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Abstract 
 

 

 

Cognitive load theory uses the immense size of human long-term memory and the 

significantly limited capacity of working memory to design instructional methods. Five 

basic principles: information store principle, borrowing and reorganizing principle, 

randomness as genesis principle, narrow limits of change principle, and environmental 

linking and organizing principle explain the cognitive basics of this theory. 

 
The theory differentiates between three major types of cognitive load: extraneous load 

that is caused by instructional strategies, intrinsic cognitive load that results from a high 

element interactivity material and germane load that is concerned with activities leading 

to learning. Instructional methods designed in accordance with cognitive load theory 

rely heavily on the borrowing and reorganizing principle, rather than on the randomness 

as genesis principle to reduce the imposed cognitive load. As learning fractions 

incorporates high element interactivity, a high intrinsic cognitive load is imposed. 

Therefore, learning fractions was studied in the experiments of this thesis. 

 

Knowledge held in long-term memory can be used to reduce working memory load via 

the environmental linking and organizing principle. It can be suggested that if fractions 

are presented using familiar objects, many of the interacting elements that constitute a 

fraction might be embedded in stored knowledge and so can be treated as a single 
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element by working memory. Thus, familiar context can be used to reduce cognitive 

load and so facilitate learning. 

 
In a series of randomized, controlled experiments, evidence was found to argue for a 

contextual effect. The first three experiments of this thesis were designed to test the 

main hypothesis that presenting students with worked examples concerning fractions 

would enhance learning if a real-life context was used rather than a geometric context. 

This hypothesis was tested using both a visual and a word-based format and was 

supported by the results. 

 
The last two experiments were intended to test the context effect using either worked 

examples or problem solving. The results supported the validity of the previous 

hypothesis using both instructional methods. 

 
Overall, the thesis sheds some light on the advantages of using familiar objects when 

mastering complex concepts in mathematics. 
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Introduction 
 
 

 

Teaching the concept of fractions has been of interest to many researchers in 

mathematics education owing to its complexity (Hunting, Davis, & Bigelow, 1991; 

Kieren, 1980; 1993; Mack, 1990; 1993; 2001; Nesher, 1989; Steffe & Olive, 1993; 

Streefland, 1991; 1993). This thesis tested the general hypothesis that learning fractions 

should be facilitated using realistic, familiar materials. This hypothesis was tested using 

worked examples as an instructional method. Since learning concepts in an abstract 

form should be the ultimate desired outcome, it was further hypothesized that to achieve 

such an abstraction, a real-life context should be followed by a more abstract, geometric 

context. Lastly, it was hypothesized that the effect of real-life contexts should also 

apply to problem-solving as opposed to using worked examples. 

 

Five experiments tested these hypotheses within a cognitive load theory perspective. 

The first chapter of this thesis outlines human cognitive architecture and its main 

structural elements; long-term and working memory with a review of several suggested 

memory models. The second chapter delineates the main principles of cognitive load 

theory, the cognitive load categories, and the interaction between them. Methods 

suggested by cognitive load theory to reduce cognitive load are also described in this 

chapter. In the third chapter the complexity of the fraction concept is discussed in 

general and from a cognitive load perspective. Chapter 4 reviews research into the 
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effect of context on enhancing learning, identifies a need for further research, and 

provides a rationale for the study. Chapters 5 to 9 describe the five experiments in this 

study. 

The results provide evidence to support the hypothesis of a contextual effect when 

learning fractions. The final chapter discusses these results from a cognitive load theory 

approach and indicates the educational implications of the findings along with 

suggestions for further research. 
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Chapter 1: Cognitive architecture 

 

  

1.1  Introduction 
 

 The term ‘cognitive architecture’ has been defined (Sweller, 2003) as ‘the manner in 

which cognitive structures are organized’ (p. 219). Anderson (1996) described human 

cognitive architecture as ‘an abstract, hierarchical structure which characterizes humans 

apart from other species’ (p. 357). Stillings and his colleagues (Stillings et al., 1995) 

referred to this term as the ‘information processing capacities and mechanisms of a 

system that is an integral part of the structure’ (p.16).  A few years earlier, Simon 

(1989) claimed that human cognitive architecture consists of basic design descriptions 

of the human information processing system. 

 

Researchers consider that human cognitive characteristics play a significant part in 

understanding and predicting the range and nature of tasks that humans are capable of 

doing (Stillings et al., 1995; Sweller, 2003; 2004). Examining cognitive theories shows 

that human cognition is considered to be a unique system (Sweller, 1994; 2003; 2004; 

Sweller & Sweller, 2006). From Stillings’ quantitative perspective (1995), humans have 

the largest brain of all mammals, taking body weight into account. This trait is not the 
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sole unique characteristic of the human brain: more important is its high degree of 

flexibility that enables a large range of capabilities.  

 

Many cognitive theories consider that evolution provides the design engine of human 

cognitive architecture (Laird, Newell, & Rosenbloom, 1987; Sweller, 2003; 2004; 

Sweller & Sweller, 2006). It is understood that evolution by natural selection selects 

and chooses systems that help in the survival of a species, including human beings. 

Sweller (2003; 2004)  postulated that similar information structures underlie both 

evolution by natural selection and human cognitive architecture.  

 

1.2  Information structures 
  

From an evolutionary point of view, knowledge can be classified into two categories; 

biologically primary and biologically secondary knowledge (Geary, 2002; 2005; 2007). 

Generally, all tasks that human beings have evolved to learn by natural processes are 

considered primary knowledge. For example, acquiring the ability to speak and 

understand one’s mother tongue or the ability of a baby to crawl and then walk. 

Speaking or understanding a second language is considered as secondary knowledge. 

Moreover, writing and reading one’s first language is also considered as secondary 

knowledge. In short, Sweller and Sweller  (2006) claimed that skills that we need to 

learn in schools or other institutions can be classified as secondary knowledge, whilst 

skills that we have evolved to do naturally are categorized as primary. He speculated 
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therefore, that the process of obtaining secondary knowledge is totally different from 

the process of acquiring primary knowledge and thus, needs different mechanisms. 

Sweller and Sweller (2006) suggested that since human beings have not evolved to 

acquire secondary knowledge, they must have a general mechanism to handle this type 

of knowledge. Acquiring primary knowledge must have a unique system for each 

particular type of this knowledge. For example, a different mechanism is used for 

speaking than for listening. In other words, they understood that learners use the same 

mechanism to acquire all categories of secondary knowledge. However, learners’ 

information processing mechanisms consist of several processes and cognitive 

capacities that might vary because of individual differences (for a broader review see 

chapter 2). 

 

From a different perspective, Sweller (1994) proposed that all information can be 

classified according to the degree to which its elements interact; at one extreme, that 

information can have no interaction or low interaction among its elements. This 

category includes learning simple facts such as the names of people or objects or 

learning to count up to ten. At the other extreme, information could have high element 

interactivity such as learning complex mathematics equations or learning the grammar 

of a second language, or any kind of learning that can be called ‘learning with 

understanding’. This kind of acquisition requires all elements that interact to be 

processed concurrently, a situation that might result in a high cognitive load (Sweller, 

2003).  
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Additionally, knowledge has been classified by cognitive science researchers into two 

types; declarative knowledge and procedural knowledge. Declarative knowledge is 

known also as ‘knowing–that’ (Brien & Eastmond, 1994). It is used to represent objects 

or events. It was defined by Anderson (1983; 1993)  as all facts that one can know or 

the factual knowledge that people can describe. Procedural knowledge was identified as 

‘knowing- how’ knowledge. It is used to represent operations and activations of 

declarative knowledge (Brien & Eastmond, 1994). In the same paper, Brien and 

Eastmond claimed that the distinction between these two types of knowledge is not 

always clear since they can sometimes overlap. In addition, it was suggested that one 

can acquire knowledge that is procedural and declarative at the same time. Anderson 

(1983) argued that knowledge could be obtained first in a declarative form, and 

transformed later into a procedural one. 

The features of those mechanisms required for dealing with information structures is 

discussed next. 

       

1.3  Memory 
  

1.3.1 Introduction 
 

Hermann Ebbinghaus was the first person to study human memory experimentally 

(Baddeley, 1982). Assuming that the meaning of a word helps to remember it, he 
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created ‘nonsense’ syllables to eliminate the effect of meaning. Basically, by using 

‘nonsense’ syllables, he intended to neutralize the meaning factor. One of Ebbinghaus’ 

important discoveries was the limit of memory which he called ‘memory span’ 

(Klatzky, 1975). Other investigators suggested various models for the human memory 

system.  

 

1.3.2 Memory models 

1.3.2.1   Memory model of Waugh-Norman and Norman 
 
 

 

Figure 1: Waugh and Norman’s Model (1965, p. 93) 
 

Waugh and Norman, D.A.(1965) suggested a memory model (see Figure 1) in which 

they distinguished between two kinds of memories; primary memory and secondary 

memory. This model suggested that a stimulus that enters primary memory might be 
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lost quickly unless it is rehearsed. Rehearsal can be either observable or hidden. When 

an item enters primary memory and is rehearsed it remains in primary memory and may 

enter secondary memory. Once it is in secondary memory, there is no need further for 

rehearsal. Secondary memory is considered as a more permanent store than primary 

memory. In addition, primary memory capacity is assumed to be limited (Houston, 

1981). 

 

1.3.2.2   Atkinson and Shiffrin’s model 
 

 

 
Figure 2: Atkinson and Shiffrin’s Model (1971, p. 2) 
 

Atkinson and Shiffrin (1968) suggested a similar model of memory (see  

Figure 2), but it is more complex than both the Norman and the Waugh-Norman 

models. Specifically, it adds a third component; the sensory register. The concept of 
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short-term storage and long-term storage was introduced by Atkinson and Shiffrin. 

Their model consisted of three components: sensory register, short-term storage and 

long-term storage. 

 

Sensory-register: in this model Atkinson and Shiffrin (1968) proposed that information 

passes from the environment through a number of transitory sensory memories before 

reaching the short-term store. It can be thought of as a pathway for the short-term store. 

 

Short-term storage: is considered a temporary storage area in which information 

remains for a period of time that is usually under the control of the subject. The 

information can be kept in the short-term storage by rehearsal. However, the short-term 

storage capacity was thought to be limited (Atkinson & Shiffrin, 1971). The short-term 

store is defined in this model as ‘a system in which decisions are made, problems are 

solved and information flow is directed’ (p. 3). 

 

Long-term storage: is regarded as a long-term or permanent memory store. Information 

is transferred from the short-term storage to the long-term storage by rehearsal. 

Atkinson and Shiffrin (1971) stated that the longer an item has been maintained in the 

short-term store by rehearsal, the more likely it is to be transformed to the long-term 

store. The long-term store is assumed to be unlimited both in its capacity and its 

duration. In other words, it can hold a massive amount of information that can last for a 

long period.  
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The flow of information through the memory system, as conceptualized by Atkinson 

and Shiffrin is shown in Figure 3.  

 
 
 

Sensory register           Short-term store             Long-term store 
 

 
 

Figure 3: Flow of information through the memory system, as conceptualized by Atkinson 
and Shiffrin. 
 

1.3.3  Long-Term Memory 
Although long-term memory is considered a fundamental component in all memory 

models, its vitality in controlling human beings’ cognitive activities was disregarded 

until the noticeable phenomenon that characterizes experts in chess was first discovered 

by De Groot (1965) and Chase and Simon (1973). This study of a chess master’s ability 

to remember chess board arrangements provided sound evidence for long-term 

memory’s crucial role. De Groot (1965) claimed that memory capacity is the factor 

which makes the difference between experts and beginners in chess.  
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With respect to most memory theories, two basic presumptions regarding long-term 

memory can be found: firstly, it is assumed that this storage is unlimited in its capacity 

(Baddeley, 1986; Newell & Simon, 1972), secondly, it is believed that items stored in 

long-term memory can last permanently (Cowan, 1988) and are ready to be retrieved 

once a stimulus is provided. Baddeley (1982) claimed that information in long-term 

memory never disappears, but becomes less accessible.  

 

Sweller (2003) proposed that human beings are unaware of the content of their long- 

term memory until information is brought into working memory for processing a task.  

 

1.3.4 Working memory 

1.3.4.1   Development of the term Working Memory (historical review) 
 

Working memory in cognitive psychology and neouropsychology refers to a system that 

has been evolved for the short-term maintenance and management of information 

needed for complex tasks performance such as learning (Baddeley, 1998).  The standard 

definition of working memory refers to the momentary storage of information that is 

processed to perform cognitive tasks (Baddeley, 1986). 

 

Working memory is also called short-term memory, primary-memory and immediate-

memory (Klatzky, 1975). The term working memory was used by Galanter and Pribram 
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(1960) in their book Plans and the Structure of Behavior. They considered working 

memory as a central component of cognitive psychology. A comprehensive survey of 

the historical development of working memory can be found in Logie (1996). He 

summarized the history of working memory in seven stages, named by him as seven 

ages. 

   

Age 1- working memory as contemplation: Working memory was referred to as early as the 

seventeenth century. The philosopher John Locke distinguished between short-term 

storage named, ‘idea in view’ and a permanent storage named ‘storehouse of ideas’. 

This distinction is quite analogous to the distinction between short-term and long-term 

memory used later. 

 

Age 2 – working memory as a primary memory: This expression was used by Waugh and 

Norman (1965). They assumed a limited capacity for the primary memory and claimed 

that rehearsal is crucial for maintaining information in primary memory and transferring 

it from primary to secondary memory, long-term memory. 

 

Age 3- working memory as a short-term memory: Until this stage, working memory was 

regarded as a passive storage of information rather than as an active processor of 

information. An innovation was attributed to Atkinson and Shiffrin (1968) who referred 

to short-term memory as a combination of storage and control processes. They 
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supposed a limited capacity working memory and argued for a flexible system that 

could function for storage as well as process information.   

 

Age 4- working memory as a processor: Craik and Lockhart (1972) contributed a new 

meaning for working memory as a product of cognitive processing rather than as a 

separate entity. In other words, working memory was recognized by them as a process, 

rather than a fixed or passive part of the human cognitive architecture.  

 

Age 5- working memory as a constraint on language comprehension: This age is considered 

by Logie (1996) as one of the major, current ages of working memory in research into 

language learning. This age was determined by Daneman and Carpenter (1980) who 

developed a task to measure working memory capacity.   

    

Age 6- working memory as activation, attention, and expertise: In this age, working memory 

was regarded as an independent entity with limited attention, activation and capacity 

(Cowan, Winkler, Teder, & Näätänen, 1993). However, this limitation could be 

expanded as a function of expertise. This assumption was the core of a model developed 

by Ericsson and Kintsch (1995). The central theme of this model is that working 

memory capacity is larger when acting within one’s area of expertise. 

