importantly, the query image can be taken with great diversity from corresponding 

map images. 

It has been noted that for map-based visual positioning like this research, which uses a 

position-fixing approach, the greater the initial position uncertainty, the longer it will 

take to perform map-matching. Mismatching can easily sabotage the result if the initial 

position largely deviates from true values. In this research, the vision-based 

positioning is performed within certain building using a local coordinate system. If 

greater areas need to be covered, technologies such as GNSS and WiFi need to be 

integrated to provide an approximate position, then vision is used to refine the 

position. 
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CHAPTER 4                     

QUALITY CONTROL MEASURES FOR 

VISION-BASED POSITIONING AND 

NAVIGATION 
 

4.1 INTRODUCTION 

In the research domain of indoor navigation or more generally, navigation in a 

GPS-denied environment, vision is believed to be the most promising but challenging 

technologies so far. Compared with other sensors that may hold the promise to 

supplement satellite-based positioning, vision sensors are cheap, ubiquitous, 

self-contained and do not suffer from drifting errors. However, available vision-based 

navigation systems are still inadequate to provide a mature localization function, major 

problem lies in that stable visual features are difficult to be identified and direct 

measurement of real world geometry is lost. Vision sensors have a high input rate, 

which further challenges vision-based navigation systems, especially when a high 

precision and good reliability is expected to be obtained.  

The main purpose of vision-based navigation is to determine the position and 

orientation of the vision sensor, then mobile vehicle‗s (the platform carrying the vision 

sensor) motion/trajectory can be recovered. Based on the way that self-localization is 

realized, most available approaches can be grouped into two categories, as has been 

discussed in Chapter 1: one that relies on the prior knowledge of the navigation 

environment (e.g. map, or models), and one that does not.  Both of these two 

approaches reply on image matching techniques, and mismatch has become the major 

error source for vision-based navigation systems. The bottleneck lies in that a vision 

sensor is inherently fragile against errors while the establishment of such 



Chapter 4    Quality control measures for 3D mapping and vision-based positioning 

77 

 

correspondence may easily be sabotaged by input noise, and other error sources. 

Meanwhile, for the former approach, incorrect object information may also be 

included at mapping stage (e.g. careless control survey, or image measurement), then 

the final position result which relies on the map will be affected. Therefore, an outlier 

detection mechanism especially built for these applications is highly desirable.  

Various outlier detection strategies have been developed so far. Some look into all the 

observations and repeatedly remove the one that fails certain statistical tests (e.g., Data 

snooping (Baarda, 1968), or making adjustment on their weights (e.g. Huber‘s 

M-estimators (1964)). Some start with a minimum configuration of observations, and 

continuously adding samples that meet certain criterion (e.g. RANSAC (Fischler and 

Bolles, 1981)). Unfortunately, neither of these approaches has provided a good 

solution for vision-based navigation systems so far. Some recent studies have focused 

on the potential for a biased pixel measurement being introduced into the navigation 

solution process (Larson and Craig, 2010). In this research, different outlier detection 

strategies are compared and evaluated in the context of vision-based navigation. In 

order to make the best use of their strength and compensate for their weaknesses, a 

combined use of different outlier detection strategies in a multi-level strategy has been 

introduced in this Chapter.  

4.2 OUTLIER DETECTION STRATEGIES  

The classic theory divides error into three different groups: random error, systematic 

errors and gross errors. Random errors are assumed to be unavoidable, always present 

in the observations and obey a normal distribution; systematic errors come from the 

imperfection of functional model that cannot fully describe the reality; gross errors are 

those errors that occur when a measurement process is subject occasionally to large 

inaccuracies and have identifiable causes, the corresponding observations are called 

outliers. Various outlier detection strategies are developed to detect this part of errors 
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and reduce the effect of outliers on final parameter estimation result. In the following 

context, both their basic principles and the modification this research made to suit the 

specific requirement for vision-based navigation are discussed. Modification of 

data-snooping is introduced in Section 4.3.2.1 and modification on RANSAC is given 

in Chapter 5.  

4.2.1 Mean-shift model and variance-inflation model 

For geodesy and photogrammetry, outlier detection methods are generally based on 

least squares adjustment model, which is consisted of two parts: function model and 

stochastic model. Correspondingly two models are established for ‗gross errors‘: 

mean-shift model and variance-inflation model.  The former approach regards 

outliers to be a subset of observations that have the same variance but different 

expectations compared with ―healthy‖ observations, thus a shift of the probability 

distribution of the observations occur. Typical statistical tests based on this assumption 

include Baarda‘s data snooping, Pope‘s τ-distribution test (Pope, 1976) and a 

generalized outlier detection method (Wang and Chen, 1999). The second approach 

considers outliers to be observations that have the same expectation but different 

variance. A good number of outlier detection methods based on variance-inflation 

model have been developed so far, which includes least absolute values method 

(Edgeworth, 1987), M-estimators , Generalised M-estimators (Hampel et al., 1986), 

Danish Method (Krarup, 1980) and so forth. A detailed comparison between these 

methods on other applications can be found in Knight and Wang (2009). Here data 

snooping and Huber‘s M-estimators are explained in details, for they are more 

generally used and are adopted in our system. 

The Gauss-Markov model of observation equations is: 

𝒍 + 𝒗 = 𝑨𝒙   ,  𝑬 𝒍 = 𝑨𝒙 (4.1) 
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where 𝒗 is vector of residuals, 𝑨 is the design matrix, 𝒙 is the vector of unknown, 

and its estimation is 𝒙 , 𝒍 is the measurement vector. The variance covariance matrix 

of the measurements 𝜮, is given by  

𝑫 𝒍 = 𝜮 = σ0
2𝑸 = σ0

2𝑷−1 (4.2) 

where σ0
2 is a priori variance factor, 𝑸 is the cofactor matrix, and 𝑷 is the diagonal 

weight matrix. Model (4.1) and (4.2) are the least-squares function model and 

stochastic model respectively. The solution is a minimization problem: 

min: 𝒗T𝑷𝒗 (4.3) 

Then, the least-squares estimation of unknowns is: 

 
𝒙 =  𝑨𝑻𝑷𝑨 

−𝟏
 𝑨𝑻𝑷𝒍 

𝑸𝒙 =  𝑨𝑻𝑷𝑨 
−𝟏

            

  
(4.4) 

The procedure for outlier detection is to first determine whether there exists an outlier, 

then the outlier(s) are identified. The first process is called Global Model Test. The 

basic idea is that for healthy dataset, the estimated posterior variance s0
2  is 

statistically equal to the priori variance σ0
2 and follows a Chi-square distribution. 

Provided a significance level, the posterior variance can be tested using a two-tail test 

(sometimes one-tail test is recommended). If the posterior variance exceeds the critical 

values, global model test fails and we assume there is outlier(s) in the measurements. 

More detailed explanation can be found in Teunissen (1990), Wang and Chen (1994). 

After outlier has been detected, data snooping is used to identify and remove outlier 

(s). Assuming there is an outlier 𝜵𝑺𝒊  in the 𝒊th observation, using mean shift model, 

Eq. (4.1) can be extended to: 

 𝑬 𝒍 = 𝑨𝒙 + 𝒆𝒊𝜵𝑺𝒊 (4.5) 



Chapter 4    Quality control measures for 3D mapping and vision-based positioning 

80 

 

where 𝒆𝒊 is a vector of zeros with the ith element equal to 1.  Based on Eq. (4.1) and 

(4.5), a least squares estimation of the outlier 𝜵𝑺𝒊  is given as:  

𝛁𝑺𝒊 = −(𝒆𝒊
𝑻𝑷𝑸𝒗𝑷𝒆𝒊)

−𝟏𝒆𝒊
𝑻𝑷𝒗 (4.6) 

And its variance is:     

𝑫𝜵𝑺𝒊
= σ0

2(𝒆𝒊
𝑻𝑷𝑸𝒗𝑷𝒆𝒊)

−𝟏   (4.7) 

 The test statistic is given by 

𝑾𝒊 =
𝜵𝑺𝒊

 𝑫𝜵𝑺𝒊

= −
𝒆𝒊
𝑻𝑷𝒗

σ0 𝒆𝒊
𝑻𝑷𝑸𝒗𝑷𝒆𝒊

 
(4.8) 

If 𝐸 𝛁𝑺𝒊 = 0, which means no outlier exists, Wi|H0~N(0,1). Otherwise the null 

hypothesis should be rejected. Given confidence level (1-α), if 

 𝑾𝒊 > 𝑁  0,1; 1 −
α

2
  (4.9) 

then an outlier is identified by the biggest value of  𝑾𝒊 . For iterative data snooping, 

the observation associated with the biggest value of  𝑾𝒊  is detected and removed. 

The algorithm runs until global model test passes.  

Following this theory, an inverse operation has been used in the literature to define the 

reliability measure. When the alternative hypothesis 𝐸 𝛁𝑺𝒊 ≠ 0  is accepted, 

Wi|Ha~N(𝛿𝑖,1), where the non-centrality parameter is described by 

𝛿𝑖 =
𝜵𝑺𝒊

σ0

 𝒆𝒊
𝑻𝑷𝑸𝒗𝑷𝒆𝒊 (4.10) 

Given confidence level and the power of the test, one can calculate the lower bound 

value for the non-certrality parameter 𝛿0
 .Using 𝛿0 in Eq. 4.10, the lower bound for 

outlier detection can be calculated: 
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𝛁𝟎𝑺𝒊 =
𝜎0 𝛿0

 𝒆𝒊
𝑻𝑷𝑸𝒗𝑷𝒆𝒊

 (4.11) 

With this test, any outlier that bigger than 𝛁𝟎𝑺𝒊 can be detected and identified. 

Therefore it is also referred to as minimal detectable bias (MDB). 

For Huber‘s M-estimators, an iterative robust estimator of the unknowns in the 

Gauss-Markov model can be obtained based on the M-estimation (Huber, 1981). 

min: 𝒗𝑻𝑷 𝒗 (4.12) 

With the equivalent weights: 

𝑷 = diag(fipii ) (4.13) 

where fi (i=1,2,…,n)  are reduction factor of the weight elements, pii  are the ith 

diagonal element of weight matrix. Determination of the reduction factor has been a 

hot research topic in statistical and geodetic literature. The following reduction 

function works well in practical situations (Yang et al., 2002): 

𝒇𝒊 =

 
 
 

 
 𝟏                        𝒖𝒊 ≤ 𝒌𝟎

𝒌𝟎 

 𝒖𝒊 
 
𝒌𝟏 −  𝒖𝒊 

𝒌𝟏 − 𝒌𝟎
              𝒌𝟎 <  𝒖𝒊 ≤ 𝒌𝟏

𝟎                         𝒖𝒊 > 𝒌𝟏

  

(4.14) 

where 𝒖𝒊 is standardized residual, 𝒌𝟎 and 𝒌𝟏 are two constants, usually chosen as 

2.0-3.0 and 4.5-8.5 respectively. Some further study can be found in (Förstner, 1983). 

When introduced to vision-based navigation society, these methods should be further 

investigated. In fact, outlier detection strategies which are based on least squares 

solution share common shortcomings. Least squares adjustment is an optimal 

parameter estimation method, which work best for data only with normal distributed 

random noise (without outliers). Otherwise the adjustment process will disperse the 

observation errors over all observations in the dataset. A smearing effect will take 
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place when gross errors are present. As a result, when several outliers exist in the 

dataset, the ability for statistic testing to detect and identify each of these outliers will 

be very limited. In other words, most approaches for outlier detection are based on the 

assumption that only very few outliers exist. Unfortunately, for vision based 

navigation application, a high input rate of vision sensors will naturally bring a high 

percentage of errors into the dataset. At the matching process for self-localization, 

mismatches will challenge the reliability of vision-based navigation by introducing a 

large amount of mismatches. Therefore, a direct application of these outlier detection 

methods into the vision-based domain will lead to a complete failure.  

4.2.2 RANSAC 

The RANSAC (Random Sample Consensus) algorithm is an algorithm for robust 

fitting of models. It was introduced by Fischler and Bolles in 1981.It is capable of 

interpreting and smoothing data containing a significant percentage of gross errors, 

and it is ideally suited for application in automated image analysis where interpretation 

is based on the data provided by error-prone feature detectors (Fischler and Bolles, 

1981). Unlike the above outlier detection techniques that have their root from 

surveyors, RANSAC was originated from the computer vision community. Till today, 

the algorithm has been applied to a variety of applications in computer vision, such as 

feature matching and image registration. 

It is suitable for vision-based navigation application in the sense that it is robust 

against large proportion of outliers in the input data. More specifically, a vision-based 

system normally do self-localization based on the matching between real time images 

(or any visual input) and expectation of the navigation environment in terms of 

database images or models if a prior knowledge of the environment is available; or a 

relative position between epochs is obtained via the matching of subsequent images. 

Either way will need feature recognition function with use of feature-based matching. 
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And it is always accompanied by a large fraction of mismatches. While obviously 

previous two approaches can hardly handle this job, RANSAC plays a suitable role.  

The general procedure for RANSAC to be used in feature based matching is as 

follows: 

●  Given tentative matched pairs, randomly choose 4 matches and the homography 

matrix is computed based on the initial sample. 

●  Using the computed homography matrix to count the number of inliers. 

●  Repeat the first two steps for a certain number of times. 

●  If the number of inliers is a maximum among iterations, the homography matrix 

and inliers are stored. 

●   After the certain number of iterations, use the stored inliers to re-estimate 

homography and the consensus set are treated as correct matches while the ones do not 

treated as mismatches (outliers).  

In the context of SIFT matching (Lowe, 1999), tentative matches are found by 

searching and locating nearest neighbour between the SIFT descriptors on the image 

pairs. Figure 4.1 shows the power of RANSAC in removing mismatches, which comes 

from the system experimenting data. SIFT matching was carried out between map 

Image No.10 and No.11, a total 185 tentative matches are found by SIFT matching. It 

could be clearly observed that several mismatches exist (crossed lines are obvious 

indications of mismatches for the viewing directions of the two images are close to 

parallel). The RANSAC process retains 13 pairs of matches as correct matches, and all 

the others have been filtered out as mismatches. 
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Figure 4. 1 SIFT matching and RANSAC processing, 13 inliers out of 185 tentative 
matches 

Although it can be easily observed that all the remained pairs have close-to-parallel 

lines, still it had mismatched pairs remained in the dataset (e.g. the lowest yellow line 

in Figure 4.1). In fact, the RANSAC algorithm is not without its limitations. One 

problem is that the estimate is only correct with a certain probability, since RANSAC 

is a randomized estimator. It can be computationally expensive to run many times to 

ensure the correctness. Otherwise, in difficult matching conditions, it can still include 

mismatches as inliers. For a vision-based navigation system relies on image matching 

for object recognition and rough-localization, RANSAC can help filter out most of the 

mismatches; but for a positioning function that using the measurements of feature 

points to calculate the exact position and orientation, RANSAC alone can hardly 

produce satisfactory results. In chapter 5, a method using cross-correlation information 

to improve RANSAC homography estimation is proposed and discussed. 
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𝟒. 𝟑 OUTLIER DETECTION MECHANISAM FOR 

VISION-BASED NAVIGATION SYSTEM 

4.3.1 Introduction of the multi-level outlier detection 

mechanism 

Traditionally in the field of mobile robot localization and mapping (using vision 

sensors), people mainly consider gross errors coming from mismatches between real 

time visual information and its expectation (model or images). In the field of 

photogrammetry, on the other hand, gross errors, which may be caused by 

misidentified image points, or by a careless measurement in the ground control survey, 

have been of major concern for years. Therefore, vision-based navigation systems, 

especially those involving photogrammetric methodologies, are complex. Gross errors 

can come from a variety of sources and can have different characters as well as 

quantities. By analysing different outlier detection strategies and comparing their pros 

and cons, we have knowledge of their strength and weaknesses when dealing with 

problems raised by a vision-based system. In this research, a multi-level step-by-step 

outlier detection scheme has been proposed for vision-based navigation systems.  

Along the data flow of the whole system, suitable outlier detection strategies are 

applied to track and remove possible outliers at each step of the way. This multi-level 

detection mechanism aims at improving the reliability of the vision-based system by 

enabling gross errors from difference sources (e.g. image measurement, image 

matching, ground control survey) to be treated specifically. Besides, for systems using 

least squares estimation for positioning, chances of convergence failure caused by 

large scale outliers can be reduced.  

Using the principles of photogrammetry as backbone, the vision-based navigation in 

this research mainly consists of two stages: mapping and positioning. In the first step 
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the 3D map is constructed by geo-referencing images of the target environment.  In 

the second step, images taken by the navigation system in real time are matched with 

the 3D map (geo-referenced images), thus transferring the geo-information from the 

map to the real time image for positioning. As much as outlier detection is concerned, 

two SIFT based image matching and three least squares adjustment processes with use 

of photogrammetric principles are involved in the system. The chosen strategy is to 

conduct RANSAC at each time of the SIFT matching process in order to detect and 

remove most of the mismatches. For each least squares adjustment procedure, an 

outlier detection strategy (mainly based on Mean-shift Model) is applied to further 

clean the dataset in order to produce a better estimate of unknown parameters from the 

least squares solution. The obvious advantage for this scheme lies in that a combined 

use of different outlier detection strategies can make the best use of their strength and 

avoid or compensate for their weaknesses. More specifically, the RANSAC algorithm 

is capable of estimating parameters from a dataset with a significant percentage of 

gross errors, but it cannot guarantee the correctness of final results because of its 

random nature. So it is used as a pre-adjustment process to filter out most of the 

mismatches. At the same time, a cross-correlation method proposed in this research 

(Chapter 5) is used to improve the performance of RANSAC. Later at the parameter 

estimation stage using least squares adjustment, more sensitive outlier detection 

methods (data snooping/M-estimators) is used to guarantee the correctness of the 

least-squares processing. Its deficiency in face of large fraction of outliers is avoided 

by the previous processes. 

