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Abstract

In a large-scale wireless sensor network, it is often desirable to count the number of
nodes in the network, or the number of nodes that are within communications range
of a particular node. In such networks, nodes are deployed for a wide variety of
military and civilian applications. These applications require a balance among the
number of operating nodes, energy efficiency, and the lifetime of the network. The
number of operating nodes is a very crucial factor for the networks. However, the
number of operating nodes can vary with time due to various artificial as well as
natural reasons (for example, some nodes might fail and some could be damaged
because of fouling and corrosion, or batteries might fail). It is therefore a matter of
great interest for a communication network to know how many operating nodes or
transmitters are available in the region at any point in time to ensure proper network
operation (such as routing), as well as to obtain optimum performance or to prevent
failure of the mission by network maintenance (such as replacement of faulty nodes).
Similarly, a concurrent estimation of the dimensionality of the network might also be
important for localising the nodes and estimating their number in a deployed
network. To date, techniques employed to estimate the number of nodes and
dimensionality have been based on some aspect of the communications protocol(s) in
use. The protocol technique can be very hard to implement in harsh environment
(e.g. underwater) due to the unavoidable capture effect, poor efficiency due to long
propagation delay, high path loss, etc. In this thesis, we propose a novel estimation
technique based on cross-correlation of random signals, in which the ratio of the
mean of the cross-correlation function to its standard deviation determines the
number of nodes. Within the limited scope of this thesis, we have provided some
estimation techniques to estimate the number of nodes and network dimensionality.
The proposed number of node estimation techniques also addresses a number of
practical issues in a digital receiver and channel, including fractional-sample delays,
multipath reception, noise etc. An error analysis is provided with comparison to
conventional protocol techniques that demonstrates the superior performance of this
technique to protocol-based methods. The thesis includes an initial verification of the
performance of the proposed techniques and suggests other issues for future

verification.
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Chapter 1

Introduction

It is often useful to know the number of operating nodes in a wireless communication
network (WCN), in which the nodes are deployed in different forms to cover small or
large areas of interest for a wide variety of personal and commercial applications. In
such a network, the number of operating nodes can vary with time due to the ad hoc
nature of the network, power failure of the nodes, or natural disasters. But, as a
network’s proper operation (including maintenance), optimal performance, useful
data collection depends on the number of operational nodes; it is a matter of great

interest to know that number at any point in time.

Similarly, a concurrent estimation of the dimensionality of the network might also be
important for localising the nodes and estimating their number in a deployed
network. Although there are several estimation techniques in the literature, they are
only suitable for some defined communication-friendly networks, such as ground-
based networks like radio frequency identification systems (RFIDs). Many existing
protocols cannot be used in networks in harsh environments (underwater,
underground, etc.) because very few of those investigated take into account the non-
negligible capture effect in these types of networks and, therefore, suffer from poor
performance due to long propagation delays and high path losses. Moreover,
protocols for estimating the numbers of nodes in WCNs also suffer from time
complexity, i.e., they take a long time for just a single estimation and, in most cases,

the estimation time increases with an increase in the number of nodes.

This thesis investigates estimation using cross-correlation, a signal processing
technique, to estimate the number of nodes in, and the dimensionality of, a WCN.
The cross-correlation of signals collected from two sensors contains information
about the number of nodes which is used as the estimation parameter. This proposed

signal processing approach greatly improves estimation performance and reduces



time requirements and protocol complexity. The fact that the required time is
independent of the number of nodes makes this approach very efficient for a dense

network.

The methods presented in this thesis may be applied to estimations in a large variety
of the networks. It might be applied in voice or data communication networks which
can be subdivided into: space communication networks (SCNs) such as the space
wireless sensor network (SWSN); terrestrial communication networks (TCNs), for
example, the terrestrial WSN (TWSN), the RFID system and the mobile ad hoc
network (MANET); underground communication networks (UGCNs) such as the
underground WSN (UGWSN); and underwater communication networks (UWCNs),
for example, the underwater WSN (UWSN).

The proposed method can be used to estimate the number of nodes in, and the
dimensionality of, a network in which the nodes (terminal equipment of WCNs) can
transmit any kind of signal, for example, sensors in WSNs, tags in RFID systems. It
might even be able to be used to estimate the number of fish in a school, based on
their acoustic signatures. Although the proposed signal processing technique is
equally applicable to any type of voice or data communication network, the UWCN
is emphasised because it presents many technical challenges and is of practical
importance due to the large underwater area (about 71% of the earth’s surface).
Basically, this estimation process will be the same for all types of networks as it
takes into account the appropriate signal characteristics (propagation speed, signal
length, sampling rate, propagation delay, path loss, etc.) required for networks in

different environments to reach their sensors.

Three possible cases of the transmission and reception of signals in a
transmitter/receiver system which might occur in the practical environment are: 1)
equal received power (ERP) in which a network protocol ensures by probing that the
signals received at each node will be equal in strength from all other nodes; 2) equal
transmitted power (ETP) in which the transmitted signal strength from all nodes will
be equal but the received signals strength will be different due to distance-dependent

attenuations; and 3) random transmitted and received power (RTRP) in which both
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signals are of random strengths. As our technique has major application in WSN:ss,
RFIDs, etc., in which the probing technique is easily applicable, the first case would
be sufficient for estimation. However, to make the estimation process robust, the
second case is also investigated while the third is beyond the scope of this thesis.
Although it is expected that experimental results will follow, as no field experiment
has yet been undertaken, we provide only theory and simulation. The results
presented in this thesis comprise a mix of theory and simulation. They represent a
starting point for the investigation of correlation-based estimation techniques, but it
is recognised that much further work is required before these techniques can be

applied in real networks.

This chapter briefly outlines the background to the proposed work (a brief
description of major WCNs and their importance), some practical signal propagation
issues regarding estimation in the applied field, the importance of the problem of
estimation, and the contributions of the proposed work. As the proposed method is
effective in all types of networks, the following section briefly outlines the

significance of different WCNSs.

1.1 Background

Recent advances in communications technology have produced WCNs in which
information exchange occurs among nodes without wires. WCNs may be roughly
classified by their geographical coverage area as: terrestrial (TWCN), space
(SWCN), underground (UGWCN) and underwater (UWCN). Of these, the TWCN is
the most dominant and covers almost the whole land area of the earth’s surface; for
example, wireless mobile phone networks are widely used for personal
communication and internet access. RFID systems have received much attention in
both academia and industry for applications such as monitoring and tracking objects.
Also, MANETSs, which are self-configuring networks of wirelessly linked mobile
nodes, have gained significant attention for establishing survivable, efficient and
dynamic communications for emergency rescue operations, disaster relief efforts and

military networks.



Apart from TWCNs, SWCNs are another major application of a WCN. The main
goals of the SWCN are earth observation (EO), telecommunication with space
vehicles, and missions of localisation from space. WSN technology can also be
deployed underground where applications might be voice communication within
underground environments (e.g., in caves or mines), or monitoring of soil conditions.
Moreover, nodes are deployed underwater in the forms of MANETs or WSNs. The
major applications of UWCNs are voice communication among divers, AUVs, etc.,
information collection from oceans, lakes, and rivers to observe and predict the
characteristics of the underwater environment which can help in pollution
monitoring, disaster prevention, undersea exploration, tactical surveillance. In this

section, some of the most important WCNSs are briefly discussed.

1.1.1  Mobile wireless telephone network (MWTN)

The last two decades have been the most dynamic in the history of TWCNs. Most
notably, cellular systems have experienced huge growth over the last decade and
there are currently about two billion users worldwide. Many people use wireless
cellular radio telephones, also known as cell phones, to stay in contact with
colleagues and clients. In such systems, wireless communications allow people
greater flexibility while communicating because they do not need to remain at a fixed
location, such as a home or office but, instead, can travel in a car or walk along a
street. Increasingly, people are using wireless devices for a variety of everyday
purposes, such as scheduling appointments, arranging meeting places, shopping for
food and agreeing on home video selections while in a video store. Wireless
communication devices are useful in places where communication services are only
temporarily needed, such as at outdoor festivals or large sporting events. These
technologies are also useful for communicating in remote locations, such as

mountains, jungles and deserts where a wire-based telephone service might not exist.

1.1.2  Terrestrial wireless sensor network (TWSN)

Recent advances in embedded system and communication technologies have pushed

a higher level of functionality into ever-smaller devices capable of sensing and
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providing wireless communication. Networks formed by these devices, known as
WSNs, have attracted a tremendous amount of research effort due to their huge
potential in both the military and civil domains. A TWSN consists of a large number
of sensor nodes, often in the order of thousands, placed close to each other and
spread across a geographical area. Each sensor node has a wireless communication
capability and some level of intelligence for signal processing and networking of the
data. WSNs may be ad hoc in nature, which implies that each sensor supports a
multi-hop routing algorithm so that several nodes may forward data packets to the

base station.

There are different types of TWSNs (for example, seismic, low sampling rate
magnetic, thermal, visual, infrared, acoustic, radar, optical and electromagnetic)
deployed for a variety of applications by observing the relevant decision-making
parameters (for example, temperature, humidity, vehicular movement, lightning
conditions, pressure, soil makeup, noise levels, presence or absence of certain types
of objects, mechanical stress levels on attached objects, speed, direction and size of

an object).

To date, TWSNs have been used to perform collaborative tasks in areas such as the
military, environmental research, the health sector, smart home appliances, industrial
processing and disaster relief. In military applications, sensor networks are used to
sense and obtain information about enemy movements, to characterise types of
attacks as nuclear, biological or chemical, to monitor friendly forces and equipment,

and for battlefield surveillance and targeting, etc.

Sensor networks are also employed to detect and monitor environmental changes in
plains, forests, etc. Some environmental monitoring applications are: investigating
conditions that affect different types of life in the earth; studying pollution and
precision agriculture; and for flood and bush fire detection. The Great Barrier Reef
Ocean Observing System (GBROOS) (Bainbridge 2009; Kininmonth 2004; Freitas
2009) uses a TWSN to monitor the environment near the Great Barrier Reef (GBR).

Habitat monitoring is another application of a TWSN; for example, researchers in



UNSW, Australia, proposed a sensor network to detect the existence of cane toads

(Shukla 2004; Hu 2009).

In the health sector, integrated patient monitoring, diagnostics, telemonitoring of
human physiological data, and the tracking and monitoring of doctors and patients
inside a hospital are major applications. Disaster (bush fire, earthquake, tsunami,
etc.) prediction is a very important application of a TWSN as it can provide prior
information about such events. The integration of electronics, sensors and wireless
communications has enabled the easy installation of TWSNs in industrial motor’s
condition monitoring, which saves the cost of deploying large numbers of traditional
wired monitoring systems (Lu 2005). The low cost, flexible, and rapid deployment
characteristics of these sensor networks form an ideal platform for industrial

condition monitoring systems (Lee 2008) .

Some other applications are: wireless traffic sensor networks for monitoring
vehicular traffic on highways or in congested parts of a city and detecting accidents;
wireless surveillance sensor networks for providing security in shopping malls,
parking garages and other facilities; and wireless parking lot sensor networks for
determining occupied and unoccupied spots. Other applications are the monitoring of
product quality, the construction of smart homes and offices, the monitoring of

disaster areas, automatic meter reading and facility management.

1.1.3  Radio frequency identification (RFID) system

An application of wireless communication is the RFID, a system that transmits the
identity of an object or person (in the form of a unique serial number) wirelessly
using radio waves. In recent years, RFID systems have received much attention both
in academia and industry for monitoring and tracking applications. They also offer a
promisingly affordable, cheap and flexible solution for object identification. Among
their applications, the localisation of objects and people, animal identification,
ensuring secure operations in dangerous environments, and facilitating electronic
payments and production control can be cited. Researchers believe that this

technology can be used to save money and lives, and even the environment. In a
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RFID system, there are two main parts: tags and readers. As the tags are most
important for proper information exchange, knowledge of their number is important

because of tag failure could render the whole identification process useless.

1.1.4  Space wireless communication network (SWCN)

Apart from TWCNs, space communications and commercial satellites are other
major applications of wireless communication infrastructure (Vladimirova 2008;
Colitti 2008). The main goals of a satellite are earth observation (EO),
telecommunication with space vehicles and positioning missions. There are three
different satellite systems which are positioned in accordance with the earth’s orbit:
LEO at roughly 2000 km, MEO at roughly 9000 km and GEO at 40,000 km. The
most common EO applications are: monitoring the environment and agriculture
regarding pollution, land, ocean surface and crop conditions, etc.; hazard and disaster
predictions of events such as floods, earthquakes and urban disasters; and

observations of borders, vehicles and activities for security and crisis management.

Traditional satellite missions using large satellite units are extremely expensive and
difficult to design, build, launch, operate and maintain. For that reason, groups of
smaller satellites (nano and/or pico) are scattered around the earth (Colitti 2008) to
achieve global coverage in order to achieve success in different applications; this is
the concept of a satellite sensor network (Krishnamurthy 2005). Although recent
advances in TWSN technology limit the use of commercial satellites, some are still
used due to their compelling features, for example, ubiquitous worldwide coverage,
especially in remote areas, entertainment broadcasts using hundreds of TV channels,

and high-quality digital radio offering audio transmission at near-CD quality.

1.1.5 Underground wireless communication network (UGWCN)

WCN technology can also be deployed underground where applications might be
voice communication (Sicignano 2010) within underground environments (e.g.,
caves and mines), or the monitoring of soil conditions by observing the parameters of

water content, mineral content, salinity, temperature, etc. UGWCN can be deployed

7



for a number of applications (Akyildiz 2006). This can be helpful in both agriculture
and the construction of buildings. Wireless sensors that operate independently using
a single-hop link to a base station are already being used for the monitoring of soil
conditions in sports fields (Akyildiz 2006). Another application is for security
purposes where sensors buried at a shallow depth can be used to detect movement
via pressure, vibration and/or sound. This may be useful for business and home
security as well as military applications. Although aboveground WSNs can be used
for this purpose, it is desirable for security applications that sensors are hidden. Also,
as a significant amount of infrastructure, including plumbing as well as electrical and
communications wiring, exists underground, sensors can be used to monitor
underground activity, for example, a plumbing leakage. With many miles of pipes to
monitor, wireless sensors allow for the quick and cost-efficient deployment of a
leakage detection system. UGWCNs can also be used to monitor the soil around
underground storage tanks such as those at a fuel station. Although it is challenging,
some researchers (Stuntebeck 2006; Akyildiz 2009; Bogena 2009) have tried

wireless communications underground to develop efficient UGWCN.

1.1.6  Underwater wireless communication network (UWCN)

Geographically, almost three-quarters of our planet is covered by water, of which
oceans account for almost 71% with the remainder being water reservoirs such as
rivers, lakes, dams and ponds. As nearly all the world’s habitation is encompassed by
water, if it is possible to use it as an efficient and reliable information communication
medium, this would be a very valuable achievement for the communications
industry. However, to date, very little communication coverage has been achieved by
researchers due to the lack of means rather than limited human curiosity. Although
underwater areas are naturally harsh to human exploration, in recent years, with
technological advancements in the communications industry and increased
knowledge of the reserves of natural resources underwater, research on UWCNs has
been attracting attention for military and commercial purposes. UWCNs include, but
are not limited to, UWSNs using acoustic waves (Quazi 1982; Sozer 2000) and
electromagnetic waves (Frater 2006). As underwater personal communication is very

limited and sensory application dominant, an underwater wireless acoustic sensor



network (UWASN), which is a more flexible form of communication in that

environment, is the main use of a UWCN.

The major applications of UWASNSs include, but are not limited to, the following
(Jiang 2008):

R/
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information exchange among nodes within the communication range of
the network, or outside the network with the help of a switch centre; for
example, underwater internet and voice communication among
submarines;

information collection from oceans, lakes and rivers which could improve
the human ability to observe and predict the characteristics of the
underwater environment;

surveillance, including reconnaissance, targeting and intrusion detection;
environmental monitoring: a UWASNs can monitor different types of
pollution, for example, chemical, biological, nuclear and oil leakage in
bays, lakes and/or rivers (Yang 2002), and might also be useful for
monitoring ocean currents and temperature changes in terms of global
warming;

underwater exploration: without any appropriate technological tool, this
is very difficult due to the high water pressure, unpredictable water
activities and vast size of an unknown area but an UWASNSs could be
such a tool;

disaster alleviation: remote UWASNSs can be helpful in the prediction of,
and preparation for, the results of undersea disasters, such as tsunamis
and ocean-bottom earthquakes, by issuing real-time warnings (Soreide
2004); and

underwater mine detection in which optical sensors are employed (Freitag

2005).

There exist a number of research groups who have used oceanic WSNs to study

underwater environments. One research group involved randomly distributed WSN

involving magneto-elastic sensors over a lake to measures the pH-values of the water



in order to determine whether the water is safe to drink (Ong 2004). Another group
have proposed a cost effective WSN for marine research to monitor water
temperature and salinity (Dunkels 2004) and the proposed theoretical model is
intended to be applied in an area where freshwater movements significantly affect
temperature and salinity of the sea water. Potential research works are also available
addressing several points of interests such as the development of middleware,
routing, security and localization of underwater nodes in WSNs (Blumenthal 2004a;

Blumenthal 2004b).

However, while terrestrial networks, in particular “smart dust” (Buettner 2008; Shwe
2009), emphasize low-cost nodes, dense deployments, and multi-hop and short-range
communications, today’s typical underwater wireless networks are expensive and
sparsely deployed (a few nodes placed kilometers apart). They communicate directly
with a base station and sometimes use underwater manned or unmanned vehicles. In
comparison with this common strategy, a nature-inspired approach, such as smart
dust in a TWCN, smart plankton (Anguita 2008a; Anguita 2008b) can address the

challenges and provide a roadmap for future generations of UWCN:ss.

1.2 Practical issues regarding estimation

As the approach proposed in this thesis is based on the cross-correlation of signals
received by two digital receivers from random signal sources, the estimation process
can be affected by some practical issues of digital receiver and signal propagation
through the channel such as propagation delay, path loss, background noise,

multipath propagation, internal noise of the receiver and fractional-sample delays.

Some dominant practical issues are discussed in this section. As in this thesis
UWCNs are emphasized, signal propagation issues are for the underwater

environment.

1.2.1  Signal propagation underwater

There are three possible physical waves (electromagnetic (EM), acoustic and optical)

used to carry communication signals in a UWCN, all of which have their advantages
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and limitations. Optical systems which use lasers are limited to very short distances
as the light is rapidly attenuated in water due to backscattering (Akyildiz 2005).
While an EM wave is a promising signal used in terrestrial communication, due to its
very high absorption rate in water because of its high frequency, EM waves can only
propagate over extremely short distances underwater (Che 2010). Instead, acoustic
waves, which can propagate over long distances (Sozer 2000), are used in practice.
Thus, although sound waves are of great interest for the transmission of information
in water, and acoustic communication is a promising underwater technique, there are
some limitations which require further work. Underwater acoustic communication
poses the limitations of long and variable propagation delays (Akyildiz 2005), high

path losses, strong background noises and multipath of signal propagation.

The following section briefly describes the fundamental physical characteristics and

critical issues for EM and acoustic wave propagation underwater.

1.2.2  Propagation delay in underwater acoustic network (UANS)

An EM wave’s propagation speed in air is considered to be the speed of light but, in
water, it is affected by the factor /¢, . , where &, is the relative permittivity and g,
the relative permeability. As, for the reasonable EM frequencies underwater, ¢, ~ 81

and z, =1, the speed of an EM wave underwater is ¢ ~ 3.33 x 10" m/s (Goh

2009). Although this speed is lower than that in air, as it is still very high, the
propagation delay of a signal from a transmitter to a receiver is negligible for an EM

signal.

On the other hand, acoustic signals travel underwater much more slowly than EM
waves. The typical value used for an acoustic transmission is 1500 m/s (Preisig 2006;
Lucani 2007; Wenli 2008). Limited bandwidth often leads to data delivery rate of
merely a few kbps. Moreover, the deployed area for UAWSNSs is much larger than
that for TWSNs which results in its propagation delay becoming significant. Thus,
the low data rate and long propagation delay in a UAWSN provide significant

11



challenges for networking concepts using RF radios with negligible propagation

delay developed for TWSNSs.

1.2.3 Path loss

To design feasible communication schemes for efficient application in UWSNS, it is
important to understand the characteristics of the underwater channel, one of the
most representatives being the high path loss which becomes severe as the carrier
frequency of the signal increases. Thus, an EM signal has much greater path loss

than an acoustic signal.

There are three possible causes of path loss in a channel: absorption, geometrical
dispersion and scattering. When propagated, wave energy can be transformed into
other forms, such as heat, and be absorbed by the medium; this is known as
absorption loss and is due to particular properties of a communication channel. The
relevant property for acoustic waves is inelasticity whereas, for EM waves, it is
electrical conductivity. In underwater communication, the cause of absorption loss is
the inelastic property of water for acoustic waves, and the conductivity of salty water

for EM waves.

Dispersion loss, also known as spreading loss, is due to the geometrical dispersion of
the signal in the communication medium. When an acoustic signal propagates further
away from its source, the wave front occupies an ever-increasing surface area.
Hence, the energy per unit surface area (i.e., the energy flow) consistently decreases.
For a spherical wave generated by a point source, the dispersion loss is proportional
to the square of the distance whereas, for a cylindrical wave, the loss is proportional

only to the distance.

Path loss is defined as (Howlader 2009):

L =d*a* (1.1)

p

where
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L, is the path loss which is a function of the distance between the transmitter

and receiver, d, and the signal frequency, f;
k is the dispersion factor; and

a is the frequency-dependent absorption coefficient.

The dispersion component typically depends only on distance, while absorption

depends both on operating frequency and distance.

The expression of path loss in dB is (Howlader 2009):

10log L, =-10klogd —10d loga (1.2)

On the right-hand side, the distance-dependent first term with the dispersion factor
represents the dispersion loss whereas the frequency-dependent second term
represents the absorption loss. It is shown in (1.2) that for a particular operating

frequency the absorption loss in dB is also a linear function of distance.

The expression (1.1) implies that the dispersion loss results from energy decay due to
propagation, with the decay proportional to d* and the absorption loss proportional

to a’, where a is an increasing function of frequency. Due to this frequency
dependency, an underwater acoustic channel is effectively considered as bandwidth-
limited (and not, like an RF channel, power-limited). This limitation occurs because,
in general, the low cutoff of the available bandwidth is determined by ambient noise
levels and the high point by absorption. Due to its distance dependency, the
absorption loss becomes more significant at longer distances and the effective

bandwidth decreases as the range increases.

The dispersion factor, k, describes the geometry of propagation, and its commonly
used values are k = 2 for spherical spreading, k = 1 for cylindrical spreading and k =
1.5 for so-called practical spreading (Stojanovic 2006a). (The counterpart of & in a
radio channel is the path loss exponent, the value of which is usually between 2 and

4, the former representing the free-space line-of-sight propagation and the latter the
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two-ray ground-reflection model.) Thorp’s formula is used to express absorption

coefficient as (Berkhovskikh 1982):

2 2
10loga =0.11 f > +44 A +2.75x107* 2 +0.003
1+ f 4100 + 1

where 10loga in dB/km and f'in kHz.

The absorption coefficient is plotted in Figure 1.1 (Stojanovic 2006a).
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Figure 1.1 Absorption coefficient, a(f)

1.2.4  Background noise

Another major factor of disturbance is background noise, also known as ambient
noise, which can be defined as the unwanted signal from unidentified sources in the
medium. Its distinguishing features are: it is due to multiple sources; individual
sources cannot be identified; and no one source dominates the received field.
Common sea surface noise sources include ships’ radiated noises, breaking waves
associated with ensuing bubble production, etc., and deep water noises, mainly from

marine mammals.

The ambient noise in the ocean comes from a number of sources as: turbulence,
shipping, waves and thermal noise, most of which can be described by Gaussian

statistics and a continuous power spectral density (Stojanovic 2006a). Due to the
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frequency dependence nature of the ocean ambient acoustic noise (Urick 1986), the
power spectral densities of the above four major noise components are expressed by
the frequency dependent empirical relations in (Coates 1989) as:
IOIOgUt(f)= 17-30log f;for f <10Hz
10logU, ()= 40+20(s, —0.5)+26log f
—60log(f +0.03); for 10 Hz < f <100 Hz
10logU, (f)=50+7.5w" +20log f

—401log(f +0.4); for 100 Hz < f <100 kHz
10logU,, (f)=—15+20log f;for £ >100kHz

(1.3)

where
U, ( f ) is the power spectral density of ambient noise due to turbulence in dB
re uPa per Hz and f'in kHz.
U, ( f ) is the power spectral density of ambient noise due to shipping in dB re
pPa per Hz and f'in kHz.

U,(f) is the power spectral density of ambient noise due to wind in dB re

uPa per Hz and f'in kHz.

U, ( f ) is the power spectral density of thermal ambient noise in dB re pPa

per Hz and f'in kHz.

s, 1s shipping activity factor, whose value ranges between 0 and 1 (Stojanovic

2006a) for low and high activity, respectively.

wis the wind speed in m/s

1.2.5 Multipath effects

Multipath propagation is the type of wave propagation in which a wave reaches a
receiver through multiple paths. An acoustic channel underwater is subject to
multipath propagation. In a shallow water channel, the acoustic waves travel through
a direct path and also bounce from the surface and the bottom which results in
multipath propagation. Although not as severe as in shallow water, there is still
multipath propagation in deep water. Multipath propagation creates signal echoes
which result in inter-symbol interference (ISI) in a communication system and its

effects are more severe underwater than in a ground-based system; for instance, in a
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cellular radio-based system, multipath spans only a few symbol intervals whereas, in
an underwater acoustic channel, it can span tens, or even hundreds, of symbol
intervals (Stojanovic 2006b). Although a solution to avoiding ISI is to use a guard
time between successively transmitted symbols, this reduces the overall data rate and
can cause higher error probability. One way of keeping the symbol rate high is to
design receivers to counteract very long ISI. Although multipath effects might be
neglected, the estimation process developed here analyses the negligible and non-

negligible multipath effects.

1.2.6  Other issues

Signal length, which might be a vital factor in the estimation process, is discussed
later in this thesis. However, some other practical issues, such as the Doppler spread,
refraction, which affect the performance of underwater acoustic propagation, are not

considered.

1.3 Importance of the proposed estimation

Although there is no particular literature to summarize the importance of node
estimation, some literature (Akyildiz 2005; Proakis 2003; Partan 2006; Roux 2005;
Swamy 2007; Chen 2008) demonstrate the importance directly or indirectly. This
section summarises the importance of node estimation in wireless communication
systems.

A. Estimation in WSN

1. Maintain coverage area

The coverage area of a WSN depends mainly on the number of nodes present.
There should be an area-node ratio in a network to be deployed in order to obtain
sufficient data of interest. However, in a harsh remote environment, network
nodes are often failure-prone and have limited power. It is thus a matter of great
interest to know the number of nodes at any point in time after the deployment

of a network to ensure that the predefined coverage area is achieved.
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2. Assist proper network operation

To optimise the use of energy (which is very important in a WSN where the
nodes are unattended, remote and have a limited non-rechargeable power
supply), it is necessary to utilise the variable numbers of nodes in a whole
network according to the tasks to be performed. Thus, the network’s deployment
topology will vary from time to time. But, as real operations, such as routing,
medium access and the protocols of the network, depend on the number of
nodes, to achieve the proper operation of a network with a varying number of
nodes, it is equally important to know the number of active nodes at any point in
time. This might also help other processes such as localisation and direction

finding.

3. Provide useful data collection

The traditional approach (Proakis 2003) for ocean-bottom or ocean-column
monitoring is to deploy underwater sensors that record data during the
monitoring mission and then recover the instruments. As there is no interaction
between the onshore control systems and monitoring instruments; real-time
monitoring 1S not possible. This is critical, especially in surveillance or
environmental monitoring applications, such as seismic monitoring. The
recorded data cannot be accessed until the instruments are recovered, which may
happen several months after the beginning of the monitoring mission. Also, if
failures or misconfigurations have occurred, it may not be possible to detect
them before the instruments are recovered. Thus, the data recorded during a
monitoring mission will be useless if one or more nodes fail and this can easily

lead to the complete failure of the mission (Akyildiz 2005).

4. Achieve cost-efficient missions

The failure of a mission leads to high financial loss as the cost of manufacturing,
deployment, maintenance and recovery of underwater equipment is much higher
than that of its ground-based counterpart; for example, an acoustic modem with
a rugged pressure housing costs roughly $3000 (Partan 2006), an underwater
sensor can be even more expensive, and supporting hardware, e.g., an

underwater cable connector, is often more than $100 (Partan 2006). Deployment
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costs are also very high. An oceanographic research vessel typically costs $5000
- $25,000/day depending on its size (Partan 2006) and the operation being
weather dependent exacerbates the situation. Recovery can also be expensive.
Increasing its number of nodes is one way of improving the robustness of a
network. However, the number of operating nodes can vary with time due to
various artificial, as well as natural, reasons (for example, some nodes might
fail, some can be damaged because of fouling and corrosion, or batteries might

fail).

5. Regain network topology
The deployment of a WSN follows some geometrical topology which changes if
any node fails. However, this can be overcome by knowing the number of active

nodes as well as their locations.

B. Estimation in mobile ad hoc network

6. Assist traffic management and knowledge of community’s lifestyle

Accurately determining the number of operating nodes, i.e., mobile phones, could
provide a complete picture of a community’s demand which would be helpful for
the proper operation and planning of a communications company which could,
based on that information, decide to extend or reduce a facility, for example,
install another base transceiver station. Also, knowing the number of mobile
phones used in a community can provide an indication of that community’s

lifestyle.

C. Estimation in RFID system

7. Provide proper identification of tagged body in RFID system

In an RFID system, the failure of any tag means that its body is untagged, i.e., it
will not be identified by the reader. This failure of any tag could be identified by
knowing the accurate number of active tags. If all tags are sound, this process
will help to count the number of tagged bodies which is the main goal of an

identification process. Thus, to know the number of faulty tags, for their
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replacement, and also to identify the number of tagged bodies, estimation of the

number of tags is necessary.

D. Estimation of other nodes

8. Count speakers in multi-speaker teleconferencing system

In the case of multi-speaker data, the problem is determining the number of
speakers, and then localising and tracking them from the signals collected using a
number of spatially distributed microphones (Swamy 2007). It is also necessary
to separate the speech of each individual speaker from the multi-speaker signals

which again requires prior knowledge of the number of speakers.

9. Obtain idea of ambient environmental noise

Studies of unwanted signal, especially underwater ambient noise in the ocean, are
of both scientific and applied interest as they provide information on processes in
the ocean and oceanic fauna; for example, the depth estimation of an ocean is
possible using the ocean’s ambient noise cross-correlation (Siderius 2006).
Again, as underwater ambient noises interfere with the operation of underwater
acoustic systems such as UWASNs (Alam 2010), knowledge of their
characteristics (number, strength, etc.) are necessary for the development of
methods to suppress them. Thus, knowing the number of ambient noise sources is

of interest.

10. Count natural nodes, such as fish underwater and vehicles in street

In this work, any signal-creating animals, materials, etc. can be also considered
nodes. Natural underwater sources of sound, such as fish, and vehicles in the
street are taken as examples. Estimating the number of fish is a very important
achievement in the fisheries field as its management depends mostly on knowing
the number of fish underwater, such as in hatcheries, ponds, lakes and even the
ocean. This knowledge might assist a country’s government to establish a fish-
catching quota. Also, as vehicles in the street make sounds, they can be
considered nodes. Estimating their number in a certain area will be helpful for a

traffic management system. Also, as vehicles in the street make sounds, they can
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be considered nodes. Estimating their number in a certain area will be helpful for
a traffic management system. Although there are other more reliable ways
(manual/automatic) to count the number of vehicles in a street, this approach

would be a useful addition to them.

In a communication network, the nodes may be placed in 1D, 2D and, for a wide
range of applications, 3D. Most terrestrial networks are 2D and most underwater are
3D. Dimensionality estimations of the nodes after deployment are essential in order
to establish a practical network’s dimension. The connectivity of the network might
alter due to a harsh environment, especially in an underwater network in which the
network nodes are sparsely placed. Also, a network will lose its deployment
dimensionality after deployment if one or more nodes are damaged; this will lead to
the loss of the project for which the network is deployed. Thus the estimation of the

deployed networks’ dimensionality is very important.

1.4 Objectives

The objectives of this thesis are to: estimate the number of nodes in different WCNs
(using in an underwater network as an example); estimate network’s dimensionality;
and propose a novel technique, instead of conventional protocols, for overcoming the
inefficiency of protocols for estimating the number of nodes and dimensionality of

an underwater network.

1.4.1 Estimation of the number of nodes

To date, conventional techniques employed to estimate the number of nodes in a
communication network have been based on protocols already in use. Those in a
TWCN are well established whereas the harsh underwater environment poses several
difficulties. In this study, a cross-correlation technique for estimating the number of
nodes, which will be equally usable in all environments, is proposed. As underwater
networks represent the worst cases in communication, all simulations are conducted

for that environment.
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1.4.2  Estimation of networks’ dimensionality

The dimensionality of a communication network is important for various purposes,
such as localisation, direction finding and estimation. As estimation of the number of
nodes using cross-correlation might depend on the dimensionalities of the networks,
it is better to first estimate the later, that is, whether the nodes are oriented in 1D, 2D
or 3D in space. The dimensionality of a network affects the cross-correlation
function (CCF). Based on this effect, a concurrent cross-correlation method for

estimating dimensionality is proposed.

1.4.3  Analysis of error in estimation

Errors are mirrors of estimates and are divided into two categories: mathematical and
statistical. As the method of cross-correlation has statistical properties, it is better to
analyse the error of such a technique statistically rather than mathematically which is
carried out in this work. The ratio of the standard deviation to the mean of
estimation, also known as the coefficient of variation (CV), is investigated and

analysed as a statistical error in estimation.

1.5 Robustness of the estimation process

To ensure the estimation process is robust, the following practical issues are
considered in the simulation.

1) Background noise

2) Internal receiver noise

3) Fractional-sample delays

4) Propagation delays

5) Multipath effects

Different performance analyses are conducted and the system’s performance is
compared with that of conventional protocol techniques. It is noted that there are
many other possible channel properties and components, but investigation of these is

left for further work.
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1.6 Contributions and novelty

The major contributions of this thesis are as follows.

O Estimation of the number of nodes in WCN: ERP case
This work formalises a novel process for the estimation of the number of
nodes in a communication network using cross-correlation. The impact of
large propagation delays on the performances of protocol techniques is most
significant. The technique developed here performs better than the protocol
methods. A number of practical issues are investigated, which are listed
below.

i. Estimation is performed with integer and fractional-sample delays, and
compares them to show the effect on estimation of the fractional part of
the sample delay. This helps to design a practical estimation system.

il. Theoretical estimation is proposed for infinite signal length, which is an
energy-related term in a practical system and is therefore not possible to
attain. So the effect of finite signal length and its proper selection is
investigated.

iii. To make the estimation process robust, the effects of noise are
investigated and proposed solutions are provided.

iv. Realistic deployment environments might have multipath effects which
in turn might affect the estimation process. The effects of multipath are

analysed and a solution provided to obtain estimation.

® Estimation of the number of nodes in WCN: ETP case
The first contribution is investigated in the ERP case, in which the signals
received at each node will be equal in strength from all other nodes, and is
possible with a simple network protocol using a probing technique. Direct use
of this technique is not suitable for the ETP case, in which the transmitted
signal strength from all nodes will be equal but the received signals strength
will be different due to distance-dependent attenuations. The modified
estimation technique is investigated for the ETP case, in which we provide a

concise treatment of the fundamental concept of ERP case. This extension
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might be helpful in estimating the number of network nodes even if the nodes
are uncontrolled, i.e., the nodes of enemy sensor networks and those in the
natural underwater networks, such as fish. The effects on estimation are
provided for practical issues as fractional-samples delay, signal length, and

noise.

