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Abstract 
 

In a large-scale wireless sensor network, it is often desirable to count the number of 

nodes in the network, or the number of nodes that are within communications range 

of a particular node. In such networks, nodes are deployed for a wide variety of 

military and civilian applications. These applications require a balance among the 

number of operating nodes, energy efficiency, and the lifetime of the network. The 

number of operating nodes is a very crucial factor for the networks. However, the 

number of operating nodes can vary with time due to various artificial as well as 

natural reasons (for example, some nodes might fail and some could be damaged 

because of fouling and corrosion, or batteries might fail). It is therefore a matter of 

great interest for a communication network to know how many operating nodes or 

transmitters are available in the region at any point in time to ensure proper network 

operation (such as routing), as well as to obtain optimum performance or to prevent 

failure of the mission by network maintenance (such as replacement of faulty nodes). 

Similarly, a concurrent estimation of the dimensionality of the network might also be 

important for localising the nodes and estimating their number in a deployed 

network. To date, techniques employed to estimate the number of nodes and 

dimensionality have been based on some aspect of the communications protocol(s) in 

use. The protocol technique can be very hard to implement in harsh environment 

(e.g. underwater) due to the unavoidable capture effect, poor efficiency due to long 

propagation delay, high path loss, etc. In this thesis, we propose a novel estimation 

technique based on cross-correlation of random signals, in which the ratio of the 

mean of the cross-correlation function to its standard deviation determines the 

number of nodes. Within the limited scope of this thesis, we have provided some 

estimation techniques to estimate the number of nodes and network dimensionality. 

The proposed number of node estimation techniques also addresses a number of 

practical issues in a digital receiver and channel, including fractional-sample delays, 

multipath reception, noise etc. An error analysis is provided with comparison to 

conventional protocol techniques that demonstrates the superior performance of this 

technique to protocol-based methods. The thesis includes an initial verification of the 

performance of the proposed techniques and suggests other issues for future 

verification. 
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Chapter 1  

Introduction 

 

It is often useful to know the number of operating nodes in a wireless communication 

network (WCN), in which the nodes are deployed in different forms to cover small or 

large areas of interest for a wide variety of personal and commercial applications. In 

such a network, the number of operating nodes can vary with time due to the ad hoc 

nature of the network, power failure of the nodes, or natural disasters. But, as a 

network’s proper operation (including maintenance), optimal performance, useful 

data collection depends on the number of operational nodes; it is a matter of great 

interest to know that number at any point in time.  

 

Similarly, a concurrent estimation of the dimensionality of the network might also be 

important for localising the nodes and estimating their number in a deployed 

network. Although there are several estimation techniques in the literature, they are 

only suitable for some defined communication-friendly networks, such as ground-

based networks like radio frequency identification systems (RFIDs). Many existing 

protocols cannot be used in networks in harsh environments (underwater, 

underground, etc.) because very few of those investigated take into account the non-

negligible capture effect in these types of networks and, therefore, suffer from poor 

performance due to long propagation delays and high path losses. Moreover, 

protocols for estimating the numbers of nodes in WCNs also suffer from time 

complexity, i.e., they take a long time for just a single estimation and, in most cases, 

the estimation time increases with an increase in the number of nodes.  

 

This thesis investigates estimation using cross-correlation, a signal processing 

technique, to estimate the number of nodes in, and the dimensionality of, a WCN. 

The cross-correlation of signals collected from two sensors contains information 

about the number of nodes which is used as the estimation parameter. This proposed 

signal processing approach greatly improves estimation performance and reduces 
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time requirements and protocol complexity. The fact that the required time is 

independent of the number of nodes makes this approach very efficient for a dense 

network. 

 

The methods presented in this thesis may be applied to estimations in a large variety 

of the networks. It might be applied in voice or data communication networks which 

can be subdivided into: space communication networks (SCNs) such as the space 

wireless sensor network (SWSN); terrestrial communication networks (TCNs), for 

example, the terrestrial WSN (TWSN), the RFID system and the mobile ad hoc 

network (MANET); underground communication networks (UGCNs) such as the 

underground WSN (UGWSN); and underwater communication networks (UWCNs), 

for example, the underwater WSN (UWSN).  

 

The proposed method can be used to estimate the number of nodes in, and the 

dimensionality of, a network in which the nodes (terminal equipment of WCNs) can 

transmit any kind of signal, for example, sensors in WSNs, tags in RFID systems. It 

might even be able to be used to estimate the number of fish in a school, based on 

their acoustic signatures. Although the proposed signal processing technique is 

equally applicable to any type of voice or data communication network, the UWCN 

is emphasised because it presents many technical challenges and is of practical 

importance due to the large underwater area (about 71% of the earth’s surface). 

Basically, this estimation process will be the same for all types of networks as it 

takes into account the appropriate signal characteristics (propagation speed, signal 

length, sampling rate, propagation delay, path loss, etc.) required for networks in 

different environments to reach their sensors.  

 

Three possible cases of the transmission and reception of signals in a 

transmitter/receiver system which might occur in the practical environment are: 1) 

equal received power (ERP) in which a network protocol ensures by probing that the 

signals received at each node will be equal in strength from all other nodes; 2) equal 

transmitted power (ETP) in which the transmitted signal strength from all nodes will 

be equal but the received signals strength will be different due to distance-dependent 

attenuations; and 3) random transmitted and received power (RTRP) in which both 
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signals are of random strengths. As our technique has major application in WSNs, 

RFIDs, etc., in which the probing technique is easily applicable, the first case would 

be sufficient for estimation. However, to make the estimation process robust, the 

second case is also investigated while the third is beyond the scope of this thesis. 

Although it is expected that experimental results will follow, as no field experiment 

has yet been undertaken, we provide only theory and simulation. The results 

presented in this thesis comprise a mix of theory and simulation. They represent a 

starting point for the investigation of correlation-based estimation techniques, but it 

is recognised that much further work is required before these techniques can be 

applied in real networks. 

 

This chapter briefly outlines the background to the proposed work (a brief 

description of major WCNs and their importance), some practical signal propagation 

issues regarding estimation in the applied field, the importance of the problem of 

estimation, and the contributions of the proposed work. As the proposed method is 

effective in all types of networks, the following section briefly outlines the 

significance of different WCNs. 

1.1 Background 

Recent advances in communications technology have produced WCNs in which 

information exchange occurs among nodes without wires. WCNs may be roughly 

classified by their geographical coverage area as: terrestrial (TWCN), space 

(SWCN), underground (UGWCN) and underwater (UWCN). Of these, the TWCN is 

the most dominant and covers almost the whole land area of the earth’s surface; for 

example, wireless mobile phone networks are widely used for personal 

communication and internet access. RFID systems have received much attention in 

both academia and industry for applications such as monitoring and tracking objects. 

Also, MANETs, which are self-configuring networks of wirelessly linked mobile 

nodes, have gained significant attention for establishing survivable, efficient and 

dynamic communications for emergency rescue operations, disaster relief efforts and 

military networks.  
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Apart from TWCNs, SWCNs are another major application of a WCN. The main 

goals of the SWCN are earth observation (EO), telecommunication with space 

vehicles, and missions of localisation from space. WSN technology can also be 

deployed underground where applications might be voice communication within 

underground environments (e.g., in caves or mines), or monitoring of soil conditions. 

Moreover, nodes are deployed underwater in the forms of MANETs or WSNs. The 

major applications of UWCNs are voice communication among divers, AUVs, etc., 

information collection from oceans, lakes, and rivers to observe and predict the 

characteristics of the underwater environment which can help in pollution 

monitoring, disaster prevention, undersea exploration, tactical surveillance. In this 

section, some of the most important WCNs are briefly discussed. 

1.1.1 Mobile wireless telephone network (MWTN) 

The last two decades have been the most dynamic in the history of TWCNs. Most 

notably, cellular systems have experienced huge growth over the last decade and 

there are currently about two billion users worldwide. Many people use wireless 

cellular radio telephones, also known as cell phones, to stay in contact with 

colleagues and clients. In such systems, wireless communications allow people 

greater flexibility while communicating because they do not need to remain at a fixed 

location, such as a home or office but, instead, can travel in a car or walk along a 

street. Increasingly, people are using wireless devices for a variety of everyday 

purposes, such as scheduling appointments, arranging meeting places, shopping for 

food and agreeing on home video selections while in a video store. Wireless 

communication devices are useful in places where communication services are only 

temporarily needed, such as at outdoor festivals or large sporting events. These 

technologies are also useful for communicating in remote locations, such as 

mountains, jungles and deserts where a wire-based telephone service might not exist.  

1.1.2 Terrestrial wireless sensor network (TWSN) 

Recent advances in embedded system and communication technologies have pushed 

a higher level of functionality into ever-smaller devices capable of sensing and 
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providing wireless communication. Networks formed by these devices, known as 

WSNs, have attracted a tremendous amount of research effort due to their huge 

potential in both the military and civil domains. A TWSN consists of a large number 

of sensor nodes, often in the order of thousands, placed close to each other and 

spread across a geographical area.  Each sensor node has a wireless communication 

capability and some level of intelligence for signal processing and networking of the 

data.  WSNs may be ad hoc in nature, which implies that each sensor supports a 

multi-hop routing algorithm so that several nodes may forward data packets to the 

base station.  

 

There are different types of TWSNs (for example, seismic, low sampling rate 

magnetic, thermal, visual, infrared, acoustic, radar, optical and electromagnetic) 

deployed for a variety of applications by observing the relevant decision-making 

parameters (for example, temperature, humidity, vehicular movement, lightning 

conditions, pressure, soil makeup, noise levels, presence or absence of certain types 

of objects, mechanical stress levels on attached objects, speed, direction and size of 

an object). 

 

To date, TWSNs have been used to perform collaborative tasks in areas such as the 

military, environmental research, the health sector, smart home appliances, industrial 

processing and disaster relief. In military applications, sensor networks are used to 

sense and obtain information about enemy movements, to characterise types of 

attacks as nuclear, biological or chemical, to monitor friendly forces and equipment, 

and for battlefield surveillance and targeting, etc. 

 

Sensor networks are also employed to detect and monitor environmental changes in 

plains, forests, etc. Some environmental monitoring applications are: investigating 

conditions that affect different types of life in the earth; studying pollution and 

precision agriculture; and for flood and bush fire detection. The Great Barrier Reef 

Ocean Observing System (GBROOS) (Bainbridge 2009; Kininmonth 2004; Freitas 

2009) uses a TWSN to monitor the environment near the Great Barrier Reef (GBR). 

Habitat monitoring is another application of a TWSN; for example, researchers in 
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UNSW, Australia, proposed a sensor network to detect the existence of cane toads 

(Shukla 2004; Hu 2009).  

 

In the health sector, integrated patient monitoring, diagnostics, telemonitoring of 

human physiological data, and the tracking and monitoring of doctors and patients 

inside a hospital are major applications. Disaster (bush fire, earthquake, tsunami, 

etc.) prediction is a very important application of a TWSN as it can provide prior 

information about such events. The integration of electronics, sensors and wireless 

communications has enabled the easy installation of TWSNs in industrial motor’s 

condition monitoring, which saves the cost of deploying large numbers of traditional 

wired monitoring systems (Lu 2005). The low cost, flexible, and rapid deployment 

characteristics of these sensor networks form an ideal platform for industrial 

condition monitoring systems (Lee 2008) .  

 

Some other applications are: wireless traffic sensor networks for monitoring 

vehicular traffic on highways or in congested parts of a city and detecting accidents; 

wireless surveillance sensor networks for providing security in shopping malls, 

parking garages and other facilities; and wireless parking lot sensor networks for 

determining occupied and unoccupied spots. Other applications are the monitoring of 

product quality, the construction of smart homes and offices, the monitoring of 

disaster areas, automatic meter reading and facility management. 

1.1.3 Radio frequency identification (RFID) system 

An application of wireless communication is the RFID, a system that transmits the 

identity of an object or person (in the form of a unique serial number) wirelessly 

using radio waves. In recent years, RFID systems have received much attention both 

in academia and industry for monitoring and tracking applications. They also offer a 

promisingly affordable, cheap and flexible solution for object identification. Among 

their applications, the localisation of objects and people, animal identification, 

ensuring secure operations in dangerous environments, and facilitating electronic 

payments and production control can be cited. Researchers believe that this 

technology can be used to save money and lives, and even the environment. In a 
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RFID system, there are two main parts: tags and readers. As the tags are most 

important for proper information exchange, knowledge of their number is important 

because of tag failure could render the whole identification process useless. 

1.1.4 Space wireless communication network (SWCN) 

Apart from TWCNs, space communications and commercial satellites are other 

major applications of wireless communication infrastructure (Vladimirova 2008; 

Colitti 2008). The main goals of a satellite are earth observation (EO), 

telecommunication with space vehicles and positioning missions. There are three 

different satellite systems which are positioned in accordance with the earth’s orbit: 

LEO at roughly 2000 km, MEO at roughly 9000 km and GEO at 40,000 km. The 

most common EO applications are: monitoring the environment and agriculture 

regarding pollution, land, ocean surface and crop conditions, etc.; hazard and disaster 

predictions of events such as floods, earthquakes and urban disasters; and 

observations of borders, vehicles and activities for security and crisis management.  

 

Traditional satellite missions using large satellite units are extremely expensive and 

difficult to design, build, launch, operate and maintain. For that reason, groups of 

smaller satellites (nano and/or pico) are scattered around the earth (Colitti 2008) to 

achieve global coverage in order to achieve success in different applications; this is 

the concept of a satellite sensor network (Krishnamurthy 2005). Although recent 

advances in TWSN technology limit the use of commercial satellites, some are still 

used due to their compelling features, for example, ubiquitous worldwide coverage, 

especially in remote areas, entertainment broadcasts using hundreds of TV channels, 

and high-quality digital radio offering audio transmission at near-CD quality.   

1.1.5 Underground wireless communication network (UGWCN) 

WCN technology can also be deployed underground where applications might be 

voice communication (Sicignano 2010) within underground environments (e.g., 

caves and mines), or the monitoring of soil conditions by observing the parameters of 

water content, mineral content, salinity, temperature, etc. UGWCN can be deployed 
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for a number of applications (Akyildiz 2006). This can be helpful in both agriculture 

and the construction of buildings. Wireless sensors that operate independently using 

a single-hop link to a base station are already being used for the monitoring of soil 

conditions in sports fields (Akyildiz 2006). Another application is for security 

purposes where sensors buried at a shallow depth can be used to detect movement 

via pressure, vibration and/or sound. This may be useful for business and home 

security as well as military applications. Although aboveground WSNs can be used 

for this purpose, it is desirable for security applications that sensors are hidden. Also, 

as a significant amount of infrastructure, including plumbing as well as electrical and 

communications wiring, exists underground, sensors can be used to monitor 

underground activity, for example, a plumbing leakage. With many miles of pipes to 

monitor, wireless sensors allow for the quick and cost-efficient deployment of a 

leakage detection system. UGWCNs can also be used to monitor the soil around 

underground storage tanks such as those at a fuel station. Although it is challenging, 

some researchers (Stuntebeck 2006; Akyildiz 2009; Bogena 2009) have tried 

wireless communications underground to develop efficient UGWCN.  

1.1.6 Underwater wireless communication network (UWCN) 

Geographically, almost three-quarters of our planet is covered by water, of which 

oceans account for almost 71% with the remainder being water reservoirs such as 

rivers, lakes, dams and ponds. As nearly all the world’s habitation is encompassed by 

water, if it is possible to use it as an efficient and reliable information communication 

medium, this would be a very valuable achievement for the communications 

industry. However, to date, very little communication coverage has been achieved by 

researchers due to the lack of means rather than limited human curiosity. Although 

underwater areas are naturally harsh to human exploration, in recent years, with 

technological advancements in the communications industry and increased 

knowledge of the reserves of natural resources underwater, research on UWCNs has 

been attracting attention for military and commercial purposes. UWCNs include, but 

are not limited to, UWSNs using acoustic waves (Quazi 1982; Sozer 2000) and 

electromagnetic waves (Frater 2006). As underwater personal communication is very 

limited and sensory application dominant, an underwater wireless acoustic sensor 
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network (UWASN), which is a more flexible form of communication in that 

environment, is the main use of a UWCN.  

 

The major applications of UWASNs include, but are not limited to, the following 

(Jiang 2008): 

 

 information exchange among nodes within the communication range of 

the network, or outside the network with the help of a switch centre; for 

example, underwater internet and voice communication among 

submarines; 

 information collection from oceans, lakes and rivers which could improve 

the human ability to observe and predict the characteristics of the 

underwater environment; 

 surveillance, including reconnaissance, targeting and intrusion detection; 

 environmental monitoring: a UWASNs can monitor different types of 

pollution, for example, chemical, biological, nuclear and oil leakage in 

bays, lakes and/or rivers (Yang 2002), and might also be useful for 

monitoring ocean currents and temperature changes in terms of global 

warming; 

 underwater exploration: without any appropriate technological tool, this 

is very difficult due to the high water pressure, unpredictable water 

activities and vast size of an unknown area but an UWASNs could be 

such a tool; 

 disaster alleviation: remote UWASNs can be helpful in the prediction of, 

and preparation for, the results of undersea disasters, such as tsunamis 

and ocean-bottom earthquakes, by issuing real-time warnings (Soreide 

2004); and 

 underwater mine detection in which optical sensors are employed (Freitag 

2005). 

  

There exist a number of research groups who have used oceanic WSNs to study 

underwater environments. One research group involved randomly distributed WSN 

involving magneto-elastic sensors over a lake to measures the pH-values of the water 
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in order to determine whether the water is safe to drink (Ong 2004). Another group 

have proposed a cost effective WSN for marine research to monitor water 

temperature and salinity (Dunkels 2004) and the proposed theoretical model is 

intended to be applied in an area where freshwater movements significantly affect 

temperature and salinity of the sea water. Potential research works are also available 

addressing several points of interests such as the development of middleware, 

routing, security and localization of underwater nodes in WSNs (Blumenthal 2004a; 

Blumenthal 2004b). 

However, while terrestrial networks, in particular “smart dust” (Buettner 2008; Shwe 

2009), emphasize low-cost nodes, dense deployments, and multi-hop and short-range 

communications, today’s typical underwater wireless networks are expensive and 

sparsely deployed (a few nodes placed kilometers apart). They communicate directly 

with a base station and sometimes use underwater manned or unmanned vehicles. In 

comparison with this common strategy, a nature-inspired approach, such as smart 

dust in a TWCN, smart plankton (Anguita 2008a; Anguita 2008b) can address the 

challenges and provide a roadmap for future generations of UWCNs. 

1.2 Practical issues regarding estimation 

As the approach proposed in this thesis is based on the cross-correlation of signals 

received by two digital receivers from random signal sources, the estimation process 

can be affected by some practical issues of digital receiver and signal propagation 

through the channel such as propagation delay, path loss, background noise, 

multipath propagation, internal noise of the receiver and fractional-sample delays. 

 

Some dominant practical issues are discussed in this section. As in this thesis 

UWCNs are emphasized, signal propagation issues are for the underwater 

environment. 

1.2.1 Signal propagation underwater  

There are three possible physical waves (electromagnetic (EM), acoustic and optical) 

used to carry communication signals in a UWCN, all of which have their advantages 
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and limitations. Optical systems which use lasers are limited to very short distances 

as the light is rapidly attenuated in water due to backscattering (Akyildiz 2005). 

While an EM wave is a promising signal used in terrestrial communication, due to its 

very high absorption rate in water because of its high frequency, EM waves can only 

propagate over extremely short distances underwater (Che 2010). Instead, acoustic 

waves, which can propagate over long distances (Sozer 2000), are used in practice. 

Thus, although sound waves are of great interest for the transmission of information 

in water, and acoustic communication is a promising underwater technique, there are 

some limitations which require further work. Underwater acoustic communication 

poses the limitations of long and variable propagation delays (Akyildiz 2005), high 

path losses, strong background noises and multipath of signal propagation. 

 

The following section briefly describes the fundamental physical characteristics and 

critical issues for EM and acoustic wave propagation underwater.   

1.2.2 Propagation delay in underwater acoustic network (UANs) 

An EM wave’s propagation speed in air is considered to be the speed of light but, in 

water, it is affected by the factor rr , where r  is the relative permittivity and r  

the relative permeability. As, for the reasonable EM frequencies underwater, 81r  

and 1r , the speed of an EM wave underwater is m/s1033.3 7waterc (Goh 

2009). Although this speed is lower than that in air, as it is still very high, the 

propagation delay of a signal from a transmitter to a receiver is negligible for an EM 

signal. 

 

On the other hand, acoustic signals travel underwater much more slowly than EM 

waves. The typical value used for an acoustic transmission is 1500 m/s (Preisig 2006; 

Lucani 2007; Wenli 2008). Limited bandwidth often leads to data delivery rate of 

merely a few kbps. Moreover, the deployed area for UAWSNs is much larger than 

that for TWSNs which results in its propagation delay becoming significant. Thus, 

the low data rate and long propagation delay in a UAWSN provide significant 



 

12 
 

challenges for networking concepts using RF radios with negligible propagation 

delay developed for TWSNs. 

1.2.3 Path loss 

To design feasible communication schemes for efficient application in UWSNs, it is 

important to understand the characteristics of the underwater channel, one of the 

most representatives being the high path loss which becomes severe as the carrier 

frequency of the signal increases. Thus, an EM signal has much greater path loss 

than an acoustic signal.  

 

There are three possible causes of path loss in a channel: absorption, geometrical 

dispersion and scattering. When propagated, wave energy can be transformed into 

other forms, such as heat, and be absorbed by the medium; this is known as 

absorption loss and is due to particular properties of a communication channel. The 

relevant property for acoustic waves is inelasticity whereas, for EM waves, it is 

electrical conductivity. In underwater communication, the cause of absorption loss is 

the inelastic property of water for acoustic waves, and the conductivity of salty water 

for EM waves. 

 

Dispersion loss, also known as spreading loss, is due to the geometrical dispersion of 

the signal in the communication medium. When an acoustic signal propagates further 

away from its source, the wave front occupies an ever-increasing surface area. 

Hence, the energy per unit surface area (i.e., the energy flow) consistently decreases. 

For a spherical wave generated by a point source, the dispersion loss is proportional 

to the square of the distance whereas, for a cylindrical wave, the loss is proportional 

only to the distance. 

 

Path loss is defined as (Howlader 2009):  

 

dk adL p  (1.1) 

where 
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pL  is the path loss which is a function of the distance between the transmitter 

and receiver, d, and the signal frequency, f; 

k is the dispersion factor; and 

a is the frequency-dependent absorption coefficient. 

 

The dispersion component typically depends only on distance, while absorption 

depends both on operating frequency and distance. 

 

The expression of path loss in dB is (Howlader 2009):  

 

addkL log10log10log10 p                            (1.2) 

 

On the right-hand side, the distance-dependent first term with the dispersion factor 

represents the dispersion loss whereas the frequency-dependent second term 

represents the absorption loss. It is shown in (1.2) that for a particular operating 

frequency the absorption loss in dB is also a linear function of distance. 

 

The expression (1.1) implies that the dispersion loss results from energy decay due to 

propagation, with the decay proportional to kd   and the absorption loss proportional 

to da , where a  is an increasing function of frequency. Due to this frequency 

dependency, an underwater acoustic channel is effectively considered as bandwidth-

limited (and not, like an RF channel, power-limited). This limitation occurs because, 

in general, the low cutoff of the available bandwidth is determined by ambient noise 

levels and the high point by absorption. Due to its distance dependency, the 

absorption loss becomes more significant at longer distances and the effective 

bandwidth decreases as the range increases.  

 

The dispersion factor, k, describes the geometry of propagation, and its commonly 

used values are k = 2 for spherical spreading, k = 1 for cylindrical spreading and k = 

1.5 for so-called practical spreading (Stojanovic 2006a). (The counterpart of k in a 

radio channel is the path loss exponent, the value of which is usually between 2 and 

4, the former representing the free-space line-of-sight propagation and the latter the 
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two-ray ground-reflection model.) Thorp’s formula is used to express absorption 

coefficient as (Berkhovskikh 1982): 
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The absorption coefficient is plotted in Figure 1.1 (Stojanovic 2006a). 

 

 

Figure 1.1 Absorption coefficient, a(f) 

1.2.4 Background noise 

Another major factor of disturbance is background noise, also known as ambient 

noise, which can be defined as the unwanted signal from unidentified sources in the 

medium. Its distinguishing features are: it is due to multiple sources; individual 

sources cannot be identified; and no one source dominates the received field. 

Common sea surface noise sources include ships’ radiated noises, breaking waves 

associated with ensuing bubble production, etc., and deep water noises, mainly from 

marine mammals. 

 

The ambient noise in the ocean comes from a number of sources as: turbulence, 

shipping, waves and thermal noise, most of which can be described by Gaussian 

statistics and a continuous power spectral density (Stojanovic 2006a). Due to the 
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frequency dependence nature of the ocean ambient acoustic noise (Urick 1986), the 

power spectral densities of the above four major noise components are expressed by 

the frequency dependent empirical relations in (Coates 1989) as: 
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where  

 fU t  is the power spectral density of ambient noise due to turbulence in dB 

re μPa per Hz and f in kHz. 

 fUs  is the power spectral density of ambient noise due to shipping in dB re 

μPa per Hz and f in kHz. 

 fUw  is the power spectral density of ambient noise due to wind in dB re 

μPa per Hz and f in kHz. 

 fU th  is the power spectral density of thermal ambient noise in dB re μPa 

per Hz and f in kHz. 

as is shipping activity factor, whose value ranges between 0 and 1 (Stojanovic 

2006a) for low and   high activity, respectively. 

w is the wind speed in m/s 

1.2.5 Multipath effects 

Multipath propagation is the type of wave propagation in which a wave reaches a 

receiver through multiple paths. An acoustic channel underwater is subject to 

multipath propagation. In a shallow water channel, the acoustic waves travel through 

a direct path and also bounce from the surface and the bottom which results in 

multipath propagation. Although not as severe as in shallow water, there is still 

multipath propagation in deep water. Multipath propagation creates signal echoes 

which result in inter-symbol interference (ISI) in a communication system and its 

effects are more severe underwater than in a ground-based system; for instance, in a 
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cellular radio-based system, multipath spans only a few symbol intervals whereas, in 

an underwater acoustic channel, it can span tens, or even hundreds, of symbol 

intervals (Stojanovic 2006b). Although a solution to avoiding ISI is to use a guard 

time between successively transmitted symbols, this reduces the overall data rate and 

can cause higher error probability. One way of keeping the symbol rate high is to 

design receivers to counteract very long ISI. Although multipath effects might be 

neglected, the estimation process developed here analyses the negligible and non-

negligible multipath effects. 

1.2.6 Other issues 

Signal length, which might be a vital factor in the estimation process, is discussed 

later in this thesis. However, some other practical issues, such as the Doppler spread, 

refraction, which affect the performance of underwater acoustic propagation, are not 

considered. 

1.3 Importance of the proposed estimation 

Although there is no particular literature to summarize the importance of node 

estimation, some literature (Akyildiz 2005; Proakis 2003; Partan 2006; Roux 2005; 

Swamy 2007; Chen 2008) demonstrate the importance directly or indirectly. This 

section summarises the importance of node estimation in wireless communication 

systems. 

A. Estimation in WSN 

 

1. Maintain coverage area 

The coverage area of a WSN depends mainly on the number of nodes present. 

There should be an area-node ratio in a network to be deployed in order to obtain 

sufficient data of interest. However, in a harsh remote environment, network 

nodes are often failure-prone and have limited power. It is thus a matter of great 

interest to know the number of nodes at any point in time after the deployment 

of a network to ensure that the predefined coverage area is achieved. 
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2. Assist proper network operation 

To optimise the use of energy (which is very important in a WSN where the 

nodes are unattended, remote and have a limited non-rechargeable power 

supply), it is necessary to utilise the variable numbers of nodes in a whole 

network according to the tasks to be performed. Thus, the network’s deployment 

topology will vary from time to time. But, as real operations, such as routing, 

medium access and the protocols of the network, depend on the number of 

nodes, to achieve the proper operation of a network with a varying number of 

nodes, it is equally important to know the number of active nodes at any point in 

time. This might also help other processes such as localisation and direction 

finding. 

 

3. Provide useful data collection 

The traditional approach (Proakis 2003) for ocean-bottom or ocean-column 

monitoring is to deploy underwater sensors that record data during the 

monitoring mission and then recover the instruments. As there is no interaction 

between the onshore control systems and monitoring instruments; real-time 

monitoring is not possible. This is critical, especially in surveillance or 

environmental monitoring applications, such as seismic monitoring. The 

recorded data cannot be accessed until the instruments are recovered, which may 

happen several months after the beginning of the monitoring mission. Also, if 

failures or misconfigurations have occurred, it may not be possible to detect 

them before the instruments are recovered. Thus, the data recorded during a 

monitoring mission will be useless if one or more nodes fail and this can easily 

lead to the complete failure of the mission (Akyildiz 2005). 

 

4. Achieve cost-efficient missions 

The failure of a mission leads to high financial loss as the cost of manufacturing, 

deployment, maintenance and recovery of underwater equipment is much higher 

than that of its ground-based counterpart; for example, an acoustic modem with 

a rugged pressure housing costs roughly $3000 (Partan 2006), an underwater 

sensor can be even more expensive, and supporting hardware, e.g., an 

underwater cable connector, is often more than $100 (Partan 2006). Deployment 
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costs are also very high. An oceanographic research vessel typically costs $5000 

- $25,000/day depending on its size (Partan 2006) and the operation being 

weather dependent exacerbates the situation. Recovery can also be expensive. 

Increasing its number of nodes is one way of improving the robustness of a 

network. However, the number of operating nodes can vary with time due to 

various artificial, as well as natural, reasons (for example, some nodes might 

fail, some can be damaged because of fouling and corrosion, or batteries might 

fail). 

 

5. Regain network topology 

The deployment of a WSN follows some geometrical topology which changes if 

any node fails. However, this can be overcome by knowing the number of active 

nodes as well as their locations. 

 

B. Estimation in mobile ad hoc network 

 

6. Assist traffic management and knowledge of community’s lifestyle 

Accurately determining the number of operating nodes, i.e., mobile phones, could 

provide a complete picture of a community’s demand which would be helpful for 

the proper operation and planning of a communications company which could, 

based on that information, decide to extend or reduce a facility, for example, 

install another base transceiver station. Also, knowing the number of mobile 

phones used in a community can provide an indication of that community’s 

lifestyle. 

 

C. Estimation in RFID system 

 

7. Provide proper identification of tagged body in RFID system 

In an RFID system, the failure of any tag means that its body is untagged, i.e., it 

will not be identified by the reader. This failure of any tag could be identified by 

knowing the accurate number of active tags. If all tags are sound, this process 

will help to count the number of tagged bodies which is the main goal of an 

identification process. Thus, to know the number of faulty tags, for their 
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replacement, and also to identify the number of tagged bodies, estimation of the 

number of tags is necessary. 

 

D. Estimation of other nodes 

 

8. Count speakers in multi-speaker teleconferencing system 

In the case of multi-speaker data, the problem is determining the number of 

speakers, and then localising and tracking them from the signals collected using a 

number of spatially distributed microphones (Swamy 2007). It is also necessary 

to separate the speech of each individual speaker from the multi-speaker signals 

which again requires prior knowledge of the number of speakers.  

 

9. Obtain idea of ambient environmental noise 

Studies of unwanted signal, especially underwater ambient noise in the ocean, are 

of both scientific and applied interest as they provide information on processes in 

the ocean and oceanic fauna; for example, the depth estimation of an ocean is 

possible using the ocean’s ambient noise cross-correlation (Siderius 2006). 

Again, as underwater ambient noises interfere with the operation of underwater 

acoustic systems such as UWASNs (Alam 2010), knowledge of their 

characteristics (number, strength, etc.) are necessary for the development of 

methods to suppress them. Thus, knowing the number of ambient noise sources is 

of interest. 

 

10. Count natural nodes, such as fish underwater and vehicles in street 

In this work, any signal-creating animals, materials, etc. can be also considered 

nodes. Natural underwater sources of sound, such as fish, and vehicles in the 

street are taken as examples. Estimating the number of fish is a very important 

achievement in the fisheries field as its management depends mostly on knowing 

the number of fish underwater, such as in hatcheries, ponds, lakes and even the 

ocean. This knowledge might assist a country’s government to establish a fish-

catching quota. Also, as vehicles in the street make sounds, they can be 

considered nodes. Estimating their number in a certain area will be helpful for a 

traffic management system. Also, as vehicles in the street make sounds, they can 
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be considered nodes. Estimating their number in a certain area will be helpful for 

a traffic management system. Although there are other more reliable ways 

(manual/automatic) to count the number of vehicles in a street, this approach 

would be a useful addition to them. 

 

In a communication network, the nodes may be placed in 1D, 2D and, for a wide 

range of applications, 3D. Most terrestrial networks are 2D and most underwater are 

3D. Dimensionality estimations of the nodes after deployment are essential in order 

to establish a practical network’s dimension. The connectivity of the network might 

alter due to a harsh environment, especially in an underwater network in which the 

network nodes are sparsely placed. Also, a network will lose its deployment 

dimensionality after deployment if one or more nodes are damaged; this will lead to 

the loss of the project for which the network is deployed. Thus the estimation of the 

deployed networks’ dimensionality is very important. 

1.4 Objectives 

The objectives of this thesis are to: estimate the number of nodes in different WCNs 

(using in an underwater network as an example); estimate network’s dimensionality; 

and propose a novel technique, instead of conventional protocols, for overcoming the 

inefficiency of protocols for estimating the number of nodes and dimensionality of 

an underwater network.  

1.4.1 Estimation of the number of nodes 

To date, conventional techniques employed to estimate the number of nodes in a 

communication network have been based on protocols already in use. Those in a 

TWCN are well established whereas the harsh underwater environment poses several 

difficulties. In this study, a cross-correlation technique for estimating the number of 

nodes, which will be equally usable in all environments, is proposed. As underwater 

networks represent the worst cases in communication, all simulations are conducted 

for that environment.  
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1.4.2 Estimation of networks’ dimensionality 

The dimensionality of a communication network is important for various purposes, 

such as localisation, direction finding and estimation. As estimation of the number of 

nodes using cross-correlation might depend on the dimensionalities of the networks, 

it is better to first estimate the later, that is, whether the nodes are oriented in 1D, 2D 

or 3D in space. The dimensionality of a network affects the cross-correlation 

function (CCF). Based on this effect, a concurrent cross-correlation method for 

estimating dimensionality is proposed.  

1.4.3 Analysis of error in estimation 

Errors are mirrors of estimates and are divided into two categories: mathematical and 

statistical. As the method of cross-correlation has statistical properties, it is better to 

analyse the error of such a technique statistically rather than mathematically which is 

carried out in this work. The ratio of the standard deviation to the mean of 

estimation, also known as the coefficient of variation (CV), is investigated and 

analysed as a statistical error in estimation. 

1.5 Robustness of the estimation process 

To ensure the estimation process is robust, the following practical issues are 

considered in the simulation.  

1) Background noise 

2) Internal receiver noise 

3) Fractional-sample delays 

4) Propagation delays 

5) Multipath effects 

 

Different performance analyses are conducted and the system’s performance is 

compared with that of conventional protocol techniques. It is noted that there are 

many other possible channel properties and components, but investigation of these is 

left for further work. 
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1.6 Contributions and novelty 

The major contributions of this thesis are as follows. 

 

 Estimation of the number of nodes in WCN: ERP case 

This work formalises a novel process for the estimation of the number of 

nodes in a communication network using cross-correlation. The impact of 

large propagation delays on the performances of protocol techniques is most 

significant. The technique developed here performs better than the protocol 

methods. A number of practical issues are investigated, which are listed 

below. 

i. Estimation is performed with integer and fractional-sample delays, and 

compares them to show the effect on estimation of the fractional part of 

the sample delay. This helps to design a practical estimation system.  

ii. Theoretical estimation is proposed for infinite signal length, which is an 

energy-related term in a practical system and is therefore not possible to 

attain. So the effect of finite signal length and its proper selection is 

investigated. 

iii. To make the estimation process robust, the effects of noise are 

investigated and proposed solutions are provided. 

iv. Realistic deployment environments might have multipath effects which 

in turn might affect the estimation process. The effects of multipath are 

analysed and a solution provided to obtain estimation. 

 

 Estimation of the number of nodes in WCN: ETP case 

The first contribution is investigated in the ERP case, in which the signals 

received at each node will be equal in strength from all other nodes, and is 

possible with a simple network protocol using a probing technique. Direct use 

of this technique is not suitable for the ETP case, in which the transmitted 

signal strength from all nodes will be equal but the received signals strength 

will be different due to distance-dependent attenuations. The modified 

estimation technique is investigated for the ETP case, in which we provide a 

concise treatment of the fundamental concept of ERP case. This extension 
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might be helpful in estimating the number of network nodes even if the nodes 

are uncontrolled, i.e., the nodes of enemy sensor networks and those in the 

natural underwater networks, such as fish. The effects on estimation are 

provided for practical issues as fractional-samples delay, signal length, and 

noise.   

 

 Error formulation and analysis  

The process of cross-correlation has statistical properties. So, the coefficient 

of variation (CV), a statistical error in estimation, is formulated and analysed. 

The analyses are provided in terms of the following investigations. 

i. Theoretical and simulated investigations are provided for CV in the ERP 

case. 

ii. Theoretical and simulated investigations are provided for CV in the ETP 

case. 

iii. Required energy estimation and comparison in the proposed techniques.  

iv. Required time estimation and comparison in the proposed techniques. 

v. Comparison with conventional protocols in terms of CV and required 

time.  

 

 Dimensionality (i.e. a network is 1D, 2D, or 3D) estimation: Method 1 

A dimensionality estimation of communication networks using the shape of 

the cross-correlation function (CCF) is undertaken. 

 

 Dimensionality (i.e. a network is 1D, 2D, or 3D) estimation: Method 2 

A dimensionality estimation of communication networks using the ratio of 

standard deviation to the mean of the CCF is conducted, where the ratio is 

obtained from the individual bin probabilities. 

 

 Estimation of the number of nodes in WCN for all dimensions: Method 1 

An estimation process of the number of nodes for all network dimensions 

(1D, 2D, and 3D) using the ratio of the standard deviation to the mean of the 

CCF is undertaken, where the ratio is obtained from the entire CCF at a time.  
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 Estimation of the number of nodes in WCN for all dimensions: Method 2 

An estimation process of the number of nodes for all network dimensions 

(1D, 2D, and 3D) using the basic approach (as in the first contribution) is 

conducted.  

1.7 Thesis organisation  

The remaining chapters of this thesis are organised as follows. 

 

Chapter 2 - a detailed review of the literature pertaining to the topic; this 

chapter describes the scope of the estimation technique. Important literature 

pertaining to estimation of the number of nodes and network dimensionality 

have been summarized based on their estimation process, advantages and 

limitations. The chapter also describes the cross-correlation applications which 

lead to the motivation using cross-correlation to estimate the number of nodes. 

Moreover some statistical signal processing terms relevant to the estimation 

process are discussed.  

 

Chapter 3 - estimation of the number of nodes; this chapter describes the 

details estimation process using cross-correlation. Theory is developed for the 

basic estimation in ERP case with some assumptions. Most of the assumptions 

are analysed later in the thesis. Theories are supported by simulations. The 

estimation technique is analysed with practical issues such as fractional-

samples delays, noise, and multipath effects. 

   

Chapter 4 - estimations of dimensionality and the number of nodes in different 

dimensions; this chapter analyses the theory and simulation of network 

dimensionality estimation for three basic dimensional (1D, 2D, and 3D) 

networks.  Moreover, the estimation of the number of nodes for all dimensions 

is investigated in this chapter. 
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Chapter 5 - a detailed error analysis of estimations of the number of nodes 

using investigations of comparative performances, the energy required for 

estimation, the effects of practical issues; and 

 

Chapter 6 - the conclusion of the whole thesis. Important future work has also 

been suggested with possible direction for research. 

1.8 Publications 

Major publications resulting from this work are: 
 

[1] “Estimation by Cross-correlation of the Number of Nodes in Underwater 

Networks”, In Proc. Australasian Telecommunications and Applications 

Conference (ATNAC) 2009, Canberra, 10−12 November 2009. 