4.3.2 Quality control for 3D mapping 

First a mapping procedure is conducted. The quality of the map depends on the 

accuracy of geo-referencing, therefore, the main objective of quality control at the 

mapping stage is to detect and remove the outliers for bundle adjustment. Two major 

input of bundle adjustment are ground control points and tie points. The first dataset 



Chapter 4    Quality control measures for 3D mapping and vision-based positioning 

87 

 

come from ground control survey and image measurement of these control points, 

while the second are common SIFT feature points produced by the matching process. 

Rather than throwing all the data directly into the geo-referencing procedure, which is 

equipped with a gross-error (outlier) detection function, a step-by-step detection 

scheme is chosen. The aim of outlier detection at the early stage is to alleviate the 

burden of fault detection in geo-referencing. First, for the ground control points, an 

iterative data-snooping is used along with soft space resection (introduced in Section 

3.2.3) to detect and remove gross errors from the ground control survey and the image 

measurements of these ground control points. Besides space resection, data snooping 

has also been modified to suit the requirement of the application, which is further 

explained in the following section. At the same time, most of the outliers at tie points 

(SIFT mismatches) are removed by RANSAC at matching stage. It is noted that 

mismatches left by RANSAC are the most likely error source after previous 

procedures. In this research, two options are offered. The first one is using the newly 

proposed method to improve RANSAC homography estimation and outlier detection, 

which has been applied to the outlier detection for image matching in positioning 

calculation. More details on such method can be found in Section 4.3.3 and Chapter 5. 

Since mapping is performed on images with big overlapping areas, the chance 

mismatches are involved after RANSAC is much smaller compared with the 

positioning stage. So at final stage of image geo-referencing, as bundle adjustment is 

also based on least squares, modified iterative data snooping is applied to deal with the 

small number of mismatches. The overall flowchart is shown in Figure 4.2. 
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Figure 4. 2 Outlier detection for 3D mapping 

4.3.2.1 Extended iterative data snooping 

In traditional iterative data snooping, only one outlier is assumed to exist in each 

adjustment process. In other words, for each iteration, the observation with the biggest 

w-value is identified as the outlier. In the next iteration, it is removed and the whole 

adjustment process runs again. It continues until global model test passes and all the 

w-value is less than the critical value. Such method however, has so far hardly been 

applied to vision based navigation applications. This is mainly because it works well 

only when a small number of outliers exist in observations. In vision-based system, on 

the other hand, mismatches can bring large amount of outliers into the adjustment 
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system. Since RANSAC/ modified RANSAC has been applied at image matching 

stage, data snooping only needs to deal with small number of outliers. But these 

observations are sometimes highly correlated. More specifically, here for 

photogrammetric adjustment which uses the image coordinates or/and their 3D object 

coordinates as observations in an adjustment procedure, observations of the same point 

(image 2D coordinates and 3D object coordinates) are correlated. Therefore, the 

iterative data snooping method is extended in this study by treating the observations 

from the same point as a unit. When one single observation detected as having gross 

errors, the whole unit of observations of this point will be removed together. 

4.3.3 Outlier detection for positioning 

At the navigation stage, another matching based on SIFT is carried out between the 

real time image and the map images. Mainly when any of the SIFT feature points from 

the map find its correspondence on the query image, the geo-information it carried can 

be transferred to its counterpart, which can later serve as pseudo ground control points 

(PGCPs) for positioning at the final stage. It is critical that mismatches are removed/ 

avoided during the PGCPs generation. Otherwise the final positioning will be severely 

affected. On the other hand however, the query image might be taken at significantly 

different place, angle or lighting condition, or using different devices compared with 

corresponding map images. Such difference poses great challenge for image matching 

as well as RANSAC process. Therefore, in this research a new method has been 

proposed to improve the performance of RANSAC in difficult matching conditions. It 

has been used for the matching at positioning stage and successfully improved the 

system performance (Section 5.4.4). More specifically, RANSAC based image 

matching will be evaluated by a test. Only when the evaluation test is past, the inliers 

from RANSAC are retained for PGCP generation. The method and its applications are 

introduced in Chapter 5.  
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After PGCPs have been generated and at the final positioning calculation, modified 

space resection (Soft Space Resection) is utilized to calculate vision sensor‘s external 

orientation in 6DOF. Meanwhile, extended data snooping are used for outlier detection 

at the least squares adjustment of space resection. The flowchart is shown in Figure 

4.3, with the outlier detection procedures been highlighted.  

 

Figure 4. 3 Outlier detection for vision-based positioning 

𝟒. 𝟒 EXPERIMENTS 

Three major experiments are obtained from our system development and explained 

here. They correspond to the three major parts of outlier detection in the system, 

namely: outlier detection on space resection and geo-referencing for 3D mapping, 
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outlier detection for vision-based positioning. It is noted that the experiments here 

mainly discuss the outlier detection algorithm used in the least squares adjustment. For 

outlier detection during image matching, the RANSAC process and evaluation test 

proposed in this research are further discussed in Chapter 5.  

4.4.1 Outlier detection on soft space resection for mapping 

The first experiment was carried out at the mapping stage. Each image collected went 

through a soft space resection process in order to get their external orientation 

parameters, and more importantly, detect and remove outliers in the ground control 

point observations. The extended iterative data snooping was applied. Image 11 

(Figure 4.4) was used as an example. 

 

Give confidence level α=0.1%  N(0,1; 0.9995) = 3.29.  The extended iterative data 

snooping was carried out. Part of the result is shown in Table 4.1 with each column 

representing one iteration. 

 

Figure 4. 4  Map image No. 11 with surveyed ground control points 
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Table 4. 1 First two and last iteration results of data snooping for space resection 

Iterative 
data snooping result 
Iteration ID 1 2 …. 7 

F-value 134.8002 114.8105 …. 2.512323 

Relevant Control Point ID Observation 

ID 

w-value 

48 
1 -12.303 -9.665 

….. 

 2 0.163 -1.097 

 
49 

3 -20.935 -22.194 

 4 3.607 1.245 

 .. .. .. .. .. 

90 
19 -19.238 -25.755 

 20 -1.063 -5.193 

 
92 

21 -24.372 

  22 -1.864 

  

48 

23 6.775 3.586 

 24 12.305 9.66 

 25 0.079 -1.077 

 

49 

26 21.103 11.33 

 27 20.954 22.195 

 28 3.466 1.287 

 .. .. .. .. .. 

88 

47 -10.524 0.529 -0.21 

48 -10.613 0.671 -0.071 

49 0.429 0.258 0.745 

90 

50 19.374 25.856 

 51 19.144 25.69 

 52 -1.216 -4.472 

 

92 

53 24.21 

  54 24.364 

  55 -2.046 

  
 

 

In the first iteration, global model test failed. Observation No. 21, 53, 54 had the 

biggest w values. In fact, they are the measurements of the same point (GCP No.92). 

Using extended data snooping, GCP No. 92 is removed after the first iteration, which 

means observation No. 21,22,53,54,55 were all removed, 10 control points were left 
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for the second iteration. The same process carried out iteratively until global model 

test passed and all the w value is less than the critical value. Finally 7 iterations were 

carried out until all the outliers have been removed. As a result, 5 control points left 

out of 11 and treated to be fixed values in next step: bundle adjustment for mapping 

(Section 2.3.3). For each image, space resection was carried out with the same outlier 

detection and removal process. The control points left in the end was then be used to 

calculate exterior orientation of each map image and used in the bundle adjustment for 

image geo-referencing. 

4.4.2 Outlier detection for image geo-referencing 

At mapping stage, the extended iterative data snooping is applied to detect and remove 

possible outliers so as to improve the accuracy of geo-referencing. This experiment 

was mainly designed to test the power of outlier detection function at this step. 

Here the same sample data from Section 4.2.2 is used. SIFT matching was carried out 

between map Image No.10 and No.11, 13 pairs (No.1001~No.1013) of matched SIFT 

feature points were left and the rest were removed as mismatches by RANSAC. Then 

these 13 pairs of corresponding SIFT feature points were used as tie points and put 

into the bundle adjustment process. The final stage was to calculate the 3D object 

coordinates of these SIFT feature points (geo-referencing). A report of adjustment 

result along with accuracy analysis and outlier detection report were produced. Two 

iterations of data snooping were shown. The geo-referencing results after the first 

iteration are shown in Table 4.2.  

Table 4. 2 Geo-referencing results after the first iteration 

Tie point 

ID 

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 

X(m) 3.230 4.182 3.821 3.094 3.110 3.109 3.231 3.231 3.233 3.233 3.104 3.179 11.28

6 Y(m) 4.566 2.959 3.235 4.398 4.405 4.411 4.595 4.595 4.646 4.646 4.326 4.614 -0.81

4 Z(m) -1.18

2 

-3.02

0 

-2.96

3 

-1.90

8 

-1.86

5 

-1.95

6 

-1.03

7 

-1.03

7 

-1.04

5 

-1.04

5 

-1.89

5 

-1.25

1 

-1.54

0 
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Since all matched feature points in this example are on the same wall, it can be noticed 

easily that tie point No.1013 is wrong. Part of the data snooping result of the first 

iteration is shown in Table 4.3, in which σ0 represents the prior standard deviation, σ 

the poster, f the degree of freedom and F the F ratio. Given the confidence level α=5%, 

F-test (global model test) fails at 7.2, which indicates certain outlier exists. It can be 

observed that observation No. 37, 38, 73 and 74 have the same maximum W-value. 

From the structure of matrices in the least squares solution, we get to know that these 

4 observations are the image coordinates (x, y) of same feature point (tie point) No. 

1013 on the two matched images No.10 and No. 11 respectively. More importantly, 

feature point No. 1013 is actually a mismatched feature point. Figure 4.5 shows it with 

a yellow line connecting its correspondences on two images. The test proves that data 

snooping method can further detect and remove mismatches in the dataset after the 

RANSAC process.  

 

 

 

 

 

 

Figure 4. 5  SIFT feature pairs after RANSAC processing, tie point No.1013 has 
been identified as outlier by data snooping process 
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Table 4. 3 Data snooping results of iteration 1 for image geo-referencing 

Summary of Data snooping result: iteration 1 

σ0: 0.000025   σ: 0.000067   f: 23   F: 7.204570 

Index of internal reliability 

No L W MDB 

1 0.000064 5.285000 0.000212 

… … … … 

37 -0.000002 -8.706000 0.013674 

38 -0.000042 -8.706000 0.000529 

39 -0.000059 -6.733000 0.000293 

… … … … 

72 0.000006 0.361000 0.000153 

73 0.000002 8.706000 0.010979 

74 0.000045 8.706000 0.000496 
 

 

So tie point No. 1013 was removed (observations No. 37, 38, 73 and 74) and 12 tie 

points were left the second iteration. The geo-referencing results along with part of the 

outlier detection report are shown in Table 4.4 and Table 4.5 respectively for the 

second iteration. And the iteration runs until all outliers have been removed. 

Table 4. 4  Geo-referencing results after the second iteration 

Tie 

point 

ID 

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 

X(m) 3.074 6.365 5.186 3.051 3.067 3.088 3.035 3.035 3.040 3.040 3.067 3.008 

Y(m) 4.546 2.568 3.052 4.388 4.395 4.401 4.572 4.572 4.620 4.620 4.320 4.590 

Z(m) -1.185 -3.268 -3.100 -1.902 -1.859 -1.946 -1.046 -1.046 -1.053 -1.053 -1.888 -1.26

0 

 

 

Table 4. 5 Data snooping results of iteration 2 for image geo-referencing 

Summary of Data snooping result: iteration 2 

σ0: 0.000025   σ: 0.000039   f: 22   F: 2.446661 
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The power of the outlier detection function for geo-referencing is also reflected on the 

precision analysis. In this experiment, σ0 (the prior) is the standard deviation of 

observations.  Since the bundle adjustment is calculated using equally weighted 

photogrammetric image coordinates as observations, σ (the poster) reflects the 

precision of image measurements of control points and feature extraction and 

matching of tie feature points. So outliers from both sources will influence σ, 

deteriorate the precision of image coordinates. Comparing σ value between Table 4.3 

and Table 4.5, σ has been reduced from 0.000067 to 0.000039. It proves that after the 

removal of mismatches, the precision of image coordinates has been increased.  

It has also been noted that data snooping is suited to data with a small number of 

outliers like this example. For big number of outliers generated by image matching 

and left over by RANSAC, a specific method has been proposed and introduced in 

Chapter 5. 

4.4.3 Outlier detection for vision-based positioning 

Finally, the outlier detection for the final positioning is discussed. RANSAC with 

evaluation test will be further discussed in the next chapter. Here the outlier detection 

has been focused on the final least squares adjustment. Two tests are carried out, one 

uses global model test with data snooping based on simulated outliers to investigate 

the nature of the outliers at final positioning, one compare outlier detection strategies 

used for position calculation. 

4.4.3.1 Simulation of outlier detection on positioning solution 

At final positioning function, in which a soft space resection model is used, the 3D 

coordinates of PGCPs are treated as observed unknowns. Therefore, outliers mainly 

come from the two uncertain inputs of position estimation function: the 2D image 

coordinates and the 3D object coordinates of the PGCPs. The cause of outliers can be 
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mismatches, or erroneous photogrammetric point determination in the 3D map 

developments. 

This experiment mainly focused on the design and testing of outlier detection module 

in dealing with erroneous inputs of the positioning function. The procedure was 

simulated using outliers intentionally inserted into a clean dataset. The image 

measurement noise level (priory standard deviation) was set to 0.000014 when the 

PGCP set to 0.00095. Using the one tail global test, F (20, ∞; 0.95) approximately 

equals 1.57. F-ratio value from the clean dataset was 1.045675, smaller than 1.57 so 

the global test passed.  Figure 4.6 and Figure 4.7 show the Minimal Detectable Bias 

(MDB) of each observation in the two groups of observations: the image observations 

and the PGCP coordinate observations. Observation No.1 to No.26 are the image 

observations while No.27 to No. 65 are 3D coordinates of the PGCPs. It can be seen 

that these two groups of observations have different levels of MDBs, and the 

observations within each group have close MDB values.  

 

Figure 4.6 MDB for image observations 

 

Figure 4. 7 MDB for PGCP observations 

In order to simulate the impact of outliers in the first group of observation (image 

coordinates), outliers with different magnitudes were inserted intentionally into the 

dataset. The results were shown in Table 4.6 with an increasing magnitude of outliers 
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inserted in the same image observation: observation No. 3, the image coordinate on 

the x axis of Point 2.  

Table 4. 6 W values: outlier Detection in image coordinates 

 

 

Firstly, by using the W-statistic to locate an outlier, it was noticed that two other 

observations (No.30 & 31) together with observation No. 3 all produced big W values. 

It is noted that observation No.3 is image coordinate of PGCP Point 2-x, when No. 30 

and No. 31 correspond to the X, Y value in the object space of the same point (Point 2). 

The three observations can be highly correlated. By studying the absolute correlation 

coefficients between the W-statistics for observation pairs of No.3 and No.30, No.3 

and No. 31, which is close to 1, it proves the correlation is extremely strong. Secondly, 

it was observed that when the magnitude of outlier grows, the probability of 

data-snooping method successfully identifying an outlier increases. According to the 

result, when the magnitude is greater than 0.8, outlier is always correctly identified by 

data-snooping.  

More tests were carried with outliers in the 3D coordinates of the PGCPs: observation 

No. 32.  The results are shown in Table 4.7. W value indicates either observation 

No.32 or No. 4 contain an outlier. The high correlation was found between the two 

observations, which are observations of the same point. Meanwhile, when the 
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magnitude of outlier grows, the probability of data-snooping method successfully 

identifying an outlier increases. 

Table 4. 7 W values: outlier Detection in 3D PGCPs object coordinates 

 

In summary, observations of the same point, including both image measurements and 

3D coordinates, can be highly correlated. Therefore the iterative data snooping has 

been modified to suit the scenario. It treats the observations from the same point as a 

unit, when one single observation detected as having gross errors, the whole unit of 

observations of this point will be removed together.  

4.4.3.2 Outlier Detection using data snooping and M-estimators 

In the second experiment for positioning, real world dataset is used. The aim is to 

compare different outlier detection strategies for final positioning. A calibrated video 

camera (Logitech Webcam Pro2000) was mounted on a moving vehicle with sampling 

rate at 1 HZ.  Its relative position to the vehicle was fixed, which means the 

experiment was partially controlled: camera height (Z:-0.725m) and two angle of the 

camera attitude (υ = 0°, ω = 90°) were fixed. The positioning was conducted by 

extracting image frames from the video and matching them with the 3D map frame by 

frame. Each frame is an epoch, a position and orientation in 6DOF can be calculated 

via soft space resection. Baarda‘s data snooping and Huber‘s M-estimators were used 
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respectively at the position calculation using an off-line post processing.  Four typical 

epochs were chosen to illustrate different outcomes. 

Firstly the epochs with no outliers been detection are investigated. As shown in Table 

4.8, most of the epochs (like No.28) provide a reasonable positioning accuracy, while 

few epochs (like No.22) deviate from the controlled values as a result of bad PGCP 

geometry. As has been shown in Tables 4.9, DOP values clearly indicate the different 

geometric strength. Moreover, it is noticed that when no outliers were detected, 

positioning result stay consistent regardless of the outlier detection methods used.  