© Error formulation and analysis
The process of cross-correlation has statistical properties. So, the coefficient
of variation (CV), a statistical error in estimation, is formulated and analysed.
The analyses are provided in terms of the following investigations.
1. Theoretical and simulated investigations are provided for CV in the ERP
case.
ii. Theoretical and simulated investigations are provided for CV in the ETP
case.
iii. Required energy estimation and comparison in the proposed techniques.
iv. Required time estimation and comparison in the proposed techniques.
v. Comparison with conventional protocols in terms of CV and required

time.

® Dimensionality (i.e. a network is 1D, 2D, or 3D) estimation: Method 1
A dimensionality estimation of communication networks using the shape of

the cross-correlation function (CCF) is undertaken.

© Dimensionality (i.e. a network is 1D, 2D, or 3D) estimation: Method 2
A dimensionality estimation of communication networks using the ratio of
standard deviation to the mean of the CCF is conducted, where the ratio is

obtained from the individual bin probabilities.

® Estimation of the number of nodes in WCN for all dimensions: Method 1
An estimation process of the number of nodes for all network dimensions
(1D, 2D, and 3D) using the ratio of the standard deviation to the mean of the

CCF is undertaken, where the ratio is obtained from the entire CCF at a time.
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@ Estimation of the number of nodes in WCN for all dimensions: Method 2
An estimation process of the number of nodes for all network dimensions
(1D, 2D, and 3D) using the basic approach (as in the first contribution) is

conducted.

1.7 Thesis organisation

The remaining chapters of this thesis are organised as follows.

Chapter 2 - a detailed review of the literature pertaining to the topic; this
chapter describes the scope of the estimation technique. Important literature
pertaining to estimation of the number of nodes and network dimensionality
have been summarized based on their estimation process, advantages and
limitations. The chapter also describes the cross-correlation applications which
lead to the motivation using cross-correlation to estimate the number of nodes.
Moreover some statistical signal processing terms relevant to the estimation

process are discussed.

Chapter 3 - estimation of the number of nodes; this chapter describes the
details estimation process using cross-correlation. Theory is developed for the
basic estimation in ERP case with some assumptions. Most of the assumptions
are analysed later in the thesis. Theories are supported by simulations. The
estimation technique is analysed with practical issues such as fractional-

samples delays, noise, and multipath effects.

Chapter 4 - estimations of dimensionality and the number of nodes in different
dimensions; this chapter analyses the theory and simulation of network
dimensionality estimation for three basic dimensional (1D, 2D, and 3D)
networks. Moreover, the estimation of the number of nodes for all dimensions

is investigated in this chapter.
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Chapter 5 - a detailed error analysis of estimations of the number of nodes
using investigations of comparative performances, the energy required for

estimation, the effects of practical issues; and

Chapter 6 - the conclusion of the whole thesis. Important future work has also

been suggested with possible direction for research.

1.8 Publications

Major publications resulting from this work are:

[1] “Estimation by Cross-correlation of the Number of Nodes in Underwater
Networks”, In Proc. Australasian Telecommunications and Applications

Conference (ATNAC) 2009, Canberra, 10—12 November 2009.

[2] “A Novel Signal Processing Approach of Network Size Estimation in an
Underwater Environment”, Submitted to [EEE Transaction on Signal

Processing, 2012.

[3] “Estimation using cross-correlation of the dimensionality and corresponding
size of wireless communication networks”, Draft to be submitted to /EEE
Journal of Oceanic Engineering.

[4] “Estimation using cross-correlation of the number of nodes in ocean wireless

sensor networks”, journal to be submitted to Ocean Engineering, Elsevier.
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Chapter 2

Literature review

2.1 Introduction

There are several artificial forms of wireless communication using different forms of
signals (i.e., electromagnetic, acoustic and optical) and their combinations; for
example, wireless communications in terrestrial communication systems, e.g., RFID,
mobile wireless telephone and internet, in WSN systems in different media, i.e., air
(TWSN), underwater (UWSN) and underground (UGWSN), and in space
communication systems, e.g., satellite communication networks. In these forms of
wireless communication systems, the terminal equipment (i.e., the user handset in a
mobile phone system and sensors in a WSN) are taken as the nodes. Strictly
speaking, the parts of a wireless communication system which transmit signals of

any kind are the nodes of interest.

Accurately determining the number of nodes in a communication network is an
important issue for both practical network operations (such as routing and medium
access) and networked applications (such as information retrieval and processing) as
they depend upon the number of transmitting nodes present. Moreover, estimation of
the number of nodes, i.e., the number of transmitters, has recently received much
attention in the field of WSNs. In underwater networks, there may be a large number
of nodes deployed over a large area for a practical purpose, such as oceanographic
data collection or pollution monitoring. In other applications, underwater vehicles in
a UWSN, using electromagnetic waves (Frater 2006) and acoustic waves (Quazi
1982; Sozer 2000) equipped with a sufficient fraction of operating nodes that can
communicate with each other, travel underwater for the purposes of climatic data
collection, environmental monitoring, seismic and acoustic monitoring, surveillance
and national security, military purposes and health care, discovery of natural
resources, location of man-made artefacts and extraction of information for scientific
analysis. As optimal performance requires a balance among the number of operating
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nodes, the energy efficiency and the lifetime of the network, the number of operating

nodes is a crucial factor for networks.

However, this balance can vary over time due to various artificial, as well as natural,
causes (for example, some nodes might fail or become damaged, or batteries might
fail). So, it is a matter of great interest for a communication network to know how
many operating nodes or transmitters are available in the region at any point in time
to ensure proper network operation (such as routing) as well as network maintenance

(such as replacement of faulty nodes).

Again, precisely determining the number of ambient noise sources, i.e., the natural
nodes, might be an important issue for WCNs as, in a communication network,
issues such as communication quality, and information retrieval and processing
capabilities, depend on the number of ambient noise sources present. It is also
important in, for example, fisheries, animal and vehicle management systems, where

the estimation of the number of ambient signal sources is itself interesting.

Moreover, the dimensionality of a network is very important for ensuring its
appropriate coverage area, proper network operation, such as routing, and design of
network protocols, as well as for processes of localisation and direction finding. In
such cases, although the dimensionality is assumed, in practice, it might be totally
different. Again, as estimating the number of nodes using cross-correlation depends
on dimensionality, in order to create a robust estimation technique, the

dimensionality of the network has to be estimated first.

2.2 Existing estimation techniques using protocols

Protocols are widely used in WCNSs for different purposes, such as routing purposes
in WSNs, and identification of tags in RFID systems. Existing protocols can also be
used for the estimation of the number of nodes in those networks. Identification is the
process to identify the ID of the tags in an RFID network whereas estimation of the
tags is the process of estimating their number. The following sections contain a brief

literature review of network protocols to estimate the number of tags i.e. nodes.
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2.2.1  Using identification protocols in RFID systems

There have been many investigations into identifying the number of tags in RFID
systems which is a similar problem to the estimation of the number of nodes in
WCNs. A RFID system consists of one (or more) networked electromagnetic readers
and a number of radio frequency tags, as shown in Figure 2.1 (Burdet 2004). The
tags contain limited computation power and memory whereas the reader is powerful
and has abundant memory. There is a single communication channel for exchanging
messages between the reader and the tags but the tags are unable to do this among
themselves. Initially, the tags are totally unknown to the reader. The reader can
broadcast a message to which each tag has the option of sending a response to the
reader. The reader receives responses from the tags and tries to identify them. If only
one tag responds at a time, it is correctly identified. But, if more than one tag
responds at a time, the reader detects only a collision on the channel. A RFID
protocol specifies the algorithms for the reader and the tags so that the reader can
properly collect all the tag IDs. Knowing the numbers of tags in large-scale RFID
systems is an important task. Their estimation is possible by using the existing

protocol to identify individual tags and then computing the cardinality of the system.

There have been many tag identification protocols, probabilistic, deterministic and
hybrid, proposed in the literature. Probabilistic algorithms decrease the possibility of
tag collisions by allowing the tags to transmit their own serial numbers at a distinct
time (Myung 2007) whereas, using deterministic algorithms, the reader sends its ID-
based requests to tags to obtain responses (Alotaibi 2009). ALOHA-based protocols
(Vogt 2002a; EPC-Global 2005; Lee 2005; Bonuccelli 2006; Cha 2006; Kodialam
2006; Peng 2007) are probabilistic whereas tree-based protocols (Choi 2005; Chiang
2006; Choi 2006; Myung 2006a; Myung 2006b; Myung 2007) are deterministic.
Some hybrid approaches, in which randomisation is applied in a tree scheme, are
discussed in (Micic 2005; Simplot-Ryl 2006; Ryu 2007). In (Kodialam 2006), a
framed slotted ALOHA protocol, in which each tag transmits its serial number to the
reader in a randomly selected slot of a frame (a time interval between the requests of

a reader consisting of a number of slots) and the reader identifies tags when a time

29



slot is used by only one tag, is proposed. This process is repeated until all tags are

identified.

— Data -
RFID Reader | é—ﬂ‘_:g — —L:-E_ data-carrying
{transceaivar) N———— Power N—— RFID Tag
1 Clock coupling {transpondar)
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Application

I

Figure 2.1 Basic RFID system (Alotaibi 2009)

There might be some collisions in the basic ALOHA-based protocols, which affect
the identification process by degrading the performance. To significantly reduce the
number of transmission collisions, a new probabilistic protocol, based on a modified
version of the slotted ALOHA protocol (called the tree-slotted ALOHA protocol), is
proposed in (Bonuccelli 2006). In this scheme, each tag selects a slot into which to
transmit its ID by generating a random number. When a collision occurs in a slot,
only the tags that generate such a collision are queried in the next read cycle. Thus, a
transmission frame can be viewed as a node in a tree where the root is the initial

frame and the leaves represent frames in which no collision has occurred.

However, collisions (which may cause a serious problem of tag starvation, i.e., a
specific tag may not be identified for an unlimited time) are not completely removed
by ALOHA-based protocols. To remove this tag starvation problem, tree-based tag
anti-collision protocols, such as binary search protocols (MIT-Auto-ID-Center 2003)
and query tree (QT) protocols (Law 2000), have been proposed. A splitting
mechanism for tag identification is used in tree-based protocols in which colliding
tags are split into two subsets which are identified one after another by the reader. In
this method, all the tags can be identified by continuing the mechanism until the

reader receives tag signals without collisions.
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In the QT protocol (Law 2000; Feng 2004), the reader sends a prefix and asks the
tags to answer if their IDs match it. If a collision occurs, the reader queries for a
prefix that is one bit longer and this process continues until no collision occurs. Thus,
once a tag is identified, the reader starts a new round of queries with another prefix
until all tags are identified. However, since readers use prefixes, their performances
are sensitive to the distributions of the tag IDs they have to identify. Further
improvements are proposed in (Law 2000; Chiang 2006). In binary search protocols
(Capetanakis 1979; ISO-Standard 2003; MIT-Auto-ID-Center 2003), the processes
are similar to those of query tree protocols except that they use random binary

numbers to split the tag set.

Although tree-based protocols do not suffer from the tag starvation problem, they
have relatively long identification delays caused by the splitting procedure. To
reduce this effect, Myung et al. (Myung 2006a; Myung 2006b; Myung 2007) propose
two adaptive tag anti-collision protocols: the adaptive query-splitting protocol, an
improvement on the QT protocol, and the adaptive binary-splitting protocol which is
based on the binary tree protocol. Also, an improvement on the adaptive binary-

splitting protocol is proposed in (Chen 2007).

All the protocols proposed to date exhibit average performance well below 50% of
maximum throughput (in terms of both messages and transmitted bits). To improve
on this, another protocol, in which the reader asks all tags to transmit their own
complete IDs, is proposed in (Bonuccelli 2008). From the answer, which is the sum
of all the IDs, the reader divides the set of tags in a recursive way until all tags are

identified.

However, these estimation processes based on tag identification protocols suffer
from the shortcoming of a long processing latency; for example, the deterministic
protocol in (Myung 2006¢) requires more than 1000 seconds (Chen 2008) for the
identification of 3000 tags while an even longer time is required for the probabilistic
protocol proposed in (Lee 2004). Due to this long processing delay, tag
identification-based estimations are often impractical, especially when a tag is

attached to a moving object in which case it may go outside the reader’s range before
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being identified. In some instances, for security purposes, readers may not be
allowed to query the tags for their identification. In other cases, a tag set may
undergo a quick change of their location and shape which makes identification by the

reader of all the tags impossible.

2.2.2  Estimation without identification in RFID systems

In order to overcome the effect of the long processing time required for identification
when estimating the number of tags and to obtain proper estimations of all tags in
cases with some non-identifiable tags, some estimation processes without

identification are proposed in (Vogt 2002b; Floerkemeier 2006; Kodialam 2006).

2.2.2.1 Estimation process proposed by Kodialam (2006)

In this work (Kodialam 2006), the authors propose two estimation algorithms based
on the framed slotted ALOHA (FSA) and probabilistic framed slotted ALOHA
(PFSA) protocols for a static tag set using analysis and simulated verifications. In
their FSA method, all tags respond in a randomly selected slot within a frame,
whereas only a portion of the total tags determined by a probability factor respond in
the randomly selected slot within the frame in their PFSA method.

In a respondent frame of size F' in the FSA method, the reader measures some empty
slots, my, some singleton slots, m;, and some collision slots, m.. For these slots, the

authors propose three tag estimators as shown in the following table.

Estimator Expression
Empty estimator )
F

Singleton estimator pet = %

Collision estimator

where, p is the normalised offered load and is defined as
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_ Number of tags to be estimated _ N

Frame size F

So, the replacement of o gives the following estimator expressions.

Estimator Expression
1 N
Empty estimator JE My
F
Singleton estimator N e% _m
F F
Collision estimator N X
1- (1 + —j e ' = FC

In their PFSA method with total probability M, only the M portion of the tags

responds in the frame of size F. Thus, the estimator expressions are as follows.

Estimator Expression
1 MN
Empty estimator JE_m
F
1 1 M N
Singleton estimator MN -~ _m
F F
Collision estimator MN) MY
-1+ —)e Fr=—
F F

It is shown that the empty estimator expressions can be solved easily for N

(denoting the estimated N as N ) in the closed form but, as the other two non-linear
expressions require numerical techniques, the authors solve them using the

bisectional search method.

Of the estimators, it is shown that the singleton is non-monotonic in nature with
respect to o, and the solution of the estimator equation for N is not unique, i.e., for
a certain number of singleton slots, there exist two different p (except p=1) and,
thus, two different N . So, the singleton estimator alone is not suitable for the

estimation of the number of tags. Again, as it is shown in the above tag estimation
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process that the collision estimator is better than the empty estimator, they prefer it
for estimation. It can estimate the number of tags of any size within a near-constant
time for a certain accuracy of estimation. However, although it might provide
comparatively quick, accurate estimations in RFID systems with collision slots in
which the capture effect can be neglected, in environments such as UCNs, in which

the capture effect cannot be neglected, it is not suitable for estimation.

2.2.2.2 Estimation process proposed by Chen (2008)

The approaches proposed by Kodialam (2006) are designed for only a single reader
and no information is provided for multiple readers. But, due to the terrain and
coverage limitations of their readers, large-scale RFID systems often require multiple
readers. It has been shown through analysis that, although the method proposed by
Kodialam and Nondogopal is efficient and effective, it has a problem with multiple
reading, i.e., the reading of a tag by more than one reader in a multi-reader system.
To overcome this problem, a replicate insensitive Lottery Frame (LoF) estimation
protocol is proposed by Chen (2008). In this process, the elimination of replicates
can be achieved by hashing and a logical OR operation, as discussed below (Chen

2008).

In its initial phase, each reader constructs an ALOHA frame of size /' with 77 time
slots, and then broadcasts the length, 77, to probe the tags within its communication

range. When a tag receives the probe request from the reader, it applies a particular
hash function to its ID, i, whose values are uniformly distributed. Upon obtaining the
result of a particular hash function, the respondent tag normalises the hash function

to a value within the range of [0, 77 — 1] and denotes the normalised value as the slot

number in the frame in which it will respond.

In this way, every tag hashes itself to a time slot of a frame with size 7 in the reader

which keeps a bitmap with the tag hashes. After hearing the whole frame, the reader
knows that some slots have no transmission, with a bit value of 0 denoted by 4, and

some have one or multiple transmissions, with a bit value of 1 denoted by 4;. If the
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estimated number of tags is again denoted by N , the estimation expression will, for
a single reader (Chen 2008), be

N=-p 1n(ﬂJ (2.1)
n

The property of hashing is suitable for eliminating replications in a multi-reader case
since datum with the same value will have the same hash value. In this process, A
and /; are no longer individual computations. Instead, all readers report their bitmaps

to a central server which obtains a merged bitmap using the logical OR to those

individual bitmaps. Then, the server estimates N from the merged bitmap using the

expression (2.1) above.

2.2.2.3 Methods proposed by Vogt (2002b)

Two FSA processes for estimating the number of tags around a reader in a RFID
system have been proposed by Vogt. In the first, a reader with a frame of size F
sends probe requests to the tags. Being energised by the probes from the reader, the
tags reply to that frame in which there will be some singleton, m,, some collision, m,
and some empty, my, slots. In singleton slots, only one tag, in collision slots more
than one and in empty slots no tag will have responded. In this estimation method,
the author of Vogt (2002b) provides a lower bound on the value of the estimated
number of tags which is obtained through the assumption that, to get a collision slot,

at least two different tags must have responded in a slot. Thus, from the respondent

frame, the estimated number of tags, N , is obtained using the numbers of singleton

and collision slots by

Ly

N=m, +2m, (2.2)

It is shown in Wang (2007) that estimation using this lower bound is suitable for
small numbers of tags and large frame sizes with respect to the numbers of tags. As a
system with a large number of tags increases the offered load and, if the frame size is

not large enough to accommodate them properly, there will be a high probability of
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collision slots occurring with responses from more than two tags and the estimation

using (2.2) will be error prone.

To obtain an improved lower bound, another proposed approach uses Chebyshev’s
inequality which states that the outcome of a random experiment involving a random
variable is most likely somewhere near the expected value of the random variable.
From this statement, an alternate estimation function, using the deviations between
the observed values and expected values of singleton, collision and empty slots, is

proposed as:

E(M,) My
S(vammlvmc): EM,) |=| m,
EWM,)) \m,

The estimated number of tags is that for which the estimation function is the
minimum. Thus, the Chebyshev’s inequality improved lower bound estimation

algorithm of Vogt (2002b) can be described by (2.3).

E(M,) m,
N:mNin(g(F,mo,ml,mc))=mNin EM,) |~|m, (2.3)
E(M)) m,

To obtain the proper estimation using (2.3), an exhaustive search of N is required in
which N varies from the lower bound proposed in the first method to an unlimited
upper bound. However, as no upper bound is mentioned in this process, its

estimation suffers from time complexity.

To overcome this, a similar expression is used to estimate the number of tags in
Bonuccelli (2006) by varying N in the range of [m, +2m_, ..., 2(m1+2mc)].
Bonuccelli (2006) proposes an upper bound of the search equal to Z(m1 +2mc) to

reduce the time complexity as it is clear from their simulation that no further

accuracy in the estimation can be achieved beyond this value.
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2.2.2.4 Method of binomial distribution estimation (BDE)

To shorten the identification time and gain maximum throughput, a BDE algorithm,
based on a combinatorial model of the communication mechanism between tags and
reader, for estimating the number of tags is proposed in (Cha 2005; Wang 2007).
Simulation results show that the method using LB proposed by Vogt (2002a) is quite
accurate when the number of tags is less than twice the number of slots but that the
estimation error increases rapidly with increases in the number of tags. In  (Vogt
2002b), Vogt improves the estimation algorithm in (Vogt 2002a) using Chebyshev’s
inequality and obtains a lower estimation error when the object number is more than
twice the slot number; however, when the object number is small, the estimation

error is much larger.

The method in (Cha 2005; Wang 2007) estimates N tags by comparing the expected
value of the collision percentage in F slots with the observed collision percentage
obtained after the end of an identification round. For the tags, the binomial slot

allocation process, in which the probability p out of N tags transferring their IDs

into a particular slot is used, is given by:

w02 e

where p is also known as the occupancy number of the slots (Vogt 2002b). Then,

the expected value of the number of slots with p is given by:
N p N-p
E(X=p)=F (-t
p \NF F

Using the above expression, the expected number of slots can be obtained as follows.

The expected number of empty slots is:
N 0 N-0 N
Ex=0)=r [L][1-L] =f1-L
0 N\F F F

The expected number of singleton slots is:
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A4
A1)
A2

So, the expected number of collision slots is:

E(X>1)=F-E(X=0)-E(X =1)
e )
:F{l_(l_g@%}

Thus, the expected ratio of collision to total slots, termed the collision ratio or

collision percentage, Crao 1S:
N
E(Cratio)zl_ l_i 1+L
F F-1

After the end of an identification round, the observed collision ratio or collision

percentage can be obtained from the known number of collision slots and the frame

size by:
Number of collisionslots  m,
Cratio = . =
Framesize F
Then,
N
Cio=1- 1—i 1+—N (2.5)
F F-1

From this expression, as Cruio and F' are known, it is easy to obtain only the

unknown parameter, N, can be obtained as the estimation of the number of tags.
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The proposed estimation parameter in (2.5) can also be expressed figuratively for
different frame sizes of the reader (Cha 2005), as shown in Figure 2.2. Thus,
estimation of the number of tags is possible from the obtained C..i, using the plot for

the corresponding frame size.
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Figure 2.2 Collision ratio versus number of tags (Cha 2005).

2.2.2.5 Method using maximum throughput conditions proposed by (Cha 2005)

As the proposed scheme in (Cha 2005) is similar to the BDE technique, by using

(2.4) the probability of obtaining empty, singleton and collision slots is as follows.

The total probability of empty slots is:
N 0 N-0 N
M(X =0)= 1 1_i - 1_i
0 \F F F
The total probability of singleton slots is:
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The total probability of collision slots is:
M(X>1)=1- M(X ) M(X

So, the throughput is:

Ve M=o rMx=1)+M(x>1) FU F

M(x=1) ~ N(l 1 j]“

The condition for maximum throughput is obtained by:

%(1//) =0 which gives us the condition N = F'.

Upon obtaining this condition, the optimum collision rate, C, is obtained for

maximum throughput from (Cha 2005) by:

_ lim(MJ ~0.418

C
Nou\ 1—M(X =1)

rate

So, the number of tags in a collided slot, N, 1s (Cha 2005):

€ =2.3922

rate

N

coll —

If the total number of collided slots is 77, , the estimated number of tags, N, after a
round is obtained using:

N=N,

coll

xn, =2.3922xn,
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2.2.2.6 Method using received signal strength properties (Alotaibi 2009)

In this method, received signal strengths are used to estimate the number of tags
where the tags are situated in an area around the tag reader, as shown in Figure 2.3.
There is an interrogation zone with the minimum and maximum ranges, dmi, and
dmax, respectively in which the separation between the tags and reader are evenly
distributed. The signal strength at the reader is obtained by the Friis transmission
formula (Barclay 2003):

0.=0GG (LJZ (2.6)

T Amd

where O, and O, respectively are the transmitted and received signal powers at the
reader, G; and G, respectively are the gains of the transmitting and receiving antenna,
A the signal wavelength and d the effective radial distance (which is twice (Alotaibi

2009) the distance between the tag and reader) between the tags and reader.

Figure 2.3 Sample RFID system for method proposed in (Alotaibi 2009)

In this method, the estimation of the number of tags is obtained from the cumulative
distributions of the received signal strengths which are provided in (Alotaibi 2009)
for 1000 scenarios with different numbers of tags responding simultaneously; where

significant differences are evidenced. When there are two tags in the system, the
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signal strength distribution curve is small and, for each additional tag, becomes

smoother with a larger distribution of signal strengths.

2.2.3  Protocols in TCN

Before discussing the estimation protocols in a TCN, a brief description of a WSN’s
node and its functionality is provided because the estimation techniques are often
applied in a WSN. A WSN is one of the most important applications of a wireless
communication system. It consists of a large number of nodes for sensing different
physical quantities and converts them into signals readable by other neighbouring
nodes and a central node is known as a sink node or base station. One or more
sensor(s), an ADC, a processor, a transceiver, memory and a battery are the major

parts of a typical sensor node’s architecture, as shown in Figure 2.4 (Akyildiz 2002).

Typical Sensor node
. . Processingunit ¢  Transmission-
Sensing unit Reception unit
s a p
[ Sensor H ADC [O »  Micro-controller | "| Transceiver }
)7 ‘ .
’ - J '
X
* v i
{ Memory ‘]
A
Power unit
[ Energy source 1

Figure 2.4 Typical sensor node architecture

The sensor(s) in a sensor node is/are the hardware component(s) for sensing
environmental changes, such as pressure and temperature, in a monitoring area or

sending probe requests to the other node(s) and collecting their response(s). They are
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classified as passive and active. The former sense the data without actually
manipulating the environment by active probing and are self—powered, i.e., energy is
needed only to amplify their analogue signals. On the other hand, active sensors
actively probe the environment or other neighbouring nodes and sense the responses
and there is an ADC to digitise the analogue signals received by the sensor(s). Some
sources of power consumption in sensors are: a) signal sampling and conversion of
physical signals to electrical ones; b) signal conditioning; and c) analogue-to-digital
conversion. The digitised signal from the ADC is sent to the micro-controller which
processes the data and performs tasks accordingly while also controlling the
functionality of other components of the node. A single device with the functionality
of both a transmitter and a receiver, known as a transceiver, is used in sensor nodes

to connect them to the network.

Another important component of the sensor node is the power unit which needs to
supply electrical energy to the electronic circuitry of the other components.
Sometimes, a sensor node contains some sort of location-finding system to gather
accurate knowledge of its location, a mobiliser to move the sensor nodes and a power

generator to recharge the power unit.

One technique for estimating the number of TWCN nodes is proposed in (Budianu
2003; Budianu 2004; Budianu 2006). It involves an estimator based on the Good-
Turing (GT) estimator (Good 1953) of the missing mass which was invented by
Turing. This is investigated in (Budianu 2003; Budianu 2004; Budianu 2006) for a
terrestrial sensor network with mobile access (SENMA) architecture in which there
is a mobile access point (MAP) which acts as a base station for the nodes. Each node
can transmit its ID to the MAP with the data packet in which packet transmission
follows the slotted ALOHA protocol. Practically, as the MAP wants to know the
number of operating nodes, it broadcasts probe requests using a frame with some
slots and the operating nodes respond by transmitting information in the form of
packets with their IDs by choosing the slots randomly with the same transmission
and reception probabilities. This estimation of the number of operating nodes is

based on the nodes’ IDs embedded in the observed packets in the MAP. Packet
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collection by the MAP is modelled as an independent, identically distributed (i.i.d.)

sampling with uniform distribution.

In SENMA, the missing mass is the conditional probability that, given a frame with
already observed packets (called a vector sample in their process) from some nodes,
the newly received packet comes from a new node. More conveniently, consider a

network of size N in which the MAP collects N, packets from the nodes in which
N, packets appear exactly once in the vector sample of N, packets, Then, the

estimated missing mass is defined as:

. N
A, =2 2.7)
NP

In this process, another expression of the missing mass for the packets that do not

appear in the MAP is used. If all nodes transmit packets and, among them, the N,
number of packets is distinct, then N, =N —N, will be the packets that do not

appear in the MAP.

Thus, the missing mass in the case of i.i.d. sampling with a uniform distribution, i.e.,

with equal probability of packets to slots, is:

N N
HO: Po =1= Pa
N N

Substituting the estimated value of H, from (2.7), the following expression for

estimating the number of nodes is obtained:

N — di

1—N%
N,

It is again observed in (Budianu 2006), with a certain confidence interval, the total

number of slots needed for estimation using the Good-Turing estimator is dependent
on the number of operating nodes and is O(W ) (Howlader 2009). The order

depends on the certain confidence level and the interval. With a confidence level of
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(1 —¢), where ¢ is the probability of error in estimation, and an accuracy estimation

of S (confidence level [N 1-p),N1+ ﬂ)]), the total number of slots, 77 needed is

(Howlader 2009):

-2(1+ p) log(gj

f —log(1+ )

]7:

2.2.4  Protocols in UCN

Although the abovementioned methods are easy to apply in RFID and in terrestrial
systems, they do not take into account the capture effect. This means that they are
difficult to apply in UWSNs because of the unavoidable capture effect. One solution,
which uses a node estimation technique using a protocol that takes the capture effect
into account, is proposed by Howlader (2007, 2008). The procedure is very similar to
that of the probabilistic framed ALOHA (Kodialam 2006) in that the probing node
sends a probe request with a frame size, F' (the number of slots in the frame), and a

probability, p.

2.2.4.1 Estimation of number of nodes in UCN using Probabilistic Framed
Slotted ALOHA (PFSA) protocol (Howlader 2007)

In this estimation process, there is a probing node in the centre of the network which
wants to know the number of neighbouring nodes within its communication range as
shown in Figure 2.5 (a). In the Figure 2.5 (b) the typical slotted frame structure is
also shown (from Klair, 2007).

The probing node broadcasts some probe requests with frames towards the
neighbours which, upon receipt of the requests, reply to the probing node into the
frames with pre-defined packets. Consider such a probe request with a frame of F
slots and a probability, p. To respond, each neighbour generates a uniform random
number between [0, 1] and compares it with p. Only the neighbours with random

numbers less than or equal to p transmit into that frame.
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Figure 2.5 (a) Distribution of nodes (b) Frame structure in PFSA technique

Thus, only N x p neighbours will transmit into that particular frame in the case of N

neighbours. To obtain the optimum performance (by making the variance minimum),
Howlader et al. assume the value of p such that the number of transmitting nodes in a

frame has the following relationship (Howlader 2007) with the frame size:

Nxp=159xF (2.8)

Now, to transmit to the slots in the frame, each transmitting node generates a random
integer between [1, F] and transmits to the slot according to the number. In the

respondent frame, there will be some singleton slots, m;, with only one packet, some

46



collided slots, m., where two or more packets collide and some empty slots, my,
without any packet. Due to the capture effect, some collided slots might appear to the
probing node as singleton slots. So, as the singleton and collided slots are dependent
on the capture effect, they are not used for the estimation parameter. On the other
hand, the number of empty slots is independent of the capture effect and follows the

normal distribution as investigated in (Feller 1968; Kodialam 2006).

With this finding, the estimation of the number of nodes in their work is obtained
from the observed number of empty slots in every probe, m, by obtaining the mean

of the numbers of empty slots for all probes as:

~ P
Ho = Fe (2.9)

where p, is the effective normalised load, i.e., the actual number of transmitting

nodes per slot and is obtained by:

(2.10)

As, in a normal distribution, the expected value might be replaced by the observed

value, we can write:

Fe” =m, 2.11)

After some manipulation of (2.10) and (2.11), the estimation of the number of nodes

is obtained as:

N = —Eln{%j
p F

To achieve better performance, the probing and replies using a fixed frame size

continue.

2.2.4.2 Dimensionality estimation using protocol

It has already been mentioned that, in a response frame (Howlader 2008), there are

some singleton, some collided and some empty slots. Of them, the number of empty
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slots is independent of the capture effect whereas those of the singleton and collided
slots are dependent on the capture effect. As the capture effect depends on the
dimensionality of a network, this same relationship is followed by the parameters, as
shown in their results. Although the estimation of the number of nodes is based on
the number of empty slots, this method is not suitable for the dimensionality
estimation as the number of empty slots is independent of dimensionality. Thus, they
propose an algorithm based on the other two parameters, m; and mc, to roughly

estimate the network’s dimensionality.

It is assumed that the nodes are uniformly distributed along a straight line in 1D,
inside a circle in 2D and inside a sphere in 3D where the probing node will be the
centre node. If, in those spaces, the maximum possible range of the probing node is d

and the dimension of network D, the CDF of the neighbouring nodes will be:

g(d)=a”®

Using the numbers of singleton and collision slots, D is estimated to obtain the

dimensionality of the network.

Due to the capture effect, some of the collision slots will be received by the probing
node as singleton slots. The transmitting node for which a collision occurs is called
the interfering node. In their process for receiving a packet with the capture effect,
there is a relationship between the interfering and transmitting nodes’ ranges which
is obtained from the capture model with the help of the received power model in

TCNs:

-k
d 1
Cy < O or Cy S(—tJ , d; Z(CR(kjjd,
o d;
where Cg is the capture ratio, O, the received power from the transmitting node in a
capture, Q;. the received power from the interfering node in a capture, d, the path
length of the transmitting node from the receiver, d; the path length of the interfering

node from the receiver.
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This means that, to obtain a collided slot as a singleton slot, the interfering node
range should be greater than or equal to a constant multiple of the transmitting node

range. Where, the capture constant is defined from the above expression as

1

1) = ¢ li)

There is also a limiting range within which the capture effect may occur. All the

ranges in their process are shown in Figure 2.5.

%
&

Figure 2.6 Distances of transmitting and interfering nodes
with capture effect (Howlader 2009)

In this figure, dp, is the maximum range beyond which no capture effect occurs, i.e.,
collision slots appear as collision slots and, within this range due to the capture
effect, collision slots appear as singleton slots following the relationship between the
interfering and transmitting nodes’ ranges. (Howlader 2009) provides the following

statistical expressions for obtaining the dimensionality parameter.

The expected numbers of singleton slots within and outside the range, dy, are:
E[M, :d<d,k ]= F;/’D(l—efps”)
and

E[Mlc d> dmc] — pre‘/?: (1 _]/_D)

3

respectively.
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Thus, the total expected number of singleton slots with and without the capture effect

is:

EIM,]=Fy (1" )+ Fpe” (1-y) 2.12)

Substituting the observed number of singleton slots with and without the capture

effect, i.e., m. instead of E[M,.], and the value of ¥ in (2.12), they propose an

expression for the estimation of the spatial dimensionality of a network as:

A —k m,, —Fp‘fe7p~f
D= 1
(1og(CR)] Og[F(l_(H pé)e—pg )J (2.13)

In the terms Fp.e ”* ~ E[M,] and F(l—(1+p§)e_p§)z E[M,], E[M,] and E[M]are

the expected number of singleton and collision slots without capture respectively.

Thus, (2.13) will become:

A -k m,, — E|M
D= (—jlog(—“ [ ‘]j (2.14)
log(Cy) E[M.]
By defining the probability of capture, p_, as p, = H%E;[—AE/[[]W and substituting into

(2.14), they provide the following closed-form formula for estimating the

dimensionality parameter:

5 —Klog(p,)
log(C,)

In a UWCN, the capture ratio is defined as:

—d, —k
C - a “d,
R~ T4 %
a dj

ord, ~ 1+M d,.
! k+d, log(a)
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Thus, as in the previous case:
log(C,
Aa)=1+-08)
k+d log(a)

Again, the expected number of singleton slots with and without the capture effect in

a UWCN is:

E(M,)= pr(J.Odmc De (o-1)iog a~(d, P p. }dd +e (1 - dmcD )j

As they do not obtain any closed-form formula, they use Chebyshev’s inequality to

estimate the dimensionality parameter for which the proposed algorithm is:

D = argminlE[M, |- mean(m,)

2.3 Limitations of conventional techniques

It is obvious from the literature discussed in the previous section that most of the
proposed estimation techniques have been designed for RFID systems which are
different from ad hoc networks. RFID systems are very simple forms of wireless
networks in which only the reader(s) acts as a base station(s) and wants to know the
number of nodes (tags) within its communication range while the tags have no such
ability. In contrast, nodes are self-reconfigurable in ad hoc networks in which every
node needs to know the number of surrounding nodes within its communication
range. Thus, although the proposed conventional techniques are suitable for RFID
systems, in ad hoc networks, their direct use faces some limitations which require
some adjustment. One such adjustment is proposed for a TWSN by Budianu in

(Budianu 2006) (as discussed previously).