 

Age 7- working memory as multiple components:  This view sees working memory as a 

workplace, rather than an entryway. In this age the most important research was 
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conducted by Baddeley and Hitch (1974) and  Baddeley (1990). A model of working 

memory was created by Baddeley and Hitch (1974). It contains 3 components which 

will be discussed later. 

Working memory attracted many researchers in the last few decades. An important 

distinction between the two functions of working memory, firstly as a passive storage of 

information and secondly as an active processor of information, was made by many 

researchers. Logie (1996) made a clear  distinction between working memory as a 

workspace - here working memory is considered as a set of cognitive functions that can 

store and process information and, a working memory as a gateway for information 

passing from sensory input to long term storage.  

 

Atkinson and Shiffrin (1968) assumed that short-term storage could be considered as a 

‘working-memory’ that receives inputs from the sensory register and the long-term 

store. They speculated that working memory is an essential and intrinsic part of human 

cognition.   

 

Working memory tasks were defined by Daneman and Carpenter (1980)  as tasks that 

required storage and manipulation of information at the same time. From Baddeley’s 

point of view (1996a; 1998), working memory provides a crucial bridge between 

perception, attention, memory and action and was considered as a complex system that 

involves a range of interacting sub-components. Moreover, working memory was seen 
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as a system in which information can be affected and stored in many active forms rather 

than as a passive store house (Klatzky, 1975). 

 

Researchers suggested that working memory is not a unitary system; they proposed that 

there are different working memories to deal with different types of information. There 

are separate systems for verbal and spatial information (Smith & Jonides, 1998; Smith 

& Milner, 1989). Each system, verbal and spatial has three different functional 

components:  

· A storage component of which the contents decays very quickly. 

· A rehearsal component that can reactivate the decaying contents of the storage 

component.   

· An executive component, that controls and directs the processing of the contents of 

working memory. There are situations that require the storage rehearsal component to be 

active such as remembering a phone number until dialing it. Other situations need the 

executive part to be involved such as rehearsal of a mental map of an area while trying to 

reach it (Smith & Jonides, 1998).  

 

1.3.4.2   Working memory architecture 

1.3.4.2.1   Baddeley’s model 
  

A working memory architecture was suggested by Baddeley and Hitch (1974), 

Baddeley (1986; 1992a; 1992b; 1996a; 1998) and was updated by Baddeley and Hitch 

(2000). It was proposed that working memory consisted of a ‘central processor’ and two 
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kinds of storage; a visuo-spatial sketchpad and a phonological loop. These two types of 

storage are quite similar to the ‘verbal working memory’ and ‘spatial working memory’ 

nomination made by Smith and Jonides (1998). 

 

 
Figure 4: Working memory model by Baddeley (1990, p. 71) 
 

This model consisted of three main components: a visuo-spatial storage named visuo-

spatial ‘sketch-pad,’ a temporary verbal storage labeled ‘phonological loop’ and a 

coordinator function termed ‘central executive.’ 

Phonological loop: It is assumed to contain a temporary, passive storage system. Audio-

based information enters this passive storage and can be held there. This information 

decays within a couple of seconds unless rehearsed (Baddeley, 1996a). Baddeley (1998) 

assumed that the phonological loop plays a significant role both in the development of 

language in children and in learning a second language.  
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Kemps and his colleagues (Kemps, De Rammelaere, & Desmet, 2000) asserted that this 

component contains two subsystems; a passive phonological store and an active 

mechanism that refreshes memory traces. 

 

Visuo-spatial sketch pad: This component is assumed to be more complicated than the 

previous one. Visual information enters the visuo-spatial sketch pad but, Baddeley 

(1996a) claimed, the use of visual imagery is less automatic than phonological 

information, a situation that results in heavier demands on the central executive. The 

visuo-spatial sketch pad, claimed Logie and his colleagues (Logie, Zucco, & Baddeley, 

1990) is responsible for the temporary maintenance and manipulation of visuo-spatial 

information. In addition, its resources are different from the phonological loops’ 

resources. 

 

Central executive: It is responsible for the intentional control of working memory and 

works as a coordinator for all functions of working memory components (Baddeley, 

1996a). It is also assumed to be an active component. The central executive is capable 

of holding both spatial information of an object, for example, its location, and 

information about its visual appearance such as color, shape or other features 

(Baddeley, 1998). Baddeley (1998) proposed that the phonological loop and the sketch 

pad involve the interaction of a number of brain regions. Subsequently, Baddeley 

(1998) provided evidences for the fractionation of the central executive into a number 

of subsystems.  
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Kemps and his colleagues (Kemps et al., 2000) claimed that the central executive is an 

intentional control system that is limited in its resources. They asserted it was 

responsible for three functions: firstly, transmission of information from short- term 

memory to long-term memory; secondly, selection of information to be stored; and 

finally, coordination of the other components of the working memory system. 

 

Other researchers such as Pascual- Leone and his colleagues (Pascual-Leone & 

Baillargeon, 1994; Pascual-Leone & Morra, 1991) considered working to be an active 

subset of long-term memory. 

1.3.4.2.2   Working Memory multi-component model of Baddeley 

 

 

Figure 5: Multi-component Model of Working Memory (Baddeley & Hitch, 2000, p. 418) 
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Baddeley and Hitch (2000) added a new element to this working memory model, the 

episodic buffer. This element is assumed to be a temporary memory and limited 

capacity storage subsystem. Its limited capacity is determined by the number of chunks 

it can hold. 

 

1.3.4.2.3   Logie’s model of working memory 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
 

 
 
 
 
Figure 6: Logie’s model of working memory (Logie, 1995, p. 127) 
 

Logie (1995) suggested an additional model for working memory. It contains three 

components: the phonological loop, the visuo-spatial working memory, and the central-
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executive. The most important contribution of this model is that it emphasizes the 

importance of prior knowledge stored in long-term memory. Logie’s modification for 

the working memory model clarifies the utility of previous information held in long 

term memory to initial processing of new information received by the two secondary 

subsystems of the working memory system. 

 

Cowan  (1988) mentioned the existence of an intentional filter after the sensory storage, 

which allowed selected information to pass to a higher level of processing. It was 

defined as ‘a mechanism that, once set, can block the processing of some stimuli and 

allow the subject to further process other stimuli easily’ (p. 172). 

 

1.3.4.3   Working memory capacity 
 
Notwithstanding that memory capacity has improved through adaptive processes in 

human evolution, as proposed by Cowan (2001), its limitation still has a serious effect 

on human cognition (Stillings et al., 1995). 

Hermann Ebbinghaus (1885) was the first to study human memory. One of his 

important discoveries was that if a list was short enough, seven or less items, it could be 

learnt in one reading. If the list expands to eight or more items, the learning time 

increases dramatically. He called the seven item limit ‘memory span.’ Miller (1956) in 

his well-known paper ‘The Magical Number Seven Plus or Minus Two’ suggested that 

the memory span is between five and nine items. Cowan (2001) claimed that the 

capacity limit of short term memory is four plus or minus two items. He identified 
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memory capacity as the maximum number of chunks that can be recalled in a particular 

situation. 

 

According to Baddeley (1986; 1998) a memory span is assumed to be limited to the 

number of items that can be rehearsed in a repeating loop, before the decay of their 

stored representations. Formerly, Simon (1974) found that the number of items one can 

recall immediately after reading or listening was about seven one-syllable words, about 

seven two-syllable words and about six three-syllable words. In the same context, 

Baddeley and Hitch (2000) argued that a memory span varies depending on the 

information to be stored. They found that working memory span for sentences is almost 

16 words, whereas working memory span for unrelated words is only approximately 

six. However, other researchers such as Shiffrin (1973) and Peterson and Peterson 

(1959) claimed that the duration items last in short term storage is limited and it does 

not vary according to the type of items. 

 

Not only is the amount of information that working memory holds limited, but also the 

duration of this information. Working memory allows humans to maintain information 

in an active state for a brief period of time ranging between 0-60 seconds (Smith & 

Jonides, 1998; Smith, Jonides, Marshuetz, & Koeppe, 1998). Furthermore, Baddeley 

(1998) emphasized that the limited duration of an item in working memory was 

dependent on how long it could remain active without rehearsal in working memory. He 
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hypothesized that working memory span is limited by the rate at which recently stored 

information loses activation (Baddeley & Hitch, 2000).  

 

Broadbent (1975) concluded that short term memory capacity is limited not only when 

dealing with new information, but also when recalling stored information from long-

term memory, a view contrary to Ericsson and Kintsch (1995).   

The limitation of human working memory capacity cannot be ignored; neither can its 

limited duration. Therefore there should be several ways to bypass these limitations. 

The first method to circumvent working memory limits is chunking. 

 

1.4  Chunking 
 

Chunking is the ability to combine several items into larger units such as joining letters 

to create words. It is a mechanism used to conquer the limitations of working memory 

allowing the storage of as much possible information at one time. The term ‘chunk’ was 

used first by Miller (1956). Chase and Simon (1973) in their work on chess. They 

hypothesized that chess experts perceive a chess board arrangement as one chunk; this 

ability of chunking and then un-chunking when retrieving information from their 

memory, enables them to outperform weaker players who may have a fewer number or 

smaller sized chunks. Miller(1956) claimed that the number of chunks of information is 

constant for immediate memory. He proposed that the immediate memory span is 

independent of the size of a chunk. Nonetheless, Cowan (1988) suggested that the claim 
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made by Miller (1956), that subjects can remember at one time seven items or chunks, 

is meaningless unless a clear definition of a chunk is provided.  

 

Chunks were defined by many researchers and various suppositions concerning the 

number of elements a chunk can hold were proposed:   

Following Miller (1956), Simon (1974) suggested one way to define a chunk is by 

empirically determining the span for a type of item and dividing it by seven. 

 

Newell (1972) claimed that the smallest units of information held in long-term memory 

are symbols. These stored symbols act as internal representation for stimulus patterns. 

He suggested that chunks are patterns of stimuli that become recognizable as particular 

symbols through learning. Klatzky (1975) claimed that the understanding of chunks is 

complicated owing to an incongruous definition. On the one hand a chunk is defined as 

whatever short term memory holds seven of; on the other hand, it is claimed that the 

span of short term memory is seven chunks. This resulted, he claimed, in an untenable 

definition ‘seven of whatever short term memory holds seven of.’ A simpler definition 

for chunking can be found in Stillings and his colleagues’ study (Stillings et al., 1995). 

They defined chunking as using multiple elements as a single unit in long term memory. 

In this light, for Stillings, a chunk is a complex element that can be stored as a single 

unit in long-term memory. For Anderson (1983; 1993) chunks are cognitive units that 

encode a set of elements in a specific connection. He hypothesized that chunks contain 

no more than five elements. However, because complex structures can be created by 
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hierarchical structures, one chunk can appear as an element of another chunk, as 

Anderson proposed.  

 

Recently, Cowan (2001, p. 89) defined a chunk as ‘a collection of concepts that have 

strong association to one another and much weaker associations to other chunks 

concurrently in use.’ In his two papers, Cowan (1995; 2001) pointed to the fact that we 

tend to arrange telephone number in groups of three or four digits as an indicator of how 

many elements can be reasonably held and maintained in short term memory, at one 

time, to allow the formatting of new chunks in long-term memory.  

 

1.5  Schemas 
 

The word schema has its root in Greek language. The Greek word ‘σχημα’ means 

‘form’ or ‘shape’ (Marshall, 1995). Piaget (1928) and Barttlet (1932) provided the 

foundation of modern schema theory. According to Piaget (1952), a schema is a 

coordinated combination between cognitive functions and physical actions that work 

together to respond to any perceived experience that could be related to the schema. He 

speculated that a schema needs three phases to be formed and applied; repetition, 

recognition and generalization. He assumed that repetition of situations helps to alter 

schemas. Recognition- individuals with increasing experience are able to classify and 

distinguish among stimuli; these discriminations become part of the schema itself. 
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Generalization- with experience, the small details fade away and the schema become 

more generalized and can be applied to a larger variation of experience (Piaget, 1952).  

 

In light of his remembering theory, Barttlet (1932) hypothesized that a schema holds 

and organizes previous experiences. Both Piaget and Barttlet emphasised the 

assumption that a schema is a memory structure that develops from previous 

experiences and is influenced by personal prior knowledge and interpretations.   

Skemp (1971, p. 39) defined a schema as ‘ the general psychological term for a mental 

structure’. He contemplated two functions for a schema; integration of previously stored 

knowledge; and operating as a mental mechanism to acquire new knowledge. The first 

function is essential to organizing existing knowledge in a categorized mode, or more 

specifically in a schematic way. This function, for example, enables people to bring 

existing knowledge related to a specific concept, once this concept is encountered again. 

The second function of a schema acts as a tool for further learning. According to Skemp 

(1971) almost all new material people learn is based on previously learned knowledge. 

Therefore, learners’ schemas are structured in a hierarchal system. However, to enable 

such an effective system to operate efficiently, existing schemas need to be general and 

adaptable enough to assimilate new schemas appropriately (Skemp, 1971).  

 

Recently, Marshall (1995, p. 39) proposed that ‘a schema is a vehicle of memory, 

allowing organization of an individual’s similar experiences’. This organization occurs 

in such a way that an individual can recognize and classify additional experiences 
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(‘identification knowledge’ - using Marshall’s term.) Learners can enter or create a 

mental model for a problem (‘elaboration knowledge’); here Marshall included verbal 

and visual information. The third type of knowledge is planning knowledge. Individuals 

can draw conclusions, estimate, create goals, and develop a plan. This knowledge 

(labeled as ‘execution knowledge’) claimed Marshall (1995), leads them to utilize the 

skills they need to implement a proper solution. From this problem solving outline that 

involves several types of knowledge, suggested by Marshall (1995), the emphasis 

placed on creating a new schema or having accessibility to an existent schema becomes 

apparent. Additionally in her definition, there is a significance placed on the role of 

one’s prior knowledge when establishing or ‘organizing’ schemas. Marshall (1995) in 

her book Schemas in Problem Solving denoted a few features of schemas such as a 

storage mechanism, a network, levels of connectivity, flexibility, variations in size, and 

overlap and embedding.     