Table 4. 8 Positioning results from epoch No.22 and No.28 

  
Epoch ID 22 28 Controlled 

value Outlier 

detection 

Data 

snooping 

M-estimato

r 

Data 

snooping 

M-estimato

r  

Positioning result in 

6DOF 

Unit: m 

&degree 

X -0.386 -0.387 -0.507 -0.507 - 

Y 2.871 2.871 -0.065 -0.065 - 

Z -2.091 -2.091 -0.724 -0.724 -0.725 

𝜔  110.409 110.409 89.668 89.668 90 

𝜑  3.839 3.839 0.745 0.745 0 

  -106.513 -106.513 -88.522 -88.522 - 

Number of detected PGCPs as outliers  

/total PGCPs  number 

0/8 - 0/20 - 

 

 

 

Table 4. 9 DOP values from epoch No.22 and No.28 

 

Epoch 22 Epoch 28 

  Data snooping M-estimator Data snooping M-estimator  

X DOP 19519 19562 808 801 

Y DOP 44642 45031 427 412 

Z DOP  49178 49636 372 377 

P DOP 69227 69815 987 976 

 𝜔DOP 13508 13613 96 98 

 𝜑DOP  3619 3629 206 203 

 κDOP 12082 12173 91 90 

A DOP 18481 18619 245 242 
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When outliers were detected, some epochs had consistent positioning results from the 

two outlier detection methods while the others do not. Epoch No. 27 and No. 31 in 

Table 4.10 were used as examples. The reason for this is that for epochs in which 

PGCPs are in small number and geometry is weak, data snooping may remove 

important PGCP(s) which further deteriorate the geometry, then lead to worse 

precision and a positioning results further deviate from true values, or even an 

unconverged adjustment, which is exactly the case for epoch No. 27. The bad DOP 

values of epoch No.27 is shown in Table 4.11. The M-estimator, on the other hand, 

retain these points and reduce their weights, the final results therefore outperformed 

that of data snooping. This is similar to outlier detection for GPS networks. Compared 

with the robust test, a disadvantage for data snooping and mean-shift model methods 

in general, is that they remove outlying baselines which in turn deteriorate the shape of 

the network. If the control points removed by data snooping are located in strong 

geometric areas, the total PGCPs are in big number, then such influence will be 

minimized and positioning results produced by the two methods can still be consistent, 

as epoch No. 31 shown in Table 4.10 and Table 4.11. 

Table 4. 10 Positioning results from epoch No.27 and No.31 

  
Epoch ID 27 31 Controlled 

value Outlier 

detection 

Data 

snooping 

M-estimato

r 

Data 

snooping 

M-estimato

r  
Positioning result in 

6DOF 

Unit: m 

&degree 

X -8806.39 -0.505 -0.543 -0.543 - 

Y 1794.963 0.221 -0.990 -0.989 - 

Z -16080.3 -0.698 -0.882 -0.881 -0.725 

𝜔  33.288 89.095 91.960 91.960 90 

𝜑  17.629 0.057 0.286 0.286 0 

κ  -14.527 -88.121 -87.777 -87.777 - 

Number of detected PGCPs as 

outliers/Total PGCPs   

/total PGCPs  number 

1/8 - 1/26 - 
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Table 4. 11 DOP values from epoch No.27 and No.31 

 

Epoch 27 Epoch 31 

  Data snooping M-estimator Data snooping M-estimator  

X DOP 10999
722 3408 2492 2588 

Y DOP 261658830 3471 5854 5974 

Z DOP  1934781831 18007 7027 7157 

P DOP 2240902045 18653 9480 9676 

 𝜔DOP 271354 4837 1800 1808 

 𝜑DOP  950356 277 393 395 

 κDOP 201885 780 1582 1592 

A DOP 1008745 4907 2428 2441 
 

 

𝟒. 𝟓 SUMMARY 

Vision sensor is inherently fragile against errors. Therefore, any vision-based system 

requires a robust outlier detection mechanism to ensure a good performance. In this 

chapter, different outlier detection strategies have been evaluated in the context of 

vision-based navigation: mainly Baarda‘s data snooping, Huber‘s M-estimator and 

RANSAC, which are dominating outlier detection methods in the field of 

photogrammetry and computer vision. The first two methods only work well with very 

few outliers. RANSAC is able to deal with large percentage of outliers, but has its 

only limitation. A multi-level operation scheme has been proposed for the system, 

including both quality control measures for 3D mapping and vision-based positioning. 

The main contribution is the combined use of various outlier detection methods in a 

multi-level manner to achieve an improved solution. More specifically, RASANC is 

used to remove most of the outliers, while data snooping/M-estimator is used at final 

adjustment process to gurantee the correctness of the input. 
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Experiments have revealed the nature of the outliers in the system and proved the 

efficiency of the outlier detection scheme. The simulation test showed that the 

observations from the same point can be highly correlated, therefore these 

observations are treated as a single unit in iterative data snooping. Moreover, the 

experiment proves that data snooping method can further detect and remove 

mismatches in the dataset after the RANSAC process. Meanwhile, tests also revealed 

some limitation of current system. For instance, a disadvantage for data snooping and 

mean-shift model methods in general, is that they remove outliers which in turn 

deteriorate the geometry. But data snooping is still chosen instead of M-estimator for 

the reason that divergence may occur when initialization or parameters are not chosen 

properly for M-estimator. More devoted studies may be required before M-estimator is 

used for vision-based navigation systems. 
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CHAPTER 5                   

ENHANCED RANSAC HOMOGRAPHY 

ESTIMATION WITH A CROSS 

CORRELATION TEST AND 

APPLICATIONS 
 

5.1 INTRODUCTION 

Image matching has been a fundamental problem for a variety of applications in 

photogrammetry, remote sensing, medical imaging, computer vision etc. Typical 

examples are image stitching and mosaicing, change detection, registration of satellite 

images, image fusion, vision-based navigation and so forth. Basically, it needs to 

geometrically align two images with overlapping areas that may be taken from 

different viewpoints, time, or different imaging devices. The core element is to 

establish the mapping function between two central perspective images. For many 

applications, it may be assumed that under most conditions the scene is approximately 

planar, thus the image transformation can be described by a planar projective 

homography (Negahdaripour, 2005).  The homography transformation, also named 

projective transformation, has been used as a mapping function as well as a matching 

constraint for image correspondence. It transfers points from one view to the other so 

long as they are images of points on the plane. The quality of such homography is 

critical to the calculation of camera motion and relative orientation, which is widely 

applied to trajectory recovery based on structure from motion, and 3D reconstruction. 

When it used as a matching constraint to detect mismatches, it can also improve the 

quality of image matching.  Therefore, despite the variety of intended applications, it 
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is common but crucial task to compute the transformation function between two 

images that need to be matched and geometrically aligned.  

According to the way image matching is performed, homography estimation methods 

generally fall into two groups: area-based and feature-based. Detailed description of 

the development in the literature can be found in Gruen (2012). The strength of the 

area-based methods lie in the fact that they consider global information and take every 

pixel in the image into account. Bergen et al. (1992) described a hierarchical 

framework for the estimation of image motion between two images using various 

models based on the minimization of sum of squares of differences (SSD). The main 

idea is that the motion estimate from one level of the image pyramid can then be used 

to initialize a smaller region search at the next level. These methods have been used to 

register images with pure translation, with more sophisticated motion like a 

homography, algorithms with better approximation of geometric transformation are 

adopted. Typical examples include Lucas-Kanade registration (Lucas and Kanade, 

1981) and Adaptive Least Squares Matching (Gruen 1985). While it works well on 

image sequence or stereo pairs with short displacement, one significant problem for 

the area-based methods, however, is their incapability to deal with images with low 

overlap, large and complex transformation or significant intensity changes introduced 

by noise, varying illumination or different sensor types.   

Feature-based matching methods, on the other hand, are typically applied when the 

local structural information is more significant than the information carried by the 

image intensities. Generally it consists of three steps: firstly distinctive features are 

detected and extracted from each of the images; secondly features are matched and 

correspondences are located across images based on feature characters; thirdly, 

geometric transformation is estimated based on correspondences. Once we have got a 

set of feature correspondences, motion parameters that best register two images can be 

estimated using these correspondences. There are two widely used solutions for robust 
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homography estimation with outliers being removed. One is called RANSAC 

(Random Sample Consensus, Fischler and Bolles, 1981), which has been briefly 

introduced in Section 4.2.2, and the other is Least Median of Squares (LMS). 

Feature-based matching combined with RANSAC/LMS has become the dominant 

approach for image matching and registration in recent years for its invariant nature 

and capability to handle mismatches. While RANSAC counts the inliers based on the 

residuals smaller than a pre-defined threshold, LMS replaces the sum with the median 

of the squared residuals. However, such an approach has yet reached its full potential. 

The major limitation lies in that both methods start with a random subset of 

correspondences to estimate a motion model. If the initial selection is erroneous, it will 

lead to inaccurate or even false estimation of the homography and mismatches will be 

included as inliers. 

Therefore, in this Chapter a method to evaluate and enhance the performance of 

RANSAC homography estimation is proposed. By integrating cross-correlation 

information between feature patches, poor estimation can be detected and removed. 

Moreover, accompanied with RANSAC, this method can largely improve the 

correctness of image matching and can be applied to a great variety of applications 

where high quality feature-based matching is used.  

 

5.2 SIFT BASED RANSAC HOMOGRAPHY 

CALCULATION AND IMAGE MATCHING 

Feature-based image matching and registration methods have achieved growing 

attention because of their ability to tolerate low image overlap and image scale 

changes (Wu and Fang, 2007). One popular algorithm, SIFT (scale-invariant feature 

transform) was developed in 1999 (Lowe, 1999) as highly distinctive features that are 

used to perform reliable matching of the same object or scene between different 
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images. Because of its invariance against image translation, scaling, rotation, and 

partial invariance to illumination changes and affine or 3D projection, it has been 

widely used in a variety of applications such as object recognition, robotic mapping 

and navigation, image stitching, 3D modelling and video tracking. 

The SIFT algorithm generates a descriptor for each feature point using local image 

gradients within the neighbourhood at a selected scale. The good point about it is that 

the resulting descriptors are highly distinctive since they contain large amount of 

information and this improves correct matching between features in different images. 

However, one major problem with it is that it only considers local information and 

may contain large number of mismatches in the dataset. The reason is that 

feature-based matching such as SIFT is performed through a Euclidean-distance based 

nearest neighbour search of feature descriptors (128 dimension vector). And the 

property of such vector is only extracted from local information. When there are 

repeated/similar patterns, the features within the region tend either have more than one 

nearest neighbour or nearest neighbour that from a false area of the matching image 

because of the similarity of the local patch. This leads to a major challenge for 

determining the relative transformation: large percentage of mismatches are involved 

in the point correspondence. Once applied, they will result in inaccurate or even false 

estimation of the homography, as shown in Figure 5.1. 

 

 

 

 

Figure 5. 1 SIFT matching between two images 
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One common approach is to use RANSAC (the random sample consensus) to filter out 

mismatched pairs so as to robustly estimate homography and improve 

correspondences registration robustness. The algorithm runs in several steps: first a 

number of iterations are performed. Within each iteration, 4 initial pairs are randomly 

chosen and a homography H is built up on it. Secondly, within each iteration, all other 

correspondences are then classified as inliers or outliers depending on its concurrence 

with H. After all the iterations are done, the one with the biggest number of inliers are 

retained and homography H is rebuilt from the inliers selected by this iteration. Thus 

mismatches are filtered out as outliers and homography is estimated by the assumed 

correct matches. An example of RANSAC removing mismatches is shown in Figure 

5.2. 

 

 

However, does this method successfully solve mismatch problem incurred by 

matching ambiguities? The answer is no. An example has been given in Section 4.2.2, 

in which a small number of mismatches are involved. Here a worse scenario is 

illustrated. As shown in Figure 5.3, RANSAC fails to provide a reasonable result. 

Most of the inliers remained are mismatches (e.g. No.1, No.2 and so forth). Obviously 

the two matched images have small overlap and repeated patterns can easily be found, 

such as black frames of the boards, chairs and strip lines on the floor. As a result, a 

great number of mismatches are produced during SIFT based matching, and RANSAC 

performs poorly. 

Figure 5. 2 RANSAC process to remove outliers for image matching 
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RANSAC‘s failure to remove mismatches mostly due to its random sampling nature. 

If any of the false matches are selected as the initial putative match in an iteration, and 

this iteration happens to be the one with biggest number of inliers within limited 

number of iterations, the inliers selected by RANSAC will have a big chance to be 

wrong and the final homography estimation will be poor. This is especially true when 

the two matched images have repeated patterns or low overlap that lead to matching 

ambiguity, or strong transformation to incur mismatches. Hartley and Zisserman (2003) 

show that the probability that a sample correspondence is an outlier can be calculated 

if the proportion of outliers is known. However, in most of the cases we have no idea 

of the percentage of mismatches involved; or the number of iterations that been able to 

statistically insure the correctness of RANSAC homography estimation is too high and 

incurs unaffordable computation load for the application. The major challenge here is 

that if there are large percentage of outliers in the training samples, any estimation 

method will have a high risk of failure. 

Therefore in this Chapter, an evaluation strategy is introduced to qualify the 

performance of RANSAC homography estimation. Through such measurement, we 

Figure 5. 3 RANSAC process for image matching 
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are able to distinguish good modelling and poor modelling without the need for priory 

knowledge of the false rate.  

 

5.3 ENHANCING RANSAC HOMOGRAPHY 

ESTIMATION WITH A CROSS-CORRELATION TEST 

In this study, the author proposes to integrate area-based method into the feature 

matching process to strengthen the robustness of the matching algorithm against 

mismatches and noise. More specifically, cross-correlation information is used as an 

analysis and selection criterion for the matching. Instead of identifying mismatch(es) 

after it has been generated, it determines how good the homography model (H) is for 

the two matching images and discard bad H to reduce chances that mismatches are 

included. The basic idea is to generate patches around each SIFT matched points 

(named as feature patch) and calculate the normalized correlation coefficient between 

each pair. Then the significance tests of correlation coefficients are used to qualify the 

values of the correlation coefficient.  

In RANSAC, we use 2-D projective transformation H (planar homography) to 

approximate the geometric transformation between two images (e.g. I and I′).  Any 

two corresponding SIFT features in images I and I′ that pass RANSAC will comply 

with the model, which ideally can be expressed as: 

 
𝑥′

𝑦′

1

 =  
𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 1

  
𝑥

𝑦

1
  

(5.1) 

In (5.1) p =  x, y, 1 T  and p′ =  x′ , y′ , 1 T  denotes the two points expressed using 

homogeneous coordinates, and  
a1 a2 a3
b1 b2 b3
c1 c2 1

  represents homography model H. 
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a1 a2
b1 b2

  parameterized affine changes, a3 b3 T  shift parameters and  c1 c2  

projective deformation. 

After homography model has been generated by RANSAC processing, a local square 

patch in image I with a size of (2w + 1) ∗ (2w + 1) centered on p is generated, 

denoted as N(p). N p = (2w + 1) ∗ (2w + 1)By using the estimated H, N(p) is 

transformed into N(p′) and resampled on image I′ . Then cross-correlation between 

the two window patches is calculated using (2), where Guv  and Guv
′  represent the 

intensity values of the two correlation windows, respectively, whereas µ G  and 

µ G′  denote their average intensity.  

r G, G′ =
   Guv −µ G  (Guv

′ −µ G′  )w
v =−w

w
u =−w

    Guv −µ G  
2w

v =−w
w
u =−w .   G ′

uv −µ G′   
2w

v =−w
w
u =−w

            (5.2) 

  

In Eq. (5.2),  r G, G′  varies from -1 to 1, the closer to 1 the higher correlation, the 

bigger similarity between two patches and greater chance to be correct corresponding 

points. However, one essential question is: how significant is the relationship that can 

be treated as correct match? We wish to quantitate the degree of the association so as 

to differentiate the erroneously matched feature patches.  

When the two matched images are identical, the correlation coefficient value will be 

equal to one everywhere. But generally two matched images are taken with different 

viewpoint, probably different illumination condition, scale etc. Influenced by these 

factors, any two correctly matched patches on the images may have different values, 

not to say mismatches. Such fact poses greater challenge to the problem. 

To tackle this problem, the first strategy adopted is to treat each matched patch pair as 

a sample r, and there is a hypothesized population correlation of correctly matched 

patches. Then a significance test is performed to test if the sample is from the 

population of correct matches, or significantly different from the group. Because of the 
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difference between two images, the population correlation coefficient ρ for correct 

matches should be close to one. Although the cross –correlation may vary  

theoretically from -1 to 1, most of the sample values lie near ρ with ρ ≠ 0. The 

sampling distribution of r is very skewed, as shown in Figure 5.4.  

 

Since r is not normally distributed, Fisher transformation is used to form a new 

statistic with the following formula (Devore, 2012): 

zr =
1

2
ln

1 + r

1 − r
  

(5.3) 

The transformed value zr  has an approximately normal distribution. The statistic for 

testing H0: ρ = ρ
0
 is 

𝑍 =
zr −

1
2 ln[(1 + ρ0) (1 − ρ0)] 

1  N − 3 
 

(5.4) 

Now we can use the Z value to determine whether the correlation coefficient r 

between the two patches is significantly different from the hypothesized population 

Figure 5. 4 Example of the sampling distribution of r for N = 12 and ρ = 0.90. 
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correlation ρ
0
 so as to tell if the match is correct. Since the exact ρ is unknown and 

varies for every pair of corresponding patch, a minimally acceptable value is used. 

Rather than deciding if single patch pair is correct or not arbitrarily, we choose to 

evaluate the image matching based on the overall performance. In other words, the 

homography model built by the image matching process is evaluated; the model is 

discarded if the percentage of uncorrelated ―corresponding patches‖ exceed a certain 

threshold. Mismatches got involved after the RANSAC process mostly due to the fact 

that the homography model is incorrect. An obvious benefit for this model-based 

method over single patch based approach is that it tackles the problem from the root. If 

the model is poorly estimated by RANSAC, which result in a big number of 

mismatches left in the dataset, a patch-based approach can hardly guarantee the correct 

detection of mismatches since the exact ρ is unknown and the minimally acceptable 

value is based on general understanding of correlation; on the other hand, when a 

model-based approach is used, the overall performance is considered, the poor model 

will fail the test with the result being discarded and images re-matched, which ensures 

the final estimation is based on a correct homography model.  