However, the techniques for RFID systems and TWSNs are similar in that they do
not consider the capture effect because it is not so severe and can be neglected in a
TCN. However, the direct use of the existing protocols (in which the capture effect is
not considered) in harsh environmental networks (e.g., UWASNs) is mostly

impossible due to this non-negligible capture effect. In addition, protocols designed
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for TCNs ignore the signal propagation delay (Elson 2002; Maroti 2004) because
they assume the use of high-speed EM waves. Sometimes, industry standard
terrestrial protocols provide solutions for typically small (20 microseconds
(Syed 2009) for IEEE 802.11) delays but do not perform satisfactorily under a long-
delay regime (Ganeriwal 2003). Very few protocols (Howlader 2007; Howlader
2008) which take the capture effect into account have been investigated in such
networks, but still they suffer from poor performance in a harsh environmental
network due to the abovementioned signal propagation characteristics (Lanbo 2008)

in such environments.

In addition, to date, most research studies regarding dimensionality have investigated
the design of a network before deployment (Akyildiz 2005; Pompili 2006; Pompili
2009). Only one protocol technique has been investigated after deployment
(Howlader 2008).

Moreover, all the abovementioned procedures for estimating the number of nodes in
RFID and UWSN systems are similar in that they are based on protocol designs.
However, underwater acoustic propagation characteristics (Lanbo 2008), such as

propagation delay, high absorption and dispersion may make their use difficult.

Besides, protocols for estimating the number of nodes in every type of WCN also
suffer from time complexity, i.e., they need a long time for even a single estimation
which, in most cases, increases with increasing numbers of nodes. Also, the
implementation of these conventional techniques based on network protocols to

obtain precise measurements is often expensive and inefficient.

Being aware of these limitations, new techniques using cross-correlation as a
replacement for the existing protocol techniques are being searched for in the
literature presented in Section 2.4. As cross-correlation is a statistical signal-
processing technique which possesses different characteristics of the signal and

signal sources, it may well be a suitable replacement for the existing protocols.
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2.4 Use of cross-correlation

The impulse response of a communication channel, i.e., the Green’s function (GF)
retrieval of cross-correlating the waves excited by randomly generated ambient noise
sources recorded by sensors at two locations, is currently a very important issue.
There have been many investigations regarding the use of the ambient noise cross-
correlation to extract the time-domain GF in various environments and frequency
ranges of interest, for example, underwater acoustics (Roux 2004; Sabra 2005b;
Sabra 2005d), crustal seismology (Shapiro 2004; Wapenaar 2004; Sabra 2005a;
Shapiro 2005; Snieder 2004), helioseismology (Rickett 1999) and ultrasonics
(Weaver 2001; Weaver 2002; Weaver 2003; Larose 2004; Malcolm 2004; Weaver
2004). The procedural steps for determining the noise CCF are similar for all the
abovementioned environments. In brief, the procedure is as follows: firstly, the
signals from a number of different noise sources are collected by two sensors
separated by a certain distance in the region of interest; secondly, the received
signals are summed at each of the two sensor locations; and, finally, these two noise

signals are cross-correlated.

Most researchers have only tried to retrieve an estimate of the GF; for example, it has
been shown theoretically that the GF can be obtained with ambient noise cross-
correlation in the simple case of a homogeneous medium with attenuation (Roux
2005). Similarly, Snieder (Snieder 2007) and Godin (Godin 2006) show the
extraction of the GF in the case of a heterogeneous medium. Some researchers
(Weaver 2001; Weaver 2002; Sabra 2005c) have given their attention to the
emergence rate of the time-domain GF (TDGF). Moreover, Ward (Weaver 2008)
identities, fluctuations (Weaver 2005a) and means and variances (Weaver 2005b)
have been performed in diffuse field-field correlations. However, none of these

investigations indicate the estimation of the number of noise sources.

2.4.1 Cross-correlation for travel-time and direction of arrival estimations

Cross-correlation is used for time delay of arrival (TDOA) estimation in (Ianniello

1982; Kumar 1993; Cheng 2007). Sensor arrays are often used in many fields of
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science and engineering, particularly when the goal is to collect the signals and study
their characteristics by processing them in order to take collaborative decisions.
Cross-correlation between two received signals is widely used for these estimations
due to its simplicity and efficiency. In (Varma 2002), two estimations are investigated
concurrently. First, the TDOA estimate is performed between pairs of sensors using
the CCF of the two signals in those sensors and then combining them with the
knowledge of array geometry to obtain the DOA estimate. In (Knapp 1976; Azaria
1984), the DOA is investigated using the generalised cross-correlation (GCC)
technique. Another approach for determining the number of speakers from the multi-
speaker speech signals at two spatially separated microphones, in which cross-

correlation is used to detect the TDOA, is proposed in (Swamy 2007).

2.4.2  Cross-correlation for weak signal detection

Radio weak-signal detection, i.e., the detection of signals with low signal to noise
ratios (SNRs) is of wide concern in satellite communication systems. For proper
management and monitoring of radio waves, expanding their coverage areas and
improving the sensitivity of the monitoring system, this detection technique becomes
increasingly important. Conventional methods, such as the low-frequency and phase-
sensitive filtering techniques, firstly need some information about the signal which is
difficult to achieve in a monitoring mission. In (Jian-fei 2009), a method of cross-
correlation (Kay 2003; Moore 2006) for detecting a radio’s weak signals, which does
not require prior knowledge of the signal, is investigated. The proposed cross-

correlation algorithm effectively detects whether the unknown signal exists.

The method of cross-correlation has application in blood-flow sonography
(Bonnefous 1986; Gao 1998) for which the conventional ultrasonic Pulsed Wave
(PW) Doppler blood-flow analysers are widely used in clinical examinations.
However, it has the limitation of spectrum aliasing when the velocities exceed the
Nyquist rate. A cross-correlation-PW method proposed in (Gao 1998) provides
sonogram output without aliasing. In this technique, the delay times of the received

RF echoes from pulse to pulse are estimated by the cross-correlation method. The
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series of delay times with their related maximum values in the CCF are then used to

form a time sequence which is sent to a spectrum analyser to produce the sonogram.

2.5 Motivation for using cross-correlation

As discussed previously, there are several properties of signal sources and signals
that can be estimated through cross-correlation. In this work we investigate the use of
cross-correlation for estimation of the number of nodes in a communication network.
To understand the motivation for using cross-correlation for a number of nodes’
estimation, we provide a simple example from (Callaghan 2010). Consider that a

node in a line-of-sight environment emits a pulse, S,(z) = d(z), while two receivers
record the signals, S, (f) and S, (¢), where 7 denotes the delay position of the

Dirac delta function &(.). The positions of the node and receivers are unknown. The
signal emitted from the node is received by both receivers with certain delays. Thus,
the received signals become S, (t)=¢,,0(r—7,,) and S, (1) =,,6(r —1,,), where

th

7; denotes the delay lag from the i node to the jth receiver, and «; the

corresponding path loss of the signal. By cross-correlating the two received signals

C@)=] S, (1S, (t-t)d7 = &,2,5(z = (z,, —7,,)) (2.15)

It is seen in the above expression that the resulting cross-correlation is a Dirac delta
at the delay difference, Az =7, —7,,. If the process is extended for more than one
node, we will obtain a delta function for each node. Although the above explanation
is for a delta signal, this also holds true for nodes with arbitrary signals as long as

they have certain auto-correlation properties, such as Gaussian signals.

To provide another reason for cross-correlations being used for a number of nodes’
estimation, we briefly review results for cross-correlations in a homogeneous
environment (Roux 2005; Garnier 2009; Snieder 2004). Let us consider two sensors

in an environment designed to record the time-dependent wave fields from the nodes

present in that environment. Consider that S, (f) and S, (¢#) denote the received

signals from a transmitter. Their CCF with the time lag, <, is given by:
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c@=lim— s, 03, a0

In the case of a 3D homogeneous medium with a spatially uniform node distribution,
the field at each receiver can be decomposed as a superposition of the uncorrelated
plane waves from various directions (Callaghan 2010). It has been established (Cox

1973; Callaghan 2010) that the normalised cross-spectral density, /(®), at frequency

® between two sensors separated by dpgs is:

I(w) = sinc(LdDBS] ,
SP

where, S, is the speed of sound propagation.

In the time domain, the normalised correlation function is (Roux 2005):

C(r)= i _Zl(a))exp(iwt)da)

which can be written as (Roux 2005):

C(r) = 1 J-w explio(t+d g /Sp)] do
4 I io(dpgs /Sp)
1 J‘°° expl i@ (f —d pgs /' Sp)] do
dr I io(dpgs /Sp)

It is well known (Roux 2005; Garnier 2009) that, if there is an infinite number of
nodes, the resulting equation of the CCF will form a rectangular shape centred at
zero and have a width of 2d,,,/S, . Actually, this rectangular pattern is formed from
the delta functions of the individual cross-correlations for each node and its height

depends on the number of signal sources and strengths.

From this rectangular CCF, one can deduce the estimation of the number of nodes by
finding the standard deviation or mean, or its ratio, of the CCF. These problems have
a statistical character, and it is therefore more convenient to solve them by statistical

rather than deterministic methods.
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2.6 Formation of CCF

If we cross-correlate signals in two sensors which are the summation of several
Gaussian signals inside a boundary, for every signal we get a Dirac delta which
occupies a place inside a space of a width twice the distance between the sensors (we
divide that space equally into several bins) and that place is determined by the delay
difference of the signal coming to the sensors. The deltas of delay differences equal
to a bin distance from the origin are placed in that particular bin. It is shown in (Roux
2005) that the deployment of nodes (which determines the placement of deltas) of
equal delay differences follows a hyperbola. Thus, the number of deltas in a certain
bin is the number of transmitting nodes inside two hyperbolas placed in the edges of
that bin. As the transmitting nodes are distributed randomly, the number of nodes is

proportional to the area inside those hyperbolas.

2.7 Statistical signal processing

Direct manipulation of the CCF is a complex problem. To make it simpler in this
research, the cross-correlation technique is reframed to a probability problem using
the well-known occupancy problem which follows the binomial probability
distribution from which a parameter is chosen to estimate the number of nodes and

dimensionality of a network.

2.7.1  Occupancy problem

Occupancy problems deal with the pairings of objects and have a wide range of
applications in different fields containing probabilistic and statistical properties. The
basic occupancy problem is about placing m marbles into b bins (Feller 1968). If one
threw some marbles randomly towards several bins, the bins would be randomly
filled by the marbles, resulting in some bins being occupied by more than one
marble, some by one while some may have none. In his thesis (Howlader 2009),
Howlader reframes the framed slotted ALOHA protocol of the number of nodes’
estimation in terms of this occupancy problem. He describes the reframing process as

follows.
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1. In FSA, N nodes transmit to F slots in a frame.

2. Some slots will get no packet; some will one and others more than one.

Thus, by defining the slots with only one packet as singleton slots, those with more
than one packet collision slots and those with no packet empty slots, Howlader uses
the classical occupancy problem to determine the probabilities of empty, singleton
and collision slots. This helps him to determine the number of neighbouring nodes in

a communication network.

2.7.2  Use of binomial distribution

The binomial distribution is the distribution of the counts of the number of successes
in a certain number of trials. Another definition is the probability of obtaining the

result of interest p (where p is a discrete integer-valued variable) times out of n

independent observations if the overall probability of the result is M.

If an experiment satisfies the following characteristics, one can use the binomial
distribution:

e the number of trials is fixed;

e cach trial is independent;

o there exist only two possible outcomes for every trial: success or failure; and

e cach trial has the same probability of success.

For example, a coin-tossing experiment might be binomially distributed if:
e one tosses the coin # (a fixed number) times;
e one decides on which side (heads or tails) it will land, i.e., only two possible
outcomes: success or failure;
e one makes the coin ‘fair’, meaning that the probability of its landing on either
a head or tail is 50%; and
e the result of a previous toss does not affect the present toss (i.e., trials are

independent).
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The binomial distribution has an enormous number of uses. One major application is
in stochastic processes which have statistical properties and can be completely, or
mostly, usefully reframed to a binomial process in order to resolve a problem in an

easier manner. Also, it has applications in simply modelling binomial processes.

2.8 Coefficient of variation (CV)

The CV is a probabilistic and statistical error tool. It is defined by the ratio of the
standard deviation, o , to the mean, x , of a probability distribution (Smith 1999), as:

cv=2

7
The cross-correlation has significant statistical properties and CV may be used to

obtain the error in estimation.

2.9 Conclusion

Existing estimation methods relating to protocol design have significant problem for
estimating the number of nodes in an underwater network. This is caused by a range
of issues, including long propagation delays between nodes. In Chapter 3, the cross-
correlation of random signals is investigated as an alternative tool. Reframing the
cross-correlation problem as a probability problem provides a simple way of

conducting this type of estimation.
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Chapter 3
Estimation of the number of nodes In

wireless communication networks

3.1 Introduction

The technique of cross-correlation is an essential statistical tool in various fields of
interest. It has been used in communication networks to identify and localise nodes,
and for angle of arrival (AOA) estimations of signals from the nodes in a WSN.
Some researchers have used it for the detection of weak signals in the field of
cardiology. In this chapter, the use of the cross-correlation function to estimate the
number of signal sources (nodes in WCN) is described. The chapter begins with the
formulation of the cross-correlation of random signals, which is the starting material
and method for estimating the number of nodes in a network. In adhoc networks
where a node needs to know the number of neighbours, cross-correlation is
performed by a computer associated with the node. In other networks, cross-
correlation is performed by a remote computer controlled by testing personnel. All
the signals transmitted are received by the receiving node and recorded in the
associated computer, in which the cross-correlation is performed. Transmission and
reception of the signals are performed for a time frame which is called signal length
throughout this thesis. The received signals are the delayed copy of the transmitted
signals. The proposed method does not require any time synchronisation and thus the
time stamp is not a performance factor. The signal length or the recording time is a
major performance factor and is discussed with its selection in Chapter 3 and 5. The
communication requirement that need to be satisfied is that the transmitters and the
receivers need to be capable of transmitting and receiving signals for the specified

recorded time without becoming overheated.

In this chapter, it is shown that the cross-correlation problem can be reframed as a
probability problem from which it is possible to develop a theoretical formulation for
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the estimation of the number of nodes, which can be verified by simulations. This
estimation technique is analysed for two broad cases: Case 1 — equal received power
(ERP); and Case 2 — equal transmitted power (ETP). In the first case, using a simple
probe-requesting technique, all the powers of the signals received by the receiving
nodes from the transmitting nodes are made equal. This can be achieved by sending
probe requests from each receiving node to the transmitting nodes and the
transmitting nodes transmit their responses with setting their transmit power inverse
proportion to the received power from the original probing signal. Thus, the powers
of the received signals are compensated for distance-dependent attenuations. On the
other hand, in the ETP case, the transmitted powers from the nodes are equal but the
received powers are different due to the distance-dependent attenuations for the
signals to reach the receivers. It is shown that estimation parameter (from simulation)
follows the theory in the ERP case, but in the ETP case, it deviates. Thus, it requires
modification in theory either using proper statistical property (which is very complex
as the formation of CCF in ETP case is not uniform) of the CCF, or by proper scaling
(which is useful and easy to obtain). So, to avoid complexity, proper scaling is

provided and analysed.

Though the theory is developed for an infinitely long signal, practically the signal
length will be finite. So, the effect and proper selection of signal length is
investigated. Some other factors such as fractional-samples delays, noise, and
multipath propagation might affect the estimation performance, so their effects are

investigated as well.

Before detailing the estimation process, it is necessary to point out some initial
assumptions in order to clarify the experimental setup. These assumptions are listed

in Table 3.1 and most are investigated later.

Table 3.1 Initial assumptions on the parameters

Parameter Initial Explanation and further investigation required to
assumption remove assumption

Network 3D The nodes are uniformly distributed inside a sphere in

dimension spherical | order to produce equal numbers of signals from all
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directions. This assumption is possible in the case of a
3D WCN (such as a 3D UWSN, 3D SWSN, 3D
UGWNSN, etc.). Because the other dimensions (1D and
2D) might be different, this assumption is analysed in
the following chapter.

Propagation Integer All delay durations are assumed to be integer valued in
delays valued the first instance. A simulation with real (fractional-
sample) delays is investigated later in this chapter.
Signal Infinitely | Initially, to ensure better performance, a very long
length long (considered infinitely long) signal length is considered.
Any possible significant effects of the signal length on
estimation using the proposed signal processing
technique are investigated later.
Channel Ideal The channel is assumed ideal so that there is no
property background noise present in it. In practice, as there will
be some background noise, the assumption might be
realisable by simply using the sufficient signal strength
with respect to the noise power. This effect is discussed
later.
Receiver Ideal The receivers are assumed to be ideal, i.e., there is no
property internal noise present in them. It is also possible to
neglect any internal noise by using high-precision
receivers and making the received signal sufficiently
strong; this is discussed later.
Signal Equal The signals received fom different transmitted nodes
power received | are of equal power. This can be achieved by sending
powers probe requests from the sensors with each node setting
from all its transmitted power in accordance with the received
nodes power from the probe such that all received signals are

of equal power. This probing technique requires extra
care, and in the case of natural and/or uncontrolled

nodes, it is impossible to achieve this assumption. So,
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the case of ETP is also analysed later in this chapter. In
this case, the received power will be different due to

the distance-dependent attenuations.

Multipath
effect

No
multipath

No multipath effect is considered. In the case of an
electromagnetic wave, because of the high absorption
in an underwater channel, this effect can be neglected.
However, acoustic underwater communication will be
affected by multipath; this is discussed in a separate

section of this chapter.

Doppler
effect

No Doppler
shift

No Doppler effect, which might occur due to the
movement of a network’s nodes, is considered. In
many WCNs, as the nodes of interest are deployed in
fixed locations (e.g., in a WSN, the nodes are fixed in a
region to monitor the observed area), there is no
Doppler effect as signal taking a direct path. In the case
of a movable network (e.g., swarms of AUVs or UUVs
in which the nodes move around a region to monitor it),
the Doppler shift can be neglected by using a high-
speed wave (e.g., electromagnetic). Due to the Doppler
effect, there will be a slight variation in the propagation
wavelength and, thus, in propagation delay which can
affect the placing of balls in the bins of the cross-
correlation process and might lead to fractional-sample
delays being created. However, the effect of fractional
samples has no significant effect on estimation; this is

discussed later in this chapter.

Transmitted

Signal

White

Gaussian

The white Gaussian nature of the signals ensures the
delta function in the bins of CCF. Similar delta
functions are possible from delta signal as well as from
the signal which fulfils the Gaussian property. If the
signals are non-Gaussian we will not get only the

desired peaks, we will get some undesired peaks as

well in the CCF and the investigations are left for
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future work. If the nodes transmit Gaussian signal
normally then the signals are the part of the normal
transmission, otherwise they require transmitting
signals specifically for the purpose of node estimation.
The transmission time relates with the estimation error
and is discussed with the error analysis in Chapter 5 of

this thesis.

3.2 Formulation of random signal cross-correlation

Consider two receiving nodes surrounded by N transmitting nodes in a 3D space, as
shown in Figure 3.1 (a). Assume that the transmitting nodes are the sources of white
Gaussian signals and are uniformly distributed over the volume of a large sphere, the
centre of which lies halfway between the receiving nodes, because only a sphere
provides equal amounts of signals from every direction. The propagation velocity is
assumed to be constant which, in our case, is the sound velocity, Sp, in the medium.
To make the distinction between the receiving and transmitting nodes easily

understandable, we call them the sensor/receiver and node, respectively.

To formulate the random signal cross-correlation problem in this analysis, the two
sensors, H; and H>, and a node, N, are taken at locations (x1,)1,z1), (X2,V2,22) and
(x3,)3,23), respectively (using rectangular coordinate system), somewhere inside the

sphere, as shown in Figure 3.1 (b). The distance between the sensors, dpgs is then

dpps = \/(Xl —x2)2 +(n —J/2)2 +(z - 22)2 .

Consider that N; emits a signal, Si(f), which is infinitely long. Then, the signals

received by H; and H, are, respectively:

S, () =ay S (t—1) (3.1

and
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S, () =0apSi(t—11) (3.2)
where, ¢, and «,, are the respective attenuations due to the absorption and

dispersion present in the medium, 7 - 4y and T, = 4y the respective time delays
S S

P P

for the signal to reach the sensors, and Sp is the speed of wave propagation.
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Figure 3.1 Distributions of underwater network nodes in 3D space:

(a) N nodes; and (b) only one node
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Assuming 7 1is the time shift in the cross-correlation, and then the CCF is:
Cie)=["5, (s, (1-2)dr, (3.3)

which takes the form of a delta function as it is a cross-correlation of two white

Gaussian signals where one signal essentially is a delayed copy of the other..

To find the CCF for N nodes, we have to take the total signal received by the sensors
from the nodes which involves collecting all the signals from the nodes and summing

them. Now, the received signals from the second node are:

Sy, () = a8, (t = 75) (3.4)
and
Sy, (1) =38, (t—15) (3.5)
Then, for the third node:
Sy, ()= a3, 85(t = 731) (3.6)
and
Sy, (1) = a3y S3(t —737) (3.7)

Thus, for the N node, they are:
Sp (O =0y Sy(t—1y) (3.8)
and

Sp, ) =ay,Sy(t—1y,) (3.9)
Summing (3.1), (3.4), (3.6), and (3.8), the total signal at sensor H| is:

S, (O+S, (O+S, )+ +S, ()

=, S,(t=1),) + 00y, Sy (t = Ty)) + @ Syt = T3,) + oo + oy Sy(t—7y,)

N
= Zlocj]Sj(t - ‘L'jl)
J=

Denoting the total signal at sensor H; by s, (1) gives:
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S, 0= a,S,(t-7,) (3.10)

N
T -

J=1

Similarly, summing (3.2), (3.5), (3.7), and (3.9), the total signal at sensor H, is:

S, O+, (O+S, (D+....... +S, ()

= 0,8, (t=7,,) + 00y Sy (E = Tp) + Ay Sy(E = Ty) + v + a2y, Sy (t=Ty,)

N
= Zl:aszj (t - sz)
J=

Denoting the total signal at sensor H> by s, (1) gives:

S, (z):iaﬂsj(z—rﬂ) (3.11)

Thus, the final CCF between the signals at the sensors is:

cry=["5, 1S, (t-0)de
. N

- I_wz @S =ty )Y apns, -t -c)de (312
Jj=1 j=1

which takes the form of a series of delta functions as it is a cross-correlation of two

signals which are the summations of several white Gaussian signals.

3.3 CCF for infinitely long signal

It is already discussed in Sections 2.5 and 3.2 that if a source emits an infinitely long
unity strength Gaussian signal, which is recorded at two sensors with the
corresponding time delays and attenuations, the cross-correlation function of these
two signals can be expressed by a delta function, whose amplitude depends on the
attenuations and position will be the delay difference of the signals from the centre of

the CCF.

Thus, the CCF for such a source is

C(7)= anané{r —[MD (3.13)

Sp
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In the proposed ERP case, the strength of the signal will be such that it overcomes
the corresponding attenuations. So, there will be no attenuation term in the CCF

expression (3.13) Thus the CCF in the ERP case for a source will be

- fi4]

Similarly for 2™, 3", ..., N" node is

cufefot]

Thus the CCF will be for N number of nodes
C(r)=C(2)+ Cy(e)+--+Cy (7)

= 5(7 - {—d“ —dy D + 5(7 - {—d” —dy D ot 5(7 - {—dm mLI% D (3.14)
SP SP SP

It can be seen from the above expression that the CCF for N source is summation of
N numbers of deltas with their corresponding positions which are determined by the

delay differences of the signals in the sensors.

So the expression (3.14) can be further expressed as
C(r)= ié‘(r - {MD (3.15)
j=1 Sp
It is intuitive that if N is larger than the number of bins, b, which is usually the case,
the bins are occupied by more than one delta due to the same delay differences. This
increases the amplitude of the deltas in the bins, and thus the CCF is expressed in

terms of bins as
C(r)=2 Ps, (3.16)
1

where, P; is the amplitude or peak of the dirac delta, o, in the i bin,
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The above analytical expression is verified by simulation in the following Figure 3.2.
Here we use 32 nodes and 19 bins. The nodes are the sources of equal unity power
signal. It is shown that some bins are occupied by only one, some of them by more
than one, and rest of them are empty due to the delay differences in the cross-
correlation process. The results follow the expression (3.16) where the P; values are
as follows.

P= Pig=4, Ps= Pip= P13=3, ... and so on.

10 . . .
—& Simulated
Bt —* Analytical H
L ]
L
L]
< gl |

orlee TelolelTell

2 4 4] d 10 12 14 16 18
Bins, b

Figure 3.2 CCF in ERP case: N=32, and =19

In the ETP case, the transmitted signal strengths will be same for all sources and
which will have to be such that all signals can overcome the attenuations to reach the
sensors properly. Thus to get appropriate peaks of the CCF bins signal power, a
factor will have to be multiplied in right hand side of (3.13) which is selected from

the largest communication distance in the network as
y=d_" (3.17)

Thus the expression of CCF can be represented from (3.13) and (3.17) for a source as

C()(")“(SHuD

Sp
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Similarly for 2™, 3™, ..., N node is

C,(r)=(d,,' )a21a225[f - {MD

Sp

Sp

€)= et - 22

Thus the CCF will be for N number of nodes

€)= C )+ Ce) s+ o)

(dmaxk )allalzé{f - {M}J + (dmaxk )0(210(225[1 — {M}] 4

Sp Sp

¥ (dmaxk)amamé[r _ {MD 58)

Sp

It can be seen from the above expression that the CCF for N source is summation of
N numbers of deltas as the ERP case but the amplitude will be different by the

distance dependent attenuations.

So the expression (3.18) can be further expressed as

C(r)= éPja(r - {MD (3.19)

Sp

where, PJ(: (dmaxk )a it jz) is the amplitude of the delta due to /™ node.

It is intuitive that if N is larger than the number of bins, b, which is usually the case,
the bins are occupied by more than one delta due to the same delay differences. This
increases the amplitude of the deltas in the bins, and thus again the CCF is expressed

in terms of bins as

C(r)=2p5 (3.20)

i=l1

where, P; is the amplitude of the dirac delta, &, in the /" bin.
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The above analytical expression is verified by simulation in the following Figure 3.3.

70 $ :
—& Simulated
B0y —* Anaktical ||
a0} -
40+t .
& $
< aof ¥ ® @ .
20} -
B [T |
a ] 11 15 20

Bins, b
Figure 3.3 CCF in ETP case; N=32, and =19

Thus (3.16) is the generalized expression for any CCF in this thesis. In some cases
(where the signal length is very small, noise is severe etc.), obtaining the peak of the
CCF is difficult from the above process and might be obtained from the moving

average technique of cross-correlation.

The CCF, using the moving average technique of cross-correlation can be

represented generally by the following expression (Hanson 2008a; Hanson 2008b).

o)y S| | 2

s i=1 s =l s =l

where N; is the signal length in number of samples, v the time delay of cross-

. th .
correlation, x; and y; are i samples of the two sensors’ signals.

As we are using zero mean Gaussian signal so the product of their means is zero. So,

the CCF will be reduced to

1 Ny

C(r)= N
()=~ ley

N
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This gives the peaks for the desired bins as follows:

1 Ng+7 N +1 N,-0

1 1 N, -1 1 N, -7
N +z inyi—ﬂ m ;xiyilﬂm zxinO’ ﬁ iZ:l:xinl’“.’ N -7 ;x,-ym

i=1 s i=1

where the peaks are the strengths of the deltas of (3.16), which are

1 Nl\.+‘l’
P = Xy,
1 —
N, +7 ,Z:; e
1 N +(z-1)

P=— XV, ,
2 N +(-1) z iVi-(e-1)

i=1

1 N.\' -7

Ijb =N -7 izzllxiyi-#r

N

Putting these values in (3.16), we get the desired CCF which is called here the
theoretical CCF.

3.4 Mean, u and standard deviation, o, of CCF

The ensemble average of the signal cross-correlation is expressed analytically in

(Roux 2005) as

x5£z+ Pt [l ) (3.21)
Sy Sy

where Ot represents the acoustic power of the received signals from the nodes taken

(ca)=omy[ dr,

rb_?:\'"ra_rs

to be constant over time and space, and v the creation rate of the random nodes

whose unit is unit time per unit volume, 7; total recording time, 7, path length of node
s from the origin, 7, path length of first receiver from the origin, and 7, the path

length of second receiver from the origin.

Again, the variance of the CCF (i.e., the square of the mean level of the fluctuations)

is defined in (Sabra 2005c¢) as
var(C(t)) = (C* (1))~ (C))’ (3.22)

where the value <C]j2 (t)>2 and <C g (t)> are defined, respectively, in (Sabra 2005c) as
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(c)) = QTzvz(fTT'/zdt[w a7 [ AT Gt~ 1) x Gy +1 - rl))

(3.23)
+T,/2 RN ~
XU dt_[ digI dr,G(7,7; —73)><G(r3,rb;r+t—r3))
and
<Cz(t)>=QTvz(J._+Tr dtj fj dr,G(r, 7 ;t—7)xG(F, 1T+t — Tl))
(I+T/2fj+wfj dr,G(#, 75t =)< G(7,, Ty T+ 1 — ))
T /2 7,72
+0OLv jm mde fj dr,G(F 73t —1)xG(P, . ; ))
([T dnGst-r)x GG sT 1) (3.24)
+QTv2r://22dtTTr//22dtNU di (" dzGG. 7 - z'l)xG(iq,rb,2'+t—rl)J

(I fj dr,G(r,,7,;t rz)xG(rz,rb,r+t 72))

where G(.) is the Green’s function, and the other parameters indicate their usual

meanings.

We can then obtain the standard deviation, o, of the CCF which is the square root of

the variance by:

Var(C(0) = [(C* () ~(C0)) (3.25)

As it is quite difficult to analyse the random signal cross-correlation problem to
estimate the standard deviation and mean in the above way, the problem can be
reframed as a probability problem which makes the analysis much simpler. This

process is discussed in the following section.

3.5 Reframing cross-correlation as a probability problem

It has been shown in the previous section that the cross-correlation of random signals

takes the form of a delta function and occupies the space between the sensors where
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the space is divided by several samples, as shown in Figure 3.4. Thus, for every
node, after cross-correlation we obtain a delta function which occupies any position
in the sample space between the sensors. We can now consider each delta function as
a ball and the samples between the sensors as bins into which the balls may fall. So,
we can simply model the random signal cross-correlation problem as a probability
problem based on the well-known occupancy problem, i.e., the problem of placing B

balls in b bins.

To demonstrate the problem of random signal cross-correlation as a probability
problem, consider an experiment of the repetitive type in which only the occurrence
or non-occurrence of an event is recorded. Suppose the probability that the event
occurs when the experiment is performed is p. Let ¢ = 1 — p denote the probability
that it fails to occur. If the event occurs in a given trial of the experiment, it is called
a success, otherwise a failure. Let n independent trials be conducted and denote the
number of successes obtained in the # trials by X. In our case, the number of trials, 7,
is equivalent to the number of nodes, N, and the probability of success, p, is

equivalent to 1/b, where b is the number of bins.

hing
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Figure 3.4 Bins, b, in cross-correlation process

In this case, we need to consider the discrete probability distribution because we use
the sampled signal in the cross-correlation process. The binomial distribution is also

appropriate because the experiment fulfils the conditions of binomial probabilities.
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3.6 Some simulated results and selection of estimation tool

By reframing the cross-correlation problem as a probability problem, it is easy to
obtain the proper estimation tool, as shown by some simulated results in Matlab
programming environment presented in Figures 3.5, 3.6 and 3.7 and Tables 3.2, 3.3
and 3.4. Figure 3.5 and Table 3.2 show the means, Figure 3.6 and Table 3.3 the
standard deviations, and Figure 3.7 and Table 3.4 the ratios of the standard deviation
to the mean of the CCF. All figures and tables are for three distinct simulation
setups: (a) unity signal strength; (b) double signal strength; and (c) half signal
strength.

It can be seen from Figures 3.5 and 3.6 and Tables 3.2 and 3.3 that the means and
standard deviations increase by the same factor with increases in the signal strength
and decrease by the same factor with decreases in the signal strength. For that reason,

their ratios are constant, as shown in Figure 3.7 and Table 3.4.

20 : : : .
&5 —W¥ith unity signal strength
% 1471 — —With double signal strength |
s | |t Wyith half signal strength
g JUTANCIIVAY
5 Fh i ﬂ; Uil
= P S
=
=
[y
]

-5 : : : :

0 20 40 &0 g0 100

Mumber of nodes, M

Figure 3.5 Standard deviations of CCF versus /N with: unity signal strength;
signal strength doubled; and signal strength halved.
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Figure 3.6 Means of CCF versus N with: unity signal strength; signal strength
doubled; and signal strength halved.
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Figure 3.7 Ratios of standard deviation to mean, R, of CCF versus NV with:

(a) unity signal strength; (b) signal strength doubled; (c) signal strength halved;
and (d) their comparison.
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Table 3.2 Standard deviations of CCF for different numbers of nodes

with three distinct signal powers

Number of Standard Qeviatjon Standard.deviation Standard d_eviation

nodes, N of 'CCF with unity of QCF with double of CCF with half
signal strength signal strength signal strength

1 0.2299 0.9196 0.0575

10 0.6961 2.7844 0.174

20 0.9763 3.9052 0.2441

30 0.9025 3.61 0.2256

40 1.3942 5.5768 0.3486

50 1.8568 7.4272 0.4642

60 1.7564 7.0256 0.4391

70 2.1391 8.5564 0.5348

80 1.8327 7.3308 0.4582

90 2.2864 9.1456 0.5716

100 2.4605 9.842 0.6151

Table 3.3 Means of CCF for different numbers of nodes

with three distinct signal powers

Number of Meﬁ?] i?; ;gﬁ;}”th MZ%nugrecs?gnV;:th Mear) of CCF with
nodes, N strength strength half signal strength

1 0.0546 0.2185 0.0137

10 0.5544 2.2177 0.1386

20 1.1189 4.4758 0.2797

30 1.4474 5.7895 0.3618

40 2.1668 8.6674 0.5417

50 2.5841 10.3364 0.646

60 3.0811 12.3242 0.7703

70 3.8854 15.5415 0.9713

80 4.3332 17.3326 1.0833

90 4.7348 18.9394 1.1837

100 5.4279 21.7116 1.357
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Table 3.4 Ratios of standard deviation to mean, R, of CCF for different
numbers of nodes with three distinct signal powers

et | Rorcerm o | SeTal | R
' strength strength
1 4.2082 4.2082 4.2082
10 1.2555 1.2555 1.2555
20 0.8725 0.8725 0.8725
30 0.6235 0.6235 0.6235
40 0.6434 0.6434 0.6434
50 0.7185 0.7185 0.7185
60 0.5701 0.5701 0.5701
70 0.5506 0.5506 0.5506
80 0.4229 0.4229 0.4229
90 0.4829 0.4829 0.4829
100 0.4533 0.4533 0.4533

It is also clear from the results that, as the mean and standard deviation of the CCF
and its ratio are all related to the number of nodes, A, it is possible to use any of them
to estimate N. However, as the mean and standard deviation are also dependent on
the signal strength, we can only use them as the estimation tool if the exact signal
strengths are known, which is not usual. On the contrary, as the ratio, R, is not
dependent on the signal strength, we choose it as the estimation tool in this thesis as
it requires no prior knowledge of the signal strengths from the nodes. Thus, having
obtained the estimation tool, the estimation process is discussed in the following

section.