[2] “A Novel Signal Processing Approach of Network Size Estimation in an 

Underwater Environment”, Submitted to IEEE Transaction on Signal 

Processing, 2012.  

[3] “Estimation using cross-correlation of the dimensionality and corresponding 

size of wireless communication networks”, Draft to be submitted to IEEE 

Journal of Oceanic Engineering. 

  [4] “Estimation using cross-correlation of the number of nodes in ocean wireless 

sensor networks”, journal to be submitted to Ocean Engineering, Elsevier. 
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Chapter 2  

Literature review 

2.1 Introduction 

There are several artificial forms of wireless communication using different forms of 

signals (i.e., electromagnetic, acoustic and optical) and their combinations; for 

example, wireless communications in terrestrial communication systems, e.g., RFID, 

mobile wireless telephone and internet, in WSN systems in different media, i.e., air 

(TWSN), underwater (UWSN) and underground (UGWSN), and in space 

communication systems, e.g., satellite communication networks. In these forms of 

wireless communication systems, the terminal equipment (i.e., the user handset in a 

mobile phone system and sensors in a WSN) are taken as the nodes. Strictly 

speaking, the parts of a wireless communication system which transmit signals of 

any kind are the nodes of interest.  

 

Accurately determining the number of nodes in a communication network is an 

important issue for both practical network operations (such as routing and medium 

access) and networked applications (such as information retrieval and processing) as 

they depend upon the number of transmitting nodes present. Moreover, estimation of 

the number of nodes, i.e., the number of transmitters, has recently received much 

attention in the field of WSNs. In underwater networks, there may be a large number 

of nodes deployed over a large area for a practical purpose, such as oceanographic 

data collection or pollution monitoring. In other applications, underwater vehicles in 

a UWSN, using electromagnetic waves (Frater 2006) and acoustic waves (Quazi 

1982; Sozer 2000) equipped with a sufficient fraction of operating nodes that can 

communicate with each other, travel underwater for the purposes of climatic data 

collection, environmental monitoring, seismic and acoustic monitoring, surveillance 

and national security, military purposes and health care, discovery of natural 

resources, location of man-made artefacts and extraction of information for scientific 

analysis. As optimal performance requires a balance among the number of operating 
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nodes, the energy efficiency and the lifetime of the network, the number of operating 

nodes is a crucial factor for networks.  

 

However, this balance can vary over time due to various artificial, as well as natural, 

causes (for example, some nodes might fail or become damaged, or batteries might 

fail). So, it is a matter of great interest for a communication network to know how 

many operating nodes or transmitters are available in the region at any point in time 

to ensure proper network operation (such as routing) as well as network maintenance 

(such as replacement of faulty nodes). 

 

Again, precisely determining the number of ambient noise sources, i.e., the natural 

nodes, might be an important issue for WCNs as, in a communication network, 

issues such as communication quality, and information retrieval and processing 

capabilities, depend on the number of ambient noise sources present. It is also 

important in, for example, fisheries, animal and vehicle management systems, where 

the estimation of the number of ambient signal sources is itself interesting. 

 

Moreover, the dimensionality of a network is very important for ensuring its 

appropriate coverage area, proper network operation, such as routing, and design of 

network protocols, as well as for processes of localisation and direction finding. In 

such cases, although the dimensionality is assumed, in practice, it might be totally 

different. Again, as estimating the number of nodes using cross-correlation depends 

on dimensionality, in order to create a robust estimation technique, the 

dimensionality of the network has to be estimated first. 

2.2 Existing estimation techniques using protocols 

Protocols are widely used in WCNs for different purposes, such as routing purposes 

in WSNs, and identification of tags in RFID systems. Existing protocols can also be 

used for the estimation of the number of nodes in those networks. Identification is the 

process to identify the ID of the tags in an RFID network whereas estimation of the 

tags is the process of estimating their number. The following sections contain a brief 

literature review of network protocols to estimate the number of tags i.e. nodes.  
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2.2.1 Using identification protocols in RFID systems 

There have been many investigations into identifying the number of tags in RFID 

systems which is a similar problem to the estimation of the number of nodes in 

WCNs. A RFID system consists of one (or more) networked electromagnetic readers 

and a number of radio frequency tags, as shown in Figure 2.1 (Burdet 2004). The 

tags contain limited computation power and memory whereas the reader is powerful 

and has abundant memory. There is a single communication channel for exchanging 

messages between the reader and the tags but the tags are unable to do this among 

themselves. Initially, the tags are totally unknown to the reader. The reader can 

broadcast a message to which each tag has the option of sending a response to the 

reader. The reader receives responses from the tags and tries to identify them. If only 

one tag responds at a time, it is correctly identified. But, if more than one tag 

responds at a time, the reader detects only a collision on the channel. A RFID 

protocol specifies the algorithms for the reader and the tags so that the reader can 

properly collect all the tag IDs. Knowing the numbers of tags in large-scale RFID 

systems is an important task. Their estimation is possible by using the existing 

protocol to identify individual tags and then computing the cardinality of the system.  

 

There have been many tag identification protocols, probabilistic, deterministic and 

hybrid, proposed in the literature. Probabilistic algorithms decrease the possibility of 

tag collisions by allowing the tags to transmit their own serial numbers at a distinct 

time (Myung 2007) whereas, using deterministic algorithms, the reader sends its ID-

based requests to tags to obtain responses (Alotaibi 2009). ALOHA-based protocols 

(Vogt 2002a; EPC-Global 2005; Lee 2005; Bonuccelli 2006; Cha 2006; Kodialam 

2006; Peng 2007) are probabilistic whereas tree-based protocols (Choi 2005; Chiang 

2006; Choi 2006; Myung 2006a; Myung 2006b; Myung 2007) are deterministic. 

Some hybrid approaches, in which randomisation is applied in a tree scheme, are 

discussed in (Micic 2005; Simplot-Ryl 2006; Ryu 2007). In (Kodialam 2006), a 

framed slotted ALOHA protocol, in which each tag transmits its serial number to the 

reader in a randomly selected slot of a frame (a time interval between the requests of 

a reader consisting of a number of slots) and the reader identifies tags when a time 
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slot is used by only one tag, is proposed. This process is repeated until all tags are 

identified. 

 

Figure 2.1 Basic RFID system (Alotaibi 2009) 

 

There might be some collisions in the basic ALOHA-based protocols, which affect 

the identification process by degrading the performance. To significantly reduce the 

number of transmission collisions, a new probabilistic protocol, based on a modified 

version of the slotted ALOHA protocol (called the tree-slotted ALOHA protocol), is 

proposed in (Bonuccelli 2006). In this scheme, each tag selects a slot into which to 

transmit its ID by generating a random number. When a collision occurs in a slot, 

only the tags that generate such a collision are queried in the next read cycle. Thus, a 

transmission frame can be viewed as a node in a tree where the root is the initial 

frame and the leaves represent frames in which no collision has occurred.  

 

However, collisions (which may cause a serious problem of tag starvation, i.e., a 

specific tag may not be identified for an unlimited time) are not completely removed 

by ALOHA-based protocols. To remove this tag starvation problem, tree-based tag 

anti-collision protocols, such as binary search protocols (MIT-Auto-ID-Center 2003) 

and query tree (QT) protocols (Law 2000), have been proposed. A splitting 

mechanism for tag identification is used in tree-based protocols in which colliding 

tags are split into two subsets which are identified one after another by the reader. In 

this method, all the tags can be identified by continuing the mechanism until the 

reader receives tag signals without collisions.  
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In the QT protocol (Law 2000; Feng 2004), the reader sends a prefix and asks the 

tags to answer if their IDs match it. If a collision occurs, the reader queries for a 

prefix that is one bit longer and this process continues until no collision occurs. Thus, 

once a tag is identified, the reader starts a new round of queries with another prefix 

until all tags are identified. However, since readers use prefixes, their performances 

are sensitive to the distributions of the tag IDs they have to identify. Further 

improvements are proposed in (Law 2000; Chiang 2006). In binary search protocols 

(Capetanakis 1979; ISO-Standard 2003; MIT-Auto-ID-Center 2003), the processes 

are similar to those of query tree protocols except that they use random binary 

numbers to split the tag set.  

 

Although tree-based protocols do not suffer from the tag starvation problem, they 

have relatively long identification delays caused by the splitting procedure. To 

reduce this effect, Myung et al. (Myung 2006a; Myung 2006b; Myung 2007) propose 

two adaptive tag anti-collision protocols: the adaptive query-splitting protocol, an 

improvement on the QT protocol, and the adaptive binary-splitting protocol which is 

based on the binary tree protocol. Also, an improvement on the adaptive binary-

splitting protocol is proposed in (Chen 2007). 

 

All the protocols proposed to date exhibit average performance well below 50% of 

maximum throughput (in terms of both messages and transmitted bits). To improve 

on this, another protocol, in which the reader asks all tags to transmit their own 

complete IDs, is proposed in (Bonuccelli 2008). From the answer, which is the sum 

of all the IDs, the reader divides the set of tags in a recursive way until all tags are 

identified. 

 

However, these estimation processes based on tag identification protocols suffer 

from the shortcoming of a long processing latency; for example, the deterministic 

protocol in (Myung 2006c) requires more than 1000 seconds (Chen 2008) for the 

identification of 3000 tags while an even longer time is required for the probabilistic 

protocol proposed in (Lee 2004). Due to this long processing delay, tag 

identification-based estimations are often impractical, especially when a tag is 

attached to a moving object in which case it may go outside the reader’s range before 
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being identified. In some instances, for security purposes, readers may not be 

allowed to query the tags for their identification. In other cases, a tag set may 

undergo a quick change of their location and shape which makes identification by the 

reader of all the tags impossible.   

2.2.2 Estimation without identification in RFID systems 

In order to overcome the effect of the long processing time required for identification 

when estimating the number of tags and to obtain proper estimations of all tags in 

cases with some non-identifiable tags, some estimation processes without 

identification are proposed in (Vogt 2002b; Floerkemeier 2006; Kodialam 2006).  

2.2.2.1 Estimation process proposed by Kodialam (2006) 

In this work (Kodialam 2006), the authors propose two estimation algorithms based 

on the framed slotted ALOHA (FSA) and probabilistic framed slotted ALOHA  

(PFSA) protocols for a static tag set using analysis and simulated verifications. In 

their FSA method, all tags respond in a randomly selected slot within a frame, 

whereas only a portion of the total tags determined by a probability factor respond in 

the randomly selected slot within the frame in their PFSA method. 

In a respondent frame of size F in the FSA method, the reader measures some empty 

slots, m0, some singleton slots, m1, and some collision slots, mc. For these slots, the 

authors propose three tag estimators as shown in the following table. 

 

Estimator Expression 

Empty estimator 

F

m
e 0  

Singleton estimator 

F

m
e 1  

Collision estimator  
F

m
e c11    

 

where,  is the normalised offered load and is defined as 
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F

N


size Frame

estimated be  to tagsofNumber 
 

 

So, the replacement of   gives the following estimator expressions. 

Estimator Expression 

Empty estimator 

F

m
e F

N
0


 

Singleton estimator 

F

m
e

F

N F

N
1


 

Collision estimator 

F

m
e

F

N F

N
c11 






 


 

 

In their PFSA method with total probability M, only the M portion of the tags 

responds in the frame of size F. Thus, the estimator expressions are as follows. 

Estimator Expression 

Empty estimator 

F

m
e F

MN
0


 

Singleton estimator 

F

m
e

F

MN F

NM
1


 

Collision estimator 

F

m
e

F

MN F

NM
c11 






 


 

It is shown that the empty estimator expressions can be solved easily for N̂  

(denoting the estimated N as N̂ ) in the closed form but, as the other two non-linear 

expressions require numerical techniques, the authors solve them using the 

bisectional search method.  

 

Of the estimators, it is shown that the singleton is non-monotonic in nature with 

respect to  , and the solution of the estimator equation for N̂ is not unique, i.e., for 

a certain number of singleton slots, there exist two different   (except 1 ) and, 

thus, two different N̂ . So, the singleton estimator alone is not suitable for the 

estimation of the number of tags. Again, as it is shown in the above tag estimation 
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process that the collision estimator is better than the empty estimator, they prefer it 

for estimation. It can estimate the number of tags of any size within a near-constant 

time for a certain accuracy of estimation. However, although it might provide 

comparatively quick, accurate estimations in RFID systems with collision slots in 

which the capture effect can be neglected, in environments such as UCNs, in which 

the capture effect cannot be neglected, it is not suitable for estimation. 

2.2.2.2 Estimation process proposed by Chen (2008) 

The approaches proposed by Kodialam (2006) are designed for only a single reader 

and no information is provided for multiple readers. But, due to the terrain and 

coverage limitations of their readers, large-scale RFID systems often require multiple 

readers. It has been shown through analysis that, although the method proposed by 

Kodialam and Nondogopal is efficient and effective, it has a problem with multiple 

reading, i.e., the reading of a tag by more than one reader in a multi-reader system. 

To overcome this problem, a replicate insensitive Lottery Frame (LoF) estimation 

protocol is proposed by Chen (2008). In this process, the elimination of replicates 

can be achieved by hashing and a logical OR operation, as discussed below (Chen 

2008). 

 

In its initial phase, each reader constructs an ALOHA frame of size F with   time 

slots, and then broadcasts the length,  , to probe the tags within its communication 

range. When a tag receives the probe request from the reader, it applies a particular 

hash function to its ID, i, whose values are uniformly distributed. Upon obtaining the 

result of a particular hash function, the respondent tag normalises the hash function 

to a value within the range of [0,   – 1] and denotes the normalised value as the slot 

number in the frame in which it will respond.  

 

In this way, every tag hashes itself to a time slot of a frame with size   in the reader 

which keeps a bitmap with the tag hashes. After hearing the whole frame, the reader 

knows that some slots have no transmission, with a bit value of 0 denoted by h0, and 

some have one or multiple transmissions, with a bit value of 1 denoted by h1. If the 
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estimated number of tags is again denoted by N̂ , the estimation expression will, for 

a single reader (Chen 2008), be 

)1.2(lnˆ 0











 h

N
     

 

The property of hashing is suitable for eliminating replications in a multi-reader case 

since datum with the same value will have the same hash value. In this process, h0 

and h1 are no longer individual computations. Instead, all readers report their bitmaps 

to a central server which obtains a merged bitmap using the logical OR to those 

individual bitmaps. Then, the server estimates N̂  from the merged bitmap using the 

expression (2.1) above. 

2.2.2.3 Methods proposed by Vogt (2002b) 

Two FSA processes for estimating the number of tags around a reader in a RFID 

system have been proposed by Vogt. In the first, a reader with a frame of size F 

sends probe requests to the tags. Being energised by the probes from the reader, the 

tags reply to that frame in which there will be some singleton, m1, some collision, mc, 

and some empty, m0, slots. In singleton slots, only one tag, in collision slots more 

than one and in empty slots no tag will have responded. In this estimation method, 

the author of Vogt (2002b) provides a lower bound on the value of the estimated 

number of tags which is obtained through the assumption that, to get a collision slot, 

at least two different tags must have responded in a slot. Thus, from the respondent 

frame, the estimated number of tags, N̂ , is obtained using the numbers of singleton 

and collision slots by 

c1 2ˆ mmN      

 

It is shown in Wang (2007) that estimation using this lower bound is suitable for 

small numbers of tags and large frame sizes with respect to the numbers of tags. As a 

system with a large number of tags increases the offered load and, if the frame size is 

not large enough to accommodate them properly, there will be a high probability of 

(2.2)
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collision slots occurring with responses from more than two tags and the estimation 

using (2.2) will be error prone. 

 

To obtain an improved lower bound, another proposed approach uses Chebyshev’s 

inequality which states that the outcome of a random experiment involving a random 

variable is most likely somewhere near the expected value of the random variable. 

From this statement, an alternate estimation function, using the deviations between 

the observed values and expected values of singleton, collision and empty slots, is 

proposed as: 
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The estimated number of tags is that for which the estimation function is the 

minimum. Thus, the Chebyshev’s inequality improved lower bound estimation 

algorithm of Vogt (2002b) can be described by (2.3). 
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To obtain the proper estimation using (2.3), an exhaustive search of N is required in 

which N varies from the lower bound proposed in the first method to an unlimited 

upper bound. However, as no upper bound is mentioned in this process, its 

estimation suffers from time complexity. 

 

To overcome this, a similar expression is used to estimate the number of tags in 

Bonuccelli (2006) by varying N in the range of [ c1 2mm  , ...,  c1 22 mm  ]. 

Bonuccelli (2006) proposes an upper bound of the search equal to  c1 22 mm   to 

reduce the time complexity as it is clear from their simulation that no further 

accuracy in the estimation can be achieved beyond this value. 

(2.3) 
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2.2.2.4 Method of binomial distribution estimation (BDE) 

To shorten the identification time and gain maximum throughput, a BDE algorithm, 

based on a combinatorial model of the communication mechanism between tags and 

reader, for estimating the number of tags is proposed in (Cha 2005; Wang 2007). 

Simulation results show that the method using LB proposed by Vogt (2002a) is quite 

accurate when the number of tags is less than twice the number of slots but that the 

estimation error increases rapidly with increases in the number of tags. In     (Vogt 

2002b), Vogt improves the estimation algorithm in (Vogt 2002a) using Chebyshev’s 

inequality and obtains a lower estimation error when the object number is more than 

twice the slot number; however, when the object number is small, the estimation 

error is much larger. 

 

The method in (Cha 2005; Wang 2007) estimates N tags by comparing the expected 

value of the collision percentage in F slots with the observed collision percentage 

obtained after the end of an identification round. For the tags, the binomial slot 

allocation process, in which the probability p  out of N tags transferring their IDs 

into a particular slot is used, is given by: 
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where p  is also known as the occupancy number of the slots (Vogt 2002b). Then, 

the expected value of the number of slots with p  is given by: 
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Using the above expression, the expected number of slots can be obtained as follows. 

The expected number of empty slots is: 
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The expected number of singleton slots is: 
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So, the expected number of collision slots is: 
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Thus, the expected ratio of collision to total slots, termed the collision ratio or 

collision percentage, Cratio is: 
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After the end of an identification round, the observed collision ratio or collision 

percentage can be obtained from the known number of collision slots and the frame 

size by: 

F

m
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 (2.5) 

 

From this expression, as  Cratio and F are known, it is easy to obtain only the 

unknown parameter, N, can be obtained as the estimation of the number of tags.  
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The proposed estimation parameter in (2.5) can also be expressed figuratively for 

different frame sizes of the reader (Cha 2005), as shown in Figure 2.2. Thus, 

estimation of the number of tags is possible from the obtained Cratio using the plot for 

the corresponding frame size.   

 

 

 
Figure 2.2 Collision ratio versus number of tags (Cha 2005). 

 

2.2.2.5 Method using maximum throughput conditions proposed by (Cha 2005) 

As the proposed scheme in (Cha 2005) is similar to the BDE technique, by using 

(2.4) the probability of obtaining empty, singleton and collision slots is as follows. 

 

The total probability of empty slots is: 
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The total probability of singleton slots is: 
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The total probability of collision slots is: 

     

















 







 















 



1
1

1
11

1
1

1

1
11

1011

F

N

F

FF

N

F

XMXMXM

N

NN

 

 

So, the throughput is: 
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The condition for maximum throughput is obtained by: 

  0
dF

d
 which gives us the condition FN  . 

 

Upon obtaining this condition, the optimum collision rate, Crate, is obtained for 

maximum throughput from (Cha 2005) by: 
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So, the number of tags in a collided slot, Ncoll, is (Cha 2005):  

3922.2
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If the total number of collided slots is c , the estimated number of tags, N̂ , after a 

round is obtained using: 

cccoll 3922.2   NN  
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2.2.2.6 Method using received signal strength properties (Alotaibi 2009) 

In this method, received signal strengths are used to estimate the number of tags 

where the tags are situated in an area around the tag reader, as shown in Figure 2.3. 

There is an interrogation zone with the minimum and maximum ranges, dmin and 

dmax, respectively in which the separation between the tags and reader are evenly 

distributed. The signal strength at the reader is obtained by the Friis transmission 

formula (Barclay 2003): 
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                                            (2.6) 

where Qt and Qr respectively are the transmitted and received signal powers at the 

reader, Gt and Gr respectively are the gains of the transmitting and receiving antenna,

  the signal wavelength and d the effective radial distance (which is twice (Alotaibi 

2009) the distance between the tag and reader) between the tags and reader. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Sample RFID system for method proposed in (Alotaibi 2009) 

 

In this method, the estimation of the number of tags is obtained from the cumulative 

distributions of the received signal strengths which are provided in (Alotaibi 2009) 

for 1000 scenarios with different numbers of tags responding simultaneously; where 

significant differences are evidenced. When there are two tags in the system, the 
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signal strength distribution curve is small and, for each additional tag, becomes 

smoother with a larger distribution of signal strengths. 

2.2.3 Protocols in TCN 

Before discussing the estimation protocols in a TCN, a brief description of a WSN’s 

node and its functionality is provided because the estimation techniques are often 

applied in a WSN. A WSN is one of the most important applications of a wireless 

communication system. It consists of a large number of nodes for sensing different 

physical quantities and converts them into signals readable by other neighbouring 

nodes and a central node is known as a sink node or base station. One or more 

sensor(s), an ADC, a processor, a transceiver, memory and a battery are the major 

parts of a typical sensor node’s architecture, as shown in Figure 2.4 (Akyildiz 2002). 

 

 

 

Figure 2.4 Typical sensor node architecture 

 

The sensor(s) in a sensor node is/are the hardware component(s) for sensing 

environmental changes, such as pressure and temperature, in a monitoring area or 

sending probe requests to the other node(s) and collecting their response(s). They are 
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classified as passive and active. The former sense the data without actually 

manipulating the environment by active probing and are self–powered, i.e., energy is 

needed only to amplify their analogue signals. On the other hand, active sensors 

actively probe the environment or other neighbouring nodes and sense the responses 

and there is an ADC to digitise the analogue signals received by the sensor(s). Some 

sources of power consumption in sensors are: a) signal sampling and conversion of 

physical signals to electrical ones; b) signal conditioning; and c) analogue-to-digital 

conversion. The digitised signal from the ADC is sent to the micro-controller which 

processes the data and performs tasks accordingly while also controlling the 

functionality of other components of the node. A single device with the functionality 

of both a transmitter and a receiver, known as a transceiver, is used in sensor nodes 

to connect them to the network.  

 

Another important component of the sensor node is the power unit which needs to 

supply electrical energy to the electronic circuitry of the other components. 

Sometimes, a sensor node contains some sort of location-finding system to gather 

accurate knowledge of its location, a mobiliser to move the sensor nodes and a power 

generator to recharge the power unit. 

 

One technique for estimating the number of TWCN nodes is proposed in (Budianu 

2003; Budianu 2004; Budianu 2006). It involves an estimator based on the Good-

Turing (GT) estimator (Good 1953) of the missing mass which was invented by 

Turing. This is investigated in (Budianu 2003; Budianu 2004; Budianu 2006) for a 

terrestrial sensor network with mobile access (SENMA) architecture in which there 

is a mobile access point (MAP) which acts as a base station for the nodes. Each node 

can transmit its ID to the MAP with the data packet in which packet transmission 

follows the slotted ALOHA protocol. Practically, as the MAP wants to know the 

number of operating nodes, it broadcasts probe requests using a frame with some 

slots and the operating nodes respond by transmitting information in the form of 

packets with their IDs by choosing the slots randomly with the same transmission 

and reception probabilities. This estimation of the number of operating nodes is 

based on the nodes’ IDs embedded in the observed packets in the MAP. Packet 
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collection by the MAP is modelled as an independent, identically distributed (i.i.d.) 

sampling with uniform distribution. 

 

In SENMA, the missing mass is the conditional probability that, given a frame with 

already observed packets (called a vector sample in their process) from some nodes, 

the newly received packet comes from a new node. More conveniently, consider a 

network of size N in which the MAP collects pN packets from the nodes in which 

1pN packets appear exactly once in the vector sample of pN packets, Then, the 

estimated missing mass is defined as: 

p

p

N

N
H 1

0
ˆ 

 

(2.7) 

 

In this process, another expression of the missing mass for the packets that do not 

appear in the MAP is used. If all nodes transmit packets and, among them, the 
dpN   

number of packets is distinct, then 
dpp NNN 

0
will be the packets that do not 

appear in the MAP. 

 

Thus, the missing mass in the case of i.i.d. sampling with a uniform distribution, i.e., 

with equal probability of packets to slots, is:  

N

N

N

N
H dpp  10

0
 

 

Substituting the estimated value of 0H  from (2.7), the following expression for 

estimating the number of nodes is obtained: 

p

p

p

N
N

N
N d

11

ˆ


  

 

It is again observed in (Budianu 2006), with a certain confidence interval, the total 

number of slots needed for estimation using the Good-Turing estimator is dependent 

on the number of operating nodes and is  NO  (Howlader 2009). The order 

depends on the certain confidence level and the interval. With a confidence level of 
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 1 , where   is the probability of error in estimation, and an accuracy estimation 

of  (confidence level  )1(),1(   NN ), the total number of slots,  , needed is 

(Howlader 2009):  

N
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






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




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








)1log(
2

log)1(2




  

2.2.4 Protocols in UCN 

Although the abovementioned methods are easy to apply in RFID and in terrestrial 

systems, they do not take into account the capture effect. This means that they are 

difficult to apply in UWSNs because of the unavoidable capture effect. One solution, 

which uses a node estimation technique using a protocol that takes the capture effect 

into account, is proposed by Howlader (2007, 2008). The procedure is very similar to 

that of the probabilistic framed ALOHA (Kodialam 2006) in that the probing node 

sends a probe request with a frame size, F (the number of slots in the frame), and a 

probability, p.  

2.2.4.1 Estimation of number of nodes in UCN using Probabilistic Framed 

Slotted ALOHA (PFSA) protocol (Howlader 2007) 

In this estimation process, there is a probing node in the centre of the network which 

wants to know the number of neighbouring nodes within its communication range as 

shown in Figure 2.5 (a). In the Figure 2.5 (b) the typical slotted frame structure is 

also shown (from Klair, 2007).  

 

The probing node broadcasts some probe requests with frames towards the 

neighbours which, upon receipt of the requests, reply to the probing node into the 

frames with pre-defined packets. Consider such a probe request with a frame of F 

slots and a probability, p. To respond, each neighbour generates a uniform random 

number between [0, 1] and compares it with p. Only the neighbours with random 

numbers less than or equal to p transmit into that frame.  
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2.5 (a) Distribution of nodes (b) Frame structure in PFSA technique 

 

Thus, only pN   neighbours will transmit into that particular frame in the case of N 

neighbours. To obtain the optimum performance (by making the variance minimum), 

Howlader et al. assume the value of p such that the number of transmitting nodes in a 

frame has the following relationship (Howlader 2007) with the frame size:  

FpN  59.1  (2.8) 

 

Now, to transmit to the slots in the frame, each transmitting node generates a random 

integer between [1, F] and transmits to the slot according to the number. In the 

respondent frame, there will be some singleton slots, m1, with only one packet, some 
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collided slots, mc, where two or more packets collide and some empty slots, m0, 

without any packet. Due to the capture effect, some collided slots might appear to the 

probing node as singleton slots. So, as the singleton and collided slots are dependent 

on the capture effect, they are not used for the estimation parameter. On the other 

hand, the number of empty slots is independent of the capture effect and follows the 

normal distribution as investigated in (Feller 1968; Kodialam 2006).  

 

With this finding, the estimation of the number of nodes in their work is obtained 

from the observed number of empty slots in every probe, m0, by obtaining the mean 

of the numbers of empty slots for all probes as: 

  Fe0   (2.9) 

 

where   
is the effective normalised load, i.e., the actual number of transmitting 

nodes per slot and is obtained by: 

F

pN 
  

 

As, in a normal distribution, the expected value might be replaced by the observed 

value, we can write: 

0mFe  

 

 

After some manipulation of (2.10) and (2.11), the estimation of the number of nodes 

is obtained as: 









F

m

p

F
N 0lnˆ

 

To achieve better performance, the probing and replies using a fixed frame size 

continue. 

2.2.4.2 Dimensionality estimation using protocol 

It has already been mentioned that, in a response frame (Howlader 2008), there are 

some singleton, some collided and some empty slots. Of them, the number of empty 

(2.10) 

(2.11) 
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slots is independent of the capture effect whereas those of the singleton and collided 

slots are dependent on the capture effect. As the capture effect depends on the 

dimensionality of a network, this same relationship is followed by the parameters, as 

shown in their results. Although the estimation of the number of nodes is based on 

the number of empty slots, this method is not suitable for the dimensionality 

estimation as the number of empty slots is independent of dimensionality. Thus, they 

propose an algorithm based on the other two parameters, m1 and mc, to roughly 

estimate the network’s dimensionality.  

 

It is assumed that the nodes are uniformly distributed along a straight line in 1D, 

inside a circle in 2D and inside a sphere in 3D where the probing node will be the 

centre node. If, in those spaces, the maximum possible range of the probing node is d 

and the dimension of network D, the CDF of the neighbouring nodes will be: 

  Dddg   

 

Using the numbers of singleton and collision slots, D is estimated to obtain the 

dimensionality of the network. 

 

Due to the capture effect, some of the collision slots will be received by the probing 

node as singleton slots. The transmitting node for which a collision occurs is called 

the interfering node. In their process for receiving a packet with the capture effect, 

there is a relationship between the interfering and transmitting nodes’ ranges which 

is obtained from the capture model with the help of the received power model in 

TCNs: 
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where CR is the capture ratio, Qtc the received power from the transmitting node in a 

capture, Qjc the received power from the interfering node in a capture, dt the path 

length of the transmitting node from the receiver, dj the path length of the interfering 

node from the receiver. 
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This means that, to obtain a collided slot as a singleton slot, the interfering node 

range should be greater than or equal to a constant multiple of the transmitting node 

range. Where, the capture constant is defined from the above expression as  

  







 kC
1

R1  

 

There is also a limiting range within which the capture effect may occur. All the 

ranges in their process are shown in Figure 2.5. 

 

 

 

  

 

 

 

 

 

 

Figure 2.6 Distances of transmitting and interfering nodes 

with capture effect (Howlader 2009) 

 

In this figure, dmc is the maximum range beyond which no capture effect occurs, i.e., 

collision slots appear as collision slots and, within this range due to the capture 

effect, collision slots appear as singleton slots following the relationship between the 

interfering and transmitting nodes’ ranges. (Howlader 2009) provides the following 

statistical expressions for obtaining the dimensionality parameter. 

 

The expected numbers of singleton slots within and outside the range, dmc, are: 
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Thus, the total expected number of singleton slots with and without the capture effect 

is: 

   DD eFeFME     


 11][ c1       

 

Substituting the observed number of singleton slots with and without the capture 

effect, i.e., m1c instead of E[M1c], and the value of   in (2.12), they propose an 

expression for the estimation of the spatial dimensionality of a network as: 
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In the terms  1MEeF  
  

and     c11 MEeF   
 ,  1ME  and  cME are 

the expected number of singleton and collision slots without capture respectively. 

 

Thus, (2.13) will become: 
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By defining the probability of capture, cp , as 
][
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c

1c1
c ME

MEm
p


  and substituting into 

(2.14), they provide the following closed-form formula for estimating the 

dimensionality parameter: 
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In a UWCN, the capture ratio is defined as: 
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Thus, as in the previous case:  

 
)log(

)log(
1 R

adk

C
d

t
t 


 

 

Again, the expected number of singleton slots with and without the capture effect in 

a UWCN is: 

      




   mc

0 mc
log1

c1 1)(
d DddD deddDeFME

D
j  


 

 

As they do not obtain any closed-form formula, they use Chebyshev’s inequality to 

estimate the dimensionality parameter for which the proposed algorithm is: 

  )(minargˆ
c1c1

3:1
mmeanMED

D
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2.3 Limitations of conventional techniques  

It is obvious from the literature discussed in the previous section that most of the 

proposed estimation techniques have been designed for RFID systems which are 

different from ad hoc networks. RFID systems are very simple forms of wireless 

networks in which only the reader(s) acts as a base station(s) and wants to know the 

number of nodes (tags) within its communication range while the tags have no such 

ability. In contrast, nodes are self-reconfigurable in ad hoc networks in which every 

node needs to know the number of surrounding nodes within its communication 

range. Thus, although the proposed conventional techniques are suitable for RFID 

systems, in ad hoc networks, their direct use faces some limitations which require 

some adjustment. One such adjustment is proposed for a TWSN by Budianu in 

(Budianu 2006)  (as discussed previously).  

 

However, the techniques for RFID systems and TWSNs are similar in that they do 

not consider the capture effect because it is not so severe and can be neglected in a 

TCN. However, the direct use of the existing protocols (in which the capture effect is 

not considered) in harsh environmental networks (e.g., UWASNs) is mostly 

impossible due to this non-negligible capture effect. In addition, protocols designed 
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for TCNs ignore the signal propagation delay (Elson 2002; Maroti 2004) because 

they assume the use of high-speed EM waves. Sometimes, industry standard 

terrestrial protocols provide solutions for typically small (20 microseconds         

(Syed 2009) for IEEE 802.11) delays but do not perform satisfactorily under a long-

delay regime (Ganeriwal 2003). Very few protocols (Howlader 2007; Howlader 

2008) which take the capture effect into account have been investigated in such 

networks, but still they suffer from poor performance in a harsh environmental 

network due to the abovementioned signal propagation characteristics (Lanbo 2008) 

in such environments.  

 

In addition, to date, most research studies regarding dimensionality have investigated 

the design of a network before deployment (Akyildiz 2005; Pompili 2006; Pompili 

2009). Only one protocol technique has been investigated after deployment 

(Howlader 2008).  

 

Moreover, all the abovementioned procedures for estimating the number of nodes in 

RFID and UWSN systems are similar in that they are based on protocol designs. 

However, underwater acoustic propagation characteristics (Lanbo 2008), such as 

propagation delay, high absorption and dispersion may make their use difficult. 

 

Besides, protocols for estimating the number of nodes in every type of WCN also 

suffer from time complexity, i.e., they need a long time for even a single estimation 

which, in most cases, increases with increasing numbers of nodes. Also, the 

implementation of these conventional techniques based on network protocols to 

obtain precise measurements is often expensive and inefficient.  

 

Being aware of these limitations, new techniques using cross-correlation as a 

replacement for the existing protocol techniques are being searched for in the 

literature presented in Section 2.4. As cross-correlation is a statistical signal-

processing technique which possesses different characteristics of the signal and 

signal sources, it may well be a suitable replacement for the existing protocols.   
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2.4 Use of cross-correlation 

The impulse response of a communication channel, i.e., the Green’s function (GF) 

retrieval of cross-correlating the waves excited by randomly generated ambient noise 

sources recorded by sensors at two locations, is currently a very important issue. 

There have been many investigations regarding the use of the ambient noise cross-

correlation to extract the time-domain GF in various environments and frequency 

ranges of interest, for example, underwater acoustics (Roux 2004; Sabra 2005b; 

Sabra 2005d), crustal seismology (Shapiro 2004; Wapenaar 2004; Sabra 2005a; 

Shapiro 2005; Snieder 2004), helioseismology (Rickett 1999) and ultrasonics 

(Weaver 2001; Weaver 2002; Weaver 2003; Larose 2004; Malcolm 2004; Weaver 

2004). The procedural steps for determining the noise CCF are similar for all the 

abovementioned environments. In brief, the procedure is as follows: firstly, the 

signals from a number of different noise sources are collected by two sensors 

separated by a certain distance in the region of interest; secondly, the received 

signals are summed at each of the two sensor locations; and, finally, these two noise 

signals are cross-correlated.  

 

Most researchers have only tried to retrieve an estimate of the GF; for example, it has 

been shown theoretically that the GF can be obtained with ambient noise cross-

correlation in the simple case of a homogeneous medium with attenuation (Roux 

2005). Similarly, Snieder (Snieder 2007) and Godin (Godin 2006) show the 

extraction of the GF in the case of a heterogeneous medium. Some researchers 

(Weaver 2001; Weaver 2002; Sabra 2005c) have given their attention to the 

emergence rate of the time-domain GF (TDGF). Moreover, Ward (Weaver 2008) 

identities, fluctuations (Weaver 2005a) and means and variances (Weaver 2005b) 

have been performed in diffuse field-field correlations. However, none of these 

investigations indicate the estimation of the number of noise sources.  

2.4.1 Cross-correlation for travel-time and direction of arrival estimations 

Cross-correlation is used for time delay of arrival (TDOA) estimation in (Ianniello 

1982; Kumar 1993; Cheng 2007). Sensor arrays are often used in many fields of 
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science and engineering, particularly when the goal is to collect the signals and study 

their characteristics by processing them in order to take collaborative decisions. 

Cross-correlation between two received signals is widely used for these estimations 

due to its simplicity and efficiency. In (Varma 2002), two estimations are investigated 

concurrently. First, the TDOA estimate is performed between pairs of sensors using 

the CCF of the two signals in those sensors and then combining them with the 

knowledge of array geometry to obtain the DOA estimate. In (Knapp 1976; Azaria 

1984), the DOA is investigated using the generalised cross-correlation (GCC) 

technique. Another approach for determining the number of speakers from the multi-

speaker speech signals at two spatially separated microphones, in which cross-

correlation is used to detect the TDOA, is proposed in (Swamy 2007). 

2.4.2 Cross-correlation for weak signal detection 

Radio weak-signal detection, i.e., the detection of signals with low signal to noise 

ratios (SNRs) is of wide concern in satellite communication systems. For proper 

management and monitoring of radio waves, expanding their coverage areas and 

improving the sensitivity of the monitoring system, this detection technique becomes 

increasingly important. Conventional methods, such as the low-frequency and phase-

sensitive filtering techniques, firstly need some information about the signal which is 

difficult to achieve in a monitoring mission. In (Jian-fei 2009), a method of cross-

correlation (Kay 2003; Moore 2006) for detecting a radio’s weak signals, which does 

not require prior knowledge of the signal, is investigated. The proposed cross-

correlation algorithm effectively detects whether the unknown signal exists. 

 

The method of cross-correlation has application in blood-flow sonography 

(Bonnefous 1986; Gao 1998) for which the conventional ultrasonic Pulsed Wave 

(PW) Doppler blood-flow analysers are widely used in clinical examinations. 

However, it has the limitation of spectrum aliasing when the velocities exceed the 

Nyquist rate. A cross-correlation-PW method proposed in (Gao 1998) provides 

sonogram output without aliasing. In this technique, the delay times of the received 

RF echoes from pulse to pulse are estimated by the cross-correlation method. The 
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series of delay times with their related maximum values in the CCF are then used to 

form a time sequence which is sent to a spectrum analyser to produce the sonogram. 

2.5 Motivation for using cross-correlation 

As discussed previously, there are several properties of signal sources and signals 

that can be estimated through cross-correlation. In this work we investigate the use of 

cross-correlation for estimation of the number of nodes in a communication network. 

To understand the motivation for using cross-correlation for a number of nodes’ 

estimation, we provide a simple example from (Callaghan 2010). Consider that a 

node in a line-of-sight environment emits a pulse, )()(1 tS , while two receivers 

record the signals, )(
11

tSr  and )(
12

tSr , where   denotes the delay position of the 

Dirac delta function (.) . The positions of the node and receivers are unknown. The 

signal emitted from the node is received by both receivers with certain delays. Thus, 

the received signals become )()( 111111
 tSr  and )()( 121212

 tSr , where 

ij  denotes the delay lag from the ith node to the jth receiver, and ij  the 

corresponding path loss of the signal. By cross-correlating the two received signals  

))(()()()( 121112111211
   dtStSC rr  

 

It is seen in the above expression that the resulting cross-correlation is a Dirac delta 

at the delay difference, 1211   . If the process is extended for more than one 

node, we will obtain a delta function for each node. Although the above explanation 

is for a delta signal, this also holds true for nodes with arbitrary signals as long as 

they have certain auto-correlation properties, such as Gaussian signals. 