A multi -step strategy has been proposed: 

Table 5. 1 The procedure of the cross-correlation test 

 

1) Perform feature based image matching between two images I and I′ ; 
2) Use RANSAC process: n pairs of corresponding points(inliers) are found.  

If image matching performed is the 4th time of the same pair, we determine the 
image pair cannot be correctly matched, break; 

3) Generate a square feature patch of N pixels around each feature point ; 
4) Calculate the cross-correlation for each feature patch pair: ri , i = 1, ⋯  n −

1, n .  
5) From (r1, ⋯ , rn), obtain the max value rmax  ; 

If rmax  indicates its population is at least moderately positively correlated, 
proceed; Otherwise, current iteration terminates and the procedure goes back to 
(2). 
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  The statistic test is as follows: 

zmax =
1

2
ln

1 + rmax

1 − rmax
 

 

 

We wish to test H0: ρ = 0.5 versus H0: ρ > 0.5 at the significant level of 
0.05, then the critical value is 1.645: 

Z_maxscore =
zmax −

1
2 ln[(1 + 0.5) (1 − 0.5)] 

1  N − 3 
  

If Z_maxscore ≥ 1.645 , proceed 
Otherwise goes back to (2); 

6) For every feature patch pair i ∶  
a) Obtain zi  from ri using Eq.(5.3) ; 
b) If ri indicates its population is not at least moderately positively correlated, 

feature patch pair i is treated as a false match. The statistic test is as follows: 
We wish to test H0: ρ = 0.5 versus H0: ρ < 0.5 at the significant level of 

0.05. 

Z_iscore =
zi −

1
2 ln[(1 + 0.5) (1 − 0.5)] 

1  N − 3 
  

If Z_iscore ≤ −1.645, the ith  match is treated as false match; 
Otherwise the ith  match passes the test. 

7) Calculate the pass rate Prate  based on all n pair of matches; 
If Prate > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(0.8 𝑏𝑦 𝑑𝑒𝑓𝑎𝑢𝑙𝑡), we determine the current homography 
model is correct and the two images are correctly matched; 
Otherwise the current Homography model is false and the procedure goes back to 
(2). 

8) For image pair with correct homography model, delete false matches found in (5). 
 

In this algorithm, two main parameters need to be set in advance. One is the local 

square patch size N, the other is the threshold for Prate . The choice of target sample 
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size N is critical. If it is too small, the approximation based on Fisher transformation 

will not be valid. If the patch size is too large, the efficiency of the algorithm will be 

affected. Meanwhile, N is closely related to the resulting cross-correlation value r𝑖  of 

the patch pair. When N increases, r𝑖  decreases. For one tail test at level 0.05 and 

critical value at 1.645, the relationship between N and r𝑖  is shown in Figure 5.5. 

 

It can be observed from Figure 5.5 that when N is very small, the cross-correlation 

value r𝑖  changes very sharply. When N increases to certain value, the change of r𝑖  

becomes very small and ri tends to be stable. Since N is a local square patch with a 

size of (2w + 1) ∗ (2w + 1), in which (2w + 1) is the patch width, therefore it 

depends on the value of w. When w ≥ 12 (N ≥ 625), r𝑖  drops under 0.55 and 

becomes relatively stable. Considering the efficiency, the recommended w  is 

between 12 and 20. And in this study, the default value for w is 13 and the 

corresponding N is 729. 

In order to determine the suitable Prate  threshold, experiments are performed. A 

sequence of images, which consists of 79 images, is matched with another 24 images 

with/without common areas. The proposed method has been applied with pass rate 

Prate  for each matching been recorded. If the test fails at the first condition 

(𝑍𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 < 1.645), the pass rate is at 0. In total 1219 times of matching were 

Figure 5. 5 The relationship between sample size N and cross-correlation value r𝑖  
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obtained, including good matching and RANSAC performance, as well as bad ones.

The pass rate distribution is shown in Figure 5.6. It can be easily observed that the

distribution centred on both ends: most pass rates are either close to 0, which indicated

bad performance, or close to 1, which shows good matching and RANSAC

performance. Very small number of pass rates stay in between. Therefore, we need to

figure out how close to 1 we can determine the performance to be good and the

homography estimation is successful.

To further investigate the threshold, we calculate the average correct rate of feature

matching at each interval. Mismatches are manually identified. Details are shown in

Table 5.2. According to the table, the majority of the good estimation have the pass

rate ranging between 0.9-1. It can be observed that when pass rate exceeds 0.8, it

guarantee over 95% of correct rate for feature matching. If the threshold is too high, it

will affect the efficiency of the algorithm. Therefore, the recommended threshold is

between 0.8-0.9, and in this study the author uses 0.8 as default value.

Figure 5. 6 Distribution of pass rate for the 1219 times of image matching
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Table 5. 2 Pass rate from 0 to 1 with 0.1 interval

Pass rate

interval

0-

0.1

0.1-

0.2

0.2-

0.3

0.3-

0.4

0.4-

0.5

0.5-

0.6

0.6-

0.7

0.7-

0.8

0.8-

0.9

0.9-

1

Number of pass

rates

519 6 10 5 2 4 2 5 19 647

Distribution

of pass rate

population

42.6

%

0.49

%

0.82

%

0.41

%

0.16

%

0.33

%

0.16

%

0.41

%

1.56

%

53.1

%

Average

correct rate

of feature

matches

0.00

%

0.00

%

1.00

%

0.00

%

0.00

%

46.3

%

86.5

%

87.8

%

96.9

%

100

%

5.4 EXPERIMENTS

In the first two experiments, the methodology proposed in Section 5.3 is tested and

evaluated. In the last two experiments, the methodology is applied to certain

applications.

5.4.1 Evaluation of the test

In the first experiment, the strength of the test is evaluated. It is focused on how the

test performs against the random nature of RANSAC. In other words, the aim is to

find out whether the test can tell good RANSAC estimation from bad ones.

Because the inliers RANSAC retained as well as the estimation of homography largely

depend on the initial selection, we may get different RANSAC matching results from

the same pair of images. Therefore, here the same pair of images is used but run

RANSAC with the test proposed several times to get different results. The first test

fails to pass because its maximum cross correlation r is 0 (Figure 5.7). It can be

observed that the inliers RASNAC retained are indeed mismatches and the

homography has been false. The test successfully excluded the bad RANSAC

estimation.
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If we run the test again, only very few inliers are retained by RANSAC in the second 

one, as shown in Figure 5.8. The pass rate is at 40% and mismatches are identified as 

No. 1 and No. 3-7. The test fails to pass because the threshold 70% has yet been 

reached. It can be observed that No.1 is obviously mistaken, while the rest have been 

incorrect rejection. Therefore, the author believes the test has been too ―harsh‖ on the 

mismatch identification. 

 

Figure 5. 7 The first evaluation test fail with r𝑚𝑎𝑥  at 0.00 

Figure 5. 8 The second evaluation test fail with pass rate at 40% 
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In the third case, as shown in Figure 5.9, the test passes with 100% pass rate, which 

means all the inliers are correct matches. It can be observed that the RANSAC indeed 

provides a satisfactory result. 

 

In summary, the author believes that the test set a harsh bound for the RANSAC 

estimation. It correctly rejects the false estimation. For estimation that also involves 

small number of mismatches, it rejects. Only the fine estimation with a high pass rate 

is retained. In the algorithm we proposed, we repeat the RANSAC process until either 

a fine estimation is obtained, or after certain times the matching pair are discarded and 

identified as wrong pair. Disregard the efficiency of the algorithm, the number of 

tolerable times can be increased. 

5.4.2 Capability of the test for difficult image matching 

scenarios 

Using the proposed method, we perform image matching using different image pairs. 

The focus has been on testing the capability of the proposed methodology against 

Figure 5. 9 The third evaluation test pass with pass rate at 100% 
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difficult circumstances for matching: matching ambiguity because of low overlap or 

repetitive patterns, and strong transformation.  

Firstly, matching ambiguity result from repetitive patterns is tested. As shown in 

following two matching pairs in Figure 5.10 and 5.11, both pairs contain rich 

repetitive patterns: wooden boards and stripe patterns on the floor. It can be easily 

observed that in the first pair, RANSAC performs poorly since most of the inliers are 

mismatches. It has failed the test since its maximum cross correlation rmax  is 0, 

which cannot prove its population is at least moderately correlated. The other pair, 

however, passed the test at a pass rate of 88%. It can be noticed that in the second pair, 

RANSAC indeed produce a good result. 

 

 
Figure 5. 10 Evaluation test fail with r𝑚𝑎𝑥  at 0.00 
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Secondly, matching ambiguity results from low overlap are tested. As shown in 

following two matching pairs in Figure 5.12 and Figure 5.13, both pairs have very 

limited overlapping areas. It can be easily observed that in the first pair, RANSAC 

performs poorly since most of the inliers are mismatches. It has failed the test since its 

maximum cross correlation rmax  is 0, which cannot show its population is at least 

moderately correlated. The other pair, however, passed the test at a pass rate of 95% 

with one pair of points (No.1) being identified as mismatch. It can be noticed that in 

the second pair, RANSAC indeed produce a good result. 

Figure 5. 11 Evaluation test pass: pass rate at 0.88 
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In the third test, image matching with RANSAC against large viewpoint changes is 

tested. As shown in Figure 5.14, the pair has a 50 degree viewpoint shift. It has passed 

Figure 5. 12 The evaluation test fail with r𝑚𝑎𝑥  at 0.00 

Figure 5. 13 The evaluation test pass at pass rate 95% 
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the test at a pass rate of 100%. It can be noticed that RANSAC indeed produce a good 

result. 

 

 

In summary, the test can effectively help prevent poor RANSAC performance and 

false homography estimation under circumstances like matching ambiguity and 

dramatic transformation.  

5.4.3 Application in image stitching and mosaicing 

In the third experiment, the RANSAC based homography estimation method is applied 

to image stitching and mosaic. A sequence of images is extracted from a video 

recorded by a moving platform. Adjacent image pairs are matched and stitched to form 

a mosaic. A total of 77 pairs are matched and 77 mosaics are produced. The 

performance for each pair is evaluated and the pass rate is shown in Figure 5.15. 

Figure 5. 14 The evaluation test pass at pass rate 100% 
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It can be observed that most of the pairs past the test with a high pass rate. Five pairs 

failed. We pick 4 typical pairs, Pair No. 39-42, to illustrate the performance of the test. 

The test results of the 4 pairs are shown in Table 5.3. 

Table 5. 3 Performance of the evaluation test for pair No.39-42 

Pair ID Image Pair ID Test Result 

39 44,45 Fail: rmax  at 0.33 

40 45,46 Fail: rmax  at 0.00 

41 46,47 Fail: pass rate at 73% 

42 47,48 Pass: pass rate at 99% 
 

 

The first two pairs failed the test because their maximum cross correlation rmax  was 

too small. To further investigate their image matching performance, the matching and 

mosaic results are shown in Figure 5.16 and Figure 5.17. It can be easily observed that 

RANSAC didn‘t provide good estimation thus image stitching failed. 

 

Figure 5. 15 Pass rate of the evaluation from 77 pairs of matching images 
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Image pair No. 41 and No.42 have different pass rates. The matching and mosaic 

results are shown in Figure 5.18 and Figure 5.19. It can be observed that both pairs 

provides reasonable image stitching result (mosaic), with pair No. 42 outperform that 

of No. 41. Still pair No. 41 failed the test with a pass rate close to 80%. Comparing 

Figure 5. 16 The image matching of Pair No. 39 and its mosaic 

Figure 5. 17 The image matching of Pair No. 40 and its mosaic 
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with two previous pairs, it can be noticed that the test can correctly evaluate the 

performance of image stitching and mosaic. 

 

 

 

 

 

Figure 5. 18 The image matching of Pair No. 41 and its mosaic 

Figure 5. 19 The image matching of Pair No. 42 and its mosaic 
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5.4.4 Application in vision-based positioning and navigation 

system 

In the last experiment, the method is applied to the vision-based positioning and 

navigation system. A calibrated video camera (Logitech Webcam Pro2000) was 

mounted on a moving vehicle with sampling rate at 1 Hz. It moves around a mapped 

indoor environment, and the system resolves its trajectory by matching the query 

image extracted from the video recorded by the camera and the pre-stored 3D map. A 

local orthogonal right-handed coordinate system is used with the Z axis pointing 

downward. The camera‘s relative position to the vehicle was fixed, which means the 

experiment was partially controlled: camera height (Z=-0.725m). This experiment was 

designed to evaluate the performance of the vision-based positioning system before 

(Test A) and after using the proposed method for image matching (Test B). Therefore 

the same dataset is used and the positioning calculation ran off-line for twice. 

From the video, a total of 83 epochs (frames) were generated and calculated. The 

calculated 2D trajectories are shown in Figure 5.20 and Figure 5.21 using blue dots. In 

order to evaluate the positioning results, positioning information generated by a 

commercial software as reference to investigate the accuracy. More specifically, as 

GPS cannot be used in indoor areas, we artificially set control points on those image 

frames and use commercial software PhotoModeler to get their position information as 

reference, which has been indicated by the red dash lines in Figure 5.20 and 5.21. 

Within 10m distance, the software can normally achieve centimeter level accuracy. As 

the parameter Z is controlled (at -0.725m as camera height, axis pointing downwards), 

the positioning results at Z axis are shown in Figure 5.22 and Figure 5.23 using blue 

circles and the true values are shown using a red line.  
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Figure 5. 20 The 2D trajectory of the moving vehicle in Test A (blue dots): without the 
evaluation test; part of the reference track is shown using red dash line 

 

 

Figure 5. 21 The 2D trajectory of the moving vehicle in Test B (blue dots): with the 
evaluation test; part of the reference track is shown using red dash line 
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Figure 5. 22 The trajectory at Z axis of the moving vehicle in Test A (blue circles): 
without the evaluation test; the true value is shown using the red line. 

 

 

 

Figure 5. 23 The trajectory at Z axis of the moving vehicle in Test B (blue circles): 
with the evaluation test; the true value is shown using the red line. 
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By comparison, it can be observed that the trajectory produced by using the proposed 

method for image matching has been much improved. As shown in Figure 5.20, 

without using the method, five epochs (No.4, 24, 48, 49, 50) produce results out of the 

geometric boundary or deviate from the reference over 0.5m. In Figure 5.22, 5 epochs 

(No. 4, 14, 48, 49, 50) produce bad results at Z and share 4 bad epochs (No.4, 48, 49, 

50) with its X and Y.  

Then we investigate the inaccurate results by tracing the pseudo ground control points 

(PGCPs) back to their correspondences on map images, and discovered that false 

estimations are the results of mismatches. Taking epoch No. 49 for instance (Figure 

5.24 and Figure 5.25), from Test A, the one without using the proposed method for 

image matching, it generates 5 PGCPs, and their 3D coordinates come from the 

matched feature points of two map images: map image No. 25 & No.26 (Figure 5.26). 

However, it is discovered that in Test A PGCP No.1& No.3 were produced by 

mismatches (red circled), therefore their 3D coordinates are erroneous. By comparison, 

the matching between epoch No. 49 and its map images in Test B based on the 

proposed method has also been shown in Figure 5.27. It can be observed that not only 

no false PGCPs have been generated, but the number of PGCPs have been increased 

from 5 to 21. Since better PGCPs distribution will benefit the positioning precision, 

we further investigate the impact of the method on final positioning performance. 
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Figure 5. 24 Test A: epoch No. 49 and its 
PGCPs (yellow dots) without using the 
proposed method for image matching 

 

Figure 5. 25 Test B: epoch No. 49 and its 
PGCPs (yellow dots) with the cross 
correlation based image matching 

  

Figure 5. 26  Test A: the corresponding 
map images No.25 and No. 26 that 
matched with epoch No. 49 to generate 
PGCPs.  PGCP correspondences are 
shown using yellow dots. 

Figure 5. 27 Test B: the corresponding 
map images No.25 and No.26 that 
matched with epoch No. 49 to generate 
PGCPs.  PGCP correspondences are 
shown using yellow dots. 
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After excluding the epochs with PGCPs produced by mismatches for the original 

approach, we compare the performance of the vision-based positioning between Test 

A and Test B. Using the PhotoModeler results as reference for X and Y, and the 

controlled value for Z, the accuracy in terms of RMSE from the two tests are shown in 

Table 5.4. It can be observed that the accuracy has been improved after using the 

proposed method. 

Table 5. 4. Vision-based positioning accuracy with regard to references 

 

RMSE of 
positioning results 
in test A 

RMSE of 
positioning results 
in test B 

X(m) 0.1287 0.1233 
Y(m) 0.2289 0.1940 
Z(m) 0.2799 0.1406 

 

 

In summary, the application of the method on image matching for this vision-based 

navigation system has improved the performance of positioning. Bad positioning 

results due to false PGCPs from mismatched feature points have been largely avoided. 

Meanwhile, it can also improve the positioning accuracy. The reason is that the 

proposed method can help improve the quality of image matching. Poor RANSAC 

estimations of image matching with a large number of mismatches can be discarded. 

The retained good RANSAC estimation tends to produce bigger number of inliers with 

good quality. Therefore, the PGCPs improve in terms of both quality and quantity. 

And final positioning results are more accurate.  