 

Cognitive load theory relies heavily on schemas to reduce cognitive load. From this 

perspective, it is assumed that schemas allow many elements to be treated as a single 

element in working memory; as a result, more working memory capacity becomes free 

(Sweller, 2003). Schemas can be defined as mental structures that we use to organize 

knowledge. Besides, schema theory assumes that expertise in any area is a function of 

the acquisition of particular schemas stored in long-term memory (Sweller, 2003). In 

fact, it is believed that experts can perform better in their area of expertise due to the 

fact that they have at their disposal schemas regarding this particular area (van 
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Merrienboer, Kirschner, & Kester, 2003). Moreover, it is supposed that a learner is 

considered an expert depending on the number and sophistication of schemas held in 

the learner’s long-term memory and his or her ability to automate stored schemas. It is 

also assumed that the ability to automate a schema is a critical condition for utilizing 

schemas and subsequently reducing cognitive load. Newell (1990) and Anderson (1983; 

1993; 1996) referred to automated schemas that connect specific conditions to particular 

actions as ‘production rules.’ 

 

In short, schema theory specifies that knowledge is stored in long-term memory in a 

schematic form and a schema enables us to deal with several elements as a single one 

according to the way it will be used. As a result, less working memory capacity is 

occupied and more working memory capacity is free (Sweller, 2003). This issue is 

crucial considering the limited capacity of working memory. Schema theory assumes  

the more specific schemas are stored in long-term memory, the more skillful one can be 

in a particular area (Sweller, 2003). In other words, experts can perform better in their 

area of expertise because they have at their disposal schemas regarding those particular 

areas (van Merrienboer et al., 2003). 

   

  

1.6  Automation 
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Automation was defined by Sweller (2003) as the ability to process information without 

conscious working memory control. In many of his studies, Anderson (1980; 1983; 

1993; 1996; 2005) underlined the significance of automation as an influential factor in 

human cognitive architecture. Furthermore, he claimed that this process is gradual. It is 

also supposed that even highly controlled tasks are able to be automated with sufficient 

practice (Leahey & Harris, 1989). Shiffrin and Schneider (1977) and Schneider and 

Shiffrin (1977) suggested two basic conditions for an automatic process.  Firstly, an 

automatic process should not occupy working memory capacity and secondly, an 

automated process once started cannot be stopped.  

 

In their research on isomorphic problems of the Tower of Hanoi puzzle, Kotovsky and 

his colleagues (Kotovsky, Hayes, & Simon, 1985) stated that ‘once automation has 

occurred, the solution is obtained very rapidly’ (p. 284). In fact, they found that subjects 

were 16 times quicker when solving problems using automated schemas than when 

solving problems with no available automated schemas.  

 

From a Cognitive load theory point of view, because automation is an unconscious 

action, it does not require working memory manipulation. Therefore, it reduces the load 

on working memory which is assumed to be limited (Cooper & Sweller, 1987; Sweller, 

2003). As a result, a learner is able to process more information, thus enhancing 

learning as an ultimate outcome. 
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In other words, automatic cognitive processes require less working memory resources 

than non-automated processes and therefore, having an automated schema is very likely 

to facilitate the learning process. Bruning and his colleagues (Bruning, Schraw, Norby, 

& Rouning, 2004) claimed that activities such as reading fluently, appropriate placing 

of fingers by expert typists, and driving while talking with a friend sitting beside you, 

need fewer resources and less attention as a result of having automated schemas for 

such activities.  

 

In the domain of algebra, Cooper and Sweller (1987) suggested that automation is 

essential for effective learning, in particular when solving transfer problems. They 

suggested that rule automation plays a major role in problem solving expertise. 

However, they stated that learners need time and effort for both schema acquisition as 

well as schema automation. 

  

In research on expertise, possessing automated schemas was suggested as 

differentiating experts from novices by many researchers (Cooper & Sweller, 1987; 

Larkin, McDermott, Simon, & Simon, 1980b; Schneider & Shiffrin, 1977; Shiffrin & 

Schneider, 1977). Furthermore, Larkin and her colleagues (Larkin et al., 1980b) found 

that the degree of automation in the process of applying physics principles, was the 

major factor behind the difference in performance between experts and novices. 
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Interestingly, Feldon (2007a) in his study into the role that automaticity plays in  

classroom teaching considered automaticity as a double-edged sword. On the one hand, 

it is beneficial as it reduces the overall level of cognitive load needed to process 

multiple, complex classroom interactions. On the other hand, Feldon argued that 

automaticity may lead teachers to resort to an automated but unintended behavior when 

experiencing a high level of cognitive load. He also noted that although developing 

automaticity reduces levels of cognitive load and therefore provides large benefits, there 

are concerns about the ability to adapt to new or rapidly changing situations if a person 

acquires automated schemas that result in automated behavior. Another point stated by 

Feldon (2007a) is the possibility that if a skill becomes automated before an optimal 

level of effectiveness has been attained, learners will be unable to perform adaptively. 

In short, Feldon (2007a; 2007b) argued that automated skills are not subject to 

controlled processes and therefore can be handled by minimal cognitive effort. 

However, for this reason they are not easily modified.  

 This point was also made by Skemp (1971). Skemp mentioned multiple advantages of 

automated schemas and the positive role schemas play in facilitating learning and 

understanding. However, he also considered a few possible negative effects. The first 

disadvantage that has to be considered is time. He argued that schematic learning takes 

a long time particularly in Mathematics. The second drawback, according to Skemp, is 

that schemas have a highly selective effect on learners’ experience. New to-be-learned 

material can be acquired better if it fits in an existing schema, however by contrast, if it 

is not adequate for an existing schema, most probably it will not be learned. Therefore, 
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stable schemas can either hamper learning or facilitate learning, since a stable schema is 

robust to the extent to which it rejects new situations or experiences that do not 

correspond to the schema. This situation has been referred to as mental set or 

Einstellung. Briefly, this term is explained by Sweller and his colleagues (Cooper & 

Sweller, 1987; Sweller, 2003; Sweller & Gee, 1987) as a situation when a learner 

approaches a new problem using previously practiced methods even when an easier and 

more effective technique can be used. This demonstrates how an automated schema can 

hinder learning instead of facilitating it.  

 

Concisely, schemas are defined as mental frameworks that humans use to organize 

knowledge. Chase and Simon (1973) in their research on the superior memory of chess 

experts, proposed that chess experts store a large number of specific patterns of chess 

pieces as a chunk in long-term memory. This enables them to match each new position 

of pieces to a chunk stored in their long-term memory and act accordingly. It could be 

assumed that a chess expert has schemas that allow him or her to classify chess board 

positions according to the moves required (Sweller, 2003; 2004). Sweller assumed that 

schema construction and automation provide humans with a learning mechanism, so 

learning includes the building of schemas. It is clear that schemas can be strengthened 

by using them. Van Merrienboer and Ayres (2005) claimed that when schemas are 

applied they are, practically, strengthened. Automation happens when knowledge is 

processed unconsciously rather than consciously in working memory (Schneider & 

Shiffrin, 1977; Shiffrin & Schneider, 1977). Sweller, van Merrienboer and Paas (1998) 
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suggested that the automation of basic schemas is essential for the construction of 

higher level schemas, especially when the higher level schemas are built upon more 

basic ones. 

 

On the other hand, however, researchers have cautioned that automated schemas can 

have negative consequences, in particular when they are automated before reaching 

generalization (Feldon, 2007a). A major drawback that was considered by Skemp 

(1971) is that despite schemas being used as a key mechanism for acquiring knowledge 

and assimilating new experiences, they can act to hinder learning if the new knowledge 

does not fit in an existing schema. Furthermore, schemas can hinder effective learning 

when the ‘ Einstellung’ effect occurs (Sweller, 2003) 

 

 

1.7  Summary of Chapter 1 
 

This chapter contained an outline of human cognition architecture. An analogy between 

human cognition architecture and its evolution, and the way in which this system 

operates to store new information is used currently by Cognitive load theory (Sweller, 

2003; Sweller, 2004). Sweller (2006b) based on Geary (2002; 2005) drew a distinction 

between two types of information; primary which can be learned spontaneously, and 

secondary which needs effort and educational institutions to be acquired.  
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From a cognitive load theory perspective, knowledge can also be classified into two 

categories according to the degree to which its elements interact; high-element 

interactivity and low-element interactivity (Sweller, 2003; Sweller & Chandler, 1994). 

 

Human memory consists of two main structures, long-term memory and working 

memory. Studies in this field resulted in a few suggested models for memory; Waugh 

and Norman’s model (1965) included a primary and secondary memory. Rehearsal was 

claimed to be the main mechanism that allows the transfer of items to secondary 

memory. Atkinson and Shiffrin (1968) added a third component to the previous model, 

the sensory register. Furthermore, the primary and secondary memories were replaced 

by short-term and long-term stores respectively. Baddley and Hitch (1974) were the 

first to introduce a model for working memory and subsequently updated it (Baddeley 

& Hitch, 2000). The initial model consisted of three components; central processor 

(central executive), visuo-spatial sketch pad and phonological loop. The last two 

components were considered as storage areas, whereas the central executive was 

assumed to be an active coordinator of all working memory functions. In the updated 

model (Baddeley & Hitch, 2000), the main change was adding a fourth element, the 

episodic buffer, which was assumed to act as a temporary memory which is limited in 

its capacity. Logie (1995) suggested a model which contained three elements; 

phonological loop, the visuo-spatial working memory and the central executive. The 

main contribution of this model is its emphasis on the significance of prior-knowledge.  
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The key feature of working memory is its limited capacity which is assumed to vary 

between five and nine chunks as Miller (1956) proposed or between two to six as 

suggested by Cowan (2001). Its duration was supposed to be limited and it may extend 

to 60 seconds according to Smith and his colleagues (Smith & Jonides, 1998; Smith et 

al., 1998). In addition, Baddeley (1998) emphasized the limited duration of working 

memory and focused on rehearsal as a necessary mechanism to keep an item active. In 

short, most researchers agreed on the relatively narrow margins of working memory.  

 

There were a few suggested methods to circumvent these limitations such as chunking, 

and constructing and automating schemas. Chunking combines many elements into a 

single one. Since a chunk can be handled in working memory as a sole element 

irrespective of the numbers of individual elements it contains, more elements can be 

processed simultaneously in working memory. Schemas are central to overcoming the 

limited capacity of working memory. A schema is defined as a coordinated combination 

of cognitive functions and physical actions (Piaget, 1952). Schemas also hold and 

organize previous experiences and can be affected by personal prior-knowledge 

(Bartlett, 1932). Similarly, Marshall (1995) stated that schemas allow the organization 

of an individual’s experiences. She also emphasized the significant role of personal 

prior-knowledge when constructing and arranging new schemas. Cognitive load theory 

considers schemas as a major factor that determines how expert a learner is in a 

particular domain; the greater the number of schemas that individuals hold in their long-

term memory and the more complicated these schemas are, then the more expert they 
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are (Sweller, 2003). However, utilizing schemas depends on having these schemas 

automated so they can be processed unconsciously in working memory, i.e. with no 

need to invest cognitive load to activate them. Anderson (1996; 2005) and Sweller 

(2003; 2004; 2006b) agreed that schemas can be automated as a function of time and 

effort in practicing. Automation can significantly reduce cognitive load and as a result 

facilitate learning in terms of time and effort (Kotovsky et al., 1985).   
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Chapter 2: Cognitive Load Theory 
 

 

2.1  Introduction 
 

Human cognitive architecture provides a base for cognitive load theory. Relatively 

recently, that theory has become one of the most influential theories in instructional 

psychology with applications in various areas of education. The fundamental 

assumption of this theory is that for instructional methods to be effective, instruction 

designers need to take human cognitive architecture into account. It also emphasizes the 

necessity for instructional techniques to be designed in alignment with the basic 

operational principles of the human cognitive system (Chandler & Sweller, 1991; 1996; 

Sweller, 1988; 1989; 1993; 1994; 2003; 2004; 2006b; Sweller & Chandler, 1991; 1994; 

Sweller & Sweller, 2006). In effect, cognitive load theory integrates knowledge 

regarding human cognitive unnecessary cognitive load to facilitate and enhance learning 

processes.  

 

2.2  Cognitive Architecture Principles and Cognitive Load Theory 
 

There are five basic principles of human cognitive architecture that underlie cognitive 

load theory. In this thesis an analysis from a biological evolutionary perspective by  

Sweller and Sweller (2006) is outlined (see also Sweller, 2003; 2004; 2006b). 
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2.2.1 Long term memory and the information store principle  
As mentioned in chapter one, long-term memory as a long-term storage space of 

information is one of the main systems of human cognitive architecture. In this light, the 

information store principle places a heavy role on long-term memory assuming that it 

provides the function for governing most human cognitive activities. From an 

evolutionary point of view, Sweller (2006b) and Sweller and Sweller (2006) stated that 

similar to a genome which supplies the large amount of information required when 

functioning biologically in a complex environment, long-term memory provides an 

ample storage of information that is essential for controlling the majority of human 

cognitive activities.  

 

2.2.2 Borrowing and reorganizing principle 
Sweller and Sweller (2006) claimed that the importance of imitation in human cognition 

was indicated by the discovery of a mirror neuron system in humans. Furthermore, a 

study by Iacoboni and his colleagues (Iacoboni et al., 1999) on the mirror neuron 

system found that this system was as active when subjects were required to observe an 

action, as it was when they were asked to perform motor actions. A further study by 

Tettamanti and his colleagues (Tettamanti et al., 2005)  added that a condition of 

listening to a description of an action resulted in mirror neuron system activation. 

According to Sweller and Sweller (2006), these two studies reflect  the fact that 

imitation is a significant technique to obtain information. Although imitation is 
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biologically primary, the information sought by imitation is not necessarily primary. As 

long as humans have an ability to imitate, they can use it to acquire secondary 

knowledge such as learning mathematical equations. This principle provides an 

explanation for the source of the massive amount of information stored in long-term 

memory. Sweller and Sweller (2006) claimed that most of the information in long-term 

memory is acquired by imitating other’s actions, listening to what they say or reading 

what they write. In other words, we borrow stored information held in other people’s 

long-term memory storage, but usually this information needs to be reconstructed and 

modified by the borrowers to fit their own knowledge stored in their long-term memory. 

Sweller (2003; 2004) argued that schema theory reflects this reconstruction and 

modification process (see chapter 1 for details). Briefly, schemas have two functions; 

organizing information in long-term memory and reducing working memory load. 

Automation has a function of reducing working memory load too. Going back to the 

borrowing principle, Sweller and Sweller (2006) claimed that the borrowing or 

transmitting of information is never exact, rather, it is affected by previous knowledge. 

In this way, schemas are constructed and modified by previously stored personal 

knowledge and result in unique rather than copied schemas. However, this principle 

does not explain the procedure of acquiring original knowledge. 