 

To provide another reason for cross-correlations being used for a number of nodes’ 

estimation, we briefly review results for cross-correlations in a homogeneous 

environment (Roux 2005; Garnier 2009; Snieder 2004). Let us consider two sensors 

in an environment designed to record the time-dependent wave fields from the nodes 

present in that environment. Consider that )(
11

tSr  and )(
12

tSr  denote the received 

signals from a transmitter. Their CCF with the time lag,  , is given by: 

(2.15) 
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In the case of a 3D homogeneous medium with a spatially uniform node distribution, 

the field at each receiver can be decomposed as a superposition of the uncorrelated 

plane waves from various directions (Callaghan 2010). It has been established (Cox 

1973; Callaghan 2010) that the normalised cross-spectral density, )(I , at frequency 

  between two sensors separated by dDBS is:  
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where, PS is the speed of sound propagation. 

 

In the time domain, the normalised correlation function is (Roux 2005): 
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It is well known (Roux 2005; Garnier 2009) that, if there is an infinite number of 

nodes, the resulting equation of the CCF will form a rectangular shape centred at 

zero and have a width of P/2 SdDBS . Actually, this rectangular pattern is formed from 

the delta functions of the individual cross-correlations for each node and its height 

depends on the number of signal sources and strengths. 

 

From this rectangular CCF, one can deduce the estimation of the number of nodes by 

finding the standard deviation or mean, or its ratio, of the CCF. These problems have 

a statistical character, and it is therefore more convenient to solve them by statistical 

rather than deterministic methods.  



 

57 
 

2.6 Formation of CCF 

If we cross-correlate signals in two sensors which are the summation of several 

Gaussian signals inside a boundary, for every signal we get a Dirac delta which 

occupies a place inside a space of a width twice the distance between the sensors (we 

divide that space equally into several bins) and that place is determined by the delay 

difference of the signal coming to the sensors. The deltas of delay differences equal 

to a bin distance from the origin are placed in that particular bin. It is shown in (Roux 

2005) that the deployment of nodes (which determines the placement of deltas) of 

equal delay differences follows a hyperbola. Thus, the number of deltas in a certain 

bin is the number of transmitting nodes inside two hyperbolas placed in the edges of 

that bin. As the transmitting nodes are distributed randomly, the number of nodes is 

proportional to the area inside those hyperbolas. 

2.7 Statistical signal processing 

Direct manipulation of the CCF is a complex problem. To make it simpler in this 

research, the cross-correlation technique is reframed to a probability problem using 

the well-known occupancy problem which follows the binomial probability 

distribution from which a parameter is chosen to estimate the number of nodes and 

dimensionality of a network. 

2.7.1 Occupancy problem  

Occupancy problems deal with the pairings of objects and have a wide range of 

applications in different fields containing probabilistic and statistical properties. The 

basic occupancy problem is about placing m marbles into b bins (Feller 1968). If one 

threw some marbles randomly towards several bins, the bins would be randomly 

filled by the marbles, resulting in some bins being occupied by more than one 

marble, some by one while some may have none. In his thesis (Howlader 2009), 

Howlader reframes the framed slotted ALOHA protocol of the number of nodes’ 

estimation in terms of this occupancy problem. He describes the reframing process as 

follows. 
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1. In FSA, N nodes transmit to F slots in a frame. 

2. Some slots will get no packet; some will one and others more than one.  

 

Thus, by defining the slots with only one packet as singleton slots, those with more 

than one packet collision slots and those with no packet empty slots, Howlader uses 

the classical occupancy problem to determine the probabilities of empty, singleton 

and collision slots. This helps him to determine the number of neighbouring nodes in 

a communication network. 

2.7.2 Use of binomial distribution 

The binomial distribution is the distribution of the counts of the number of successes 

in a certain number of trials. Another definition is the probability of obtaining the 

result of interest p  (where p  is a discrete integer-valued variable) times out of n 

independent observations if the overall probability of the result is M.  

 

If an experiment satisfies the following characteristics, one can use the binomial 

distribution: 

 the number of trials is fixed;  

 each trial is independent;  

 there exist only two possible outcomes for every trial: success or failure; and 

 each trial has the same probability of success.  

 

For example, a coin-tossing experiment might be binomially distributed if: 

 one tosses the coin n (a fixed number) times;  

 one decides on which side (heads or tails) it will land, i.e., only two possible 

outcomes: success or failure; 

 one makes the coin ‘fair’, meaning that the probability of its landing on either 

a head or tail is 50%; and 

 the result of a previous toss does not affect the present toss (i.e., trials are 

independent). 
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The binomial distribution has an enormous number of uses. One major application is 

in stochastic processes which have statistical properties and can be completely, or 

mostly, usefully reframed to a binomial process in order to resolve a problem in an 

easier manner. Also, it has applications in simply modelling binomial processes. 

2.8 Coefficient of variation (CV) 

The CV is a probabilistic and statistical error tool. It is defined by the ratio of the 

standard deviation, , to the mean,  , of a probability distribution (Smith 1999), as: 




CV
 

The cross-correlation has significant statistical properties and CV may be used to 

obtain the error in estimation.
 

2.9 Conclusion 

Existing estimation methods relating to protocol design have significant problem for 

estimating the number of nodes in an underwater network. This is caused by a range 

of issues, including long propagation delays between nodes. In Chapter 3, the cross-

correlation of random signals is investigated as an alternative tool. Reframing the 

cross-correlation problem as a probability problem provides a simple way of 

conducting this type of estimation. 
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Chapter 3  

Estimation of the number of nodes in 

wireless communication networks 

3.1 Introduction 

The technique of cross-correlation is an essential statistical tool in various fields of 

interest. It has been used in communication networks to identify and localise nodes, 

and for angle of arrival (AOA) estimations of signals from the nodes in a WSN. 

Some researchers have used it for the detection of weak signals in the field of 

cardiology. In this chapter, the use of the cross-correlation function to estimate the 

number of signal sources (nodes in WCN) is described. The chapter begins with the 

formulation of the cross-correlation of random signals, which is the starting material 

and method for estimating the number of nodes in a network. In adhoc networks 

where a node needs to know the number of neighbours, cross-correlation is 

performed by a computer associated with the node. In other networks, cross-

correlation is performed by a remote computer controlled by testing personnel. All 

the signals transmitted are received by the receiving node and recorded in the 

associated computer, in which the cross-correlation is performed. Transmission and 

reception of the signals are performed for a time frame which is called signal length 

throughout this thesis. The received signals are the delayed copy of the transmitted 

signals. The proposed method does not require any time synchronisation and thus the 

time stamp is not a performance factor. The signal length or the recording time is a 

major performance factor and is discussed with its selection in Chapter 3 and 5. The 

communication requirement that need to be satisfied is that the transmitters and the 

receivers need to be capable of transmitting and receiving signals for the specified 

recorded time without becoming overheated. 

 

In this chapter, it is shown that the cross-correlation problem can be reframed as a 

probability problem from which it is possible to develop a theoretical formulation for 



 

62 
 

the estimation of the number of nodes, which can be verified by simulations. This 

estimation technique is analysed for two broad cases: Case 1 – equal received power 

(ERP); and Case 2 – equal transmitted power (ETP). In the first case, using a simple 

probe-requesting technique, all the powers of the signals received by the receiving 

nodes from the transmitting nodes are made equal. This can be achieved by sending 

probe requests from each receiving node to the transmitting nodes and the 

transmitting nodes transmit their responses with setting their transmit power inverse 

proportion to the received power from the original probing signal. Thus, the powers 

of the received signals are compensated for distance-dependent attenuations. On the 

other hand, in the ETP case, the transmitted powers from the nodes are equal but the 

received powers are different due to the distance-dependent attenuations for the 

signals to reach the receivers. It is shown that estimation parameter (from simulation) 

follows the theory in the ERP case, but in the ETP case, it deviates. Thus, it requires 

modification in theory either using proper statistical property (which is very complex 

as the formation of CCF in ETP case is not uniform) of the CCF, or by proper scaling 

(which is useful and easy to obtain). So, to avoid complexity, proper scaling is 

provided and analysed.  

 

Though the theory is developed for an infinitely long signal, practically the signal 

length will be finite. So, the effect and proper selection of signal length is 

investigated. Some other factors such as fractional-samples delays, noise, and 

multipath propagation might affect the estimation performance, so their effects are 

investigated as well.  

 

Before detailing the estimation process, it is necessary to point out some initial 

assumptions in order to clarify the experimental setup. These assumptions are listed 

in Table 3.1 and most are investigated later.  

Table 3.1 Initial assumptions on the parameters 

Parameter Initial 

assumption 

Explanation and further investigation required to 

remove assumption 

Network 

dimension 

3D 

spherical 

The nodes are uniformly distributed inside a sphere in 

order to produce equal numbers of signals from all 
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directions. This assumption is possible in the case of a 

3D WCN (such as a 3D UWSN, 3D SWSN, 3D 

UGWSN, etc.). Because the other dimensions (1D and 

2D) might be different, this assumption is analysed in 

the following chapter. 

Propagation 

delays 

Integer 

valued 

All delay durations are assumed to be integer valued in 

the first instance. A simulation with real (fractional-

sample) delays is investigated later in this chapter. 

Signal 

length 

Infinitely 

long 

Initially, to ensure better performance, a very long 

(considered infinitely long) signal length is considered. 

Any possible significant effects of the signal length on 

estimation using the proposed signal processing 

technique are investigated later. 

Channel 

property 

Ideal The channel is assumed ideal so that there is no 

background noise present in it. In practice, as there will 

be some background noise, the assumption might be 

realisable by simply using the sufficient signal strength 

with respect to the noise power. This effect is discussed 

later. 

Receiver 

property 

Ideal The receivers are assumed to be ideal, i.e., there is no 

internal noise present in them. It is also possible to 

neglect any internal noise by using high-precision 

receivers and making the received signal sufficiently 

strong; this is discussed later. 

Signal 

power 

Equal 

received 

powers 

from all 

nodes 

The signals received fom different transmitted nodes 

are of equal power. This can be achieved by sending 

probe requests from the sensors with each node setting 

its transmitted power in accordance with the received 

power from the probe such that all received signals are 

of equal power. This probing technique requires extra 

care, and in the case of natural and/or uncontrolled 

nodes, it is impossible to achieve this assumption. So, 



 

64 
 

the case of ETP is also analysed later in this chapter. In 

this case, the received power will be different due to 

the distance-dependent attenuations. 

Multipath 

effect 

No 

multipath 

No multipath effect is considered. In the case of an 

electromagnetic wave, because of the high absorption 

in an underwater channel, this effect can be neglected. 

However, acoustic underwater communication will be 

affected by multipath; this is discussed in a separate 

section of this chapter. 

Doppler 

effect 

No Doppler 

shift 

No Doppler effect, which might occur due to the 

movement of a network’s nodes, is considered. In 

many WCNs, as the nodes of interest are deployed in 

fixed locations (e.g., in a WSN, the nodes are fixed in a 

region to monitor the observed area), there is no 

Doppler effect as signal taking a direct path. In the case 

of a movable network (e.g., swarms of AUVs or UUVs 

in which the nodes move around a region to monitor it), 

the Doppler shift can be neglected by using a high-

speed wave (e.g., electromagnetic). Due to the Doppler 

effect, there will be a slight variation in the propagation 

wavelength and, thus, in propagation delay which can 

affect the placing of balls in the bins of the cross-

correlation process and might lead to fractional-sample 

delays being created. However, the effect of fractional 

samples has no significant effect on estimation; this is 

discussed later in this chapter. 

Transmitted 

Signal 

White 

Gaussian 

The white Gaussian nature of the signals ensures the 

delta function in the bins of CCF. Similar delta 

functions are possible from delta signal as well as from 

the signal which fulfils the Gaussian property. If the 

signals are non-Gaussian we will not get only the 

desired peaks, we will get some undesired peaks as 

well in the CCF and the investigations are left for 
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future work. If the nodes transmit Gaussian signal 

normally then the signals are the part of the normal 

transmission, otherwise they require transmitting 

signals specifically for the purpose of node estimation. 

The transmission time relates with the estimation error 

and is discussed with the error analysis in Chapter 5 of 

this thesis. 

 

3.2 Formulation of random signal cross-correlation 

Consider two receiving nodes surrounded by N transmitting nodes in a 3D space, as 

shown in Figure 3.1 (a). Assume that the transmitting nodes are the sources of white 

Gaussian signals and are uniformly distributed over the volume of a large sphere, the 

centre of which lies halfway between the receiving nodes, because only a sphere 

provides equal amounts of signals from every direction. The propagation velocity is 

assumed to be constant which, in our case, is the sound velocity, SP, in the medium. 

To make the distinction between the receiving and transmitting nodes easily 

understandable, we call them the sensor/receiver and node, respectively. 

 

To formulate the random signal cross-correlation problem in this analysis, the two 

sensors, H1 and H2, and a node, N1, are taken at locations (x1,y1,z1), (x2,y2,z2) and 

(x3,y3,z3), respectively (using rectangular coordinate system), somewhere inside the 

sphere, as shown in Figure 3.1 (b). The distance between the sensors, dDBS is then 

 

2
21

2
21

2
21 )()()( zzyyxxdDBS  . 

 

Consider that N1 emits a signal, S1(t), which is infinitely long. Then, the signals 

received by H1 and H2 are, respectively:  

 

)()( 1111111
  tStSr                                                (3.1) 

and  
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)()( 1211212
  tStSr                                             

(3.2) 

where, 11  and 12  are the respective attenuations due to the absorption and 

dispersion present in the medium, 
P

11
11 S

d
  and 

P

12
12 S

d
  the respective time delays 

for the signal to reach the sensors, and SP is the speed of wave propagation. 

 

(a) 

                

(b) 

Figure 3.1 Distributions of underwater network nodes in 3D space: 

(a) N nodes; and (b) only one node 
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Assuming   is the time shift in the cross-correlation, and then the CCF is: 





  dtStSC rr )()()(

12111
,                               (3.3) 

which takes the form of a delta function as it is a cross-correlation of two white 

Gaussian signals where one signal essentially is a delayed copy of the other..  

 

To find the CCF for N nodes, we have to take the total signal received by the sensors 

from the nodes which involves collecting all the signals from the nodes and summing 

them. Now, the received signals from the second node are: 

)()( 2122121
  tStSr                                                    (3.4) 

and 

)()( 2222222
  tStSr                                                    (3.5) 

 

Then, for the third node: 

)()( 3133131
  tStSr                                                    (3.6) 

and 

)()( 3233232
  tStSr                                                   (3.7) 

 

Thus, for the Nth node, they are: 

)()( 111 NNNr tStS
N

                                                   (3.8) 

and 

)()( 222 NNNr tStS
N

                                                   (3.9) 

 

Summing (3.1), (3.4), (3.6), and (3.8), the total signal at sensor H1 is: 

 





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N

j
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NNN

rrrr

τtSα

tStStStS

tStStStS
N

1
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11313312122111111 )(..........)()()(

)(.........)()()(
1312111



 

 

Denoting the total signal at sensor H1 by )(
1

tS
tr  

gives: 
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 11
1

)(
1 jjj

N

j
r τtSαtS
t

 


                                            (3.10) 

 

Similarly, summing (3.2), (3.5), (3.7), and (3.9), the total signal at sensor H2 is: 

 

 
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Denoting the total signal at sensor H2 by )(
2

tS
tr

 gives: 

 



N

j
jjjr τtSαtS

t

1
22)(

2
                                             (3.11) 

 

Thus, the final CCF between the signals at the sensors is:  

    



dτtSατtSα

dτtStSC

N

j
jjj

N
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jjj

rr tt

 





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







1
22

1
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)()()(
21

 

which takes the form of a series of delta functions as it is a cross-correlation of two 

signals which are the summations of several white Gaussian signals. 

3.3 CCF for infinitely long signal 

It is already discussed in Sections 2.5 and 3.2 that if a source emits an infinitely long 

unity strength Gaussian signal, which is recorded at two sensors with the 

corresponding time delays and attenuations, the cross-correlation function of these 

two signals can be expressed by a delta function, whose amplitude depends on the 

attenuations and position will be the delay difference of the signals from the centre of 

the CCF.  

 

Thus, the CCF for such a source is 

  














 


P

1211
12111 s

dd
C 

   

(3.13) 

(3.12) 
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In the proposed ERP case, the strength of the signal will be such that it overcomes 

the corresponding attenuations. So, there will be no attenuation term in the CCF 

expression (3.13) Thus the CCF in the ERP case for a source will be 

  













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P

1211
1 s

dd
C 

 

Similarly for 2nd, 3rd, …, Nth node is 
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Thus the CCF will be for N number of nodes 
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It can be seen from the above expression that the CCF for N source is summation of 

N numbers of deltas with their corresponding positions which are determined by the 

delay differences of the signals in the sensors. 

 

So the expression (3.14) can be further expressed as 
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
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
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s
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C

1 P

21                                         (3.15) 

It is intuitive that if N is larger than the number of bins, b, which is usually the case, 

the bins are occupied by more than one delta due to the same delay differences. This 

increases the amplitude of the deltas in the bins, and thus the CCF is expressed in 

terms of bins as  

  



b

i
iiPC

1

                                                 (3.16) 

where, Pi is the amplitude or peak of the dirac delta, i  in the ith bin. 

(3.14) 
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The above analytical expression is verified by simulation in the following Figure 3.2. 

Here we use 32 nodes and 19 bins. The nodes are the sources of equal unity power 

signal. It is shown that some bins are occupied by only one, some of them by more 

than one, and rest of them are empty due to the delay differences in the cross-

correlation process. The results follow the expression (3.16) where the Pi values are 

as follows. 

P1= P19=4, P4= P10= P13=3, … and so on. 

  

 

Figure 3.2 CCF in ERP case: N=32, and b=19 

 

In the ETP case, the transmitted signal strengths will be same for all sources and 

which will have to be such that all signals can overcome the attenuations to reach the 

sensors properly. Thus to get appropriate peaks of the CCF bins signal power, a 

factor will have to be multiplied in right hand side of (3.13) which is selected from 

the largest communication distance in the network as  

 

kdmax                                                        (3.17) 

 

Thus the expression of CCF can be represented from (3.13) and (3.17) for a source as 
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Similarly for 2nd, 3rd, …, Nth node is 
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Thus the CCF will be for N number of nodes 
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It can be seen from the above expression that the CCF for N source is summation of 

N numbers of deltas as the ERP case but the amplitude will be different by the 

distance dependent attenuations. 

 

So the expression (3.18) can be further expressed as 
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where,   21max jj
k

j dP   is the amplitude of the delta due to jth node. 

 

It is intuitive that if N is larger than the number of bins, b, which is usually the case, 

the bins are occupied by more than one delta due to the same delay differences. This 

increases the amplitude of the deltas in the bins, and thus again the CCF is expressed 

in terms of bins as  
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


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i
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                                                    (3.20) 

where, Pi is the amplitude of the dirac delta, i  in the ith bin. 

(3.18) 
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The above analytical expression is verified by simulation in the following Figure 3.3. 

 

 

Figure 3.3 CCF in ETP case; N=32, and b=19 

 

Thus (3.16) is the generalized expression for any CCF in this thesis. In some cases 

(where the signal length is very small, noise is severe etc.), obtaining the peak of the 

CCF is difficult from the above process and might be obtained from the moving 

average technique of cross-correlation. 

 

The CCF, using the moving average technique of cross-correlation can be 

represented generally by the following expression (Hanson 2008a; Hanson 2008b). 

 

  


















 








sss N

i
i

s

N

i
i

s

N

i
ii

s

y
N

x
N

yx
N

C
111

111 




 

where Ns is the signal length in number of samples, τ the time delay of cross-

correlation, xi and yi are ith samples of the two sensors’ signals.   

 

As we are using zero mean Gaussian signal so the product of their means is zero. So, 

the CCF will be reduced to 
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This gives the peaks for the desired bins as follows: 
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where the peaks are the strengths of the deltas of (3.16), which are 
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Putting these values in (3.16), we get the desired CCF which is called here the 

theoretical CCF. 

3.4 Mean, µ and standard deviation, σ, of CCF 

The ensemble average of the signal cross-correlation is expressed analytically in 

(Roux 2005) as 
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                   (3.21) 

where QT represents the acoustic power of the received signals from the nodes taken 

to be constant over time and space, and ν the creation rate of the random nodes 

whose unit is unit time per unit volume, Tr total recording time, sr


path length of node 

s from the origin, ar


path length of first receiver from the origin, and br


the path 

length of second receiver from the origin.   

 

Again, the variance of the CCF (i.e., the square of the mean level of the fluctuations) 

is defined in (Sabra 2005c) as  

22 )()())(( tCtCtCVar                                       (3.22) 

where the value 
2

2,1 )(tC
 
and )(2 tC  are defined, respectively, in (Sabra 2005c) as  
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  (3.24)                                      

where G(.) is the Green’s function, and the other parameters indicate their usual 

meanings. 

 

We can then obtain the standard deviation,  , of the CCF which is the square root of 

the variance by: 

22 )()())(( tCtCtCVar                                    (3.25) 

 

As it is quite difficult to analyse the random signal cross-correlation problem to 

estimate the standard deviation and mean in the above way, the problem can be 

reframed as a probability problem which makes the analysis much simpler. This 

process is discussed in the following section. 

3.5 Reframing cross-correlation as a probability problem 

It has been shown in the previous section that the cross-correlation of random signals 

takes the form of a delta function and occupies the space between the sensors where 
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the space is divided by several samples, as shown in Figure 3.4. Thus, for every 

node, after cross-correlation we obtain a delta function which occupies any position 

in the sample space between the sensors. We can now consider each delta function as 

a ball and the samples between the sensors as bins into which the balls may fall. So, 

we can simply model the random signal cross-correlation problem as a probability 

problem based on the well-known occupancy problem, i.e., the problem of placing B 

balls in b bins. 

 

To demonstrate the problem of random signal cross-correlation as a probability 

problem, consider an experiment of the repetitive type in which only the occurrence 

or non-occurrence of an event is recorded. Suppose the probability that the event 

occurs when the experiment is performed is p. Let q = 1 – p denote the probability 

that it fails to occur. If the event occurs in a given trial of the experiment, it is called 

a success, otherwise a failure. Let n independent trials be conducted and denote the 

number of successes obtained in the n trials by X. In our case, the number of trials, n, 

is equivalent to the number of nodes, N, and the probability of success, p, is 

equivalent to 1/b, where b is the number of bins.  

 

Figure 3.4 Bins, b, in cross-correlation process 

 

In this case, we need to consider the discrete probability distribution because we use 

the sampled signal in the cross-correlation process. The binomial distribution is also 

appropriate because the experiment fulfils the conditions of binomial probabilities. 
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3.6 Some simulated results and selection of estimation tool 

By reframing the cross-correlation problem as a probability problem, it is easy to 

obtain the proper estimation tool, as shown by some simulated results in Matlab 

programming environment presented in Figures 3.5, 3.6 and 3.7 and Tables 3.2, 3.3 

and 3.4. Figure 3.5 and Table 3.2 show the means, Figure 3.6 and Table 3.3 the 

standard deviations, and Figure 3.7 and Table 3.4 the ratios of the standard deviation 

to the mean of the CCF. All figures and tables are for three distinct simulation 

setups: (a) unity signal strength; (b) double signal strength; and (c) half signal 

strength.  

 

It can be seen from Figures 3.5 and 3.6 and Tables 3.2 and 3.3 that the means and 

standard deviations increase by the same factor with increases in the signal strength 

and decrease by the same factor with decreases in the signal strength. For that reason, 

their ratios are constant, as shown in Figure 3.7 and Table 3.4. 

 

 

 

Figure 3.5 Standard deviations of CCF versus N with: unity signal strength; 

signal strength doubled; and signal strength halved. 
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Figure 3.6 Means of CCF versus N with: unity signal strength; signal strength 

doubled; and signal strength halved. 

 

 

 

Figure 3.7 Ratios of standard deviation to mean, R, of CCF versus N with: 

(a) unity signal strength; (b) signal strength doubled; (c) signal strength halved; 

and (d) their comparison. 
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Table 3.2 Standard deviations of CCF for different numbers of nodes 

with three distinct signal powers 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 Means of CCF for different numbers of nodes 

with three distinct signal powers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 
nodes, N 

Standard deviation 
of CCF with unity 
signal strength 

Standard deviation 
of CCF with double 

signal strength 

Standard deviation 
of CCF with half 
signal strength 

1 0.2299  0.9196  0.0575 

10 0.6961  2.7844  0.174 

20 0.9763  3.9052  0.2441 

30 0.9025  3.61  0.2256 

40 1.3942  5.5768  0.3486 

50 1.8568  7.4272  0.4642 

60 1.7564  7.0256  0.4391 

70 2.1391  8.5564  0.5348 

80 1.8327  7.3308  0.4582 

90 2.2864  9.1456  0.5716 

100 2.4605  9.842  0.6151 

Number of 
nodes, N 

Mean of CCF with 
unity signal 

strength 

Mean of CCF with 
double signal 

strength 

Mean of CCF with 
half signal strength 

1 0.0546  0.2185  0.0137 

10 0.5544  2.2177  0.1386 

20 1.1189  4.4758  0.2797 

30 1.4474  5.7895  0.3618 

40 2.1668  8.6674  0.5417 

50 2.5841  10.3364  0.646 

60 3.0811  12.3242  0.7703 

70 3.8854  15.5415  0.9713 

80 4.3332  17.3326  1.0833 

90 4.7348  18.9394  1.1837 

100 5.4279  21.7116  1.357 
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Table 3.4 Ratios of standard deviation to mean, R, of CCF for different 

numbers of nodes with three distinct signal powers 

 

 

 

 

 

 

 

 
It is also clear from the results that, as the mean and standard deviation of the CCF 

and its ratio are all related to the number of nodes, N, it is possible to use any of them 

to estimate N. However, as the mean and standard deviation are also dependent on 

the signal strength, we can only use them as the estimation tool if the exact signal 

strengths are known, which is not usual. On the contrary, as the ratio, R, is not 

dependent on the signal strength, we choose it as the estimation tool in this thesis as 

it requires no prior knowledge of the signal strengths from the nodes. Thus, having 

obtained the estimation tool, the estimation process is discussed in the following 

section. 

3.7 Estimation process - equal received power (ERP) case 

The basic approach for estimation using the cross-correlation of the number of nodes 

is discussed in this section. Formation of the CCF from the mixture of signals in two 

spatially separated sensors within a number of nodes has been explained in the 

previous section. It has also been shown that the standard deviation and mean of the 

CCF and its ratio are related to the number of nodes from which the signals originate. 

The ratio, R, is independent of the signals’ power, is chosen as the tool for estimating 

the number of nodes. The following subsections discuss the process. Firstly, the 

Number of 
nodes, N 

R of CCF with unity 
signal strength 

R of CCF with 
double signal 

strength 

R of CCF with 
half signal 
strength 

1 4.2082  4.2082  4.2082 

10 1.2555  1.2555  1.2555 

20 0.8725  0.8725  0.8725 

30 0.6235  0.6235  0.6235 

40 0.6434  0.6434  0.6434 

50 0.7185  0.7185  0.7185 

60 0.5701  0.5701  0.5701 

70 0.5506  0.5506  0.5506 

80 0.4229  0.4229  0.4229 

90 0.4829  0.4829  0.4829 

100 0.4533  0.4533  0.4533 
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analytical relationship between N and R is established and then it is verified by 

simulation.  

3.7.1 Theoretical estimation 

The cross-correlation problem has been reframed into a probability problem in 

Section 3.5 where it is shown that it follows the binomial probability distribution in 

which the parameters are the number of nodes, N, and the inverse of the number of 

bins, b. 

The expected value of the first moment (the mean) of the CCF is:  

bN

npCXE



 )(,mean)( 
                                      (3.26) 

where b is twice the number of samples between the sensors (NSBS), m minus one, 

as we cross-correlate two vectors of length m×1; and the second moment is:  

npqnp
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                                  (3.27) 

From (3.26) and (3.27), we can obtain the variance:  

)/11()/1(

)()( 222
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npqXEXE
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                                                  (3.28) 

 

Then, the standard deviation is:  

)/11()/1(

)()( 22

bbN

XEXE


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                                                   (3.29) 

 

Thus, the ratio of the standard deviation to the mean, R, is:  

N

b

bN
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np

q
R

)1(
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)/11( 
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


                                         (3.30) 

 

This is the relationship between the number of nodes, N, and the ratio of the standard 

deviation to the mean, R, of the CCF. Since we know b and can measure σ and µ 

(and, therefore, determine R) from the CCF, we can readily determine the number of 
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nodes, N. Figure 3.8 shows the theoretical results derived from (3.30) for different b 

(Figure 3.8 (a) for 19, Figure 3.8 (b) for 99 and Figure 3.8 (c) for 179 bins).  

 

 

Figure 3.8 Theoretical  R versus N: for (a) b = 19; (b) b = 99;  

and (c) b = 179 

 

It is clear from (3.30) that the ratio, R, is also dependent on b. Recalling (3.30), 

N

b
R

1
  and, assuming 1b , i.e., bb  1 : 

 

N

b
R                                                             (3.31) 

 

Figure 3.9 shows the original and approximated values of R with respect to b, 

demonstrating that using the approximations is sufficient for estimating the number 

of nodes.  
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Figure 3.9 Theoretical results for R versus b: (a) original and approximated, N = 

100; and (b) approximated, N = 1, 10 and 100 

3.7.2 Estimation from simulation 

As discussed in Section 3.2, after cross-correlating signals received at two sensors 

from a number of random Gaussian signal sources, the CCF, which is a rectangular 

pulse over the space between the sensors, can be obtained. Then, it is easy to 

estimate the mean and standard deviation of this CCF and, therefore, the ratio, R, as 

the sampling rate and DBSd  are known. In the particular case in which the sampling 

rate, speed of propagation and DBSd  are fixed, (3.30) tells us that the ratio, R, is 

inversely proportional to the square root of the number of nodes, N. Thus, (3.30) 

becomes:  

 

N
R

1


 

or,           

N

c
R                                                     (3.32) 

where )1(  bc  is a known constant. Thus, from the simulation, we can readily 

estimate the number of nodes by knowing only the ratio of the standard deviation to 

the mean of the CCF.  
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3.7.2.1 Verification of theoretical results 

This subsection discusses the estimation setup and simulation parameters used, and 

verification of the theoretical results by those from the simulations. A similar setup 

to that discussed in the previous section is employed to perform the simulations, i.e., 

two spatially separated sensors are placed somewhere in the middle of a sphere 

inside a cube such that the diameter of the sphere is equal to the dimension of the 

cube, and the sphere is filled with a number of uniformly distributed nodes. The 

signals (responses to probe requests from the sensors or autonomous) emitted from 

the nodes are collected by the sensors. By cross-correlating these two signals at the 

sensors, the CCF is obtained. Using this CCF, the estimation tool, i.e., the ratio of the 

standard deviation to the mean of the CCF, is obtained.  

 

The following parameters are used in the simulations. 

 Dimension of the cube, 2000 m, for simplicity of calculation; however, it 

does not matter what the dimension of the cube is within the direct 

communication range. The maximum distance between the two nodes will be 

2000 m as the nodes are uniformly distributed within a 3D sphere inside the 

cube.  

 Exact number of transmitting nodes taken are, N = 1, 2, 3, .... , 100, to reduce 

the simulation time, however, the estimation process is equally suitable for 

any N.   

 Signal length, NS = 106 samples, to approximate infinitely long signals. The 

effect of signal length on the estimation process is investigated later in this 

section. The range of the signal length is selected in order to perform useful 

estimations.  

 Sampling rate, SR = 30 kSa/s; as underwater acoustic communications 

currently operate within the bandwidth (BW) of 1-15 kHz, we arbitrarily 

choose this value without violating the sampling theorem. The effect of 

sampling rate on the estimation process is discussed later in this chapter. 

 Speed of propagation, SP = 1500 m/s; this is the propagation speed of a sound 

wave as we use the acoustic signal in an UAWSN. Although this might vary 
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due to the channel’s property and the Doppler effect, any effect of a variation 

is negligible in the estimation process, as discussed earlier. 

 Distance between sensors, dDBS = 0.5 m; this can be varied. In this chapter, it 

is shown that the estimation performance depends on b, a function of dDBS 

and SR, thus they can vary oppositely to have a certain b. 

 Absorption coefficient, a = 1 and dispersion factor, k = 0; but, as we receive 

the signals with equal power from the appropriate probe request, the 

estimation process is not affected by path loss i.e. the estimation is 

independent of k.  

 

Figure 3.10 shows the simulation results in normal (Figure 3.10 (a)) and log-log 

(Figure 3.10 (b)) scales. Figure 3.10 (b) shows that the log-log plot of the simulated 

result can be approximated by a straight line whose slope can be derived as 
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So, the simulated ratio, R , is: 
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Thus,                                
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 NcR  

i.e., 

 
N

R
1

                                                      (3.33) 

where c1, c11, and c12 are the constants and are related as    121011101 loglog 2
1

ccc   .  

The value of c12 can be obtained by substituting particular values (the first point with    

b =19, where N =1, R ≈ 4.25) of R and N from Figure 3.10 (a) so that: 

bc  25.412  for    N =1. 
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Figure 3.10 Simulated results for R versus N: (a) normal plot; and (b) log-log 

plot 

 

Now, to show the relationship between Rand b, the estimation process is simulated 

with different b. Variations in b can be obtained by changing dDBS and/or SR. Figure 

3.11 shows the variations in Rwith the number of bins, b, plotted in normal (Figure 

3.11 (a)) and log-log (Figure 3.11 (b)) scales. Again, it is obvious from Figure 3.11 

(b) that the log-log plot of the simulated results can be approximated by a straight 

line whose slope is obtained as 

2

1
2 s

 

 

Figure 3.11 Simulated results for R versus b: (a) normal plot; and (b) log-log 

plot 

So the estimated ratio, R, is: 
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2

1

22 bcR   

i.e.,  

bR                                                      (3.34) 

where c2, c21, and c22 are the constants and are related as    221021102 loglog 2
1

ccc  

.  

 

The value of c22 can be obtained by substituting particular values (the first point with 

N =1, where R ≈ 4.25, b =19) of R and b from Figure 3.11 (a) so that: 

N
c

1
122   for b = 19. 

 

Thus, from the above two relationships, it can be concluded that 

N

b

N

b
R

1
  which agrees with the theoretical results obtained earlier. 

3.7.2.2 Results and discussion: estimation parameter, R, of CCF 

Several simulations are performed and some useful results are compared with the 

theoretical results to verify the effectiveness of the estimation process. Figure 3.12 

shows the simulated results with error bars. It can be seen that the error bars are very 

small in size, i.e. the variations of the results are very small and the error bars can be 

neglected. Thus error bars are omitted from the simulation results later.  

 

Figure 3.12 Simulation results with error bar 
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Figure 3.13 shows the theoretical and corresponding simulated results for the 

estimation of the number of nodes in a network. The solid lines indicate the 

theoretical results and the circles the corresponding simulated results. The variations 

of b in the three different figures are as a result of varying dDBS. The distances 

between the sensors are: 0.5 m in Figure 3.13 (a), 1m in Figure 3.13 (b) and 2m in 

Figure 3.13 (c). The other parameters remain the same as in the first simulation, i.e., 

with SR = 30 kSa/s.  

 

Figure 3.13 R versus N for b = 19, 39 and 79 using fixed SR and variable dDBS:  

(a) dDBS = 0.5m; (b) dDBS = 1m; and (c) dDBS = 2m [SR = 30 kHz] 

 

Then, the results of R for different b are plotted in Figure 3.14. 

 

Figure 3.14 Comparisons of theoretical and simulated results: R versus b 
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The simulations are performed in the MATLAB® programming environment. In the 

results depicted in the above figures, the theoretical and simulated lines are very 

close to each other, i.e., the theoretical and simulation results match which indicates 

that the process is satisfactory for estimation. In the figures, the solid and differently 

marked lines indicate the theoretical (from the mathematical relationships shown in 

Section 3.7.1) and simulated (from the simulation discussed in Section 3.7.2) results, 

respectively. 

 

Again, it is obvious that b will be larger if DBSd  increases and has an effect on the 

estimation process, as discussed in Section 3.7.1. It is shown that large values of 

DBSd  result in large values of R and the closer the simulated lines are to the 

theoretical lines the greater the degree of accuracy. However, there might be some 

limitations on this relationship, as discussed later. 

3.7.2.3 Dependency of R on b, SR and dDBS 

It is possible to vary the number of bins, b by also varying the sampling rate, SR. The 

number of bins, b, in samples is related to the distance between the sensors, dDBS, and 

the sampling rate, SR, as follows:  

1
2

P

RDBS 



S

Sd
b ,                                            (3.35) 

where the symbols have their  defined meanings.  

 

The effects of varying the sampling rate and the distance between the sensors are 

shown in Figures 3.15 to 3.17. In Figure 3.15, there are three different figures for 

different b, as there are in Figure 3.13, but the variations occur due to varying SR. 

The values used for the sampling rates are: 30 kSa/s for Figure 3.15 (a), 60 kSa/s for 

Figure 3.15 (b) and 120 kSa/s for Figure 3.15 (c). The other parameters remain the 

same as in the first simulation with dDBS = 0.5 m. 

 

In Figure 3.16, there are three different figures for different b, as in Figures 3.13 and 

3.15, but the variations occur due to varying both dDBS and SR. The values used are: 

0.25 m and 60 kSa/s for Figure 3.16 (a), 0.75 m and 40 kSa/s for Figure 3.16 (b) and  
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1.2 m and 50 kSa/s for Figure 3.16 (c). The other parameters remain the same as in 

the first simulation. 

 

 

Figure 3.15 R versus N for b = 19, 39 and 79 using fixed dDBS and variable SR:  

(a) SR = 30 kSa/s; (b) SR = 60 kSa/s; and (c) SR = 120 kSa/s [dDBS = 0.5 m] 

 

Figure 3.16 R versus N for b = 19, 39 and 79 using both dDBS and SR as variables: 

(a) dDBS = 0.25 m, SR = 60 kSa/s; (b) dDBS = 0.75 m, SR = 40 kSa/s;  

and (c) dDBS = 1.2 m, SR = 50 kSa/s 



 

90 
 

 

Figure 3.17 R versus N: (a) b = 19; (b) b = 39; and (c) b = 79 

[Simulated#1 - dDBS variable and SR fixed; simulated#2 - dDBS fixed and SR 

variable; and simulated#3 - both dDBS and SR variable] 

 

The results shown in Figures 3.13, 3.15 and 3.16 are compared in Figure 3.17 in 

which there are three different plots, each comparing four different results with the 

same b. This figure shows comparisons of three different simulated Rs for b = 19 

(Figure 3.17 (a)), b = 39 (Figure 3.17 (b)) and b = 79 (Figure 3.17 (c)) using a 

variable dDBS and a fixed SR in simulated#1, a fixed dDBS and a variable SR in 

simulated#2 and both dDBS and SR variable in simulated#3 with theoretical R. The 

results in Figure 3.17 demonstrate that, whatever the value of dDBS and SR, the 

estimation parameter, R, will only vary when b is varied. To make the matter clearer, 

further simulation results are shown in the Figures 3.18 and 3.19. 

 

Figure 3.18 shows the three different theoretical with corresponding simulated results 

for R for three different numbers of nodes. The circles and associated line are for         

N = 1, the stars and associated line for N = 10, and the plus signs and associated line 

for N = 100. It is shown that R is constant for a certain number of nodes when b 

remains unchanged (although SR and dDBS change). 
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Figure 3.18 3D plots of R, SR and dDBS 

 

 

Figure 3.19 Surface plots of R/b, SR and dDBS 
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Figure 3.19 shows similar effects of SR and dDBS, and thus b, as shown in Figure 3.18 

using the surface plots for six different values of N. In Figure 3.19, b remains fixed at 

79 by taking six different pairs of values of SR and dDBS, as shown in the top surface 

plot. In the bottom of the figure, the surface plot marked by circles is for the 

theoretical results and that marked by stars is for the simulation results; they show 

that the theory matches the simulation.  

 

It is shown from the above results that, although the values of SR and dDBS change 

(keeping b fixed), the values of R for a particular N remain unchanged due to the 

unchanged b. Thus, it is possible to set suitable values for SR and dDBS by varying 

them oppositely to estimate N with a certain b. 