 

5.5 SUMMARY 

Image matching is the fundamental problem for a wide range of applications, and 

RANSAC has been the most popular strategy for outlier detection and homography 
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estimation in image matching. However, its major limitation lies in that the RANSAC 

method starts with a random subset of correspondences to estimate homography model 

and detect outliers accordingly. If the initial selection is erroneous, it will lead to 

inaccurate or even false estimation of the homography and mismatches will be 

included as inliers. Therefore, in this research a new method to evaluate and enhance 

the performance of RANSAC based homography estimation has been proposed. By 

calculating cross-correlation information between feature patches, bad estimation can 

be detected and removed. Moreover, accompanied with RANSAC, this method can 

largely improve the quality of image matching.  Experiments have demonstrated that 

the evaluation test set a harsh bound for the RANSAC estimation. It can correctly 

identify poor RANSAC estimation and retain only fine ones, and effectively improve 

the quality of image matching under circumstances like matching ambiguity and 

dramatic transformation. Moreover, the method has been tested in three applications: 

image recognition, image stitching and vision-based navigation.  Experiments have 

shown that all three applications benefit from such an approach. For this research, it 

has improved the performance of vision-based positioning effectively. Its application 

in the identification of reference images from the database (image recognition) for the 

vision-based navigation system can be found in Section 3.2.2 and Section 7.3.2. In 

summary, such an estimation method can be used together with RANSAC for a wide 

range of applications, and help improve the performance of image matching. Currently 

the efficiency of the algorithm has not been emphasized. Further research will be 

focused on this aspect. 
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CHAPTER 6                  

EVALUATION OF THE SYSTEM 

PERFORMANCE 
 

𝟔. 𝟏 INTRODUCTION 

The precision and accuracy of such photogrammetric approach of image-based 

positioning is depending on the precision and accuracy of final space resection process, 

which is a function of PGCP distribution and measurement accuracy, and any factor 

that has certain impact on either of these two major components will to certain degree 

influence final positioning accuracy. Therefore in this chapter, the way that different 

factors influencing the positioning accuracy are analysed through both mathematical 

model and experiments, which includes simulations and tests based on real data. 

𝟔. 𝟐 MAJOR COMPONENTS DETERMINING 

POSITIONING ACCURACY 

In this section, the two main components that determine the accuracy of the position 

solution are identified: geometry and measurement accuracy. Both mathematical 

model and test results are analysed to verify this assumption. Any factor that involved 

impacts the positioning accuracy is through its influence on these two elements.  

6.2.1 Analysis of mathematical models 

In Chapter 3 the mathematical model of the vision-based navigation system has been 

introduced. The least squares based space resection with modification is used for the 

final positioning resolution as shown in Eq.6.1 and Eq.6.2: 
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𝑨𝒕 + 𝑩𝑿 − 𝒍𝟏 = 𝒗𝟏   , 𝒍𝟏~(𝟎, 𝝈𝟎
𝟐𝑷𝟏

−𝟏) (6.1) 

𝑰𝑿 − 𝒍𝟐 = 𝒗𝟐      ,  𝒍𝟐~ 𝟎, 𝝈𝟎
𝟐𝑷𝟐

−𝟏    (6.2) 

in which 𝑨  contains partial derivatives with respect to the exterior orientation 

parameters, and 𝒕 contains the incremental changes to the initial values of external 

orientation parameters; 𝑩 contains the partial derivatives with respect to the three 

coordinates of the (Pseudo) Ground Control Points, and 𝑿 contains the incremental 

changes to the initial values of ground coordinates of PGCP. 

Combine (6.1) with (6.2): 

 
𝑨 𝑩
𝟎 𝑰

  
𝒕
𝑿
 −  

𝒍𝟏
𝒍𝟐

 =  
𝒗𝟏

𝒗𝟐
  ,  

𝐏𝟏   𝟎

𝟎    𝐏𝟐
     (6.3) 

Corresponding normal equation becomes: 

 
𝑨 𝑩
𝟎 𝑰

 
𝑇

 
𝐏𝟏   𝟎

𝟎    𝐏𝟐
  

𝑨 𝑩
𝟎 𝑰

   
𝒕
𝑿
 =  

𝑨 𝑩
𝟎 𝑰

 
𝑇

 
𝐏𝟏   𝟎

𝟎    𝐏𝟐
  

𝒍𝟏
𝒍𝟐

  (6.4) 

Substituting some parts of the equation 5 with simple expression: 

 
𝑵𝟏𝟏 𝑵𝟏𝟐

𝑵𝟐𝟏 𝑵𝟐𝟐
  

𝒕
𝑿
 =  

𝑾𝟏

𝑾𝟐
  (6.5) 

in which 

 
𝑵𝟏𝟏 𝑵𝟏𝟐

𝑵𝟐𝟏 𝑵𝟐𝟐
 =  

𝑨𝑻𝑷𝟏𝑨 𝑨𝑻𝑷𝟏𝑩

𝑩𝑻𝑷𝟏𝑨 𝑩𝑻𝑷𝟏𝑩 + 𝑷𝟐

  (6.6) 

The covariance matrix of the unknowns is contained in a generalized inverse of the 

normal equation matrix:  

 
𝑸𝒕𝒕 𝑸𝒕𝑿

𝑸𝑿𝒕 𝑸𝑿𝑿
 =  

𝑵𝟏𝟏 𝑵𝟏𝟐

𝑵𝟐𝟏 𝑵𝟐𝟐
 
−1

 (6.7) 

Since the quality of space resection based positioning is evaluated by the precision 

(accuracy) in 6DOF, a relative precision can be measured through the post-adjustment 
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covariance matrix Qtt  of the estimated image orientation in 6DOF (t), regarding σ0
2 

as a variance factor.  

𝑸𝒕𝒕 = (𝑵𝟏𝟏 − 𝑵𝟏𝟐𝑵𝟐𝟐
−𝟏𝑵𝟐𝟏)−𝟏 (6.8) 

From Eq. (6.8)  

𝑸𝒕𝒕 = (𝑨𝑻𝑷𝟏𝑨 − 𝑨𝑻𝑷𝟏𝑩(𝑩𝑻𝑷𝟏𝑩 + 𝑷𝟐)−1𝑩𝑻𝑷𝟏𝑨)−1 (6.9) 

From Eq. (6.9) we can clearly observe that the final positioning precision &accuracy 

using a modified space resection model is affected by two major elements: geometry 

(𝑨 & 𝑩) and the accuracy of measurements: image measurement (𝑷1) and 3D object 

space coordinates of pseudo ground control points (𝑷2).  

In order to further investigate the role of the two components, their influence on the 

final precision need to be separately evaluated, DOP values are used as the indicator of 

geometric strength and the estimated standard deviation of observations is used to 

evaluate measurement accuracy. The calculation of DOP values follows the same way 

as in the GPS community: 

                          𝑪𝑿 = 𝜎0
2(𝑨𝑻𝑨)−1 (6.10) 

in which the part (𝑨𝑻𝑨)−1 contains DOP factors in its diagonal elements. More 

details can be found in Section 2.3.3.1. 

The estimated standard deviation of observations is calculated as follows: 

𝜎 0 =  
𝒗𝑇𝑷𝒗

𝑓
 

(6.11) 

in which f represents degree of freedom (f = n − u ). 

6.2.2 Test on the proposed theory 
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A test has been carried out to test the theory deduction in Chapter 6.2.1. The aim is to 

verify the deduction that the positioning accuracy is determined by the two 

components: geometry of PGCPs and measurement accuracy. 

In this experiment, real time images are obtained through stable camera stations rather 

than camera mounted on a moving vehicle. A calibrated CCD camera (Canon  

EOS4500) is used. In this way, each position of the camera site can not only be 

calculated by the system but also measured by external tools, total station, with 

relatively higher accuracy. Therefore the positioning accuracy can be evaluated 

against reality. The system calculated results, surveyed true value and their difference 

are shown in Table 6.1. 

Table 6. 1 System measured results evaluated against total station results 

 

Camera 
Site ID X Y Z 

Calculated(m) 

3 0.057  1.177  -1.273  
4 0.070  1.844  -1.311  
5 0.067  2.924  -1.261  
6 0.075  5.377  -1.280  

Surveyed(m) 

3 0.067  1.080  -1.264  
4 0.068  1.885  -1.265  
5 0.062  2.955  -1.264  
6 0.064  5.003  -1.264  

Absolute 3 0.010  0.097  0.009  
Difference (m) 4 0.003  0.041  0.046  

 
5 0.005  0.031  0.002  

 
6 0.011  0.373  0.016  

 

 

According to Table 6.1, the accuracy of the positioning is between 1-10 centimetre 

level. Then the impact of geometry and measurement accuracy on positioning 

precision is analysed. Compare Figure 6.1 and Figure 6.2, it can be observed that the 

position precision generally follows the trend of DOP, which means geometry has the 

biggest impact. At the same time, it is noted that they are not exactly the same: e.g. the 
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precision on Z axis drops from epoch 3 to 4, while their DOP values are close. There 

are only two components that contributing to the final precision: geometry and 

measurement accuracy. As shown in Figure 6.3, the measurement accuracy from 

epoch 3 to 4 actually drops as predicted.  Although the influence of measurement 

accuracy is not significant in this case, it still proves the point that the overall 

positioning precision and accuracy depend on geometry and measurement accuracy. 

And geometry is the major impact since the final image-based positioning uses the 

same image-matching algorithm and geo-referenced map, which means the 

measurement accuracy remains more stable compared with PGCP geometry. It is also 

noted that the geo-referencing accuracy of the map in different areas may varies 

slightly, which leads to the variations on measurement accuracy. 

 

 

Figure 6. 1 Geometric Strength on the 4 epochs 
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Figure 6. 2 Positioning precision using estimated standard deviation in 3 out 
of 6 unknown parameters (unit: m). 

 

Figure 6. 3 Measurement accuracy on the 4 epochs (unit: m). 

 

6.3 GEOMETRY AND FACTORS INVOLVED 

In this section, the major component that determines positioning accuracy, geometric 

configuration of PGCPs, is analysed. 
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6.3.1 Geometric impact 

This experiment aims at evaluating the geometric impact on final positioning accuracy 

based on real world test. Vision-based positioning is carried out in the mapped indoor 

area of the school hallway. A calibrated video camera (Logitech Webcam Pro2000) is 

mounted on a moving vehicle with sampling rate at 1 HZ.  Its relative position to the 

vehicle is fixed, which means the experiment is partially controlled: camera height 

(Z:-0.725m) and two angles of the camera attitude (ω = 1.57 rad, υ = 0 rad) are 

fixed. The positioning was performed by extracting image frames from the video and 

match with the 3D map images frame by frame. Each frame is an epoch; a position in 

6DOF is calculated. We took epoch No.20-40 with controlled parameter Z for 

illustration. 

Figure 6.4 shows the calculated Z position between epochs 20-40. In extreme cases, as 

shown in Figure 6.4 and Figure 6.5, if too few PGCPs are generated, the positioning 

calculation will fail. Compare Figure 6.4 with the DOP values at Z-axis (Figure 6.6), it 

can be clearly seen that big DOP values, which means bad geometry, are behind the 

bad positioning results with low accuracy (e.g. Epoch 22& Epoch 38). The rest of the 

results are reasonable while their DOP values are below a certain limit. And the 

absolute accuracy does not follow the exact trend of DOP. Put the 3 figures together, 

it‘s not hard to observe that a bigger number of PGCPs gives a better chance of good 

geometry, thus a more accurate positioning result, vice verse. Therefore, it is 

concluded that the major cause of inaccurate results is bad geometry, and geometric 

impact plays an important role in the determination of final positioning precision. 
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Figure 6. 4 Measured Z position for epoch 20-40 

 

Figure 6. 5 Number of PGCP for epoch 20-40 

 

Figure 6. 6 Geometric strength at Z for epoch 20-40 
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6.3.2 Simulation test on geometric impact 

In previous section, the real world test help reveal the geometric impact on the 

positioning accuracy. Here a simulation test is carried out to further analyse the nature 

of the relationship between the geometry of PGCPs and system performance. Since the 

final positioning is based on a least squares solution, the geometry strength also affects 

internal reliability of the adjustment. This factor has been put into consideration. In 

this experiment, the PGCPs are simulated using known feature points in the scene (e.g. 

Figure 6.7). Therefore, their number and distribution can be controlled and set to suit 

the scenario of the tests. 

 

Figure 6. 7 Simulated PGCPs using known feature points in the scene 

6.3.2.1 Variation of the number of PGCPs 

To reveal the overall relationship between the number of PGCPs and the reliability of 

the system and precision of positioning, a group of tests were performed on images 

shown in Figure.6.7 , each tested with 15, 13,11,9,7,5,4 PGCPs respectively. One 

image with its results was used to show the common phenomena. 

Table 6.2 shows the positioning result with the use of this image. It can be seen that 

the estimation results of the external parameters (6DOF) tend to remain relatively 
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stable with an increased number of PGCPs. The DOP values and the average of 

controllability values for each set up (e.g. 9 PGCPs) were also calculated. Figure 6.8 

shows the variation trend of DOP values with the increase of PGCPs. The figures have 

further proved that the whole system is unstable with less than 13 PGCPs. The three 

figures all shows a decreasing trend of the test values (DOP values and average of 

internal control values), which means with the increase of the number of PGCPs, the 

precision of positioning is increasing and the internal reliability of the system has been 

improved.  According to the figures, it can also be observed that the increase in 

PGCP number has more impact on the precision in Z compared with the precision in X 

and Y. 

Table 6. 2 positioning result in 6 DOF 
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Figure 6. 8 DOP values for position and orientation 

 

Therefore it is concluded that PGCPs should be selected as many as possible to enable 

an acceptable positioning capability.  When the PGCPs obtained for a particular 

image are not sufficient to provide a stable and relatively precise positioning results, 

that image for positioning should be rejected.  

6.3.2.2 Distribution of PGCPs 

In order to investigate how the distribution of pseudo ground control points affect the 

positioning precision and reliability of the system, two groups of simulation tests were 

further performed. 

For the first group, two sets of PGCPs were choosen, with one set scattered around the 

image (Figure 6.9) and the other set cantered on a small region located on the image 

centre (Figure 6.10). Table 6.3 shows the result of one image, 7 PGCPs were used for 

each set of this case. The estimation results of position and orientation parameters 

(6DOF) are close to the best results obtained previously with 15 PGCPs, which means 

the positioning function run successfully and the result is acceptable with both settings. 

It can be easily observed from DOP values that the precision of positioning is much 

higher with the scattered PGCPs than with the centred distribution. The internal 

reliability of the system has not changed much.  
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Figure 6. 9 Scattered distribution of 
simulated PGCPs on image No. 374 

Figure 6. 10 Centered distribution of 
simulated PGCPs on image No. 374 

 

Table 6. 3 positioning result with scattered and centred distribution 

 

The second one aims at investigating how the geometry change of PGCPs, especially 

from planar to non-planar will affect the positioning precision and system internal 

reliability. The tests were designed in the way that all three sets had 8 points in 

common and lay on the same plane. Only one point out of 9 located at different places, 

with the first test had the point on the same plane ( Type 1, Figure 6.11), the second 

test had the point located on a different plane ( Type 2, Figure 6.12 ),and third test had 
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the point located on the same second plane but with bigger deviation from the optical 

axis( Type 3, Figure 6.13 ). The change of DOP values is shown in Figure 6.14. 

 

Figure 6. 11 Type 1 distribution: all 9 points lay on the same plane 

 

Figure 6. 12 Type 2 distribution: 8 points lay on the same plane, the 9th on second 
plane 
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Figure 6. 13 Type 3 distribution: 8 points lay on the same plane, the 9th on second 
plane 

 

  

Figure 6. 14 DOP values for position and orientation 

It can be observed that a non-planar configuration of PGCPs increases the precision of 

the positioning result. It shows that the effect becomes more significant with the 

increasing offset from the optical axis. From Figure 6.13 and Figure 6.14, it can also 

be observed that the precision in Z is again more affected than that of X and Y, and 

Omega again being the least affected among the three angle values. It is also noted 

from the result that internal reliability deteriorates (the average of controllability value 

grows). This is mainly because the points on the different planes contribute to the 
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geometry largely, thus making it hard to be controlled. It will be difficult to detect any 

outlier in this observation. In order to improve the precision of positioning and at the 

same time do not sacrifice system reliability, it is concluded that PGCPs on different 

planes should be selected evenly. 

In summary, the geometry of PGCPs plays an essential role for the system 

performance. Since PGCPs are produced by matched SIFT feature points, any factor 

that influence the SIFT matching between query image and reference image(s) will 

affect the density and geometric configuration of PGCPs, which includes the richness 

of features, illumination, viewing angle, etc. In the following section, the performance 

of the system is evaluated with varying image matching conditions. It discusses the 

impact of these factors on positioning performance through the geometry of PGCPs. 

6.3.3 Evaluating the performance of SIFT matching for the 

vision-based positioning system 

A controlled experiment is designed to evaluate the performance of SIFT matching for 

the vision-based positioning system. Major factors that influence image matching and 

their impacts on final positioning have been investigated: illumination and viewpoint 

changes. On top of this, mismatches, which has long been a bottleneck for visual 

systems have been studied as well.  

First, mapping is performed in the target environment. All geo-referenced map images 

were taken with adequate lighting and viewing direction perpendicular to the wall 

(mapping area with visual features). Then a calibrated CCD camera (Canon EOS4500) 

with a fixed focal length at 24.1757mm was used as vision sensor of the positioning 

system. First Three stable camera sites were deployed facing different mapping areas 

with X, Y, Z coordinates of the three camera stations surveyed by a total station, and 

angular changes at each camera site roughly measured. A total 8 pairs of images (16 in 
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total) were taken at the 3 sites, with each pair consisted of one image with adequate 

lighting and the other covering the same scene but limited lighting. For each image 

matching process, corresponding pairs before and after RANSAC process (used to 

reject mismatches) are compared. Furthermore, the number of PGCP generated by 

each matching process is also studied along with the geometry of these points, which 

will directly affect the precision of positioning. Finally a manual check for the PGCP 

locations from the two matched images is performed to verify the correctness of 

PGCPs generated by image matching. The results are shown in Table 6.4. 