  

2.2.3 Randomness as genesis principle 
The randomness principle may provide an explanation for how information that is 

transmitted by borrowing from one person to another was established in the first 
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instance. Sweller (2003; Sweller & Sweller, 2006) suggested that random generation 

followed by tests of effectiveness is the most likely way. When dealing with familiar 

information, long-term memory can act as a central executive. However, the situation is 

different when handling new material owing to the fact that knowledge structures are 

unavailable to help organize this new information (Sweller, 2004).  

 

During problem solving, random moves are generated when knowledge is unavailable. 

These random moves are subject to effectiveness tests with useful ones being retained 

while non-beneficial ones are ignored. Retained moves can be incorporated into long-

term memory and this knowledge then may be transmitted to others via the borrowing 

principle (Sweller, 2004). 

 

2.2.4 The narrow limits of change principle 
As suggested by Cognitive load theory, the processes of human cognitive architecture 

are analogous to the processes of evolution by natural selection (Sweller, 2003; 2004; 

Sweller & Sweller, 2006). One of the basic assumptions of evolution by natural 

selection is that alterations to a genome occur as a result of random mutations followed 

by testing of effectiveness. Changes that contribute to survival are kept, and failed ones 

are not. Basically, these changes are assumed to be incremental and slow. In the same 

manner, our cognitive architecture adopts changes to long-term memory. As a result of 

random generation followed by testing, these changes are slow and gradual. According 

to the narrow limits of change principle, working memory’s limited capacity ensures 
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that changes to long-term memory are limited and prolonged (Sweller, 2003; 2004; 

Sweller & Sweller, 2006).  

 

Instructional designers need to take into account this factor of not overloading working 

memory, or exceeding its limited capacity. As discussed previously (see chapter 1), 

human cognition is limited by seven items to be held in working memory (Miller, 1956) 

and by four items to be processed (Cowan, 2001). In order to avoid these limits, 

schemas held in long-term memory need to be utilized. A schema can permit multiple 

elements to be treated as a single one in working memory and less effort will be faced 

by working memory. Therefore, experts in an area do not suffer these limitations 

because their schemas have already been acquired and automated. The problem of 

working memory limits applies only to novices when dealing with novel information 

(Sweller, 2003; 2004).  

  

2.2.5 The environment organizing and linking principle 
The limited capacity of working memory appears when processing new material that is 

not organized into schemas. Capacity limitations disappear when dealing with 

previously stored and organized material (Sweller, 2004).  

 

Sweller and Sweller (2006) claimed that the environment organizing and linking 

principle explains how humans are able to transfer large amounts of information stored 

in long-term memory to be processed in working memory when required to be 
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activated. This ability was recognized and explained by Ericsson and Kintch (1995). 

They proposed the concept ‘Long Term Working Memory’. This term was defined by 

them as a mechanism based on skilled use of storage in long-term memory. The main 

characteristic of long-term working memory is that learners can acquire memory skill to 

answer expected demands for working memory in a specific domain. It is assumed that 

in order to recall information stored in long-term working memory, only the link 

concerning the particular structure needs to be available in working memory. Sweller 

and Sweller (2006) claimed that experts, according to this principle, can transfer 

enormous amounts of organized information from their long-term memory to working 

memory as long as they are performing in their field of expertise. 

 

In short, according to Sweller (2003; 2004) and Sweller and Sweller (2006), the 

borrowing and randomness as a geneses principles, are the learning mechanisms we use 

to create our information storage. The narrow limit of change principle ensures that 

these mechanisms function appropriately without destroying the information store. 

Then, when the stored information needs to be activated, the environment organizing 

and linking principle helps to convey the required information from long-term memory 

to the working memory to be processed adequately.  

 

2.3  Categories of Cognitive Load 
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Cognitive load can be classified into three categories: intrinsic, extraneous, and 

germane cognitive load. The total cognitive load is determined by the sum total of these 

three sources of load.  

 

Throughout this thesis the term ‘mental effort’ will be used as an index of cognitive 

load. It was defined by Paas and his colleagues as the amount of capacity or resources 

that is invested to answer the demands of a given task. Mental effort can be used as an 

index of cognitive load. It can be measured by either using rating scales or by using 

physiological parameters (Paas, van Merriënboer, & Adam, 1994). 

  

2.3.1 Intrinsic Cognitive Load 
This type of load depends on the number of elements of to-be-learned material that must 

be processed simultaneously in working memory (van Merrienboer & Ayres, 2005). It 

is believed that high element interactivity causes high intrinsic cognitive load. It was 

assumed that this type of cognitive load was not controlled by instructional techniques. 

However recently, the possibility of reducing intrinsic cognitive load by manipulating 

the material element interactivity and the subject-task interaction, has been suggested 

(Paas, Renkl, & Sweller, 2003). 

  

Sweller (2006c) speculated that intrinsic cognitive load can be reduced in two main 

ways; firstly, by manipulating the to-be-learned material, and secondly by schema 

acquisition and automation. Manipulating material is discussed first.  
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 Pollock, Chandler, and Sweller (2002) were the first researchers who tested techniques 

for reducing intrinsic cognitive load using a strategy called the ‘isolated-elements 

procedure’, by which they dissected the material into isolated elements and presented it 

to subjects one by one, enabling them to learn the elements partially and gradually 

rather than simultaneously. Similarly, to avoid high intrinsic cognitive load, Sweller and 

his colleagues (Clarke, Ayres, & Sweller, 2005; Sweller, 2006c) suggested teaching 

complicated material as isolated elements, and teaching the interactivity between 

elements later. Using the same strategy, Ayres (2006) examined the impact of reducing 

intrinsic cognitive load in Algebra. He found that when using an instructional strategy 

that isolates the elements of the to-be-learned material, a reduced cognitive demand was 

indicated, rather than when using an integrated-elements strategy (all elements 

together). However, he found that subjects with more prior knowledge benefited less 

from isolated tasks than subjects with less prior knowledge. Ayres (2006) attributed 

these results to a decrease that occurred in germane cognitive load, a matter that 

hindered schemas acquisition (see the section on germane cognitive load for a further 

explanation).  

 

Acquiring schemas provides the second method to manipulate intrinsic cognitive load; 

when several elements are treated as a single element in working memory, the number 

of interactions between elements is decreased. Therefore, by enhancing schema 

acquisition, a reduction in intrinsic cognitive load can be achieved. Many studies 
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indicated the former method to be effective (e.g. Kalyuga, Ayres, Chandler, & Sweller, 

2003; Renkl & Atkinson, 2003) Another technique to reduce intrinsic cognitive load 

was providing pre-training as used by Mayer and his colleagues (Mayer, Mathias, & 

Wetzell, 2002; Mayer & Moreno, 2003) and also Clarke and his colleagues (Clarke et 

al., 2005). They found that providing subjects with training on relevant elements before 

approaching the full learning procedure enhanced the subsequent learning process. This 

tactic aimed to build subjects’ prior knowledge before attaining the actual learning. In 

effect, this maneuver consolidates the argument for constructing schemas to minimize 

intrinsic cognitive load.  

 

In summary, almost all techniques intended to reduce intrinsic cognitive load share a 

common feature; they strengthen the supposition that prior knowledge embedded in 

schema acquisition and automation is crucial when dealing with complicated materials 

that have high element interactivity. Moreover, it is assumed that the degree of intrinsic 

cognitive load depends on the learner familiarity with the field of the new material to be 

learned. Therefore, utilizing prior knowledge was demonstrated to be efficient (Ayres, 

2006). 

 

Intrinsic cognitive load is related to materials that have high element interactivity; 

therefore, the following section discusses this type of material.  

 

2.3.1.1   The Element Interaction of the to-be-learned material 
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It is assumed that the difficulty of acquiring information depends on the degree to which 

its elements interact during the learning process. The more elements that have to be 

processed synchronously in working memory during the learning process, the more 

intrinsic cognitive load is imposed, and the less chance this material has to be 

understood. In effect, understanding, claimed Sweller and his colleagues (Pollock et al., 

2002; Sweller, 2003; 2004) is a function of processing all required elements 

simultaneously in working memory. As indicated by Chandler and Sweller (1996), 

material imposes high intrinsic demands to be comprehended if it requires a large 

number of individual elements to be processed concurrently in working memory, or if 

its individual elements depend on each other to a high extent. 

 

Therefore, processing all elements separately does not result in understanding without a 

comprehensive processing of the interaction (Paas et al., 2003; Pollock et al., 2002; 

Sweller, 2003; 2004; van Merrienboer & Sweller, 2005).  

 

Intrinsic cognitive load cannot be managed by instructional interventions without 

affecting understanding (Pollock et al., 2002).Pollock, Chandler and Sweller found that 

complicated information that is rich in element interactivity can be handled by the 

‘isolated-interacting elements’ method which enables subjects to study the material as 

isolated elements at an initial phase and then, after they acquire a schema for each 

individual element, comprehensive instructions can be provided to explain the 

interactivity of all elements at a latter stage. 



 
 
 
 

44 

 

2.3.2 Extraneous Cognitive Load 
Extraneous cognitive load is assumed to be controlled by instructional methods. 

Because this type of cognitive load interferes with learning, reducing this kind of 

cognitive load by designing suitable instructional methods has been a primary purpose 

of cognitive load theory (van Merrienboer & Ayres, 2005). When dealing with material 

which is low in element interactivity, reducing extraneous cognitive load may not be 

necessary because the total cognitive load may not exceed working memory capacity. In 

contrast, when teaching in an area with high elements interactivity, reducing extraneous 

cognitive load is assumed to be critical (Sweller & Chandler, 1994).  

 

Sweller and Sweller (2006) asserted that an instructional method imposes a high 

extraneous load by ignoring the narrow limits of change principle i.e. ignoring the 

limitation of working memory or by  relying on the randomness as genesis principle 

rather than the borrowing principle. Any aimed change for the information store, 

claimed Sweller, is likely to be ineffective if an instructional method was not designed 

according to cognitive architecture principles since it may cause a high extraneous 

cognitive load. 

 

Cognitive load theory suggests various techniques to manipulate extraneous cognitive 

load such as goal free problems (Ayres, 1993; Sweller, 1988; Sweller & Cooper, 1985; 

Sweller & Levine, 1982; Sweller, Mawer, & Ward, 1983; Tarmizi & Sweller, 1988) , 
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presenting materials using dual mode instruction (Jeung, Chandler, & Sweller, 1997; 

Mayer & Moreno, 1998; Moreno & Mayer, 1999; Mousavi, Low, & Sweller, 1995; 

Tindall-Ford, Chandler, & Sweller, 1997) and an emphasis on using worked examples 

instead of conventional problems (Cooper & Sweller, 1987; Paas, 1992; Paas & van 

Merrienboer, 1994; Sweller & Cooper, 1985).  In a hypermedia environment, Schwartz 

and his colleagues (Schwartz, Andersen, Hong, Howard, & McGee, 2004) stated that 

when setting up an educational website, instructional designers need to take into 

account the cognitive demands a website structure places upon learners’ working 

memory. 

 

There are several effects due to these instructional methods used to reduce cognitive 

load under the umbrella of cognitive load theory: the goal-free effect, the split-attention 

effect, the modality effect, the redundancy effect, the problem completion effect, the 

expertise reversal effect, the element interactivity effect, and the worked example effect 

(Sweller, 2003). The two last mentioned effects are central to this thesis, thus they will 

be discussed later. 

The table shown in Figure 7 was presented in van Merreinboer & Sweller (2005, p. 

151). It summarizes the effects and outlines the reasons behind reducing extraneous 

cognitive load. 
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Effect Description Extraneous load 
Goal-free effect Replace conventional problems 

with goal-free problems that 
provide learners with an a-
specific goal 

Reduces extraneous cognitive load 
caused by relating a current problem 
state to a goal state and attempting to 
reduce differences between them; 
focus learners’ attention on problem 
states and available operators  
 

Worked 
example effect 

Replace conventional problems 
with worked examples that must 
be carefully studied 

Reduces extraneous cognitive load 
cause by weak-method problem 
solving; focus learners’ attention on 
problem states and useful solution 
steps 
 

Completion 
problem effect 

Replace conventional problems 
with completion problems, 
providing a partial solution that 
must be completed by the learners 

Reduces extraneous cognitive load 
because giving part of the solution 
reduces the size of the problem 
space; focus attention on problem 
states and useful solution steps 

Split attention 
effect 

Replace multiple sources of 
information with a single, 
integrated source of information 
 

Reduces extraneous cognitive load 
because there is no need to mentally 
integrate the information sources 

Modality effect Replace a written explanatory text 
and another source of visual 
information such as a 
diagram(unimodal) with a spoken 
explanatory text and a visual 
source of information 
(multimodal) 
 

Reduces cognitive load because the 
multimodal presentation uses both 
the visual and auditory processor of 
working memory 

Redundancy 
effect 

Replace multiple sources of 
information that are self-
contained with one source of 
information 
 

Reduces extraneous cognitive load 
caused by unnecessarily processing 
redundant information 

 

Figure 7: Some effects studied by cognitive load theory and why they reduce extraneous 
cognitive load. 
 

2.3.3 Germane Cognitive Load 
This category is associated with processes that are relevant to learning such as schemas 

acquisition and automation. This type of cognitive load was discussed by Sweller, van 
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Merrienboer and Paas (1998). It is defined as follows: ‘germane load is load that 

directly contributes to learning, that is, to the learner’s construction of cognitive 

structures and processes that improve performance.’ (van Merrienboer, Kester, & Paas, 

2006, p. 344). Paas and van Merrienboer (1994) in their experiments found that 

although high variability during the training period caused high cognitive load, the 

subjects’ performance on transfer problems was enhanced and resulted in better schema 

acquisition. Since then, germane cognitive load has been regarded as beneficial and 

essential for schema construction as long as the total cognitive load does not exceed 

working memory limitations. Furthermore, van Merreienboer and Sweller (2005) 

suggested that to improve learning, instructional methods should be manipulated in such 

a way that reduces extraneous cognitive load and as a consequence frees germane 

cognitive load encouraging learners to invest the free working memory capacity to 

construct schemas. Paas and his colleagues (Paas et al., 2003) argued that despite the 

effectiveness of germane cognitive load, its value depends on learner motivation.  

 

There were two key directions of research into germane cognitive load firstly, using 

contextual interference conducted by van Marrienboer and his colleagues (DE Croock, 

van Merrienboer, & Paas, 1998; van Merrienboer, DE Croock, & Jelsma, 1997; van 

Merrienboer, Schuurman, DE Croock, & Paas, 2002) . In these studies, it was found that 

high contextual interference increased cognitive load during the training phase, 

however, performance was shown to be better in the test phase. The other approach was 

using self-explanation. Renkl and his colleagues used this method to investigate 



 
 
 
 

48 

germane cognitive load (Renkl & Atkinson, 2001; Renkl, Stark, Gruber, & Mandl, 

1998). They concluded that students who explained the procedures of worked examples 

reported higher mental effort, but outperformed students who were not asked for self-

explanations. 