3.7 Estimation process - equal received power (ERP) case

The basic approach for estimation using the cross-correlation of the number of nodes
is discussed in this section. Formation of the CCF from the mixture of signals in two
spatially separated sensors within a number of nodes has been explained in the
previous section. It has also been shown that the standard deviation and mean of the
CCF and its ratio are related to the number of nodes from which the signals originate.
The ratio, R, is independent of the signals’ power, is chosen as the tool for estimating

the number of nodes. The following subsections discuss the process. Firstly, the
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analytical relationship between N and R is established and then it is verified by

simulation.

3.7.1 Theoretical estimation

The cross-correlation problem has been reframed into a probability problem in
Section 3.5 where it is shown that it follows the binomial probability distribution in
which the parameters are the number of nodes, N, and the inverse of the number of

bins, b.
The expected value of the first moment (the mean) of the CCF is:
E(X)=mean ,u=(C(t))=n
(X) p={C(z))=np (3.26)
=N=b

where b is twice the number of samples between the sensors (NSBS), m minus one,

as we cross-correlate two vectors of length m x1; and the second moment is:

E(X?)=second moment = <C2(T)>

, (3.27)
=(np)” + npq
From (3.26) and (3.27), we can obtain the variance:
2 2 2
c"=EX")-EX) =n
(X7) - E(X)" =npq (3.28)
=Nx{A/b)x(1-1/b)
Then, the standard deviation is:
o =yE(X?) - E(X)?
JEX) — E(x) 529

= JN x(1/b)x (1-1/b)
Thus, the ratio of the standard deviation to the mean, R, is:
q (1-1/b) b-1)
R=c+u=_|[—= =
oTH \ np \/Nx(l/b) \/ N (3-30)

This is the relationship between the number of nodes, N, and the ratio of the standard

deviation to the mean, R, of the CCF. Since we know b and can measure ¢ and u

(and, therefore, determine R) from the CCF, we can readily determine the number of
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nodes, N. Figure 3.8 shows the theoretical results derived from (3.30) for different b
(Figure 3.8 (a) for 19, Figure 3.8 (b) for 99 and Figure 3.8 (c¢) for 179 bins).

15 15
Theoretical: b=19 Theoretical: b =599
L 10 L 1o
[ @)
] ]
k=] S
I 5 o5
o s s : : 0 : : : :
o 20 40 &0 80 100 0 20 40 G0 80 100
Mumber of nodes, M Mumber of nodes, N
(a) ib)
15 T T T T
Theoretical: 5=179 |

L 10

[

&

k=]

X gt

D 1 1 1 1
0 20 40 50 a0 100
Mumber of nodes, M
{cl

Figure 3.8 Theoretical R versus N: for (a) b =19; (b) b = 99;
and (c) b =179

It is clear from (3.30) that the ratio, R, is also dependent on b. Recalling (3.30),

R = ‘/b]\_fl and, assumingb >> 1,ie., b —1 = b:
b
R = |— 3.31
‘/N (3.31)

Figure 3.9 shows the original and approximated values of R with respect to b,

demonstrating that using the approximations is sufficient for estimating the number

of nodes.
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Figure 3.9 Theoretical results for R versus b: (a) original and approximated, NV =
100; and (b) approximated, N =1, 10 and 100

3.7.2  Estimation from simulation

As discussed in Section 3.2, after cross-correlating signals received at two sensors
from a number of random Gaussian signal sources, the CCF, which is a rectangular
pulse over the space between the sensors, can be obtained. Then, it is easy to
estimate the mean and standard deviation of this CCF and, therefore, the ratio, R, as

the sampling rate and d|,;; are known. In the particular case in which the sampling
rate, speed of propagation and d,,, are fixed, (3.30) tells us that the ratio, R, is

inversely proportional to the square root of the number of nodes, N. Thus, (3.30)

becomes:
1
Roo——
JN
or,
R=-2 (3.32)

JN

where c(=+4/b—1) is a known constant. Thus, from the simulation, we can readily

estimate the number of nodes by knowing only the ratio of the standard deviation to

the mean of the CCF.
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3.7.2.1 Verification of theoretical results

This subsection discusses the estimation setup and simulation parameters used, and
verification of the theoretical results by those from the simulations. A similar setup
to that discussed in the previous section is employed to perform the simulations, i.e.,
two spatially separated sensors are placed somewhere in the middle of a sphere
inside a cube such that the diameter of the sphere is equal to the dimension of the
cube, and the sphere is filled with a number of uniformly distributed nodes. The
signals (responses to probe requests from the sensors or autonomous) emitted from
the nodes are collected by the sensors. By cross-correlating these two signals at the
sensors, the CCF is obtained. Using this CCF, the estimation tool, i.e., the ratio of the

standard deviation to the mean of the CCF, is obtained.

The following parameters are used in the simulations.

e Dimension of the cube, 2000 m, for simplicity of calculation; however, it
does not matter what the dimension of the cube is within the direct
communication range. The maximum distance between the two nodes will be
2000 m as the nodes are uniformly distributed within a 3D sphere inside the
cube.

e Exact number of transmitting nodes taken are, N =1, 2, 3, ...., 100, to reduce
the simulation time, however, the estimation process is equally suitable for
any N.

e Signal length, Ns = 10° samples, to approximate infinitely long signals. The
effect of signal length on the estimation process is investigated later in this
section. The range of the signal length is selected in order to perform useful
estimations.

e Sampling rate, Sg = 30 kSa/s; as underwater acoustic communications
currently operate within the bandwidth (BW) of 1-15 kHz, we arbitrarily
choose this value without violating the sampling theorem. The effect of
sampling rate on the estimation process is discussed later in this chapter.

e Speed of propagation, Sp = 1500 m/s; this is the propagation speed of a sound
wave as we use the acoustic signal in an UAWSN. Although this might vary
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due to the channel’s property and the Doppler effect, any effect of a variation
is negligible in the estimation process, as discussed earlier.

e Distance between sensors, dpgs = 0.5 m; this can be varied. In this chapter, it
is shown that the estimation performance depends on b, a function of dpgs
and Sg, thus they can vary oppositely to have a certain b.

e Absorption coefficient, a = 1 and dispersion factor, k£ = 0; but, as we receive
the signals with equal power from the appropriate probe request, the
estimation process is not affected by path loss i.e. the estimation is

independent of k.

Figure 3.10 shows the simulation results in normal (Figure 3.10 (a)) and log-log
(Figure 3.10 (b)) scales. Figure 3.10 (b) shows that the log-log plot of the simulated
result can be approximated by a straight line whose slope can be derived as

C
1 .
Og(dj o

s, = P
2
log[j
a

So, the simulated ratio, R, is:
1
logIO(R): _ElogIO(N)+cl

1
=log, (N xc,)) *

Thus,

1.€.,

Roo—— (3.33)

where ¢, c11, and ¢ are the constants and are related as ¢, = loglo(cll%): log,,(c,, ).

The value of ¢, can be obtained by substituting particular values (the first point with

b =19, where N =1, R = 4.25) of R and N from Figure 3.10 (a) so that:
¢, = 425 ~ b for N=I.
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Figure 3.10 Simulated results for R versus N: (a) normal plot; and (b) log-log

plot

Now, to show the relationship between Rand b, the estimation process is simulated

with different b. Variations in b can be obtained by changing dpgs and/or Sg. Figure

3.11 shows the variations in Rwith the number of bins, b, plotted in normal (Figure

3.11 (a)) and log-log (Figure 3.11 (b)) scales. Again, it is obvious from Figure 3.11

(b) that the log-log plot of the simulated results can be approximated by a straight

line whose slope is obtained as

Sirnulated: M=T1

Rof CCF
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Nurmber of bing, b
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w10 '/
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Figure 3.11 Simulated results for R versus b: (a) normal plot; and (b) log-log

So the estimated ratio, R, is:

plot

1
log (R ): Elog 10 (b)"' )

Thus,

1

= log,,(bx 021)5
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1

R =c,, xb?
1.e.,
R o b (3.34)

where ¢, ¢21, and ¢, are the constants and are related as ¢, =log,, (cm_% )= log,,(cy,)

The value of ¢, can be obtained by substituting particular values (the first point with

N =1, where R = 425, b =19) of R and b from Figure 3.11 (a) so that:

for b= 109.

¢,y =1=

-

Thus, from the above two relationships, it can be concluded that

, / , / Wthh agrees with the theoretical results obtained earlier.

3.7.2.2 Results and discussion: estimation parameter, R, of CCF

Several simulations are performed and some useful results are compared with the
theoretical results to verify the effectiveness of the estimation process. Figure 3.12
shows the simulated results with error bars. It can be seen that the error bars are very
small in size, i.e. the variations of the results are very small and the error bars can be
neglected. Thus error bars are omitted from the simulation results later.

10

R of CCF

0 1 1 1 1 1
0 20 40 60 80 100 120

Number of nodes, N

Figure 3.12 Simulation results with error bar
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Figure 3.13 shows the theoretical and corresponding simulated results for the
estimation of the number of nodes in a network. The solid lines indicate the
theoretical results and the circles the corresponding simulated results. The variations
of b in the three different figures are as a result of varying dpgs. The distances
between the sensors are: 0.5 m in Figure 3.13 (a), 1m in Figure 3.13 (b) and 2m in
Figure 3.13 (c). The other parameters remain the same as in the first simulation, i.e.,

with Sg = 30 kSa/s.
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Figure 3.13 R versus N for b =19, 39 and 79 using fixed Sk and variable dpgs:

(@) dpss=0.5m; (b) dpgs=1m; and (c) dpss = 2m [Sr = 30 kHZz]

Then, the results of R for different b are plotted in Figure 3.14.
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Figure 3.14 Comparisons of theoretical and simulated results: R versus b
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The simulations are performed in the MATLAB® programming environment. In the
results depicted in the above figures, the theoretical and simulated lines are very
close to each other, i.c., the theoretical and simulation results match which indicates
that the process is satisfactory for estimation. In the figures, the solid and differently
marked lines indicate the theoretical (from the mathematical relationships shown in
Section 3.7.1) and simulated (from the simulation discussed in Section 3.7.2) results,

respectively.

Again, it is obvious that b will be larger if d,,s increases and has an effect on the
estimation process, as discussed in Section 3.7.1. It is shown that large values of
dpps result in large values of R and the closer the simulated lines are to the
theoretical lines the greater the degree of accuracy. However, there might be some

limitations on this relationship, as discussed later.

3.7.2.3 Dependency of R on b, Sk and dpgs

It is possible to vary the number of bins, b by also varying the sampling rate, Sg. The
number of bins, b, in samples is related to the distance between the sensors, dpgs, and
the sampling rate, Sg, as follows:

_ 2)( dDBS X SR
Sp

b -1, (3.35)

where the symbols have their defined meanings.

The effects of varying the sampling rate and the distance between the sensors are
shown in Figures 3.15 to 3.17. In Figure 3.15, there are three different figures for
different b, as there are in Figure 3.13, but the variations occur due to varying Sg.
The values used for the sampling rates are: 30 kSa/s for Figure 3.15 (a), 60 kSa/s for
Figure 3.15 (b) and 120 kSa/s for Figure 3.15 (c). The other parameters remain the

same as in the first simulation with dpgs= 0.5 m.

In Figure 3.16, there are three different figures for different b, as in Figures 3.13 and
3.15, but the variations occur due to varying both dpps and Sg. The values used are:

0.25 m and 60 kSa/s for Figure 3.16 (a), 0.75 m and 40 kSa/s for Figure 3.16 (b) and
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1.2 m and 50 kSa/s for Figure 3.16 (c). The other parameters remain the same as in

the first simulation.
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Figure 3.15 R versus N for b = 19, 39 and 79 using fixed dpgs and variable Sk:
(a) Sr =30 kSals; (b) Sk =60 kSa/s; and (c) Sk = 120 kSa/s [dpss = 0.5 m]
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Figure 3.16 R versus N for b =19, 39 and 79 using both dpgs and Sk as variables:
(a) dpss=0.25 m, Sg = 60 kSa/s; (b) dpss= 0.75 m, Sk = 40 kSal/s;
and (c) dpgs= 1.2 m, Sg = 50 kSa/s
89



10 T . 10 : .
; ; —— Theoretical ; ; — Theoretical
) I - o Simulated #1 [ ] R M o Simulated #1 |1
&5 oY FS S S +  Simulated #2 | TS S SO SO + Simulated #2 ]
© + Simulated #3 8 + Simulated #3
QC:’ AR T i R
N
T R ECERERREn : R T T aE
: i : " = & : ; i i ¥
DD 20 40 B0 a0 100 DD 20 10 B0 a0 100
Number of nodes, N Number of nodes, N
(a) (b)
] , , . ,
: : — Theoretical
i i M o Simulated #1 [1

*+  Simulated #2 | |

Y
S + Simulated #3
5 A : :
x

2 ____________

1] i i i i

] 20 40 50 0 100

MNumber of nodes, N
(c

Figure 3.17 Rversus N: (a) b=19; (b) b=39; and (c) b =79
[Simulated#1 - dpgs variable and Sk fixed; simulated#2 - dpgs fixed and Sr

variable; and simulated#3 - both dpgs and Sk variable]

The results shown in Figures 3.13, 3.15 and 3.16 are compared in Figure 3.17 in
which there are three different plots, each comparing four different results with the
same b. This figure shows comparisons of three different simulated Rs for b = 19
(Figure 3.17 (a)), b = 39 (Figure 3.17 (b)) and b = 79 (Figure 3.17 (c¢)) using a
variable dpgs and a fixed Sg in simulated#1, a fixed dpgs and a variable Sk in
simulated#2 and both dpgs and Sr variable in simulated#3 with theoretical R. The
results in Figure 3.17 demonstrate that, whatever the value of dpgs and Sg, the
estimation parameter, R, will only vary when b is varied. To make the matter clearer,

further simulation results are shown in the Figures 3.18 and 3.19.

Figure 3.18 shows the three different theoretical with corresponding simulated results
for R for three different numbers of nodes. The circles and associated line are for
N =1, the stars and associated line for N = 10, and the plus signs and associated line
for N = 100. It is shown that R is constant for a certain number of nodes when b

remains unchanged (although Sk and dpgs change).
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Figure 3.19 shows similar effects of Sg and dpgs, and thus b, as shown in Figure 3.18
using the surface plots for six different values of N. In Figure 3.19, b remains fixed at
79 by taking six different pairs of values of Sg and dpgs, as shown in the top surface
plot. In the bottom of the figure, the surface plot marked by circles is for the
theoretical results and that marked by stars is for the simulation results; they show

that the theory matches the simulation.

It is shown from the above results that, although the values of Sk and dpgs change
(keeping b fixed), the values of R for a particular N remain unchanged due to the
unchanged b. Thus, it is possible to set suitable values for Sg and dpps by varying

them oppositely to estimate N with a certain b.

3.7.2.4 Results and discussion: estimation of ¥

After some manipulation, from the expression in (3.30) we have:

So, if the ratio, R, is available from the simulation, an estimate of the number of
nodes N is readily available using the above equation as b is known from the

experimental setup. Several simulations are investigated in this respect and the

results obtained from the average of 1000 estimated N are shown in Figure 3.20.

Figure 3.20 also demonstrate that a good approximation of the number of nodes, N,
can be obtained from the ratio, R, of the CCF even when the distance between
sensors is small; if a distance of 0.25 m is sufficient, the two sensors can be
collocated with the same node, thereby removing the requirement to transmit data

between them.
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(@) b =19 (dpes=0.25 m and Sg=60 kSa/s); (b) b = 29 (dpes=0.25 m and Sg=90
kSa/s); and (c) b = 39 (dpgs=0.25 m and Sr=120 kSa/s).

3.7.3

Conclusion

Estimation of the number of nodes is investigated here with theory (obtained from

statistical property of CCF) and simulation. It can be seen from the results that the

proposed technique is good enough for estimation. Although error bars are required

for simulated results (as they are random in nature with a standard deviation), it is

shown that the error bar is sufficiently small to neglect and so simulation results are

provided without error bars. There are some assumptions in this basic technique

which are investigated later in this chapter, starting with the estimation in ETP case.
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3.8 Estimation process - equal transmitted power (ETP)

case

The estimation process discussed in the previous section is applied to the ERP case
in which the powers of all the received signals are the same. It can be achieved by
proper probe requests emanating from the receivers, and the transmitters replying
with signal powers which are inverse proportions of the received probes. In this
section, the ETP case, in which the nodes transmit signals of equal power but the
received powers are different due to the distance-dependent attenuations, which also
depend on the dispersion coefficient, k, is discussed. Several simulations are
performed using a similar procedure to that discussed earlier for the ERP case. The
results for the ratios of the standard deviations to the means of the CCF are presented
in Figure 3.21 for different dispersion coefficients, £ (0, 1, 1.5, and 2). Simulated
results shown are obtained from the average of 100 iterations to get the better results
and this is followed always for the ETP case. Although the simulated results in the
ERP (i.e., where k = 0) case follow the basic theory, they are different in the ETP

cases as shown in Figure 3.21.

To verify the simulations, the estimation parameter, R is also obtained from the
theoretical CCF using (3.16) and (3.20) and compared with the simulation as shown
in Figure 3.22. It can be seen that the two results coincide each other which ensure

the correctness of the simulation results.

However, as in the practical environment both cases may arise. In order to make the
process robust, we should design it for the ETP case as well. Although the results do
not exactly match those of the theory, their well-behaved shapes suggest that we
derive a scaling factor which follows the theory. To do this, we take the results for &
= 1.5 from Figure 3.21, as shown in Figure 3.23 (a), and re-plot them in a log scale,
as shown in Figure 3.23 (b), from which it is clear that the log-log plot completely
follows a straight line as it does in the case of equal received power and theoretical
discussed earlier. Now, assume straight line approximations of both results in Figure

3.23 (b) to fit the simulation results with the theory and vice versa.
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Figure 3.21 Ratios of standard deviation to mean of CCF, R versus /V:

comparison of theoretical and different k results

5 ‘ ‘ ‘ ‘ ‘ ‘
From theoretical CCF: ERP case (k=0)
4 I x From simulated CCF: ERP case (k=0) ||
‘ From theoretical CCF: ETP case (k=1.5)
% From simulated CCF: ETP case (k=1.5)
S 3r From theoretical CCF: ETP case (k=2)
© *  From simulated CCF: ETP case (k=2)
2
1 L
0 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90

Number of nodes, N

Figure 3.22 Ratios of standard deviation to mean of CCF, R versus N:

comparison of R obtained from theoretical and simulated CCF
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Figure 3.23 Ratios of standard deviation to mean of CCF, R versus N: (a)

comparison with £ = 1.5 and theoretical; (b) re-plotting of (a) in log scale

3.8.1  Fitting of simulation results with theory

It is shown that the theoretical value of the estimation parameter R is expressed in

(3.30) as

It can be written as
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This expression is also verified by the simulation results in ERP case, where the
value of dispersion coefficient is considered as k=0. Thus, for £=0, denoting

simulated estimation parameter by R, power of (b-1) by ¢,, and power of N by s,

the simulated estimation parameter in ERP case can be expressed as

R,=(b—1)"N* (3.36)

Letting the slopes of the straight line approximation from Figure 3.23 (b) be s, ; for

the simulated line and for A=1.5, denoting simulated estimation parameter by R s,

log, (R, 5) = (5,5)l0g,, (V) + ¢,
= logy, (R, 5) = (5,5)10g,,(N) + (s, 5)log, ()
= log,( (R, 5) = (s, 5)log,, (¢, N)
= log,,(R, 5) = In(c,N)“*’
= R ,=c,xN"
(3.37)

where ¢, and ¢, are constants and are related asc, =, s loglo(css )

To make the (3.37) as (3.36), defining ¢ as €, =(b—1)¢1'5, the expression (3.37)
can be written as

R, =(b-1)N"s (3.38)

Thus, for any £, simulated estimation parameter R; can be expressed by a generalised

expression as

R =(b-1)"N* (3.39)

It is already known the value of s, = —0.5 and the value ¢, = 0.5 . The value of $, 5
is obtained from Figure 3.22 (b) as s, , ~ —0.418 and substituting this value and a
R, 5 for a particular N from Figure 3.22 (a) in (3.37), the value of ¢, is obtained as
c, ~425~=(19 - 1)% ie, as ¢, ~(b— 1)% (as the simulation was conducted for

b=19). This gives the value of ¢, =0.5.
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It has already been mentioned that the value of k& for underwater acoustic

communication can vary from 1 to 2. So, to find the generalised expressions for the
@, and the slopes, s;, of the simulated results, several are obtained for different & (0,

0.5, 1, 1.5, and 2) with the »#=19. The results are shown in Table 3.5.

Table 3.5 Parameters p; and s of expression (3.39)

Param Values
eters k=0 | £k=0.5 k=1 k=1.5 k=2
o, 0.5 0.5 0.5 0.5 0.5
Sk —0.5 | -0.495 | -0.468 | —0.418 | —0.346

It is shown that the values of s; is always negative, thus the (3.39) can be expressed

as

Rk — (b _ 1)(/7k N_‘sk‘

(3.40)

It is again shown that for the suitable s; the @, is always 0.5. Thus for 5=19, it

requires scaling only the powers of N, i.e. the s;. Whether it is valid or not for the b

other than 19, to confirm and to make the scaling sufficiently robust that the

simulated results follow the theory, more demonstration is provided with following

Figure 3.24.
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Figure 3.24 Ratios of standard deviation to mean of CCF, Rversus N: k=1
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Theoretical and corresponding simulated results are plotted in the figure, where
theoretical means the corresponding theoretical results using (3.39) or (3.40) with

corresponding b for k=1. The theoretical expressions are as follows.

Riy(k=1)=(19=1)" (N "**)

Ry (k =1)= (39— 1) (N ")

R,(k=1)=(b=1)"(N*")

It is already evidenced that similar expressions are applicable in ERP case (where

k=0) with s, =—0.5.
Similarly, to get a robust scaling of the simulation results, we express the ratio of the

standard deviation to the mean of the CCF for all dispersion coefficients with »=19

as:

Ry(k=0)=(19-1)*(N*)

R, (k=0.5)=(19 - 1)*(N ")

Ro(k=2)=(19- 1)A(N034)

For 39 bins, the expressions are:

Ryy(k=0)=(39 —1)*(N ")

Ry (k=0.5)=39- 1)%(N_0‘495)

Ryy(k =2) = (39— 1) (N )
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And so for the b bins:
Ry(k =0)=(b=1)"(N""?)

Rb (k = 05) = (b — 1)%(N70A495)

Ry(k=2)=(b=1)*(N ™)

It can be seen from the all expressions that the constant term is dependent on only the
number of bins, b. Also, the powers of the number of nodes only vary with a varying

k.

Thus, from these series of expressions, we obtain the generalised expression of

scaled theoretical R for ETP case as in (3.41)

R,(k)=(b-D"(N") (3.41)

where the s; values are those presented in Table 3.5.

In (3.41) replacement of s; gives the theoretical values of estimation parameter,
where the appropriate value of s; can be obtained from the following quadratic

expression as shown in Figure 3.25.
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-0.45}
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-0.55 ‘ : ‘
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The dispersion coefficient, k

Figure 3.25 The powers, s, of IV in the expression of estimation parameter

100



Now from (3.41), for k&=0, the expression is

R=R,(0)=(b—1)*(N™) (3.42)

Again, the expression (3.41) can be solved for N as

1.e.,

11 -1

R,(0) = (6-1) 5% (R, (0o

Thus, using (3.41) and (3.42), the expression to make the simulations (for any k)
compatible with the theory will be:

R (k) = (b 1) 35 (R, (k) ) (3.43)

where R, (k) 1s the scaled value of R, (k), which matches the theory in ERP case.

3.8.2  Results and discussion after scaling

Several simulations are investigated and their results compared with the theoretical
results. It is shown that, after scaling of the original simulation results, the process is
satisfactory for estimating the number of nodes. All results are plotted in Figure 3.26

and 3.27, and it can be seen that, for any £, the estimation is satisfactory.
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3.8.3  Direct scaling of theoretical R of CCF to follow simulated results

The ratio of the standard deviation to the mean of the CCF has already been

expressed as:

Thus, for £ = 0, we have:

and, then:

So,

The above scaling expression shows that it does not depend on the number of bins, b,

but on the number of nodes, N. Thus, for 32 nodes, we show the scaling factors for

R (k)= (b—1)*(N*)

R,(0)=(b-1)*(N"™)

R, _
R,(0)

R,(k) = N*""R,(0)

different dispersion coefficients, &, in Table 3.6 and Figure 3.28.

Table 3.6 Direct scaling factors for a particular NV (=32)

Param
eters k=0.5 k=1.5 k=2
fk) 1.0175 1.3287 1.7053
18 T T T T T
_ 1Bt
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Figure 3.28 Direct scaling factors for theoretical ratio of standard deviation to

Dispersion coefficient, &

mean of CCF, R versus dispersion coefficient, k.




Thus, the expression for the direct scaling factors for the theoretical ratio of the

standard deviation to the mean of the CCF to follow the simulated results is:

f(k)=0.055k> +0.071k* =0.011k +1

3.8.4  Results and discussion after direct scaling

Several simulations after using direct scaling are investigated and the results
compared with the theoretical results. It is shown in Figure 3.29 that, after direct
scaling of the original simulation results, the process is adequate for estimating the
number of nodes. All values are plotted in Figure 3.29 in which it can again be seen

that, for any £, the use of scaling is sufficient for estimation.

Theoretical Thearetical
g 2 Sirnulated with k=1 ] g *  Simulated with £=1.5 | |

Rof CCF
Rof CCF

a 20 40 5] a0 100 0 20 40 G0 a0 100
Mumber of nodes, & Mumber of nodes, &
@ v)
g T T .

Theoretical
% Simulated with k=2 | |

Rof CCF

a 20 40 G0 an 100
Murnber of nodes, A

©)
Figure 3.29 Rversus N: (a) k=1; (b) k=1.5;and (c) k=2 [b = 39]

Thus in ETP case, it is again possible to obtain estimations using this scaled R by the
following relationship (as it is in the ERP case):

b-1

N:R2

Several simulations are investigated in this way and the results shown in Figure 3.30.
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(The values of estimation of /V are from average of 1000 estimations)

3.8.5 Conclusion

It can be seen from these results that proper estimations are possible in both the ETP
and ERP cases. Although there are differences in the initial results of R, its proper
scaling in the ETP case provides as good an estimation as it does in the ERP case. As
the results from all iterations are not sufficiently informative to obtain estimations, in

the ETP case, the number of nodes is estimated with R from 100 iterations.

3.9 Selection of signal length, Ny

The ideal signal length is ideally infinitely long (considered as 10° samples in all of
the above simulations). Unfortunately, this length is an energy-related term in the
estimation process. The greater the signal length, the more energy is required to
perform the estimation. The exact signal length for a particular estimation is

therefore of interest and has been investigated in the following section.

Figures 3.31 and 3.32 show the number of nodes, N for different signal lengths, Ns.
Figures 3.31 (a), (b), (c) and (d) show the same results but use different scales

(normal, semi-logy, semi-logx and log-log, respectively) for clarity of understanding.
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Figure 3.31 (d) is re-plotted in Figure 3.32 with the exact number of nodes in order to

discuss and select the appropriate signal length. It can be seen that the estimations are

similar for 32 and 64 nodes up to the signal length of 1000 samples. But, beyond this

point, i.e., if the signal length involves more than 1000 samples, the results are

different for different numbers of nodes which implies that this is the effective lower

limit of the signal length for estimating the number of nodes. This is indicated by

large errors occurring at smaller signal lengths and the results only improve with

increases in the signal length, as shown in the figure. At around 10,000 samples, the

estimated numbers of nodes are about 22 and 35 instead of the exact numbers of 32

and 64 and about 30 and 60 at around 80,000 samples whereas, at around 300,000

samples, the process starts to estimate the exact numbers of nodes.
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Figure 3.31 Estimated NV versus Ns plot: (a) normal scale; (b) x-normal,

y-log scale; (c) x-log, y-normal scale; and (d) x-log, y-log scale
(all values taken from 1 iteration and average of 1000 estimations
with fixed b of 139 in ERP case)
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In the above discussion, it is shown in the ERP case that the estimation of the number
of nodes is dependent on the transmitted signal length. Similar effects in the ETP
case are shown in Figure 3.33 in which it can be seen that, if the signal length is low,
the estimation is poor but an increased signal length improves it. In the case of 32
original nodes with 1000 samples, the estimation process gives only about 5 nodes
but the estimated number increases with increases in the signal length and, beyond
about 300,000 samples, it estimates almost 32 nodes and is almost constant beyond
this signal length.

10°

Mumber of nodes, &
=

Signal length in Mumber of samples (N5)

Figure 3.33 Estimated V versus Vs plot with 32 original nodes
(all values taken from 100 iterations and average of 1000 estimations
with fixed b of 139 in ETP case)

Thus, one can choose the signal length from 100,000 samples or more to estimate the

number of nodes without compromising the estimation’s performance. This is
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discussed again in terms of the error analysis in Chapter 5 where it will be more
easily understandable how the performance of the estimation system improves with

increases in the signal length.

3.10 Effect of fractional-samples delays on estimation

In the previous section, the delays take integer values implemented in the simulation
by rounding them to their nearest integers. This is an ideal case but, in practice,
delays might have the fractional part which could affect the estimation process. To
show the effect of the fractional parts of the delays, i.e., the fractional parts of the
samples, simulations are performed using the original values and the results are

plotted in Figure 3.34 and 3.35.
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Figure 3.34 R versus N plot in ERP case: comparisons of results for theoretical,
and simulated with and without fractional-sample delays:
(@) b=19; (b) b=59; and (c) b =99
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Figure 3.35 R versus N in ETP case: comparisons of results for theoretical, and
simulated with and without fractional-sample delays:
@k=1;(b)k=15;and (c) k=2

Figures 3.34 and 3.35 compare the performance of the proposed technique for
estimating the number of nodes considering the fractional parts of the sample delays
with that of the theoretical and simulated with integer samples-delays. As can be
seen from the figures the simulated results, both with and without the fractional parts
of the sample delays, shows similar performance and follows the theoretical results,
it does not matter whether the fractional part is considered. Thus, it is not necessary

to explicitly model fractional sample delays in the theoretical analysis.

3.11 Effect of noise on estimation

It has already been discussed that wireless communication channels are subject to
background noise and, in practice, the transmitters and receivers themselves have
some internal noise which may affect the estimation process. It is important to know
these effects in the proposed technique for estimating the number of nodes because,
in order for the signals from the transmitter to be useful, they will have to be stronger
than the noise and the range of their strengths could be decided from this analysis. In
all type of noise cases, the added noises in the signals will take place in the cross-

correlation i.e., if the signals are received with noise, the CCF will be due to both
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noise and signal. Thus, although the effect of noise in the proposed estimation
process will be similar for all types of noise (assuming AWGN), the noise strengths
might be different. Here, the effect of noise is discussed for the internal noise of a

receiver. Let us consider a signal received by two noisy receivers as:
S =8 @0)+S, () (3.44)
L0 =8,0)+S, () (3.45)
where S, (¢) is the delayed version of the signal transmitted from the source 1
transmitter to receiver 1, S,(¢) the delayed version of the signal transmitted from the

source 1 transmitter to receiver 2, S, (¢) the internal noise received in receiver 1 and
m

S,, (¢) the internal noise received in receiver 2.

Then, the CCF, C(7), is (Jian-fei 2009):
. 1ogr
Cry=lim— [ _O)f;(t~o)dr

L 5,08, —yde+ [ 8,08 d
| EL (DS, (t—7) HEL (DS, (t—7)dt
= lim .

T—w 1 T
+ 2[5, 08, -0 i+ [S, (1S, (1= )di

= CS,S2 (1) + Csls”2 (1) + CS”1S2 (7)+ Cs”]s”2 (7) (3.46)

where Cy ¢ (7) is the CCF of S, (¢) with S, (#)
Css,, (7) is the CCF of §,(¢) with S, (¢)
Cs, s, (7) is the CCF of §, (¢) with S, (¢)
Cs, s, (r) isthe CCFof S, (¢) with S, (¢)

T is the time delay in the cross-correlation process.

As S,(¢) and S, (), S, (¢t) and S,(¢z), and S, (¢#) and S, (¢) are

independent random processes, their CCFs tend to be zero with the integration time
extension and zero when the integration time is infinity. Thus, (3.46) becomes

C(7) = Cy 5, (7). But, as in real-world problems it is not possible to take an infinite

time interval, it is interesting how the cross-correlation works with finite time
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integration. Details regarding these effects are discussed in this section using

simulation.

To show the effect of noise in the number of nodes’ estimation technique, the
simulations are investigated by adding white Gaussian noise to the signals in the
receivers. In the proposed node estimation technique SNR is used as the ratio of
voltage levels of signal and noise unless otherwise mentioned. Sometimes it is
converted to dB as for example, SNR=1 indicates 0dB, SNR=10 indicates 20dB, and
so on. Figure 3.36 (a) and (b) show the results for SNR = 10 and SNR = 1 with ~ Ng
= 100,000 samples for the cases with and without noise, and the theoretical. The
solid line indicates those without noise, the dash-dot line those with noise and the
dashed line the theoretical results. To determine whether there any difference
between the results for the internal noise of the receivers and for background noise,
simulation with background and internal noise is performed and the results shown in
Figure 3.37. The simulation parameters are the same as those used in the basic

estimation with the noise taken into account.

T T T
Simulated without noise
—————- Simulated with noise, SMNR=10
Theaoretical

L L L L I L L I L
u} 10 20 30 40 a0 B0 7o =) a0 100
Mumber of nodes, M

(a)

T T T
Simulated without noise
—————- Simulated with noise, SNR =1 | |
----- Theaoretical

R of CCF

u] 10 20 30 40 50 B0 70 80 90 100
Mumber of nodes, A

(b)
Figure 3.36 R versus N considering noise: (a) SNR = 10; and (b) SNR =1
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The theoretical results are presented using a solid line while the three simulated
results are marked by stars, circles and diamonds for without noise, receivers’
internal noises and background noise, respectively. It can be seen in Figure 3.37 that
simulated results for both types of noise follow similar patterns which indicates that

both have similar effects on the estimation process.

From the results in Figures 3.36 and 3.37, it can be concluded that noise has an effect
on estimation in which the SNR plays a vital role. Both results are taken with
100,000 samples of signal length. But, according to the noise theory of cross-
correlation, the signal length also has a significant effect on estimates with noise. The
significance of signal length in estimation considering the internal noises of the

receivers is investigated in the following section.
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Figure 3.37 R versus N plot comparisons of results for theoretical, simulated
without noise, simulated with receiver internal noise, and simulated with
background noise: (a) SNR = 10; and (b) SNR =1
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3.11.1 Estimation considering internal noise of the receivers

To show the effect of noise, the internal noise of the receivers is added to the

estimation process. Simulations are conducted, with varying signal lengths and SNRs

of the receivers for a certain number (32) of nodes. Results are given in Table 3.7

and plotted in Figures 3.38, 3.39 and 3.40 for both the ERP and ETP cases. Figure

3.38 shows the estimated N versus SNR plot for a certain signal length of 100,000

samples whereas Figure 3.39 presents the surface plots of the CV, SNR and /Vs.