3.7.2.4 Results and discussion: estimation of N 

After some manipulation, from the expression in (3.30) we have:  

 

2

1

R

b
N


  

 

So, if the ratio, R, is available from the simulation, an estimate of the number of 

nodes N is readily available using the above equation as b is known from the 

experimental setup. Several simulations are investigated in this respect and the 

results obtained from the average of 1000 estimated N̂ are shown in Figure 3.20. 

 

Figure 3.20 also demonstrate that a good approximation of the number of nodes, N, 

can be obtained from the ratio, R, of the CCF even when the distance between 

sensors is small; if a distance of 0.25 m is sufficient, the two sensors can be 

collocated with the same node, thereby removing the requirement to transmit data 

between them. 
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Figure 3.20 Comparisons of theoretical and simulated numbers of nodes:  

(a) b = 19 (dDBS=0.25 m and SR=60 kSa/s); (b) b = 29 (dDBS=0.25 m and SR=90 

kSa/s); and (c) b = 39 (dDBS=0.25 m and SR=120 kSa/s). 

3.7.3 Conclusion 

Estimation of the number of nodes is investigated here with theory (obtained from 

statistical property of CCF) and simulation. It can be seen from the results that the 

proposed technique is good enough for estimation. Although error bars are required 

for simulated results (as they are random in nature with a standard deviation), it is 

shown that the error bar is sufficiently small to neglect and so simulation results are 

provided without error bars. There are some assumptions in this basic technique 

which are investigated later in this chapter, starting with the estimation in ETP case. 
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3.8 Estimation process - equal transmitted power (ETP) 

case  

The estimation process discussed in the previous section is applied to the ERP case 

in which the powers of all the received signals are the same. It can be achieved by 

proper probe requests emanating from the receivers, and the transmitters replying 

with signal powers which are inverse proportions of the received probes. In this 

section, the ETP case, in which the nodes transmit signals of equal power but the 

received powers are different due to the distance-dependent attenuations, which also 

depend on the dispersion coefficient, k, is discussed. Several simulations are 

performed using a similar procedure to that discussed earlier for the ERP case. The 

results for the ratios of the standard deviations to the means of the CCF are presented 

in Figure 3.21 for different dispersion coefficients, k (0, 1, 1.5, and 2). Simulated 

results shown are obtained from the average of 100 iterations to get the better results 

and this is followed always for the ETP case. Although the simulated results in the 

ERP (i.e., where k = 0) case follow the basic theory, they are different in the ETP 

cases as shown in Figure 3.21.  

 

To verify the simulations, the estimation parameter, R is also obtained from the 

theoretical CCF using (3.16) and (3.20) and compared with the simulation as shown 

in Figure 3.22. It can be seen that the two results coincide each other which ensure 

the correctness of the simulation results.  

 

However, as in the practical environment both cases may arise. In order to make the 

process robust, we should design it for the ETP case as well. Although the results do 

not exactly match those of the theory, their well-behaved shapes suggest that we 

derive a scaling factor which follows the theory. To do this, we take the results for k 

= 1.5 from Figure 3.21, as shown in Figure 3.23 (a), and re-plot them in a log scale, 

as shown in Figure 3.23 (b), from which it is clear that the log-log plot completely 

follows a straight line as it does in the case of equal received power and theoretical 

discussed earlier. Now, assume straight line approximations of both results in Figure 

3.23 (b) to fit the simulation results with the theory and vice versa. 
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Figure 3.21 Ratios of standard deviation to mean of CCF, R versus N: 

comparison of theoretical and different k results 

 

 

 

 

Figure 3.22 Ratios of standard deviation to mean of CCF, R versus N: 

comparison of R obtained from theoretical and simulated CCF 
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Figure 3.23 Ratios of standard deviation to mean of CCF, R versus N: (a) 

comparison with k = 1.5 and theoretical; (b) re-plotting of (a) in log scale 

3.8.1 Fitting of simulation results with theory 

It is shown that the theoretical value of the estimation parameter R is expressed in 

(3.30) as 

N

b
R

1
  

 

It can be written as  

  2
1

2
1

1  NbR  
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This expression is also verified by the simulation results in ERP case, where the 

value of dispersion coefficient is considered as k=0. Thus, for k=0, denoting 

simulated estimation parameter by R0, power of (b-1) by 0 , and power of N by 0s , 

the simulated estimation parameter in ERP case can be expressed as  

  0010
sNbR                                                  (3.36) 

  

Letting the slopes of the straight line approximation from Figure 3.23 (b) be 5.1s for 

the simulated line and for k=1.5, denoting simulated estimation parameter by R1.5,  

                          )(log)()(log 105.15.110 scNsR   

        )(log)()(log)()(log 105.1105.15.110 sscsNsR   

                                     )(log)()(log 105.15.110 NcsR ss  

                           )ln()(log )(
5.110

5.1s
ss NcR   

                         
5.1

5.1
s

ss NcR                                                           

(3.37) 

where cs and css are constants and are related as  sss csc 105.1 log .  

To make the (3.37) as (3.36), defining css as   5.11  bcss , the expression (3.37) 

can be written as  

  5.15.115.1
sNbR                                             (3.38) 

 

Thus, for any k, simulated estimation parameter Rk can be expressed by a generalised 

expression as 

  kk s
k NbR 1                                              (3.39) 

 

It is already known the value of 5.00 s  and the value 5.00  . The value of 5.1s

is obtained from Figure 3.22 (b) as 418.05.1 s and substituting this value and a 

R1.5 for a particular N from Figure 3.22 (a) in (3.37), the value of css is obtained as

 2
1

11925.4 ssc i.e., as  2
1

1 bcss (as the simulation was conducted for 

b=19). This gives the value of 5.05.1  .  
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It has already been mentioned that the value of k for underwater acoustic 

communication can vary from 1 to 2. So, to find the generalised expressions for the 

k and the slopes, sk, of the simulated results, several are obtained for different k (0, 

0.5, 1, 1.5, and 2) with the b=19. The results are shown in Table 3.5.  

 

Table 3.5 Parameters pk and sk of expression (3.39) 

Param
eters 

Values 
k=0 k=0.5 k=1 k=1.5 k=2 

k 0.5 0.5 0.5 0.5 0.5 

sk – 0.5 –0.495 –0.468 –0.418 –0.346 
 

It is shown that the values of sk is always negative, thus the (3.39) can be expressed 

as 

  kk s
k NbR  1                                             (3.40) 

 

It is again shown that for the suitable sk the k  is always 0.5. Thus for b=19, it 

requires scaling only the powers of N, i.e. the sk. Whether it is valid or not for the b 

other than 19, to confirm and to make the scaling sufficiently robust that the 

simulated results follow the theory, more demonstration is provided with following 

Figure 3.24. 

 

 

Figure 3.24 Ratios of standard deviation to mean of CCF, R versus N: k = 1 
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Theoretical and corresponding simulated results are plotted in the figure, where 

theoretical means the corresponding theoretical results using (3.39) or (3.40) with 

corresponding b for k=1. The theoretical expressions are as follows. 

 

)()119()1( 468.0
19

2
1  NkR  

 

)()139()1( 468.0
39

2
1  NkR  

 

  

 

)()1()1( 468.02
1  NbkRb  

 

It is already evidenced that similar expressions are applicable in ERP case (where 

k=0) with sk = – 0.5.   

 

Similarly, to get a robust scaling of the simulation results, we express the ratio of the 

standard deviation to the mean of the CCF for all dispersion coefficients with b=19 

as:  

 

)()119()0( 5.0
19

2
1  NkR

 

)()119()5.0( 495.0
19

2
1  NkR

 


 

)()119()2( 346.0
19

2
1  NkR

 

 

For 39 bins, the expressions are: 

 

)()139()0( 5.0
39

2
1  NkR

 

)()139()5.0( 495.0
39

2
1  NkR

 


 

)()139()2( 346.0
39

2
1  NkR

 



 

100 
 

And so for the b bins: 

)()1()0( 5.02
1  NbkRb  

)()1()5.0( 495.02
1  NbkRb  


 

)()1()2( 346.02
1  NbkRb  

 

It can be seen from the all expressions that the constant term is dependent on only the 

number of bins, b. Also, the powers of the number of nodes only vary with a varying 

k. 

 

Thus, from these series of expressions, we obtain the generalised expression of 

scaled theoretical R for ETP case as in (3.41) 

 

)()1()( 2
1

ks
b NbkR 

                                           (3.41) 

where the sk values are those presented in Table 3.5. 

 

In (3.41) replacement of sk gives the theoretical values of estimation parameter, 

where the appropriate value of sk can be obtained from the following quadratic 

expression as shown in Figure 3.25. 

 

Figure 3.25 The powers, ks of N in the expression of estimation parameter 
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Now from (3.41), for k=0, the expression is 

 

)()1()0( 5.02
1  NbRR b                                       (3.42) 

 

Again, the expression (3.41) can be solved for N as 

 

 
 

ks
b

b

kR
N

1

2
1

1 








  

 

Inputting this N in (3.42), we have the expression of )0(bR from )(kRb as:  

 

     
 

ks
b

b
b

kR
bR

2

1

2
1

2
1

1
10












  

i.e., 

    kk sbsb kRbR 2

1

4

1

2

1

)(1)0(










  

 

Thus, using (3.41) and (3.42), the expression to make the simulations (for any k) 

compatible with the theory will be: 

 

    kk sbstb kRbkR 2

1

4

1

2

1

)(1)(










                                            (3.43) 

where )(kRtb is the scaled value of )(kRb , which matches the theory in ERP case.  

3.8.2 Results and discussion after scaling 

Several simulations are investigated and their results compared with the theoretical 

results. It is shown that, after scaling of the original simulation results, the process is 

satisfactory for estimating the number of nodes. All results are plotted in Figure 3.26 

and 3.27, and it can be seen that, for any k, the estimation is satisfactory. 
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Figure 3.26 R versus N: (a) k = 1; (b) k = 1.5; and (c) k = 2 [b = 19] 

 

 

 

Figure 3.27 R versus N comparisons: (a) k = 1; (b) k = 1.5; and (c) k = 2 [b = 19] 
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3.8.3 Direct scaling of theoretical R of CCF to follow simulated results 

The ratio of the standard deviation to the mean of the CCF has already been 

expressed as:  

                                             )()1()( 2
1

ks
b NbkR 

 

 

Thus, for k = 0, we have: 

)()1()0( 5.02
1  NbRb  

and, then: 

5.0

)0(

)(  ks

b

b N
R

kR
 

So,  

)0()( 5.0
b

s
b RNkR k   

 

The above scaling expression shows that it does not depend on the number of bins, b, 

but on the number of nodes, N. Thus, for 32 nodes, we show the scaling factors for 

different dispersion coefficients, k, in Table 3.6 and Figure 3.28. 

Table 3.6 Direct scaling factors for a particular N (=32) 

Param
eters 

Values 
k=0 k=0.5 k=1 k=1.5 k=2 

f(k) 1 1.0175 1.1173 1.3287 1.7053 
 

 
 

Figure 3.28 Direct scaling factors for theoretical ratio of standard deviation to 

mean of CCF, R versus dispersion coefficient, k. 
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Thus, the expression for the direct scaling factors for the theoretical ratio of the 

standard deviation to the mean of the CCF to follow the simulated results is: 

1011.0071.0055.0)( 23  kkkkf
 

3.8.4 Results and discussion after direct scaling 

Several simulations after using direct scaling are investigated and the results 

compared with the theoretical results. It is shown in Figure 3.29 that, after direct 

scaling of the original simulation results, the process is adequate for estimating the 

number of nodes. All values are plotted in Figure 3.29 in which it can again be seen 

that, for any k, the use of scaling is sufficient for estimation.  

 

 

Figure 3.29 R versus N: (a) k = 1; (b) k = 1.5; and (c) k = 2 [b = 39] 

 

Thus in ETP case, it is again possible to obtain estimations using this scaled R by the 

following relationship (as it is in the ERP case): 

2

1ˆ
R

b
N




 

 

Several simulations are investigated in this way and the results shown in Figure 3.30. 
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Figure 3.30 Estimated N versus exact N: (a) k = 1; (b) k = 1.5; and (c) k = 2  

(The values of estimation of N are from average of 1000 estimations) 

3.8.5 Conclusion 

It can be seen from these results that proper estimations are possible in both the ETP 

and ERP cases. Although there are differences in the initial results of R, its proper 

scaling in the ETP case provides as good an estimation as it does in the ERP case. As 

the results from all iterations are not sufficiently informative to obtain estimations, in 

the ETP case, the number of nodes is estimated with R from 100 iterations.     

3.9 Selection of signal length, NS 

The ideal signal length is ideally infinitely long (considered as 106 samples in all of 

the above simulations). Unfortunately, this length is an energy-related term in the 

estimation process. The greater the signal length, the more energy is required to 

perform the estimation. The exact signal length for a particular estimation is 

therefore of interest and has been investigated in the following section. 

 

Figures 3.31 and 3.32 show the number of nodes, N for different signal lengths, NS. 

Figures 3.31 (a), (b), (c) and (d) show the same results but use different scales 

(normal, semi-logy, semi-logx and log-log, respectively) for clarity of understanding.  
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Figure 3.31 (d) is re-plotted in Figure 3.32 with the exact number of nodes in order to 

discuss and select the appropriate signal length. It can be seen that the estimations are 

similar for 32 and 64 nodes up to the signal length of 1000 samples. But, beyond this 

point, i.e., if the signal length involves more than 1000 samples, the results are 

different for different numbers of nodes which implies that this is the effective lower 

limit of the signal length for estimating the number of nodes. This is indicated by 

large errors occurring at smaller signal lengths and the results only improve with 

increases in the signal length, as shown in the figure. At around 10,000 samples, the 

estimated numbers of nodes are about 22 and 35 instead of the exact numbers of 32 

and 64 and about 30 and 60 at around 80,000 samples whereas, at around 300,000 

samples, the process starts to estimate the exact numbers of nodes. 

 

 

Figure 3.31 Estimated N versus Ns plot: (a) normal scale; (b) x-normal,  

y-log scale; (c) x-log, y-normal scale; and (d) x-log, y-log scale  

(all values taken from 1 iteration and average of 1000 estimations  

with fixed b of 139 in ERP case) 
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Figure 3.32 Re-plotting of Figure 3.31 (d) with exact numbers of nodes 

 

In the above discussion, it is shown in the ERP case that the estimation of the number 

of nodes is dependent on the transmitted signal length. Similar effects in the ETP 

case are shown in Figure 3.33 in which it can be seen that, if the signal length is low, 

the estimation is poor but an increased signal length improves it. In the case of 32 

original nodes with 1000 samples, the estimation process gives only about 5 nodes 

but the estimated number increases with increases in the signal length and, beyond 

about 300,000 samples, it estimates almost 32 nodes and is almost constant beyond 

this signal length.  

 
 

Figure 3.33 Estimated N versus Ns  plot with 32 original nodes  

(all values taken from 100 iterations and average of 1000 estimations  

with fixed b of 139 in ETP case) 

 

Thus, one can choose the signal length from 100,000 samples or more to estimate the 

number of nodes without compromising the estimation’s performance. This is 
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discussed again in terms of the error analysis in Chapter 5 where it will be more 

easily understandable how the performance of the estimation system improves with 

increases in the signal length. 

3.10  Effect of fractional-samples delays on estimation 

In the previous section, the delays take integer values implemented in the simulation 

by rounding them to their nearest integers. This is an ideal case but, in practice, 

delays might have the fractional part which could affect the estimation process. To 

show the effect of the fractional parts of the delays, i.e., the fractional parts of the 

samples, simulations are performed using the original values and the results are 

plotted in Figure 3.34 and 3.35. 

 

 
 

Figure 3.34 R versus N plot in ERP case: comparisons of results for theoretical, 

and simulated with and without fractional-sample delays:  

(a) b = 19; (b) b = 59; and (c) b = 99 
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Figure 3.35 R versus N in ETP case: comparisons of results for theoretical, and 

simulated with and without fractional-sample delays: 

(a) k = 1; (b) k = 1.5; and (c) k = 2 

Figures 3.34 and 3.35 compare the performance of the proposed technique for 

estimating the number of nodes considering the fractional parts of the sample delays 

with that of the theoretical and simulated with integer samples-delays. As can be 

seen from the figures the simulated results, both with and without the fractional parts 

of the sample delays, shows similar performance and follows the theoretical results, 

it does not matter whether the fractional part is considered. Thus, it is not necessary 

to explicitly model fractional sample delays in the theoretical analysis. 

3.11  Effect of noise on estimation 

It has already been discussed that wireless communication channels are subject to 

background noise and, in practice, the transmitters and receivers themselves have 

some internal noise which may affect the estimation process. It is important to know 

these effects in the proposed technique for estimating the number of nodes because, 

in order for the signals from the transmitter to be useful, they will have to be stronger 

than the noise and the range of their strengths could be decided from this analysis. In 

all type of noise cases, the added noises in the signals will take place in the cross-

correlation i.e., if the signals are received with noise, the CCF will be due to both 
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noise and signal. Thus, although the effect of noise in the proposed estimation 

process will be similar for all types of noise (assuming AWGN), the noise strengths 

might be different. Here, the effect of noise is discussed for the internal noise of a 

receiver. Let us consider a signal received by two noisy receivers as: 

)()()(
111 tStStf n                                                        (3.44) 

)()()(
222 tStStf n                                                       (3.45) 

where )(1 tS  is the delayed version of the signal transmitted from the source 1 

transmitter to receiver 1, )(2 tS  the delayed version of the signal transmitted from the 

source 1 transmitter to receiver 2, )(
1

tS n
 the internal noise received in receiver 1 and 

)(
2

tSn  the internal noise received in receiver 2. 

 

Then, the CCF, )(C , is (Jian-fei 2009): 
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where )(
21
SSC  is the CCF of )(1 tS with )(2 tS  

)(
21


nSSC  is the CCF of )(1 tS with )(
2

tS n  

)(
21
SSn

C  is the CCF of )(
1

tS n with )(2 tS  

)(
21


nn SSC  is the CCF of )(
1

tS n with )(
2

tS n  

  is the time delay in the cross-correlation process. 

 

As )(1 tS  and )(
2

tS n , )(
1

tS n  and )(2 tS , and )(
1

tS n  and )(
2

tS n  are 

independent random processes, their CCFs tend to be zero with the integration time 

extension and zero when the integration time is infinity. Thus, (3.46) becomes

)()(
21
 SSCC  . But, as in real-world problems it is not possible to take an infinite 

time interval, it is interesting how the cross-correlation works with finite time 

(3.46) 
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integration. Details regarding these effects are discussed in this section using 

simulation. 

 

To show the effect of noise in the number of nodes’ estimation technique, the 

simulations are investigated by adding white Gaussian noise to the signals in the 

receivers. In the proposed node estimation technique SNR is used as the ratio of 

voltage levels of signal and noise unless otherwise mentioned. Sometimes it is 

converted to dB as for example, SNR=1 indicates 0dB, SNR=10 indicates 20dB, and 

so on. Figure 3.36 (a) and (b) show the results for SNR = 10 and SNR = 1 with      NS 

= 100,000 samples for the cases with and without noise, and the theoretical. The 

solid line indicates those without noise, the dash-dot line those with noise and the 

dashed line the theoretical results. To determine whether there any difference 

between the results for the internal noise of the receivers and for background noise, 

simulation with background and internal noise is performed and the results shown in 

Figure 3.37. The simulation parameters are the same as those used in the basic 

estimation with the noise taken into account.  

 

 

 

Figure 3.36 R versus N considering noise: (a) SNR = 10; and (b) SNR = 1 

(a) 

(b) 
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The theoretical results are presented using a solid line while the three simulated 

results are marked by stars, circles and diamonds for without noise, receivers’ 

internal noises and background noise, respectively. It can be seen in Figure 3.37 that 

simulated results for both types of noise follow similar patterns which indicates that 

both have similar effects on the estimation process. 

 

From the results in Figures 3.36 and 3.37, it can be concluded that noise has an effect 

on estimation in which the SNR plays a vital role. Both results are taken with 

100,000 samples of signal length. But, according to the noise theory of cross-

correlation, the signal length also has a significant effect on estimates with noise. The 

significance of signal length in estimation considering the internal noises of the 

receivers is investigated in the following section.  

 

Figure 3.37 R versus N plot comparisons of results for theoretical, simulated 

without noise, simulated with receiver internal noise, and simulated with 

background noise: (a) SNR = 10; and (b) SNR = 1 
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3.11.1 Estimation considering internal noise of the receivers 

To show the effect of noise, the internal noise of the receivers is added to the 

estimation process. Simulations are conducted, with varying signal lengths and SNRs 

of the receivers for a certain number (32) of nodes. Results are given in Table 3.7 

and plotted in Figures 3.38, 3.39 and 3.40 for both the ERP and ETP cases. Figure 

3.38 shows the estimated N versus SNR plot for a certain signal length of 100,000 

samples whereas Figure 3.39 presents the surface plots of the CV, SNR and Ns.  

 

Table 3.7 SNRs and corresponding estimations [NS = 105] 

SNR Estimated N:
ERP case 

Rounded value:
ERP case 

Estimated N: 
ETP case 

Rounded value:
ETP case 

0.001 1.1088 1 1.0308 1 
0.01 1.1714 1 1.0582 1 
0.05 2.5783 3 2.1923 2 
0.1 5.9214 6 5.0564 5 
0.5 23.1471 23 21.7998 22 
1 29.5006 30 27.516 28 
2 30.0510 30 29.5916 30 
10 30.7269 31 30.5512 31 
20 30.6989 31 30.5455 31 
100 30.9369 31 30.5791 31 
1000 30.922 31 30.5326 31 

Without noise 31.1343 31 30.5571 31 
 

 

 

Figure 3.38 Estimated N versus SNR: (a) ERP case; and (b) ETP case  

(Ns = 100,000 samples) 
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(a) 

 

 

(b) 

Figure 3.39 Log-log-log plots of SNR, Ns and estimated N for Ns = 1000 to 

1,000,000: (a) ERP case; and (b) ETP case 
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It can be seen in Figure 3.38 that, for a particular signal length of 100,000 samples 

and up to a certain SNR (<=0.05), the estimation is constant at the worst possible 

value but then improves with increases in the SNR (up to SNR = 1). Finally, it 

becomes constant again at the best possible value as shown for the case without 

noise. It can also be seen from Figure 3.39 that the worst possible values will 

continue longer and the best possible values start later if the signal length is lower, 

with the opposite occurring for higher signal lengths. In other words, there is a 

transition zone between the worst and best possible values in which the estimation is 

varied with the SNR whose starting and ending points are varied with the signal 

length, i.e., it will start earlier with a higher signal length and later with a lower 

signal length. In Figure 3.40, estimations are plotted with respect to NS (values from 

105 to 106 samples) for different SNRs of 0.1, 0.2, 0.5, 1, 10 and 100, and original 32 

nodes. From these results, it can be seen from the results that, for a particular SNR, 

the estimation performance improves with higher NS. It needs to be mentioned that 

all results regarding the effect of noise on estimation are from investigations using 32 

nodes. It has already been shown that the estimation process is equally suitable for 

any number of nodes in a ‘without noise’ case. However, to confirm, similar results 

for 64 nodes have been provided for ERP case in Figure 3.41. Comparisons of the 

results obtained for the 64 and the 32 nodes in the ERP case are shown in Figures 

3.42 and 3.43. Figure 3.42 shows the surface plots and Figure 3.43 the corresponding 

contour plots of the SNR, NS and estimated N for both the 64- and 32-node cases. It 

is clear that effect of noise is similar for any number of nodes, N, and if the SNR is 

sufficiently large, the method can properly estimate any N as without noise case.  

 

From the figures, it is clear that, for SNRs greater than a certain value, the estimated 

Ns are almost the same (with small variations due to the randomness of the 

experiments). For lower SNRs the estimation is more erroneous, the performances 

improve with increase in SNRs and finally achieve the best possible values. That is: 

when the SNR is less than 1, although the noise dominates over the signal, there will 

be some signals which are strong enough to count; and, although we do not obtain 

the appropriate number, we receive a reduced number of the signal sources, i.e., 

nodes. 
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(a) 

 

(b) 

Figure 3.40 CV versus signal length for different SNRs:  

(a) ERP case; and (b) ETP case 

 

Figure 3.41 Log-log-log plots of SNR, Ns and N: original N= 64;  

and Ns = 1000 to 1,000,000 
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(a) 

 

 

(b) 

Figure 3.42 Log-log-log plots of SNR, Ns and CV for Ns = 1000 to 1,000,000: 

(a) original N = 64; and (b) comparison for N = 32 and 64 
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(a) 

 

 

(b) 

Figure 3.43 Contour plots of SNR, Ns and CV for Ns = 1000 to 1,000,000: 

(a) original N = 32; and (b) original N = 64 
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3.11.2 Conclusion 

The consideration of noise is very important in the proposed signal processing 

technique of estimation, especially for use in real networks. In the ideal noise free 

environment, the receiver will receive the desired transmitted signal successfully 

without noise. But in a noisy environment, the signal received will usually be 

corrupted by noise. Thus in a practical environment, where noise always exists, the 

transmitted signal will have to be with sufficient power that it overcomes the noise 

sufficiently (that is, there is a sufficient SNR). The effect of noise also varies with the 

variation in signal length (which determines the integration time of the cross-

correlation process), the longer the signal length the lower the effect and vice-versa. 

 

This section properly investigates the estimation process with taking the noise into 

consideration. It is shown that proper selection of signal strength gives the estimation 

performance similar to the ideal (without noise) case.  It is clear from the 

investigations that an SNR of 20dB (signal is 10 times stronger than noise) is 

sufficient to neglect the noise effect in the proposed estimation process.   

 

Although protocol techniques to estimate the number of nodes are different in some 

aspects, they face similar problems in the presence of noise.  In fact, in the protocol 

technique, the transmitter transmits a number of bits with the carrier signal using a 

modulation technique through the channel in a manner similar to that of the CC 

technique. Although there is no literature to show the effect of noise in the number of 

nodes estimation process using the protocol technique, it is shown in at least one 

work (Heinzelman 2000) that a protocol requires an SNR of at least 30dB to receive 

the signal without error.  

3.12  Effects of multipath propagation on estimation  

In the previous sections, in order to obtain the CCF in the simulation process, only 

the line–of-sight signals are considered. This is an ideal case but, in practice, signals 

might be a mixture of the line-of-sight and some reflected signals due to the reflector 

present in the medium and the dispersive nature of the wave. So, to make the 
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estimation process robust, an analysis of multipath effects on estimation is required. 

In the underwater environment with an acoustic wave, the seabed and sea surface 

will be the two major reflectors. To show the effect of this multipath on estimation, 

simulations are performed, firstly using only the bottom reflection, and then using 

both the bottom and surface reflections. 

3.12.1 Estimation of N in multipath environment 

  

 

 

 

 

 

Figure 3.44 Concept of typical multipath 

 

Consider that a transmitter emits a Gaussian signal, S1(t), which is infinitely long. If 

the signal propagates in two (one direct and one reflected) paths, as shown in Figure 

3.44, the signal received by the receiver will be: 

 

)()()( 111111111111 mmr tStStS                                (3.47) 

 

Similarly, if there is another receiver in the communication range as is in the 

proposed technique , then the signal received by that receiver will be:  

 

   )()()( 121121211212 mmr tStStS                               (3.48) 

 

In (3.47) and (3.48), s' are the attenuations due to absorption and dispersion present 

in the medium and  s'  the time delays for the signal to reach the sensors. 

Attenuations 1211  and   are for the direct paths, and 1211  and mm   for the indirect 

paths whereas the delays, P1111 / Sd  and P1212 / Sd , are for the direct paths and 

P1111 / Sdmm   and P1212 / Sdmm   for the indirect paths.  

Transmitter Receiver

Direct pathIndirect path 
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Assuming P/ SdDBS  is the time shift in the cross-correlation, the CCF is: 
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where )(ddC  is the CCF due to the direct paths 

)(iiC  is the CCF due to the indirect paths  

)(diC  is the CCF due to the direct and indirect paths  

)(idC  is the CCF due to the indirect and direct paths 

and s'  are the delay differences between the signals in the cross-correlation 

process. 

 

It can be seen that all signals in this cross-correlation process are correlated as they 

are generated from the same transmitter but they will differ in strength and delay in 

reaching the receivers. So, the four terms in the right-hand side of (3.49), as they are 

Gaussian, produce four delta functions which are placed according to their delay 

differences. Of them, the deltas due to similar paths occupy positions between the 

receivers whereas those due to opposite paths occupy positions outside the place 

between the receivers. In the proposed method of estimating the number of nodes, 

the place between the receivers is the region of interest. Thus, for a particular 

transmitter with two paths (one direct and one indirect), there will be two deltas in 

the region of interest. This is equivalent to the cross-correlation with two transmitters 

just considering the indirect path is coming from an image transmitter as shown in       

Figure 3.45.  

 

(3.49) 
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Figure 3.45 Concept of image transmitter 
 

Now, if more than one transmitter exists, as shown in Figure 3.46, the CCF will be 

formed by the number of deltas equal to twice the number of transmitters. The 

strengths of the deltas will be equal if the direct and reflected signals are of equal 

power, as shown by the simulated results in Figure 3.47. Figure 3.47 (a), (b), and (c) 

show the CCF due to both the direct and reflected, only the reflected, and only the 

direct signals, respectively.  

 

 
 

 
   

 

 

Figure 3.46 Distributions of transmitters and receivers with one reflector 

 

Transmitter Receiver

Direct path

Direct path from image transmitter 
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Figure 3.47 CCFs due to: (a) both direct & reflected signals; (b) only reflected 

signal; and (c) only direct signal [using 1 iteration with k = 0] 

 

However, in reality, the powers will be different in the direct and reflected paths 

depending on the dispersion coefficient, k, and the estimation process. Here, we 

consider the ERP case for the investigation of multipath effects. In this case, the 

emitted power from each node will have to be such that the powers received at the 

sensors will be the same. This is possible by employing a proper probing technique 

for line-of-sight communication, i.e., direct path signals. In the case of reflection, 

there will be an indirect path(s) signal to reach the sensors whose powers will depend 

on attenuation in the medium which, in turn, depends on k. As the direct path is 

always less than the indirect path and their powers are inversely proportional to the 

path length, the powers of the direct path signals will be stronger than those of the 

indirect path signals. It is also known that the signals’ strengths are responsible for 

the strengths of the deltas in the CCF. Thus, the deltas due to the direct path will be 

dominant and contribute more to form the CCF, as shown in the simulated results in 

Figure 3.48 for a certain case of the dispersion coefficient, k = 3, 9 number of bins 

and 10 nodes. 
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Figure 3.48 CCFs due to: (a) both direct & reflected signals; (b) only reflected 

signal; and (c) only direct signal [using 1 iteration with k = 3] 

 

It has been demonstrated that deltas without multipath, i.e., with only direct paths, 

follow a random distribution to form the CCF. This will also be true for deltas with 

indirect paths. Thus, the CCF with a multipath is the summation of two random 

variables. To estimate the number of nodes using the ratio of the standard deviation 

to the mean of the CCF considering the multipath, the following demonstration is 

necessary. 

 

Considering two random variables (two CCF), X  (CCF from direct path signals 

cross-correlation) and Y (CCF from indirect path signals cross-correlation), it is well 

known that the variance in their summation, X+Y, can be defined as: 

 

),(Covariance2)(Var)(Var)(Var YXYXYX            (3.50) 

 

Denoting the variance of X+Y, X and Y as 2
YX  , 2

X , and 2
Y , respectively, and the 

covariance between X and Y as 2
XY , the expression (3.50) will become: 
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2222 2 XYYXYX                                               (3.51) 

 

Using the correlation coefficient, XY , instead of the covariance, the expression 

(3.51) might be written as: 

 

YXXYYXYX  2222                                            (3.52) 

 

Thus, the standard deviation of the summation of two random variables from (3.52) 

will be: 

YXXYYXYX  222                                          (3.53) 

 

If the variables (two CCF) are independent or weakly dependent, i.e., 0XY , the 

above expression can be reduced to:  

 

22
YXYX                                                   (3.54) 

 

In addition, the expectation of the sum of two random variables is expressed as:  

 

YXYX                                                       (3.55) 

 

Thus, the ratio of the standard deviation to the mean of the CCF is: 

 

YX

YX

YX

YX
YXR
















22

                                       (3.56) 

 

Again, in the case of different scaling of the variables, one standard deviation will be 

greater than the other, which will also be true for the expectation and, if the 

variables’ scaling are sufficiently different, e.g., if X >> Y  and X >> Y , the 

expression of YXR   can be written as: 

X

X
YXR




                                                    (3.57) 
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Now, in the proposed method of estimation of the number of nodes considering the 

multipath (taking into account only two paths, one direct and one indirect), the CCF 

can be considered to be the summation of two random variables. Then, as the scaling 

of the direct path will be sufficiently dominant, according to expression (3.57), YXR   

can be approximated by the ratio, R of the standard deviation to the mean of the part 

of the CCF due to the direct path. It was discussed earlier that the CCF with only the 

direct path follows the binomial distribution. Thus, using the binomial distribution, 

the estimation parameter, R, is presented in Figure 3.49. 

 

 

Figure 3.49 Rs of CCF: k=3 

 

The results in Figure 3.49 show the effectiveness of the proposed method in case of 

multipath reception of signals by the sensors. The solid line indicates the theoretical 

results and the stars and circles the simulated results with and without a multipath, 

respectively. It can be seen that the two simulated results are sufficiently close to 

each other and both follow the theoretical results. 

 

Now, if we consider that one direct and two indirect paths are present in the signals, 

as shown in Figures 3.50 and 3.51, the CCF will be the summation of three random 

variables and the random variable due to the direct path will still be sufficiently 

dominant to form the CCF. Thus, expression (3.57) of the ratio of the standard 

deviation to the mean of the CCF will still be valid. The results for the estimation 

parameter, R, are provided in Figure 3.52 for both the surface and bottom reflections. 
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Figure 3.50 Concept of multipath: one direct and two indirect paths 
 

 
 
 

                                              
   

 

Figure 3.51 Distributions of transmitters and receivers with two reflectors 

 

 
Figure 3.52 R of CCF: k=3 
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3.12.2 Explanation of multipath effects in Deep Ocean 

If we consider a refraction-free absorptionless medium, 1211  ,  depend on only the 

spreading loss and 1211  , mm   on the spreading loss as well as the reflection 

coefficient. Medwin (2005) tells us that the largest possible value of the reflection 

coefficient for any type of interface (i.e., soft or hard) will be 1. So, assuming that 

value, attenuation in the indirect path is also dependent on only the spreading loss.  

 

Generally, the spreading loss can be expressed as kdL p , where d is the range and 

k the spreading factor. Spreading factor, k varies between 1 to 6, depending on the 

communication signals and environments. In this discussion, the value of k is again 

taken as 3 to show the negligible effect of multipath propagation. The robust 

multipath effect will have been discussed for all k in the next section.  

 

So, the attenuation factors of the direct and indirect paths can be expressed as: 
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Figure 3.53 Explanation of single reflection 
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If the ranges of the direct paths are sufficiently smaller than those of the indirect 

paths, i.e., if 1111 ddm   and 1212 ddm  , the attenuation factors of the indirect 

paths will be sufficiently small compared with those of the direct paths, i.e., 

1111  m  and .1212  m  

 

It is discussed in the literature (Urick 1983) that, if a transmitter is sufficiently close 

to its receiver, the above assumption will be true. The possible distance ranges are 

expressed in (Urick 1983) as 2

1

2111 )(2 lld  , where the symbols indicating the lengths 

are shown in Figure 3.53, and are defined as the near field. Distances beyond these 

ranges are defined as, firstly, interference and then far field. In the interference field, 

the indirect path’s distance becomes closer to that of the direct path and, after a 

certain distance; their lengths are almost equal which is the start of the far field. In 

the case of the near field having some portion of the interference field close to it 

(with higher k values), the term 1211 mm    in the cross-correlation will be far less 

than the term 1211   . 

 

Thus, if the transmitters fall within the near field and some portion of the interference 

field is close to the near field, the contribution of the indirect path to the CCF will be 

negligible and could be assumed by the CCF of the direct path only. Similarly, if a 

transmitter falls in the interference field close to the far field, the contribution of the 

indirect path to the CCF starts to become significant and will be similar to that of the 

direct path when the transmitter falls in the far field. In our simulation, the dimension 

of the cube is 2000 m and the receivers are placed at the middle of the cube. 

Assuming the surface and bottom reflectors are placed at the boundaries of the cube, 

the simulation setup mostly fulfils the criteria of neglecting the effect of the indirect 

paths on the CCF with higher values of k. 

3.12.3 Near-field range to neglect multipath effect 

After some manipulation, it can be shown from the expression 2

1

2111 )(2 lld  that, in 

the proposed simulation setup, the CCF will follow the near field placement of the 
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transmitter if the radial distance of the reflector plane i.e. surface or bottom from the 

receiver follows the relationship:  

                                                              
1

2
11

2 4l

d
l   

where 2l  is the radial distance of the receiver from the reflector plane , 11d  the radial 

distance of the receiver from the source, and 1l  the radial distance of the source from 

the reflector plane. Placement of the network following the above relation will be 

helpful to neglect the multipath effect in the proposed estimation process. 

3.12.4 Robust estimation technique in multipath environment 

Previous sections demonstrate how multipath effects can be neglected in the 

estimation process as is possible in the case of a high dispersion factor. In this 

section, a robust estimation approach, which can estimate using any dispersion 

factor, is provided.  

3.12.4.1 Considering a direct and a reflected path 

Now, to properly demonstrate the estimation with multipath effects, let us consider a 

similar experimental setup to that for the ERP case with a 3D spherical distribution 

of the nodes underwater. Two sensors have to be placed at the centre of the sphere 

and their orientations will have to be parallel to the seabed which is considered to be 

the only reflector, i.e., the cause of the multipath. The theoretical & simulated results 

for the CCF from such a setup for 100 nodes with 9 bins, 100 iterations, and for 

different k values are shown in Figures 3.54 to 3.57. These four figures have different 

dispersion coefficient, k, values of 0, 1, 1.5 and 2, respectively. In each figure, there 

are three separate plots: the top for the CCFs with multipath, i.e., both direct and 

indirect path signals are responsible for forming the CCF; the middle the CCFs due 

to only the reflected (bottom) signal; and the bottom the CCFs due to only the direct 

signal, i.e., without a multipath as in the earlier ERP case. It has already been 

demonstrated that a delta without a multipath, i.e., with only a direct path, follows a 

random distribution to form the CCF. This is also true for the deltas with indirect 
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paths. Thus, the CCF with a multipath will be the summation of two random 

variables.   

 

 
 

Figure 3.54 CCF with k = 0 from: (a) direct and bottom reflected signals; (b) 

only bottom reflected signal; and (c) only direct signal 

 

 
 

Figure 3.55 CCFs with k = 1 from: (a) direct and bottom reflected signals; (b) 

only bottom reflected signal; and (c) only direct signal 
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Figure 3.56 CCFs with k = 1.5 from: (a) direct and bottom reflected signals; (b) 

only bottom reflected signal; and (c) only direct signal 

 

 
 

Figure 3.57 CCFs with k = 2 from: (a) direct and bottom reflected signals; (b) 

only bottom reflected signal; and (c) only direct signal 
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To clarify the above discussion, Figures 3.58 to Figure 3.60 are plotted. 

 
 
 

Figure 3.58 CCFs with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from direct 

and bottom reflected signals: (a) linear plot; and (b) discrete plot 

 
 

Figure 3.59 CCFs due to only direct signal: (a) linear plot; and (b) discrete plot 
 
It can be seen from the results that the multipath effects decrease with increasing k 

and, in practice, can be neglected because of the higher values of k in a real 

underwater environment. The process of neglecting the multipath has already been 

provided in Section 3.12.  

 

However, to obtain a generalised estimation of the number of nodes using the ratio of 

the standard deviation to the mean of the CCF considering a multipath with any 

possible values of k, the following example is provided. 