 

2.4  Interrelation between categories of cognitive load 
 

Researchers assume interactions between these categories of cognitive load. Paas, Renkl 

and Sweller (2003) suggested an asymmetric and recurring relation between cognitive 

load categories; they supposed that human cognition during learning deals first with the 

intrinsic cognitive load, then any remaining working memory capacity will be 

consumed to handle extraneous and germane cognitive loads. Once working memory 

capacity is available to free germane cognitive load by reducing extraneous cognitive 

load, this available germane cognitive load can be used for schema construction and 

automation. Once a learner acquires the needed schemas, he or she gains expertise in 

the specific field; subsequently less intrinsic cognitive load will be encountered. 

Eventually, total cognitive load is minimized and learning is enhanced and the newly 

learned material will be used to construct more advanced schemas, then a new cycle 

commences (Paas et al., 2003). 

 

 Therefore, using minimal working memory resources to handle extraneous cognitive 

load is quite essential to free germane cognitive load and stimulate this cycle to occur. 
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In a different field, Scott and Schwartz (2007) found that when the imposed cognitive 

load was high and extraneous, performance suffered. However, when the cognitive load 

was high and germane, performance was enhanced. Nonetheless, Germane cognitive 

load  should not exceed the limits of working memory capacity otherwise it will 

decrease rather than increase performance (see Große & Renkl, 2006). In their study 

into learning mathematics, Große and Renkl (2006) found that learning was decreased 

when students were asked to provide self-explanations. Sweller (2006a) in his 

commentary on this study attributed these results to an increase in germane cognitive 

load beyond the limits of working memory with insufficient time given to accommodate 

this expansion in cognitive load.  

  

Researchers assume that these three categories are additive and if the total cognitive 

load exceeds the available working memory capacity, learning is likely to be 

compromised. 

 

 Paas and van Merrienboer (1994, p. 123) suggested a schematic representation of the 

cognitive load construct  ( 

Figure 8). 
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Casual Factors             Assessment  Factors   

 

 
Figure 8: Cognitive load construct (Paas & van Merrienboer, 1994, p. 123) 
 

They assumed that there are several factors that affect the invested mental effort such as 

the task environment characteristics (e.g. task structure, type of reward system and time 

pressure), the learner characteristics (e.g. the learner cognitive capability and the 

previous knowledge of the learner), and the interaction between them (e.g. motivation 

or personal expectations of performance).  

  

2.5  Worked examples  
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A worked example basically contains a problem with a procedure for solving the 

problem. It is a solved problem with a step-by-step solution that the learner needs to 

study.  

 

Cognitive load theory assumes that schemas can be acquired more easily and rapidly by 

using worked examples as an instructional method compared with problem-solving 

techniques (Cooper & Sweller, 1987; Sweller, 1989; Sweller & Cooper, 1985). Sweller 

and Cooper (1985) argued that studying worked examples supports problem solving 

schema construction and automation more than solving the equivalent problems.  

 

During the last few years, the educational advantages of worked examples have been 

provided (Sweller & Cooper, 1985; Sweller et al., 1998). The success of worked 

examples has been demonstrated in several domains; algebra (Chung & Tam, 2005; 

Cooper & Sweller, 1987; Große & Renkl, 2006; Nathan, Mertz, & Ryan, 1994; Sweller 

& Cooper, 1985), geometry (Paas & van Merrienboer, 1994; Zhu & Simon, 1987), 

computer programming (Sweller & Tuovinen, 1999; Trafton & Reiser, 1993), 

Physics(Sweller & Ward, 1990), engineering (Van Gog, Paas, & van Merrienboer, 

2006) and statistics (Paas, 1992). 

 

There are several factors that influence the effectiveness of worked example as an 

instructional method. To benefit from worked examples, the quantity of presented 

worked examples is consequential. Sweller and his colleagues found that providing 
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students with many worked examples is more effective than providing them with a few 

worked examples followed by conventional practice (Cooper & Sweller, 1987; Sweller 

& Cooper, 1985). In a more recent study, Reed and Bolstad (1991) demonstrated that 

two examples facilitate learning more than a single worked example. Sweller (2006a) 

indicated in his commentary paper that one worked example is unlikely to facilitate 

learning. 

 

Not only is the number of worked examples important, but also other features are 

crucial. Researchers have emphasized the critical role of the worked example’s structure 

(Mwangi & Sweller, 1998; Ward & Sweller, 1990). Furthermore, Zhu and Simon 

(1987) stated that using worked example as an instructional method can significantly 

reduce the teaching time. However, they emphasized carefully planned worked 

examples. A well designed worked example helps to build and automate an appropriate 

schema. According to cognitive load theory worked examples, to be effective, must 

direct the learners’ attention aptly. In geometry, for example, Tarmizi and Sweller 

(1988)  demonstrated that worked examples that required learners to split their attention 

between a diagram and the information given separately were less effective than worked 

examples that integrated the information in the diagram; this effect was named the ‘split 

attention effect’. Therefore, they concluded that integrating textual explanation into a 

diagram is vital to circumvent the split attention effect. In a further study by Ward and 

Sweller (1990) it was indicated that using well designed worked examples that take into 

account other aspects of cognitive load facilitate schema acquisition and automation.   
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Worked examples are supposed to encourage schema acquisition and enhance the 

learning process. Paas and his colleague (Paas & van Merrienboer, 1994) indicated that 

adding variability to worked examples during the acquisition phase enhanced the 

schema acquisition process; however, adding variability during conventional problem 

practice had a reverse effect.  

 

Chinnappan and Lawson  (1996) using trigonometry problem solving, compared the 

effectiveness of worked examples that were designed to highlight reading, planning and 

checking versus worked examples that did not make any reference to these management 

processes. They found that students performed better in test problems, both near and far 

transfer, when they were encouraged to pay attention to strategic processes during the 

acquisition phase.  

 

Sweller and Tuovinen (1999) found that familiarity with the domain results in less 

benefit from worked examples compared to exploration problems. They suggested that 

familiarity with an area enables learners to use their previously built schemas rather 

than using the provided worked examples during learning. In other words, existing 

schemas could eliminate the worked example effect. Therefore, worked examples ought 

to be reduced as learner expertise increases in a specific domain. This was one of the 

recommendations of Paas, Renkl and Sweller (2003) following the results of Renkl and 



 
 
 
 

54 

Atkinson’s study (2001; 2003) on the relation between learner levels of expertise and 

the degree learners benefit from worked examples.  

 

2.5.1 Why are worked examples advantageous? 
An answer to this question can be found in Sweller (2006a) in his commentary on 

several recent studies on worked examples. From a cognitive load theory perspective, 

worked examples require less working memory capacity than solving problems because 

they eliminate the need to search for problem solutions. Worked examples, as a result, 

minimize extraneous cognitive load. It is supposed that the effectiveness of a worked 

example depends on the extent to which cognitive load is reduced. As mentioned 

formerly in this chapter, the borrowing principle is a fundamental plank by which long-

term memory content is modified and learning occurs. Worked examples, as an 

instructional method, provide a lucid case of how instructional techniques can benefit 

from this principle. Relying on the borrowing principle rather than the randomness as a 

genesis principle is exemplified by using worked examples rather than conventional 

problem solving as a teaching procedure (Sweller, 2006a).   

 

2.6  Contextual learning 
 

Contextual learning emerges from several theories and movements. Contextual learning 

has been studied in various educational contexts and its implementation can be observed 

in several instructional designs in different areas. Contextual learning revolves around 
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the idea that learning takes place in a meaningful environment rather than laboratory 

settings. Three of these movements: Gibson’s information pickup theory, situated 

learning theory and the realistic mathematics education approach are related to this 

thesis. Thus, a brief outline of them is presented next. Then, contextual learning from a 

cognitive load theory perspective will be discussed. 

The ‘information pickup theory’ (Gibson, 1987) suggests that human cognition 

integrates environmental factors when perceiving an object. Gibson centered his theory 

applications in aviation training and claimed that context is a critical factor in learning 

processes. He emphasized including realistic environmental settings in instructional 

material to enhance and facilitate perception since, he claimed, learning is unlikely to 

occur in isolation from an environment (Gibson, 1986) 

 

‘Situated learning’ (Lave, 1988; Lave & Wenger, 1991) is a leaning theory which was 

developed by Jean Lave and Etienne Wenger in the late 1980s and early 1990s. The 

main argument of this theory is that learning is situated. In other words, Lave (1988) 

claimed that information can be acquired only in real-situations and ongoing 

experiences in daily life. Therefore, knowledge needs to be presented in settings and 

applications that would normally involve that knowledge. According to this theory, 

knowledge cannot be learned in an abstract, decontextualised presentation.   

 

‘Realistic mathematics education’ started around 1970, in the Netherlands. Its 

foundations were laid by Freudenthal (1905-1990). Freudenthal believed that 
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mathematics must be connected to reality, and the experiences of the children. He 

underlined the idea of mathematics as a human activity. From Freudenthal’s point of 

view, mathematics education for children should depend on mathematizing everyday 

reality (Gravemeijer & Terwel, 2000). This process can be done by: (1) Horizontal 

mathematization that leads from the world of life to the world of symbols. (2) Vertical 

mathematization which is the process of reorganization within the mathematical system 

itself (Gravemeijer, 1999). The starting point should be found in situations that need to 

be organized. Instructional designers should look for problem situations that could 

function as informal starting points, from which cognitive growth is possible 

(Gravemeijer & Doorman, 1999). 

 

Context problems are defined as problem situations that are experientially real to 

students. The student’s final understanding of formal mathematics should be rooted in 

their understanding of these experientially real, everyday-life phenomena (Freudenthal, 

1991). At the same time, a shift is made from problems put in terms of everyday life 

contexts to a focus on the mathematical concepts and relations. Gravemeijer (1999) 

argued that to make such a shift possible for students, they need to develop a 

mathematical framework of reference that enables them to look at these types of 

problems, mathematically.  

 

In the realistic mathematics education approach, context problems play a main role. It is 

claimed that well chosen context problems offer opportunities for students to develop 
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informal knowledge to go through mathematical symbols. In the context related 

questions, the context gives meaning to concepts. Moreover, in school settings, 

students’ informal knowledge can serve as a basis for the development of understanding 

of mathematics (Mack, 1990). 

 

Several research studies have been carried out in order to examine the effect of a real-

life context to generate understanding of mathematics concepts, in general, and 

fractions in particular (Mack, 1990). Results showed that students came to school with a 

store of informal knowledge about fractions that enabled them to solve problems 

presented in a real-life context, and they could build on informal knowledge when they 

could match problems represented symbolically to problems presented in the context of 

real-life situations. 

 

In this light, from the realistic mathematics education point of view, making 

mathematical concepts more realistic enables students to link new concepts to an 

existing schema (Empson, 1999; Mack, 1990; 1993; 2001; Streefland, 1991; 1993). 

 

2.7  Cognitive Load Theory and familiarity with the context 
 

Recent movements in cognitive load theory have been interested in familiarity with 

context as a factor that reduces cognitive load in order to facilitate learning (Carlson, 

Chandler, & Sweller, 2003; Marcus, Cooper, & Sweller, 1996). Van Merriënboer, 
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Kirschner, and Kester (2003) suggested that learners should be presented realistic tasks. 

Perry and his colleagues using aviation contexts (Perry, Stevens, Wiggins, & Howell, 

2007) credited the superiority of learners’ performance who studied icons connected 

with familiar meanings, to the meaningful associations that participants have in their 

long-term memory. 

 

This approach is rooted in schema theory and emerges from the premise of automated 

schemas freeing working memory capacity (Sweller, 2003). These automated schemas 

are assumed to provide the contents of human long-term memory which is believed to 

have an unlimited capacity (see chapter 1 for a detailed review). Moreover, it is 

proposed that previously constructed and automated schemas are ready to be retrieved 

and used in working memory once a stimulus is presented (Anderson, 1996; Cowan, 

1988). 

  

Cognitive load theory relies heavily on schemas to reduce cognitive load. In effect, it is 

assumed that schemas allow many elements to be treated as a single element in working 

memory and as a result, more working memory capacity is free (Sweller, 2003). 

Furthermore, it is assumed that experts can perform better in their area of expertise due 

to the fact that they have at their disposal schemas regarding this particular area (van 

Merrienboer et al., 2003).  
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Cognitive load theory assumes that when knowledge has to be acquired in a complex 

environment, more considerations have to be taken into account when designing 

instructional methods than in a simple environment. Hence, considering the limitations 

of the human processing system becomes critical. Sweller and Sweller (2006) argued 

that the environmental organizing and linking principle allows humans to use unlimited 

amounts of pre-stored information to process and link to the environment. Therefore, 

Sweller strongly recommends that relying on the environment organizing and linking 

principle is beneficial when designing effective instructional material and in particular, 

when dealing with high element–interactivity  material. According to this principle, 

knowledge held in long-term memory is critical to intellectual functioning. 

 

In several recent studies, with the intention to reduce intrinsic cognitive load when 

dealing with complex material, it was found that learners who had prior-knowledge 

such as pre-training regarding a specific field outperformed learners who lacked this 

kind of knowledge (Clarke et al., 2005; Mayer et al., 2002; Mayer & Moreno, 2003). In 

these experiments subjects were provided with initial information during a pre-training 

period in such a way that learners commenced their actual learning phase with 

preliminary knowledge. The ‘isolated-element procedure’ used by Pollock and her 

colleagues (Pollock et al., 2002) to reduce intrinsic cognitive load also emphasizes the 

significance of schemas as a critical factor in enhancing subsequent learning (see also 

chapter 1). In Pollock et al.’s study, by isolating the to-be-learned material’s elements 

into individual parts and enabling subjects to construct ‘partial’ schemas regarding these 
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isolated elements beforehand, intrinsic cognitive load was minimized and eventually 

subjects learned more efficiently (Ayres, 2006). Again, in these experiments, 

knowledge held in long-term memory was critical to subsequent learning. 