 

Firstly, it can be observed with ease, in each pair the image with good lighting 

condition (e.g. Image No.1) is able to find more common SIFT matched features when 

Table 6. 4 Performance of SIFT matching in the system 

 

SiteID Im_ID Angle 

change 

Matches 

SIFT 

Matc-hes 

Inliers PGCPs False PGCPs 

PGPGCPs 

PDOP ADOP 

1 

1 0 578 202 51 1 2399 583 

2 0 515 141 28 0 2575 622 

3 -30 372 103 32 2 1149 223 

4 -30 357 119 34 1 1072 208 

5 50 267 59 2 0 

  6 50 210 37 1 1 

  

2 

7 0 427 145 35 0 2106 530 

8 0 346 96 24 0 2795 701 

9 -20 401 193 59 1 969 235 

10 -20 386 145 60 2 195 50 

3 

11 0 417 112 11 0 5711 1177 

12 0 295 56 9 0 822 4034 

13 -30 457 146 22 0 372 2133 

14 -30 340 66 6 0 424 2471 

15 20 241 65 5 0 5813 28658 

16 20 206 47 5 0 6624 32951 
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matched with reference map image than its counterpart with limited lighting (e.g. N 

Image No.2). As a result, more PGCPs are generated and a better geometry (smaller 

DOP values) is provided. This test proves that lighting variation will influence the 

precision of final positioning by its impact on the geometric strength of the adjustment 

system. For vision-based positioning and navigation systems alike, which depend on 

visual information and image matching techniques for localization, one limitation is 

that illumination changes, which is especially common for  outdoor environment, 

may affect a navigation solution. The reason behind is that most existing local 

descriptors including the SIFT are based on luminance information rather than color 

information. Therefore, more robust local descriptors need to be developed. 

The third column in Table 6.4 indicates the angular changes of viewpoint at κ (around 

Z-axis) for each camera site, other angles remain stable. Assuming the viewing 

direction perpendicular to the mapping area (wall with geo-referenced features) to be 0, 

a clockwise rotation to be positive changes. It‘s easy to note that the only epochs that 

fails to give a positioning result is the pair with the most drastic angular change, real 

time image No.5 (6).  Not only does the total number of SIFT matches decreases, the 

percentage of correct matches filtered using RANSAC has also been reduced. Actually 

it is the pair with lowest correct rate. As a result, too few PGCPs are generated for 

positioning. 

For better comparison, two epochs with similar coverage of the scene are chosen: No.5 

and No.11 shown in Figure 6.15 and Figure 6.16, both of which were taken under 

amble light. It can be easily observed that Image No.5 include more features, but less 

SIFT matched points as well as PGCPs are found. Moreover, the correct rate (the 6th 

column ―Percentage‖) of No.5 is lower than that of No.11. It indicates that when the 

two matched images suffer from large viewpoint variation, less SIFT matches will be 

found, and there‘s a higher chance to generate false matches. As a result, number of 

PGCPs will decrease, which lead to poor positioning precision. But if we take a look 
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at other images with smaller angular changes, such rule does not apply. The reason is 

that the performance of SIFT based matching only drops under substantial viewpoint 

changes.  

  

Figure 6. 15 Real time image No.5 Figure 6. 16 Real time image No.11 

Thirdly, it is noticed that after using RANSAC to reject mismatches, there is still a 

small chance that mismatches been left untreated, which might later generate false 

PGCP to jeopardise the final positioning process.  As shown in Figure 6.17 and 

Figure 6.18, when the real time query image No.3 is matched with map image No.6, 

32 PGCPs are generated from the reliable matches provided by RANSAC. However, 2 

false matches were still been spotted during manual check. The outlier detection 

mechanism introduced in Chapter 4 dealt with these circumstances.  
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Figure 6. 17 Real time query image No.3 with PGCPs, false 
PGCPs have been circled. 

 

Figure 6. 18 Map image No.6 with correspondences of PGCPs 
on query image No.3, false correspondences have been circled 

 

In summary three major weaknesses for image matching in the system have been 

found: invariant feature matching could not deal with drastic illumination changes and 

large viewpoint shift; Furthermore, mismatches may lead to false PGCPs, which need 
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to be tackled by data snooping during the least square solution of final positioning. 

These three problems affect the final positioning by changing the PGCPs distribution. 

6.3.4 Using ASIFT for viewpoint changes 

In order to tackle the problem for unsatisfactory performance of SIFT subject to 

dramatic viewpoint distinction, some approaches have been recently proposed by 

some researchers to extend scale and rotation invariance to affine invariance, such as  

MSER (Matas et al., 2004) and Harris / Hessian Affine (Mikolajczyk and Schmid, 

2004). Although these methods have been proved to enable matching with a stronger 

viewpoint change, all of them are prone to fail at a certain point (Nalpantidis et al., 

2009). A better idea is to simulate viewpoint changes in order to reach affine 

invariance, the most successful algorithm using such method is named ASIFT 

(affine-SIFT). It is introduced by Morel and Yu in 2009 (Morel and Yu, 2009) to 

explicitly deal with extreme angle changes (up to 36 and higher).  SIFT is only 

partially invariant to viewpoint changes because it is invariant to four out of the six 

parameters of an affine transform. Affine-SIFT (ASIFT), on the other hand, simulates 

all image views obtainable by varying the two camera axis orientation parameters, 

namely, the latitude and the longitude angles, left over by the SIFT method. Then it 

covers the other four parameters by using the SIFT method itself (Morel and Yu, 

2009).  

In this research, ASIFT is applied to replace SIFT in order to achieve a more robust 

positioning result against viewpoint variation. At both mapping and positioning stage, 

ASIFT based image matching is used in the same way SIFT is utilized. In order to 

evaluate its performance and compare it with that of SIFT, datasets from the same 

controlled experiment is used.  

Figure 6.19 and Figure 6.20 show the matching between real time query image No.5 

with map image No.10 using SIFT and ASIFT respectively. Under dramatic view 
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changes, ASIFT produce more reliable matches (inliers), while although SIFT get as 

many tentative matches, most of which are mismatches and filtered out by RANSAC. 

When dealing with images without much angular difference, however, ASIFT had a 

rather unstable performance, as shown in <Figure 6.21 and Figure 6.22>, and <Figure 

6.23 and Figure 6.24>, with the former group favours SIFT and later one favours 

ASIFT. The reason for it lies in that the author of ASIFT has already included an 

outlier detection mechanism (ORSA) in ASIFT algorithm. When the angular change is 

high, SIFT tends to produce more mismatches thus outperformed by ASIFT in terms 

of both number of inliers and PGCPs. On the other hand, if the angular change is low, 

because of the pre-filtered mechanism of ASIFT, the inliers of ASIFT largely depends 

on the combined effect of ORSA and RANSAC. In order to further compare the 

performance of the two algorithms for the system, ASIFT is used without RANSAC at 

positioning stage. The result is shown in Table 6.5. 
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Figure 6. 19 Matching between real time query image No.5 with map image No.10 
using SIFT+RANSAC, dramatic angular change, 25 reliable matches (inliers). 

 

Figure 6. 20 Matching between real time query image No.5 with map image No.10 
using ASIFT+RANSAC dramatic angular change, 47 reliable matches (inliers). 
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Figure 6. 21 Matching between real time query image No.1 with map 
image No. 9 using SIFT+RANSAC, small angular change, 100 reliable 
matches (inliers). 

 

Figure 6. 22 Matching between real time query image No.1 with map 
image No. 9 using SIFT+RANSAC, small angular change, 16 reliable 
matches (inliers). 
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Figure 6. 23 Matching between real time query image No.11 with map 
image No. 10 using SIFT+RANSAC, small angular change, 47 reliable 
matches (inliers). 

 

Figure 6. 24 Matching between real time query image No.11 with map 
image No. 10 using ASIFT+RANSAC, small angular change, 190 
reliable matches (inliers). 
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Table 6. 5 Performance of ASIFT matching in the system 

SiteID Epoch_ID Angle Matches PGCPs False PGCPs PDOP ADOP 

1 

1 0 296 13 3 2112 516 

2 0 199 7 4 62 4651 

3 -30 218 22 2 1353 277 

4 -30 150 11 2 2584 512 

5 50 381 14 0 1761 369 

6 50 163 3 0 

  

2 

7 0 257 17 1 670 165 

8 0 134 11 1 856 217 

9 -20 178 12 1 1746 405 

10 -20 151 13 4 2144 534 

3 

11 0 716 15 0 9370 1913 

12 0 325 9 0 8838 1907 

13 -30 471 10 2 12801 2401 

14 -30 185 3 0 

  15 20 407 21 0 9490 1914 

16 20 260 12 0 21657 4358 
 

 

Comparing Table 6.4 and Table 6.5, an obvious improvement happens on epoch No.5, 

one with big angular change. Using ASIFT it is able to produce a positioning result 

with reasonable number of PGCP.  But epoch No.6, image with the same view as 

No.5 but limited lighting, is still unable to get a result. Compare every pair of adjacent 

images, it is easy to deduce that ASIFT shares the same shortcoming with SIFT: being 

sensitive to illumination changes. For epochs with low angular change, ASIFT has yet 

outperform SIFT in terms of the geometry (represented by PDOP and ADOP) 

provided by PGCPs. It has also been observed that the correct rate of PGCPs has yet 

reached 100% for in the two tables, which means both RANSAC for SIFT and ORSA 

for ASIFT have left some mismatches untreated. The reason behind is that all 
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RANSAC-like (e.g. RANSAC and ORSA) methods have the same bottleneck: when 

mismatches are near their epipolar line, no matter how far away they are from their 

true correspondences,  it is hard for these mismatches be detected. This test even 

revealed the lower correct rate of PGCPs from ASIFT.  Considering the fact that 

ASIFT is more computationally expensive than SIFT, for real time applications like 

vision-based navigation, it is important to reduce the complexity of the algorithms 

been used. Therefore we conclude that ASIFT is less efficient than SIFT when dealing 

with low angular change. We only choose to use ASIFT as a backup plan when SIFT 

fails to get a result because of dramatic viewpoint changes.  

𝟔. 𝟒 MEASUREMENT ACCURACY AND FACTORS 

INVOLVED 

In this section, the second component that determines final positioning accuracy, 

measurement accuracy, is discussed. It is the overall accuracy indicator of 

observations in the system, which mainly comes from two groups: image 

measurements (the image coordinates of PGCPs) and 3D coordinates of PGCPs. The 

first group of observations are produced by SIFT feature extraction that have 

consistent accuracy, and the ground coordinates of PGCPs are provided by indirect 

geo-referencing. 

In order to investigate how the accuracy of these two groups of observations influence 

measurement accuracy which further affect final accuracy of a position solution, 

Monte Carlo simulation is used. Monte Carlo simulation is a well proven and efficient 

way to investigate the numerical properties of a complex mathematical model with 

respect to artificial noise in the input data (Robert and Casella, 2002).  Noise is added 

with due regard to statistical distributions and typical noise levels so that the resulting 

output data varies realistically (Luhmann, 2009). Here, Monte Carlo simulation is used 
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to add noise to these two groups of observations respectively, and final positioning 

results along with statistical analysis report are calculated.  The formula follows: 

Pm = P0 + (nRNG ∗ sp ) (6.12) 

With  Pm =  randomly modified paramete;  P0 =  input value of parameter P  ;    

 nRNG = random value that follows standard normal distribution; sp =  standard 

deviation/ noise level. Therefore, parameter P is modified by adding noise (nRNG ∗

sp) at the level of sp .  

6.4.1 Influence of image measurement accuracy 

First image measurement noise was simulated and added to the input of image 

coordinates for final space resection. The original input image coordinates (P0) 

obtained by SIFT matching algorithm have a measurement accuracy at 0.00004 m(σ
0

), 

the noise level added to the input has been set varies from 0 m to 0.00008m at an 

interval of 0.00001m. At each noise level, the simulation runs 5000 times. The 

measurement accuracy (Sigma estimated) is calculated using the mean value of results 

from the same noise level. Figure 6.25 proves measurement accuracy decreases with 

the increasing noise level at image coordinates, which means the image measurement 

accuracy affect the measurement accuracy positively. Figure 6.26 illustrates the 

variation trend of DOP values with the increasing noise level, and it remains at a stable 

certain value, which proves the geometry factor is not relevant. In order to investigate 

the impact of image measurement noise on final positioning accuracy, the inner 

precision (standard deviation) of 6DOF measurement within the simulation results is 

calculated at each noise level. It proves that 6DOF precision decreases with decreasing 

image measurement accuracy (Figure 6.27 and Figure 6.28). 
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Figure 6. 25 Variation of measurement accuracy at different image measurement 
noise level 

 

Figure 6. 26 Geometric strength (DOP values in 6DOF) at different noise level 

 

 



Chapter 6                              Evaluation of the system performance 

162 

 

 

Figure 6. 27 Variation of position precision at different image measurement noise 
level 

 

Figure 6. 28 Variation of attitude precision at different image measurement noise 
level 

6.4.2 Influence of geo-referencing accuracy 

Another factor that influences the final positioning accuracy is the precision and 

accuracy of 3D coordinates of PGCPs, which is determined by geo-referencing 

accuracy of the map images. In this experiment, noise is added to the 3D coordinates 
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of PGCPs. The original input of PGCPs 3D coordinates have an accuracy at 0.03m, 

the noise level added to the input has been set varies from 0 m to 0.03m at an interval 

of 0.005m. At each noise level, the simulation runs 5000 times. The measurement 

accuracy (sigma estimated) is calculated using the mean value of results from the same 

noise level. Figure 6.29 proves measurement accuracy decreases with the increasing 

noise level at object coordinates of PGCPs, which means geo-referencing accuracy of 

the map images affect the measurement accuracy positively. It is also observed that 

DOP values remain relatively stable with the increasing noise level, which means the 

geometry is not affected. 

In order to investigate the impact of 3D object coordinate noise on final positioning 

accuracy, the inner precision (standard deviation) of 6DOF measurement within the 

simulation results is calculated at each noise level. As shown in Figure 6.30 &6.31 

6DOF precision decreases with decreasing 3D coordinates‘ accuracy. It can be 

observed that geo-referencing accuracy of the map images actually exerts certain 

amount of influence on final positioning accuracy via measurement accuracy. 

Therefore, in order to achieve a higher accuracy with such approach, the accuracy of 

bundle adjustment (indirect geo-referencing) need to be improved. 

 

Figure 6. 29 Variation of measurement accuracy at different noise level of 3D 
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Figure 6. 30 Variation of position precision at different noise level of 3D 
coordinates 

 

Figure 6. 31 Variation of position precision at different noise level of 3D 
coordinates 

 

𝟔. 𝟓 SUMMARY 

In this Chapter, the vision-based navigation system has gone through a numerical 

evaluation with a focus on its accuracy. The accuracy of such positioning method is 

currently between 1-10 centimetre levels, which the author believes has yet reach its 
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fullest potential. Thus factors that affect its final accuracy are analysed. Two major 

components, geometry of PGCP and measurement accuracy are identified through the 

analysis of function model and practical performance.  

The nature of the impact of PGCP geometry on positioning has been analysed through 

real world data as well as simulation. It is concluded that the major cause of inaccurate 

results is bad geometry, and geometric impact plays an important role in the 

determination of final positioning precision. Therefore, the generation of PGCP with 

an even distribution on the query image is of significant importance for the system 

performance.  Factors that contribute to the PGCP generation need to be investigated. 

Since the generation of PGCP is closely related to the image matching procedure, the 

system has been evaluated against various image matching conditions, like viewpoint 

changes and illumination changes. Possible improvements have been discussed. 

In the later part of the Chapter, factors that influence measurement accuracy for final 

positioning are also identified and analysed: image measurement and geo-referencing 

accuracy at mapping stage. Their influence is simulated by inserting artificial noise 

and the consequent impacts are evaluated by using Monte Carlo simulation. It is 

observed that the accuracy of map image geo-referencing can exert a substantial effect 

on final positioning accuracy.   

In summary, this Chapter carries out an in-depth and thorough evaluation on the nature 

of the vision-based positioning and navigation system. Factors that influence the 

positioning performance (mainly accuracy) have been identified and discussed. Some 

limitations have been revealed. The system largely depends on the generation of 

PGCPs as 3D landmarks for positioning. Therefore, it cannot function well in 

environment lack of stable visual features. Meanwhile, the improvement of image 

measurement accuracy as well as geo-referencing accuracy can benefit the system 

performance. Future improvement of the system can be based on these aspects. 
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CHAPTER 7                      

OUTDOOR EXPERIMENTS AND 

DISCUSSION 
 

𝟕. 𝟏 INTRODUCTION 

Ubiquitous positioning is considered to be the main goal for today‘s Location-Based 

Services (LBS).  While satellite-based navigation has achieved great advances in the 

past few decades and has been applied to both military and civilian applications in a 

mature manner, positioning and navigation in GPS challenged areas has remained a 

largely unsolved problem and thus is currently receiving growing attention. The 

availability of rich imagery of large parts of the earth‘s surface under many different 

viewing conditions presents great potential, both in computer vision research and for 

practical applications (Snavely et al., 2008). The author believes it can also bring 

enormous opportunities to the field of navigation and location-based service. Images 

associated with vision sensors have been researched for positioning and navigation 

purposes since early last century. They are superior to many other techniques because 

they can operate both indoors and outdoors. In recent years the low cost built-in 

sensors on mobile devices (e.g. smartphone), especially high resolution cameras have 

placed greater demand for a breakthrough in their applications for location-based 

services. 