(a) (b) 
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Figure 3.60 CCFs with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from only 

bottom reflected signal: (a) linear plot; and (b) discrete plot 

 
Let us consider a CCF with a multipath (one direct and one indirect path) for a 9-bin 

setup in which the delta peaks in the bins are P1, P2, P3, P4, P5, P6, P7, P8 and P9, as 

shown in Figure 3.61, and the corresponding delta peaks for the direct and reflected 

paths are P1d, P2d, P3d, P4d, P5d, P6d, P7d, P8d and P9d, and P1r, P2r, P3r, P4r, P5r, P6r, 

P7r, P8r and P9r, respectively, as shown in Figure 3.62,  

where rd PPP 111  , rd PPP 222  , rd PPP 333  , rd PPP 444  , 

rd PPP 555  , rd PPP 666  , rd PPP 777  , rd PPP 888   and 

rd PPP 999  . 

 

It is shown in the above figures that all bins are not affected by the reflected signal 

and there is a mirror effect with respect to the middle bin. In the case of 9 bins, the 

affected bins are 2 to 8 and, due to the mirror effect, the peaks of the 2nd & 8th, 3rd & 

7th, 4th & 6th bins are similar. As only the CCF with a multipath obtained from the 

experiment is available, it will have to suffice for the estimation. However, using a 

similar process to that for finding the ratio of the standard deviation to the mean of 

the CCF to estimate the number of nodes for a case without a multipath is not 

appropriate because of the extended peaks due to the reflected path signal. But, if we 

(a) (b) 
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can deduct the extended peaks from the CCF with a multipath, it will be exactly the 

same as the CCF without a multipath and the process will be appropriate for 

estimation.  

 

To do this, we represent the peaks due to reflected signals (Figure 3.61) as 

percentages of the peaks due to both direct and reflected signals (Figure 3.62). The 

process of obtaining the percentages is: 

%100.,.

%100
signals reflected anddirect both   toduebin  2at Peak 

only   signal reflected  toduebin  2at Peak 
bin,2atPercentage
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Similarly, for other affected bins, the percentages are obtained using the following 

expressions: 
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Figure 3.61 Peaks of deltas in bins of CCF due to both direct and reflected 

signals with k = 0 

(a) (b) 
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Figure 3.62 Peaks of deltas in bins of CCF due to only reflected signal with k = 0 
 

The percentages are independent of the number of nodes but dependent on the 

dispersion coefficient, k, and the number of bins, b. We investigate them for different 

values of k in 9 bins. Figure 3.63 shows the percentages of deltas due to only the 

reflected signal in each affected bin of the CCF in terms of deltas due to both direct 

and reflected signals. Percentages in the different affected bins for different k are 

presented in Figure 3.64. 

 

Figure 3.63 Percentages of deltas in affected bins of CCF due to only reflected 

signal with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) 

(a) (b) 
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Figure 3.64 Percentage contributions of reflected signal in affected bins for 

different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) 

 

To obtain information on the percentage contributions for any k, those in all bins are 

expressed by the 4th degree approximation, as shown in Figure 3.65. 

 
 

 
 

Figure 3.65 Percentage contributions of reflected signal for different k (0, 0.5, 1, 

1.25, 1.5, 1.75 and 2) in: (a) bin 2 and 8 , (b) bin 3 and 7, (c) bin 4 and 6, and (d) 

bin 5 

(a) (b) 

(c) (d) 
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The approximated expressions are: 
 

3.36.35.39.14.0 234
82  kkkkpp mm                                   (3.60) 

46221.468.014.0 234
73  kkkkpp mm                                 (3.61) 

671323161.3 234
64  kkkkpp mm                                    (3.62) 

71201284.1 234
5  kkkkPm                                         (3.63) 

 

Now, to obtain the estimation parameter, i.e., the ratio of the standard deviation to 

the mean of the CCF, deductions of the extended peaks of the corresponding bins are 

obtained as follows (in the case of k = 0). 

 

In bin 2, the deducted peak is: 

2222  of% PpPP mds   
 
Similarly, for the other affected bins 3 to 8, the deducted peaks are: 
 
 3333  of% PpPP mds  , 4444  of% PpPP mds  , 5555  of% PpPP mds  ,                 

6666  of% PpPP mds  ,                  7777  of% PpPP mds  ,                  

8888  of% PpPP mds  . 

 
The peaks of the CCF after deduction for 100 nodes with 100 iterations are shown in 

Figure 3.66. To demonstrate the effectiveness of the process, the Rs of the CCF after 

deduction are plotted for different numbers of nodes with one iteration in Figure 

3.67. It is obvious from this figure that the process is adequate for estimating the 

number of nodes.  

 

 
 

Figure 3.66 CCFs after deduction 
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Figure 3.67 Rs of CCF: comparison of theoretical, simulation without multipath 

(using earlier proposed technique) and simulation with multipath (using 

proposed multipath compensation technique) for different k (0, 1, 1.5 and 2) 

3.12.4.2 Considering a direct and two reflected path  

The previous analysis was for the multipath effect due to only the bottom (seabed) 

reflection. A similar process is applied to obtain an estimation in the case of a 

multipath due to both surface and bottom reflections. Now, to properly demonstrate 

the robust estimation process with multipath effects due to both surface and bottom 

reflections, let us consider a similar experimental setup to that for the multipath 

effect due to only bottom reflections. The only difference between the two is that, in 

the latter, the sea surface is considered as another reflector, i.e., the cause of the 

multipath. The results for the CCF from such a setup for 100 nodes with 9 bins, 100 

iterations and different k values, are presented in Figures 3.68 to 3.71. These four 

figures have different dispersion coefficient, k, values of 0, 1, 1.5 and 2, respectively, 

and each has three separate plots: the top for CCFs with multipath, i.e., direct and 

indirect path signals are responsible for forming the CCF, the middle for CCFs due to 

reflected (both surface and bottom) signals only; and the bottom for CCFs due to 

only direct signals, i.e., without multipath, as in the earlier case of the ERP without a 

multipath. It has already been demonstrated that a delta without a multipath, i.e., with 

only a direct path, follows a random distribution to form the CCF; this will also be 

true for deltas with indirect paths. Thus, the CCF with a multipath will be the 

summation of three random variables.  
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Figure 3.68 CCF with k = 0 from: both direct and reflected signals (surface and 

bottom); only reflected signal; and only direct signal 

 

 

Figure 3.69 CCF with k = 1 from: both direct and reflected signals (surface and 

bottom); only reflected signal; and only direct signal 
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Figure 3.70 CCF with k = 1.5 from: both direct and reflected signals (surface 

and bottom); only reflected signal; and only direct signal 

 
 

Figure 3.71 CCF with k = 2 from: both direct and reflected signals (surface and 

bottom); only reflected signal; and only direct signal 
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To clarify the above discussion, Figures 3.72 to Figure 3.74 are plotted. 

 

 

 

Figure 3.72 CCF with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from both 

direct and reflected signals (surface and bottom): (a) linear plot; and (b) 

discrete plot 

 

 
 
 

Figure 3.73 CCF from only direct signal: (a) linear plot; and (b) discrete plot 
 

(a) (b) 

(a) (b) 
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Figure 3.74 CCF with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from only 

reflected signals (both surface and bottom): (a) linear plot; and (b) discrete plot 

 

These results demonstrate that the multipath has a similar effect to the bottom 

reflection case as it decreases with increasing k and can be neglected because of the 

higher values of k in a practical underwater acoustic environment. The process of 

neglecting a multipath due to both surface and bottom reflections has also been 

provided in earlier work on the effects of the multipath on estimation.  

 

Now, we obtain a generalised estimation of the number of nodes using the ratio of 

the standard deviation to the mean of the CCF considering a multipath due to both 

surface and bottom reflections with any possible values of k. 

 

Let us consider a CCF with a multipath (one direct and two indirect paths from both 

surface and bottom reflections) for a 9-bin setup in which the delta peaks in the bins 

are P21, P22, P23, P24, P25, P26, P27, P28 and P29, as shown in Figure 3.75, and the 

corresponding peaks for the direct and reflected paths are P21d, P22d, P23d, P24d, P25d, 

P26d, P27d, P28d and P29d, and P21r, P22r, P23r, P24r, P25r, P26r, P27r, P28r and P29r, 

respectively, as shown in Figure 3.76, where rd PPP 212121  , rd PPP 222222  , 

(a) (b) 
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rd PPP 232323  , rd PPP 242424  , rd PPP 252525  , rd PPP 262626  , rd PPP 272727  , 

rd PPP 282828  , and rd PPP 292929  . 

 

 

Figure 3.75 Peaks of deltas in bins of CCF due to both direct and reflected 

signals with k = 0 (a) linear; and (b) discrete plot 

 

 

 

Figure 3.76 Peaks of deltas in bins of CCF due to only reflected signal with k = 0 

(a) linear; and (b) discrete plot 

 

In the case of two reflections, it is again shown in the above figures that not all bins 

are affected by the reflected signals and there is a mirror effect with respect to the 

middle bin. As previously in the case of 9 bins, the affected bins are 2 to 8 and, due 

to the mirror effect, the peaks of the 2nd & 8th, 3rd & 7th, 4th & 6th bins are similar. As 

only the CCF with a multipath is available from this experiment, it will have to 

suffice for the estimation. However, using a similar process to that for finding the 

(a) (b) 

(a) (b) 
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ratio of the standard deviation to the mean of the CCF to estimate the number of 

nodes without a multipath is not appropriate here because of the extended peaks due 

to the signals of the reflected paths. But, if we can deduct the extended peaks from 

the CCF with a multipath, the process will be exactly the same as that for the CCF 

without a multipath and will be appropriate for estimation.  

 

To do this, we represent the peaks due to both direct and reflected signals (Figure 

3.75) as percentages of the peaks due to only reflected signals (Figure 3.76) which 

will be different from the case with only a bottom reflection.  

 

The process of obtaining percentages is: 

 

%100.,.

%100
signals reflected anddirect both   toduebin  2at Peak 

only   signal reflected  toduebin  2at Peak 
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Similarly for other affected bins, the percentages are obtained using the following 

expressions:
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Detailed results are provided in Figures 3.77 to 3.79. These percentages are again 

independent of the number of nodes but dependent on the dispersion coefficient, k, 

and the number of bins, b. We investigate the percentages for different values of k 

with 9 bins, as shown in Figures 3.77 and 3.78. Figure 3.77 shows the percentages of 

deltas due to both direct and reflected signals in each affected bin of the CCF. The 

percentage contributions of the different affected bins for different k are presented in 

Figure 3.78. 
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Figure 3.77 Percentages of deltas in affected bins of CCF due to reflected signals 

(both surface and bottom) with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) 

 

 
 

Figure 3.78 Percentage contributions of reflected signals (both surface and 

bottom) in affected bins for different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) 

 
To obtain information on the percentages for any k, the percentages of all bins are 

expressed by the 4th-degree approximation, as shown in Figure 3.79. 
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Figure 3.79 Percentage contributions of reflected signals (both surface and 

bottom) for different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) in: (a) bin 2 and 8 , (b) bin 

3 and 7, (c) bin 4 and 6, and (d) bin 5 

 

The approximated expressions are: 

 

1112114.63.1 234
2822  kkkkpp mm                                (3.64) 

771593.071.034.0 234
2723  kkkkpp mm                            (3.65) 

904.41573.1 234
2624  kkkkpp mm                               (3.66) 

923.78.7221.0 234
25  kkkkpm                                  (3.67) 

 
 

Comparisons of the percentage contributions with one and two reflector in the bins 

are presented in Figure 3.80. 

 

(a) 

(d) (c) 

(b) 
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Figure 3.80 Comparisons of percentage contributions of reflected signals in 

different affected bins for different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) 

 

Now, to obtain the estimation parameter, i.e., the ratio of the standard deviation to 

the mean of the CCF, deductions of the extended peaks of the corresponding bins are 

obtained as follows.  

 

In bin 2, the deducted peak is: 

22222222  of% PpPP mds   

 

Similarly, for the other affected bins, 3 to 8, the deducted peaks are: 

23232323  of% PpPP mds  , 24242424  of% PpPP mds  , 25252525  of% PpPP mds  , 

26262626  of% PpPP mds  , 27272727  of% PpPP mds  , 28282828  of% PpPP mds   
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The peaks of the CCF after deduction for 100 nodes with 100 iterations are shown in 

Figure 3.81. To demonstrate the effectiveness of the process, the Rs of the CCF after 

deduction for different numbers of nodes with one iteration are plotted in Figure 

3.82. It can be seen from the results that the technique is good enough to estimate in 

multipath environment. 

 

 

 
Figure 3.81 CCFs after deduction 

 

 
 

Figure 3.82 Rs of CCF: comparison of results from theoretical, simulation 

without multipath (using earlier proposed technique) and simulation with 

multipath (using proposed multipath compensation technique with both surface 

and bottom reflections) for different k (0, 1, 1.5 and 2) 
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3.12.5 Conclusion 

In a practical wireless network, multipath signal propagation is common. This 

section investigates the effect with two different cases-the multipath with one 

indirect path and multipath with two indirect paths. Although the effect might be 

similar, only the ERP case is investigated. In some cases where the received direct 

path signal is stronger than the indirect path signal, the multipath effect can be 

neglected and the estimation can be obtained as without multipath. Again if the 

indirect path signal is not negligible, a technique is investigated to estimate the 

number of nodes.      

3.12.6 Multipath effects in protocols 

Two main performance criteria for estimation protocols are the estimation range and 

their speed i.e. the time required to estimate. Range is the maximum distance from 

which the receiver can sense the signal from the transmitter – that is, the range at 

which it receives at least Qn (the threshold power of the receiver). But in a multipath 

environment the received power is sometimes lower than Qn due to the subtraction of 

indirect signal power from the direct signal, as multipath reception of some unwanted 

signal, of which some are additive whereas others are subtractive. Thus some signals 

can not reach the sensors and the system performance for estimation degrades. 

Besides, the multipath causes ISI in the received signal, but using the symbol interval 

sufficiently longer than the delay spread, ISI can be neglected. Thus it takes more 

time to provide an estimate neglecting the effect of multipath fading. 

 

In the proposed technique of cross-correlation, any multipath effect can be neglected 

with a process where the power of a signal or time required is not affected. This will 

be very useful in the energy-limited UWSN in compared to the protocol technique. 

3.13   Conclusion 

Knowing the number of nodes in a network is very useful for practical network 

operations. Previous techniques proposed for estimating have been based on some 
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aspect of the protocol(s) in use and most do not take into account the capture effect. 

In this chapter, we have shown that the cross-correlation of random signals can be 

used to estimate the number of nodes or transmitters in a network. Mathematically 

derived expressions were investigated by simulations and the results agreed with 

those from theory. Two cases - with and without consideration of the fractional parts 

of the delays - were investigated in the simulation process and the results showed 

similar performance. The effect of the signal length was investigated and a selection 

criterion for the finite signal length for both the ERP and ETP cases was proposed. 

Moreover, the effects on estimation of noise and multipath signal propagation were 

also investigated. It was found that the impact of multipath propagation is often 

negligible. In cases where multipath propagation must be taken into account, 

techniques were presented for the cases of two paths (direct and bottom reflection) 

and three paths (direct, bottom reflection and surface reflection). However, 

demonstration of the effectiveness of the proposed estimation technique requires 

comparisons with conventional technique(s). Later in this thesis, two conventional 

techniques using protocols are considered and detailed comparisons, including 

analyses of the error and time required for estimation, are provided.     
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Chapter 4  

Estimation of the Dimensionality and 

numbers of nodes in different 

dimensions in a communication 

network 

4.1 Introduction 

In the cross-correlation node estimation, placement of a delta in a bin depends on the 

node position i.e. the formation of the CCF has a significant dependency on the 

placement of the nodes in the network. Thus it can be said that the estimation of the 

number of nodes is dependent on the dimensionality of the network. In Chapter 3, 

estimation of N is investigated only for a 3D network. As estimation of the number 

of nodes using cross-correlation depends on the dimensionalities of the networks, it 

is better to first estimate the latter, that is, whether the nodes are oriented in 1D, 2D 

or 3D in space. This also helps in obtaining additional information about the 

network, e.g., localization of the nodes, AOA estimations. As most research 

conducted on dimensionality has been for a network’s architecture before 

deployment of its nodes, the dimensionality of a deployed unknown network is a 

relatively new research area. The deployment strategies for 2D and 3D underwater 

acoustic network is proposed by Pompili (2009) to determine the minimum number 

of sensors to be deployed to achieve optimal sensing and communication coverage, 

which are dictated by application requirements; provide guidelines on how to choose 

the optimal deployment surface area, given a target body of water; study the 

robustness of the sensor network to node failures, and provide an estimate of the 

number of redundant sensor nodes to be deployed to compensate for potential 

failures. The only protocol-based technique for dimensionality estimation in a 

deployed communication network is proposed in (Howlader 2008; Howlader 2009). 
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In earlier chapter(s), the fact that the use of protocols is inefficient in harsh 

environments, such as underwater, underground, has been mentioned. In this chapter, 

a similar cross-correlation technique to that presented in Chapter 3 for estimating the 

number of nodes is used to estimate the dimensionality of a communication network 

after deployment. This process can be concurrent with that of the estimation of the 

number of nodes. Thus, the proposed cross-correlation techniques for estimating the 

number of nodes and their dimensionalities are of interest for wireless 

communication networks such as WSNs and RFIDs.  

 

Two dimensionality and two node count estimation techniques for all dimensions are 

provided. Firstly, the shape of the CCF (which varies with dimensionality of the 

network) is used to estimate the dimensionality. Then, the ratio of standard deviation 

and mean of CCF (obtained from the individual bin of theoretical and simulated 

CCF) is used to estimate the dimensionality. Like the shape, this ratio also varies 

with dimensionality. Also, to obtain the node count for any dimensional network, this 

ratio is used. Though it is useful, it requires prior knowledge of the signal power. To 

overcome the limitation, the approach similar to that used in Chapter 3 with some 

manipulations is applied for all dimensions. 

4.2 Estimation using CCF of dimensionality 

To start the process of cross-correlation for estimating dimensionality, firstly, the 

shapes of the cross-correlation functions (CCFs) for different dimensions are 

discussed fully using both analytical and simulated interpretations. The shapes of the 

CCF varies with dimensionalities. Knowing the proper theoretical shapes, it is easy 

to estimate the dimensionality by comparing the shape of experimental CCF with 

that of the theoretical. This section provides theoretical with corresponding simulated 

shapes of the CCF for 1D (linear), 2D (circle), and 3D (sphere) network. Then an 

estimation technique is provided using a cost function which is the summation of 

mean square deviations of the peaks of individual bins of theoretical and simulated 

CCF. Again, the effect of fractional-samples delays has been investigated.   
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4.2.1  Shapes of CCFs 

The procedure for obtaining both the analytical and simulated shapes of the CCFs for 

different dimensions is given step by step. 

  
Step1:  We choose 3 types (1D, 2D and 3D) of networks with 10,000  transmitting 

nodes (to obtain proper fundamental shapes of the networks) and two probing 

nodes or two receivers in a probing node, as indicated in Figure 4.1. It is clear 

in the figure that the probing node(s) is/are placed at the centre of the 

network. It can be seen in the figure that the uniform nodes distribution in 1D 

network is on a straight line, 2D network is on a circle, and 3D inside a 

sphere. Though these are very restrictive assumptions, this cross-correlation 

technique to estimate the dimensionality will help for further work with other 

type of configurations as for example, 3D but not spherical. 

 

Step2:  The probing node(s) send probe requests to the transmitting nodes which send 

back Gaussian signals as their responses such that the receivers at the probing 

node(s) receive signals of the same power (ERP case) from the transmitting 

nodes. 

 

Step3: We sum the signals from all transmitting nodes to two locations of the 

probing nodes and cross-correlate these two combined signals to produce the 

CCF. If the network is 3D, the CCF is a series of Dirac deltas of uniform 

strengths over the width 2dDBS and centred at 0, as shown in Figure 4.2 (c). 

However, this is not true for the 1D and 2D networks, as shown in Figures 

4.2 (a) and 4.2 (b). In the Figure 4.2, the width 2dDBS is replaced by the b 

bins, and for 11 bins, the 6th is considered as the centre bin.  

 

Step4: Now, we discuss the theory regarding this phenomenon using Figure 4.3. If 

we cross-correlate two signals that are the summation of several Gaussian 

signals inside a boundary, for each signal we obtain a Dirac delta which 

occupies a location inside a space of width 2dDBS (which is divided equally 

into several bins). 
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(a) 

 

(b) 

 

(c) 

Figure 4.1 Distributions of (10,000) nodes in (a) 1D; (b) 2D; and (c) 3D 
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(a) 

 

 

(b) 

 

 

(c) 

 

Figure 4.2 CCFs versus b: (a) 1D; (b) 2D; and (c) 3D 
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(a) 

 

 

(b) 

 

Figure 4.3 Representation of hyperbolas of deltas contributing to the same bin: 

(a) 1D; and (b) 2D 

 

This location is determined by the delay difference between the signals 

arriving at the receivers at the probing node(s). The deltas of delay 

differences equal to a bin distance from the centre bin are placed in that 

particular bin. It is shown in (Roux 2005) that the deployment of nodes 

(which determines the placements of deltas) of equal delay difference follows 

a hyperbola, as shown in Figure 4.3. 
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Thus, the number of deltas in a certain bin is the number of transmitting 

nodes inside two hyperbolas placed at the edges of that bin as shown in 

Figure 4.3 (b). Physically the area inside those two hyperbolas is occupied by 

a number of hyperbolas to cover all of the nodes in that area. Although there 

will be some variations in the delay differences, they are considered same for 

a bin area. As the transmitting nodes are distributed randomly, the number of 

nodes is proportional to the area inside those hyperbolas.  

 

Step5: Let us consider 11 bins of equal length, as shown in Figure 4.3 (b). To 

estimate the number of deltas in a particular bin, Figure 4.4 is plotted for the 

bin at the locations of receivers A and B at the probing node(s).   

 

 

Figure 4.4 Representation of hyperbolas for theoretically calculating the 

number of deltas in bin 

 

Step 6: To obtain the area inside the two hyperbolas shown in Figure 4.4, the 

trapezoidal rule of numerical integration is used.  

 

From Figure 4.4, the area is calculated as: 

 

Area, A1 = Area, A3 - Area, A2 = 1.7 m2 

 

So, the percentage of the number of deltas at the bin at location A is: 
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%6.13%100
Area Total

A,Area2 1 


 

 

Distributions of the deltas in the bins can also be formulated as in (Papoulis 2002; 

Maisel 1983). It is known that it is possible to represent discrete random variables as 

well as random variables, with a generalized probability density function using Dirac 

delta function; for example, if a discrete random variable takes only two values −1 or 

1, with probability half each, the probability density associated with this variable is ( 

Papoulis 2002; Maisel 1983): 

 

    11
2

1
)(  tttf                                     (4.1) 

 

More generally, if a discrete variable can take n different values among real numbers, 

the associated probability density function is (Papoulis 2002; Maisel 1983): 

 

   



n

i
ii xtPtf

1

                                             (4.2) 

 

where x1, … , xn are the discrete values accessible to the variable and  P1, … , Pn the 

probabilities, which indicate the amplitudes of the deltas associated with these 

values. 

 

If we assume that the deltas and number of nodes are of equal strengths, and the 

percentage of deltas in a bin is the probability, the theoretical distributions can be 

estimated by equation (4.2) and are plotted in Figure 4.5 with a comparison to the 

simulation obtained earlier.  

 

It can be seen from the results that the theoretical CCF matches the simulated CCF in 

all networks’ dimensions. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5 Simulated and theoretical distributions of CCFs: 

(a) 1D; (b) 2D; and (c) 3D 
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4.2.2 Estimation of dimensionality of communication network 

The analytical and simulated results in Figure 4.5 show that they are similar for 

corresponding dimensionalities. However, the shapes of the CCFs varying according 

to the different dimensionalities of the networks, i.e., the CCF is dependent on a 

network’s dimensionality. By utilising this dependency, the simple process of 

networks’ dimensionality estimation is as follows.  

 

Recalling the cross-correlation process with 10,000 nodes and 11 bins discussed in 

Section 4.2.1, we have three theoretical shapes of the nodes to the bins for 1D, 2D 

and 3D, as shown in Figure 4.5.  

 

Now, suppose we have a CCF from a simulation or experiment which is similar in 

shape of any of the theoretical CCFs according to the dimensionality. By looking at 

its shape, we can decide whether the network is 1D, 2D or 3D. However, to make 

this process computationally feasible, these simulated or experimental CCFs are 

compared with the analytical CCFs using a computational method. The results are 

helpful in deciding the network’s dimension. To do this, recall simulated results with 

similar parameters as used in Section 4.2.1 for 2D network and the shape of the 

simulated CCF is shown in the Figure 4.6. 

 

 

Figure 4.6 Distributions of nodes in bins from observed (simulated) cross-

correlation process 
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To estimate the dimensionality of the network, we use the cost function (sum of 

square errors) (Sirovich 2011) as: 

 

 
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where 
DiTP  is the peak of the theoretical CCF at the ith bin for D dimensional WCN, 

iOP  the peak of the observed CCF  at the ith bin for an observed WCN, and 
Di

e  the 

error, misfit or deviation between the theoretical and observed peaks in the ith bin.  

 

In MATLAB, we use the function to obtain the networks’ dimensionality: 
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where D gives the position at which the cost function is minimised and emin is the 

minimum value of 


b

i
Die

1

2 . This position i.e. the value of D is considered here as the 

dimensionality of the network. 

 

Using the theoretical CCFs in Figure 4.2, the simulated CCF in Figure 4.6 gives the 

values of the cost functions for 1D, 2D and 3D as, respectively, 

7
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Now, from the MATLAB expression, 

 

   637
min 101103103min De , 

 

As in the above expression emin is 3103 at position 2,  D gives the value of 2, i.e., 

the network is 2D. Thus it is easy to estimate the networks’ dimensionality from the 

CCF. 
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4.2.3 Effect of fractional-samples delays on dimensionality estimation 

To show the effect of fractional-sample delays on the estimation of network 

dimensionality, some simulation results for the CCF are provided in Figures 4.7 to 

4.9 for 1D, 2D and 3D networks, respectively. It can be seen that these CCFs are not 

greatly affected by fractional-sample delays as, although there are slight variations in 

their shapes with and without them, they are still able to estimate the network’s 

dimensionality using the following expression which was used earlier for integer-

sample delays:  
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Figure 4.7 Simulated CCFs with and without fractional-samples delays in 1D 

network  

 
Figure 4.8 Simulated CCFs with and without fractional-samples delays in 2D 

network  
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Figure 4.9 Simulated CCFs with and without fractional-samples delays in 3D 

network  

4.2.4 Conclusion 

Thus, one can estimate the dimensionality of a communication network using the 

shapes of CCF. Although this system needs equal signal powers from the nodes, it is 

irrelevant what these powers are. However, as it is an exact method, which gives 

only three distinct estimations of dimensionality - 1D, 2D and 3D, it will only be 

accurate if the proper system requirements are maintained. In case of wrong 

estimation, the estimation will be dramatically different and the error will be higher. 

For example, in the case of 3D network, if we get the simulated result 1D or 2D, then 

the estimation will be completely different but if we get 3D then it will be 100% 

accurate. To mitigate the limitation, another approach is provided in the following 

section. 

4.3 Estimation using R of CCF of dimensionality  

Estimation of dimensionality using the shape of CCF, discussed in the previous 

section, is useful but has the limitation of incurring a severe error in the case of a 

wrong estimation. To overcome this limitation, another estimation technique using 

the ratio, R, of the CCF is investigated and discussed in this section. In this process, 

the Rs are first obtained for all dimensions and then the dimensionality is decided 

from the variation of these Rs. This approach is very similar to the earlier number of 

nodes’ estimation technique with the exception that the binomial distribution with 
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unequal probabilities for all bins is considered in order to obtain the standard 

deviation and mean of the CCF. This is explained further with the following results 

and discussion. 

4.3.1 Theoretical estimation 

It is known that the placement of nodes in a bin is binomially distributed with the 

parameters ni and pi (Vogt 2002a; Vogt 2002b), where the parameters indicate the 

number of nodes in the ith bin and the probability of success of that bin, respectively. 

This is true for all bins in a cross-correlation process.  

 

Again, the expected values and variances in the total number of successes in n 

independent Bernoulli trials with pj probability of success at jth trial is expressed in 

(Wang 1993) as: 
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If the trials are identical, i.e., the probabilities of success are  

ppppp
n
 ...

321
, 

 

the expected values and variances are, respectively  
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In the proposed case, as the trials’ probabilities of achieving successes in a bin is 

equal, the number of groups with identical probabilities is equal to the number of 

bins, b. 
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Thus, the expected value (the mean) of the CCF in this case is 
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Similarly, the variance is  
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So, the standard deviation is 
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Thus, the ratio of the standard deviation to the mean, R, is 
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Using the above relationship, we can obtain the ratio of the standard deviation to the 

mean of the CCF for different network dimensions to estimate the dimensionality of 

the network by knowing only the pi. The probabilities of successes for the bins are 

defined in this proposed technique as: 
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The theoretical probabilities of successes for the bins in a 1D network are:  

otherwise ;0

 and 1for  ;
2

1



 bi
n

n
p i

i  

 

The ratio of the standard deviation to the mean, R1D, is: 
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Similarly, for a 2D network, the theoretical probabilities of successes for the bins are:  
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These values are obtained following the step 6 of Section 4.2.1 where obtaining p1 is 

shown for example. 
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Thus, its ratio of the standard deviation to the mean, R2D, is: 
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Similarly, for a 3D network, the theoretical probabilities of successes for the bins are: 
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Thus, its ratio of the standard deviation to the mean, R3D, is: 
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These analytical ratios of the standard deviations to the means of the CCF for 

different dimensions can be represented as: 

  

                                      ,                             , and 

 

where c1, c2, and c3 are the proportionality constants and is obtained from the 

theoretical data as shown in the above corresponding expressions. 

 

The dimensions are 1, 2, or 3, but if the shape of the 2D, and 3D networks might 

vary from the basic assumption of circle and sphere, the dimensionality parameter 

might vary.  To show this effect, R2.5D is obtained from the CCF from the process 

below: 
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It is known that the CDF of the distribution of the uniformly distributed nodes are  

 

  Dddg   

 

In this expression, considering D=2.5, it is easy to get the distances of the nodes 

from the centre of the nodes distribution (i.e. from the receivers). Getting the 

distances, the CCF is obtained using them from the moving average technique of 

CCF (discussed in Chapter 3) for other dimensions except the basic three discussed 

here. From that CCF, the dimensionality parameter has been obtained for D=2.5 as 

shown in Figure 4.10. 

 

In Figure 4.10, denoting the theoretical constants by WT and named dimensionality 

parameter, WT versus the dimensions, D are plotted. The results are approximated by 

a cubic expression as shown in Figure 4.10.  

 

Figure 4.10 Dimensionality parameter WT versus Dimensions D: theoretical 

 

Precisely, the approximate expression from theory is: 

 

4.3.2 Estimation from simulation 

Similarly with the simulated CCF for all dimensions, using the same procedures as 

for the theoretical results, we obtain the simulated ratio of the standard deviation to 

the mean of the CCF which is a parameter for estimating dimensionality.  
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In the simulation, 
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Then we can obtain the simulated ratio of the standard deviation to the mean, RiD, 

where i = 1, 2, 3.  

 

Thus, the ratio, R, is 

                                           ,                  , and                  , 

 

where c11, c21, and c31 are the proportionality constants and are obtained from the 

observed (simulated) data.  

 

Again, as for the theoretical case, in Figure 4.11, denoting the simulated constants by 

WS and named dimensionality parameter, WS versus the dimensions, D are plotted. 

The results are again approximated by a cubic expression as shown in Figure 4.11. 

The R2.5D in simulation is obtained from the same manner as in the theory discussed 

earlier. 

 

Figure 4.11 Dimensionality parameter WS versus Dimensions D: simulated 

  

Precisely, the approximate expression from simulation is: 
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To compare the theoretical and simulated results, we plot the constants against the 

dimensions and number of nodes from the approximated expressions, as shown in 

Figures 4.12 to 4.14. Figure 4.12 is the comparison of theory and simulation with 

some fractional dimensions, where the extra points are obtained using the 

expressions of WT and WS from (4.3) and (4.4).  

 

Figure 4.12 Dimensionality parameter WT or WS versus Dimensions D: 

theoretical and simulated 

 

To show the effect of N on the dimensionality parameter, in Figure 4.13 the 

dimensionality parameters are plotted against N.   

 

Figure 4.13 Dimentionality parameter WT and WS versus Number of nodes N: 

theoretical and simulated 

 

It implies that the dimensionality parameter is independent of N, which is helpful for 

any size of network. 1D is a unique case and it is far different from 2D and 3D 

results. Although the 2D and 3D results are close, the difference is clear enough to 

1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

Dimension of the network, D

D
im

en
si

on
al

ity
 p

ar
am

et
er

, 
W

T
 /

 W
S

 

 

Theoretical

Simulated



 

173 
 

separate them both in theoretical and simulated results. Sometimes, the network 

might exactly not follow the assumption of 2D a circle and 3D a sphere. But the 

results of dimensionality parameter will be between 1 and 3 for any 2D network and 

between 3 and 3.1623 for any 3D network. Thus we can extend this technique to 

estimate the dimensionality for any network.   

   

(a) 

 

(b) 

Figure 4.14 Surface plots Dimensionality parameter W, Dimensions D, and 

Numbers of nodes N: (a) analytical; and (b) simulated 
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To show both effects (effect of D and N) on the dimensionality parameter at a time, 

two surface plots are provided in Figure 4.14. Figure 4.14 (a) shows the theoretical 

whereas Figure 4.14 (b) the simulated results. It can be seen that the theoretical and 

simulated results sufficiently match each other to obtain the networks’ 

dimensionality. 

4.3.3 Effect of fractional-samples delays on dimensionality   

The expression of R using binomial distribution in each bin of the CCF obtained in 

Section 4.3.1 is: 
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In Section 4.3.2, the dimensionality parameter varied with different dimensionalities 

in the expressions of the R of the CCF and a qubic approximation was used to obtain 

the dimensionality estimation where the sample delays taken were only of integer 

values. It is shown in Figure 4.15 that a similar quadratic approximation is also valid 

for the expression with fractional-samples delays. 

 
 

Figure 4.15 Dimensionality parameter WTS versus Dimensions D 
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4.3.4 Conclusion 

This dimensionality estimation proposes another technique for estimating the 

dimensionality of a communication network. However, it is not an exact method, 

giving fractional dimensionality of any values between 1 and 3 instead of 1, 2, and 3 

only as in exact method, and thus in the case of a wrong estimation, the error will be 

less because of fractional results. Actually the wrong estimation indicates that the 

shape of the network is not exactly the same as sphere in 3D, or circle in 2D, so the 

dimensionality parameter will be different from the value obtained with 3D sphere or 

2D circle. Thus the obtained dimensionality D might change. Suppose we can get the 

D=2.9 instead of 3 for 3D network, the error is 3.33%, which is very low with 

compared to the 33.33% with exact method (if I get 2 instead of 3 in 3D network 

from the exact method). Again, the effect of fractional-samples delays has been 

investigated for this technique and it is shown that the process is applicable with and 

without fractional-samples delays. 

Although the proposed methods of dimensionality estimation are only discussed for 

three basic dimensionalities, they can work in other cases, for example where most 

nodes were on a disc but just a few were off the plane of the disc in a two 

dimensional network. Both methods will declare the network as 2D. The cost 

function method is suitable because it compares the CCF shapes. As the shape of the 

CCF of the test network matches better with 2D theoretical CCF, it will give the 

estimation as 2D without any error. Although the second method can provide the 

estimation, there might be some error in estimation for the mismatches in the 

simulated and theoretical estimation parameters. 

The term fractional dimensionality physically indicates the deviated dimensionality 

from the basic dimensionalities.  The basic dimensionalities in this thesis are a 

straight line in 1D, a circle in 2D, and a sphere in 3D.  Consider a network whose 

shape is exactly neither linear nor circular is a network with fractional 

dimensionality. Its dimensionality might be of any values between 1 and 2 depending 

on the closeness of the shape towards 1D or 2D. Although there will be some error in 

dimensionality estimation, detail error analysis is left for the future work.  
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4.4 Estimation of the numbers of nodes in different 

dimensions 

In this section, the same process of dimensionality estimation discussed in Section 

4.3.2 is used to estimate the number of nodes. Actually, the ratio, R, is used for 

estimation. To simplify the procedure, suppose we have three analytical and three 

simulated CCFs from which the corresponding ratios of the standard deviation to the 

mean are obtained using the expressions discussed in Section 4.3.2. 

 

The parameters for obtaining the analytical and simulated CCFs are: 

 

Number of nodes = 1 to 100 

Number of bins = 11 

 

Both the simulated and analytical results for the three dimensions with integer 

samples delays are shown in Figures 4.16 to 4.18. Simulated results are obtained 

from the average of 100 iterations. Figure 4.16 for 1D, Figure 4.17 for 2D, and 

Figure 4.18 for 3D network. The solid lines indicate the theoretical whereas the 

circles indicate the simulated results. It can be seen from the results that in all 

dimensions, the theoretical and simulated results match sufficiently to obtain the 

estimation of N, which ensures the capability of the process.    

 

             

    

 

Figure 4.16 Comparison of ratios, R, of CCF versus N: 1D network 
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4.4.1 Effect of fractional-samples delays  

In this section, the same process of dimensionality estimation discussed in Section 

4.4 is used to estimate the number of nodes considering fractional-sample delays.  

 

Both the simulated and analytical results, with and without fractional-sample delays, 

are shown in Figures 4.19 to 4.21 in which it can be seen that the process is equally 

applicable with the fractional-samples delays. 

 

However, this method is only suitable if the signal strengths from the nodes are equal 

and unity. This is discussed here with the Figures 4.22 to 4.25 in which the signal 

strengths are doubled from the previous case. 

Figure 4.17 Comparison of ratios, R, of CCF versus N: 2D network 

Figure 4.18 Comparison of ratios, R, of CCF versus N: 3D network 
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Figure 4.19 R of CCF versus N: 1D network 

 

 
 

Figure 4.20 R of CCF versus N: 2D network 

 

 
 

Figure 4.21 R of CCF versus N: 3D network       
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Figure 4.22 Simulated CCF: 1D 

 

 

Figure 4.23 Simulated CCF: 2D 

 

 

Figure 4.24 Simulated CCF: 3D` 

 

The resulting ratios of the standard deviations to the means of the CCFs are shown in 

Figure 4.25. It shows that the simulated line does not follow the theoretical line. But 
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it follows the theoretical results when they are divided by two. This variation is due 

to the different signal power in the cross-correlation process. 

 

          

Figure 4.25 Comparison of ratios, R, of CCF versus N: 3D network 

 

It can be seen that the method for estimating the number of nodes proposed in this 

work is only suitable when all received signals strength from the nodes are equal and 

unity. Although obtaining equal signal strengths from the nodes is possible using the 

probing technique, achieving unity values is not possible without knowing the prior 

knowledge of the signal strengths. Therefore, another approach is proposed in the 

following section.  

4.5 Estimation of the numbers of nodes for different 

dimensions: another approach 

It is shown in the previous section that the proposed process is adequate for 

estimation although it has a limitation in terms of signal strength. To overcome this, 

we propose another approach for estimating the number of nodes which is similar to 

the basic approach discussed in Chapter 3 for the 3D ERP case. As has already been 

discussed the shapes of the CCFs are different for different dimensions, so for those 

other than 3D, we have to scale the results to obtain proper estimations. The 

following analysis details this estimation process. 
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In our earlier work of Chapter 3, the theoretical ratio of the standard deviation to the 

mean of CCF in 3D network, R3DT is obtained as: 

 

 

 

where  

n = number of trials i.e. nodes in CC process, 

p = probability of success, and 

q =1-p 

 

In addition, from the simulated CCF, the ratio of the standard deviation to the mean 

of CCF in 3D network, R3DS is obtained in MATLAB as:  

 

 

 

In this section, for a 3D spherical network, the estimation is performed by the same 

manner with the above two expressions.  

 

It is already mentioned that the placement of deltas due to the network nodes in a bin 

is binomially distributed, from which the theoretical CCF for a 1D network with 

N=10,000 and b=11 as shown Figure 4.26.   