 

2.8  The expertise reversal effect 
 

2.8.1 Introduction and definition  
The expertise reversal effect as defined in Kalyuga et al. (2003, p. 23) ‘is the reversal of 

cognitive load effects with expertise’. In other words, effects that can be obtained when 

considering human cognitive architecture to generate more effective instructional 

techniques are not applicable when learners are highly knowledgeable. Cognitive load 

theorists provided evidence that learners’ knowledge or expertise plays a critical role in 

the extent to which they benefit from an instructional method. Thus, instructional 

designers need to be aware of learners’ level of expertise to produce effective 

instructions (Chandler & Sweller, 1991; Kalyuga, Chandler, & Sweller, 1998; Kalyuga, 

Chandler, & Sweller, 2000; Kalyuga, Chandler, & Sweller, 2001; Tuovinen & Sweller, 

1999; Yeung, Jin, & Sweller, 1998) and also (Chung, 2007; 2008; Feldon, 2007b; 

Nilsson & Mayer, 2002; Schwartz, Verdi, Morris, Lee, & Larson, 2007; Scott & 

Schwartz, 2007; Taft & Chung, 1999). In effect, instructional designs that are 

appropriate for novices need to be modified to be effective for experts (Kalyuga et al., 

2003; Kalyuga & Sweller, 2004). From another perspective, Feldon (2007b) argued that 
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expert-appropriate support during instruction requires adaptation to be beneficial for 

novices.  

Before expanding further on this effect, the concept of expertise will be discussed.  

2.8.2 Experts versus novices  
De Groot (1965) followed by Chase and Simon (1973) were the first to attribute 

expertise to large amounts of domain-specific knowledge held in long-term memory. 

Chase and Simon in their study into chess masters realized that the difference between 

chess masters and less capable players was their ability to memorize chess board 

arrangements. In other words, chess masters hold more chess board configurations in 

their long-term memory and are able to recall them when required. However, this 

superiority disappears when these masters are faced with random board configuration. 

Based on schema theory (see Chapter 1 for a detailed review), experts have schemas 

that allow them to store more information and retrieve it if required as a stimulus is 

provided. 

Feldon (2007b) suggested other factors that differentiate experts from non-experts; he 

stated that the knowledge structure of experts is different from non-experts’. Feldon in 

the same paper assumed that experts’ schemas are more abstract and general than 

novices’. Another factor mentioned by Feldon (2007b) that differentiates experts form 

non-experts is the strategies they use to solve problems. Experts work forwards, for 

example they consider the requirements and the limitations of a problem to achieve the 

optimal solution and use conceptual schemas, whereas learners with less expertise 

classify problems based on surface structures and work backwards from the required 
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solution to determine their strategy. According to Larkin and her colleagues (Larkin, 

McDermott, Simon, & Simon, 1980a; Larkin et al., 1980b) novices might use trial and 

errors strategies to obtain the required solution while experts work more systematically.  

 

Lawson and Chinnappan (1994) compared high-achieving to low-achieving student 

protocols while solving geometry problems. They found that high-achievers had access 

to greater amounts of geometric knowledge and were more able to use this knowledge 

effectively. Moreover, high-achievers managed their problem-solving process 

efficiently. In another study, Lawson and Chinnappan (2000) indicated that knowledge 

connectedness in high-achieving students was superior to low-achieving students. In 

other words, high-achievers retrieved related knowledge more readily and were able to 

link given knowledge schemas to related information. 

 

Feldon (2007b, p. 103) summarized the characteristics of expertise in the following 

manner: 

· Experts possess extensive conceptual and strategic knowledge. 

· Experts use effective automated procedures that allow them to outperform non-

experts consuming less time and experiencing less effort. 

· Experts’ working memory has more capacity than novices’. It allows them to 

successfully attempt more complex problems.  

 

2.8.3 Why and how does the expertise reversal effect occur? 
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To comprehend the reason behind the expertise reversal effect, human cognitive 

architecture, in particular the limited capacity of working memory and the unlimited 

capacity of long-term memory need to be considered (Kalyuga et al., 2003; Sweller, 

2003; 2004). Kalyuga and his colleagues (Kalyuga et al., 2003) asserted that if learners 

are less experienced in a particular domain, they either lack schemas, or the schemas 

that they possess are insufficiently developed to incorporate the problem situation. 

Consequently, for learning outcomes to be achieved, instructional guidance is essential. 

In contrast, as learners’ experience in a particular domain increases, not only do they 

hold more schemas but also these stored schemas become more complex. In addition 

they are likely to have more accessibility to the stored schemas when necessary. Thus, 

once a stimulus is provided they are able to approach the required schema readily. 

Therefore, the need for instructional support is unnecessary and may create a negative 

impact resulting in a reversal effect.  

 

Sweller (2004) suggested that the extent to which instructional aid is required depends 

on the extent to which related knowledge is available in the information store. Thus, if 

the needed information is already available in long-term memory, the provided 

information by an instructional method becomes redundant. It might interfere with 

learning and the desired positive effect from the aid offered by the instructional 

technique reversed. In fact, Sweller (2004) assumed that the necessity of support 

provided by instructional methods is a function of the learners’ level of expertise. 
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Specifically, as the level of expertise rises, the amount of instructional aid should be 

reduced, or else a reversed effect is likely to arise. 

            

2.8.4 Evidence for the expertise reversal effect  
Kalyuga and his colleagues (Kalyuga et al., 2003; Sweller, 2003; 2004) were the first to 

demonstrate this effect. Extensive evidence can be found across several research fields 

and several cognitive load effects are shown to be reversed when learners are 

knowledgeable. For example, worked examples were found to be unhelpful and 

distracting rather than effective. Kalyuga and his colleagues (Kalyuga, Chandler, & 

Sweller, 2001)  in their study into mechanical trade training found that subjects with 

less expertise in the domain performed better under a worked example condition 

compared to those under a problem solving condition, whereas the situation was 

reversed concerning more expert participants. In the domain of data programming, 

Tuovinen and Sweller’s (1999) study demonstrated that learners with no previous 

knowledge benefited more from worked examples while those with more prior-

knowledge had fewer advantages. 

  

 In a hypermedia environment, Schwartz and his colleagues (Schwartz et al., 2007) 

found that  providing navigators with a navigation map of a site (which is intended to 

reduce extraneous cognitive load during navigation) was advantageous when 

geographic maps was presented and the learners were unfamiliar with the geography of 

the area. By contrast, when they were familiar with the geographic features of the area, 
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learners performed better when navigation maps of a site were not provided. Similarly 

Scott and Schwartz (2007) verified that navigators benefit more from a site map only if 

their metacognitive skills were relatively low. Mayer and Moreno (2003) and Mayer 

(2001) confirmed the expertise reversal effect and its impact on designing a multimedia 

environment.  

 

The expertise reversal effect was also confirmed in languages studies. Chung’s  (2007) 

study in Chinese as a second language demonstrated an interaction between modality 

and learners’ expertise. He found that the mixed format (visual-audio mode) worked 

better than the visual only format when learners lacked experience. Chung (2007; 2008) 

explained that  as learners’ level of expertise increases, their cognitive structures change 

accordingly. Therefore, some of the information that was essential when their level of 

expertise was low becomes redundant when expertise rises. Hence, when forced to 

process this unnecessary information they experience more cognitive load. 

Consequently, their performance suffers. Chung argued that the optimal method of 

learning is a function of learners’ characteristics in addition to the instructional format 

(Chung, 2007; Taft & Chung, 1999). Yeung, Jin and Sweller (1998) reported similar 

results. In their study they found adding a textual note to a to-be-learned text was 

beneficial for less knowledgeable learners, but detrimental for more knowledgeable 

learners.   
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Other studies found evidence for an expertise reversal effect in various areas. Kalyuga, 

Chandler and Sweller (1998) found that including explanatory material in an integrated 

format was beneficial for less knowledgeable learners, but inferior for more 

knowledgeable participants. Kalyuga, Chandler and Sweller (2000) obtained similar 

findings in their study on visual and auditory format.  

    

2.9  Summary of Chapter 2 
 

This chapter outlined five principles of human cognitive architecture that are relevant to 

instruction: the information store principle, the borrowing principle, the randomness 

principle, the narrow limits of change principle and the environment organizing and 

linking principle (Sweller, 2006b; Sweller & Sweller, 2006). The information store 

principle guarantees a large amount of information held in long-term memory which is 

assumed to be unlimited in its capacity and duration. The borrowing and reorganizing 

principle acts as a mechanism to acquire this knowledge by borrowing it from other’s 

long-term memory while the randomness as a geneses principle explains how novel 

information can be generated initially. The narrow limits of change principle ensures 

that changes to long-term memory are minor and incremental. Once this new 

information is stored it becomes a part of the information stored in long-term memory 

and it can be used for appropriate actions via the environmental organizing and linking 

principle and can, in turn, be transmitted to another person  (Sweller, 2003; 2004; 
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2006c). Cognitive load theory relies on these principles to design effective instructional 

methods. 

  

Cognitive load theory distinguishes between three types of cognitive load: intrinsic 

which is related to the material-to-be-learned itself, extraneous which is linked to the 

instruction methods used to present this material, and germane cognitive load which is 

associated with the cognitive load learners invest in the learning process in order to 

construct and automate schemas. These three sources of cognitive load are additive and 

the total cognitive load faced by a learner is determined by their sum total.  

 

The main goal of cognitive load theory is to control and maintain the faced cognitive 

load within the margins of working memory. Working memory is assumed to be limited 

in its capacity and duration. Manipulating intrinsic cognitive load which is associated 

with the material’s complexity can be achieved by two tactics; isolating the material 

elements (Ayres, 2006; Pollock et al., 2002; Sweller, 2006c) or using a pre-training 

phase to enable learners to build prior-knowledge or sub-schemas to help them to 

handle the complexity of the material (Clarke et al., 2005; Mayer et al., 2002; Mayer & 

Moreno, 2003). These techniques are based on the assumption that learners’ prior-

knowledge is a significant factor, particularly when dealing with a high element-

interactivity material. 
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Extraneous cognitive load can be reduced by several instructional methods based on 

effects such as the split-attention and worked example effects (Sweller, 2003). This 

thesis is particularly concerned with the worked example effect. 

 

Germane cognitive load needs to be optimized to construct and automate related 

schemas to enhance the learning process. Learners need to have free working memory 

capacity at their disposal to generate germane cognitive load and so, minimizing both 

extraneous and intrinsic cognitive load is a necessary condition to allow learners to 

optimize germane cognitive load within the limits of working memory. Triggering 

germane cognitive load can be achieved by using contextual interference (DE Croock et 

al., 1998; van Merrienboer et al., 1997; van Merrienboer et al., 2002) and by using self-

explanation (Renkl & Atkinson, 2001; Renkl et al., 1998). 

 These three types of cognitive load are assumed to be additive and the total imposed 

cognitive load is determine by the sum of all three types of cognitive load (Paas et al., 

2003). 

 

There are various factors that affect the invested mental effort in learning. Factors that 

are related to the task to be performed (such as a task structure, time pressure and 

reward system), characteristics of the learner (i.e. the learner’s previous knowledge and 

intellectual capability) and the interaction between them (Paas et al., 1994).  
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Cognitive load theory has provided evidence that learning can be facilitated in terms of 

time and effort when worked examples are used as an instructional method principally 

because it relies on the borrowing and reorganizing principle rather than the randomness 

as genesis principle (Sweller, 2006a; 2006b; Sweller & Sweller, 2006).  

 

Several educational theories and approaches originating from contextual and situated 

learning movements such as information pick-up theory (Gibson, 1986; 1987) situated 

learning theory (Lave, 1988; Lave & Wenger, 1991) and the realistic mathematics 

education approach (Freudenthal, 1991; Gravemeijer & Doorman, 1999) emphasize that 

learning occurs in realistic environmental settings and is unlikely to be achieved in 

isolation from a relevant environment. These movements encourage using familiar 

contexts to present a learning material and suggest the use of careful contextual 

problems when introducing a new concept. Such a starting point has to function as an 

informal starting point that enables cognitive development. 

 

Cognitive load theory assumes that familiarity with the context reduces cognitive load 

(Carlson et al., 2003; Marcus et al., 1996; van Merrienboer et al., 2003). This 

assumption emerges from the heavy weight given to existing and automated schemas as 

a factor that reduces cognitive load. Having prior-knowledge, whether this knowledge 

was acquired as a result of pre-training or as a result of familiarity with the context has 

proved to be an advantage in many studies (e.g. Ayres, 2006; Clarke et al., 2005; Mayer 

et al., 2002; Mayer & Moreno, 2003; Pollock et al., 2002).    
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The interaction between learners’ level of expertise and the extent to which support 

should be provided by an instructional design should be taken into account if an 

effective instruction is to be effective. Instructional methods that are effective for less 

knowledgeable learners might be unhelpful or even, as a result of the expertise reversal 

effect, have negative effect for more knowledgeable learners. Concisely, effects that can 

be obtained when learners are considered as novices can disappear or be reversed when 

learners have more knowledge in a particular domain (Feldon, 2007b; Kalyuga et al., 

2003; Kalyuga et al., 1998; Kalyuga, Chandler, & Sweller, 2001; Kalyuga & Sweller, 

2004).    
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Chapter 3: Fractions 
 

 

3.1  Introduction 
 

The fraction concept is one of the more complex concepts that primary school students 

encounter. In essence, the complexity of this concept emerges from the several sub-

constructs that a fraction contains. Kieren  (1980) outlined five sub-constructs for the 

fraction concept: part-whole, quotient, ratio, operator and measure. Each sub-construct 

is associated with a different meaning and has its own challenging issues. Furthermore, 

the fraction concept is high in element-interactivity a matter that elevates intrinsic 

cognitive load (Sweller & Chandler, 1994). Learners need to understand the meaning of 

the numerator, the denominator, and also the specific relation between these two 

elements to understand the meaning behind the concept. Grasping these interactions is a 

highly demanding task for primary school students, and we have merely considered a 

single sub-construct, the part-whole sub-construct. However, if a holistic perception is 

to be reached, all sub-constructs and all different meanings in addition to the interaction 

between them needs to be thoroughly assimilated.  

 

3.2  Schemas involved in the acquisition of rational numbers 
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According to Piaget (1952), thinking is exemplified by mental representations and 

manipulations. Humans constantly acquire knowledge and store it in schematic 

symbols. A new learned concept emerges from a particular combination of the novel to-

be-learned concept with previously stored knowledge. Fieshbein (1989) suggested that 

learning occurs as a result of manipulating or modifying an existing schema. Tzur 

(1999) claimed that learning is a procedure that aims to rearrange previously 

constructed schemas. According to Mack (1993), learning is a result of the relations that 

learners make between new material and their prior-knowledge.  

 

Research that deals with rational numbers indicates several schemas central to learning 

fractions (Hunting et al., 1991; Kieren, 1993; Nesher, 1989; Steffe & Olive, 1993). 

 

Schemas of whole number: Children use their previously constructed schemas about 

whole numbers. They use these schemas to build on so they can understand the meaning 

behind the elements of the fraction concept. Then a child integrates this procedure with 

the division operation.  