In previous Chapters, vision-based navigation has been mainly focused on indoor 

areas. In this Chapter the aim is to extend the function to outdoor environment so as to 

fill in the gap for satellite based navigation systems. However, the significant 

difference between outdoor and indoor environments has divided the early stage of the 

research into two different groups. For outdoor vision-based navigation system, the 

traditional approach is to match the real time query image with the reference images in 
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the database. Whenever a match is found, the position information of this reference 

image is transferred to the query image and used as user position. This is essentially an 

object-recognition and image retrieval problem. A great variety of work has been done 

to address the location recognition aspect by using different image matching 

techniques (e.g. Schaffalitzky and Zizzeman,2002;Goedeme and Tuytelaars, 2004). A 

further improvement is to calculate the relative position between the query view and 

the identified reference view to obtain more accurate position estimation. In 2006 

Zhang and Kosecka first used a wide-baseline matching technique based on SIFT 

features to select the closest views in the database, then the location of the query view 

was obtained by triangulation. In Robertson and Cipolla (2004) the orientation of the 

sensor was also estimated since the pose of the query view is obtained from 

plane-to-plane transformation. Building façade was used as dominant plane. On the 

other hand, indoor visual navigation has been considered a quite different field. 

Related research has mainly focused on robotic visual SLAM (e.g. Davison, 2003), 

and significantly different methodologies like structure from motion and stereo 

viewing (Elinas et al., 2006) are adopted, which are not suitable/attainable to be 

extended to LBS for common users. The major reason for it lies in that indoor and 

outdoor environments create different scenarios, requirements, and sometimes 

contradictory conditions to the visual system. In terms of size indoor environments are 

limited to certain buildings while outdoor positioning requires regional or even global 

coverage. In terms of accuracy indoor positioning obviously poses greater challenge. 

In terms of sensors used to assist vision sensor, satellite based navigation system can 

only cover outdoors and WiFi is more likely to be used for indoors. In terms of 

vision-based algorithms and methods, greater diversity can be found. For instance, the 

use of stereo vision to extract depth information is more suitable for indoors since the 

range for depth detection is limited by the baseline. And the visual features are 

normally different: in outdoor environment artificial landmarks (e.g. buildings, road 

signs) feature primarily the edges and corner points, while for indoor environment 
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features are richer in the shapes and textures. However, despite of all these factors, 

vision is by its nature capable of working in a complementary manner to 

satellite-based technology. Therefore, it is high time that a consistent framework of 

image-based visual navigation technology to be developed, which is capable of filling 

the gap in satellite-based system deficiencies, providing coverage from outdoors, 

urban canyons to indoor environments. 

Seamless vision-based positioning covering both indoor and dense urban 

environments has therefore attracted growing attention nowadays, especially for the 

research of navigation system that used on mobile platforms. A common approach is 

to use visual device as the main or complementary sensor that collaborate with other 

sensors on board. In Przemyslaw and Pawel (2012) the authors present an algorithm 

for estimating a pedestrian location in urban environment, and include data from GPS, 

inertial sensors, probability maps and a stereo camera. In (Chen et al., 2012) the 

authors utilize the GNSS and map-matching for outdoor positioning; multiple sensors 

as well as signals of opportunity is adopted for indoor environment. From the 

perspective of vision-based navigation, the major difference between these two 

approaches lies in that the former uses stereo camera to directly extract depth 

information, while the second is based on single camera and query image matching. 

Following these two main streams, many vision-related navigation solutions designed 

for GPS-degraded environment can be found (e.g. Ruiz-Ruiz et al., 2012; Pei et al., 

2011; Karimi, 2011; Jaspers et al., 2012; Chowdhary et al., 2013).  

In this Chapter a hybrid vision-based positioning system is presented, which extends 

indoor visual navigation to outdoor environment. Since GPS can achieve good 

positioning resolution in open areas, the vision-based system is designed to function in 

places where artificial landscape is available, such as urban canyons. Such nature can 

mitigate the deficiency of satellite-based systems. It mainly uses visual input to match 

with geo-referenced images for image-based positioning resolution, and also takes 
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advantage of multiple sensors onboard, including GPS receiver and a digital compass 

to assist visual methods in various aspects.  

 

𝟕. 𝟐 IMAGE GEO-REFERENCING AND MAPPING FOR 

OUTDOOR ENVIRONMENTS 

During the mapping stage, image feature geo-referencing is the core process. Different 

types of image features are used to cater different scenarios. In outdoor urban 

environments, artificial landmarks (e.g. buildings, road signs) feature primarily the 

edges and corner points. Therefore they are first surveyed in the field with Map Grid 

of Australia (MGA) coordinates derived. Then images are collected and Harris corner 

detector is used to exact the corner features from these images. Among the big number 

of features points extracted, the ones that have been surveyed are identified from the 

feature list and associated with images with both 2D image pixel coordinates and 3D 

surveyed coordinates been recorded (e.g. Figure 7.1 and Table 7.1).  For landmarks 

that have a certain volume in the space, such as buildings, images of façades are 

geo-referenced. Each building is described by the contour information (corner 

coordinates and edges they intersected) and the geo-referenced images, including both 

the outdoor façades and the indoor environments.   

 



Chapter 7                              Outdoor experiments and discussion 

170 

 

 

Figure 7. 1 Reference image No.15: Corner points have been extracted 
by Harris corner detector and shown with red crosses; 4 geo-located 
corner points have been identified and shown in green circle. 

 

Table 7. 1 Geo-located corner points for reference image No.15, 

X, Y in pixel and Easting, Northing and Height in meters 

RefIM PointID X(pixel) 

 

 

Y(pixel) Easting(m) Northing(m) Height(m) 

15 807 83 108 336512.9 6245551 63.9 

15 811 106 184 336511.4 6245548 56.9 

15 806 154 49 336511.9 6245543 63.9 

15 805 280 76 336519.8 6245542 63.9 
 

 

𝟕. 𝟑 OUTDOOR POSITIONING 

In urban canyons or indoor areas, GPS positioning accuracy can be degraded because 

the signal may suffer from blockage, multi-path effects, etc. For single point 

positioning (SPP) used on people‘s mobile devices, the accuracy can be 10s meters or 

worse. Therefore, image-based methods are used to mitigate the deficiency. However, 

if solely replace GPS with vision-based methods, retrieving images from a large image 
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database that covers the whole navigation route will be time consuming and the 

computation load is not affordable for mobile devices. Therefore, a multi-step solution 

is proposed: firstly GPS data is used to narrow down the search space; then a voting 

strategy is used to find reference images corresponding to the query view among the 

localized image space; finally, a hybrid technique is proposed that uses the 

measurements from GPS, digital compass and visual sensor onboard to calculate the 

final positioning result in 6DOF for outdoor environments.  The overall outdoor 

positioning procedure is shown as follows:  

● Step1:Take query image with GPS and compass measurements; 

● Step2 : Use GPS data to localize image space; 

● Step3: Retrieve from the candidate image space the reference image(s) that contain the 

scene corresponding to the query image. If no correspondence is found, go to step 1 with 

enlarged search space. If yes, continue; 

● Step4: Outdoor positioning resolution. 

7.3.1 Using GPS to localize image space 

The 3D maps are storedin the form of reference images and their geo-information. We 

treat each building as a record and describe its contours with line segments which 

contain coordinates of both ends (corners). When a user is navigating (walking or 

driving) through the space, images are taken when position information is required.  

Whenever a query image is taken with its GPS position tagged, the initial position is 

given by the GPS tag and the initial orientation is given by the digital compass 

onboard (e.g. P for query image No. 3 in Figure 7.2). A circle will be generated with 

the center at current GPS tagged position, and the radius (r) determined by a threshold 
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(n), which is a certain magnitude of the horizontal precision of the GPS reading (σ). 

By default n=1. 

r = n ∗ σ (7.1) 

Then the system will search for landmarks (corner points or line segments) appearing 

within the circle. The mobile device will load the images related to the landmarks that 

have been found. For buildings, the algorithm calculates the shortest distance between 

center point and the building line segments. If this distance is shorter than the radius, 

the segment line must cross with the circle. The corresponding building(s) images will 

be chosen and form an image space for further processing. Figure 7.3 illustrates the 

calculation process for user position P, and the resulting image space is shown in 

Figure 7.4. By using GPS information to narrow down the search space, the query 

image will need to match with a small image space rather than a whole image database 

at later stage. 

 

Figure 7. 2 Query image No. 3 with GPS tag information: Zone 56, Latitude: -33 ° 55' 

5.40120'',Longitude:151°13'52.79880 '', Altitude: 33.92m; digital compass 

measurement: 34° NE 
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Figure 7. 3 Given a GPS position data from mobile device at P shown with red dot, 
a circle is drawn with 20m radius representing the search space. Line segment from 
building No. 7 crossed with the circle, so reference images of building No. 7 are 
chosen for image space 

 

 

Figure 7. 4 Image space created for P including façade images of Building No.7. 

 

7.3.2 Image Retrieval using SIFT-based Voting Strategy 

The goal of this process is to retrieve, in the candidate image space, the reference 

images with the scene corresponding to the query image. The procedure is similar to 

the voting strategy introduced in Section 3.2.2. In the system this process identifies the 

target building/local environment and prepares the corresponding reference images for 

outdoor & indoor navigation. The SIFT features are extracted from the query image 

(e.g. Figure 7.5) and matched with the reference feature database generated from the 

candidate image space (e.g. Figure 7.6). 
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The difference of image retrieval for outdoor positioning lies in that if no 

corresponding image is found within current candidate image space, the procedure 

goes back to previous step and enlarges the search space (the threshold n) to 

recalculate the crossed landmarks. And the images in previous image space are 

removed and new image space is produced. In the example of query image No.3 at 

point P, image space in Figure 7.4 is removed because no corresponding image has 

been found, and new image space in Figure 7.7 is generated after the search space has 

been enlarged.   

.  

Figure 7. 5 SIFT features extracted from the query image No.3 

 

Figure 7. 6 Reference feature database generated for the candidate image space: 
13182 features from 20 reference images in the search image space. 
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The reference images with greater numbers of votes obviously have higher chance of 

containing common scene with query image. Therefore, by ranking in descending 

order of the number of votes, the top m (5 in this case) reference images are chosen as 

ones corresponding to the query scene and retrieved from the candidate image space. 

Specific building(s) that covered by the query view can also be identified. One 

problem however, is that we still cannot be certain if the top ranked images containing 

common view with the query image. The evaluation test introduced in Chapter 5 is 

adopted to remove images with no common areas. 

 
 

 

For the top 4 reference images, the tests all past with high pass rates. The results are 

shown in Figure 7.8 –Figure 7.11 .  

Figure 7. 7 Image retrieval: 5 top ranked images have been identified from the 
image space with 20 reference images. Query image has a green border when the 5 
top voted reference images have borders from dark red to light yellow, the darker 
the colour the higher rank it has (which indicates greater relevance). All top voted 
reference images indicates the same target building, BD No.8 
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The 5th ranked image, reference image No.17, however failed to pass the test. Its 
maximum cross correlation rmax  is 0. As shown in Figure 7.12 , we can easily 
observe that although reference image No.17 and the query image include the same 
building, the two cover different parts and have no common areas. The image 
matching with RANSAC performed poorly, retaining 9 mismatches as inliers. Using 
the cross correlation information to evaluate the RANSAC process, the algorithm 
successfully identified the failure of the image matching and removed the reference 
image No.17 from the corresponding image list. 

Figure 7. 8 Query image3 match with 
reference image 14 pass rate at 98.8% 

Figure 7. 9 Query image3 match with 
reference image 15 pass rate at 100% 

Figure 7. 10 Query image3 match with 
reference image 13, pass rate at 89.7% 

Figure 7. 11 Query image3 match with 
reference image 16, pass rate at 95.8% 
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7.3.3 Outdoor positioning resolution 

This section introduces a hybrid technique that uses the GPS as well as the digital 

compass measurements, and image-based positioning technology for outdoor 

positioning. In fact it deals specifically with urban environments with artificial 

landmarks. 

After reference images have been identified in the previous step, positioning is carried 

out based on the matching between the query image and identified geo-referenced 

images. Since the outdoor reference images are geo-referenced through the corner 

features, to ensure corners to be matched in the query image as well as to strengthen 

the robustness of matching, the author apply a combined use of the Harris corner 

detector and the SIFT descriptor (referred by Harris/SIFT method). Firstly, the Harris 

corner detector is used to extract corner features from the query image and SIFT 

descriptors are computed at the positions detected by Harris detector on the query 

image. In the meantime, SIFT descriptors are also generated for geo-located corner 

features on the reference image that to be matched. Then feature matching is carried 

Figure 7. 12 Evaluation test fail for reference image No.17: r𝑚𝑎𝑥  at 0.00 
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out between the two images based on SIFT descriptor matching. RANSAC is used to 

remove mismatches.  As shown in Figure 7.13, 15 pairs of correct matches are found, 

among which 4 are geo-located corner points (No. 4, No.8, No.13, No.15) that are 

identified in Figure 7.1 and Table 7.1.  Therefore, the 3D geo-locations of these 

points are transferred from reference image No. 15 to the query image, which can be 

then used as PGCPs for positioning resolution. More PGCPs can be generated by 

matching the query image with all the corresponding reference images selected by 

previous step. The given query image obtained 6 PGCPs as illustrated in Figure 7.14. 

 

Figure 7. 13 Query image matching with 
reference image No. 15 using Harris/SIFT 
method; Harris corner features are tagged by 
blue and red crosses respectively, and 
matched corner features using SIFT 
descriptor matching are shown by lines 

 

Figure 7. 14 PGCPs generated for the 
query image No.3, which are shown 
with yellow dots. 

 

 

After enough PGCPs have been generated, the methodology introduced in Chapter 3 is 

used to solve the position and orientation of the query image. Although space resection 
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based on a least squares solution can provide relatively accurate result, it requires a 

good initial value for the least squares adjustment to converge.  This is where the raw 

GPS and digital compass measurements come into play. Normally standalone GPS or 

AGPS is used on mobile devices, which can only provide either low accurate 

positioning or unstable performance in dense urban area. Therefore, the GPS provides 

the initial positions and compass chip on mobile devices registers magnetism in three 

dimensions, which gives initial orientation values. By using vision-based positioning, 

user position and camera orientation in 6DOF can be achieved. For the query image, 

the computed position is shown in Figure 7.15. 

 

 

Figure 7. 15 Positioning result for the query image shown with green dot. The 
red dot indicates the location determined by the GPS, with the black circles 
show the process to enlarge the search space (1-3 times of its horizontal 
precision). 

 

7.4 EXPERIMENTS 

In the experiment, a positioning test in outdoor environment was carried out. A path 

on the university campus is chosen. It has 7 pre-surveyed GPS ground control points 

(GCPs) on the way, as well as buildings on both sides, which can simulate the 
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situation of urban area. Images of the building facades as well as indoor environment 

(test scene) were recorded in the database and geo-referenced 3D maps were generated 

for positioning. Then a user walked along the path. The position of each epoch when 

images were taken and the trajectory are resolved based on the image-based system 

developed. The data is post-processed using Matlab 2011a and an orthophoto of the 

UNSW campus. 

During the outdoor test, a user holding a mobile handset walked along the path and 

took (query) images for self-localisation. The device used was an iPhone 4 smart 

mobile phone, which integrates a backside-illuminated 5 megapixel rear-facing camera 

with a 3.85 mm f/2.8 lens, and employ an assisted GPS system (A-GPS) and a 

specialized integrated circuit chip as the iPhone's digital compass for navigation. The 

'user' passed by each of the 7 GPS GCPs and took images of the environments on the 7 

sites, and randomly took another 11 images along the path. Totally 18 epochs were 

resolved. 

Firstly, the performance of outdoor image-based positioning with its accuracy was 

investigated by calculating the user positions and orientations at the 7 GPS GCPs 

through the proposed method and compared them with surveyed true values. The 

accuracy of vision-based method and standalone GPS is also compared. The 6DOF 

results are shown in Table 7.2 and the accuracy revealed by RMSE in Table 7.3. It can 

be seen that the GPS measurements in the urban environment are poor, around 20m in 

the experiments. By using the proposed method, the accuracy has been improved to 

around 10m in the test.  

 

http://en.wikipedia.org/wiki/Megapixel
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Table 7. 2 System calculated positioning results in 6DOF for the 7 GCPs 

Epoch 

ID 
Easting(m) Northing(m) Height(m) 

Omega 

(degree) 

Phi 

(degree) 

Kappa 

(degree) 

1  336269.08  6245563.38  26.67  -89.30  1.44  71.35  

2  336291.39  6245554.18  23.78  -119.22  -1.25  96.66  

8  336435.40  6245546.05  30.97  -123.64  -5.74  117.53  

11  336478.50  6245533.39  36.99  -103.93  -159.27  -64.17  

12  336522.79  6245543.21  49.73  -139.19  173.80  -136.67  

13  336562.16  6245522.26  44.43  -92.81  -12.54  -80.99  

18  336511.91  6245409.58  48.33  58.16  153.63  12.12  

 

 

 
Secondly, the overall trajectory, including 18 epochs, is calculated and shown in 

Figure 7.16 (horizontal) and Figure 7.17 (vertical). It can be easily observed that 

horizontally the raw GPS measurements present a few jumps (e.g. epoch No.2) and 

intersected track, which are not true; while the vision-based method provides a 

trajectory closer to the true trajectory. Meanwhile, the height information provided 

from GPS deviate largely from true values, while the system results are much 

improved. 

 

Table 7. 3 RMSE of GPS measurements and system calculated positions using surveyed 
values as true values. 