 

 

Figure 4.26 Analytical CCF: 1D 
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It can be seen from the figure that the CCF can be considered as two deltas in 11 

bins. Thus the theoretical ratio of the standard deviation to the mean of CCF in 1D 

network, R1DT is obtained as: 

 

                                                 

 

And from the simulated CCF shown in Figure 4.27, the ratio of the standard 

deviation to the mean of CCF in 1D network, R1DS is obtained in MATLAB as:  

 

 

   

 

Figure 4.27 Simulated CCF: 1D 

 

As it can be seen in the expression (4.7), the R1DT is constant for all N and thus the 

estimation is not possible from that expression. So, another ratio, R13T (derived from 

R1DT and R3DT) is used for the estimation in 1D network. 

The ratio R13T is obtained as: 

 

 

 

 

 

Similarly, the corresponding simulated ratio used in 1D network, R13S is: 
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Again the analytical CCF for a 3D spherical and a 2D circular networks are shown in 

Figure 4.28 and 4.29. 

 

Figure 4.28 Analytical CCF: 3D 

 

 

Figure 4.29 Analytical CCF: 3D 

 

From these figures it is easy to obtain the percentages of deltas in the bins. Upon 

getting the percentages, another ratio of those percentages in the corresponding bins 

is obtained which is used later to convert the 2D CCF to 3D CCF. The following 

details the process. 
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The percentage of the deltas (number of nodes) at ith bin with respect to summation 

of deltas (number of nodes) at all bins of the CCF for a D dimensional network is 

expressed as 

%100
n

n
V iD

iD  

 

 

Thus, we can convert 2D percentages of deltas to 3D percentages of deltas by 

dividing them by the above ratios as: 

 

 

 

Thus, the number of deltas in the bins in 3D derived from 2D are: 
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Then, it is easy to estimate the number of nodes using a 3D expression for a 2D 

network using the estimation expression (4.6) of 3D network as: 

 

 

 

Some simulated results with corresponding theory are provided in Figures 4.30 to 

4.32. The simulation parameters are same as earlier with 11 bins and 1 to 100 nodes. 

Figure 4.30 shows the theoretical, simulated from 2D (using the expression of 
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converted 3D CCF from simulated 2D CCF), and simulated from 3D, estimation 

parameter, R against N. Figure 4.31 shows the theoretical and simulated R in case of 

1D network. This theoretical and simulated R is constants with respect to N, and thus 

is not informative to obtain the estimation of the number of nodes. Finally the Figure 

4.32 shows the derived estimation parameters, R13T and R13S to estimate N in 1D 

network. It can be seen that the theoretical and simulated results in Figures 4.30 and 

4.32 match properly to estimate the number of nodes in all three dimensions.  

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.30 R of CCF for estimations in 2D and 3D 

 

Figure 4.31 R of CCF in 1D 

Figure 4.32 Ratios of R in 1D and 3D of CCF for estimations in 1D
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This technique for estimating the number of nodes overcomes the limitation of unity 

powers from the nodes required by the previous method, i.e., although it needs equal 

signal powers from the nodes, it does not matter what these powers are. 

4.5.1 Effect of fractional-samples delays  

In this section, we use the ratio of the standard deviation to the mean of the whole 

CCF with fractional-samples delays in 3D network discussed earlier, R3D, to estimate 

the number of nodes. In the 2D network, the CCF is converted to a 3D CCF, and then 

the R3D is obtained from that CCF for the estimation in 2D. In the 1D case, firstly, the 

R1D (which is independent of the number of nodes) and then another ratio, R1D/R3D, 

are used to obtain the estimation. Figures 4.33 to 4.35 show that the fractional-

samples delays have no significant effect on estimation. 

 

Figure 4.33 R3D from 2D of CCF for estimations in 2D 

 

 

Figure 4.34 R1D of CCF for estimations in 1D 
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Figure 4.35 Ratios of R1D and R3D of CCF for estimations in 1D 

4.6 Conclusion 

Estimation of network dimensionality with the number of nodes is also helpful in 

network applications and maintenance. The method of cross-correlation of the 

number of nodes estimation also depends on dimensionality. In this chapter, the 

estimation of dimensionality has been investigated in two different ways using cross-

correlation. Besides few more estimation techniques of the number of nodes in 

different dimensional networks have also been proposed and investigated. All 

investigations have been obtained in the ERP case based on the basic CCF formation 

theory. It is obvious from the results that the CCF method is suitable for the 

dimensionality estimation associated with the estimation of the number of nodes. To 

validate the accuracy of the estimation process, error in estimation has also been 

provided in the next chapter with the analysis in the estimation of the number of 

nodes only.   
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Chapter 5  

Analysis of error in estimation 

5.1 Introduction 

Every estimation method involves an error which arises from the simple fact that an 

actual quantity generally differs from its estimation. Numerically, an error in 

estimation might be represented in different ways: as a true error which is the exact 

deviation of the estimated value from the true value, or a statistical error which is 

obtained from several estimated values using the least squares technique. A true error 

is preferable when the parameter used in the experiment is not random, i.e., it gives a 

fixed estimation every time for a particular setup. Whereas, in an experiment with 

random numbers, as the estimated values vary from time to time for a particular 

setup, thereby indicating a certain statistical property, it is wiser to represent the error 

statistically. As the proposed cross-correlation is a statistical technique, the statistical 

error, the coefficient of variation (CV), is used as its error in estimation in order to 

fully assess the accuracy of the proposed estimation techniques. The CV is defined as 

the ratio of the standard deviation to the mean taken from several estimations. This 

chapter analyses the error in estimation of the number of nodes in detail and 

compares it with the estimation error in the conventional protocol techniques. 

Section 5.2 provides the theoretical formulation of the CV with detailed verification 

of it by simulations for both the ERP and ETP cases in which all simulated CVs are 

obtained using the simulated CCF. The process of obtaining this CV from the 

theoretical CCF is discussed. In some cases, as it is difficult to obtain an exact 

mathematical expression of the CV, to ensure the correctness of the simulations, 

using a CV obtained from the theoretical CCF is helpful. Moreover, the effect of 

fractional-sample delays on the CV is investigated. In Section 5.3, variations in the 

CV in terms of k are investigated and a generalised expression of the CV is obtained. 

Like estimation, CV is also affected by the Ns and there is a b for a particular Ns, 

where the CV is minimum, called the optimum CV (OCV), is obtained for some Ns , 

a generalised expression for it is obtained in Section 5.4. Selections of the sampling 
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rate and the distance between sensors for estimation are obtained using the CV in 

Section 5.5. This sampling rate is useful for obtaining the estimation time and 

energy. As the CV depends on b and b depends on SR and dDBS, if the dDBS is fixed, 

the CV depends on only SR and vice versa. Section 5.6 provides the effects of noise 

on the CV and it is shown that, as for estimation, the CV is not affected by the noise 

if the signal strength is sufficiently dominant. The  energy (in terms of the product of 

SNR and Ns) and time required for estimation are obtained in the ERP and ETP cases 

and compared in Sections 5.7 and 5.8, respectively. The results show that the ERP 

case performs better than the ETP case. To demonstrate the effectiveness of this 

novel approach, Section 5.9 provides comparisons of the proposed technique (ERP 

case) and two conventional protocol techniques using three major performance 

factors, the CV, the estimation time and the required transmit energy. It is shown that 

the proposed method performs better overall than the conventional techniques.  

 

In this chapter, simulation results of CV using example networks are presented. 

Some are based on underwater acoustic networks because this is an interesting 

possible application area of the techniques presented in this thesis. 

5.2 Error in estimation 

To have confidence in the estimation of N, an error tool, the ratio of the standard 

deviation to the mean, also known as the CV (Smith 1999) of estimation, is used. 

Although the standard deviation is not very significant, the CV is an important tool 

for identifying the error in estimation - the lower the CV, the better the accuracy of 

the estimation. 

 

This section provides the theory of the CV, obtains the CV from both theoretical and 

simulated CCFs, and verifies the theory through simulations of both the ERP and 

ETP cases. Though there are small differences between the theoretical and simulated 

results for the ETP case, proper scaling of the former causes them to match with the 

latter. Moreover, the effect of fractional-sample delays on the CV is investigated. In 

the ETP case, as the dispersion coefficient, k, might possess different values, a 

generalised expression of the CV is obtained.    
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5.2.1 Theory regarding error in estimation in ERP case 

In this estimation process, two possible parameters that may affect the CV are N and 

b because they are the only factors that affect the estimation parameter, R. To express 

this effect, assuming that the signal characteristics do not change markedly 

throughout the sampling process. Thus N will be similar for all samples and the mean 

number of nodes will be similar to N at any sampling time.  

 

Consequently, if N increases by a factor, r, the standard deviation and mean must 

also increase by the same factor, indicating that the CV is independent of N. 

 

To obtain the CV, several R and thus N from several CCF have been obtained. 

Considering a CCF as a sample, the ratio of the standard deviation, s , to the mean, 

s , of that sample CCF is expressed in Chapter 3 as 
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Suppose we have 1000b normal variates (population with p and p ) from which 

we draw b samples at a time and obtain the sample mean, s . Then we have 1000 

sample means the distribution of which will again follow a normal distribution. We 

obtain the CV of these means from the ratio of the standard deviation and mean of 

those sample means which is proportional to the inverse of the square root of sample 

size, b.  
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So, the CV of N can also be obtained as
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The CV of estimation is therefore the CV of the sample variance of the CCF 

distribution. It is known that the expected value of a sample variance (assuming a 

normal population, which is possible from a cross-correlation (Hanson 2008b)) is 

  22 1
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5.2.2 Obtaining CV from theoretical CCF 

The theory developed in the previous section is suitable for all b for an infinitely long 

signal but, for a finite length signal, it is suitable only up to a certain b. This is 

because, for an infinitely long signal, in a CCF, we will obtain only the desired peaks 

which are the delta functions of certain strengths for the nodes. But, for a finite 

length signal, there will be some undesired peaks associated with the desired peaks 

which are treated as noise in the CCF. The desired peak for a node can be obtained if 

the position of the node is known. But, as it is difficult to represent the undesired 

peaks by a closed form expression, it will be very difficult to obtain one for the 

theoretical CCF and, thus, the CV, especially in cases of finite length signals. 

Therefore, we try using the moving average technique of cross-correlation to obtain 

the peaks (desired and undesired). 

 

In all cases, the CCF for the desired bins can be represented as  
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where i indicates the bin number, i the Dirac deltas and Pi their strengths or peaks 

which might be obtained from this technique. 

 

The CCF, using the moving average technique of cross-correlation, can be 

represented by (Hanson 2008a; Hanson 2008b) 
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where Ns is the signal length in the number of samples, τ the time delay of cross-

correlation, and xi and yi are ith samples of the two sensors’ signals, respectively.   

As we use the zero mean Gaussian signal, the product of their means is zero. So, the 

CCF is reduced to 
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This gives the peaks for the desired bins as 

























 







 

sssss N

i
ii

s

N

i
ii

s

N

i
ii

s

N

i
ii

s

N

i
ii

s

yx
N

yx
N

yx
N

yx
N

yx
N 1

1

1
1

0

1
0

1

1
1

1

1
,,

1

1
,

0

1
,

1

1
,,

1


 

where the peaks are the strengths of the deltas of (5.12) which are
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Putting these values in (5.12), we obtain the desired CCF and call it in this thesis the 

theoretical CCF. For a particular simulation setup, we obtain similar theoretical and 

simulated CCF values. Using this theoretical CCF, the CV, called the ‘CV from the 

theoretical CCF’, can be obtained as is the simulated CCF discussed in the following 

section. Later in this chapter, the CVs from theoretical and simulated CCFs are 

compared to ensure the correctness of the simulation results. 
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5.2.3 Obtaining CV from simulated CCF in ERP case 

It is already known that, after cross-correlating the signals received at two sensors 

from a number of random Gaussian signal sources, the CCF, which is a rectangular 

pulse over the space between the sensors, can be obtained. Then, we can easily 

estimate the mean and standard deviation of this CCF and, therefore, its ratio, R, as 

we know the sampling rate, SR and distance between the sensors, dDBS. Reframing the 

cross-correlation problem as a probability problem, we obtain a relationship of N = 

(b-1) / R2, as discussed earlier. Thus, from the simulation, we can readily estimate the 

number of nodes by knowing only R.  

 

To obtain a simulated CV of estimation, a simulation process is run 1000 times for a 

particular N and b. From these 1000 values of estimated N, the standard deviation 

and mean of estimation and, thus, the CV, are obtained. To obtain better results, 100 

iterations are taken for the simulations unless otherwise mentioned. This process is 

similar for both the ERP and ETP cases. Some results are provided in the following 

section to verify the theory expressed in (5.11) for the ERP case.  

5.2.3.1 Verification of relationship between CV and b 

In this section, the proposed theory regarding the CV is verified by the simulation 

results obtained using the following parameters: 

 

dimension of cube 2000 m; considering the estimation area as a 3D cube 

number of nodes, N = 32, spherically distributed inside the cube; 

signal length, NS = 1,000,000 samples;  

sampling rate, SR = 30 kSa/s; 

speed of propagation, SP = 1500 m/s; 

distance between sensors, dDBS = 0.25 m; and 

iteration used, u = 100 (to obtain better results). 

 

Firstly, the R of the CCF from 100 iterations, and then the estimated N̂  using the 

expression of N related to this R, are obtained. Secondly, to obtain the CV, the same 
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process is continued 1000 times without any change in parameters and the values of 

all estimated N̂  are recorded. Finally, the CV for one iteration is obtained from the 

ratios of the standard deviation to the mean of those values as 

 

 
 N

N
ˆ

ˆ
CV




  

Now, if we use iteration u, the standard deviation and, thus, the CV, are reduced to 

u

1
 (Barry 1978; Howlader 2009) so that the CV after the uth iteration is  

 
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ˆ

ˆ1
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
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N

N

u
u 
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To verify the theoretical relationship of the CV and b, the above process is continued 

for several distinct values of b by varying the sampling rate or the DBSd  and the 

results are presented in Figure 5.1. Figure 5.1 (a) shows the results using a linear plot 

and, to verify the theoretical relationship between the CV and b from the simulation, 

they are re-plotted in Figure 5.1 (b) using the logarithmic axes. Assuming a straight 

line approximation, the slope, cos  in Figure 5.1 (b) is 

   
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So,  







 

 2

1

00100CV bcbc cos                                       (5.16) 

where c, and c0 are constant and are related as  010log cc  . Using a particular point 

from Figure 5.1 (a) in (5.16), the value of the constant, c0 is 
10

2
0 c . Putting this 0c  

(5.13) 

(5.14) 
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in (5.16), it can be expressed as 
b10

2
CV100  . The results in (5.16) were obtained 

from 100 iterations, thus, for one iteration; the CV is 
b

2
CV1   which verifies the 

theory in (5.11). 

 

Figure 5.1 Simulated CV (with N=32) in ERP case: (a) linear and (b) log-log 

scale  

 

A comparison of the theoretical CV, the CV from the theoretical CCF and the CV 

from the simulated CCF is provided in Figure 5.2. It can be seen from the figure that 

the theoretical and simulation results match. 

 

 

Figure 5.2 Comparison of theoretical and simulated CVs for 32 nodes in ERP 

case: (a) linear and (b) log-log scale  
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5.2.4 Theory regarding error in estimation in ETP case 

In the ETP case, the estimation parameters’ expression, as obtained in Chapter 3 is 
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Using (5.6), we have

 

  ks

ksN 2
1

2  

 

So, the CV will be 

    ks

ksN 2
1

2CVCV   

 

Now, the CV of this case can be derived as follows. Suppose )(xgY  , where the 

mean of x  is x , and using the Taylor series expansion about the mean, we have 

   2

2
2

2

1
)()(

dX

gd
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where X is a random variable and its values are the obtained value of x. 

 

Then, the expected mean of Y is 

  )( xgYE   

 

Taking up to the 1st derivative term in the Taylor series, we have the variance of Y as 
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(5.17) 

(5.18) 
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Now, if  

 

KxY   

then, the mean of Y is 
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and the variance of Y is 
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So, the SD(Y) is 
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and, thus, the CV is 
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In (5.18), considering that 
ks

K
2

1
  and 2

ksx  (assuming a normal population as in 

ERP case), we have the CV as 
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i.e., the CV is again proportional to the one on the square root of b, i.e., 

b
N

1
)CV(   

 

Figure 5.3 shows the results for the CVs in the ETP case for k=1.5 in which the 

straight line approximation of the simulated results obtained is presented in Figures 

5.3 (b). 

 

(5.19) 

(5.20) 

(5.21) 

(5.22) 
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Figure 5.3 Theoretical and simulated CVs for 32 nodes in ETP case: (a) linear 

and (b) log-log scale  

 

Using the straight line approximation, the slope of the simulated results in Figure 5.3 

(b) is 
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where Sc is the constant of proportionality. 

 

It is shown in Figure 5.3 that there are differences among the theoretical and 

simulated results and, also, that the latter are almost a constant multiple of the former 

(Figure 5.3 (b)). Thus, the theoretical results can be scaled to match the simulated 

results as follows. Denoting theoretical CV in (5.22) as CVTh, it is in the ETP case is 

b

c

bsk

Th
Th

2

2

1
CV   

where Thc is the constant and defined as 
ks

c
2

2
Th  . 

  

Again from (5.23), the simulated CVS in the ETP case is 

b

cS
SCV   

(5.24) 

(5.25) 
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Thus, by combining (5.24) and (5.25), we have the corresponding scaled theoretical 

CVSTh as 

Th
Th

STh CVCV
c

cS  

where CVSTh is the scaled theoretical CV in the ETP case. 

 

Later in this chapter, the theoretical CV in the ETP case indicates the above scaled 

theoretical CV. Using a particular point from Figure 5.3 (a) in (5.26), we obtain the 

constants cS as 216.2S c . Thus, expression (5.25) can be written as 

 

ThSTh CV32.4CV ks  

 

 

Figure 5.4 Comparison of theoretical and simulated CVs for 32 nodes: (a) k=1; 

(b) k=1.5; and (c) k=2 

 

(5.26) 
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Some CV results (obtained from the theoretical and simulated CCFs) along with the 

scaled theoretical CV for three cases with different k (1, 1.5 and 2) are shown in 

Figure 5.4. It can be seen that, after scaling, the theory matches the CVs from both 

the simulated and theoretical CCFs. 

 

Now, from (5.16) and (5.23), the relationship between the simulated CV and b when 

N remains constant can be generalised as 

 

                               
b

1
CV                                                               (5.27) 

 

Therefore, the CV is proportional to the inverse square root of b for both the ERP 

and ETP cases which verify the theory discussed in Section 5.2.1 regarding the 

relationship between the CV and b. The only differences in exact values are due to 

changes in k. 

 

Comparisons of the CVs for two distinct values of k (0 and 1.5) are listed in Table 

5.1 and four distinct values of k (0, 1, 1.5 and 2, where k = 0 indicates the ERP case) 

are presented in Figure 5.5. 

 

Table 5.1 Comparison of CVs 
 

Parameter Coefficient of variation (CV) 
(all values from 100 iterations)

b = 19 b = 39 b = 59 b = 79 b = 99 

k=0 

 
 

Theoretical 0.0324   0.0226   0.0184   0.0159   0.0142 

From simulated CCF 0.0320   0.0227   0.0183   0.0160   0.0138 

From theoretical CCF 0.0321   0.0225 0.0181   0.0161   0.0139 

k=1.5 

Theoretical 0.0710   0.0489   0.0398   0.0344   0.0307 

From simulated CCF 0.0714   0.0490   0.0395   0.0346   0.0298 

From theoretical CCF 0.0712   0.0486   0.0391   0.0348   0.0300 
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Figure 5.5 CV vs b: comparison of CVs due to four distinct values of dispersion 

coefficient, k (0, 1, 1.5 and 2) 

5.2.4.1 Verification of relationship between CV and N 

It has already been explained that, if we increase the number of nodes, the standard 

deviation and mean of estimation increase by the same amount. Thus, the CV 

remains the same for all N, i.e., it is independent of N. It can also be seen from the 

expression of the CV, which is depicted in (5.27) for both the ERP and ETP cases as 

b

1
CV , that it is only dependent on b.  

 

Now, we change the simulation for different values of N and perform the estimation 

1000 times for each N, keeping b fixed at 19 bin in order to obtain the relationship 

between the CV and N. The results are plotted in Figures 5.6 (a) for the ERP and 5.6 

(b) for the ETP (with k=1.5) cases. It can be seen in both figures that, if N is greater 
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than 10, the CV is virtually independent of N, which follows the theory. This is an 

important finding because, even if the environment is totally unknown, the 

estimation system can be designed without knowing N.  

 

 

Figure 5.6 CV versus N: semi-log plots in (a) ERP case; and (b) ETP case 

 

Two comparisons of the CVs for the ERP and ETP (with k=1.5) cases are provided 

in Figure 5.7 with (a) b=19 (N =10 to 100) and (b) b=99 (N =10 to 100). It can be 

seen that the CV in the ERP case is lower than the CV in the ETP case. Besides, 

although the CVs varies with b, they are independent of N. 
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Figure 5.7 CV versus N: comparisons of ERP and ETP cases for:  

(a) b = 19; and (b) b = 99  

 

To clarify the relationships among the CV, N and b, some other results are provided 

in Figures 5.8 and 5.9 in which the CVs for 10 to 100 nodes with different b (= 19, 

59 and 99) and for three distinct N (32, 64, and 100) with respect to b, respectively, 

for both the ERP and ETP cases are shown. It can be seen that there are significant 

variations (which follow (5.27)) in the estimated CVs with respect to b but, with 
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respect to N, they are almost constant for a given b. These discussions further verify 

the relationships among the CV, N and b discussed in Section 5.2.  

 

Figure 5.8 CV versus N for three distinct b (19, 59 and 99):  

(a) ERP case; and (b) ETP case 

 

 
 

Figure 5.9 CV versus b for three distinct N (32, 64 and 100):  

(a) ERP case; and (b) ETP case 

5.2.5 Effect of fractional-samples delays 

The effects of fractional-samples delays on estimation have already been investigated 

in Chapter 3. Figures 5.10 and 5.11 show that they have similar effects on the CV. 
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Figure 5.10 (a) and (b) show the CV versus b plots for the ERP and ETP cases, 

respectively, with and without considering the fractional-samples delays. In both 

figures, the stars and circles indicate the CVs with and without considering the 

fractional-samples delays, respectively, whereas the lines with pentagon markings 

indicate the theoretical results.  

 

 
 

Figure 5.10 CV versus b with and without fractional-sample delays: (a) ERP 
case and (b) ETP case 

 
 
Figure 5.11 (a) and (b) shows the CV versus N plots with and without considering 

the fractional-sample delays with a certain b of 19 for the ERP and ETP cases, 

respectively. In both figures, the stars and circles indicate the CVs with and without 

considering the fractional-sample delays, respectively, whereas the lines with 

pentagon markings indicate the theoretical results. All these results indicate that the 

fractional parts of the sample delays have no significant effect on CV (the same as 

for estimation).  

 

 
Figure 5.11 Semi-log plot of CV versus N with and without fractional-samples 

delays: (a) ERP case; and (b) ETP case 
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5.2.6 Deriving generalised expression for CV 

It can be seen from the above sections that the actual value of the CV is also 

dependent on k, i.e., the powers of the received signals. This relationship is discussed 

in this section. It has already been shown in Figure 5.5 that CV is proportional to the 

inverse square root of b for 4 distinct k (= 0, 1, 1.5 and 2). Assuming this relationship 

holds for all k, i.e., the CV follows the proportional expression (5.27), we can 

express it using a generalised expression. 

 

To obtain the expression, CVs for five distinct k with b=19 are listed in Table 5.2. 

 

Table 5.2 CVs for different k with 19 bins 
 

Parameters Values (100 iterations) 
k = 0 k = 0.5 k = 1 k = 1.5 k = 2 

CV 

 
 

Theoretical 0.0324   0.0349   0.0396   0.0710   0.1223
From simulated CCF 0.0320 0.0347 0.0406 0.0714 0.1217 
From theoretical CCF 0.0321   0.0346   0.0404   0.0712   0.1219 

 
 
From the Table 5.2, for b=19,  we can express the CV for k = 0, 0.5, …, 2 as  

)19)(1414.0()0(CV 2
1

19
k

 

)19)(1521.0()5.0(CV 2
1

19
k

 


 

)19)(5331.0()2(CV 2
1

19
k

 

Similarly, for b=39 bins, the expressions are obtained as 

)39)(1414.0()0(CV 2
1

39
k  

)39)(1521.0()5.0(CV 2
1

39
k

 


 

)39)(5331.0()2(CV 2
1

39
k

 

 

From these two series of expressions, we can obtain the generalised expression as 

2
1

)()(CV CV
 bckb  

(5.28) 
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where the cCV is a constant whose values are those shown in Table 5.3 for                 

5 distinct k . 

 
Table 5.3 Constant cCV related to k in CV expression (5.28) 

 
Parameter Values (100 iterations) 

k = 0 k = 0.5 k = 1 k = 1.5 k = 2 
cCV 

 
 

Theoretical 0.1414   0.1521   0.1726   0.3095   0.5331 
From simulated CCF 0.1395   0.1511   0.1768   0.3110   0.5303 
From theoretical CCF 0.1417   0.1522   0.1723   0.3098   0.5327 

 
 
It can be seen from the above expressions and the results that there are two parts in 

the CV, one of which is dependent on only k and the other on only b. The 

dependency of the CV on b has already been discussed. Now, its relationship to k, 

i.e., the constant part in the expression of the CV related to k, cCV, is expressed by a 

cubic approximation in Figure 5.12. 

 

 
 

Figure 5.12 Constant, cCV, in expression of CV versus dispersion coefficient, k 

 

Therefore, the expression of the constant, cCV in the generalized expression of the 

CV is 

14.0011.000095.0051.0)( 23
CV  kkkkc  

 

Thus once the b, and k are known, obtaining cCV, the error in estimation (CV) is easy 

obtainable from the expression (5.28). 
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5.2.7 Conclusion 

Theories of error (CV) and their verification by the simulated results are provided in 

this section. It can be concluded that in both the ERP and ETP cases, the CV is 

independent of N and only proportional to the inverse square root of b, and that b is 

proportional to the SR and DBSd . Thus, we can obtain an error in estimation as low as 

desired by increasing b (without exceeding the limit of the SR and DBSd ). Besides, 

CV is affected by the k, and a generalised expression of CV for all k is obtained, 

which is very helpful to obtain CV in ETP case. All the above results are taken for a 

very long fixed signal length, NS, of 1,000,000 samples. As has already been shown 

in Chapter 3, NS affects the estimation performance and, therefore, might be another 

factor which could affect the CV. The effects of NS, the SR and DBSd  (on the CV) are 

discussed with the CVs obtained from both theoretical and simulated CCFs in the 

following sections which might help to select their proper values.  

5.3 Selection of signal length from Optimum CV (OCV) 

As the NS plays a vital role in estimation performance, its selection is important and a 

selection process using the minimum CV, called the OCV (in the sense that it is the 

minimum for that NS) for different NS is proposed. The OCVs from ERP case are 

plotted against NS in Figure 5.13 in both linear and log-log scales for values from 

100 iterations and the relationship between the OCV and NS is obtained.  

 

Figure 5.13 (b) shows that the values of the OCV with respect to NS can be 

approximated by a straight line, the slope of which is approximately – 0.283. As this 

is a log-log plot, the OCV can be expressed as 

 

    cN  S1010 log283.0OCVlog  

     310
283.0

S1010 loglogOCVlog cN  

 
2830

S3OCV .Nc   

where c, and c3 are constant and are related as  310log cc  . 

 

(5.29) 
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Figure 5.13 OCV vs NS for selection of signal length in ERP case with N=32 (a) 
linear and (b) log-log scale.  

 
 

The value of constant c3 is obtained using a particular point from Figure 5.13 (a) in 

(5.29) as approximately 0.385. Finally, the relationship between the OCV (with 100 

iterations) and NS in the ERP case is expressed as  

2830
S385.0OCV .N                                               (5.30) 

Therefore, OCV for 1 iteration can be expressed as   

2830
S85.3OCV .N   
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Similarly, Figure 5.14 shows the results for the OCV in the ETP case. Although the 

slope in Figure 5.14 (b) is almost the same as that in Figure 5.13 (b), i.e., 

approximately – 0.283, the constant value is different, being 0.8314 instead of 0.385.  

  

Figure 5.14 OCV vs NS for selection of signal length in ETP case with N=32 (a) 
linear and (b) log-log scale. 

 

Therefore, the OCV in the ETP case is 

283.08314.0OCV  SN                                            (5.32) 

Thus, we can select NS using the above expressions for the desired CV (considering 

the desired CV is OCV) in estimation. This gives the lowest possible NS which leads 

to obtaining the energy efficient estimation technique. 
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5.4 Selection of sampling rate, SR, distance between 

sensors, dDBS, and number of bins, b 

To obtain proper estimations, it is necessary to know SR and dDBS as well as NS. The 

selection process of NS is discussed in the previous section. In this section, selections 

of SR, dDBS, and bare investigated from the CVs of the estimated number of nodes. 

 

Figures 5.15 (ERP case) and 5.16 (ETP case) show the CVs for different NS with 

respect to (a) the number of bins, b, (b) the sampling rate, SR, and (c) the distance 

between the sensors, dDBS. The CVs obtained from the theoretical and simulated 

CCFs are provided and can be seen to be similar. The results are obtained from 100 

iterations for the 32 operating nodes for different b (= 9, 19, 39, …, 239) and NS (= 

1000, 2000, 5000, 10,000, 20,000, 60,000, 100,000 and 1,000,000). It can be seen in 

Figures 5.15 (a) and 5.16 (a) that there is an OCV for every NS at which the CV is the 

minimum with a certain b. If the NS used in the estimation process is 10,000 samples, 

it can be seen in Figures 5.15 (a) and 5.16 (a) that the OCV occurs with the 59 bin. 

Thus, b can be selected to obtain optimum performance in estimation.  

 

It is also known that b is dependent on only dDBS and SR, the values of which are 

irrelevant for the CV (which varies only with variations in b). Thus, if dDBS is fixed 

to a certain value, b and, therefore, the CV for a particular NS, only change with 

changes in the SR. So, the CV can be plotted against SR for different NS taking a 

constant dDBS at 0.25 m (to obtain the receivers in the same node), as shown in 

Figures 5.15 (b) and 5.16 (b). If the  NS used in the estimation process is 10,000 

samples, it can be seen in Figures 5.15 (b) and 5.16 (b) that the OCV occurs at the 

sampling rate of 180,000 Sa/s. Thus, one can select the SR for the estimation process 

keeping dDBS fixed.  

 

Similarly, the selection of dDBS can be obtained from Figures 5.15 (c) and 5.16 (c) 

with SR fixed. However, as for a particular b, SR and dDBS might be combined in any 

way without violating the sampling theorem for obtaining corresponding CV, they 

can be selected at a time with compromising each other. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5.15: CVs in ERP case for different NS with respect to: (a) 

number of bins, b; (b) sampling rate, SR; and (c) distance between 

sensors, dDBS 
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(a) 

 
(b) 

 
(c) 

Figure 5.16 CVs in ETP case for different NS with respect to: (a) number 

of bins, b; (b) sampling rate, SR; and (c) distance between sensors, dDBS 
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5.5 Effect of noise on CV 

Noise (background and/or internal receiver noise) affects estimations of the number 

of nodes using the cross-correlation process, as discussed in Chapter 3. There might 

be similar effects on the estimation error, i.e., the CV, as discussed in this section. It 

is known that, if the integration time is finite, the cross-correlation process depends 

on both it and the signal to noise ratio, SNR. As the CV comes from the CCF of this 

cross-correlation process, it is dependent on the same parameters, i.e., integration 

time and SNR. 

 

To show the effect of noise, internal receiver noise is added into the received signals 

in the estimation process. Table 5.4 shows the CVs with different SNRs for a signal 

length of 800,000 samples which are illustrated in Figure 5.17. The solid lines 

indicate the CVs with noise from the theoretical CCFs obtained using the moving 

average technique of cross-correlation, as discussed in section 5.2.2. The circles 

indicate the simulated results with noise, the stars the simulated results without noise 

and the dotted lines the theoretical without noise. It can be seen from these results 

that the CVs from the theoretical CCFs coincide with those from the simulated 

CCFs. Thus, hereafter, we present only the simulated results. Simulations for the CV, 

with varying NS and SNRs of the receivers for a certain number (32) of operating 

nodes, are conducted and the results for both the ERP and ETP cases provided in 

Figures 5.18 to 5.21. Figure 5.18 shows the surface plots for the CV, SNR and NS in 

which it can be seen that, for particular NS up to a certain SNR (SNR <= 0.05), the 

CV is constant at the worst possible value but, with increases in the SNR (up to SNR 

= 1), improves and, finally, becomes constant again at the best possible value for the 

case without noise. It can also be seen in Figure 5.18 that the worst possible value 

continues longer and the best possible value starts later if the NS is lower. In other 

words, there is a transition zone in which the CV varies with the SNR, the start and 

end points of which vary with changing NS, being earlier with a higher NS and later 

with a lower NS, respectively.   
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                               Table 5.4 Noise effects in ERP and ETP cases 

SNR CV: ERP CV: ETP 

0.001 0.1453 0.3161     

0.01 0.1359 0.2932     

0.1 0.0296  0.0639     

0.5 0.0140 0.0300     

1 0.0129 0.0277     

2 0.0125 0.0275     

10 0.0123 0.0271     

100 0.0120 0.0272     

1000 0.0121 0.0265 

 

 

(a) 

 

(b) 

Figure 5.17 CV versus SNR: (a) ERP; and (b) ETP case (NS = 800,000 samples) 
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(a) 

 

(b) 

Figure 5.18 Log-log-log plots of SNR, Ns and CV with Ns = 1000 to 1,000,000: 

(a)ERP case; and (b) ETP case 

 

In Figure 5.19, the CVs are plotted with respect to NS (values from 105 to 106 

samples) for different SNRs (0.1, 0.2, 0.5, 1, 10, 100 and without noise). It can be 

seen again that, for a particular SNR, the CV improves with higher NS. 
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(a) 

 

(b) 

Figure 5.19 CV versus signal length for different SNR: 

(a) ERP case; and (b) ETP case 

 

It has already been mentioned that all the above results for the effect of noise on the 

CV are from investigations using 32 operating nodes. It has been shown that the CV 

is independent of the number of nodes in the case without noise. To determine 

whether the same relationship exists for the case with noise, the results for 64 

operating nodes are provided in Figure 5.20 (a) and compared with those for 32 

operating nodes in Figure 5.20 (b) and 5.21. 
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(a) 

 

(b) 

Figure 5.20 Log-log-log plots of SNR, Ns and CV with Ns = 1000 to 1,000,000: 

(a) original N = 64; and (b) comparison of N = 32 and 64 

 

Figure 5.20 shows the surface plots and Figure 5.21 the corresponding contour plots 

of the SNR, NS and CV for both the 32- and 64-node cases. The comparisons in 

Figure 5.20 (b) and 5.21 show that N still has no significant effect on the CV when 

noise is considered.  
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Figure 5.21 Contour plots of SNR, Ns, and CV with Ns = 1000 to 1,000,000: 

(a) original N = 32; and (b) original N = 64 

 
It can be seen from the results that for an SNR greater than a certain value (1 in 

voltage ratio), the CV of the estimation are almost the same as those in the without 

noise case (with a little variation due to the randomness of the experiments). For a 

lower SNR (less than 1 in voltage ratio), the CV of the estimation increases and 

finally reaches the fixed worst possible value. The meaning of these phenomena can 

be described as follows: when the SNR is less than 1, the noise dominates the signal 

but, as some signals are strong enough to count, we obtain a reduced number of 

nodes rather than the appropriate number. As with the lower SNRs, the original 

number of nodes is far beyond those of the estimation; this wide variation leads to 

the CV being worse. 

5.6 Required estimation time in the proposed method 

As the energy is directly related to time, it is important to know the estimation time, 

especially for the UWCN where the limited energy is a challenge. Estimation time is 

related with the performance of the cross-correlation which in turn related with the 

signal length, sampling rate, and the number of probes required to achieve that 

performance. The process of obtaining estimation time is discussed here. In the 

proposed CC technique, using the NS, SR, and u, the estimation time, TCC is expressed 

as  
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This expression shows that obtaining the required estimation time in the proposed 

estimation process requires knowing the value of NS, SR, and u. Actually, to obtain a 

certain CV, required NS, SR, and u are used to obtain the estimation time. 

 

To obtain the estimation time using (5.33), a method is proposed as follows. Firstly, 

CVs are obtained from simulations for the different possible combinations of NS 

(1000, 2000, …, 10,000, 20,000, …, 100,000, 200,000, …, 1,000,000) and b (19, 39, 

…, 239), keeping the other parameters same as in Section 5.2.3.1. Upon obtaining 

the CVs, they, b and Ns are visualised using contour plots, as shown in Figure 5.22, 

from which a point with certain  NS and b  is selected to obtain the estimation time. 

Figure 5.22 shows the contour plots of b, Ns and CV with 100 iterations for ERP and 

ETP cases. The x-axis indicates b, the y-axis Ns and ‘Level’ is the log10(CV). So,  

CV = 10Level                                                      (5.34) 

 

Considering a particular point in the contour plot of Figure 5.22 (a), e.g., in the ERP 

case in which Level = – 1.9136 at b = 219 and Ns = 200,000 then, from (5.34),           

CV = 0.0122.  

 

To obtain the above accuracy, i.e., to obtain the value of CV = 0.0122, the required 

time, TERP in the ERP case can be obtained with a sampling rate of 30,000 Sa/s (this 

(5.33) 
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is chosen arbitrarily with the dDBS for b=219 without violating the sampling theorem) 

from (5.33) as 

second667

)
sample

samplesecond
(6.67100

sample)(200000ple)second/sam
30000

1
(100ERP






T

 

 

Figure 5.22 Contour plots of b, Ns and CV: (a) ERP case; and (b) ETP case 
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ETP case: x-linear, y-log, and level (=log10(CV))-linear
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Similarly, for a particular point in the contour plot of Figure 5.22 (b), e.g., in the ETP 

case in which Level = – 1.585 at b = 219 and Ns = 200,000 then, from (5.34),             

CV = 0.026.  

 

To obtain the above accuracy, i.e., the value of CV = 0.026, the required time, TETP 

in ETP case can be obtained from (5.33) with a sampling rate of 30 kSa/s (as is 

chosen in ERP case) as 

second667)
sample

samplesecond
(6.67100

sample)(200000ple)second/sam
30000

1
(100ETP






T
 

 

Again, we recall the results for the OCV in Figure 5.23 which shows linear plots of 

the OCV against the signal length, NS, for the ERP (a) and ETP (b) cases. From these 

results, an optimal value of Ns can be picked for a certain CV, i.e., accuracy. The 

required time can be obtained using (5.33) from this optimal Ns and the selected SR 

(obtained from the process in Section 5.4).  

 

Figure 5.23 OCV versus  NS: N=32 for (a) ERP and (b) ETP cases 
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It can be seen from the Figure 5.23 that  at OCV of 0.0233 with 100 iterations in the 

ERP case and 0.0504 in the ETP case, the optimal NS=20,000 samples. If the selected  

SR = 360 kSa/s, the required estimation time using (5.33) is 

second5.56)
sample

samplesecond
(6055.0100

sample)(20000ple)second/sam
360000

1
(100ETPERP






 TT
 

 

As the ratio of OCVs of ETP and ERP cases is 2.2
385.0

8314.0
 , the iteration required 

for same CV is about 5 times more in ETP case than that in ERP case. Therefore, it 

requires about 5 times more time to obtain same CV in ETP case than that in ERP 

case. 

A comparison of the required estimation times for the same CV (0.026) in both ERP 

and ETP cases is provided in Figure 5.24. It is shown that both estimation times 

(TERP=143 second and TETP=667 second) are independent of N but that the ETP case 

takes about 5 times the time required by the ERP case to achieve similar 

performances. However, the ETP technique has some advantages which were 

discussed earlier.  