 

Schemas of division: These schemas include; halving, dealing (equal-sharing) and folding 

schemas. Halving is the first to be developed in children and can be used to divide 

continuous or discrete quantities. Dealing is another type of primitive division that 

occurs when children use the ‘one for me, one for you’ procedure that results in equal 



 
 
 
 

73 

shares. Folding is a method used to produce multiple numbers of parts every time one 

more fold occurs.   

  

Schemas of measurement: According to this schema, children can perceive fractions as 

quantities that can be measured.   

 

Schemas of comparison: This schema is the basis for multiplication using whole numbers. 

For fractions, it enables learners to manipulate the ‘unit’ concept. 

 

Schemas of interrelation: This schema allows children to perceive relations between parts 

and wholes.  

 

3.3  Mental processes involved in the acquisition of rational numbers 
 

Acquiring rational number knowledge needs several stages (Kieren, 1993). Kieren 

suggested a recursive model in which each external circle is built on and can organize 

an internal one. The development from an internal to a more external circle occurs as a 

result of social interaction throughout the learning process. In this model, the most 

internal and initial level is called ‘Ethno mathematical knowledge’. At this level, 

knowledge is obtained as a result of natural environmental experiences. Kieren claimed 

that at this stage rational number concepts include only ‘half’ and ‘quarter’. While at 

this point, children can deal with sharing continuous quantities, they do not use a formal 
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mathematical language. The second circle is the ‘Intuitive level’ which occurs in 

educational systems. At this level, children learn a fraction as a part of a whole by 

dividing a whole into equal parts. The next outer circle in this suggested model is 

‘Technical symbols.’ During this stage, children deal with mathematical language and 

use symbols and algorithms. The last and the most external level is called ‘Axiomatic 

deductive knowledge’. At this phase, students learn the relations between the various 

sub-constructs of fractions. This circle is supposed to embrace all previous ones. 

Moreover, a learner is very unlikely to thoroughly understand fractions unless reaching 

this final level (Kieren, 1993). 

 

3.4  Sub-constructs of the rational number 
 

Not only can the fraction concept be presented and perceived in many different 

meanings and sub-constructs, but also the interactions between these sub-constructs 

must be understood in order to gain a holistic understanding (Chinnappan, 2005; 

Hunting et al., 1991; Pitkethly & Hunting, 1996). Researchers identified five sub-

constructs (Behr, Wachsmuth, Post, & Lesh, 1984; Kieren, 1981; 1988; 1993; Nesher, 

1989). A brief outline of each is presented next.  

 

Rational number as a part-whole:  In this sub-construct, a whole is divided to n-parts. 

Each part is called 1/n and k-parts are called k/n. The proposition of a whole that equals 

n/n is central. In this sub-construct, the procedure of dividing the whole into equal parts 
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is considered a main principle. Many researchers claim that this sub-construct is the 

most dominant, since it is presented as an initial model in educational systems. This 

model was criticized by Mack (1993) and Streefland (1991; 1993) because a fraction, in 

this sub-construct, is perceived as having a static and nominal meaning. In addition, 

students concentrate more on the fraction as a procedure rather than as a meaningful 

object (see also Khateeb, 2002). 

 

Rational number as a quotient: In this model, a/b is the result of dividing two integers. 

This quotient exemplifies a quantity and can answer the question ‘how much’. If we 

consider the fraction 2/3, as an example, according to this sub-construct, 2/3 is the result 

when dividing two wholes by three. Or, using the fair-sharing schema, it is the portion 

each person receives when two items are shared equally and wholly among three 

sharers.  

 

Rational number as an operator: This sub-construct emphasizes the meaning of a rational 

number as an expansion-contraction factor. This meaning is supposed to be beneficial 

when learning about the fixed value of different names or presentations of the same 

fraction.  

 

Rational number as a ratio: In this model, a/b represents a relation between ‘a’ and ‘b’ as 

two quantities. It is usually represented as a:b.  
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Rational number as a measure: This model represents a type of division. In this 

presentation, a/b is perceived as the number of times a quantity ‘b’ is included into a 

quantity ‘a’.  

 

3.5  Complexity of fractions: A cognitive load theory perspective 
 

Knowledge, as mentioned in previous chapters can be classified into two main 

categories. The first is knowledge that can be incorporated entirely in individual, 

isolated elements. This type can be processed element by element in working memory, 

therefore the process does not place a heavy load on working memory, and so it is 

undemanding. Intrinsic cognitive load that is associated with learning this type of 

material is minor. On the other hand, there is a different type of knowledge which is 

rich in element interactivity and demands all elements be processed simultaneously in 

working memory to be assimilated appropriately. To mentally process this kind of 

information, a high intrinsic cognitive load is imposed.  

 

The degree of a material complexity depends on the number of elements it contains. 

Sweller and Chandler (1994) discussed the difficulty of to-be-learned materials. They 

stated that difficulty is a function of the number of elements and the degree of 

interactions among these elements. In particular, they described fractions as a 

troublesome concept. They claimed that fractions cause a heavy intrinsic cognitive load. 

Since fractions have several elements that have to be manipulated concurrently in 
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working memory, the cognitive load that has to be invested in such a process is likely to 

surpass the limited capacity of working memory. Hence, learning is congested.   

 

3.6  Suggested methods to teach fractions 
 

Teaching complex concepts to children such as fractions has long been a concern 

amongst educators. Researchers have tried to find an efficient method to teach 

mathematical concepts. There have been many suggestions. Steiner and Stoecklin 

(1997) noted that fraction comprehension is context dependent. Streefland (1991) 

proposed using realistic situations to teach mathematical concepts in general and 

fractions (Streefland, 1993) in particular. Other researchers (Kieren, 1988; Mack, 1993; 

Streefland, 1991; 1993) argued in favor of using informal real-life knowledge that 

children have acquired to facilitate leaning processes. In essence, Streefland (1991; 

1993) suggested that fractions should be taught through fair–sharing problems which 

can be recognized as a real-life situation (Mack, 1993). According to Empson (1999), 

fair-sharing problems provide a context about which young children have knowledge. 

He claimed that equal-sharing tasks facilitate children’s use of knowledge about 

partitioning to think about fractions in mathematical ways. This schema was used also 

by Khateeb (2002) who found that using a fair-sharing schema, which is deeply rooted 

in children’s real-life practices, allows children to understand a fraction as an entity 

rather than a procedure of dividing and shading shapes. Nowlin (1996) found that using 

problems in contexts was more helpful than using problems with no context in learning 
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division with fractions. Sharp and Adam (2002) in their study into learning division 

with fractions found that utilizing students’ prior-knowledge about division facilitates 

learning. In this case, by using the common-denominator rather than the invert-multiply 

procedure to divide fractions, they took advantage of the strong whole-number schema 

that students have acquired to build a further expansion for fractions. 

 

In conclusion, most suggested strategies to facilitate learning rational numbers count on 

building on existing schemas, in other words, on children’s prior-knowledge. This prior 

knowledge can be acquired either by realistic daily practices (Empson, 1999; Khateeb, 

2002; Kieren, 1988; Mack, 1993; 2001; Steiner & Stoecklin, 1997; Streefland, 1991; 

1993) or as a result of previous, school-based learning (Cooper & Sweller, 1987; Sharp 

& Adams, 2002; Sweller, 2003; Sweller & Chandler, 1994).   

 

3.7  Summary of Chapter 3 
 

The rational number is known as a difficult concept. It contains several sub-constructs: 

part-whole, quotient, ratio, operator and measure (Kieren, 1980) with each one 

providing a different meaning. Moreover, it is high in element-interactivity, which 

increases intrinsic cognitive load (Sweller & Chandler, 1994). 

 

 There are a number of schemas that may be associated with learning fractions: schemas 

of whole numbers, schemas of division, schemas of measurement, schemas of 
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comparison, and schemas of interrelation (Hunting et al., 1991; Kieren, 1993; Nesher, 

1989; Steffe & Olive, 1993). 

 

 Several mental processes are involved in comprehending fractions. Kieren’s suggested 

recursive model (Kieren, 1993) includes four levels: ethno mathematical knowledge, the 

intuitive level, the technical symbols stage, and axiomatic deductive knowledge. 

Throughout these four levels children develop their mathematical knowledge about 

fractions. 

 

From a cognitive load theory perspective, fractions impose a high intrinsic cognitive 

load because of their high element interactivity (Sweller & Chandler, 1994). Based on 

cognitive load theory, there are methods appropriate to teaching fractions efficiently. 

One technique is to use realistic contexts or realistic settings to enhance or motivate 

appropriate schemas held in long-term memory (Empson, 1999; Khateeb, 2002; Kieren, 

1988; Mack, 1993; 2001; Nowlin, 1996; Streefland, 1991; 1993), or to use previously 

learned material (Sharp & Adams, 2002; Sweller, 2003; Sweller & Chandler, 1994).   
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Chapter 4: Research in the field 
 

 

4.1  Research in the field 
 

Several studies have been carried out in order to examine the effect of a real-life context 

to generate understanding of mathematics concepts, in general (Carraher, Carraher, & 

Schliemann, 1985; 1987; Koedinger & Nathan, 2004; Saxe, 1988) and fractions in 

particular  (Empson, 1999; Mack, 1990; 1993; Rittle-Johnson & Koedinger, 2005). 

Results showed that students came to school with a store of informal knowledge about 

mathematical concepts that enables them to solve problems presented in a real-life 

context, and build on informal knowledge when they could match problems represented 

symbolically to problems presented in the context of real-life situations.  

 

The importance of context also can be seen from the work of Freudenthal (1991) and 

Gravemeijer (1999; Gravemeijer & Doorman, 1999). Context problems are defined as 

problems that are experientially real to students. According to Freudenthal, a student’s 

final understanding of formal mathematics should be rooted in their understanding of 

experientially real, everyday life phenomena. From this point of view, making 

mathematical concepts more realistic enables students to link new concepts to an 

existing schema (Empson, 1999; Mack, 1990; 1993; Streefland, 1991; 1993) . 
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Koedinger and his colleagues (1997) introduced the cognitive tutor algebra curriculum 

and software within the Pittsburgh urban mathematics project, based on the ‘Adaptive 

control of thought theory’, known as ACT theory (Anderson, 1996; Anderson, Corbett, 

Koedinger, & Pelletier, 1995; Koedinger & Anderson, 1990). The key feature of this 

project is to help students learn abstract algebraic representations by bridging existing 

knowledge using situations or familiar word problems. The Pittsburgh urban 

mathematics project curriculum employs real-world situations designed to make 

mathematics more meaningful and accessible for children. The continuous success of 

the cognitive tutor and the Pittsburgh urban mathematics project provide evidence of the 

effectiveness of using familiar contexts to facilitate learning materials (Koedinger et al., 

1997; Ritter, Anderson, Koedinger, & Corbett, 2007). 

 

Goldstone and Sakamoto’s participants (2003) showed better abstract understanding of 

a simulation when concrete rather than idealised graphical elements were used as 

illustrations. However, for learners who did not originally show strong evidence of 

comprehending the abstraction, the reverse was shown to be the case. Goldstone and 

Sakamoto concluded that increasing the concreteness and surface-level similarity 

between two domains can distract learners from taking a more abstract perspective. In 

Koedinger and Nathan’s (2004) study, money as a familiar context was used as cover 

stories for algebraic problems. This resulted in a better performance when solving 

algebra story problems than when solving the equivalent algebraic equations. 

Nonetheless, Koedinger and Nathan attributed these differences to students’ difficulties 
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in understanding the formal symbolic representation of quantitative relations, a 

difficulty that might be minimised when solving a real-world story problem.   

 

Rittle-Johnson and Koedinger’s (2005) study on the design of learning scaffolds 

showed that providing students with contextual scaffolds enabled them to perform 

better in adding and subtracting fractions. Also, students made fewer conceptual errors 

when a problem was presented in a real-world context. Rittle-Johnson and Koedinger 

stated that contextual scaffolds seemed to elicit prior-knowledge that helped learners to 

implement different approaches for solving problems. 

 

Goldstone and Son (2005) showed that transferring scientific principles was better when 

learners started with concrete representations (using a representation of ants that search 

for apples to eat) and switched to idealised representations (ants were presented as lines 

and apples as dots) in the learning phase. Goldstone and Son demonstrated that the 

concrete fading strategy allowed grounded principles to become less specific context 

related. This study emphasises the fact that real-world physical experiences are highly 

effective if transfer is to be achieved. On the contrary, a study conducted by Sloutsky, 

Kaminski and Heckler (2005) provided evidence that concrete symbols may hinder 

learning while abstractness may have benefits. Taking into account that materials used 

in their experiments did not capture all aspects of the to-be-learned material, they 

acknowledged that in order to facilitate learning, concrete representations have to 

communicate relevant aspects of the to-be-learned material. 
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Using cognitive load theory, familiarity with context has been examined as a factor that 

reduces cognitive load in order to facilitate learning (Carlson, Chandler, & Sweller, 

2003; Marcus, Cooper, & Sweller, 1996; van Merriënboer, Kirschner, and Kester 

(2003). In effect, real-life experience can result in expertise and familiarity. This 

approach is rooted in schema theory and emerges from the premise of automated 

schemas freeing working memory capacity (Sweller, 2003).  

 

4.2  Rationale for this study 
 

Mathematical knowledge in abstract form should be an ultimate goal of teaching 

mathematics, nevertheless, there are grounds for suggesting that when initially exposed 

to new concepts, and procedures, learners should be presented with the new material 

within a familiar, concrete context. Cognitive load theory provides a theoretical 

rationale for presenting novel material in more rather than less familiar form (Carlson et 

al., 2003; Marcus et al., 1996). Moreover, using worked example as an instructional 

method can add to the efficiency of this strategy since the imposed extraneous cognitive 

load is likely to be minimized.  

 

4.3  A brief description of experiments conducted in this thesis  
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In this thesis five experiments have been conducted to test the general hypothesis that 

novel material should be presented in more rather than less familiar form. The first three 

experiments examined the context effect in learning fractions using worked examples as 

an instructional method in both diagrammatic and word-based format, while the last two 

investigated the effect of context comparing a problem solving instructional technique 

vs. a worked example instructional technique.  

 

Experiment 1 compared the effect of a real-life context using pizzas and cakes to 

demonstrate fractions as a cover story vs. a geometric context using circles and 

rectangles. It was hypothesized that the realistic context would be superior. 