Table 3.7 SNRs and corresponding estimations [Ns = 10°]

SNR Estimated N: [Rounded value:| Estimated N: |Rounded value:
ERP case ERP case ETP case ETP case
0.001 1.1088 1 1.0308 1
0.01 1.1714 1 1.0582 1
0.05 2.5783 3 2.1923 2
0.1 5.9214 6 5.0564 5
0.5 23.1471 23 21.7998 22
1 29.5006 30 27.516 28
2 30.0510 30 29.5916 30
10 30.7269 31 30.5512 31
20 30.6989 31 30.5455 31
100 30.9369 31 30.5791 31
1000 30.922 31 30.5326 31
Without noise 31.1343 31 30.5571 31
‘ / .
% 10 // % 10
'l L s L . . —— o 'L 5 L L L = = L .
? ° " Si;ﬁ-altu nu:i ratio (I;NR) ° ’ ’ ’ ’ ’ Ssguna‘ to n;iuse ratin}uSNR) "’ i ’
(a) )

Figure 3.38 Estimated N versus SNR: (a) ERP case; and (b) ETP case
(Ns= 100,000 samples)
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It can be seen in Figure 3.38 that, for a particular signal length of 100,000 samples
and up to a certain SNR (<=0.05), the estimation is constant at the worst possible
value but then improves with increases in the SNR (up to SNR = 1). Finally, it
becomes constant again at the best possible value as shown for the case without
noise. It can also be seen from Figure 3.39 that the worst possible values will
continue longer and the best possible values start later if the signal length is lower,
with the opposite occurring for higher signal lengths. In other words, there is a
transition zone between the worst and best possible values in which the estimation is
varied with the SNR whose starting and ending points are varied with the signal
length, i.e., it will start earlier with a higher signal length and later with a lower
signal length. In Figure 3.40, estimations are plotted with respect to Ns (values from
10° to 10° samples) for different SNRs of 0.1, 0.2, 0.5, 1, 10 and 100, and original 32
nodes. From these results, it can be seen from the results that, for a particular SNR,
the estimation performance improves with higher Ns. It needs to be mentioned that
all results regarding the effect of noise on estimation are from investigations using 32
nodes. It has already been shown that the estimation process is equally suitable for
any number of nodes in a ‘without noise’ case. However, to confirm, similar results
for 64 nodes have been provided for ERP case in Figure 3.41. Comparisons of the
results obtained for the 64 and the 32 nodes in the ERP case are shown in Figures
3.42 and 3.43. Figure 3.42 shows the surface plots and Figure 3.43 the corresponding
contour plots of the SNR, Ng and estimated N for both the 64- and 32-node cases. It
is clear that effect of noise is similar for any number of nodes, &, and if the SNR is

sufficiently large, the method can properly estimate any N as without noise case.

From the figures, it is clear that, for SNRs greater than a certain value, the estimated
Ns are almost the same (with small variations due to the randomness of the
experiments). For lower SNRs the estimation is more erroneous, the performances
improve with increase in SNRs and finally achieve the best possible values. That is:
when the SNR is less than 1, although the noise dominates over the signal, there will
be some signals which are strong enough to count; and, although we do not obtain
the appropriate number, we receive a reduced number of the signal sources, i.e.,

nodes.
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3.11.2 cConclusion

The consideration of noise is very important in the proposed signal processing
technique of estimation, especially for use in real networks. In the ideal noise free
environment, the receiver will receive the desired transmitted signal successfully
without noise. But in a noisy environment, the signal received will usually be
corrupted by noise. Thus in a practical environment, where noise always exists, the
transmitted signal will have to be with sufficient power that it overcomes the noise
sufficiently (that is, there is a sufficient SNR). The effect of noise also varies with the
variation in signal length (which determines the integration time of the cross-

correlation process), the longer the signal length the lower the effect and vice-versa.

This section properly investigates the estimation process with taking the noise into
consideration. It is shown that proper selection of signal strength gives the estimation
performance similar to the ideal (without noise) case. It is clear from the
investigations that an SNR of 20dB (signal is 10 times stronger than noise) is

sufficient to neglect the noise effect in the proposed estimation process.

Although protocol techniques to estimate the number of nodes are different in some
aspects, they face similar problems in the presence of noise. In fact, in the protocol
technique, the transmitter transmits a number of bits with the carrier signal using a
modulation technique through the channel in a manner similar to that of the CC
technique. Although there is no literature to show the effect of noise in the number of
nodes estimation process using the protocol technique, it is shown in at least one
work (Heinzelman 2000) that a protocol requires an SNR of at least 30dB to receive

the signal without error.

3.12 Effects of multipath propagation on estimation

In the previous sections, in order to obtain the CCF in the simulation process, only
the line—of-sight signals are considered. This is an ideal case but, in practice, signals
might be a mixture of the line-of-sight and some reflected signals due to the reflector

present in the medium and the dispersive nature of the wave. So, to make the
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estimation process robust, an analysis of multipath effects on estimation is required.
In the underwater environment with an acoustic wave, the seabed and sea surface
will be the two major reflectors. To show the effect of this multipath on estimation,
simulations are performed, firstly using only the bottom reflection, and then using

both the bottom and surface reflections.

3.12.1 Estimation of N in multipath environment

Indirect path Direct nath

2 3 ‘ | .
l

Transmitter

Receiver

_—
———

Figure 3.44 Concept of typical multipath

Consider that a transmitter emits a Gaussian signal, Si(¢), which is infinitely long. If
the signal propagates in two (one direct and one reflected) paths, as shown in Figure

3.44, the signal received by the receiver will be:

S, (O=0,5-7)+a,,S(~7,,) (3.47)

Similarly, if there is another receiver in the communication range as is in the

proposed technique , then the signal received by that receiver will be:

S, (D)=, S, (t—71,) + 2,5/ —7,,) (3.48)

In (3.47) and (3.48), «'s are the attenuations due to absorption and dispersion present
in the medium and 7's the time delays for the signal to reach the sensors.

Attenuations «,, and«,, are for the direct paths, and «,,,, and «r,,,, for the indirect
paths whereas the delays, 7,, =d,,/S, and 7,, =d,,/S;, are for the direct paths and

0, =d,,/Sy and 7,,,=d,,/S, forthe indirect paths.

mll
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Assuming 7 =d /S, is the time shift in the cross-correlation, the CCF is:

C(@)=["s, (08, (t-7)dr
=y, [ S, (t-1,)8, (-7, ~ 1)+
i@ | St =7,)8,(t =7, )T+
a,a,,, j:S1 (t—7,)S,(t—-17,,—7)dr+

o 10512J._:S1 (=78 (-1, —1)d7
= C(74) + Ci(1) + Cpy (1) + Cy (7) (3.49)

where C,,(7) is the CCF due to the direct paths
C,(7) is the CCF due to the indirect paths
C,(7) is the CCF due to the direct and indirect paths
C,(7) is the CCF due to the indirect and direct paths

and 7's are the delay differences between the signals in the cross-correlation

Process.

It can be seen that all signals in this cross-correlation process are correlated as they
are generated from the same transmitter but they will differ in strength and delay in
reaching the receivers. So, the four terms in the right-hand side of (3.49), as they are
Gaussian, produce four delta functions which are placed according to their delay
differences. Of them, the deltas due to similar paths occupy positions between the
receivers whereas those due to opposite paths occupy positions outside the place
between the receivers. In the proposed method of estimating the number of nodes,
the place between the receivers is the region of interest. Thus, for a particular
transmitter with two paths (one direct and one indirect), there will be two deltas in
the region of interest. This is equivalent to the cross-correlation with two transmitters
just considering the indirect path is coming from an image transmitter as shown in

Figure 3.45.
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Figure 3.45 Concept of image transmitter

Now, if more than one transmitter exists, as shown in Figure 3.46, the CCF will be
formed by the number of deltas equal to twice the number of transmitters. The
strengths of the deltas will be equal if the direct and reflected signals are of equal
power, as shown by the simulated results in Figure 3.47. Figure 3.47 (a), (b), and (c)
show the CCF due to both the direct and reflected, only the reflected, and only the

direct signals, respectively.

Figure 3.46 Distributions of transmitters and receivers with one reflector
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signal; and (c) only direct signal [using 1 iteration with k = 0]

However, in reality, the powers will be different in the direct and reflected paths
depending on the dispersion coefficient, k£, and the estimation process. Here, we
consider the ERP case for the investigation of multipath effects. In this case, the
emitted power from each node will have to be such that the powers received at the
sensors will be the same. This is possible by employing a proper probing technique
for line-of-sight communication, i.e., direct path signals. In the case of reflection,
there will be an indirect path(s) signal to reach the sensors whose powers will depend
on attenuation in the medium which, in turn, depends on k. As the direct path is
always less than the indirect path and their powers are inversely proportional to the
path length, the powers of the direct path signals will be stronger than those of the
indirect path signals. It is also known that the signals’ strengths are responsible for
the strengths of the deltas in the CCF. Thus, the deltas due to the direct path will be
dominant and contribute more to form the CCF, as shown in the simulated results in
Figure 3.48 for a certain case of the dispersion coefficient, £ = 3, 9 number of bins

and 10 nodes.
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Figure 3.48 CCFs due to: (a) both direct & reflected signals; (b) only reflected

signal; and (c) only direct signal [using 1 iteration with k = 3]

It has been demonstrated that deltas without multipath, i.e., with only direct paths,
follow a random distribution to form the CCF. This will also be true for deltas with
indirect paths. Thus, the CCF with a multipath is the summation of two random
variables. To estimate the number of nodes using the ratio of the standard deviation

to the mean of the CCF considering the multipath, the following demonstration is

necessary.

Considering two random variables (two CCF), X (CCF from direct path signals
cross-correlation) and Y (CCF from indirect path signals cross-correlation), it is well

known that the variance in their summation, X+Y, can be defined as:

Var(X +Y)=Var(X)+ Var(Y) + 2 x Covarianca X,Y) (3.50)

Denoting the variance of X+Y, Xand Y aso XH,Z ,O X2 , and O'YZ, respectively, and the

covariance between X and Y as o XY2 , the expression (3.50) will become:
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ax+Y2 = 0X2 + 0Y2 + ZGXY2 (3.51)

Using the correlation coefficient, p,, , instead of the covariance, the expression

(3.51) might be written as:

O')m,2 = O'X2 +0'Y2 +2p,y0 Oy (3.52)

Thus, the standard deviation of the summation of two random variables from (3.52)

will be:

Criy =\Oy 40y +2p 00y (3.53)

If the variables (two CCF) are independent or weakly dependent, 1.e., p,, =0, the

above expression can be reduced to:
2 2
Cy.y =\Oy +0y (3.54)
In addition, the expectation of the sum of two random variables is expressed as:

Hy.y = Hy + Hy (3.55)

Thus, the ratio of the standard deviation to the mean of the CCF is:

[ 2 2
Oy Oy t0y

Ry =220 = (3.56)
Hyiy My + Ly

Again, in the case of different scaling of the variables, one standard deviation will be
greater than the other, which will also be true for the expectation and, if the

variables’ scaling are sufficiently different, e.g., if o,>>0, and u,>>u,, the

expression of R, , can be written as:

X+Y

R, =2x (3.57)
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Now, in the proposed method of estimation of the number of nodes considering the
multipath (taking into account only two paths, one direct and one indirect), the CCF
can be considered to be the summation of two random variables. Then, as the scaling

of the direct path will be sufficiently dominant, according to expression (3.57), R

X+Y
can be approximated by the ratio, R of the standard deviation to the mean of the part
of the CCF due to the direct path. It was discussed earlier that the CCF with only the
direct path follows the binomial distribution. Thus, using the binomial distribution,

the estimation parameter, R, is presented in Figure 3.49.

ﬁ T T T T X 1§
Theoretical
51 Q  Simulated without multipath |
#  Simulated with multipath
4
[T
o
g
(=]
o
2

50 60 70 80 = 1] 100
Mumber of nodes, M

0 10 20 30 40

Figure 3.49 Rs of CCF: k=3

The results in Figure 3.49 show the effectiveness of the proposed method in case of
multipath reception of signals by the sensors. The solid line indicates the theoretical
results and the stars and circles the simulated results with and without a multipath,
respectively. It can be seen that the two simulated results are sufficiently close to

each other and both follow the theoretical results.

Now, if we consider that one direct and two indirect paths are present in the signals,
as shown in Figures 3.50 and 3.51, the CCF will be the summation of three random
variables and the random variable due to the direct path will still be sufficiently
dominant to form the CCF. Thus, expression (3.57) of the ratio of the standard
deviation to the mean of the CCF will still be valid. The results for the estimation

parameter, R, are provided in Figure 3.52 for both the surface and bottom reflections.
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Figure 3.52 R of CCF: k=3
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3.12.2 Explanation of multipath effects in Deep Ocean

If we consider a refraction-free absorptionless medium, ¢, @,, depend on only the

spreading loss and «,,,,,,, on the spreading loss as well as the reflection

mll>
coefficient. Medwin (2005) tells us that the largest possible value of the reflection
coefficient for any type of interface (i.e., soft or hard) will be 1. So, assuming that

value, attenuation in the indirect path is also dependent on only the spreading loss.

Generally, the spreading loss can be expressed as L, =d ~% where d is the range and

k the spreading factor. Spreading factor, k varies between 1 to 6, depending on the
communication signals and environments. In this discussion, the value of & is again
taken as 3 to show the negligible effect of multipath propagation. The robust

multipath effect will have been discussed for all & in the next section.

So, the attenuation factors of the direct and indirect paths can be expressed as:

@ =dy (3.58)
a, 12*%
and
oy = (3.59)
a,, = dmn_%
| d, |

Indirect path Direct nath

5 W)\ y

Transmitter

Receiver

Figure 3.53 Explanation of single reflection
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If the ranges of the direct paths are sufficiently smaller than those of the indirect

paths, ie., if d,, >>d,, and d,,>>d,, , the attenuation factors of the indirect

mll

paths will be sufficiently small compared with those of the direct paths, i.e.,

a,, << a, ad a,, <<aq,,.

mll

It is discussed in the literature (Urick 1983) that, if a transmitter is sufficiently close

to its receiver, the above assumption will be true. The possible distance ranges are

1

expressed in (Urick 1983) as d|, < 2(1112)5, where the symbols indicating the lengths

are shown in Figure 3.53, and are defined as the near field. Distances beyond these
ranges are defined as, firstly, interference and then far field. In the interference field,
the indirect path’s distance becomes closer to that of the direct path and, after a
certain distance; their lengths are almost equal which is the start of the far field. In
the case of the near field having some portion of the interference field close to it
in the cross-correlation will be far less

(with higher k£ values), the term «,,, x

mll ml2

than the terma,, x , .

Thus, if the transmitters fall within the near field and some portion of the interference
field is close to the near field, the contribution of the indirect path to the CCF will be
negligible and could be assumed by the CCF of the direct path only. Similarly, if a
transmitter falls in the interference field close to the far field, the contribution of the
indirect path to the CCF starts to become significant and will be similar to that of the
direct path when the transmitter falls in the far field. In our simulation, the dimension
of the cube is 2000 m and the receivers are placed at the middle of the cube.
Assuming the surface and bottom reflectors are placed at the boundaries of the cube,
the simulation setup mostly fulfils the criteria of neglecting the effect of the indirect

paths on the CCF with higher values of &.

3.12.3 Near-field range to neglect multipath effect

1
After some manipulation, it can be shown from the expression d,, <2(///,)? that, in

the proposed simulation setup, the CCF will follow the near field placement of the
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transmitter if the radial distance of the reflector plane i.e. surface or bottom from the

receiver follows the relationship:

2
[zzdL

4],
where /, is the radial distance of the receiver from the reflector plane , d,, the radial
distance of the receiver from the source, and /; the radial distance of the source from

the reflector plane. Placement of the network following the above relation will be

helpful to neglect the multipath effect in the proposed estimation process.

3.12.4 Robust estimation technique in multipath environment

Previous sections demonstrate how multipath effects can be neglected in the
estimation process as is possible in the case of a high dispersion factor. In this
section, a robust estimation approach, which can estimate using any dispersion

factor, is provided.

3.12.4.1 Considering a direct and a reflected path

Now, to properly demonstrate the estimation with multipath effects, let us consider a
similar experimental setup to that for the ERP case with a 3D spherical distribution
of the nodes underwater. Two sensors have to be placed at the centre of the sphere
and their orientations will have to be parallel to the seabed which is considered to be
the only reflector, i.e., the cause of the multipath. The theoretical & simulated results
for the CCF from such a setup for 100 nodes with 9 bins, 100 iterations, and for
different k values are shown in Figures 3.54 to 3.57. These four figures have different
dispersion coefficient, &, values of 0, 1, 1.5 and 2, respectively. In each figure, there
are three separate plots: the top for the CCFs with multipath, i.e., both direct and
indirect path signals are responsible for forming the CCF; the middle the CCFs due
to only the reflected (bottom) signal; and the bottom the CCFs due to only the direct
signal, i.e., without a multipath as in the earlier ERP case. It has already been
demonstrated that a delta without a multipath, i.e., with only a direct path, follows a

random distribution to form the CCF. This is also true for the deltas with indirect
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paths. Thus, the CCF with a multipath will be the summation of two random

variables.
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Figure 3.54 CCF with £ = 0 from: (a) direct and bottom reflected signals; (b)
only bottom reflected signal; and (c) only direct signal
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Figure 3.55 CCFs with £ = 1 from: (a) direct and bottom reflected signals; (b)

only bottom reflected signal; and (c) only direct signal
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Effect of multipath: considering only bottom reflection with dispersion coefficient, &=1.5
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Figure 3.56 CCFs with £ = 1.5 from: (a) direct and bottom reflected signals; (b)
only bottom reflected signal; and (c) only direct signal

Effect of multipath: considering only bottomn reflection with dispersion coefficient, &=2

T T T T T T T T T
A0 - —& Simulated [
w —* Thearetical
7 | N S |
D | 1 1 1 1 1 1 | |
1 2 3 4 5 G 7 g 9
Murmber of bing, b
(a)
40 - —® Simulated H
W —+F Theoretical
=S o200t g
k: K *
0 —# # & . . . & ¥ F—]
1 2 3 4 5 5] 7 a =]
Murnber of bing, b
()
T T T T T T T T T
40 —& Simulated A
w —+* Theoretical
= 20 T -
D | | | 1 1 | | | 1
1 2 3 4 5 5] 7 g =]
rMumber of bing, b
(c)

Figure 3.57 CCFs with £ = 2 from: (a) direct and bottom reflected signals; (b)

only bottom reflected signal; and (c) only direct signal
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To clarify the above discussion, Figures 3.58 to Figure 3.60 are plotted.
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Figure 3.58 CCFs with different & (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from direct

and bottom reflected signals: (a) linear plot; and (b) discrete plot
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Figure 3.59 CCFs due to only direct signal: (a) linear plot; and (b) discrete plot

It can be seen from the results that the multipath effects decrease with increasing &
and, in practice, can be neglected because of the higher values of £ in a real
underwater environment. The process of neglecting the multipath has already been

provided in Section 3.12.

However, to obtain a generalised estimation of the number of nodes using the ratio of
the standard deviation to the mean of the CCF considering a multipath with any

possible values of £, the following example is provided.
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Figure 3.60 CCFs with different & (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from only

bottom reflected signal: (a) linear plot; and (b) discrete plot

Let us consider a CCF with a multipath (one direct and one indirect path) for a 9-bin
setup in which the delta peaks in the bins are Py, P, P3, P4, Ps, Ps, P7, Ps and Py, as
shown in Figure 3.61, and the corresponding delta peaks for the direct and reflected
paths are P14, P2d, P3d, Pad, Psd, Ped, P74, Psa and Pog, and P\, Py, P3, Par, Ps;, Per,
P, Pg; and Py, respectively, as shown in Figure 3.62,

where B =R, + R b =P, +P,, P=PF,+P, F =PF,+PF,,

ro

P =P,+P, PB=PR,+P,. P=P,+P. P=P +h and

)

P, =B, + B,

It is shown in the above figures that all bins are not affected by the reflected signal
and there is a mirror effect with respect to the middle bin. In the case of 9 bins, the
affected bins are 2 to 8 and, due to the mirror effect, the peaks of the 2" & 8", 3 &
7™ 4™ & 6™ bins are similar. As only the CCF with a multipath obtained from the
experiment is available, it will have to suffice for the estimation. However, using a
similar process to that for finding the ratio of the standard deviation to the mean of
the CCF to estimate the number of nodes for a case without a multipath is not

appropriate because of the extended peaks due to the reflected path signal. But, if we
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can deduct the extended peaks from the CCF with a multipath, it will be exactly the
same as the CCF without a multipath and the process will be appropriate for

estimation.

To do this, we represent the peaks due to reflected signals (Figure 3.61) as
percentages of the peaks due to both direct and reflected signals (Figure 3.62). The

process of obtaining the percentages is:

Peak at 2™ bin due to reflected signal only

—— _ . x100%
Peak at 2™ bin due to both direct and reflected signals

Percentage at 2" bin, Pm2 =

P
ie,p,,= % x100%

2

Similarly, for other affected bins, the percentages are obtained using the following

expressions:
P, P, P P
_ " 3r 0 _ T4r 0 _ 5r 0 _ ~6r 0,
Paa =5 X100%, g =—ex100%,  p,s="2mx100%,  p,,=—2rx100%,
3 4 5 6
P P
Py =—2£x100%, and p, o =—2-x100%.
P R
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Figure 3.61 Peaks of deltas in bins of CCF due to both direct and reflected
signals with k=0
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Figure 3.62 Peaks of deltas in bins of CCF due to only reflected signal with £ =0

The percentages are independent of the number of nodes but dependent on the
dispersion coefficient, k, and the number of bins, 5. We investigate them for different
values of k in 9 bins. Figure 3.63 shows the percentages of deltas due to only the
reflected signal in each affected bin of the CCF in terms of deltas due to both direct
and reflected signals. Percentages in the different affected bins for different k& are

presented in Figure 3.64.
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Figure 3.63 Percentages of deltas in affected bins of CCF due to only reflected
signal with different & (0, 0.5, 1, 1.25, 1.5, 1.75 and 2)
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To obtain information on the percentage contributions for any &, those in all bins are

expressed by the 4™ degree approximation, as shown in Figure 3.65.
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The approximated expressions are:

P ® D = 0.4k* —1.9k> +3.5k* 3.6k +3.3 (3.60)
Pz ® Doy =0.14k* —0.68k> + 4.1k> — 22k + 46 (3.61)
Pt ® Do = —3.1k* +16k*> —23k* =13k + 67 (3.62)
P =-14k*+8k> 12k - 20k + 71 (3.63)

Now, to obtain the estimation parameter, i.e., the ratio of the standard deviation to
the mean of the CCF, deductions of the extended peaks of the corresponding bins are

obtained as follows (in the case of £ = 0).

In bin 2, the deducted peak is:
Py =P~ p,,%of P,

Similarly, for the other affected bins 3 to 8, the deducted peaks are:

f;ds:f;_pm3%0ff§ s Blds:Bt_pnM%OfPAl H f;ds:fg_pmS%Off)S >
By =B —p,s7%00f F , P,=P—p %of P,
])Sc!s :])8_pm8%0f})8 .

The peaks of the CCF after deduction for 100 nodes with 100 iterations are shown in
Figure 3.66. To demonstrate the effectiveness of the process, the Rs of the CCF after
deduction are plotted for different numbers of nodes with one iteration in Figure
3.67. It is obvious from this figure that the process is adequate for estimating the

number of nodes.
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Figure 3.66 CCFs after deduction
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proposed multipath compensation technique) for different & (0, 1, 1.5 and 2)

3.12.4.2 Considering a direct and two reflected path

The previous analysis was for the multipath effect due to only the bottom (seabed)
reflection. A similar process is applied to obtain an estimation in the case of a
multipath due to both surface and bottom reflections. Now, to properly demonstrate
the robust estimation process with multipath effects due to both surface and bottom
reflections, let us consider a similar experimental setup to that for the multipath
effect due to only bottom reflections. The only difference between the two is that, in
the latter, the sea surface is considered as another reflector, i.e., the cause of the
multipath. The results for the CCF from such a setup for 100 nodes with 9 bins, 100
iterations and different k values, are presented in Figures 3.68 to 3.71. These four
figures have different dispersion coefficient, &, values of 0, 1, 1.5 and 2, respectively,
and each has three separate plots: the top for CCFs with multipath, i.e., direct and
indirect path signals are responsible for forming the CCF, the middle for CCFs due to
reflected (both surface and bottom) signals only; and the bottom for CCFs due to
only direct signals, i.e., without multipath, as in the earlier case of the ERP without a
multipath. It has already been demonstrated that a delta without a multipath, i.e., with
only a direct path, follows a random distribution to form the CCF; this will also be
true for deltas with indirect paths. Thus, the CCF with a multipath will be the

summation of three random variables.
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Effect of multipath: considering surface and bottom reflections with dispersion caoefficient, &=0
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Figure 3.68 CCF with k = 0 from: both direct and reflected signals (surface and

bottom); only reflected signal; and only direct signal

Effect of multipath: considering surface and bottomn reflections with dispersion coefficient, &=1
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Figure 3.69 CCF with k£ = 1 from: both direct and reflected signals (surface and

bottom); only reflected signal; and only direct signal
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Effect of multipath: considering surface and bottom reflections with dispersion coefficient, k=1.5
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Figure 3.70 CCF with k£ = 1.5 from: both direct and reflected signals (surface

and bottom); only reflected signal; and only direct signal

Effect of multipath: considering surface and bottam reflections with dispersion coefficient, k=2
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Figure 3.71 CCF with k = 2 from: both direct and reflected signals (surface and

bottom); only reflected signal; and only direct signal
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To clarify the above discussion, Figures 3.72 to Figure 3.74 are plotted.
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Figure 3.72 CCF with different & (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from both

direct and reflected signals (surface and bottom): (a) linear plot; and (b)

discrete plot
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Figure 3.73 CCF from only direct signal: (a) linear plot; and (b) discrete plot
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Figure 3.74 CCF with different & (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from only

reflected signals (both surface and bottom): (a) linear plot; and (b) discrete plot

These results demonstrate that the multipath has a similar effect to the bottom
reflection case as it decreases with increasing k and can be neglected because of the
higher values of k£ in a practical underwater acoustic environment. The process of
neglecting a multipath due to both surface and bottom reflections has also been

provided in earlier work on the effects of the multipath on estimation.

Now, we obtain a generalised estimation of the number of nodes using the ratio of
the standard deviation to the mean of the CCF considering a multipath due to both

surface and bottom reflections with any possible values of .

Let us consider a CCF with a multipath (one direct and two indirect paths from both
surface and bottom reflections) for a 9-bin setup in which the delta peaks in the bins
are Pa1, P, P, P, Pas, Py, P27, Pas and Py, as shown in Figure 3.75, and the
corresponding peaks for the direct and reflected paths are P14, P22d, Pa3d, Paad> Pasds
Pasa, Pard, Pasa and Paog, and Pair, Paor, Pasr, Paar, Past, Pasr, Pa7r, Page and Poor,

respectively, as shown in Figure 3.76, where P, =P, +P,,, P,=P,,+P,,,

143



})23:})23d+})23r’ P24:P24d+P24r= I)25=1)25d+I)25r’ P26:P26d+P26ra P27 :})27d+})27r’

Py =Py, + Py, ,and Py =Py, + Py, .

Linear plat Digcrete plot
= 180 2 150 : : :
= &= ('-?25r —& =0
w w
= - P
_§ _% o24r (_';_"25{-
% 100F = 100 ¢ 1
= =]
= =
o @
o -—
E E P Pore
= o0 S a0t |
g £ .
= = Porr P 2 Py,
° 2 ¢ ¢ P ¢
= =
w OFf v 0
[ () 1 1 1 1
© S 2 4 B 8 10
Murmber of bing, & MNumber of bins, b
(a) (b)

Figure 3.75 Peaks of deltas in bins of CCF due to both direct and reflected

signals with £ =0 (a) linear; and (b) discrete plot
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Figure 3.76 Peaks of deltas in bins of CCF due to only reflected signal with k=0
(a) linear; and (b) discrete plot

In the case of two reflections, it is again shown in the above figures that not all bins
are affected by the reflected signals and there is a mirror effect with respect to the
middle bin. As previously in the case of 9 bins, the affected bins are 2 to 8 and, due
to the mirror effect, the peaks of the 2™ & 8™, 3™ & 7™, 4™ & 6" bins are similar. As
only the CCF with a multipath is available from this experiment, it will have to

suffice for the estimation. However, using a similar process to that for finding the
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ratio of the standard deviation to the mean of the CCF to estimate the number of
nodes without a multipath is not appropriate here because of the extended peaks due
to the signals of the reflected paths. But, if we can deduct the extended peaks from
the CCF with a multipath, the process will be exactly the same as that for the CCF

without a multipath and will be appropriate for estimation.

To do this, we represent the peaks due to both direct and reflected signals (Figure
3.75) as percentages of the peaks due to only reflected signals (Figure 3.76) which

will be different from the case with only a bottom reflection.

The process of obtaining percentages is:

Peak at 2" bin due to reflected signal only

Peak at 2™ bin d . - x100%
ue to both direct and reflected signals

Percentage at2" bin, p, ,, =

— 1)22r

i€,p,yn = » x100%

22

Similarly for other affected bins, the percentages are obtained using the following

expressions:

b= };w x100%, p. ., = f;v <100%, p, .= %r <100%, p,.. = %r x100%,

23 24 25 26

P P
Pz = 2EX100%, g =2 x100%

27 28

Detailed results are provided in Figures 3.77 to 3.79. These percentages are again
independent of the number of nodes but dependent on the dispersion coefficient, £,
and the number of bins, b. We investigate the percentages for different values of &
with 9 bins, as shown in Figures 3.77 and 3.78. Figure 3.77 shows the percentages of
deltas due to both direct and reflected signals in each affected bin of the CCF. The
percentage contributions of the different affected bins for different £ are presented in

Figure 3.78.
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Figure 3.78 Percentage contributions of reflected signals (both surface and
bottom) in affected bins for different & (0, 0.5, 1, 1.25, 1.5, 1.75 and 2)

To obtain information on the percentages for any £, the percentages of all bins are

expressed by the 4"-degree approximation, as shown in Figure 3.79.
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Figure 3.79 Percentage contributions of reflected signals (both surface and
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3and 7, (c) bin4 and 6, and (d) bin 5

The approximated expressions are:

Py = Dyos = 1.3k —6.41> +11k% =12k +11
Doz ® Pyyy =034k —0.71k° —0.93k” =15k +77
Doos = Dyg = —1.3k* + 7k =15k — 4.4k +90

Dyos =—0.21k" + 2k — 7.8k — 7.3k +92

(3.64)
(3.65)
(3.66)

(3.67)

Comparisons of the percentage contributions with one and two reflector in the bins

are presented in Figure 3.80.
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different affected bins for different &k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2)

Now, to obtain the estimation parameter, i.e., the ratio of the standard deviation to

the mean of the CCF, deductions of the extended peaks of the corresponding bins are

obtained as follows.

In bin 2, the deducted peak is:

P,y =P, —p,»n%of P,

Similarly, for the other affected bins, 3 to 8, the deducted peaks are:
Py =Py = D3 %0t Py, By =Py — p,p%00f Py, Py =PBs—p,,s%o0f Py,

Pyoge = Pog = Do 700 Pyg Py = By — P, %0F Py, Py = P — P05 %0f Py
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The peaks of the CCF after deduction for 100 nodes with 100 iterations are shown in
Figure 3.81. To demonstrate the effectiveness of the process, the Rs of the CCF after
deduction for different numbers of nodes with one iteration are plotted in Figure
3.82. It can be seen from the results that the technique is good enough to estimate in

multipath environment.
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3.12.5 cConclusion

In a practical wireless network, multipath signal propagation is common. This
section investigates the effect with two different cases-the multipath with one
indirect path and multipath with two indirect paths. Although the effect might be
similar, only the ERP case is investigated. In some cases where the received direct
path signal is stronger than the indirect path signal, the multipath effect can be
neglected and the estimation can be obtained as without multipath. Again if the
indirect path signal is not negligible, a technique is investigated to estimate the

number of nodes.

3.12.6 Multipath effects in protocols

Two main performance criteria for estimation protocols are the estimation range and
their speed i.e. the time required to estimate. Range is the maximum distance from
which the receiver can sense the signal from the transmitter — that is, the range at
which it receives at least O, (the threshold power of the receiver). But in a multipath
environment the received power is sometimes lower than O, due to the subtraction of
indirect signal power from the direct signal, as multipath reception of some unwanted
signal, of which some are additive whereas others are subtractive. Thus some signals
can not reach the sensors and the system performance for estimation degrades.
Besides, the multipath causes ISI in the received signal, but using the symbol interval
sufficiently longer than the delay spread, ISI can be neglected. Thus it takes more

time to provide an estimate neglecting the effect of multipath fading.

In the proposed technique of cross-correlation, any multipath effect can be neglected
with a process where the power of a signal or time required is not affected. This will

be very useful in the energy-limited UWSN in compared to the protocol technique.

3.13 Conclusion

Knowing the number of nodes in a network is very useful for practical network

operations. Previous techniques proposed for estimating have been based on some
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aspect of the protocol(s) in use and most do not take into account the capture effect.
In this chapter, we have shown that the cross-correlation of random signals can be
used to estimate the number of nodes or transmitters in a network. Mathematically
derived expressions were investigated by simulations and the results agreed with
those from theory. Two cases - with and without consideration of the fractional parts
of the delays - were investigated in the simulation process and the results showed
similar performance. The effect of the signal length was investigated and a selection
criterion for the finite signal length for both the ERP and ETP cases was proposed.
Moreover, the effects on estimation of noise and multipath signal propagation were
also investigated. It was found that the impact of multipath propagation is often
negligible. In cases where multipath propagation must be taken into account,
techniques were presented for the cases of two paths (direct and bottom reflection)
and three paths (direct, bottom reflection and surface reflection). However,
demonstration of the effectiveness of the proposed estimation technique requires
comparisons with conventional technique(s). Later in this thesis, two conventional
techniques using protocols are considered and detailed comparisons, including

analyses of the error and time required for estimation, are provided.
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Chapter 4

Estimation of the Dimensionality and
numbers of nodes in different
dimensions in a communication

network

4.1 Introduction

In the cross-correlation node estimation, placement of a delta in a bin depends on the
node position i.e. the formation of the CCF has a significant dependency on the
placement of the nodes in the network. Thus it can be said that the estimation of the
number of nodes is dependent on the dimensionality of the network. In Chapter 3,
estimation of N is investigated only for a 3D network. As estimation of the number
of nodes using cross-correlation depends on the dimensionalities of the networks, it
is better to first estimate the latter, that is, whether the nodes are oriented in 1D, 2D
or 3D in space. This also helps in obtaining additional information about the
network, e.g., localization of the nodes, AOA estimations. As most research
conducted on dimensionality has been for a network’s architecture before
deployment of its nodes, the dimensionality of a deployed unknown network is a
relatively new research area. The deployment strategies for 2D and 3D underwater
acoustic network is proposed by Pompili (2009) to determine the minimum number
of sensors to be deployed to achieve optimal sensing and communication coverage,
which are dictated by application requirements; provide guidelines on how to choose
the optimal deployment surface area, given a target body of water; study the
robustness of the sensor network to node failures, and provide an estimate of the
number of redundant sensor nodes to be deployed to compensate for potential
failures. The only protocol-based technique for dimensionality estimation in a
deployed communication network is proposed in (Howlader 2008; Howlader 2009).
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In earlier chapter(s), the fact that the use of protocols is inefficient in harsh
environments, such as underwater, underground, has been mentioned. In this chapter,
a similar cross-correlation technique to that presented in Chapter 3 for estimating the
number of nodes is used to estimate the dimensionality of a communication network
after deployment. This process can be concurrent with that of the estimation of the
number of nodes. Thus, the proposed cross-correlation techniques for estimating the
number of nodes and their dimensionalities are of interest for wireless

communication networks such as WSNs and RFIDs.