 

Figure 5.24 Performance comparison in terms of required estimation times for 

proposed technique in ERP and ETP cases
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5.7 Required energy in terms of the product of SNR and NS 

As the WCNs especially UWCNs are energy limited, knowing the required energy is 

also important for the proposed estimation techniques. To obtain it, the results (of N 

and CV) shown in previous sections (Section 3.6 in Chapter 3 and Section 5.6 in 

Chapter 5) for some NS with noise are plotted in Figures 5.25 to 5.28. Figure 5.25 

shows the CV from 10 iterations in ERP case against A, where A is the product of the 

SNR and NS values, and evidence that, for equal A, the CVs are similar despite the 

SNR and NS values (without exceeding the lower limit of NS for which one can 

obtain a similar CV without noise). Again, Figure 5.26 shows the estimation ( N̂ ) 

with respect to A.  

 

 

Figure 5.25 CV (from 10 iterations) versus A  

 

 

Figure 5.26 N versus A 
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Both results show the effective values of A which, when greater than 500,000, give 

similar performances. Thus, one can estimate the number of nodes using the process 

of cross-correlation by compromising among the CV, SNR and NS, i.e., CV and A. 

This is useful because now it is necessary to be careful about one parameter, A 

instead of two (SNR and NS) for the estimation. 

 

Figure 5.27 CV (from 10 iterations) versus signal strength in dB re micro-Pa  

 

Figure 5.28 N versus signal strength in dB re micro-Pa 

 

The product, A, is proportional to the signal strength above the noise. If one 

considers it the acoustic pressure in Pascal (Pa) above the noise, it can be converted 

to the signal pressure level above the noise in dB re 1 micro-Pa using the well-

established expression 











Pa  1

Pain 
log20 10Pa  re dB 

A
A                                        (5.35) 
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In Figure 5.27, the CV is plotted with respect to Pa  re dB A  whereas the estimated 

number of nodes is plotted against Pa  re dB A  in Figure 5.28. These figures show that, 

if the signal level is 0 dB or greater than the noise level, it is possible to estimate the 

number of nodes with a certain error, the CV, of 0.0389 with 10 iterations. The above 

energy estimation is for only the ERP case. Now, for the ETP case, the energy 

required to estimate the number of nodes, N, is obtained and compared with that for 

the ERP case in three different forms. Figure 5.29 shows the performance 

comparison in terms of the CV with the same energy per node per iteration for 100 

iterations in order to achieve better performances. It can be seen again that a signal 

energy of 0 dB greater than the noise level is sufficient for estimations with certain 

accuracies of CV = 0.0123 and CV = 0.0266 for the ERP and ETP cases, 

respectively. Thus, an almost 2.2 times better performance in terms of CV is possible 

in the ERP case than in the ETP case when the same energy is provided. Figure 5.30 

shows the performance comparison of both cases in terms of the energy used to 

obtain the same CV in both the ERP and ETP cases. It can be seen that, to obtain a 

CV of 0.02465, the signal energy has to be about 0 dB and -13.37 dB greater than the 

noise level in the ETP and ERP cases, respectively. This implies that about 5 (exact 

value is 4.66) times more signal strength is needed in the former than the latter to 

achieve the same performance. 

 
Figure 5.29 CVs versus signal strengths in dB re 1 micro-Pa: performance 

comparison in terms of CVs of ERP and ETP cases using same energy 
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Finally, Figure 5.31 shows the performance comparison of both cases in terms of the 

energy used to obtain several distinct CVs. It is again shown that the required energy 

is always around 13.37 dB greater in the ETP case than in the ERP case, i.e., about 5 

times more signal strength is needed in the former than the latter to achieve the same 

performance. 

  
Figure 5.30 Performance comparison in terms of energy required to obtain 

same CV in: (a) ERP case for CV = 0.02465; and (b) ETP case for CV = 0.02465 

 
Figure 5.31 Performance comparison in terms of energy required in ERP and 

ETP cases 
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5.8 Comparison with conventional protocol-based 

techniques 

To date, the conventional techniques used for the estimation of the number of nodes 

in a WCN have been based only on the network protocol in use. This thesis proposes 

a new estimation technique based on random signal cross-correlation which is very 

different from the conventional ones in terms of the estimation process; for example, 

in the proposed technique, the transmitter is required to transmit a Gaussian signal 

whereas, in a protocol technique, it is required to transmit some data (in the form of 

bits) to the receiver. Transmission of a Gaussian signal directly through a channel is 

possible but transmission of bits through the channel requires modification by 

converting them to a physical signal. Again, after reception of the signal in the CC 

technique, it is possible to directly use the signal for the cross-correlation process to 

obtain the CCF from which estimation is obtained. But, in the protocol, after 

reception of the modified signal, further modification is required to make the 

received signal a packet of bits and then the estimation is obtained from the proper 

reception of these bits. Thus, it is difficult to compare the techniques on the same 

platform without having sufficient field results. Despite wide application of the 

number of nodes estimation, only one conventional method in UWCN is investigated 

using analysis and simulation and, although an energy-related performance 

parameter is investigated, the energy required in joules is not clear. Moreover, both 

the protocol and CC techniques require more investigation to address the practical 

issues of obtaining field results. Despite the difficulties, some performance 

parameters are compared on the same platform in the following way.  

 

To show the effectiveness of the proposed technique, its performances in terms of 

times and energy required for, and errors (CVs) in, estimation are compared with 

those of the two conventional protocol-based techniques: the probabilistic framed 

slotted ALOHA (PFSA) (Howlader 2009) and the Good-Turing (GT) (Budianu 

2006) estimator protocol. The CVs are compared keeping the estimation time fixed, 

actual estimation times are compared keeping the CVs fixed and transmit energies 

are compared keeping the CVs fixed. Moreover, virtual estimation times are obtained 

and compared keeping the CVs and transmit energies fixed for all techniques. 
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As the CV is obtained from the standard deviation and mean of the estimation, it 

basically depends on the estimation which might be affected by many factors which, 

in turn, might affect the CV in all methods. In the CC technique, a physical 

(Gaussian) signal is generated and transmitted directly through the channel to the 

receiver. It requires some amplifier circuitry, as shown in Figure 5.32 (a), to raise the 

signal level to overcome attenuation. On the other hand, in the protocol techniques, a 

packet of bits is generated which (after some signal processing) transmits its physical 

equivalent signal through the channel to the receiver. It requires some complicated 

signal processing circuitry, as shown in Figure 5.32 (b), to convert the bits to a 

physical signal along with the amplifier circuitry. It is clear from the figure that, as 

both the CC and protocol techniques require signal transmission through the channel, 

there will be some common factors which might affect the estimations and, thus, the 

CVs in all techniques. 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Figure 5.32 Simple block diagram of signals and their transmission: (a) CC 

technique; and (b) protocol technique 

 

Common factors that might contribute to the CV are: 

1. the effect of the multipath propagation of signals; 

2. the effect of the Doppler spread; 

3. attenuation or path loss; 

4. the effect of noise and consideration of the SNR; 
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5. the power of the transmitted and received signals; 

6. channel BW; 

7. the speed of signal propagation; 

8. placements of the sensor(s); and/or 

9. distribution of the nodes. 

 

Besides, the CV might be affected in protocols by the following factors: 

10. the capture effect; 

11. the number of slots; and/or 

12. the bit rate. 

and in the CC techniques by the following factors: 

13. the number of samples; and/or 

14. the sampling rate. 

 

The effects and assumptions of these factors are briefly described below. 

 

1. Effect of multipath propagation of signals 

Transmitted signals in both the CC and protocol techniques are affected by multipath 

propagation in the channel. As the multipath propagation of signals is sometimes 

additive and sometimes subtractive in nature, signals reach the receiver with either 

more or less power (Lazaro 2009; Islam 2010). So, to achieve a successful reception, 

i.e., to obtain at least the sensitive power of the receiver, requires more transmit 

power for a signal or the system performance for estimation degrades. Besides, the 

multipath causes ISI in the received signal but, by using a symbol interval which is 

sufficiently longer than the delay spread, ISI can be neglected (Lazaro 2009). Thus, it 

takes more estimation time to neglect the effect of multipath fading. 

 

In the proposed technique of cross-correlation, any multipath effect can be neglected 

using the multipath suppression process (discussed in Section 3.12 of Chapter 3) 

where the power of a signal and the time required are not affected. This is very useful 

for an energy-limited UWCN. 
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As in conventional protocols the multipath effect is not considered in the estimation 

of the number of nodes, in order to be able to compare the techniques on the same 

platform, this effect is neglected for all methods. 

 

2. Effect of Doppler spread 

The Doppler effect is one of the important practical issues in underwater acoustic 

networks. It sometimes compresses and sometimes spreads the frequency of the 

received signal according to the movements of the source and receiver towards or 

away from each other.  

 

When a signal is spread, the transmitter and receiver are turned on for a longer time 

than when it is not spread and, when it is compressed, the transmitter and receiver are 

turned on for a shorter time than when it is not compressed. Therefore, sending and 

receiving a Doppler spread signal requires more energy than sending and receiving a 

non-spread signal. Thus, extra energy is required to compensate for the Doppler 

effect. However, although both the protocol and CC techniques might be affected by 

this, it has not yet been considered in the estimation process, and the Doppler effect 

is neglected in the comparison of techniques. 

 

3. Attenuation or path loss 

Considering attenuation or path loss is important in terms of transmitted signals 

reaching a receiver. If any attenuation is not compensated for by the appropriate 

signal strength, the transmitted signal will not reach the receiver. In an underwater 

channel, attenuation means absorption and dispersion losses. Below about 70 kHz 

(Heidemann 2006) the dispersion loss is sufficiently higher than the absorption loss 

and only the dispersion loss can be considered as the total loss. As the higher 

frequencies cause severe absorption loss , it is not practical to use it in long-distance 

transmission. Therefore, absorption loss is neglected in all techniques. To compare 

dispersion losses, appropriate distances and the practical dispersion coefficient, k 

(=1.5), are considered in all techniques. 
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4. Effect of noise and consideration of SNR 

Both the protocol and CC techniques require a receiver to properly collect a signal 

the strength of which has to be such that its power will be greater than or equal to the 

threshold power of the receiver which is determined from its noise floor (internal 

noise power). In the CC technique, the receiver is simply a hydrophone but, in the 

protocol techniques, it is a hydrophone with some signal processing circuitry (as 

shown in Figure 5.33) to make the physical signal a packet of bits. Thus, in all 

techniques, the receiver is the major component of the noise floor contributions to 

which from other parts are negligible in comparison. So, the noise floor of the 

hydrophone can be considered the noise floor of the whole receiver. Thus, it is 

assumed that the threshold power of the receiver is the same for all cases and is the 

internal noise (AWGN) power of the hydrophone. In the proposed CC technique, it is 

shown that a 20 dB SNR (10 in voltage ratio) is sufficient to estimate the number of 

nodes with the same error as in the without noise case. Although the effect of noise is 

not considered in the protocol techniques for estimating the number of nodes, it is 

mentioned in the literature (Heinzelman 2000) that a 30 dB SNR is sufficient to 

properly collect a signal. Besides, for BPSK modulation with AWGN, typically an 

SNR of 10 dB gives a BER of 10-05 which is too low and can be neglected. Based on 

these discussions, a 20 dB SNR is considered in the energy calculations for all 

techniques when compared on the same platform. Again, from the testing conducted 

at Jervis Bay, Australia (details in Appendix A), the channel’s background noise is 

about 25 dB greater than the internal noise of the receiver. Although the strength of 

the background noise might vary with the frequency, it will be shown in Figure A.3 

(See in Appendix A) that, at frequencies beyond 5 kHz, the power spectrum is almost 

flat and that values greater than 25 dB will be sufficient compared with the internal 

noise of the receiver. As internal noise of the receiver,  assuming the background 

noise (which is almost flat after 5 kHz) of the channel is Gaussian in nature, like 

internal noise another 20 dB SNR will have to be added for it in the estimation 

process. Details of this calculation are provided in the energy comparison in this 

section. 
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Figure 5.33 Block diagram of modem hardware (Wills 2006) 

 

5. Power of transmitted and received signals 

As power is limited in underwater nodes, it has to be carefully considered. It has 

already been discussed that, according to the powers of the transmitted and received 

signals, three possible cases might arise in practical situations, the ERP, ETP and 

RTRP. The signal strengths at a receiver affect the estimation performance, as 

discussed for the ETP case using the proposed technique. But, as only the ERP case 

is studied using both the protocol and CC techniques, it is considered for comparison. 

 

In the ERP case, the received powers from all nodes have to be equal which is 

possible using a probing technique. It has been mentioned previously that, as 

transmitted signals have to overcome the receiver threshold power, nQ , with a 20 dB 

SNR (i.e., 100 times more power than the nQ ) and an attenuation of kd  , the 

transmitted power has to be kdQ  n100 . This gives a received power of n100 Q  

for all nodes if the background noise is neglected. If the background noise (which is 

tested at Jervis Bay, Australia, at about 25 dB greater than the nQ ) is considered with 

a 20 dB SNR as previously, for the proper signal to be received at the receiver, the 

transmitted power has to be 

  kkk dQdQdQ  n
5.42

nn
5.2 101010010100  

which will give received powers of   n
5.42 1010 Q  for all nodes. 
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It is important to note that the power considered here is for the SNR, attenuation and 

threshold power of the receiver. But, as in the protocol techniques the signals are sent 

to  the modem as a bit stream, the modem has transmit electronics (as shown in 

Figure 5.34) for digital coding, modulation and filtering which require a fixed 

amount of power (typically in a wattage range (Benson 2010) for an underwater 

modem). Similarly, receiver electronics also require a fixed but lesser (than 

transmitter) amount of power for the reverse process of the transmitter (i.e., filtering, 

decoding and demodulation). In the figure, Bn is the packet size, Qte is power 

dissipated in the transmit electronics, Qre is power dissipated in the receive 

electronics, ET the total required energy in the transmitter, and ER the total required 

energy in the receiver. Thus, the protocol technique requires a huge amount of extra 

power over the above considered amount to estimate the number of nodes. In 

contrast, in the proposed CC technique, as the transmitter and receiver do not require 

any coding, decoding, modulation, demodulation or filtering power is only required 

for the SNR, attenuation and threshold power of the receiver. 

 

 

 

 

 

 

Figure 5.34 Energy dissipation model in protocol (Heinzelman 2002) 

 

6. Channel bandwidth (BW) 

A channel’s BW has an effect on a signal’s BW. As previously discussed, because 

the estimation techniques (protocol and CC) require some sort of signal transmission 

in the physical channel, they might be affected by the channel BW. But this issue is 

not investigated in the protocol techniques. Although it will be suggested in Chapter 

6 (with some simulated results) that the effect of BW (>10kHz) in the proposed 

technique is negligible, more investigations are required to confirm this decision. 

However, obtaining the estimation time and energy requires knowledge of the bit 

rates in the protocol methods and the sampling rate in the proposed method, both of 

which depend on the channel BW. As this estimation is investigated in underwater 
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networks, the possible underwater BW of 15 kHz is chosen for the time and energy 

calculation and comparison. However, as the effect is not considered in the 

estimation process, other possible BW could be used to obtain the estimation time 

and energy. 

 

7. Speed of propagation 

All techniques require acoustic signal propagation in the channel (water). Although 

there are significant variations (1450 m/s to 1540 m/s) in the propagation speed of an 

acoustic signal underwater, the techniques do not consider this as all their results are 

obtained using the typical value of 1500 m/s. Thus, in the comparisons, 1500 m/s is 

taken as the propagation speed. 

 

8. Placement of sensor(s) 

All techniques require equal amounts of data from all directions to use the binomial 

distribution of the placement of balls in the bins (in CC, the balls are the deltas and, 

in protocol techniques, the number of slots) and, using the same network, their 

receiver(s) have to be placed in the centre of it. In the protocol techniques, a receiver 

is a node in receiving mode and, in the CC approach, two hydrophones attached in a 

node. Although estimations might be different with different receiver placements, 

this is not investigated. Thus, comparisons are conducted using the receiver(s) at the 

centre of the network.  

  

9. Distribution of nodes 

As, in order to achieve the proper placement of balls in the bins, the distribution of 

the nodes is equally important to the placement of the receiver(s), a uniformly 

random distribution of nodes is required. Moreover, all estimation techniques use this 

distribution inside a 3D sphere which is a reasonable distribution for an underwater 

network. Although the GT protocol is investigated in a 2D terrestrial network, as it is 

shown in (Howlader 2009) that its performance is similar for 2D and 3D, it is 

reasonable to extend the 2D GT protocol to the 3D GT protocol. In this case, the 

MAP will be the same as the receiving node of the PFSA protocol and the 
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transmitting nodes will surround the MAP with a uniformly random distribution 

inside a sphere. 

 

10.  Capture effect     

In the conventional GT method, which is obtained for a terrestrial sensor network, 

the capture effect is negligible and no adjustment is provided for the underwater 

network. However, the severe capture effect underwater may make its direct use 

difficult or even impossible. Besides, long propagation delays affect the protocol’s 

performance and complicate its design. But, for comparison, it is assumed that 

similar performances of the GT protocol in a terrestrial network are possible in an 

underwater network (it can be assumed, as the proposed and conventional PFSA 

methods are equally suitable for all environments). 

 

The conventional PFSA protocol method uses an estimation parameter which is not 

affected by the capture effect and the capture effect is not a concern in the proposed 

CC technique.  

 

11.  Number of slots in protocol 

In the protocol technique (Howlader 2009), estimation performance is expressed in 

terms of the number of slots,  , for different accuracy parameters,  , keeping Z 

(percentile of unit normal distribution ) fixed at 2.576,  at 0.01, the number of 

successful slots in a frame,  , at 1.59 and the number of probes, u , at 10.  Using 

these values with some manipulation, the CV can be obtained. With the help of the 

bit rate (discussed next) and the number of minimum bits in a slot, the time can be 

obtained in a slot and extended for   slots. Thus, the estimation time and CV are 

obtained in the protocol technique. Detail processes are shown later in this section. 

 

12. Bit rate in protocol 

The bit rate, BR is obtained from the used modulation technique and BW. It is known 

that if the modulation technique used is BPSK, the bit rate in bps is equal to the BW 

in Hz. Therefore, as the BW used is 15 kHz, the bit rate is 15 kbps. 
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13. Number of samples in CC technique 

The Ns is an energy-related term in the CC technique required to obtain the 

estimation time and CV. Proper selection of this parameter for a particular CV is 

provided in Section 5.3 and its value is used to obtain the time, CV and energy in the 

CC technique. 

 

14. Sampling rate in CC technique 

As with the bit rates in the protocol techniques, the sampling rate in the CC 

technique is required to obtain the estimation time, CV and energy, and also depends 

on the BW. According to the sampling theorem, the sampling rate will have to be 

twice as much or more than the BW. Proper selection of this parameter following the 

sampling theorem is discussed in Section 5.4.  

5.8.1 Performance comparisons in terms of CV 

In this section, for a particular estimation time, the CV of the proposed technique, 

which is a performance measure of estimation, is compared with those of the 

conventional methods (in which estimations are performed using a PFSA protocol 

and the Good-Turing estimation technique). The constraints of the comparison are: i) 

the estimation times have to be the same for all cases; ii) the available BW is taken as 

15 kHz; iii) there is no impact of noise and the multipath is considered; and iv) other 

parameters, such as the dimensions of the experimental area and the placements of 

the nodes and receiver(s), are the same. There are two different parameters: the 

numbers of slots in the protocol techniques; and the signal lengths in the proposed 

CC techniques. Based on these, the estimation times are obtained with the help of the 

bit rates in the protocol techniques and the sampling rate in the proposed technique. 

As the BW is chosen as 15 kHz and, if the assumed modulation technique used is 

BPSK, the bit rate in the protocol technique will be equal to the BW, i.e., 15 kbps, 

and the sampling rate in the proposed technique will have to be either more than or 

equal to twice it according to the sampling theorem, i.e., greater than or equal to 30 

kSa/s. Actually, using the proposed CC technique, an OCV for a particular Ns, which 

is assumed to be independent of N, is chosen for the comparison parameter. Again, it 
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has already been shown that, in a particular Ns, the OCV depends on b, where b is 

dependent on the SR, and the dDBS. Thus, by keeping the dDBS at a fixed value for the 

chosen OCV, the required estimation time can be obtained with NS, SR, and u. Based 

on this estimation time, the CVs in the conventional protocols are obtained and 

compared with that of the proposed technique. 

5.8.1.1 CV in the proposed technique 

As previously discussed, let  the OCV (with 100 iteration) is chosen as 0.01, i.e., a 

1% statistical error. Thus, its signal length can be obtained using (5.30) which is 

around 400,000 samples at  b = 319, as shown in Figures 5.35 and 5.36 which 

illustrate the logarithmic plot of CV versus b (= 99 to 439) and the corresponding 

normal plot which clarifies the optimal points, respectively. In this experiment, as 

dDBS is set to 0.25 m (to obtain receivers in the same node), the required SR can be 

obtained from the expression of b in Section 3.6.2.3, as 960 kSa/s. So, the time 

required in CC technique (the ERP case) to obtain this CV (0.01) is 

second 41.67                       
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Figure 5.35 CV versus b: logarithmic plot 
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This time is then used to obtain the CVs in the conventional protocols, as discussed 

in the following sections. 

 

 

Figure 5.36 CV versus b: normal plot 

5.8.1.2 CV in the conventional PFSA protocol 

In the protocol(s) for estimating the number of nodes, estimation performance is 

investigated using the number of slots needed for certain accuracy. Now, the required 

time, Tpro for estimation is calculated for the conventional protocol methods as 
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where   is the number of packets per slot and its value is taken as 1.59 from 

(Howlader 2009). 

 

(5.36) 
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For a wireless communication network, the packet size is the bits or bytes in a MAC 

(Medium Access Control) frame and depends on the frame format. Tables 5.5 and 

5.6 indicate the general and IEEE 802.11 MAC frame formats                           

(IEEE-Standard-Association 2007), respectively, for a wireless communication 

network.  

 

Table 5.5 General MAC frame format 

Frame 

Control 

Duration 

ID 

Addr

-ess1 

Addr-

ess2 

Addr-

ess3 

Sequence 

Control 

Addr-

ess4 

QoS 

Control 

Frame 

Body 

F

C

S 

2 2 6 6 6 2 6  0-

2312 

4 

 

Table 5.6 IEEE 802.11 MAC packet (frame) format 

Frame 

Control 

Duration 

ID 

Address

1 

Address

2 

Address

3 

Sequence 

Control 

Address

4 

Data Check

-sum 

2 2 6 6 6 2 6 0-

2312 

4 

 

Each format comprises a set of fields that occur in a fixed order in all frames. The 

first three (frame control, duration/ID and address1) and the last (frame check 

sequence (FCS)) constitute the minimal frame format and are present in all frames 

(IEEE-Standard-Association 2007). So, to create wireless communication in a WCN, 

we have to transmit at least Bn = 14 bytes = 112 bits per packet (2 bytes for frame 

control, 2 for duration/ID, 6 for address and 4 for the FCS). 

 

Thus, to obtain an estimation of the CV within 41.67 seconds (to compare the CV 

with the same estimation time as in the proposed CC technique) from the 

conventional PFSA technique with BR = 15 kbps, Bn = 112 bit/packet,   = 1.59 

packets/slot, the required number of slots, , from (5.36) is 








nB

BT RPFSA                                                 (5.37) 
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 Inputting the values of the parameters in (5.37) gives 

3510  

 

In conventional protocol techniques,   and   are considered the performance or 

accuracy parameters where   is related to , as (Howlader 2009) 

2

254.1




Z
                                         (5.38) 

where Z is the Z-value of the estimation from the normal distribution (considering 

the estimated N follows the normal distribution) Z-table for the accuracy parameter, 

 . 

 

Thus, from (5.38), 

054.0  

as the value of Z is 2.576 for 01.0 , i.e., the probability of obtaining the actual 

number of nodes is greater than or equal to 99%. 

 

For the purpose of comparison, in this proposed work, the accuracy parameter,  , is 

required to be converted to the CV.  

 

For a particular  , factor   is related to the standard deviation and mean of the 

estimation as (Howlader 2009) 

22

22



N

Z
u  ,                                            (5.39) 

where u  is the number of probes required to obtain a certain accuracy in estimation 

using this  ,   the standard deviation in this case and N the number of nodes. To 

make the performance factor similar to that in the proposed technique,   is 

converted to the CV as follows. 

 

After some manipulation with denoting  as u for uth iteration, expression (5.39) 

can be written as 
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ZN
u
u




                                            (5.40) 

 

The left-hand side of the expression is equivalent to the ratio of the standard 

deviation to the mean of estimation, 
 
 N

N
ˆ

ˆ




, with thu  probes. Thus, (5.40) can be 

rewritten as 

    
 
  ZN

u
N

N
u








ˆ

ˆ
                                         (5.41) 

 

This is defined as the CV with u  probes in the proposed technique as 

 
  ZN

N 



 CV
ˆ

ˆ
                                          (5.42)                                      

where N̂  indicates the estimated value of N considering that   NN ˆ .  

 

Thus, the CV in the PFSA protocol with an equal estimation time to that of the 

proposed technique can be obtained from (5.42) as 

0209.0

CV




Z


 

5.8.1.3 CV in conventional Good Turing (GT) protocol 

In the GT protocol, all the parameters are kept the same as in the PFSA protocol 

except for the slot size,  . In this case, the value of  , is about 4 (Budianu 2006) 

instead of 1.59 in PFSA.  

 

Thus, to obtain an estimation of the CV within 41.67 seconds (to compare the CV 

with the same estimation time as in the proposed CC technique) from the 
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conventional GT technique with BR = 15 kbps, Bn = 112 bit/packet,   = 4 

packets/slot, the required number of slots, , from (5.36) is 

1395RGT
GT 








nB

BT
 

 

Again, in the GT method, the required number of slots is expressed as (Howlader 

2009) 
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where   and   are the performance parameters and N the number of nodes to be 

estimated, as discussed for the conventional PFSA protocol. 

 

It is already known that, for a particular  , factor   is related to the standard 

deviation and mean of estimation from which an expression of the CV has already 

been obtained as 

)44.5(
Z

CV                                                               




 

where Z is the Z-value of the estimation from the normal distribution Z-table for a 

certain accuracy parameter,  . 

 

Now, to solve (5.43) for  , 
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Thus, for a particular number of nodes, we can solve (5.45) numerically for  . Table 

5.7 shows the values of   for different numbers of nodes for an estimation time of 

41.67 seconds. 
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Table 5.7 Performance parameter,   in GT method 

N 100 200 500 800 1000 

  0.0339 0.0486 0.0786 0.1012 0.1142 

 

As Z is known, we can easily obtain the CV from (5.44) for the conventional GT 

case from these values of  . For a particular estimation time of 41.67 seconds, the 

CVs of the different estimation techniques are compared in Figure 5.37. It can be 

seen that, with respect to the number of nodes, they are constant in our proposed and 

the PFSA technique but increase in the GT technique. 

 
 

Figure 5.37 Performance comparison in terms of CV: estimation time = 41.67 s 

 
Similarly, in the proposed method, if the OCV is chosen  as 0.0125, i.e., a 1.25% 

statistical error, its corresponding Ns can be obtained using (5.30) which is 181,930 

samples at around b = 279. In this experiment, as dDBS is set to 0.25 m, the required 

SR is 840 kSa/s. So, the required time to obtain this CV (0.0125) is 

second 21.67                       
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Using this required estimation time, the CVs are obtained from the PFSA technique 

as 0.029 and the GT technique as in Table 5.8.  

 

Table 5.8 Performance parameters, CV in GT method: T=21.67 second 

N 100 200 500 800 1000 

CV 0.026 0.038 0.0624 0.0818 0.0933 

 

Similarly, as in the CC techniques for another operating point with OCV = 0.015, a 

signal length of 95,522 samples and a sampling rate of 600 kSa/s (as the required b = 

199), the required estimation time is 15.92 seconds with which the CVs in the PFSA 

and GT techniques are obtained. The CV in the PFSA protocol is constant at around 

0.0339 and those for different numbers of nodes in the GT technique (as its CV 

depends on N) are provided in Table 5.9. 

 

Table 5.9 Performance parameters, CV in GT method: T=15.92 second 

N 100 200 500 800 1000 

CV 0.0361 0.0528 0.0892 0.1187 0.1367 

 

Comparisons of these CVs for the two abovementioned operating points are provided 

in Figures 5.38 and 5.39. 

 
Figure 5.38 Performance comparison in terms of CV: estimation time = 21.67 s 
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Figure 5.39 Performance comparison in terms of CV: estimation time = 15.92 s 

 
It can be seen in Figures 5.37, 5.38 and 5.39 that the CVs with the same required 

time for estimations of the number of nodes are constant in the proposed CC and 

conventional PFSA technique but vary with the number of nodes in the GT 

technique. The proposed technique always performs better than the conventional 

techniques.  

5.8.2 Performance comparisons in terms of required estimation time 

In this section, the required estimation times of the proposed and conventional 

methods are compared. The constraints of this comparison are: i) errors in 

estimation, i.e., the CVs have to be the same for all methods; ii) the available BW is 

taken as 15 kHz; iii) there is no impact of noise and the multipath is considered; and 

iv) other parameters, such as the dimensions of the experimental area and placements 

of the transmitting and receiving node(s), etc., are the same. There are two different 

parameters: the   in the protocol techniques; and the Ns in the number of samples in 

the proposed CC technique. Based on these two parameters, the estimation times are 

obtained with the help of the BR in the protocol techniques and the SR in the proposed 

technique. Actually, using the proposed CC technique, an OCV for a particular Ns, 

which is independent of N, is chosen as the comparison parameter. It has already 

been shown that, for a particular Ns, the OCV depends on b, where b is dependent on 

the SR, and the dDBS. Thus, keeping dDBS at a fixed value for an OCV, the required 

200 400 600 800 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of nodes, N

C
oe

ff
ic

ie
nt

 o
f 

va
ria

tio
n 

(C
V

)

 

 

GT

PFSA
CC



 

249 
 

estimation time can be obtained. For the same CV as in the proposed technique, the 

estimation times in the conventional protocols are obtained and compared with that 

of the proposed technique. 

5.8.2.1 Estimation time in CC technique 

To obtain the estimation time in the proposed technique after one iteration, as the 

OCV is taken as 0.1, i.e., a 10% statistical error, its corresponding Ns can be obtained 

using (5.31) which is about 400,000 samples at around b = 319 (similar as for 

CV=0.01 with 100 iteration; as we are using only 1 iteration instead of 100, thus 

keeping the other parameters same, the CV increases to 0.1). In this experiment, as 

the dDBS is set to 0.25 m (to have the sensors in the same node), the required SR can 

be obtained from the expression of b in Section 3.6.2.3 which is 960 kSa/s. So, the 

required estimation time to obtain this CV (0.1) is 

 

second 4167.0                              

1400000
960000

1
                              

iteration ofNumber                                  

ration)sample/ite(ple)second/sam
rate Sampling

1
(                       

method,CCin the timeestimation  theThus,

SCC







T

 

 

Since the CV is independent of N, the estimation time obtained above will hold for 

all N.  

5.8.2.2 Estimation time in PFSA protocol 

To compare the conventional PFSA protocol technique with the proposed approach, 

the estimation time is obtained for the same CV (0.1) for different N. 

 

Now, from expressions (5.38) and (5.42), 

154
CV

54.1
2PFSA   
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Thus, by keeping the parameters the same as previously, i.e., BR = 15kbps, Bn = 112 

bits/packet and   = 1.59 packets/slot, the required estimation time, TPFSA, can be 

obtained from the following expression (which is derived from (5.37)). 

second 8283.1
R

PFSA
PFSA






B

B
T n 

, 

 

Since the CV is again independent of N in PFSA technique, the estimation time 

obtained above will hold for all N. 

5.8.2.3 Estimation time in GT protocol 

To compare the estimation times of the GT protocol technique and proposed 

approach, they are obtained for the same CV (0.1) for different N. 

 

Now, from expression (5.42), 

2756.0CV  Z  

 

As the performance parameter (  = 0.01) is known and using the above   for 

different N, GT  can be obtained from (5.43). The obtained GT  for different N are 

presented in Table 5.10.  

 

Table 5.10 GT in GT method: CV = 0.1 

N 100 200 500 800 1000 

GT  217 307 486 614 687 

 

Keeping the other parameters the same as previously, i.e., BR = 15kbps, Bn = 112 

bits/packet and   = 4 packets/slot, the required estimation time, TGT, can be easily 

obtained from the following expression.  

R

GT
GT B

B
T n  
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Figure 5.40 shows the comparison of estimation times required to obtain similar 

performances. 

 

Figure 5.40 Performance comparison in terms of estimation time  

required to obtain CV = 0.1  

 

Similarly, if the OCV is taken as 0.125, i.e., a 12.5% statistical error, its 

corresponding signal length is about 181,930 samples at around b = 279. In this 

experiment, as the dDBS is set to 0.25 m, the required sampling rate is 840 kSa/s. So, 

the required time to obtain this CV (0.125) is 
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The obtained estimation times for the same CV are 1.17 seconds in the PFSA 

technique and as shown in Table 5.11 in the GT technique.  

Table 5.11 GTT in GT method: CV = 0.125 

N 100 200 500 800 1000 

GTT (s) 5.4 7.6368 12.0748 15.2735 17.0763 
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Similarly, for another operating point with OCV = 0.15 in the proposed method, the 

signal length is about 95,522 samples and the sampling rate 600 kSa/s (as the 

required b = 199). So, the required estimation time is 0.1592 s. With the same CV, 

the required estimation times in the PFSA and GT techniques are obtained.  

 

The estimation times in the PFSA protocol are constant at around 0.8126 second for 

different N but variable in the GT protocol (in which the CV depends on N), as 

shown in Table 5.12. 

 

Table 5.12 GTT  in GT method: CV = 0.15 

N 100 200 500 800 1000 

GTT (s) 4.6856 6.6264 10.4773 13.2529 14.8172 

 

Comparisons of these estimation times for the two abovementioned operating points 

are also provided in Figures 5.41 and 5.42. 

 

 

Figure 5.41 Performance comparison in terms of estimation time  

required to obtain CV = 0.125  
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Figure 5.42 Performance comparison in terms of estimation time  

required to obtain CV = 0.15  

 

It can be seen in Figures 5.40, 5.41 and 5.42 that, like the CV comparisons, the 

required time for estimations of the number of nodes is constant in the proposed and 

PFSA techniques whereas it varies with the number of nodes in the GT technique. In 

terms of the required estimation time for a particular CV, the proposed cross-

correlation technique always performs better than the PFSA and GT techniques.  

5.8.3 Performance comparisons in terms of required transmit energy 

All the above comparisons do not take into account the transmit energy required for 

estimation. In this section, the transmit energies required for a certain CV are 

compared, as are the virtual times (not the actual times) needed when assuming the 

same power, for all methods.  

 

The constraints of the comparison are: i) the same CV in estimation, CV (=0.1), has 

to be obtained in all cases to compare the energy and assuming the same power for 

all methods to compare virtual times; ii) the available BW is taken as 15 kHz; iii) the 

same impact of noise is assumed in all cases, iv) no multipath is considered; and v) 

other parameters, such as the dimensions of the experimental area and the placements 

of the transmitting and receiving node(s), are the same.  
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5.8.3.1 Transmit energy required in proposed CC technique 

In our simulations, from the nth node, a sensor receives an array of samples of a 

continuous time signal (Gaussian). The numeric values (which follow the zero mean 

unity standard deviation Gaussian distribution) of the samples are normalised (in 

terms of original received signal) with units of volts and referenced to a normalised 

(in terms of receiver equivalent) resistance of 1 ohm. The sampling frequency, 
n

SR , 

is 960,000 Sa/s (although other frequencies might also be used, we use this one for a 

certain dDBS to obtain the optimal b, in order to obtain a certain CV of estimation). 

 

Suppose the sampled transmitted signal is  sx , where s is the index of the sample 

number. The instantaneous power of a sample in watts will be the value of that 

sample squared and the average power of the signal will be the average of the 

instantaneous power of every sample in the signal. If we use the signal of 
nSN  

samples, the average power will be 

    sxEsx
N

Q
nS

n

N

sS
avg

2

1

21
 



 

 

Again, the variance in the sampled signal can be defined as 

         222 sxEsxEsx   

 

As we use zero mean unity variance samples, the variance will be 

      122  sxEsx  

 

Thus, the normalised average received power will be 

        watt1
1 22

1

2  


sxsxEsx
N

Q
nS

n

N

sS
avg   

 

Now, the energy of a signal is the time integral of its average power and the 

integration is converted to a summation for the sampled signal. 
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If the time per sample is denoted by 






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n

n S
TS
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1
 , the total normalised received 

energy for the nth node in joules will be 
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If the original received power is the watt
nRQ , the total received energy required for 

the nth node is 
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n

n

R
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N
QE nS
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Multiplying this by the appropriate path loss factor, k
nd  (where dn is the distance 

between the receiver and the nth node and k the spreading factor), the required 

transmitted energies for the nodes are 
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Thus, the total transmitted energy for N nodes is 
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As the received powers, number of samples and sampling frequencies for all nodes 

are considered equal in the estimation process and, thus, assuming 

RRRRSSSSRRRR SSSSNNNNQQQQ
NNN
 

212121
 and , , , 

we have the total transmitted energy as 
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Using this expression, we then obtain the energy in two cases, as discussed below. 
 

(a) Channel without noise but receiver with internal noise  

It has been shown in the estimation process that, if we consider the internal 

noise of the receiver to obtain similar performances to those of estimation 

without noise, the SNR has to be at around 1 (in voltage ratio), as also 

depicted in Figure 5.43 and 5.44 for a signal length of 100,000 samples. 

Again, it is estimated in our lab (Underwater Lab, UNSW@ADFA, Australia. 

See Appendix A for the details) that the voltage level of the internal noise of 

a receiver (hydrophone) is about Hzin BW nV/16.3  and the equivalent 

resistance of a typical hydrophone is z=1kohm.  

 

 

Figure 5.43 Number of nodes, N, versus SNR 

(5.46) 
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Figure 5.44 Coefficient of variation, CV, versus SNR 

 

Therefore, the hydrophone can receive a signal voltage of at least 

7-9 1087.315000103.16  volts (as the chosen BW is 15 kHz). Thus 

the internal noise power of the receiver (which is the receiver threshold 

power) is 
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So, to confirm the reception and perfect matching of the without noise case 

with 10 times more received voltage, the average received power per node 

will have to be  
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This can also be calculated as follows. The internal noise power in a receiver 

is 
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So, to confirm the reception and perfect matching of the without noise case 

with 100 times more received power, the average received power per node 

will have to be 14
nR 105.1100

n

 QQ  W. 

 

For a particular case in which the CV is 0.1, as the OCV expression for 1 

iteration  283.085.3OCV  sN  gives the signal length of 

samples, 400000SN the total transmitted energy required for a N nodes 

estimation is 
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(b) Channel with background and receiver with internal noise 

If we consider both the receiver and  channel with noise, the procedure is 

similar to (a) above but the transmitted signal needs extra energy to overcome 

the background noise of the channel in a similar manner to that of only the 

receiver with internal noise.  

 

Again, as it is shown in testing at Jervis Bay, Australia (See Appendix A for 

the details), that the background noise level underwater is around 25 dB 

greater than the internal noise of the receiver used above, another noise to be 

overcome is 5.13165.2 105.1105.110   W; this is properly achieved by 

again using 100 times more power. Thus, the average received power per 

node in presence of background noise is 
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For the earlier case in which the CV is 0.1 with samples, 400000SN the 

total energy required for N nodes estimation is 
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(5.47) 

(5.48) 
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5.8.3.2  Distance estimation in CC technique 

Estimations of distances are similar in all CC techniques and the number of distances 

is equal to the number of nodes, where the nodes are uniformly placed inside a 3D 

sphere. Thus, if we want to estimate N nodes, the number of distances will be N 

which is obtained using the formula for the distance between two points , 

     222
onononn zzyyxxd   

where dn is the distance between the sensor and the nth node which are in positions 

 ooo zyx ,,  and  nnn zyx ,, , respectively. 