RMSE  Easting(m) Northing(m) Height(m) 

GPS measurements 20.37 19.59 21.00 

Calculated  8.43 10.31 7.20 
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Figure 7. 16 Red dash line shows the trajectory obtained from the build-in GPS 
receiver, while green dash line shows the calculated results; blue triangles represent 
the true GCPs that user passed by. 

 

Figure 7. 17 Height: blue icons represent true values; red ones are altitude measured 
by the device; green ones indicate the calculated results. 

Thirdly, the study investigates the theoretical precision for the vision-based position 

solution in 6DOF by using their estimated standard deviation, as shown in Figure 7.18 

and Figure 7.19. It can be observed that most of the epochs have a 0-5m standard 

deviation on each direction, while the orientation standard deviation mostly between 

0-10 degrees. The theoretical precision is consistent with the accuracy evaluated by 

the 7 check points. Moreover, it is noticed that certain epochs have very low precision 
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(large standard deviation) compared with other epochs (e.g. Epoch No. 1, No.2, No.10, 

No.13). The reason behind is poor geometric distribution of PGCPs on query images. 

Such nature has also been found and further investigated in the indoor experiments. 

The main contributing factors that determine the PGCPs geometry are the 

geo-referenced 3D feature density of the reference images, the quality of image 

matching and most importantly the covered scene of the query image. Therefore one 

possible way to improve the outdoor positioning performance is to include greater 

number of corner features with better distribution when taking the query image. In 

other words, such vision-based method performs the best in areas where artificial 

landmarks are sufficient (like deep urban canyons), which is a complementary 

character for satellite-based navigation system.  

 

 

Figure 7. 18 Position precision for the 18 
epochs 

 

Figure 7. 19 Orientation precision for the 
18 epochs. 

 
In summary, for SPP used on people‘s mobile devices in urban canyons, the accuracy 

can be 10s meters or worse, and varies significantly depending on the signal. 

Vision-based methods, on the contrary, can provide stable results with relatively better 

accuracy as long as enough visual features are covered by the query image. 
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𝟕. 𝟓 SUMMARY 

This Chapter has presented a comprehensive system that adopted hybrid vision-based 

method with combined use of onboard sensors (GPS, camera and digital compass) to 

achieve a seamless positioning from indoor to outdoor environments.  Using the 

same strategy, geo-referenced images are used as 3D maps for vision-based 

positioning. Therefore the outdoor positioning share the same nature with the outdoor 

system: the geometry of PGCPs essentially determines the positioning accuracy. 

 

Experiments have demonstrated that such a system can largely improve the position 

accuracy for areas where GPS signal is degraded (such as in urban canyons). It also 

reveals the major challenge for such system, that is, it largely depends on the texture 

of the view. For outdoor environment, shortage of texture because of poor lighting 

condition may poses tremendous challenge to the system. Future research will be 

focused on these aspects. 

 

The author believes that the system has potential to overcome the deficiency of 

satellite based solution, since it targets at GPS challenged environment and works 

especially well at places with buildings/ artificial landmarks and indoors. The required 

hardware, single camera integrated with GPS receiver and digital compass, can be 

easily found on people‘s mobile devices (smart phones etc). With the boom in LBS 

and growing attention to geo-spatial techniques for everyday life (e.g. GPS-tagged 

image), we hope such technologies can bring the vision based techniques for position 

and navigation to a new level and finally achieve ubiquitous positioning. 
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CHAPTER 8                

CONCLUSIONS AND 

RECOMMENDATIONS 
 

𝟖. 𝟏 CONCLUSIONS 

Navigation technology is booming along with the growing demands from consumers. 

The major challenge today is to provide positioning capability in GPS-degraded 

environments, such as indoors and urban canyons. Vision sensor is regarded to be 

highly promising because of its ubiquitous and self-contained nature. Although 

vision-based positioning and navigation system has been investigated and developed 

for over two decades, the early research has been limited by the hardware and image 

processing capability. Today both cameras and underlying platforms have been 

advanced dramatically. Build-in high resolution cameras as well as many other sensors 

(e.g. compass) have been adopted on people‘s mobile devices for daily life. All these 

technologies can be potentially used for navigation. Moreover, significant progress has 

been made in image processing algorithms and related research. Therefore, given the 

rich literature of vision-based navigation and the recent progress in terms of both 

software and hardware, it is high time for a breakthrough in the research domain.  

Most existing vision-based navigation systems depend on the exploitation of one or 

more cameras. Like other navigation technology, vision-based approaches can also be 

divided into two categories: position-fix and dead reckoning.  The former method is 

based on the matching between query image and pre-stored information of the 

environment to realize self-localization. This study gives such approaches the name 

map-based approach. The later one determines the camera motion through the analysis 

of sequence of images. It is therefore a mapless approach. This method has been 



Chapter 8                                 Conclusions and recommendations 

186 

 

limited to short distances since it suffers from drifting errors and requires other sensors 

to calibrate. In this research, we mainly focused on the map-based visual navigation. 

Currently, they are still far from mature to supplement GNSS. Major challenges have 

been identified in four aspects: mapping, poisoning accuracy, reliability, and coverage. 

To respond to these challenges, this research introduced a vision-based navigation 

system that aiming to address these problems and provide a comprehensive navigation 

solution.  

 

8.1.1 Reality-based 3D map  

The map used for vision-based navigation has gone through a series of developments. 

It is one of the major components for the navigation system. But it has yet been fully 

investigated. The literature of this topic has been reviewed in Chapter 1. It started with 

3D models, however the full 3D reconstruction lacking details limits the development 

of this approach.  Then 3D models are replaced by appearance based approaches 

where images are used to ―memorize‖ the navigation environment. Navigation map in 

the form of images can retain the details of the environment and save the effort for 3D 

reconstruction.  The major shortcoming of pure image based map, however, lies in 

that it can only provide 2D information of the surface and rough 3D location 

information. It can hardly support positioning which require high accuracy. Recently, 

3D image feature based visual positioning has increased the interest of researchers as 

it not only takes advantage from the appearance based approach, but also been able to 

provide 3D geometric information of the environment for pose estimation.  

In this research, the author has further investigated this idea and proposed a new 

concept of 3D map. The new 3D map is defined as a sum of geo-referenced points 

with three dimensional (3D) local or global coordinates that are overlapped on images 

of the environment. Users of the 3D map will have the benefits of geo-referencing 
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with 3D coordinates as well as realistic visualization. One basic function of the 3D 

map is for positioning and navigation. The main difference between this approach to 

the available image-based navigation methods lies in the fact that the images are 

geo-referenced, which means they themselves can give absolute position 

information(local or global) in 3D, functioning like a sensor (eg.GPS). Such a 3D map 

is the foundation of this research. It enables positioning to be resolved in high 

accuracy with 6 degrees of freedom. Whenever a new query image is taken, it can be 

matched with the geo-referenced map images. Then common feature points can be 

used to transfer the 3D information from the map to the query image and used for 

position solution. 

In Chapter 2, the 3D map has been introduced with its development procedure. 

Range-based and image-based 3D mapping have been the two main stream methods to 

obtain 3D geometric information for map construction.  In this research, image-based 

method from the field of photogrammetry has been adopted. The essential part is 

image geo-referencing, and an indirect geo-referencing method is used. Multi-image 

matching has been introduced into the mapping process, and bundle adjustment is used 

to calculate the 3D object coordinates of the feature points. The 3D map has been 

implemented covering an indoor testing field. Its accuracy and capability to support 

vision-based positioning have been evaluated through experiments. Experiments 

evaluated both the theoretical precision and absolute accuracy of geo-referencing, as 

been at centimetre level, and the positioning result from the 3D map with better 

geo-referencing accuracy is more accurate. 

8.1.2 Vision-based positioning and navigation 

After the 3D map has been built, the vision-based positioning and navigation system 

proposed in this research was introduced in Chapter 3. Its extension to outdoor 
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environments is given in Chapter 7. The main methodology contributions of the 

system are listed as follows: 

1) This research proposed the use of geo-referenced image feature points as 3D 

landmarks for positioning. The main idea is that by matching the query image with 

the 3D map, the 3D information is transferred from the geo-referenced map images 

to corresponding image features on query image for self-localization. 

2)  The positioning result is calculated based on photogrammetric space resection. 

Such an approach has rarely been found in previous research. Here 3D feature 

points are served as pseudo ground control points. The methodology of space 

resection has been revised according to the needs of the system. More specifically, 

the 3D information transferred from the map is treated as pseudo observations so 

as to receive adjustment during the least squares process. In this way, the system 

only requires a single camera but is able to give highly accurate position 

information in 6 degrees of freedom, which is superior to many similar systems. 

Experiments have shown that in indoor environment the positioning accuracy is 

around 10-20cm even using low resolution cameras.  

3) Seamless vision-based positioning covering both indoor and dense urban 

environments has attracted growing attention nowadays, especially for navigation 

systems that can be built on mobile platforms. Therefore in this research, the 

system has been extended from indoor to outdoor environments. A comprehensive 

system that adopted a hybrid vision-based method with combined use of built-in 

sensors (GPS, camera and digital compass) has been presented. The consistent 

framework consists of the use of geo-referenced images as 3D map and space 

resection for position solution. For outdoor it adopts multiple sensors to assist the 

position solution. More specifically, a multi-step solution has been proposed: 

firstly GPS data is used to narrow down the search space; then a voting strategy is 

used to find reference images corresponding to the query view among the localized 
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image space; finally, a hybrid technique is proposed that uses the measurements 

from GPS, digital compass and visual sensor onboard to calculate the final 

positioning result in 6DOF. Experiments have demonstrated that such a system can 

largely improve the position accuracy in areas where GPS signal is degraded (such 

as in urban canyons).  

 

8.1.3 Accuracy analysis of the vision-based navigation system 

The accuracy and reliability of the system are the major concerns of this research. The 

later aspect will be further concluded in Section 8.1.4. The accuracy of such 

photogrammetric approach of vision-based positioning is depending on the precision 

and accuracy of final space resection process. Based on both mathematical model and 

experiments, it has been identified that the final positioning accuracy is a function of 

PGCP distribution and measurement accuracy. Any factor that has certain impact on 

either of these two major components will to certain degree influence final positioning 

accuracy. Therefore in this research, the ways that different factors influencing the 

positioning accuracy have been analysed. 

PGCP geometric distribution has been analysed first. DOP values are adopted to 

evaluate its strength. Experiments based on real world data reveals that the major 

cause of inaccurate results is bad PGCP geometry, and geometric impact plays an 

essential role in the determination of final positioning precision. The simulation tests 

have been used to further analyse the nature of the relationship between geometry of 

PGCPs and system performance. It is observed that PGCPs should be selected as many 

and evenly distributed as possible.  Otherwise, insufficient number and too centred 

distribution of PGCP may lead to the failure of the least squares adjustment, since it 

cannot converge. 
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Since PGCPs are produced by matched image feature points, any factor that influence 

the feature-based image matching between the query image and reference image(s) 

will affect the density and geometric configuration of PGCPs, which includes the 

richness of features, illumination, viewing angle, etc. Therefore in this research, the 

performance of the system has been evaluated with varying image matching 

conditions. A controlled experiment has been carried out to evaluate the performance 

of SIFT matching for the system. Major weaknesses such as viewpoint changes and 

mismatches incurred by image matching in the system have been identified. 

Experiments revealed that these factors could lead to insufficient or false PGCPs. 

ASIFT has been introduced into the system to deal with viewpoint changes, and outlier 

detection mechanism has been used to detect and remove false PGCPs. 

The second component that determines final positioning accuracy is measurement 

accuracy. It is the overall accuracy indicator of observations in the system, which 

mainly comes from two groups: image measurements (the image coordinates of 

PGCPs) and 3D coordinates of PGCPs. The first group of observations are produced 

by feature extraction, and the ground coordinates of PGCPs are provided by indirect 

geo-referencing. Monte Carlo simulation has been used to investigate the impact of the 

accuracy of these two groups of observations influence measurement accuracy, which 

further affect final accuracy of a position solution. It has been concluded that feature 

extraction has a consistent pre-determined accuracy, while geo-referencing accuracy 

varies for the 3D map. Therefore, the improvement on geo-referencing accuracy will 

benefit the positioning accuracy. 

 

8.1.4 Quality control of the vision-based navigation system 

Vision sensors are cheap, ubiquitous, self-contained. However, it is also inherently 

fragile against errors. It has a high input rate but can only capture the two dimensional 
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information of the 3D world- direct measurement of real world geometry is lost.  For 

vision-based navigation systems, one essential element is to find feature 

correspondences between images, which can be reference map image and query image, 

consecutive image frames and so forth.  The major challenge lies in that stable visual 

features are difficult to be identified, and the establishment of feature correspondence 

may easily be sabotaged by input noise, mismatches and other error sources. Although 

a variety of outlier detection strategies have been developed in the literature, none of 

them has been able to provide a good solution for vision-based navigation system. 

Data snooping and M-estimator developed by the geodetic field are based on the 

assumption that only very few outliers exist, which is inadequate to address the visual 

related problems. RANSAC has been the most popular method for outlier detection in 

the field of computer vision. It performs well in face of high percentage of outliers. 

However, the major limitation lies in that it starts with a random subset of 

correspondences. If the initial selection is erroneous, it will lead to inaccurate or even 

false estimation of the homography and mismatches will be included as inliers. 

Therefore, to address these problems and strengthen the reliability of the system, two 

major approaches have been taken in this research. First, a multi-level operation 

scheme of outlier detection has been proposed and implemented for the system. It 

includes both quality control measures for 3D mapping and vision-based positioning. 

The main contribution is the combined use of various outlier detection methods from 

different fields in a multi-level manner to achieve an improved solution. More 

specifically, RANSAC is used to remove most of the outliers, while data snooping is 

used at final adjustment process to guarantee the correctness of the input. Experiments 

have revealed the nature of the outliers in the system and proved the efficiency of the 

outlier detection scheme. 

Secondly, a method to evaluate and improve the performance of RANSAC based 

outlier detection and homography estimation has been derived. It integrates 



Chapter 8                                 Conclusions and recommendations 

192 

 

intensity-based method into the feature matching process to strengthen the robustness 

of the matching algorithm against mismatches and noise. More specifically, 

cross-correlation information is used as an analysis and selection criterion for the 

matching. Instead of identifying mismatch(es) after it has been generated, the method 

determines how good the homography model (H) is for the two matching images and 

discard bad H to reduce chances that mismatches are included. The basic idea is to 

generate patches around each SIFT matched points (named as feature patch) and 

calculate the normalized correlation coefficient between each patch pair. Then the 

significance tests of correlation coefficients are used to qualify the values of the 

correlation coefficient. According to the correlation coefficient generated by each pair 

of the feature patch correspondence, the homography model built by the image 

matching process is evaluated: bad model is discarded, retaining only the good ones. 

Accompanied with RANSAC, experiments prove that this method can largely improve 

the correctness of image matching and can be applied to a great variety of applications 

where high quality feature-based matching is used, like object recognition and image 

stitching. The method has been applied to two main parts of the vision-based 

navigation system: identifying the reference images from the database, and final 

positioning. Experiments have demonstrated that such a method can effectively detect 

and discard mismatched reference images, and largely improve the positioning 

accuracy.  

 

𝟖. 𝟐 RECOMMENDATIONS FOR FUTURE RESEARCH 

The following recommendations can be made for future studies: 

1. Reality-based 3D map is a newly proposed concept in the literature. In the context 

of this research, it uses geo-referenced images to support vision-based navigation. 

It is still an immature technique, which can be improved and extended. In terms of 
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geo-referencing accuracy, currently it limits to centimetre level. The sparse feature 

points are geo-referenced instead of every pixel of the image. Dense matching can 

be introduced into the 3D mapping process to increase the accuracy of the map. 

Meanwhile, the visualization of the map is currently limited to single reference 

images, which can be stitched to provide a panoramic view of the navigation 

environment. Moreover, such mosaic can be used as street view to support 

geometric measurement. A greater area will be covered. The ultimate goal is to 

develop a geo-referenced 3D map, which is realistic, image-based, enabling 

geometry measurements and can support various geo-location services. 

2. Based on the test results of this research and similar approaches in the literature, a 

vision-based positioning and navigation system can provide positioning 

information in areas where GPS signal is degraded, including both indoors and 

outdoor urban canyons.  Still there are some limitations and gaps of this research 

that can be further investigated and addressed: 

1) For outdoor environments, the shortage of texture because of poor lighting 

conditions may pose tremendous challenges to the system. A possible way is to 

develop more robust feature descriptor for image matching. 

2) In the case of changed landscape, which is more likely for indoor environments, 

such as change of posters or movement of furniture, such an approach will 

suffer from incorrect results due to mismatches. Therefore, the 3D map need to 

be updated when changes have been made, or complementary sensors need to 

be integrated. 

3) For indoor positioning, another limitation is that a GPS signal is not available. 

The current approach is to use the previous GPS data to identify the building 

and load all the map images of the interior of the building for indoor navigation. 

For further investigation, this research can incorporate WiFi signal and used it 
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in the same way GPS has been used for outdoors: provide rough location to 

help narrow down the search space of map images and initial value for space 

resection. Besides, the use of WiFi can also reduce the chance of misidentified 

locations. As a matter of fact, vision-based positioning is best to be used as a 

refinement on rough positions achieved by other sensors, since the query image 

need to match with reference images from a large database. The greater 

uncertainty the rough estimation, the less efficiency and accurate the matching 

will get. Further research will focused on the integration of other sensors with 

vision to improve the current approach. 

4) Current research has mostly been performed off-line using a matlab platform 

for post-processing. Further research will also take efficiency of the algorithms 

into account, and move to mobile platform, such as smartphones. Algorithms 

developed or adopted in this research for positioning will be modified 

accordingly. For instance more efficient image matching algorithms, such as 

SURF might be used.  
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