Two dimensionality and two node count estimation techniques for all dimensions are
provided. Firstly, the shape of the CCF (which varies with dimensionality of the
network) is used to estimate the dimensionality. Then, the ratio of standard deviation
and mean of CCF (obtained from the individual bin of theoretical and simulated
CCF) is used to estimate the dimensionality. Like the shape, this ratio also varies
with dimensionality. Also, to obtain the node count for any dimensional network, this
ratio is used. Though it is useful, it requires prior knowledge of the signal power. To
overcome the limitation, the approach similar to that used in Chapter 3 with some

manipulations is applied for all dimensions.

4.2 Estimation using CCF of dimensionality

To start the process of cross-correlation for estimating dimensionality, firstly, the
shapes of the cross-correlation functions (CCFs) for different dimensions are
discussed fully using both analytical and simulated interpretations. The shapes of the
CCF varies with dimensionalities. Knowing the proper theoretical shapes, it is easy
to estimate the dimensionality by comparing the shape of experimental CCF with
that of the theoretical. This section provides theoretical with corresponding simulated
shapes of the CCF for 1D (linear), 2D (circle), and 3D (sphere) network. Then an
estimation technique is provided using a cost function which is the summation of
mean square deviations of the peaks of individual bins of theoretical and simulated

CCF. Again, the effect of fractional-samples delays has been investigated.
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4.2.1

Shapes of CCFs

The procedure for obtaining both the analytical and simulated shapes of the CCFs for

different dimensions is given step by step.

Stepl:

Step2:

Step3:

We choose 3 types (1D, 2D and 3D) of networks with 10,000 transmitting
nodes (to obtain proper fundamental shapes of the networks) and two probing
nodes or two receivers in a probing node, as indicated in Figure 4.1. It is clear
in the figure that the probing node(s) is/are placed at the centre of the
network. It can be seen in the figure that the uniform nodes distribution in 1D
network is on a straight line, 2D network is on a circle, and 3D inside a
sphere. Though these are very restrictive assumptions, this cross-correlation
technique to estimate the dimensionality will help for further work with other

type of configurations as for example, 3D but not spherical.

The probing node(s) send probe requests to the transmitting nodes which send
back Gaussian signals as their responses such that the receivers at the probing
node(s) receive signals of the same power (ERP case) from the transmitting

nodes.

We sum the signals from all transmitting nodes to two locations of the
probing nodes and cross-correlate these two combined signals to produce the
CCF. If the network is 3D, the CCF is a series of Dirac deltas of uniform
strengths over the width 2dpgs and centred at 0, as shown in Figure 4.2 (c).
However, this is not true for the 1D and 2D networks, as shown in Figures
4.2 (a) and 4.2 (b). In the Figure 4.2, the width 2dpgs is replaced by the b

bins, and for 11 bins, the 6" is considered as the centre bin.

Step4: Now, we discuss the theory regarding this phenomenon using Figure 4.3. If

we cross-correlate two signals that are the summation of several Gaussian
signals inside a boundary, for each signal we obtain a Dirac delta which
occupies a location inside a space of width 2dpgs (which is divided equally

into several bins).
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This location is determined by the delay difference between the signals
arriving at the receivers at the probing node(s). The deltas of delay
differences equal to a bin distance from the centre bin are placed in that
particular bin. It is shown in (Roux 2005) that the deployment of nodes
(which determines the placements of deltas) of equal delay difference follows

a hyperbola, as shown in Figure 4.3.
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Thus, the number of deltas in a certain bin is the number of transmitting
nodes inside two hyperbolas placed at the edges of that bin as shown in
Figure 4.3 (b). Physically the area inside those two hyperbolas is occupied by
a number of hyperbolas to cover all of the nodes in that area. Although there
will be some variations in the delay differences, they are considered same for
a bin area. As the transmitting nodes are distributed randomly, the number of

nodes is proportional to the area inside those hyperbolas.

StepS: Let us consider 11 bins of equal length, as shown in Figure 4.3 (b). To
estimate the number of deltas in a particular bin, Figure 4.4 is plotted for the

bin at the locations of receivers 4 and B at the probing node(s).
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Figure 4.4 Representation of hyperbolas for theoretically calculating the

number of deltas in bin

Step 6: To obtain the area inside the two hyperbolas shown in Figure 4.4, the

trapezoidal rule of numerical integration is used.

From Figure 4.4, the area is calculated as:

Area, Aj=Area, A; - Area, A, =1.7 m’

So, the percentage of the number of deltas at the bin at location A is:
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2xArea A,
Total Area

x100°~13.6%

Distributions of the deltas in the bins can also be formulated as in (Papoulis 2002;
Maisel 1983). It is known that it is possible to represent discrete random variables as
well as random variables, with a generalized probability density function using Dirac
delta function; for example, if a discrete random variable takes only two values —1 or
1, with probability half each, the probability density associated with this variable is (
Papoulis 2002; Maisel 1983):

f@) = = {6t +1)+ St - 1)} 4.1

1
2
More generally, if a discrete variable can take » different values among real numbers,

the associated probability density function is (Papoulis 2002; Maisel 1983):
fe) = X Pole - x,) (4.2)

where x1, ... , x, are the discrete values accessible to the variable and P, ..., P, the
probabilities, which indicate the amplitudes of the deltas associated with these

values.

If we assume that the deltas and number of nodes are of equal strengths, and the
percentage of deltas in a bin is the probability, the theoretical distributions can be
estimated by equation (4.2) and are plotted in Figure 4.5 with a comparison to the

simulation obtained earlier.

It can be seen from the results that the theoretical CCF matches the simulated CCF in

all networks’ dimensions.
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4.2.2  Estimation of dimensionality of communication network

The analytical and simulated results in Figure 4.5 show that they are similar for
corresponding dimensionalities. However, the shapes of the CCFs varying according
to the different dimensionalities of the networks, i.e., the CCF is dependent on a
network’s dimensionality. By utilising this dependency, the simple process of

networks’ dimensionality estimation is as follows.

Recalling the cross-correlation process with 10,000 nodes and 11 bins discussed in
Section 4.2.1, we have three theoretical shapes of the nodes to the bins for 1D, 2D

and 3D, as shown in Figure 4.5.

Now, suppose we have a CCF from a simulation or experiment which is similar in
shape of any of the theoretical CCFs according to the dimensionality. By looking at
its shape, we can decide whether the network is 1D, 2D or 3D. However, to make
this process computationally feasible, these simulated or experimental CCFs are
compared with the analytical CCFs using a computational method. The results are
helpful in deciding the network’s dimension. To do this, recall simulated results with
similar parameters as used in Section 4.2.1 for 2D network and the shape of the

simulated CCF is shown in the Figure 4.6.
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Figure 4.6 Distributions of nodes in bins from observed (simulated) cross-

correlation process
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To estimate the dimensionality of the network, we use the cost function (sum of

square errors) (Sirovich 2011) as:

b b
argminZ:eDi2 :argminZ(PTDi -k, )2

Del23 ‘o Del23 ‘1o

where p, is the peak of the theoretical CCF at the i"™ bin for D dimensional WCN,

P, the peak of the observed CCF at the i bin for an observed WCN, and e, the

error, misfit or deviation between the theoretical and observed peaks in the ith bin.

In MATLAB, we use the function to obtain the networks’ dimensionality:

b
[emin D] = min(zeDizj
i=1

where D gives the position at which the cost function is minimised and emi, is the

b
minimum value of E e, . This position i.e. the value of D is considered here as the
i=1

dimensionality of the network.

Using the theoretical CCFs in Figure 4.2, the simulated CCF in Figure 4.6 gives the

values of the cost functions for 1D, 2D and 3D as, respectively,

11 11 11
Zeh,z =3x 107, Zezl.z = 3x10°, and Ze3i2 =1x10°

i=1 i=1 i=1
Now, from the MATLAB expression,

le,., D]=min(3x107 3x10° 1x10¢),

min

As in the above expression ep;, is 3x10° at position 2, D gives the value of 2, i.e.,
the network is 2D. Thus it is easy to estimate the networks’ dimensionality from the

CCF.
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4.2.3

Effect of fractional-samples delays on dimensionality estimation

To show the effect of fractional-sample delays on the estimation of network

dimensionality, some simulation results for the CCF are provided in Figures 4.7 to

4.9 for 1D, 2D and 3D networks, respectively. It can be seen that these CCFs are not

greatly affected by fractional-sample delays as, although there are slight variations in

their shapes with and without them, they are still able to estimate the network’s

dimensionality using the following expression which was used earlier for integer-

sample delays:
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Figure 4.7 Simulated CCFs with and without fractional-samples delays in 1D
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Figure 4.8 Simulated CCFs with and without fractional-samples delays in 2D

network
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4.2.4  Conclusion

Thus, one can estimate the dimensionality of a communication network using the
shapes of CCF. Although this system needs equal signal powers from the nodes, it is
irrelevant what these powers are. However, as it is an exact method, which gives
only three distinct estimations of dimensionality - 1D, 2D and 3D, it will only be
accurate if the proper system requirements are maintained. In case of wrong
estimation, the estimation will be dramatically different and the error will be higher.
For example, in the case of 3D network, if we get the simulated result 1D or 2D, then
the estimation will be completely different but if we get 3D then it will be 100%
accurate. To mitigate the limitation, another approach is provided in the following

section.

4.3 Estimation using R of CCF of dimensionality

Estimation of dimensionality using the shape of CCF, discussed in the previous
section, is useful but has the limitation of incurring a severe error in the case of a
wrong estimation. To overcome this limitation, another estimation technique using
the ratio, R, of the CCF is investigated and discussed in this section. In this process,
the Rs are first obtained for all dimensions and then the dimensionality is decided
from the variation of these Rs. This approach is very similar to the earlier number of

nodes’ estimation technique with the exception that the binomial distribution with
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unequal probabilities for all bins is considered in order to obtain the standard
deviation and mean of the CCF. This is explained further with the following results

and discussion.

4.3.1 Theoretical estimation

It 1s known that the placement of nodes in a bin is binomially distributed with the
parameters n; and p; (Vogt 2002a; Vogt 2002b), where the parameters indicate the
number of nodes in the i"™ bin and the probability of success of that bin, respectively.

This is true for all bins in a cross-correlation process.

Again, the expected values and variances in the total number of successes in n
independent Bernoulli trials with p; probability of success at /™ trial is expressed in

(Wang 1993) as:
E(X)= Z D,
j=1
And the variance is

Var(X)=Y p,0-p,)

J=1

If the trials are identical, i.e., the probabilities of success are

p1:p2:p3:“':pn:p’

the expected values and variances are, respectively

E(X)=ipj=np

J=1

and

Var (X) =3 p, (1= p) = mp(1=p).

In the proposed case, as the trials’ probabilities of achieving successes in a bin is
equal, the number of groups with identical probabilities is equal to the number of

bins, b.
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Thus, the expected value (the mean) of the CCF in this case is

n
EX)=p= 2 p f
j=1
b
= > n; pl.,wherenl. is thenumberof trialsof equalprobabiliies of successes
i=1
b
= X (np)p;sasn, =np,
i=1
b
=2 npi2
i=1
=n p.2

i=1"

Similarly, the variance is

n
Var(X)ZO'Z: > p.(0-p.)
21 J
J
b
= 2 mpi=p;)
i=1
b
=i§1(npl-)pl-(1—pl.),asnl.=npl.
b 2
= X np,~(-p)
i=1

(p[2 - p13)

I
‘[\34@

So, the standard deviation is

b
o= \/n > (pl-2 —pl-3)
i=1

Thus, the ratio of the standard deviation to the mean, R, is
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i \/”Z (r>=pH X @ =)
H nz piz \/; [ Zb: piz j

i=1

Using the above relationship, we can obtain the ratio of the standard deviation to the
mean of the CCF for different network dimensions to estimate the dimensionality of
the network by knowing only the p;. The probabilities of successes for the bins are

defined in this proposed technique as:
p. = —;fori = 1tod
The theoretical probabilities of successes for the bins in a 1D network are:
n, 1 .
p, = —+ = E;forz = land b

= 0 ; otherwise

The ratio of the standard deviation to the mean, Rip, is:

Similarly, for a 2D network, the theoretical probabilities of successes for the bins are:

0.0626 ; p, = % = 0.0623
n

P = Py = % = 0.1360 ; p, = p,, = ';—2 = 0.1150
Py = Dy = %~ 0.0780 s Dy = Dy = s~ 0.0710
n n
ns
n

These values are obtained following the step 6 of Section 4.2.1 where obtaining p; is

shown for example.
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Thus, its ratio of the standard deviation to the mean, R,p, is:

2 x {(0.1360 )2 — (0.1360 )3} + 2 x {(0.1150 )2 — (0.1150 )3} +
2 x {(0.0780 )2 — (0.0780 )3} + 2 x {(0.0710 )2 — (0.0710 )>} +

e - 1| [2x10.0626 )2~ (0.0626 )31 + 1 x {(0.0623 )2 — (0.0623 )*}
2D n (2 x (0.1360 )2 + 2 x (0.1150 )2 + 2 x (0.0780 )2 +
2 x (0.0710 )2 + 2 x (0.0626 )2 + 1 x (0.0623 )2}2
L 3
Jn

Similarly, for a 3D network, the theoretical probabilities of successes for the bins are:

p.=—=LzO.O9O9;fori=1tob
L on 11

Thus, its ratio of the standard deviation to the mean, R3p, is:

e L[ |11 x 4(0.0909 )2~ (0.0909 )3}
3D Jn (11 x (0.0909 )2}2

These analytical ratios of the standard deviations to the means of the CCF for

different dimensions can be represented as:

3.1623 ¢

R d R

1 c 3 c
R —=—— =" = ——"2  an
Y N N PN
where ¢, ¢, and c3 are the proportionality constants and is obtained from the

theoretical data as shown in the above corresponding expressions.

The dimensions are 1, 2, or 3, but if the shape of the 2D, and 3D networks might
vary from the basic assumption of circle and sphere, the dimensionality parameter
might vary. To show this effect, R,sp is obtained from the CCF from the process

below:
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It is known that the CDF of the distribution of the uniformly distributed nodes are

g(d)=a®

In this expression, considering D=2.5, it is easy to get the distances of the nodes
from the centre of the nodes distribution (i.e. from the receivers). Getting the
distances, the CCF is obtained using them from the moving average technique of
CCF (discussed in Chapter 3) for other dimensions except the basic three discussed
here. From that CCF, the dimensionality parameter has been obtained for D=2.5 as

shown in Figure 4.10.

In Figure 4.10, denoting the theoretical constants by Wr and named dimensionality
parameter, Wy versus the dimensions, D are plotted. The results are approximated by

a cubic expression as shown in Figure 4.10.
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=

Figure 4.10 Dimensionality parameter Wy versus Dimensions D: theoretical

Precisely, the approximate expression from theory is:

W,=0.48657D° —3.8383D* +10.109D - 5.7571 (4.3)

4.3.2  Estimation from simulation

Similarly with the simulated CCF for all dimensions, using the same procedures as
for the theoretical results, we obtain the simulated ratio of the standard deviation to

the mean of the CCF which is a parameter for estimating dimensionality.
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In the simulation,

n.
p.=b—’;f0ri:1tob

> n.
j=1"

Then we can obtain the simulated ratio of the standard deviation to the mean, Rip,

where1=1, 2, 3.

Thus, the ratio, R, is

where ¢y, ¢21, and ¢3; are the proportionality constants and are obtained from the

observed (simulated) data.

Again, as for the theoretical case, in Figure 4.11, denoting the simulated constants by
Ws and named dimensionality parameter, Ws versus the dimensions, D are plotted.
The results are again approximated by a cubic expression as shown in Figure 4.11.
The R sp in simulation is obtained from the same manner as in the theory discussed

earlier.
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Figure 4.11 Dimensionality parameter Ws versus Dimensions D: simulated

Precisely, the approximate expression from simulation is:

W,=0.47753D" —3.7849D* +10.016 D — 5.7142 (4.4)
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To compare the theoretical and simulated results, we plot the constants against the
dimensions and number of nodes from the approximated expressions, as shown in
Figures 4.12 to 4.14. Figure 4.12 is the comparison of theory and simulation with
some fractional dimensions, where the extra points are obtained using the

expressions of Wrand Ws from (4.3) and (4.4).
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Figure 4.12 Dimensionality parameter Wror W versus Dimensions D:

theoretical and simulated

To show the effect of N on the dimensionality parameter, in Figure 4.13 the

dimensionality parameters are plotted against N.
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Figure 4.13 Dimentionality parameter Wrand Wy versus Number of nodes /V:

theoretical and simulated

It implies that the dimensionality parameter is independent of N, which is helpful for
any size of network. 1D is a unique case and it is far different from 2D and 3D

results. Although the 2D and 3D results are close, the difference is clear enough to
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separate them both in theoretical and simulated results. Sometimes, the network
might exactly not follow the assumption of 2D a circle and 3D a sphere. But the
results of dimensionality parameter will be between 1 and 3 for any 2D network and
between 3 and 3.1623 for any 3D network. Thus we can extend this technique to

estimate the dimensionality for any network.
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Figure 4.14 Surface plots Dimensionality parameter W, Dimensions D, and
Numbers of nodes N: (a) analytical; and (b) simulated
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To show both effects (effect of D and N) on the dimensionality parameter at a time,
two surface plots are provided in Figure 4.14. Figure 4.14 (a) shows the theoretical
whereas Figure 4.14 (b) the simulated results. It can be seen that the theoretical and
simulated results sufficiently match each other to obtain the networks’

dimensionality.

4.3.3  Effect of fractional-samples delays on dimensionality

The expression of R using binomial distribution in each bin of the CCF obtained in

Section 4.3.1 is:

\/nz‘T (pi2 - pi3) 1 Z (piz - pi3)

b 2
b

, Pi

i=1 —
i=1

In Section 4.3.2, the dimensionality parameter varied with different dimensionalities

N
3
g

>

in the expressions of the R of the CCF and a qubic approximation was used to obtain
the dimensionality estimation where the sample delays taken were only of integer
values. It is shown in Figure 4.15 that a similar quadratic approximation is also valid

for the expression with fractional-samples delays.
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Figure 4.15 Dimensionality parameter Wrs versus Dimensions D
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4.3.4  Conclusion

This dimensionality estimation proposes another technique for estimating the
dimensionality of a communication network. However, it is not an exact method,
giving fractional dimensionality of any values between 1 and 3 instead of 1, 2, and 3
only as in exact method, and thus in the case of a wrong estimation, the error will be
less because of fractional results. Actually the wrong estimation indicates that the
shape of the network is not exactly the same as sphere in 3D, or circle in 2D, so the
dimensionality parameter will be different from the value obtained with 3D sphere or
2D circle. Thus the obtained dimensionality D might change. Suppose we can get the
D=2.9 instead of 3 for 3D network, the error is 3.33%, which is very low with
compared to the 33.33% with exact method (if I get 2 instead of 3 in 3D network
from the exact method). Again, the effect of fractional-samples delays has been
investigated for this technique and it is shown that the process is applicable with and
without fractional-samples delays.

Although the proposed methods of dimensionality estimation are only discussed for
three basic dimensionalities, they can work in other cases, for example where most
nodes were on a disc but just a few were off the plane of the disc in a two
dimensional network. Both methods will declare the network as 2D. The cost
function method is suitable because it compares the CCF shapes. As the shape of the
CCF of the test network matches better with 2D theoretical CCF, it will give the
estimation as 2D without any error. Although the second method can provide the
estimation, there might be some error in estimation for the mismatches in the
simulated and theoretical estimation parameters.

The term fractional dimensionality physically indicates the deviated dimensionality
from the basic dimensionalities. The basic dimensionalities in this thesis are a
straight line in 1D, a circle in 2D, and a sphere in 3D. Consider a network whose
shape is exactly neither linear nor circular is a network with fractional
dimensionality. Its dimensionality might be of any values between 1 and 2 depending
on the closeness of the shape towards 1D or 2D. Although there will be some error in

dimensionality estimation, detail error analysis is left for the future work.
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4.4 Estimation of the numbers of nodes in different

dimensions

In this section, the same process of dimensionality estimation discussed in Section
4.3.2 is used to estimate the number of nodes. Actually, the ratio, R, is used for
estimation. To simplify the procedure, suppose we have three analytical and three
simulated CCFs from which the corresponding ratios of the standard deviation to the

mean are obtained using the expressions discussed in Section 4.3.2.

The parameters for obtaining the analytical and simulated CCFs are:

Number of nodes = 1 to 100
Number of bins = 11

Both the simulated and analytical results for the three dimensions with integer
samples delays are shown in Figures 4.16 to 4.18. Simulated results are obtained
from the average of 100 iterations. Figure 4.16 for 1D, Figure 4.17 for 2D, and
Figure 4.18 for 3D network. The solid lines indicate the theoretical whereas the
circles indicate the simulated results. It can be seen from the results that in all
dimensions, the theoretical and simulated results match sufficiently to obtain the

estimation of IV, which ensures the capability of the process.
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Figure 4.16 Comparison of ratios, R, of CCF versus N: 1D network
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4.4.1  Effect of fractional-samples delays

In this section, the same process of dimensionality estimation discussed in Section

4.4 is used to estimate the number of nodes considering fractional-sample delays.

Both the simulated and analytical results, with and without fractional-sample delays,
are shown in Figures 4.19 to 4.21 in which it can be seen that the process is equally

applicable with the fractional-samples delays.

However, this method is only suitable if the signal strengths from the nodes are equal
and unity. This is discussed here with the Figures 4.22 to 4.25 in which the signal

strengths are doubled from the previous case.
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Figure 4.21 R of CCF versus N: 3D network
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The resulting ratios of the standard deviations to the means of the CCFs are shown in

Figure 4.25. It shows that the simulated line does not follow the theoretical line. But
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it follows the theoretical results when they are divided by two. This variation is due

to the different signal power in the cross-correlation process.
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Figure 4.25 Comparison of ratios, R, of CCF versus /NV: 3D network

It can be seen that the method for estimating the number of nodes proposed in this
work is only suitable when all received signals strength from the nodes are equal and
unity. Although obtaining equal signal strengths from the nodes is possible using the
probing technique, achieving unity values is not possible without knowing the prior
knowledge of the signal strengths. Therefore, another approach is proposed in the

following section.

4.5 Estimation of the numbers of nodes for different

dimensions: another approach

It is shown in the previous section that the proposed process is adequate for
estimation although it has a limitation in terms of signal strength. To overcome this,
we propose another approach for estimating the number of nodes which is similar to
the basic approach discussed in Chapter 3 for the 3D ERP case. As has already been
discussed the shapes of the CCFs are different for different dimensions, so for those
other than 3D, we have to scale the results to obtain proper estimations. The

following analysis details this estimation process.
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In our earlier work of Chapter 3, the theoretical ratio of the standard deviation to the
mean of CCF in 3D network, R;pr is obtained as:

V""Pq q (4.5)

Ripr = —— = ,|——
np np
where
n =number of trials i.e. nodes in CC process,

p = probability of success, and

q=1l-p

In addition, from the simulated CCF, the ratio of the standard deviation to the mean

of CCF in 3D network, R3ps 1s obtained in MATLAB as:

_ o(CCF) _ std(CCF)

— = (4.6)
H(CCF)  mean(CCF)

In this section, for a 3D spherical network, the estimation is performed by the same

manner with the above two expressions.

It is already mentioned that the placement of deltas due to the network nodes in a bin
is binomially distributed, from which the theoretical CCF for a 1D network with
N=10,000 and b=11 as shown Figure 4.26.

B000 T T T T T

5000

T

2]

2]
1

4000 _

3000 1

2000

Murnber of nodes

1000 1

1000 I 1 I I 1
0

Murnber of hins

Figure 4.26 Analytical CCF: 1D
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It can be seen from the figure that the CCF can be considered as two deltas in 11

bins. Thus the theoretical ratio of the standard deviation to the mean of CCF in 1D
network, Ripr is obtained as:

Ry =4 = |4 (4.7)
np 2p

And from the simulated CCF shown in Figure 4.27, the ratio of the standard
deviation to the mean of CCF in 1D network, R ps is obtained in MATLAB as:

_ std(CCE,)  o(CCFE,)
5" mean(CCE,,)  u(CCFE,)

(4.8)

G000 T T T T T

5000

T
£
3

I

4000

3000 -

2000 -

Murmber of nodes

1000

-1000 1 1 1 1 1
] 2 4 4] g 10 12

Mumber of bins

Figure 4.27 Simulated CCF: 1D

As it can be seen in the expression (4.7), the Rpr is constant for all N and thus the
estimation is not possible from that expression. So, another ratio, R;37 (derived from
Ripr and Ripr) is used for the estimation in 1D network.

The ratio Ry3t is obtained as:

9
Ry, —Ror_ 2P _ \/Z (4.9)
R3DT i 2

np

Similarly, the corresponding simulated ratio used in 1D network, R3s is:
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std(CCE,,) o(CCE,,)
R R mean(CCEF, CCF,
Ry, = Rle _ Rle _ ( in) _ H( i) (4.10)
3DS 3DT q q

2 2

Again the analytical CCF for a 3D spherical and a 2D circular networks are shown in

Figure 4.28 and 4.29.
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Figure 4.29 Analytical CCF: 3D

From these figures it is easy to obtain the percentages of deltas in the bins. Upon
getting the percentages, another ratio of those percentages in the corresponding bins
is obtained which is used later to convert the 2D CCF to 3D CCF. The following

details the process.
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The percentage of the deltas (number of nodes) at i™ bin with respect to summation
of deltas (number of nodes) at all bins of the CCF for a D dimensional network is
expressed as

v, =20 5 100%
n

Thus, the percentages of deltasin the bins for 2D,
VvdeltasZD:[I/lZ V22 I/32 I/42 I/52 I/GZ I/72 I/82 1/92 I/102 I/112]

and the percentages of deltas in the bins for 3D,
Vdeltas3D = [1/13 I/Z3 V33 I/43 V53 I/63 V73 1/83 I/93 V103 I/113]

So, the ratio of V,,,,,, and V,...;p 1.€. the nodes for the corresponding bins are :
_[&Q&Q&&ﬁ&&m V112:|
23 =

Vl3 V23 1/33 V43 I/SS I/v63 1/73 I/SB I/% V103 1/113
:[I/r123 Vr223 I/1'323 Vr423 I/r523 Vr623 I/1"723 I/1'823 Vr923 I/r1023 Vr1123]

Thus, we can convert 2D percentages of deltas to 3D percentages of deltas by

dividing them by the above ratios as:

v _{Vlz Ve Vo Vo Vo Vo Vo Vo Vo Vo V}
deltas3D from 2D

I/r123 I/r223 I/r323 I/r423 I/r523 I/r623 I/r723 I/r823 I/r923 I/r1023 I/rl 123

Thus, the number of deltas in the bins in 3D derived from 2D are:

V b
K _ deltas3Dfiom2D X n
deltas3Dfiom2D i
100 ~

Then, it is easy to estimate the number of nodes using a 3D expression for a 2D

network using the estimation expression (4.6) of 3D network as:

Std (CCFSDfromZD )

R =
3Dfrom2D
mean(CCF3Dfmm2D )

Some simulated results with corresponding theory are provided in Figures 4.30 to
4.32. The simulation parameters are same as earlier with 11 bins and 1 to 100 nodes.

Figure 4.30 shows the theoretical, simulated from 2D (using the expression of
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converted 3D CCF from simulated 2D CCF), and simulated from 3D, estimation
parameter, R against N. Figure 4.31 shows the theoretical and simulated R in case of
1D network. This theoretical and simulated R is constants with respect to N, and thus
is not informative to obtain the estimation of the number of nodes. Finally the Figure
4.32 shows the derived estimation parameters, Rjst and Rjss to estimate N in 1D
network. It can be seen that the theoretical and simulated results in Figures 4.30 and

4.32 match properly to estimate the number of nodes in all three dimensions.

B .
sl Theoretical
O Simulated: 20
4 4 Simulated: 30 [
3
s 2t
I
s 1F
o
D I
b 4
21 4
3 L L 1 L
o 20 40 (=N 80 100

Murnber of nodes

Figure 4.30 R of CCF for estimations in 2D and 3D
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2 Simulated

R of CCF
o Lo o= r\‘_:Jm = omom
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0]
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0]
)]
0]
)]

o 20 40 50 50 100
Mumber of nodes

Figure 4.31 R of CCF in 1D

10
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O Simulated ||

R of CCF

u] 20 40 B0 a0 100
Mumber of nodes

Figure 4.32 Ratios of R in 1D and 3D of CCF for estimations in 1D
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This technique for estimating the number of nodes overcomes the limitation of unity
powers from the nodes required by the previous method, i.e., although it needs equal

signal powers from the nodes, it does not matter what these powers are.

45.1 Effect of fractional-samples delays

In this section, we use the ratio of the standard deviation to the mean of the whole
CCF with fractional-samples delays in 3D network discussed earlier, Rsp, to estimate
the number of nodes. In the 2D network, the CCF is converted to a 3D CCF, and then
the Rsp is obtained from that CCF for the estimation in 2D. In the 1D case, firstly, the
Rip (which is independent of the number of nodes) and then another ratio, R;p/Rsp,
are used to obtain the estimation. Figures 4.33 to 4.35 show that the fractional-

samples delays have no significant effect on estimation.

35 .
5 Thearetical
2 Sirmulated without fractional-sample delays
25+ #  Simulated with fractional-sample delays H
52t
O
S 15}
vy
1 L
05¢
|:| 1
0 20 40 B0 a0 100
Mumber of nodes, &
Figure 4.33 R3p from ,p of CCF for estimations in 2D
G T
5l Theoretical 1
= Simulated without fractional-sample delays
4 #  Simulated with fractional-sample delays M
3 L -
é 2 1E & o L & & & & o L oy
= 1t i
[
|:| - .
1k 4
2t i
_3 1 1 1 1
] 20 40 B0 (=il 100

Mumber of nodes, &

Figure 4.34 R,p of CCF for estimations in 1D
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Figure 4.35 Ratios of R;p and R3p of CCF for estimations in 1D

4.6 Conclusion

Estimation of network dimensionality with the number of nodes is also helpful in
network applications and maintenance. The method of cross-correlation of the
number of nodes estimation also depends on dimensionality. In this chapter, the
estimation of dimensionality has been investigated in two different ways using cross-
correlation. Besides few more estimation techniques of the number of nodes in
different dimensional networks have also been proposed and investigated. All
investigations have been obtained in the ERP case based on the basic CCF formation
theory. It is obvious from the results that the CCF method is suitable for the
dimensionality estimation associated with the estimation of the number of nodes. To
validate the accuracy of the estimation process, error in estimation has also been
provided in the next chapter with the analysis in the estimation of the number of

nodes only.
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Chapter 5

Analysis of error in estimation

5.1 Introduction

Every estimation method involves an error which arises from the simple fact that an
actual quantity generally differs from its estimation. Numerically, an error in
estimation might be represented in different ways: as a true error which is the exact
deviation of the estimated value from the true value, or a statistical error which is
obtained from several estimated values using the least squares technique. A true error
is preferable when the parameter used in the experiment is not random, i.e., it gives a
fixed estimation every time for a particular setup. Whereas, in an experiment with
random numbers, as the estimated values vary from time to time for a particular
setup, thereby indicating a certain statistical property, it is wiser to represent the error
statistically. As the proposed cross-correlation is a statistical technique, the statistical
error, the coefficient of variation (CV), is used as its error in estimation in order to
fully assess the accuracy of the proposed estimation techniques. The CV is defined as
the ratio of the standard deviation to the mean taken from several estimations. This
chapter analyses the error in estimation of the number of nodes in detail and
compares it with the estimation error in the conventional protocol techniques.
Section 5.2 provides the theoretical formulation of the CV with detailed verification
of it by simulations for both the ERP and ETP cases in which all simulated CVs are
obtained using the simulated CCF. The process of obtaining this CV from the
theoretical CCF is discussed. In some cases, as it is difficult to obtain an exact
mathematical expression of the CV, to ensure the correctness of the simulations,
using a CV obtained from the theoretical CCF is helpful. Moreover, the effect of
fractional-sample delays on the CV is investigated. In Section 5.3, variations in the
CV in terms of k are investigated and a generalised expression of the CV is obtained.
Like estimation, CV is also affected by the N and there is a b for a particular N,
where the CV is minimum, called the optimum CV (OCV), is obtained for some Nj,
a generalised expression for it is obtained in Section 5.4. Selections of the sampling
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rate and the distance between sensors for estimation are obtained using the CV in
Section 5.5. This sampling rate is useful for obtaining the estimation time and
energy. As the CV depends on b and b depends on Sgr and dpgs, if the dpgs is fixed,
the CV depends on only Sg and vice versa. Section 5.6 provides the effects of noise
on the CV and it is shown that, as for estimation, the CV is not affected by the noise
if the signal strength is sufficiently dominant. The energy (in terms of the product of
SNR and N;) and time required for estimation are obtained in the ERP and ETP cases
and compared in Sections 5.7 and 5.8, respectively. The results show that the ERP
case performs better than the ETP case. To demonstrate the effectiveness of this
novel approach, Section 5.9 provides comparisons of the proposed technique (ERP
case) and two conventional protocol techniques using three major performance
factors, the CV, the estimation time and the required transmit energy. It is shown that

the proposed method performs better overall than the conventional techniques.

In this chapter, simulation results of CV using example networks are presented.
Some are based on underwater acoustic networks because this is an interesting

possible application area of the techniques presented in this thesis.

5.2 Error in estimation

To have confidence in the estimation of &, an error tool, the ratio of the standard
deviation to the mean, also known as the CV (Smith 1999) of estimation, is used.
Although the standard deviation is not very significant, the CV is an important tool
for identifying the error in estimation - the lower the CV, the better the accuracy of

the estimation.

This section provides the theory of the CV, obtains the CV from both theoretical and
simulated CCFs, and verifies the theory through simulations of both the ERP and
ETP cases. Though there are small differences between the theoretical and simulated
results for the ETP case, proper scaling of the former causes them to match with the
latter. Moreover, the effect of fractional-sample delays on the CV is investigated. In
the ETP case, as the dispersion coefficient, k£, might possess different values, a

generalised expression of the CV is obtained.
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5.2.1 Theory regarding error in estimation in ERP case

In this estimation process, two possible parameters that may affect the CV are N and
b because they are the only factors that affect the estimation parameter, R. To express
this effect, assuming that the signal characteristics do not change markedly
throughout the sampling process. Thus N will be similar for all samples and the mean

number of nodes will be similar to NV at any sampling time.

Consequently, if N increases by a factor, 7, the standard deviation and mean must

also increase by the same factor, indicating that the CV is independent of N.

To obtain the CV, several R and thus N from several CCF have been obtained.

Considering a CCF as a sample, the ratio of the standard deviation, o, to the mean,

u, , of that sample CCF is expressed in Chapter 3 as

R="x= |2 (5.1)

= (5.2)
O-S
(ﬂf ]

2

Thus, N m(ﬂ—‘j as b is constant.

2
o

Again, from Chapter 3,

M, =Nx— (5.3)

and
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GS2=NX1><(1—1) 5.4)
b b

Then, from (5.3) and (5.4), we have
2
A _[ D
CTSZ B (b — ljlug (55)

Suppose we have 10005 normal variates (population with o,and g,) from which

we draw b samples at a time and obtain the sample mean, ££,. Then we have 1000

sample means the distribution of which will again follow a normal distribution. We
obtain the CV of these means from the ratio of the standard deviation and mean of
those sample means which is proportional to the inverse of the square root of sample

size, b.