5.8.3.3  Transmit energy required in PFSA protocol approach 

It is known from (Howlader 2009) that, in the PFSA protocol technique, to obtain a 

certain accuracy in an estimation requires a certain number of packets. It is also 

known that each node transmits one packet in a probe (Howlader 2009). In this 

technique, the required energy for a node to transmit the wth packet to a distance, dw, 

is defined from (Howlader 2011; Bhardwaj 2002) as

  
k

wppwt dEE p

  

The parameter ppE
 
is the energy/packet which depends on the required receiver 

sensitivity, i.e., the receiver’s internal noise floor energy for which the transmit 

power needs to be adjusted so that the power at the receiver is equal to, or above, the 

sensitive threshold power of the receiver. As previously discussed the receiver 

threshold power can be considered same in both in the protocol and CC techniques 

and, thus, considering same threshold power, nQ in PFSA protocol, the average 

received power per node will be same as CC technique, which is  

14
R 105.1

n

Q  W 

   

Now, choosing unity gain omnidirectional receiver and the bit rate, bps15000RB

(as previously discussed the use of BPSK modulation with 15000 Hz BW allow the 

(5.49) 
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bit rate of 15000 bps), the received energy per bit, pbE is obtained as (Heinzelman 

2000) 
 

Joule/bit10
15000
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R
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Q
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As it has already been shown that the minimum packet size in protocol is 112 bits 

and, thus, assuming this packet size in protocol technique of estimation of the 

number of nodes, the received energy per packet is   

J/packet 1012.1J/packet 10112 16-18 ppE  

 

Now, the transmitted energies required for the 1st, 2nd, …, Np
th packet to transmit to 

distances d1, d2, …, 
pNd respectively are 

 

k
ppt dEE 1p1 

 k
ppt dEE 2p2 

 

 
k

NppNt dEE
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So, the total transmitted energy in PFSA technique will be 
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Finally, we have the total transmitted energy as 
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where Np is calculated as the number of slots multiplied by the number of successful 

packets per slot.  

 

The number of slots in the PFSA protocol is (Howlader 2009) 

(5.50) 
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and the number of successful packets per slot is 59.1  (Howlader 2009). 

 

Thus, the final expression of the total number of packets is 
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For the case in which CV=0.1, the performance factor, β (the product of the CV and 

the normal percentile, Z, which is chosen to be 2.576 with the   constant at 0.01), is 

0.2576. 

 
So, the total number of packets (for F=100 (used in (Howlader 2009))) is 

159  where; 
15900

5188.245  N
N

Np

  

Thus, for lower numbers of nodes (less than 159), Np will be fixed at the value with 

N=159.  

5.8.3.4 Transmit energy required in GT protocol approach 

It is known from (Howlader 2009) that, in the GT protocol technique, to obtain 

estimations with a certain accuracy requires a certain number of packets. It is also 

known that each node transmits one packet in a probe (Venkitasubramaniam 2004; 

Budianu 2006). In this technique, again the energy required for a node to transmit the 

wth packet to a distance, dw, is defined from (Howlader 2011; Bhardwaj 2002) as 

 
k

wppwt dEE p

 where ppE  is the energy per packet, the value of which is the same as in the PFSA 

protocol, i.e., J/packet. 1012.1 16ppE
 

(5.51) 
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Thus, the transmitted energies required for the 1st, 2nd, …, Np
th packet to transmit to 

distances d1, d2, …, 
pNd respectively are

  k
ppt dEE 1p1 

 k
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 
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So, the total energy will be 
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Finally, we have the total transmitted energy as
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where Np is calculated from the number of slots multiplied by the number of 

successful packets per slot.  

 

The number of slots in the GT protocol is (Howlader 2009) 
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and the number of successful packets per slot is about 4 (Venkitasubramaniam 2004).  

 

Thus, the final expression for the total number of packets is 
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For the case in which CV=0.1 same as CC and PFSA techniques), the performance 

factor, β (the product of the CV and the normal percentile Z which is chosen to be 

2.576 with the   constant at 0.01), is 0.2576. 

(5.52) 
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Therefore, the total number of packets is

   

  NNNp  86.7
2576.01ln2576.0
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5.8.3.5 Distance estimation in protocol technique 

In the protocol techniques, the number of distances indicates the number of packets. 

If, for a N node estimation with u  probes puN  packets are needed, the number of 

packets per probe is u
N pu  and, in each probe, a node can transmit only one packet, 

i.e., the number of transmitting nodes per probe is u
N pu . Thus, for all probes, the 

number of transmitting nodes is u
N pu

 
and their placements are uniformly random. 

So, we can consider that, whatever the number of nodes to be estimated, we need 

puN  nodes uniformly randomly distributed inside the estimation area.  

 

Thus, if we want to estimate N nodes, the number of distances will be puN  which are 

obtained using the formula for the distance between two points, 

     222
owowoww zzyyxxd   

where dw is the distance between the receiver and the wth node which are in positions 

 ooo zyx ,,  and  www zyx ,, , respectively. 

5.8.3.6 Comparison of required transmit energies in estimation techniques 

The required transmit energies are obtained from (5.47), (5.50), and (5.52) with the 

distribution of nodes in a 50 m diameter 3D sphere.  Results from comparisons of the 

proposed CC, conventional PFSA, and conventional GT techniques are shown in 

Figures 5.45 to 5.48. Figure 5.45 shows the transmit energy required (in joules) 

considering only the internal noise of the receiver. This transmit energy is the energy 

required to overcome the receiver’s threshold power using an appropriate SNR and 

(5.53) 
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attenuation in the channel. However, as previously discussed, the required large 

amounts of fixed energy in the protocol techniques for the transmitter and receiver 

are not considered. The top line indicates the cross-correlation (CC) method, the 

middle the Good Turing (GT) approach and the bottom the probabilistic framed 

slotted ALOHA (PFSA) technique. 

 

Figure 5.45 Comparison of required energies with only internal receiver noise 

 

Figure 5.46 shows the results from the comparison of the required transmit energies 

in joules considering both the internal noise of the receiver and the background noise 

of the channel. The top line indicates the CC method, the middle the GT approach 

and the bottom the PFSA technique. Again, only the energy required to overcome the 

attenuation, the receiver threshold and the channel background noise using an 

appropriate SNR, with no fixed power (which is required for the protocol techniques) 

are considered. 

 

Figure 5.47 shows the results from the comparison of the virtual transmit times for 

the same power used in the CC method when applied to the conventional methods. 

The top line indicates the CC method, the middle the GT approach and the bottom 

the PFSA technique. These are not the actual estimation times but provide 

suggestions as to what they would be if the same power was applied for estimations 

in all techniques. 
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Figure 5.46 Comparison of required energies with both background and 

internal receiver noises  

 

 

Figure 5.47 Comparison of equivalent times considering same power used in all 

techniques 

 

The actual estimation times were compared in Section 5.8.2. Figure 5.48 shows the 

results from one such comparison with the power being different for each method. 

The top line indicates the GT method, the middle the PFSA approach and the bottom 

line the CC technique. 
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Figure 5.48 Comparison of actual times required with different actual powers 

5.8.3.7  Conclusion 

It can be seen from the above comparisons that the actual estimation time required is 

improved significantly in the proposed technique. This will be very helpful for 

arriving at quick decisions about the number of nodes needed for proper network 

operation and maintenance. However, the required transmit energy is higher in the 

proposed technique because all nodes transmit for the entire estimation time whereas, 

in the protocol methods, fractions of nodes transmit for fractions of the whole 

estimation times. It can be noted that the original estimation energy in the protocols 

will be very high as they require large amounts of extra power in their transmitter 

and receiver circuitries. 

5.8.4 Results and discussion 

In this chapter, the proposed estimation technique is compared with two conventional 

protocol techniques in terms of four different performance parameters, a CV with a 

constant estimation time, an estimation time with a constant CV, the actual transmit 

energy with a constant CV, and the virtual estimation time assuming constant 
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transmit power to obtain constant CV. The results from comparisons of the CVs 

(Figure 5.37 keeping a constant estimation time of 41.67 seconds) of the proposed 

and conventional protocol-based techniques show that, when estimating 1000 nodes, 

the CVs are approximately 0.01, 0.0209 and 0.0443 in the proposed, conventional 

PFSA and conventional GT techniques, respectively, i.e., the proposed method can 

obtain a CV almost 52.15% and 77.43% lower than those from the PFSA and GT 

techniques, respectively. Similarly, the results from comparisons of estimation times 

(Figure 5.40 to obtain a constant CV of 0.1) of the proposed and conventional 

protocol-based techniques show that, when estimating 1000 nodes, the times are 

about 0.41s, 1.83s and 20.52s in the proposed, conventional PFSA and conventional 

GT techniques, respectively, i.e., the proposed method takes almost 77.6% and 98% 

less time than the PFSA and GT techniques, respectively.  

 

All results indicate the superior performance of the proposed technique without 

considering the actual transmit energy needed for estimation but, as the transmit 

energy is a vital factor for an underwater network, it is compared for a particular CV. 

It is shown in the results that, to estimate 1000 nodes, with a CV of 0.1, the proposed 

method requires about 1210500   J, the conventional PFSA method about 12102  J 

and the conventional GT method 121025  J. It can be seen that, although the 

transmit energy is comparatively very high in our proposed technique, it is still 

within the pJ range. 

 

Also, although the actual transmit energy and, thus, the transmit power only for the 

estimation, are comparatively very high in our proposed CC technique, they are in 

the pW range (shown in Figures 5.45 and 5.46) which is insignificant compared with 

the underwater transmitter power which is typically in the wattage range. Thus, this 

transmit energy for estimation is not very important in the number of node 

estimation. Moreover, the proposed method is very time-efficient compared with 

existing protocol techniques.  

 

It is important to note that the transmit power considered here is for the SNR, 

attenuation and threshold power of the receiver. But, as the protocol sends a signal 

into the modem as a bit stream, the modem has transmit electronics for digital 
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coding, modulation and filtering which require a fixed amount of power (typically in 

the wattage range (Benson 2010) for an underwater modem) as does the receiver, 

The protocol techniques require huge amounts of extra power to estimate the number 

of nodes compared with that considered above. In contrast, in the proposed CC 

technique, as the transmitter and receiver do not require any coding, decoding, 

modulation, demodulation or filtering, only the power considered for the SNR, 

attenuation and threshold power of the receiver is necessary. Therefore, the total 

estimation energy will be very high in the conventional techniques. 

 

Another performance parameter, virtual time (obtained from the required actual 

transmitted energy), is compared. Virtual time indicates the imagined time required 

when assuming the same power (used in the CC technique) for all methods. It is 

shown that, for a constant total transmit power of 12101219  W, the proposed CC 

technique requires 0.41 second, the conventional PFSA 0.0016 second, and the 

conventional GT technique 0.0205 second. Although this time is high in the 

proposed technique, it is not the actual time of estimation. 

 

Again, the proposed method can adjust the multipath effect such that a similar 

performance to that without a multipath is possible. Although the multipath effect 

degrades performances in terms of estimation or time (discussed in Section 3.12.6 in 

Chapter 3), in the protocols, no multipath is considered. Moreover, for the ETP case, 

estimations from the proposed technique are investigated but not those from the 

conventional techniques. In the case of an uncontrolled node (e.g., fish), estimation 

using the protocols is not possible whereas it is easy to estimate employing the 

proposed method in ETP case. 

 

Besides, in both the CC and PFSA cases, the CV and time are independent of N 

which is very efficient for networks with high numbers of nodes. The proposed 

method also has the advantage that it is useful when all the nodes are in operating 

condition for their usual purposes. 



 

269 
 

5.9  Conclusion 

An estimation error acts as a mirror of the performance of the estimation process. In 

this chapter, this was discussed by comparing the proposed CC technique with 

conventional protocol-based approaches. The error is expressed as a CV which is the 

ratio of the standard deviation to the mean of the estimated number of nodes. As the 

proposed estimation technique possesses significant statistical properties, this 

statistical tool is appropriate for performance analyses. The error is analysed in terms 

of the practical issues of fractional-sample delays, noise, etc. The results follow a 

similar trend to those for estimation, i.e., where the estimation is good, the error is 

less and vice versa, which proves the effectiveness of the proposed technique. When 

some cases are compared with the two conventional techniques proposed in (Budianu 

2006; Howlader 2009), their performance improve significantly, thereby indicating 

the superiority of the proposed technique. 
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Chapter 6  

Conclusion & Further Work 

 

6.1 Introduction 

It is important in a communication network to know the number of nodes and 

networks’ dimensionality for a number of practical reasons as network operation, 

maintenance. Cross-correlation, a statistical signal processing approach is applied for 

these purposes. Basically, the estimations are obtained using the statistical property 

of the cross-correlation (of two composite signals) function. Although several 

estimation strategies have been proposed (Budianu 2003; Budianu 2004; Budianu 

2006) using existing protocols in TCN, their use in UCN requires extreme 

modifications (as the performances of the TCN protocols heavily degrade due to the 

harsh underwater channel property for wireless communications) and only one such 

method has been proposed as yet. Moreover, literature on these estimation techniques 

indicates that the accuracy is dependent on the number of nodes except the only 

method proposed in UCN where the accuracy is almost independent on the number 

of nodes. Also the existing methods are time inefficient. In contrast, the cross-

correlation of signals contains various important information about signals and their 

sources, and is used in the literature extensively for various purposes other than the 

proposed here. Thus the motivation to use of cross-correlation for estimation of the 

number of nodes (which are the sources of signal in WCN), and network’s 

dimensionality. The proposed cross-correlation technique is suitable for any 

environment networks with more accurate estimation than with the conventional 

techniques. It is also time efficient. Initially, a basic approach with some practically 

reasonable assumptions has been investigated, and then the effects of those 

assumptions are investigated. Effects of possible practical issues such as long 

propagation delay, fractional part of samples, multipath, signal length, noise are 

discussed and analysed. Error in estimation of the number of nodes is investigated 
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with both theoretical and simulated analysis. The proposed method is compared with 

the conventional protocol techniques that demonstrate the superior performance of 

this technique to protocol-based methods. The thesis includes an initial verification 

of the performance of the proposed techniques and suggests other issues for future 

verification. 

6.2 Future directions 

The proposed method is a new technique in this area of research.  It therefore 

requires considerable research as well as field work to implement the proposed 

method practically to estimate the number of nodes and network dimensionality. 

Within the limited scope of this thesis, we have provided some estimation techniques 

to estimate the number of nodes and network dimensionality with detail analysis and 

recommendation for some major works are left here as the future directions for the 

researchers in this area of interest. These include the wide area of the method 

applications, consideration of arbitrary signal strength, further estimation technique, 

and practical implementation. 

6.2.1 The proposed CC technique can be used in networks in any 

environment. 

Although this thesis only analyses the estimation techniques in underwater 

environments, the technique is equally applicable for any environment, underwater to 

space and for any network such as wireless sensor networks to any communication 

network (for example RFID system, sound-making animals or vehicles etc.). The 

process of estimation will be similar with only the difference in parameters used such 

as channel bandwidth, signal (electromagnetic, acoustic etc.) used, speed of signal 

propagation, dispersion factor, absorption coefficient etc. If one uses acoustic 

communication in terrestrial network, the speed of propagation will be about 330 m/s 

instead of 1500 m/s underwater. Moreover dispersion factor for electromagnetic 

signal is varied from 2 to 6 with typical value 4 in TCN, and 6 in UEN. The speed of 

propagation of electromagnetic waves is 8103 m/s in TCN, whereas in UEN it is 

around m/s1033.3 7 . Typical values of absorption coefficient (Howlader 2009) is 0 
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dB/m for TCN, greater than 1 dB/m for UEN and between 0 and 0.5 dB/m in UAN. 

According to the used bandwidth, the sampling rate requires to change. The proposed 

technique is equally suitable for all environments using the appropriate parameters. 

6.2.2 Random transmitted and received power (RTRP) case 

In this thesis, the proposed techniques are investigated in two cases: ERP and ETP. 

In a practical network, another situation might arise where signals are transmitted 

(and received) with arbitrary strength. Investigating such cases might be helpful to 

estimate the number of nodes in any network, even a ‘network’ of fish. Although it is 

considered that a school of fish such as croakers make similar sounds where it is 

helpful to assume the equal transmitted power (ETP) case, it would be more realistic 

to obtain estimation with the assumption of random transmitted powers. The 

estimation will be similar to the ERP and ETP cases, except that the transmitted 

signal strengths will be random and the received signal strengths will be the result of 

the distance-dependent attenuation multiplied by those random transmited strengths. 

The process has been briefly described here for future work. 

 

Figure 6.1 Distributions of underwater network nodes in 3D space 

 

Recalling the transmitter receiver system of Figure 3.1 (b) at Figure 6.1. Consider 

that N1 emits an infinite long signal, A1S1(t), where A1 is its random strength. Then, 

the signals received by H1 and H2 will, respectively, be:  

)(A)( 11111111
  tStSr  (6.1) 

and  
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)(A)( 12112112
  tStSr                                      

        (6.2) 

where the symbols indicating there usual meanings discussed in Chapter 3. 

 

Similarly, the received signals from the second node are: 

)(A)( 21221221
  tStSr                                                        (6.3) 

and 

)(A)( 22222222
  tStSr                                                        (6.4) 

 

Then, for the third node: 

)(A)( 31331331
  tStSr                                                        (6.5) 

and 

)(A)( 32332332
  tStSr                                                        (6.6) 

 

Thus, for the Nth node, they are: 

)(A)( 111 NNNNr tStS
N

                                                        (6.7) 

and 

)(A)( 222 NNNNr tStS
N

                                                       (6.8) 

 

Summing (6.1), (6.3), (6.5) and (6.7), the total signal at sensor H1 is: 
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Denoting the total signal at sensor H1 by )(
1

tS
tr  

gives: 
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Similarly, denoting the total signal at sensor H2 by )(
2

tS
tr

 gives: 
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Thus, the final CCF between the signals at the sensors is:  





 dtτtStSC

tt rr )()()(
21

                                       (6.11) 

which takes the form of a series of delta functions as it is a cross-correlation of two 

signals which are the summations of several white Gaussian signals. 

 

Thus the CCF expression will be similar as (3.16) as shown in the following 

expression (6.12), but the strength of deltas will be different not only with the 

distance dependent attenuations but also with the random signal strengths. 
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


b

i
iiPC

1

                                                 (6.12) 

Using this CCF, the estimation parameters of the number of nodes can be obtained. 

Though it might not follow exactly the theory developed in Section 3.7.1 of Chapter 

3, proper scaling as in ETP case might give the proper estimation. Thus the works 

done in ERP and ETP cases are equally possible in RTRP case as well but due to 

limited time it has been left for future works. 

6.2.3 Estimation using more than 2 sensors 

These estimation techniques might be performed with an array of more than two 

elements. In that case, the cross-correlation between possible equal distant sensor 

pairs are performed to get the estimation parameter R and then average them to get 

better R closer to the theoretical, which might give better performance in estimation 

of the number of nodes and network dimensionality. Actually, this technique is 

similar as with more than one probe. Thus if we get two set of CCF, it is similar as 

the CCF in 2 probe with only two sensors, and the performance parameter CV will 

be one on square root of 2 times less than that with the one CCF. Thus one can 

improve the performance of this estimation technique with more sensors instead of 

using more probes. Use of more probes need more time, but more sensors require 

only the time of one probe. Thus we can obtain a time and error efficient method of 

estimation, though it costs extra but reasonable charge for the sensor itself. Several 
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placements of 3 sensors in an estimation system have been provided in Figure 6.2. It 

can be seen from the figures that for the distribution of sensors in (a) and (b) we will 

get two R with same b and for (c) three R with same b. Averaging of these R from a 

particular configuration gives an R closer to the theoretical. This improves the 

estimation performance.  

 

(a) 

 

(b) 

 

(c) 

Figure 6.2 Distribution of nodes and sensors to get (a) two set of CCF (1), (b) 

two set of CCF (2), and (c) three set of CCF 
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6.2.4 Practical implementation 

The proposed method has been analysed theoretically and by simulation with 

considering almost all dominant practical issues. Field tests are required to validate 

the theory and simulation and to obtain the real world implementation. Current 

underwater nodes are very expensive. Though it is possible to implement practically 

after some field tests but due to the lack of means and time practical estimation is not 

performed yet.  

6.2.5 Effect of Doppler shift 

The Doppler effect is one of the important practical issues in underwater acoustic 

networks. This effect sometimes compresses and sometimes spreads the frequency of 

the received signal according to the movement of the source and receiver moving 

towards or away from each other.  

 

The generalized expression of the received frequency with the Doppler effect is: 
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where,
rPS and 

tPS are the receiver and transmitter speed. If the movement of the 

transmitter and receiver are very slow with compared to the speed of signal 

propagation, the (6.13) can be approximated as: 
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where, 
rtPS is the difference of 

rPS and 
tPS . 

 

Spreading of a signal requires more time to reach the sensors. So it requires more 

time and energy for estimation. To investigate the estimation performance with 

Doppler effect, the frequency of the received signal has to be adjusted with the above 

expression. 
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6.2.6 Estimation where sensors are not at the centre of the network 

It is assumed in the whole thesis that sensors are placed in the centre of the network. 

This helps to get proper shape of the CCF, which in turns help to get estimation 

parameter, R as theoretical. If the sensors in the centre, this gives a uniform binomial 

distribution of the deltas in the whole CCF. But in case of sensors not in the centre, 

though the individual bins are occupied by the binomially distributed deltas (as the 

signals are Gaussian), it is not uniform for all bins. Thus it is not possible to use 

 
 CCF

CCF




directly in that case to obtain the estimation parameter. Instead we have to 

obtain the estimation parameter in the way discussed in Sections 4.3 and 4.4 of   

Chapter 4. 

6.2.7 Distribution of nodes being sufficiently non-random 

The shape of a CCF depend not only the sensors position at the network but also on 

the placement of the nodes. Uniform random distribution of nodes with sensors at the 

centre of the network gives the proper shape of the CCF. If we choose the 

distribution other than random the individual cross-correlations will give delta 

function but the shape of CCF will be changed. So the estimation parameter will be 

changed, and deviated from the theoretical values. Thus again it is not useful to use 

 
 CCF

CCF




directly in this case to obtain the estimation parameter. Instead we have to 

obtain the estimation parameter in the way discussed in Sections 4.3 and 4.4 of 

Chapter 4 similarly as for the changed sensors position. 

6.2.8 Estimation with Non-Gaussian signals 

The Gaussian nature of the signals ensures the delta function in the bins of CCF. 

Similar delta functions are possible from delta signal as well as from the signal 

which fulfils the Gaussian property. If the signals are non-Gaussian we will not get 

only the desired peaks, we will get some undesired peaks as well in the CCF. This 

may degrade the estimation performance or require additional manipulation to match 
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with the theoretical results . To show the effect some simulated results are shown as 

follows with the lognormal signal. It shows that the CCF is giving a desired peak in 

the desired position but other bins are occupied by almost a constant peak less than 

the desired peak. Thus if we want to get estimation parameter from this CCF directly, 

it will give erroneous result.  

 

However, if we manipulate the CCF as we subtract the constant peaks from the CCF, 

we will get only the desired peak. So we will get the CCF with only the desired 

peaks. Now obtaining the estimation parameter gives similar result as with Gaussian 

signal. Thus if the statistical characteristics of the signal is changed, to get the 

estimation, it requires proper manipulation of the CCF, sometimes it might not 

possible at all to get the estimation.  

 

 

Figure 6.3 CCF versus b with a source of lognormal signal (a) before 

manipulation; and (b) after manipulation   
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6.2.9 Effect of bandwidth 

Channel bandwidth restricts the signal bandwidth which might affect the estimation 

performance. The reason is that because of limited bandwidth, we will get sinc 

function (Alam 2009) instead of delta function of infinite band signal. So it will give 

undesired peaks in the bins. So the CCF is corrupted as well as the estimation. To 

show the effect of BW, a 10 kHz (lowpass is better in underwater to avoid unwanted 

high frequency attenuation) Gaussian signal is used in the simulation instead of 

infinite BW signal. The ratio of standard deviation and mean of CCF for this finite 

BW case is obtained and denoted by RfiniteBW and for infinite BW case RinfiniteBW. 

Now the ratio of that two R is obtained and plotted against N in Figure 6.4. It can be 

seen in the figure that RfiniteBW is almost the constant multiple of RinfiniteBW and the 

mean of that constants  are 0.8093 for this case.  

 

Figure 6.4 Ratio of RfiniteBW and RinfiniteBW 

 

Figure 6.5 R of CCF 
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Now, multiplying theoretical infinite BW R by this mean gives the theoretical 

approximation of the finite BW R which is shown in Figure 6.5 of the previous page. 

To make the figure more clear, in Figure 6.6 and 6.7, separate plots are provided for 

infinite and finite BW cases.  

 

 

Figure 6.6 R of CCF in separate plot 

 

Figure 6.7 R of CCF in separate plot with less points  
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It is shown that the scaling is good enough to get estimation in finite BW case as in 

infinite BW case. As the RfiniteBW is a constant multiple of RinfiniteBW, the power 

(which affects the CV) of RfiniteBW in estimation expression is not changed. So the CV 

is not affected by the BW (10 kHz). Thus from intuition it can say that no problem 

will occur with the BW greater than 10 kHz but we have to check whether it is 

affected or not with the BW less than 10 kHz.  

6.2.10 Effect of shape of the network 

Shape of the network is another factor which might affect the formation of CCF and 

thus might affect the estimation performance. It is seen in the dimensionality 

estimation, how the shape of a network affects the estimation process. Based on that 

analysis, we can describe the estimation process for the other shapes. 

6.2.11 Effect of non-Gaussian noise 

Performance of estimation is affected by the both receiver internal and channel 

background noises. It is shown that both noise sources have similar effect and detail 

is investigated adding internal noise of the receiver. It is assumed that the noises are 

additive Gaussian in nature. Internal noise of the receiver is the thermal noise and 

Gaussian assumption is not a problem. Due to the random, large, and undetermined 

nature of sound sources, Gaussian distribution might be the assumption (Urick 1983), 

but practically background noises might not follow the exact Gaussian properties 

(Llor 2009). This non-Gaussianity of the noises might affect the estimation 

performance. To show the effect it requires to use exact expressions (Coates 1989) of 

the background noises or the practical underwater noise in the simulation process, 

which are left for the future work. 

6.2.12 Effect of more than two reflected path 

It is shown in Section 3.12 of Chapter 3 that one can estimate the number of nodes 

properly in a multipath environment. This description was described only for one and 

two reflected paths, but in practical environment there might be such situation of 
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more than two reflected paths. However, the similar process can be extended for any 

number of paths, which will be very helpful in estimation in large number of 

multipath environment.  

6.2.13 Effect of variable propagation delays 

It is assumed in the whole thesis that the propagation speed of sound wave is 

constant at 1500 m/s. But in a real environment, it varies between 1450 and 1540 m/s 

(the typical speed is taken as 1500 m/s) according to the properties of water and 

depth of the sea. This low and variable speed makes long and variable propagation 

delay, which might effect on estimation process. The underwater sound propagation 

speed is expressed empirically as (Brekhovskikh 1991): 

 

   dsS f 016.03501.034.100029.0055.06.42.1449 32
P    

where,  is the temperature in Co and sf is the salinity factor . 

 

Though the long propagation delay is considered in the estimation process, the effect 

of variable propagation delay is still not considered. But for practical implementation 

of the technique, it is necessary to investigate the effect by using the proper 

propagation speed from the above expression in the estimation process. 

6.2.14 Effect of N on CV of estimation. 

It is shown in the results that error in estimation of the number of nodes is 

independent of N. It is again shown that CV is dependent on b as 
b

1
CV  . Thus, if 

b is increasing the CV is decreasing. But it can be seen in Chapter 5 that, CV is not 

decreasing after a certain b (=239) for a particular N (=32). This can be explained as 

follows. The CV will be minimum when each delta for the nodes occupy separate 

bin. As the delta placement is binomially distributed, this will need enough b (large 

enough with compared to N) to get one delta per bin. So definitely there will be lots 

of empty bins. But after the required b for a certain N, if b is further increased, it does 

not help to get better CV. Besides, empty bins are increasing and if the system have 
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some undesired delta (as in the case of smaller NS ) in the empty bins it will degrade 

the performance of the process. Now if N increases, the required b increases to get 

the minimum CV. Thus CV is affected by the N. But when the CV reaches again at 

b

1
CV   for a particular N, it is again independent of the number of nodes beyond 

this N.    

6.2.15 Further works on dimensionality estimation 

Estimation of dimensionality has been investigated only for three fundamental 

structures of 1D, 2D, and 3D networks. It is assumed that in 1D the nodes are placed 

on a straight line, in 2D on a circle, and in 3D inside a sphere. But the nodes in the 

real networks might place in different shape beyond the fundamental three. Although 

the proposed method can work in those networks, they require more investigations 

and might require some modifications of the proposed estimation expressions. This 

thesis considers only the ERP case for dimensionality estimation. As the other (ETP, 

RTRP) cases in dimensionality estimation requires further work, they are left for the 

future work. The proposed dimensionality estimations uses 11 bins in the cross-

correlation process for the ease of calculation. In Chapter 3 and 5 the effect of the 

number of bins, b, on the node estimation is discussed properly. It shows that until a 

certain number of bins the performance of the estimation improves, after which the 

performance decays. This cross-correlation process of dimensionality estimation 

might have the similar performance and the analysis is left for the future work. 

Besides all other further works in estimation of the number of nodes will equally 

require for dimensionality estimation because both estimations are using similar 

cross-correlation approach.  

6.3 Conclusion 

A novel and unique number of networks’ node and dimension estimation using 

cross-correlation is proposed with detail analysis which is equally applicable in 

networks of all environments. The information from this estimation is useful at any 

point in time from initial formation of the network to network operation by providing 
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network maintenance.  The process might be used as a stand-alone or a concurrent 

method with other purposes as DOA, TDOA estimation etc. Due to lack of means, no 

field experiment is done yet but extensive simulation and analysis are provided. It 

can be seen from the results that the proposed methods are sufficiently accurate and 

robust to be used in any type and size of network. Time required and error in 

estimation is compared with those of the conventional methods, which prove the 

superiority of the proposed technique. Although required transmit energy is higher in 

the proposed technique than in the conventional techniques, the energy range is very 

low with respect to the total energy of the nodes.  
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Appendix A  

Obtaining receiver internal noise and 

channel background noise 

 

To obtain the strength of the internal noise of the receiver and channel background 

noise, two experiments were conducted by our research group (Underwater Lab 

group, SEIT, UNSW@ADFA, Australia). For internal noise of the receiver, the 

experiment was conducted in our lab tank, whereas, for the channel background 

noise, the experiment was done at Jervis Bay, NSW, Australia in April 2010. In the 

experimental set up of the later, a hydrophone was deployed underwater at the depth 

of about 6 m from the surface. Since the strength of noise is very low, a 30dB 

preamplifier was used to amplify the noise before recording. 50 minutes of data was 

recorded at a sampling rate of 96 kSa/s. Data was recorded at 1 km away from the 

shore. The experimental setup is shown in Figure A.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Experimental setup to obtain the ocean background noise 

 

To obtain the internal noise of the hydrophone, it was deployed in noiseless water in 

our laboratory tank as shown in Figure A.2.    
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Figure A.2 Experimental setup to obtain the internal noise of the hydrophone 

 

Obtained power spectrums of the noise fields recorded at two sensors are shown in 

Figure A.3. It follows almost a 1/f distribution which is depicted in the figure. The 

ocean background noise is indicated by the blue colour and internal noise of the 

receiver by the red colour. It can be seen from the results that the ocean background 

noise power is about 10 to 25 dB more compared to the internal receiver noise. 

Voltage level of internal noise is calculated from this power spectrum (assuming flat 

power spectrum at -170 dB) , which is Hzin BW nV/16.3 . Using this value with 

proper BW and Boltzmann constant, the noise temperature is obtained as 725K.  

 

Figure A.3 Power spectrums of noise from the experiment 
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Appendix B  

List of Symbols 

 
Some symbols may be used to denote more than one entity, but their uses are clearly 

defined in the context. Common symbols used in this thesis are listed below.  

 

Sym
bols 

Meaning Sym
bols 

Meaning 

  Signal attenuation r  Relative permeability 

ij  Attenuation in the direct signal 
travelling from thi node to thj receiver 

s  
Sample mean  

mij  Attenuation in the reflected signal 
travelling from thi node to thj receiver 

 Normalised offered load  

  Accuracy parameter in protocol   Effective normalised offered 
load 

 .  Dirac delta function XY  Correlation coefficient between 
X and Y random variable 

i  Dirac delta at thi bin  Standard deviation of a random 
variable 

r  Relative permittivity 
s Sample standard deviation 

  Probability of error in estimation in 
protocol 

p
 

Population standard deviation 

k  Power of  1b in the expression of 

simulated R with dispersion factor k

 Time delay 


 Capture constant 

ij  Time delay for the signal of thi
node to the thj receiver 

  Number of slots  
mij  Time delay for the reflected 

signal of thi node to the thj
receiver 

c  Total collided slots  Angular frequency 

GT  
Number of slots in GT protocol  Throughput 

PFSA
 

Number of slots in PFSA protocol a Absorption coefficient 

  Signal wavelength b Number of bins 
  Mean of a random variable c Constant of proportionality 

0  Mean of the number of empty slots 
waterc

 

Speed of electromagnetic wave 
underwater 

p  
Population mean d Path length  
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DBSd  Distance between receivers 
jp
 Probability of success for the thj

node i.e. trial 

ijd  Path length between thi node from 
thj receiver 

ipm  Percentage of reflected signal 
with respect to total signal in thi
bin 

jd  Path length between interfering node 
and receiver in capture 

ipm2  Percentage of reflected signal 
with respect to total signal in thi
bin in the multipath case of one 
direct and two reflected path. 

mcd  Path length with capture q Probability of failure to occur 

maxd  Maximum range s Slope of a straight line 

mijd  Path length of indirect signal of thi
node to the thj receiver 

as  Shipping activity factor 

mind  Minimum range 
ks  Slope of the straight line 

approximation of R versus N
plot in log-log scale with 
dispersion factor k  

td  Path length between transmitting 
node and receiver 

t Time variable 

wd  Path length of wth node or tag from 
the receiver in protocol 

ix  thi sample of a signal x  

Die
 Deviation in thi bin off observed 

value from the theoretical value of 
D dimensional network  

iy  thi sample of the signal y  

f  Signal frequency w   Wind speed 

)(dg
 

Cumulative distribution function 
nB  

Packet size in number of bits 

0h  Number of slots without having any 
transmission 

RB  Bit rate 

1h  Number of slots with having 
transmission 

 C  Cross-correlation function 

k  Dispersion factor  iC CCF for thi node 

0m   Number of empty slots 
rateC  Collision rate 

1m   Number of singleton slots 
ratioC

 

Collision ratio 

cm1  Number of singleton slots with 
capture 

RC  Capture ratio 

cm  Number of collision slots D  Spatial dimensionality of WCN 

n  Number of trials D̂ Estimation of D  

in
 Number of trials placed in the thi bin  E  Expected value of a random 

variable 
p  Probability of success 

pbE  Energy per bit 

ip
 Probability of success in the thi bin ppE  Energy per packet 
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tE  Total transmitted energy 
1pN  Number of packets appear 

exactly once in pN  

tGTE  Total transmitted energy in GT 
protocol technique 

dpN  Number of distinct packets 

tnE  Transmitted energy from thn node sN  Signal length  

tpwE  Transmitted energy in protocol for 
thw node  

nSN  Signal length for thn node  

tPFSAE

 

Total transmitted energy in PFSA 
protocol technique 

iP  Peak of dirac delta in the thi bin 

F   Frame size 
jP  Peak of Dirac delta for thj node 

0H  Number of missing mass 
diP  Peak of delta in the thi bin for 

the direct signal in multipath 
case 

0Ĥ  Estimation of 0H  riP  Peak of dirac delta in the thi bin 
for the reflected signal in 
multipath case 

 12I
 

Normalised cross-spectral density 
dsiP  Peak after deduction of reflected 

peak from the total peak in thi
bin 

pL  Path loss 
iP2  Peak of dirac delta in the thi bin 

for one direct and two reflected 
signal in multipath case 

M  Total probability 
d2iP  Peak of dirac delta in the thi bin 

only for direct signal in 
multipath case 

0M  Random variable of number of 
empty slots without capture 

r2iP  Peak of dirac delta in the thi bin 
only for two reflected signal in 
multipath case 

1M  Random variable of number of 
singleton slots without capture 

ds2iP  Peak after deduction of reflected 
peak from the total peak in thi
bin in the multipath case of one 
direct and two reflected path. 

cM  Random variable of number of 
collided slots without capture 

tQ  Received power from the 
transmitting node in a capture 

c1M  Random variable of number of 
singleton slots with capture 

jQ  Received power from the 
interfering node in a capture 

N  Number of nodes or tags to be 
estimated 

nQ  Receiver threshold power 

N̂  Estimation of N  RQ  Received power 

collN  Number of tags in a collided slot 
nRQ  Received power by the receiver 

from thn node 

pN  Number of packets TQ  Transmitted power 

0pN  Number of packet that do not appear  R  Theoretical estimation parameter 
(ratio of standard deviation to 
the mean of CCF) 
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 kRb

 

R with number of bins, b and 
dispersion factor, k   

  

DiR R in i dimensional network   

DTiR
 

Theoretical R in i dimensional 
network 

  

DSiR
 

Simulated R in i dimensional 
network 

  

kR  Simulated estimation parameter 
(ratio of standard deviation to the 
mean of CCF) with dispersion factor 
k  

  

 iS  Signal from thi node or source    

 
ijrS

 

Received signal in thj receiver from 
thi node 

  

 
inS

 

Noise signal received in thi receiver    

PS  Speed of acoustic wave propagation   

RS  Sampling rate   

nRS  Sampling rate for the signal from thn
node 

  

 
tjrS

 

Total received signal in thj receiver    

T Estimation time   

ERPT Estimation time in ERP case   

ETPT Estimation time in ETP case   

CCT  
Estimation time in CC technique   

PFSAT

 

Total time in PFSA protocol 
technique 

  

GTT  
Total time GT protocol technique   

iDV
 Percentages of deltas in thi bin of 

CCF from D dimensional network 
  

23iV  Ratio of 2iV and 3iV    

u  Number of probes or iterations   
X  A random variable   
Y  A random variable   
Z  Percentile of unit normal distribution   
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Appendix C  

Used Abbreviations 

 
ADC Analog to Digital Converter 
AOA Angle of Arrival 
AUV Autonomous Underwater Vehicle 
AWGN Additive White Gaussian Noise 
BPSK Binary Phase Shift Keying 
BW BandWidth 
CC Cross-Correlation 
CCF Cross-Correlation Function 
CDF Cumulative Distribution Function 
CV Coefficient of Variation 
DBS Distance Between Sensors 
DOA Direction of Arrival 
EM ElectroMagnetic 
EO Earth Observation 
ERP Equal Received Power 
ETP Equal Transmitted Power 
FCS Frame Check Sequence 
FSA Framed-Slotted ALOHA 
GEO Geostationary Earth orbit 
GF Green’s Function 
GT Good-Turing 
ISI Inter Symbol Interference 
LEO Low Earth Orbit 
MAC Media Access Control 
MANET Mobile Ad-hoc NETwork 
MAP Mobile Access Point 
MEO Medium Earth Orbit 
OCV Optimum CV 
PFSA Probabilistic FSA 
PW Pulsed Wave 
QT Query Tree 
RF Radio Frequency 
RFID Radio Frequency Identification 
RSDM Ratio of Standard Deviation to the Mean 
RTRP Random Transmitted and Received Power 
SCN Space Communication Network 
SENMA Sensor Network with Mobile Access 
SNR Signal to Noise Ratio 
SWCN Space Wireless Communication Network 
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SWSN Space Wireless Sensor Network  
TCN Terrestrial Communication Network 
TDGF Time Domain Green’s Function 
TDOA Time Delay of Arrival 
TWCN Terrestrial Wireless Communication Network 
TWSN Terrestrial Wireless Sensor Network 
UAN Underwater Acoustic Network 
UCN Underwater Communication Network 
UEN Underwater Electromagnetic Network 
UGCN Underground Communication Network 
UGWCN Underground Wireless Communication Network 
UGWSN Underground Wireless Sensor Network 
UUV Unmanned Underwater Vehicle 
UWASN Underwater Wireless Acoustic Sensor Network 
UWCN Underwater  Wireless Communication Network 
UWSN Underwater Wireless Sensor Network 
WCN Wireless Communication Network 
WSN Wireless Sensor Network 
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