2
So, CV(N ) = CV(’U—‘BJ =CV(y,) and CV(y,)oc %; assuming that the estimation
o

N

of 4, is normally distributed. Thus, CV(N )oc % as N is proportional to the ratio

2

£ To obtain the exact expression of the CV, again from (5.3) and (5.4), we have

-
(o}

u (b Y,

o7 \p-1) % (5.6)

N

So, the CV of N can also be obtained as

CV(N) = CV[ A aj] ~cvle?)

1.e.,

E(af ) (5.7)
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The CV of estimation is therefore the CV of the sample variance of the CCF
distribution. It is known that the expected value of a sample variance (assuming a

normal population, which is possible from a cross-correlation (Hanson 2008b)) is

2\_b-1 >
E(O'S ):TO'p (58)
and that the expected variance of that sample variance is
2 2(b - 1) 4
E(Var(as )): e o, (5.9)
Therefore, the expected standard deviation of the sample variance is
2(b-1 2(b -1
E(Sl‘d(dsz))z\/ (bz )0p4 = \/ (b )O'pz (5.10)

Thus, the CV of the estimation is

CV(N)= E(S];éfs;))z ‘/b: z\/%; [as b>>1] (5.11)

5.2.2  Obtaining CV from theoretical CCF

The theory developed in the previous section is suitable for all 4 for an infinitely long
signal but, for a finite length signal, it is suitable only up to a certain b. This is
because, for an infinitely long signal, in a CCF, we will obtain only the desired peaks
which are the delta functions of certain strengths for the nodes. But, for a finite
length signal, there will be some undesired peaks associated with the desired peaks
which are treated as noise in the CCF. The desired peak for a node can be obtained if
the position of the node is known. But, as it is difficult to represent the undesired
peaks by a closed form expression, it will be very difficult to obtain one for the
theoretical CCF and, thus, the CV, especially in cases of finite length signals.
Therefore, we try using the moving average technique of cross-correlation to obtain

the peaks (desired and undesired).

In all cases, the CCF for the desired bins can be represented as

b

Cle)=2 F3, (5.12)

i=1
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where i indicates the bin number, ,the Dirac deltas and P; their strengths or peaks

which might be obtained from this technique.

The CCF, using the moving average technique of cross-correlation, can be

represented by (Hanson 2008a; Hanson 2008b)

)=y S| o 2| o 2o

s i=1 s =1 s =l

where N; is the signal length in the number of samples, 7 the time delay of cross-
correlation, and x; and y; are i"™ samples of the two sensors’ signals, respectively.
As we use the zero mean Gaussian signal, the product of their means is zero. So, the

CCF is reduced to

1 N,—t

(r)= 3
()= _T;WM

N

This gives the peaks for the desired bins as

N+ N, +1 N,-0
1 stT s s 1

1 1 Ny -1 1 N,-t
Wove B T B g e g By 2

i=1

where the peaks are the strengths of the deltas of (5.12) which are

1 N&+T
P = Xy,
1 Nq +7 ; i/i-79
1 Ny +(z-1)
P = XiVi_(z-1)»
N, +(-1) 5

1 NS—T
P = XV,
b NV_T ; zyz+r

Putting these values in (5.12), we obtain the desired CCF and call it in this thesis the
theoretical CCF. For a particular simulation setup, we obtain similar theoretical and
simulated CCF values. Using this theoretical CCF, the CV, called the ‘CV from the
theoretical CCF’, can be obtained as is the simulated CCF discussed in the following
section. Later in this chapter, the CVs from theoretical and simulated CCFs are

compared to ensure the correctness of the simulation results.
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5.2.3 Obtaining CV from simulated CCF in ERP case

It is already known that, after cross-correlating the signals received at two sensors
from a number of random Gaussian signal sources, the CCF, which is a rectangular
pulse over the space between the sensors, can be obtained. Then, we can easily
estimate the mean and standard deviation of this CCF and, therefore, its ratio, R, as
we know the sampling rate, Sg and distance between the sensors, dpgs. Reframing the
cross-correlation problem as a probability problem, we obtain a relationship of N =
(b-1)/ R?, as discussed earlier. Thus, from the simulation, we can readily estimate the

number of nodes by knowing only R.

To obtain a simulated CV of estimation, a simulation process is run 1000 times for a
particular N and b. From these 1000 values of estimated N, the standard deviation
and mean of estimation and, thus, the CV, are obtained. To obtain better results, 100
iterations are taken for the simulations unless otherwise mentioned. This process is
similar for both the ERP and ETP cases. Some results are provided in the following

section to verify the theory expressed in (5.11) for the ERP case.

5.2.3.1 Verification of relationship between CV and b

In this section, the proposed theory regarding the CV is verified by the simulation

results obtained using the following parameters:

dimension of cube 2000 m; considering the estimation area as a 3D cube
number of nodes, N = 32, spherically distributed inside the cube;

signal length, Ng = 1,000,000 samples;

sampling rate, Sg = 30 kSa/s;

speed of propagation, Sp = 1500 m/s;

distance between sensors, dpps= 0.25 m; and

iteration used, # = 100 (to obtain better results).

Firstly, the R of the CCF from 100 iterations, and then the estimated N using the

expression of N related to this R, are obtained. Secondly, to obtain the CV, the same

195



process is continued 1000 times without any change in parameters and the values of

all estimated N are recorded. Finally, the CV for one iteration is obtained from the

ratios of the standard deviation to the mean of those values as

olN
CV=;E]§; (5.13)

Now, if we use iteration u, the standard deviation and, thus, the CV, are reduced to
1

Ju

(Barry 1978; Howlader 2009) so that the CV after the u™ iteration is

1 (olV
CV. :E(;E%J (5.14)

To verify the theoretical relationship of the CV and b, the above process is continued
for several distinct values of b by varying the sampling rate or the d,,5 and the
results are presented in Figure 5.1. Figure 5.1 (a) shows the results using a linear plot
and, to verify the theoretical relationship between the CV and b from the simulation,
they are re-plotted in Figure 5.1 (b) using the logarithmic axes. Assuming a straight

line approximation, the slope, s in Figure 5.1 (b) is

B loglo(C)— 10g10(D) ~ _l (5.15)

Seo =
lOglO(A) - loglo(B) 2

Therefore,
log,,(CV,40)=(s,,)10g,,(b) + ¢
= (8.,)10g,,(b) +10g,4(c,)
=log, (¢, x b(sw))
So,

1
CVigy = ¢y xb™ =¢, Xb[ 2} (5.16)

where ¢, and ¢ are constant and are related as ¢ = loglo(co). Using a particular point

. . : 2 : :
from Figure 5.1 (a) in (5.16), the value of the constant, ¢ is ¢, = 10 Putting this ¢,
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V2

in (5.16), it can be expressed as CV,,, = m The results in (5.16) were obtained

from 100 iterations, thus, for one iteration; the CV is CV, = \/% which verifies the

theory in (5.11).

Linear plat 4 log-log plat

0.04 T T T T 10 T
< 0.03 =

= 2 Straight line approximation
S 003t s
E k]
= 0025 =
5 =]
= oot bt
a o
2 omst =
a b
=] f=
<00t ©

0.002 y . . . .

0 50 100 150 200 250 ' A s B 10
Number(m; bins, & Mumber of bing, b
a

(b)
Figure 5.1 Simulated CV (with ¥=32) in ERP case: (a) linear and (b) log-log

scale

A comparison of the theoretical CV, the CV from the theoretical CCF and the CV
from the simulated CCF is provided in Figure 5.2. It can be seen from the figure that

the theoretical and simulation results match.

@ CVfrom simulated CCF A o CVfrom simulated CCF
g oost & CVfrom theoretical CCF | & 10¢ & CV from theoretical CCF |3
= —*— CV: Thearetical % —+— C Theoretical
& 004 g
5 003} Rl .
£ omf 2
& S
001
I I I I 10_3 !
I a0 100 180 200 2480 101 102 103
Number(nglns, b Mumber of hins, b

(b)
Figure 5.2 Comparison of theoretical and simulated CVs for 32 nodes in ERP

case: (a) linear and (b) log-log scale
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5.2.4  Theory regarding error in estimation in ETP case

In the ETP case, the estimation parameters’ expression, as obtained in Chapter 3 is

R =(b—-1)'NM (5.17)
= N =(p-1)*R,"
:N:%—W@ﬁ%”

= N (R )

2 %\Sk\
= N [—’uk“ ]

2
Gks

Using (5.6), we have

2 Vs
N oc (cr,m )/

So, the CV will be

CV(N)= CV{(%ZV*} (5.18)

Now, the CV of this case can be derived as follows. Suppose Y = g(x), where the

mean of x is £, and using the Taylor series expansion about the mean, we have

dg 1 ,d’g
Y= +(X—pu)—=+—-(X -
)+ (X —p) (X = f =5

4+ ..

where X is a random variable and its values are the obtained value of x.

Then, the expected mean of Y is

E(Y)~g(u)
Taking up to the 1* derivative term in the Taylor series, we have the variance of Y as

dg ?
Var(Y) = Varl X — —
ar(Y) = Var( ux)(de
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Now, if

Y =x*

then, the mean of Y is

(5.19)
E(Y)=(E(X))"

and the variance of Y'is

(5.20)
Var(v) ~ {K(E(X)) ' f var(x)
So, the SD(Y) is
SD(Y) = {K(E(X)) jsD(x)
and, thus, the CV is
CV(Y)= SDr) _ {K (ECO)" }SD(X )_xSPE) _ CV(X) (5.21)

E(Y) (£(x)) E(x)

In (5.18), considering that K = 1

2|Sk|

ERP case), we have the CV as

2 . . .
and x = o, (assuming a normal population as in

1 12
CV(N) = mCv(a,j)z m\g (5.22)

1.e., the CV is again proportional to the one on the square root of b, i.e.,

CV(N) o« —=

NG

Figure 5.3 shows the results for the CVs in the ETP case for 4=1.5 in which the
straight line approximation of the simulated results obtained is presented in Figures

5.3 (b).
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Figure 5.3 Theoretical and simulated CVs for 32 nodes in ETP case: (a) linear

(a)

and (b) log-log scale

Using the straight line approximation, the slope of the simulated results in Figure 5.3

(b) is

5, = 10g10(cz)_ lOgIO(DZ)
‘ 10g10(A2)_ loglo(Bz)

Q

1
2
So,

1
CV, =cgxb") = g x b[ 2] : (5.23)

where ¢ 1s the constant of proportionality.

It is shown in Figure 5.3 that there are differences among the theoretical and
simulated results and, also, that the latter are almost a constant multiple of the former
(Figure 5.3 (b)). Thus, the theoretical results can be scaled to match the simulated
results as follows. Denoting theoretical CV in (5.22) as CVry, it is in the ETP case is

1 2 ¢
Th 2|Sk| b b (5.24)

N2
2|Sk| '

where ¢, is the constant and defined as ¢, =

Again from (5.23), the simulated CVg in the ETP case is

_ S
CVs = (5.25)

=
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Thus, by combining (5.24) and (5.25), we have the corresponding scaled theoretical
CVSTh as

c
CVgp, =—CVy, (5.26)

Ctn

where CVgsry, 18 the scaled theoretical CV in the ETP case.

Later in this chapter, the theoretical CV in the ETP case indicates the above scaled

theoretical CV. Using a particular point from Figure 5.3 (a) in (5.26), we obtain the

constants cs as ¢g ® 2.16V2. Thus, expression (5.25) can be written as

CVgp, =4.32]s,|CVy,

=]
8]

[ ]
(=)
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Figure 5.4 Comparison of theoretical and simulated CVs for 32 nodes: (a) k=1;
(b) k=1.5; and (c) £=2
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Some CV results (obtained from the theoretical and simulated CCFs) along with the
scaled theoretical CV for three cases with different £ (1, 1.5 and 2) are shown in
Figure 5.4. It can be seen that, after scaling, the theory matches the CVs from both
the simulated and theoretical CCFs.

Now, from (5.16) and (5.23), the relationship between the simulated CV and » when

N remains constant can be generalised as

CVoe (5.27)

7

Therefore, the CV is proportional to the inverse square root of b for both the ERP
and ETP cases which verify the theory discussed in Section 5.2.1 regarding the
relationship between the CV and b. The only differences in exact values are due to

changes in .
Comparisons of the CVs for two distinct values of &£ (0 and 1.5) are listed in Table
5.1 and four distinct values of £ (0, 1, 1.5 and 2, where k£ = 0 indicates the ERP case)

are presented in Figure 5.5.

Table 5.1 Comparison of CVs

Parameter Coefficient of variation (CV)
(all values from 100 iterations)

b=19 | b=39 | b=59 | b=79 | b=99

Theoretical 0.0324 | 0.0226 | 0.0184 | 0.0159 | 0.0142

From simulated CCF | 0.0320 | 0.0227 | 0.0183 | 0.0160 | 0.0138

From theoretical CCF | 0.0321 | 0.0225 | 0.0181 | 0.0161 | 0.0139

Theoretical 0.0710 | 0.0489 | 0.0398 | 0.0344 | 0.0307

k=1.5 | From simulated CCF | 0.0714 | 0.0490 | 0.0395 | 0.0346 | 0.0298

From theoretical CCF | 0.0712 | 0.0486 | 0.0391 | 0.0348 | 0.0300
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Figure 5.5 CV vs b: comparison of CVs due to four distinct values of dispersion
coefficient, £ (0, 1, 1.5 and 2)

5.2.4.1 Verification of relationship between CV and N

It has already been explained that, if we increase the number of nodes, the standard
deviation and mean of estimation increase by the same amount. Thus, the CV
remains the same for all V, i.e., it is independent of N. It can also be seen from the

expression of the CV, which is depicted in (5.27) for both the ERP and ETP cases as

1
CVoc —, that it is only dependent on b.
Jb Y

Now, we change the simulation for different values of N and perform the estimation
1000 times for each N, keeping b fixed at 19 bin in order to obtain the relationship
between the CV and N. The results are plotted in Figures 5.6 (a) for the ERP and 5.6
(b) for the ETP (with &=1.5) cases. It can be seen in both figures that, if NV is greater
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than 10, the CV is virtually independent of N, which follows the theory. This is an
important finding because, even if the environment is totally unknown, the

estimation system can be designed without knowing N.
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Figure 5.6 CV versus N: semi-log plots in (a) ERP case; and (b) ETP case

Two comparisons of the CVs for the ERP and ETP (with £=1.5) cases are provided
in Figure 5.7 with (a) =19 (N =10 to 100) and (b) »=99 (N =10 to 100). It can be
seen that the CV in the ERP case is lower than the CV in the ETP case. Besides,
although the CVs varies with b, they are independent of V.
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Figure 5.7 CV versus N: comparisons of ERP and ETP cases for:
(@) b=19; and (b) b =99

To clarify the relationships among the CV, N and b, some other results are provided

in Figures 5.8 and 5.9 in which the CVs for 10 to 100 nodes with different b (= 19,

59 and 99) and for three distinct N (32, 64, and 100) with respect to b, respectively,

for both the ERP and ETP cases are shown. It can be seen that there are significant

variations (which follow (5.27)) in the estimated CVs with respect to b but, with
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respect to N, they are almost constant for a given b. These discussions further verify

the relationships among the CV, N and b discussed in Section 5.2.
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Figure 5.8 CV versus N for three distinct 5 (19, 59 and 99):

(a) ERP case; and (b) ETP case
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Figure 5.9 CV versus b for three distinct N (32, 64 and 100):
(a) ERP case; and (b) ETP case
5.2.5  Effect of fractional-samples delays

The effects of fractional-samples delays on estimation have already been investigated

in Chapter 3. Figures 5.10 and 5.11 show that they have similar effects on the CV.
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Figure 5.10 (a) and (b) show the CV versus b plots for the ERP and ETP cases,
respectively, with and without considering the fractional-samples delays. In both
figures, the stars and circles indicate the CVs with and without considering the

fractional-samples delays, respectively, whereas the lines with pentagon markings

indicate the theoretical results.
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Figure 5.10 CV versus b with and without fractional-sample delays: (a) ERP
case and (b) ETP case

Figure 5.11 (a) and (b) shows the CV versus N plots with and without considering
the fractional-sample delays with a certain b of 19 for the ERP and ETP cases,
respectively. In both figures, the stars and circles indicate the CVs with and without
considering the fractional-sample delays, respectively, whereas the lines with
pentagon markings indicate the theoretical results. All these results indicate that the

fractional parts of the sample delays have no significant effect on CV (the same as

for estimation).
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Figure 5.11 Semi-log plot of CV versus N with and without fractional-samples
delays: (a) ERP case; and (b) ETP case
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5.2.6  Deriving generalised expression for CV

It can be seen from the above sections that the actual value of the CV is also
dependent on £, i.e., the powers of the received signals. This relationship is discussed
in this section. It has already been shown in Figure 5.5 that CV is proportional to the
inverse square root of b for 4 distinct £ (=0, 1, 1.5 and 2). Assuming this relationship

holds for all %, i.e., the CV follows the proportional expression (5.27), we can

express it using a generalised expression.

To obtain the expression, CVs for five distinct k£ with =19 are listed in Table 5.2.

Table 5.2 CVs for different & with 19 bins

Parameters Values (100 iterations)
k=0 | k=05| k=1 k=151 k=2
CV Theoretical 0.0324 | 0.0349 | 0.0396 | 0.0710 | 0.1223
From simulated CCF | 0.0320 | 0.0347 | 0.0406 | 0.0714 | 0.1217
From theoretical CCF | 0.0321 | 0.0346 | 0.0404 | 0.0712 | 0.1219

From the Table 5.2, for 5=19, we can express the CV for k=0, 0.5, ..., 2 as

CV,,(k =0)=(0.1414)(197")

CV,,(k =0.5)=(0.1521)(197%)

CV,,(k =2)=(0.5331)(19")

Similarly, for 5=39 bins, the expressions are obtained as

CV,, (k =0) = (0.1414)(397")

CV,, (k =0.5) = (0.1521)(39 )

CV,,(k =2)=(0.5331)(397%)

From these two series of expressions, we can obtain the generalised expression as

CV, (k) = coy (b)

(5.28)
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where the ccyv 1S a constant whose values are those shown in Table 5.3 for

5 distinct & .

Table 5.3 Constant ccy related to k£ in CV expression (5.28)

Parameter Values (100 iterations)
k=0 | k=05| k=1 | k=15| k=2
cev Theoretical 0.1414 | 0.1521 | 0.1726 | 0.3095 | 0.5331

From simulated CCF | 0.1395 | 0.1511 | 0.1768 | 0.3110 | 0.5303
From theoretical CCF | 0.1417 | 0.1522 | 0.1723 | 0.3098 | 0.5327

It can be seen from the above expressions and the results that there are two parts in
the CV, one of which is dependent on only k£ and the other on only b. The
dependency of the CV on b has already been discussed. Now, its relationship to £,
i.e., the constant part in the expression of the CV related to 4, ccv, is expressed by a

cubic approximation in Figure 5.12.

08 . . .
¢ Theoretical
0.5 Cubic approximation
+  Obtained from simulated CCF
U040« Obtained from theoretical CCF 1

03r oy = 0.051*47 +0.00095%k% - 00117 +0.14

0.z

I:I']T 1 1 1
o

05 1 1.5 2

Dispersion coefficient, &

Constants, Covs inthe expression of CW

Figure 5.12 Constant, ccy, in expression of CV versus dispersion coefficient, k

Therefore, the expression of the constant, ccy in the generalized expression of the
CVis
Cey (k) =0.051k° +0.00095k* —0.011k +0.14

Thus once the b, and k are known, obtaining ccv, the error in estimation (CV) is easy

obtainable from the expression (5.28).
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5.2.7 Conclusion

Theories of error (CV) and their verification by the simulated results are provided in
this section. It can be concluded that in both the ERP and ETP cases, the CV is
independent of N and only proportional to the inverse square root of b, and that b is
proportional to the Sg and d,,s. Thus, we can obtain an error in estimation as low as
desired by increasing b (without exceeding the limit of the Sk and d,,s). Besides,
CV is affected by the k, and a generalised expression of CV for all £ is obtained,
which is very helpful to obtain CV in ETP case. All the above results are taken for a
very long fixed signal length, Ng of 1,000,000 samples. As has already been shown
in Chapter 3, Ns affects the estimation performance and, therefore, might be another
factor which could affect the CV. The effects of Ns, the Sg and d,z; (on the CV) are
discussed with the CVs obtained from both theoretical and simulated CCFs in the

following sections which might help to select their proper values.

5.3 Selection of signal length from Optimum CV (OCV)

As the Ns plays a vital role in estimation performance, its selection is important and a
selection process using the minimum CV, called the OCV (in the sense that it is the
minimum for that Ng) for different Ns is proposed. The OCVs from ERP case are
plotted against Ns in Figure 5.13 in both linear and log-log scales for values from

100 iterations and the relationship between the OCV and Ns is obtained.

Figure 5.13 (b) shows that the values of the OCV with respect to Ns can be
approximated by a straight line, the slope of which is approximately — 0.283. As this
is a log-log plot, the OCV can be expressed as

log,,(OCV)=-0.283xlog,,(N;)+c
= log,, (OCV) = 1Oglo(Ns )_0‘283 +log,, (Cs)
= OCV =¢; x NS_Q283 (5.29)

where ¢, and c;3 are constant and are related as ¢ =log, 0(03).
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Figure 5.13 OCV vs Ns for selection of signal length in ERP case with N=32 (a)
linear and (b) log-log scale.

The value of constant c3 is obtained using a particular point from Figure 5.13 (a) in
(5.29) as approximately 0.385. Finally, the relationship between the OCV (with 100

iterations) and Ns in the ERP case is expressed as

OCV = 0.385 x N, ™% (5.30)

Therefore, OCV for 1 iteration can be expressed as

OCV =3.85x Ny ™ (5.31)
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Similarly, Figure 5.14 shows the results for the OCV in the ETP case. Although the
slope in Figure 5.14 (b) is almost the same as that in Figure 5.13 (b), i.e.,
approximately — 0.283, the constant value is different, being 0.8314 instead of 0.385.
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Figure 5.14 OCV vs Ns for selection of signal length in ETP case with N=32 (a)
linear and (b) log-log scale.

Therefore, the OCV in the ETP case is

OCV =0.8314x N, ™ (5.32)

Thus, we can select Ns using the above expressions for the desired CV (considering
the desired CV is OCV) in estimation. This gives the lowest possible Ns which leads

to obtaining the energy efficient estimation technique.
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5.4 Selection of sampling rate, Sk, distance between

sensors, dpgs, and number of bins, b

To obtain proper estimations, it is necessary to know Sr and dpgs as well as Ns. The
selection process of Ns is discussed in the previous section. In this section, selections

of Sr, dpgs, and bare investigated from the CVs of the estimated number of nodes.

Figures 5.15 (ERP case) and 5.16 (ETP case) show the CVs for different Ng with
respect to (a) the number of bins, b, (b) the sampling rate, Sg, and (c) the distance
between the sensors, dpgs. The CVs obtained from the theoretical and simulated
CCFs are provided and can be seen to be similar. The results are obtained from 100
iterations for the 32 operating nodes for different » (=9, 19, 39, ..., 239) and Ns (=
1000, 2000, 5000, 10,000, 20,000, 60,000, 100,000 and 1,000,000). It can be seen in
Figures 5.15 (a) and 5.16 (a) that there is an OCV for every Ng at which the CV is the
minimum with a certain b. If the Ng used in the estimation process is 10,000 samples,
it can be seen in Figures 5.15 (a) and 5.16 (a) that the OCV occurs with the 59 bin.

Thus, b can be selected to obtain optimum performance in estimation.

It is also known that b is dependent on only dpgs and S, the values of which are
irrelevant for the CV (which varies only with variations in b). Thus, if dpgs is fixed
to a certain value, b and, therefore, the CV for a particular Ns, only change with
changes in the Sg. So, the CV can be plotted against Sy for different Ng taking a
constant dpgs at 0.25 m (to obtain the receivers in the same node), as shown in
Figures 5.15 (b) and 5.16 (b). If the Ns used in the estimation process is 10,000
samples, it can be seen in Figures 5.15 (b) and 5.16 (b) that the OCV occurs at the
sampling rate of 180,000 Sa/s. Thus, one can select the Sk for the estimation process

keeping dpgs fixed.

Similarly, the selection of dpps can be obtained from Figures 5.15 (c) and 5.16 (c)
with Sk fixed. However, as for a particular b, Sg and dpgs might be combined in any
way without violating the sampling theorem for obtaining corresponding CV, they

can be selected at a time with compromising each other.
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5.5 Effect of noise on CV

Noise (background and/or internal receiver noise) affects estimations of the number
of nodes using the cross-correlation process, as discussed in Chapter 3. There might
be similar effects on the estimation error, i.e., the CV, as discussed in this section. It
1s known that, if the integration time is finite, the cross-correlation process depends
on both it and the signal to noise ratio, SNR. As the CV comes from the CCF of this
cross-correlation process, it is dependent on the same parameters, i.e., integration

time and SNR.

To show the effect of noise, internal receiver noise is added into the received signals
in the estimation process. Table 5.4 shows the CVs with different SNRs for a signal
length of 800,000 samples which are illustrated in Figure 5.17. The solid lines
indicate the CVs with noise from the theoretical CCFs obtained using the moving
average technique of cross-correlation, as discussed in section 5.2.2. The circles
indicate the simulated results with noise, the stars the simulated results without noise
and the dotted lines the theoretical without noise. It can be seen from these results
that the CVs from the theoretical CCFs coincide with those from the simulated
CCFs. Thus, hereafter, we present only the simulated results. Simulations for the CV,
with varying Ns and SNRs of the receivers for a certain number (32) of operating
nodes, are conducted and the results for both the ERP and ETP cases provided in
Figures 5.18 to 5.21. Figure 5.18 shows the surface plots for the CV, SNR and Ng in
which it can be seen that, for particular Ns up to a certain SNR (SNR <= 0.05), the
CV is constant at the worst possible value but, with increases in the SNR (up to SNR
= 1), improves and, finally, becomes constant again at the best possible value for the
case without noise. It can also be seen in Figure 5.18 that the worst possible value
continues longer and the best possible value starts later if the Ng is lower. In other
words, there is a transition zone in which the CV varies with the SNR, the start and
end points of which vary with changing Ns, being earlier with a higher Ng and later

with a lower Ns, respectively.
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Table 5.4 Noise effects in ERP and ETP cases

SNR CV: ERP CV: ETP
0.001 0.1453 0.3161
0.01 0.1359 0.2932
0.1 0.0296 0.0639
0.5 0.0140 0.0300
1 0.0129 0.0277
2 0.0125 0.0275
10 0.0123 0.0271
100 0.0120 0.0272
1000 0.0121 0.0265

£ - — N of estimation from theoretical CCF with noise
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Figure 5.17 CV versus SNR: (a) ERP; and (b) ETP case (Vs = 800,000 samples)
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Figure 5.18 Log-log-log plots of SNR, s and CV with Ns= 1000 to 1,000,000:

In

(a)ERP case; and (b) ETP case

Figure 5.19, the CVs are plotted with respect to Ns (values from 10° to 10°

samples) for different SNRs (0.1, 0.2, 0.5, 1, 10, 100 and without noise). It can be

seen again that, for a particular SNR, the CV improves with higher Ns.
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Figure 5.19 CV versus signal length for different SNR:
() ERP case; and (b) ETP case

It has already been mentioned that all the above results for the effect of noise on the
CV are from investigations using 32 operating nodes. It has been shown that the CV
is independent of the number of nodes in the case without noise. To determine
whether the same relationship exists for the case with noise, the results for 64

operating nodes are provided in Figure 5.20 (a) and compared with those for 32

operating nodes in Figure 5.20 (b) and 5.21.
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Figure 5.20 Log-log-log plots of SNR, s and CV with ~N;= 1000 to 1,000,000:
(a) original N = 64; and (b) comparison of N = 32 and 64

Figure 5.20 shows the surface plots and Figure 5.21 the corresponding contour plots
of the SNR, Ns and CV for both the 32- and 64-node cases. The comparisons in
Figure 5.20 (b) and 5.21 show that N still has no significant effect on the CV when

noise is considered.
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Figure 5.21 Contour plots of SNR, N, and CV with Ns= 1000 to 1,000,000:
(a) original N = 32; and (b) original N = 64

It can be seen from the results that for an SNR greater than a certain value (1 in
voltage ratio), the CV of the estimation are almost the same as those in the without
noise case (with a little variation due to the randomness of the experiments). For a
lower SNR (less than 1 in voltage ratio), the CV of the estimation increases and
finally reaches the fixed worst possible value. The meaning of these phenomena can
be described as follows: when the SNR is less than 1, the noise dominates the signal
but, as some signals are strong enough to count, we obtain a reduced number of
nodes rather than the appropriate number. As with the lower SNRs, the original
number of nodes is far beyond those of the estimation; this wide variation leads to

the CV being worse.

5.6 Required estimation time in the proposed method

As the energy is directly related to time, it is important to know the estimation time,
especially for the UWCN where the limited energy is a challenge. Estimation time is
related with the performance of the cross-correlation which in turn related with the
signal length, sampling rate, and the number of probes required to achieve that
performance. The process of obtaining estimation time is discussed here. In the
proposed CC technique, using the Ns, Sg, and u, the estimation time, T¢c is expressed

as
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T = Number of iteration x (Number of samples per iteration)
+ (Sampling rate)
= Number of iteration x (Number of samples per iteration)
+ (Number of samples per unit time)
= Number of iteration x Number of samples per iteration
x (Time per sample)
= Number of iteration x Time per sample

x Number of samples per iteration

= Number of iteration x ('; second/sample)
Sampling rate
x (N, sample per iteration)

N.
=—xyu second
R

(5.33)

This expression shows that obtaining the required estimation time in the proposed
estimation process requires knowing the value of Ns, Sg, and u. Actually, to obtain a

certain CV, required Ns, Sg, and u are used to obtain the estimation time.

To obtain the estimation time using (5.33), a method is proposed as follows. Firstly,
CVs are obtained from simulations for the different possible combinations of Ng
(1000, 2000, ..., 10,000, 20,000, ..., 100,000, 200,000, ..., 1,000,000) and b (19, 39,
..., 239), keeping the other parameters same as in Section 5.2.3.1. Upon obtaining
the CVs, they, b and N; are visualised using contour plots, as shown in Figure 5.22,
from which a point with certain Ns and b is selected to obtain the estimation time.
Figure 5.22 shows the contour plots of b, Ny and CV with 100 iterations for ERP and
ETP cases. The x-axis indicates b, the y-axis N; and ‘Level’ is the log;o(CV). So,

CV =10 (5.34)

Considering a particular point in the contour plot of Figure 5.22 (a), e.g., in the ERP
case in which Level = — 1.9136 at b = 219 and N, = 200,000 then, from (5.34),
CV =0.0122.

To obtain the above accuracy, i.e., to obtain the value of CV = 0.0122, the required

time, Tgrp in the ERP case can be obtained with a sampling rate of 30,000 Sa/s (this
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1s chosen arbitrarily with the dpgs for 5=219 without violating the sampling theorem)

from (5.33) as

Ty =100 (
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Figure 5.22 Contour plots of b, N; and CV: (a) ERP case; and (b) ETP case
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Similarly, for a particular point in the contour plot of Figure 5.22 (b), e.g., in the ETP
case in which Level = — 1.585 at b = 219 and N; = 200,000 then, from (5.34),
CV =0.026.

To obtain the above accuracy, i.e., the value of CV = 0.026, the required time, Tgrp
in ETP case can be obtained from (5.33) with a sampling rate of 30 kSa/s (as is

chosen in ERP case) as

1
T... = 100 x second/sample) x (200000 sample
ETP (30000 ple) x ( ple)

second x sample

= 100 x 6.67 ( ) =667 second

sample

Again, we recall the results for the OCV in Figure 5.23 which shows linear plots of
the OCV against the signal length, Ns, for the ERP (a) and ETP (b) cases. From these
results, an optimal value of Ny can be picked for a certain CV, i.e., accuracy. The
required time can be obtained using (5.33) from this optimal N, and the selected Sg

(obtained from the process in Section 5.4).
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Figure 5.23 OCV versus Ns: N=32 for (a) ERP and (b) ETP cases
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It can be seen from the Figure 5.23 that at OCV of 0.0233 with 100 iterations in the
ERP case and 0.0504 in the ETP case, the optimal Ns=20,000 samples. If the selected
Sr =360 kSa/s, the required estimation time using (5.33) is

Tigp = Tirp = 100 x ( second/sample) x (20000 sample)

360000
second x sample

= 100 x 0.0556 ( )=5.56 second

sample

0.8314

As the ratio of OCVs of ETP and ERP cases is ~ 2.2, the iteration required

for same CV is about 5 times more in ETP case than that in ERP case. Therefore, it
requires about 5 times more time to obtain same CV in ETP case than that in ERP
case.

A comparison of the required estimation times for the same CV (0.026) in both ERP
and ETP cases is provided in Figure 5.24. It is shown that both estimation times
(Terp=143 second and Trrp=667 second) are independent of N but that the ETP case
takes about 5 times the time required by the ERP case to achieve similar
performances. However, the ETP technique has some advantages which were

discussed earlier.
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Figure 5.24 Performance comparison in terms of required estimation times for

proposed technique in ERP and ETP cases
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5.7 Required energy in terms of the product of SNR and Ns

As the WCNSs especially UWCNSs are energy limited, knowing the required energy is
also important for the proposed estimation techniques. To obtain it, the results (of N
and CV) shown in previous sections (Section 3.6 in Chapter 3 and Section 5.6 in
Chapter 5) for some Ns with noise are plotted in Figures 5.25 to 5.28. Figure 5.25
shows the CV from 10 iterations in ERP case against 4, where 4 is the product of the
SNR and Ns values, and evidence that, for equal 4, the CVs are similar despite the

SNR and Ns values (without exceeding the lower limit of Ng for which one can

obtain a similar CV without noise). Again, Figure 5.26 shows the estimation (N )

with respect to 4.
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Both results show the effective values of 4 which, when greater than 500,000, give
similar performances. Thus, one can estimate the number of nodes using the process
of cross-correlation by compromising among the CV, SNR and Ng, i.e., CV and 4.
This is useful because now it is necessary to be careful about one parameter, A

instead of two (SNR and Ns) for the estimation.
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Figure 5.27 CV (from 10 iterations) versus signal strength in dB re micro-Pa
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Figure 5.28 IV versus signal strength in dB re micro-Pa

The product, 4, is proportional to the signal strength above the noise. If one
considers it the acoustic pressure in Pascal (Pa) above the noise, it can be converted
to the signal pressure level above the noise in dB re 1 micro-Pa using the well-

established expression

A in PaJ (5.35)

AdBre,uPa = 20 loglo( 1/,1 Pa
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In Figure 5.27, the CV is plotted with respect to A4, whereas the estimated

Bre y Pa

number of nodes is plotted against A4, in Figure 5.28. These figures show that,

Bre 1 Pa
if the signal level is 0 dB or greater than the noise level, it is possible to estimate the
number of nodes with a certain error, the CV, of 0.0389 with 10 iterations. The above
energy estimation is for only the ERP case. Now, for the ETP case, the energy
required to estimate the number of nodes, A, is obtained and compared with that for
the ERP case in three different forms. Figure 5.29 shows the performance
comparison in terms of the CV with the same energy per node per iteration for 100
iterations in order to achieve better performances. It can be seen again that a signal
energy of 0 dB greater than the noise level is sufficient for estimations with certain
accuracies of CV = 0.0123 and CV = 0.0266 for the ERP and ETP cases,
respectively. Thus, an almost 2.2 times better performance in terms of CV is possible
in the ERP case than in the ETP case when the same energy is provided. Figure 5.30
shows the performance comparison of both cases in terms of the energy used to
obtain the same CV in both the ERP and ETP cases. It can be seen that, to obtain a
CV 0f 0.02465, the signal energy has to be about 0 dB and -13.37 dB greater than the
noise level in the ETP and ERP cases, respectively. This implies that about 5 (exact
value is 4.66) times more signal strength is needed in the former than the latter to

achieve the same performance.
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Figure 5.29 CVs versus signal strengths in dB re 1 micro-Pa: performance

comparison in terms of CVs of ERP and ETP cases using same energy
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Finally, Figure 5.31 shows the performance comparison of both cases in terms of the

energy used to obtain several distinct CVs. It is again shown that the required energy

is always around 13.37 dB greater in the ETP case than in the ERP case, i.e., about 5

times more signal strength is needed in the former than the latter to achieve the same

performance.
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Figure 5.30 Performance comparison in terms of energy required to obtain
same CV in: (a) ERP case for CV = 0.02465; and (b) ETP case for CV = 0.02465
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5.8 Comparison with conventional protocol-based

techniques

To date, the conventional techniques used for the estimation of the number of nodes
in a WCN have been based only on the network protocol in use. This thesis proposes
a new estimation technique based on random signal cross-correlation which is very
different from the conventional ones in terms of the estimation process; for example,
in the proposed technique, the transmitter is required to transmit a Gaussian signal
whereas, in a protocol technique, it is required to transmit some data (in the form of
bits) to the receiver. Transmission of a Gaussian signal directly through a channel is
possible but transmission of bits through the channel requires modification by
converting them to a physical signal. Again, after reception of the signal in the CC
technique, it is possible to directly use the signal for the cross-correlation process to
obtain the CCF from which estimation is obtained. But, in the protocol, after
reception of the modified signal, further modification is required to make the
received signal a packet of bits and then the estimation is obtained from the proper
reception of these bits. Thus, it is difficult to compare the techniques on the same
platform without having sufficient field results. Despite wide application of the
number of nodes estimation, only one conventional method in UWCN is investigated
using analysis and simulation and, although an energy-related performance
parameter is investigated, the energy required in joules is not clear. Moreover, both
the protocol and CC techniques require more investigation to address the practical
issues of obtaining field results. Despite the difficulties, some performance

parameters are compared on the same platform in the following way.

To show the effectiveness of the proposed technique, its performances in terms of
times and energy required for, and errors (CVs) in, estimation are compared with
those of the two conventional protocol-based techniques: the probabilistic framed
slotted ALOHA (PFSA) (Howlader 2009) and the Good-Turing (GT) (Budianu
2006) estimator protocol. The CVs are compared keeping the estimation time fixed,
actual estimation times are compared keeping the CVs fixed and transmit energies
are compared keeping the CVs fixed. Moreover, virtual estimation times are obtained

and compared keeping the CVs and transmit energies fixed for all techniques.
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As the CV is obtained from the standard deviation and mean of the estimation, it
basically depends on the estimation which might be affected by many factors which,
in turn, might affect the CV in all methods. In the CC technique, a physical
(Gaussian) signal is generated and transmitted directly through the channel to the
receiver. It requires some amplifier circuitry, as shown in Figure 5.32 (a), to raise the
signal level to overcome attenuation. On the other hand, in the protocol techniques, a
packet of bits is generated which (after some signal processing) transmits its physical
equivalent signal through the channel to the receiver. It requires some complicated
signal processing circuitry, as shown in Figure 5.32 (b), to convert the bits to a
physical signal along with the amplifier circuitry. It is clear from the figure that, as
both the CC and protocol techniques require signal transmission through the channel,
there will be some common factors which might affect the estimations and, thus, the

CVs in all techniques.

Samples of N Amplifier . Samples of
physical signal circuitry physical signal
(a)
Packet of bits Packet of bits
! il
Signal processing : Signal processing
circuitry to make N Amplifier circuitry to make
bits physical cireutry ] physical signal
signal packet of bits
(b)

Figure 5.32 Simple block diagram of signals and their transmission: (a) CC
technique; and (b) protocol technique

Common factors that might contribute to the CV are:
1. the effect of the multipath propagation of signals;
2. the effect of the Doppler spread;
3. attenuation or path loss;
4

. the effect of noise and consideration of the SNR;
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the power of the transmitted and received signals;
channel BW;
the speed of signal propagation;

placements of the sensor(s); and/or

A S A

distribution of the nodes.

Besides, the CV might be affected in protocols by the following factors:
10. the capture effect;
11. the number of slots; and/or
12. the bit rate.
and in the CC techniques by the following factors:
13. the number of samples; and/or

14. the sampling rate.

The effects and assumptions of these factors are briefly described below.

L Effect of multipath propagation of signals

Transmitted signals in both the CC and protocol techniques are affected by multipath
propagation in the channel. As the multipath propagation of signals is sometimes
additive and sometimes subtractive in nature, signals reach the receiver with either
more or less power (Lazaro 2009; Islam 2010). So, to achieve a successful reception,
1.e., to obtain at least the sensitive power of the receiver, requires more transmit
power for a signal or the system performance for estimation degrades. Besides, the
multipath causes ISI in the received signal but, by using a symbol interval which is
sufficiently longer than the delay spread, ISI can be neglected (Lazaro 2009). Thus, it

takes more estimation time to neglect the effect of multipath fading.

In the proposed technique of cross-correlation, any multipath effect can be neglected
using the multipath suppression process (discussed in Section 3.12 of Chapter 3)
where the power of a signal and the time required are not affected. This is very useful

for an energy-limited UWCN.
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As in conventional protocols the multipath effect is not considered in the estimation
of the number of nodes, in order to be able to compare the techniques on the same

platform, this effect is neglected for all methods.

2. Effect of Doppler spread

The Doppler effect is one of the important practical issues in underwater acoustic
networks. It sometimes compresses and sometimes spreads the frequency of the
received signal according to the movements of the source and receiver towards or

away from each other.

When a signal is spread, the transmitter and receiver are turned on for a longer time
than when it is not spread and, when it is compressed, the transmitter and receiver are
turned on for a shorter time than when it is not compressed. Therefore, sending and
receiving a Doppler spread signal requires more energy than sending and receiving a
non-spread signal. Thus, extra energy is required to compensate for the Doppler
effect. However, although both the protocol and CC techniques might be affected by
this, it has not yet been considered in the estimation process, and the Doppler effect

is neglected in the comparison of techniques.

3. Attenuation or path loss

Considering attenuation or path loss is important in terms of transmitted signals
reaching a receiver. If any attenuation is not compensated for by the appropriate
signal strength, the transmitted signal will not reach the receiver. In an underwater
channel, attenuation means absorption and dispersion losses. Below about 70 kHz
(Heidemann 2006) the dispersion loss is sufficiently higher than the absorption loss
and only the dispersion loss can be considered as the total loss. As the higher
frequencies cause severe absorption loss , it is not practical to use it in long-distance
transmission. Therefore, absorption loss is neglected in all techniques. To compare
dispersion losses, appropriate distances and the practical dispersion coefficient, k&

(=1.5), are considered in all techniques.
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4. Effect of noise and consideration of SNR

Both the protocol and CC techniques require a receiver to properly collect a signal
the strength of which has to be such that its power will be greater than or equal to the
threshold power of the receiver which is determined from its noise floor (internal
noise power). In the CC technique, the receiver is simply a hydrophone but, in the
protocol techniques, it is a hydrophone with some signal processing circuitry (as
shown in Figure 5.33) to make the physical signal a packet of bits. Thus, in all
techniques, the receiver is the major component of the noise floor contributions to
which from other parts are negligible in comparison. So, the noise floor of the
hydrophone can be considered the noise floor of the whole receiver. Thus, it is
assumed that the threshold power of the receiver is the same for all cases and is the
internal noise (AWGN) power of the hydrophone. In the proposed CC technique, it is
shown that a 20 dB SNR (10 in voltage ratio) is sufficient to estimate the number of
nodes with the same error as in the without noise case. Although the effect of noise is
not considered in the protocol techniques for estimating the number of nodes, it is
mentioned in the literature (Heinzelman 2000) that a 30 dB SNR is sufficient to
properly collect a signal. Besides, for BPSK modulation with AWGN, typically an
SNR of 10 dB gives a BER of 10 which is too low and can be neglected. Based on
these discussions, a 20 dB SNR is considered in the energy calculations for all
techniques when compared on the same platform. Again, from the testing conducted
at Jervis Bay, Australia (details in Appendix A), the channel’s background noise is
about 25 dB greater than the internal noise of the receiver. Although the strength of
the background noise might vary with the frequency, it will be shown in Figure A.3
(See in Appendix A) that, at frequencies beyond 5 kHz, the power spectrum is almost
flat and that values greater than 25 dB will be sufficient compared with the internal
noise of the receiver. As internal noise of the receiver, assuming the background
noise (which is almost flat after 5 kHz) of the channel is Gaussian in nature, like
internal noise another 20 dB SNR will have to be added for it in the estimation
process. Details of this calculation are provided in the energy comparison in this

section.
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Figure 5.33 Block diagram of modem hardware (Wills 2006)

5. Power of transmitted and received signals

As power is limited in underwater nodes, it has to be carefully considered. It has
already been discussed that, according to the powers of the transmitted and received
signals, three possible cases might arise in practical situations, the ERP, ETP and
RTRP. The signal strengths at a receiver affect the estimation performance, as
discussed for the ETP case using the proposed technique. But, as only the ERP case

is studied using both the protocol and CC techniques, it is considered for comparison.

In the ERP case, the received powers from all nodes have to be equal which is
possible using a probing technique. It has been mentioned previously that, as

transmitted signals have to overcome the receiver threshold power, O, , with a 20 dB
SNR (i.e., 100 times more power than the Q,) and an attenuation of d*, the

transmitted power has to be100x Q xd*. This gives a received power of 100 x Q.
for all nodes if the background noise is neglected. If the background noise (which is

tested at Jervis Bay, Australia, at about 25 dB greater than the O, ) is considered with

a 20 dB SNR as previously, for the proper signal to be received at the receiver, the

transmitted power has to be

100x10%° x O, xd* +100x Q, xd* = (10> +10**)x O, x d*
which will give received powers of (1 0’ +10* )x Q, for all nodes.
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It is important to note that the power considered here is for the SNR, attenuation and
threshold power of the receiver. But, as in the protocol techniques the signals are sent
to the modem as a bit stream, the modem has transmit electronics (as shown in
Figure 5.34) for digital coding, modulation and filtering which require a fixed
amount of power (typically in a wattage range (Benson 2010) for an underwater
modem). Similarly, receiver electronics also require a fixed but lesser (than
transmitter) amount of power for the reverse process of the transmitter (i.e., filtering,
decoding and demodulation). In the figure, B, is the packet size, Q. is power
dissipated in the transmit electronics, O, is power dissipated in the receive
electronics, E7 the total required energy in the transmitter, and Ey the total required
energy in the receiver. Thus, the protocol technique requires a huge amount of extra
power over the above considered amount to estimate the number of nodes. In
contrast, in the proposed CC technique, as the transmitter and receiver do not require
any coding, decoding, modulation, demodulation or filtering power is only required

for the SNR, attenuation and threshold power of the receiver.
d

+—>
E T E R
B, bit packet i B, bit packet
,| Transmit Transmit  |; | Receive —
Electronics Amplifier Electronics >
0..%B, 0, *B,*d" O, B,

Figure 5.34 Energy dissipation model in protocol (Heinzelman 2002)

6. Channel bandwidth (BW)

A channel’s BW has an effect on a signal’s BW. As previously discussed, because
the estimation techniques (protocol and CC) require some sort of signal transmission
in the physical channel, they might be affected by the channel BW. But this issue is
not investigated in the protocol techniques. Although it will be suggested in Chapter
6 (with some simulated results) that the effect of BW (>10kHz) in the proposed
technique is negligible, more investigations are required to confirm this decision.
However, obtaining the estimation time and energy requires knowledge of the bit
rates in the protocol methods and the sampling rate in the proposed method, both of

which depend on the channel BW. As this estimation is investigated in underwater
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networks, the possible underwater BW of 15 kHz is chosen for the time and energy
calculation and comparison. However, as the effect is not considered in the
estimation process, other possible BW could be used to obtain the estimation time

and energy.

7. Speed of propagation

All techniques require acoustic signal propagation in the channel (water). Although
there are significant variations (1450 m/s to 1540 m/s) in the propagation speed of an
acoustic signal underwater, the techniques do not consider this as all their results are
obtained using the typical value of 1500 m/s. Thus, in the comparisons, 1500 m/s is

taken as the propagation speed.

8. Placement of sensor(s)

All techniques require equal amounts of data from all directions to use the binomial
distribution of the placement of balls in the bins (in CC, the balls are the deltas and,
in protocol techniques, the number of slots) and, using the same network, their
receiver(s) have to be placed in the centre of it. In the protocol techniques, a receiver
is a node in receiving mode and, in the CC approach, two hydrophones attached in a
node. Although estimations might be different with different receiver placements,
this is not investigated. Thus, comparisons are conducted using the receiver(s) at the

centre of the network.

9. Distribution of nodes

As, in order to achieve the proper placement of balls in the bins, the distribution of
the nodes is equally important to the placement of the receiver(s), a uniformly
random distribution of nodes is required. Moreover, all estimation techniques use this
distribution inside a 3D sphere which is a reasonable distribution for an underwater
network. Although the GT protocol is investigated in a 2D terrestrial network, as it is
shown in (Howlader 2009) that its performance is similar for 2D and 3D, it is
reasonable to extend the 2D GT protocol to the 3D GT protocol. In this case, the
MAP will be the same as the receiving node of the PFSA protocol and the
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transmitting nodes will surround the MAP with a uniformly random distribution

inside a sphere.

10. Capture effect

In the conventional GT method, which is obtained for a terrestrial sensor network,
the capture effect is negligible and no adjustment is provided for the underwater
network. However, the severe capture effect underwater may make its direct use
difficult or even impossible. Besides, long propagation delays affect the protocol’s
performance and complicate its design. But, for comparison, it is assumed that
similar performances of the GT protocol in a terrestrial network are possible in an
underwater network (it can be assumed, as the proposed and conventional PFSA

methods are equally suitable for all environments).

The conventional PFSA protocol method uses an estimation parameter which is not
affected by the capture effect and the capture effect is not a concern in the proposed

CC technique.

11. Number of slots in protocol

In the protocol technique (Howlader 2009), estimation performance is expressed in
terms of the number of slots, 77, for different accuracy parameters, [, keeping Z
(percentile of unit normal distribution ) fixed at 2.576, ¢ at 0.01, the number of
successful slots in a frame, p,, at 1.59 and the number of probes, u , at 10. Using

these values with some manipulation, the CV can be obtained. With the help of the
bit rate (discussed next) and the number of minimum bits in a slot, the time can be

obtained in a slot and extended for 7 slots. Thus, the estimation time and CV are

obtained in the protocol technique. Detail processes are shown later in this section.

12. Bit rate in protocol

The bit rate, By is obtained from the used modulation technique and BW. It is known
that if the modulation technique used is BPSK, the bit rate in bps is equal to the BW
in Hz. Therefore, as the BW used is 15 kHz, the bit rate is 15 kbps.
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13. Number of samples in CC technique

The N; is an energy-related term in the CC technique required to obtain the
estimation time and CV. Proper selection of this parameter for a particular CV is
provided in Section 5.3 and its value is used to obtain the time, CV and energy in the

CC technique.

14. Sampling rate in CC technique

As with the bit rates in the protocol techniques, the sampling rate in the CC
technique is required to obtain the estimation time, CV and energy, and also depends
on the BW. According to the sampling theorem, the sampling rate will have to be
twice as much or more than the BW. Proper selection of this parameter following the

sampling theorem is discussed in Section 5.4.

5.8.1 Performance comparisons in terms of CV

In this section, for a particular estimation time, the CV of the proposed technique,
which is a performance measure of estimation, is compared with those of the
conventional methods (in which estimations are performed using a PFSA protocol
and the Good-Turing estimation technique). The constraints of the comparison are: 1)
the estimation times have to be the same for all cases; ii) the available BW is taken as
15 kHz; iii) there is no impact of noise and the multipath is considered; and iv) other
parameters, such as the dimensions of the experimental area and the placements of
the nodes and receiver(s), are the same. There are two different parameters: the
numbers of slots in the protocol techniques; and the signal lengths in the proposed
CC techniques. Based on these, the estimation times are obtained with the help of the
bit rates in the protocol techniques and the sampling rate in the proposed technique.
As the BW is chosen as 15 kHz and, if the assumed modulation technique used is
BPSK, the bit rate in the protocol technique will be equal to the BW, i.e., 15 kbps,
and the sampling rate in the proposed technique will have to be either more than or
equal to twice it according to the sampling theorem, i.e., greater than or equal to 30
kSa/s. Actually, using the proposed CC technique, an OCV for a particular N5, which

1s assumed to be independent of A, is chosen for the comparison parameter. Again, it
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has already been shown that, in a particular N;, the OCV depends on b, where b is
dependent on the Sk, and the dpgs. Thus, by keeping the dpgs at a fixed value for the
chosen OCV, the required estimation time can be obtained with Ns, Sg, and u. Based
on this estimation time, the CVs in the conventional protocols are obtained and

compared with that of the proposed technique.

5.8.1.1 CV in the proposed technique

As previously discussed, let the OCV (with 100 iteration) is chosen as 0.01, i.e., a
1% statistical error. Thus, its signal length can be obtained using (5.30) which is
around 400,000 samples at b = 319, as shown in Figures 5.35 and 5.36 which
illustrate the logarithmic plot of CV versus b (= 99 to 439) and the corresponding
normal plot which clarifies the optimal points, respectively. In this experiment, as
dpgs 1s set to 0.25 m (to obtain receivers in the same node), the required Sg can be
obtained from the expression of b in Section 3.6.2.3, as 960 kSa/s. So, the time

required in CC technique (the ERP case) to obtain this CV (0.01) is

tc = (———— second/sample)x (N sample/iteration)
Sampling rate

x Number of iteration
1

~ 960000
=41.67 second

x400000x 100

—e— Ni; =400000 (1

—e— i, =181930 ||
—— M =B5522

Optimum C% at b =159
Qptimum CV at b =279

Coefficient of variation (CV)

Mumber of hins, &

Figure 5.35 CV versus b: logarithmic plot
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This time is then used to obtain the CVs in the conventional protocols, as discussed

in the following sections.

0.02 T T T T

0018 -
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omz2r
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a0 100 150 200 250 300 350 400 450
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Figure 5.36 CV versus b: normal plot

5.8.1.2 CV in the conventional PFSA protocol

In the protocol(s) for estimating the number of nodes, estimation performance is
investigated using the number of slots needed for certain accuracy. Now, the required

time, 7}y, for estimation is calculated for the conventional protocol methods as

= (Time per slot ) (Number of slots)
= (Time per packet)x (Number of packets per slot)x (Number of slot )
= (Time per bit)x (Number of bits per packet)x

(Number of packets per slot )x (Number of slot)

second/bit |x (B bit/packet)x acket/slot )x (77 slot
(Bm - [ i)« o pckersion)« i

B, xp:xn

By (5.36)

where Pg is the number of packets per slot and its value is taken as 1.59 from

(Howlader 2009).

241



For a wireless communication network, the packet size is the bits or bytes in a MAC
(Medium Access Control) frame and depends on the frame format. Tables 5.5 and

5.6 indicate the general and IEEE 802.11 MAC frame formats

(IEEE-Standard-Association 2007), respectively, for a wireless communication

network.
Table 5.5 General MAC frame format
Frame | Duration | Addr | Addr- | Addr- | Sequence | Addr- QoS Frame | F
Control ID -essl | ess2 ess3 Control ess4 | Control | Body | C
S
2 2 6 6 6 2 6 0- 4
2312
Table 5.6 IEEE 802.11 MAC packet (frame) format
Frame | Duration | Address | Address | Address | Sequence | Address | Data | Check
Control ID 1 2 3 Control 4 -sum
2 2 6 6 6 2 6 0- 4
2312

Each format comprises a set of fields that occur in a fixed order in all frames. The
first three (frame control, duration/ID and addressl) and the last (frame check
sequence (FCS)) constitute the minimal frame format and are present in all frames
(IEEE-Standard-Association 2007). So, to create wireless communication in a WCN,
we have to transmit at least B, = 14 bytes = 112 bits per packet (2 bytes for frame
control, 2 for duration/ID, 6 for address and 4 for the FCS).

Thus, to obtain an estimation of the CV within 41.67 seconds (to compare the CV
with the same estimation time as in the proposed CC technique) from the

conventional PFSA technique with Br = 15 kbps, B, = 112 bit/packet, Pz = 1.59

packets/slot, the required number of slots, 7 , from (5.36) is

n= Topsn X By (5.37)

B, x p;
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Inputting the values of the parameters in (5.37) gives

1 ~3510

In conventional protocol techniques, ¢ and g are considered the performance or

accuracy parameters where £ is related ton , as (Howlader 2009)

1.54% 22
n= (5.38)
2
B
where Z is the Z-value of the estimation from the normal distribution (considering

the estimated N follows the normal distribution) Z-table for the accuracy parameter,

¢ .

Thus, from (5.38),
p = 0.054

as the value of Z is 2.576 for ¢ = 0.01 , i.e., the probability of obtaining the actual

number of nodes is greater than or equal to 99%.

For the purpose of comparison, in this proposed work, the accuracy parameter, 3, is

required to be converted to the CV.

For a particular ¢, factor B is related to the standard deviation and mean of the
estimation as (Howlader 2009)
3 c’Z?
u= N2ﬂ2 s

(5.39)

where u is the number of probes required to obtain a certain accuracy in estimation

using this S, o the standard deviation in this case and N the number of nodes. To
make the performance factor similar to that in the proposed technique, A is

converted to the CV as follows.

After some manipulation with denoting o as o, for u™ iteration, expression (5.39)

can be written as
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(5.40)

The left-hand side of the expression is equivalent to the ratio of the standard

deviation to the mean of estimation, , with u™ probes. Thus, (5.40) can be

* |a
2) 2)

rewritten as

Q

=

>

S
ks

>

‘;E 3= ‘j/v_z— (5.41)

N

This is defined as the CV with u probes in the proposed technique as

A

N
W) _ v = £ (5.42)
U\N Z

A

where N indicates the estimated value of N considering that ,u(N ) ~ N.

Thus, the CV in the PFSA protocol with an equal estimation time to that of the

proposed technique can be obtained from (5.42) as

5.8.1.3 CV in conventional Good Turing (GT) protocol

In the GT protocol, all the parameters are kept the same as in the PFSA protocol
except for the slot size, Pg- In this case, the value of p iz is about 4 (Budianu 2006)

instead of 1.59 in PFSA.

Thus, to obtain an estimation of the CV within 41.67 seconds (to compare the CV

with the same estimation time as in the proposed CC technique) from the
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conventional GT technique with Br = 15 kbps, B, = 112 bit/packet, Pz = 4

packets/slot, the required number of slots, 7 , from (5.36) is

UGT :M ~ 1395
B, x p;

Again, in the GT method, the required number of slots is expressed as (Howlader

2009)
—2 1+ ,B n(ﬂ
(5.43)

B—In(1+ )

Mot :

where ¢ and B are the performance parameters and N the number of nodes to be

estimated, as discussed for the conventional PFSA protocol.

It is already known that, for a particular ¢, factor B is related to the standard

deviation and mean of estimation from which an expression of the CV has already

been obtained as

CV = (5.44)

N[>

where Z is the Z-value of the estimation from the normal distribution Z-table for a

certain accuracy parameter, ¢ .

Now, to solve (5.43) for g

(%T Jz ) —2(1+ ﬂ)ln(ﬁj

JN B-n(1+p)

= {B-In(1+ ) ?/G_TI =21+ ﬂ)ln(?) (5.45)

Thus, for a particular number of nodes, we can solve (5.45) numerically for g . Table

5.7 shows the values of g for different numbers of nodes for an estimation time of

41.67 seconds.
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Table 5.7 Performance parameter, g in GT method

100

200

500

800

1000

ks

0.0339

0.0486

0.0786

0.1012

0.1142

As Z is known, we can easily obtain the CV from (5.44) for the conventional GT
case from these values of S . For a particular estimation time of 41.67 seconds, the
CVs of the different estimation techniques are compared in Figure 5.37. It can be
seen that, with respect to the number of nodes, they are constant in our proposed and
the PFSA technique but increase in the GT technique.
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0.03

Coefficient of variation (CV)

0.0k —h—h—h—h—h—h—k—%

| | |
600 800 1000
Number of nodes, N

|
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Figure 5.37 Performance comparison in terms of CV: estimation time = 41.67 s

Similarly, in the proposed method, if the OCV is chosen as 0.0125, i.e., a 1.25%
statistical error, its corresponding N; can be obtained using (5.30) which is 181,930
samples at around b = 279. In this experiment, as dpgs is set to 0.25 m, the required

Sk 1s 840 kSa/s. So, the required time to obtain this CV (0.0125) is

vc = (=————— second/sample)x (N, sample/iteration)
Sampling rate

x Number of iteration
1

~ 840000
=21.67 second

x181930x100
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Using this required estimation time, the CVs are obtained from the PFSA technique

as 0.029 and the GT technique as in Table 5.8.

Table 5.8 Performance parameters, CV in GT method: 7=21.67 second
N 100 200 500 800 1000
Ccv 0.026 0.038 0.0624 0.0818 0.0933

Similarly, as in the CC techniques for another operating point with OCV = 0.015, a
signal length of 95,522 samples and a sampling rate of 600 kSa/s (as the required b =
199), the required estimation time is 15.92 seconds with which the CVs in the PFSA
and GT techniques are obtained. The CV in the PFSA protocol is constant at around
0.0339 and those for different numbers of nodes in the GT technique (as its CV
depends on N) are provided in Table 5.9.

Table 5.9 Performance parameters, CV in GT method: 7=15.92 second
N 100 200 500 800 1000
Ccv 0.0361 0.0528 0.0892 0.1187 0.1367

Comparisons of these CVs for the two abovementioned operating points are provided

in Figures 5.38 and 5.39.
0.1 \
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Figure 5.38 Performance comparison in terms of CV: estimation time = 21.67 s
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Figure 5.39 Performance comparison in terms of CV: estimation time = 15.92 s

It can be seen in Figures 5.37, 5.38 and 5.39 that the CVs with the same required
time for estimations of the number of nodes are constant in the proposed CC and
conventional PFSA technique but vary with the number of nodes in the GT
technique. The proposed technique always performs better than the conventional

techniques.

5.8.2  Performance comparisons in terms of required estimation time

In this section, the required estimation times of the proposed and conventional
methods are compared. The constraints of this comparison are: i) errors in
estimation, i.e., the CVs have to be the same for all methods; ii) the available BW is
taken as 15 kHz; iii) there is no impact of noise and the multipath is considered; and
iv) other parameters, such as the dimensions of the experimental area and placements
of the transmitting and receiving node(s), etc., are the same. There are two different
parameters: the 77 in the protocol techniques; and the N in the number of samples in
the proposed CC technique. Based on these two parameters, the estimation times are
obtained with the help of the By in the protocol techniques and the Sk in the proposed
technique. Actually, using the proposed CC technique, an OCV for a particular Nj,
which is independent of N, is chosen as the comparison parameter. It has already
been shown that, for a particular N, the OCV depends on b, where b is dependent on
the Sg, and the dpgs. Thus, keeping dpgs at a fixed value for an OCV, the required
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estimation time can be obtained. For the same CV as in the proposed technique, the
estimation times in the conventional protocols are obtained and compared with that

of the proposed technique.

5.8.2.1 Estimation time in CC technique

To obtain the estimation time in the proposed technique after one iteration, as the
OCV is taken as 0.1, i.e., a 10% statistical error, its corresponding N, can be obtained
using (5.31) which is about 400,000 samples at around b = 319 (similar as for
CV=0.01 with 100 iteration; as we are using only 1 iteration instead of 100, thus
keeping the other parameters same, the CV increases to 0.1). In this experiment, as
the dpgs 1s set to 0.25 m (to have the sensors in the same node), the required Sk can
be obtained from the expression of b in Section 3.6.2.3 which is 960 kSa/s. So, the

required estimation time to obtain this CV (0.1) is

Thus, the estimation time in the CC method,
Tec = (‘; second/sample)x (Ng sample/iteration)
Sampling rate
x Number of iteration
1

~ 960000
~0.4167 second

x 400000 x 1

Since the CV is independent of N, the estimation time obtained above will hold for

all V.

5.8.2.2 Estimation time in PFSA protocol

To compare the conventional PFSA protocol technique with the proposed approach,

the estimation time is obtained for the same CV (0.1) for different .

Now, from expressions (5.38) and (5.42),

1.54
Mprsa = W = 154
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Thus, by keeping the parameters the same as previously, i.e., Bg = 15kbps, B, = 112

bits/packet and p, = 1.59 packets/slot, the required estimation time, Tprsa, can be
obtained from the following expression (which is derived from (5.37)).

T — nPFSA X Bn x pé
PFSA BR

~1.8283second

Since the CV is again independent of N in PFSA technique, the estimation time

obtained above will hold for all V.

5.8.2.3 Estimation time in GT protocol

To compare the estimation times of the GT protocol technique and proposed

approach, they are obtained for the same CV (0.1) for different V.

Now, from expression (5.42),

B =ZxCV = 02756

As the performance parameter (¢ = 0.01) is known and using the above S for
different N, 75 can be obtained from (5.43). The obtained 7j;; for different N are
presented in Table 5.10.

Table 5.10 774:in GT method: CV =0.1

N 100 200 500 800 1000
Tor 217 307 486 614 687

Keeping the other parameters the same as previously, i.e., Bg = 15kbps, B, = 112

bits/packet and p. = 4 packets/slot, the required estimation time, TG, can be easily

obtained from the following expression.

UGTxanp§

T. =
GT BR
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Figure 5.40 shows the comparison of estimation times required to obtain similar

performances.
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Figure 5.40 Performance comparison in terms of estimation time
required to obtain CV =0.1

Similarly, if the OCV 1is taken as 0.125, ie., a 12.5% statistical error, its

corresponding signal length is about 181,930 samples at around b = 279. In this

experiment, as the dpgs is set to 0.25 m, the required sampling rate is 840 kSa/s. So,

the required time to obtain this CV (0.125) is

- Sampling rate

CcC

1

x Number of iteration

~ 840000

1

=0.2167 second

x181930x1

second/sample)x (Ng sample/iteration)

The obtained estimation times for the same CV are 1.17 seconds in the PFSA

technique and as shown in Table 5.11 in the GT technique.

Table 5.11 Ti,;in GT method: CV = 0.125

100

200

500

800

1000

T (s)

54

7.6368

12.0748

15.2735

17.0763
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Similarly, for another operating point with OCV = 0.15 in the proposed method, the

signal length is about 95,522 samples and the sampling rate 600 kSa/s (as the

required b = 199). So, the required estimation time is 0.1592 s. With the same CV,

the required estimation times in the PFSA and GT techniques are obtained.

The estimation times in the PFSA protocol are constant at around 0.8126 second for

different N but variable in the GT protocol (in which the CV depends on N), as
shown in Table 5.12.

Table 5.12 7,7 in GT method: CV =0.15

N

100

200

500

800

1000

Tir (s)

4.6856

6.6264

10.4773

13.2529

14.8172

Comparisons of these estimation times for the two abovementioned operating points

are also provided in Figures 5.41 and 5.42.
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Figure 5.41 Performance comparison in terms of estimation time

required to obtain CV =0.125
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Figure 5.42 Performance comparison in terms of estimation time
required to obtain CV =0.15

It can be seen in Figures 5.40, 5.41 and 5.42 that, like the CV comparisons, the
required time for estimations of the number of nodes is constant in the proposed and
PFSA techniques whereas it varies with the number of nodes in the GT technique. In
terms of the required estimation time for a particular CV, the proposed cross-

correlation technique always performs better than the PFSA and GT techniques.

5.8.3  Performance comparisons in terms of required transmit energy

All the above comparisons do not take into account the transmit energy required for
estimation. In this section, the transmit energies required for a certain CV are
compared, as are the virtual times (not the actual times) needed when assuming the

same power, for all methods.

The constraints of the comparison are: 1) the same CV in estimation, CV (=0.1), has
to be obtained in all cases to compare the energy and assuming the same power for
all methods to compare virtual times; i1) the available BW is taken as 15 kHz; iii1) the
same impact of noise is assumed in all cases, iv) no multipath is considered; and v)
other parameters, such as the dimensions of the experimental area and the placements

of the transmitting and receiving node(s), are the same.
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5.8.3.1 Transmit energy required in proposed CC technique

In our simulations, from the n™ node, a sensor receives an array of samples of a
continuous time signal (Gaussian). The numeric values (which follow the zero mean
unity standard deviation Gaussian distribution) of the samples are normalised (in

terms of original received signal) with units of volts and referenced to a normalised

(in terms of receiver equivalent) resistance of 1 ohm. The sampling frequency, Sy ,

1s 960,000 Sa/s (although other frequencies might also be used, we use this one for a

certain dpgs to obtain the optimal b, in order to obtain a certain CV of estimation).

Suppose the sampled transmitted signal is x(s), where s is the index of the sample

number. The instantaneous power of a sample in watts will be the value of that

sample squared and the average power of the signal will be the average of the

instantaneous power of every sample in the signal. If we use the signal of N

samples, the average power will be

0, =13 (0)= £ ()

Sn s=1

Again, the variance in the sampled signal can be defined as

o (x(s)) = E(+*(s))- (E(x(s))Y

As we use zero mean unity variance samples, the variance will be
2 2
o (x(s)) = E(x (s)) =1

Thus, the normalised average received power will be

1 &

O = N—sz (s) = E(x2 (s)): oz(x(s)) =l watt

S, s=1

Now, the energy of a signal is the time integral of its average power and the

integration is converted to a summation for the sampled signal.
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If the time per sample is denoted by T [: J , the total normalised received

b
Se.

energy for the n™ node in joules will be

If the original received power is the O, watt, the total received energy required for

the n" node is

N .
Etrn = QRn XS_”_]Ollle

Rn

Multiplying this by the appropriate path loss factor, dnk (where d, is the distance

between the receiver and the n™ node and k the spreading factor), the required
Y g q

transmitted energies for the nodes are

N
E, = dlk XQR] XS_SI

R

N
E,= dzk x QR2 X —

Thus, the total transmitted energy for N nodes is

k Ny k Ny k Ny
E =E,+E,++Ey=d, XQRIX_I"'dz XQRZX St+eetdy ><QR\,X -
SRI SRZ l RJV
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As the received powers, number of samples and sampling frequencies for all nodes

are considered equal in the estimation process and, thus, assuming

O =0k = =0k =0, Ny =Ng =---=Ng_ :NS’andSRl =8, = =8, =5,
we have the total transmitted energy as
N P N
E = (Zdn J X Qg X S—S Joule (5.46)
n=1 R

Using this expression, we then obtain the energy in two cases, as discussed below.
(a) Channel without noise but receiver with internal noise
It has been shown in the estimation process that, if we consider the internal
noise of the receiver to obtain similar performances to those of estimation
without noise, the SNR has to be at around 1 (in voltage ratio), as also
depicted in Figure 5.43 and 5.44 for a signal length of 100,000 samples.
Again, it is estimated in our lab (Underwater Lab, UNSW@ADFA, Australia.
See Appendix A for the details) that the voltage level of the internal noise of

a receiver (hydrophone) is about 3.16 nV/4/BWin Hz and the equivalent

resistance of a typical hydrophone is z=1kohm.
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