 

Experiment 2 investigated the context sequence of worked examples. Four different 

sequences were examined; a Real-Real group was given two phases with realistic 

materials in both phases, a Real-Geometric was given in the first phase materials in a 

realistic context followed by second phase materials in a geometric context. The third 

group, Geometric-Real group, had its materials in the first phase in a geometric context 

followed by materials in a realistic context, and a Geometric-Geometric group was 

given two phases with geometric materials in both phases. It was hypothesized that the 

Real-Geometric condition will be the most beneficial sequence on the assumption that 

once the concept was learned using realistic materials, it would be easier to transfer it to 

abstract materials than if learning commenced with geometric objects. 
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Experiment 3 was intended to generalize the results of the first two experiments by 

examining the same sequences using worked examples in a wording rather than a visual 

format. All diagrammatic illustrations were removed from the presented worked 

examples. Also, the test problems were categorized into two categories based on a 

transfer continuum; near transfer and more distant transfer problems and a superiority of 

a real-geometric condition was anticipated in transfer problems based on the previous 

experimental results. 

 

Experiment 4 examined the effect of using a real-life context compared with an abstract 

context as a cover story using a problem solving instructional technique vs. a worked 

example instructional technique. Since contextual problems are used to stimulate 

learners to benefit from prior knowledge held in their long-term memory and activate 

schemas already constructed and stored in long-term memory, it was hypothesized that 

the context would have an effect on the students’ performance in the test problems 

regardless of the instructional method. Moreover, a worked example effect was 

anticipated.  

 

Experiment 5 replicated the previous experiment with participants who had less 

previous knowledge about fractions. In this experiment, a superiority of a realistic 

context was hypothesized in both near and more distant transfer problems. Also, a 

worked examples effect was predicted.   

A detailed description of each experiment is provided in the following chapters. 
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Chapter 5: Experiment 1 
 

5.1  Introduction 
 

This experiment tested the consequences of presenting worked examples in real-life, 

familiar contexts rather than geometric contexts. The subject area was comparing 

fractions. It was hypothesized that by using real-life cover stories from learners’ real-

life to explain fractions, the new concepts could be more readily assimilated into 

existing knowledge held in long-term memory compared to the more traditional 

geometric contexts.  

 

5.2  Method    
 

5.2.1 Participants 
Thirty-two students from Year five (approximately 10 years old) of a Sydney public 

school participated in this study. They were allocated randomly into two equivalent 

groups of 16 students each with the same number of each gender in each group. No 

participant had been taught about fractions comparison previously.  

  

5.2.2 Material and procedure 
All testing was carried out on an individual basis. The experiment consisted of two 

phases; a learning phase and a test phase. For the learning phase, students of each group 
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were presented three pairs of worked examples, each pair consisting of a solved 

example followed by an identical problem to solve. For example, students were shown a 

worked example indicating that 1/3 is greater than 1/5. Then they were asked to solve a 

problem asking whether 1/3 is greater than, less than or equal to 1/5. All problem pairs 

were similar in their content. At the beginning of the each experiment, it was explained 

orally that for all comparisons of fractions, the same size object can be assumed. 

The fractions that were compared in the worked examples were: 

1/3 and 1/5 

2/3 and 4/6 

3/8 and 2/4 

 

A part-whole sub-construct was used to introduce fractions for both of the two groups. 

The part-whole model requires the interpretation of fractions as part of a whole and is 

commonly used in teaching fractions. For example, the fraction, 3/4 is frequently 

described in class as three parts out of four equal parts. 

 

Each group studied a set of three worked examples immediately followed by an 

identical problem with three minutes allocated to each of the worked examples and 

another three minuets to each associated problem. Students were asked to study the first 

worked example within three minutes then solve the paired problem. Time needed to 

solve the paired problem was measured up to a maximum of three minutes. Then they 

were asked to rate the difficulty of each pair using the provided nine-point scale. 
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Students were stopped after three minutes. If they had not succeeded in solving the 

problem, a correct solution was provided by the examiner. The same procedure was 

followed for all pairs of worked examples. The worked example was available while 

solving the paired problem. The first group studied the examples in a real-life context 

using the context of pizzas, that were always round, or cakes, that were always 

rectangular, as a cover story. The whole set of worked examples presented for the real-

life context group can be found in Appendix A1. A representative pair of worked 

examples which was provided to the real-context group is shown in Figure 9  
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Problem 3   Solution 3  
Who will eat 
more pizza; Sam 
who eats 3 slices 
of large pizza 
divided into 8 
equal parts (3/8 
of one large 
pizza), or Tim 
who eats 2 slices 
of large pizza 
divided into 4 
equal parts (3/4 
of one large 
pizza)? 

Draw one large pizza. 

 

Divide this pizza into 8 

equal slices. 

 

Mum said that Sam can 

eat 3 slices, which is 3/8 

of the pizza. 

He will eat this portion: 

 

Sam will eat 3/8. 

 

 

Draw another large pizza. 

Divide this pizza into 4 equal 

slices. 

Mum said that Tim can eat 2 

slices of the four slices. This is his 

portion: Tim will eat 2/4. 

 

Before eating, a few friends came and 

mum re-divided the pizza into 8 parts, 

but she said that Tim still can eat the 

same amount of pizza. 

Now Tim’s  portion will look like this: 

. 

Tim  can eat 4 slices of 8 (4/8) which is 

the same amount as 2 slices of 4 (2/4) 

Conclusion  Now compare: Sam will eat 3/8 but, Tim will eat 2/4 which is the 

same as 4/8. 

Conclusion: Sam will eat less pizza than Tim.  

So, 3/8 is less than 2/4.  

 
Figure 9: Worked examples:  Real-Context group (Worked example number 3) 
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This worked example was followed by an identical problem to solve shown in Figure 10  

 

 
Figure 10: The associated problem to be solved: the Real-Context group (Worked example 
number 3) 
 
The second group (labeled ‘geometric group’ studied the examples in a geometric 

context using geometric shapes (Two variations, circles and squares, were used as cover 

stories) unconnected to familiar objects. Identical geometric shapes were used for the 

two sets of worked examples. For instance, if a round pizza was used to represent a 

whole for the first worked example of the real-life group, a geometric circle was used to 

represent a whole for the first worked example of the geometric group. 

 

A representative pair of worked examples which was provided to the geometric group is 

shown in Figure 11 

 

 

 

 

 

Who will eat more pizza; Sam who eats 3 slices of a large pizza divided 

into 8 equal parts (3/8 of one large pizza), or Tim who eats 2 slices of 

large pizza divided into 4 equal parts (3/4 of one large pizza)? 
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Problem 3   Solution 3  

What will have 

more red; one circle 

divided into 8 equal 

parts with 3 parts 

painted red (3/8 of a 

circle is painted 

red), or a circle 

divided into 4 equal 

parts with 2 parts 

painted red (2/4 of a 

circle is painted 

red)? 

 

Draw a circle: 

                                                                            

Divide this circle into 8 equal 

parts 

    

Paint three parts of these 

eight parts red.  

   

 

You have 3/8 painted red. 

 

Draw another circle: 

 

Divide this circle into 4 equal parts. 

 

Paint two parts of these four parts red. 

 

You have 2/4 painted red.  

Repeat halving this circle (add 2 lines) 

 

Now you have a circle divided into 8 

parts, 4 of them painted red. You have 

4/8 painted red which is the same area as 

2/4. 

Conclusion  Now compare: In the first circle you have 3/8 painted red whereas, in the 

second circle you have 2/4 painted red which is identical to 4/8 painted 

red. 

Conclusion: we have less red area in the first circle than the second 

circle.  

So, 3/8 is less than 2/4. 

 
Figure 11:  Worked example: Geometric-Context group (Worked example 3) 
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This worked example was followed by an identical problem to be solved shown in 

Figure 12. 

 

 

Figure 12: The associated problem to be solved: the Geometric-Context group (Worked-
example number 1) 
 

Each worked example of the real-life set was similar in length and structure to the 

equivalent worked example of the geometric set (see Appendix A2). Each student 

received one problem after each worked example, on a single sheet of paper with 

sufficient space after it to write a solution. In each worked example or problem, students 

were asked to compare two fractions. If a student gave an incorrect solution he or she 

was told to try again within the three minute time limit. If the student did not provide a 

correct solution within the time limit, he or she was given the correct solution with an 

explanation and then moved to the next pair. The explanation that the student was 

provided with was similar to the explanations used in the solved worked examples. The 

time each student needed to reach the correct solution was measured up to a maximum 

of three minutes. The acquisition score was determined using the following marking 

system (which was used throughout this thesis for all phases) providing a score out of 

six: 

What will have more red; one circle divided into 8 equal parts with 3 

parts painted red (3/8 of a circle is painted red), or a circle divided 

into 4 equal parts with 2 parts painted red (2/4 of a circle is painted 

red)? 
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Two marks were allocated for a correct solution with a correct explanation. 

One mark was allocated if a correct solution was provided, with an incorrect or no 

explanation. 

Zero marks if a student failed to provide a correct solution.  

Examples of correct and incorrect explanations provided by students can be found in 

Appendix A3. 

 

Mental effort refers to the amount of capacity or resources that are invested to answer 

the demands of a given task. It can be used as an index of cognitive load, and can be 

measured by using rating scales. Self–ratings of task difficulty as a method of 

measuring mental effort have been used for this purpose previously, for example 

(Kalyuga et al., 1998; Kalyuga et al., 2000; Kalyuga, Chandler, Tuovinen, & Sweller, 

2001; Paas & van Merrienboer, 1993; Paas et al., 1994). The real-life measure can be 

hypothesized to reduce cognitive load because people, having appropriate schemas, can 

combine multiple elements into a single element. In the case of the geometric context, 

such schemas may not be available. Evidence compatible with this suggestion would be 

provided if we find that the cognitive load reduced for real-life materials compared to 

geometric materials.  

 

All students recorded a subjective rating for task difficulty after each one of the three 

problems to be solved that followed a paired worked example. A nine-point scale shown 
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in Figure 13 was used. The participants were asked ‘How easy or difficult was this 

problem to solve? Tick the appropriate answer.’ 

 

 
Figure 13: Mental effort rating scale  
 

A test phase immediately followed the learning phase. It consisted of 10 arithmetic 

problems to solve (the whole set of test problems can be found in Appendix A4. The 

test problems had no context associated with them, for example: 

Is 1/5 greater than, less than or equal to 1/6?  

How many eighths are equal to 1/4?  

Is 1/5 greater than, less than or equal to 1/6?  

How many eighths are equal to 1/4?  

 

The two groups were given a maximum of two minutes to solve the given problems. 

Each problem was provided on a separate sheet of paper with the participant asked to 

solve it using paper and pencil. Participants were asked to provide written reasoning 

about their solutions. They were asked to work as rapidly and as accurately as possible.  

Very-

very 

easy 

Very 

easy 

Easy    Rather 

easy 

Neither 

easy nor 

difficult  

Rather 

difficult 

Difficult  Very 

difficult 

Very-very 

difficult 
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No feedback was given to participants until the whole experiment was completed. The 

worked examples sheet was not available to participants during the test-problem phase. 

Each question was allocated two, one or zero points respectively (using the same 

marking system as the acquisition phase) providing a score out of 20 for each 

participant. 

 

5.3  Results and Discussion  
 

The variables under analysis were learning scores, test scores and mental effort. During 

the acquisition phase cognitive load (mental effort) was examined. A mean of mental 

effort ratings ranging from one (very-very easy) to nine (very-very difficult) was 

computed for each participant (see Table 1).  

 

The instructional efficiency for each student was calculated using Paas and van 

Merrienboer’s  (Paas & van Merrienboer, 1993; Paas et al., 1994) formula:  

   
2

RP
E

-
=  

Where E = efficiency, P = the test performance z-score (test phase) and R = the mental 

effort z-score (acquisition phase). 
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Table 1: Means and standard deviations (in parentheses) 
 
 

Variable/Group Real-Context Geometric-Context 

Mental effort 

(out of 9) 

2.166 

(1.03) 

3.58 

(1.03) 

Acquisition Time 

( in minutes) 

8.277 

(0.77) 

8.958 

(0.13) 

Acquisition score 

(out of 6) 

3.87 

(1.5) 

2.75 

(1.52) 

Test score 

(out of 20) 

16.75 

(2.69) 

13.43 

(3.20) 

Efficiency 0.93 

(1.18) 

-0.93 

(1.24) 

 

An independent t-test was used to compare means of this variable (mental effort) 

between the two groups. It revealed a significant difference between the two groups’ 

mean mental effort, t (30) = 3.87, partial η2 = 0.33, indicating a reduced mental effort 

by the real-life context group. (The 0.05 level of significance is used through this 

thesis).  

 

A 2 (groups) x 2 (learning and test scores) analysis of variance with repeated measures 

on the second factor was conducted for the test-score. It indicated a significant main 



 
 
 
 

97 

effect between groups, F (1, 30) =10.89, MSe = 7.24, partial η2 = 0.27. The interaction 

between groups and the test scores was significant, F (1, 30) = 5.01, MSe = 3.82, partial 

η2 = 0.14. Following the significant interaction, simple effects tests revealed a 

significant difference between the two groups in favor of the real life context group in 

the learning scores during the acquisition phase, t (30) =2.1, partial η2 = 0.13, and also 

a significant effect on the test problems, t (30) = 3.67,  partial η2 = 0.29 favoring the 

real-life context group. The difference in effect sizes explains the significant interaction. 

 

The means and standard deviations for efficiency are given in Table 1. There was a 

significant difference between the means of the two groups, t (30) = 4.26, partial η2 = 

0.38 in favor of the real-life context group.  

 

We had hypothesized that by being able to use contextual information held in long-term 

memory (the environmental linking and organizing principle) students would be able to 

learn new mathematical concepts more readily than students required to use less 

familiar, geometrical, contextual information. These results support that hypothesis. 

They indicate that instruction using a familiar, real-life context was a much more 

efficient form of instruction than using a less familiar geometrical context.  
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Chapter 6: Experiment 2 
 

 

6.1  Introduction 
  

While the use of a concrete, realistic context proved superior in Experiment 1, it might 

be expected that there may be some conditions under which using a geometric context is 

beneficial. Ultimately, in mathematics, we require students to be able to use fractions 

using any appropriate materials including novel materials. Once a concept has been 

acquired using familiar material, subsequently presenting the information in geometric 

form may be of benefit. Experiment 2 tested this hypothesis by presenting information 

concerning fractions using familiar real world materials followed by the same 

information using geometric materials (the real-geometric group). In this experiment, 

three control groups were used: real-real, geometric-geometric and geometric-real. 

 

6.2  Method  
   

6.2.1 Participants: 
Sixty Year five students (10-11 year old) from a Sydney, private school were allocated 

randomly into four equivalent groups of 15 students each: real-real, geometric-

geometric, real-geometric, and geometric-real groups. Each group contained, 
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approximately, the same number of boys and girls. Teacher information indicated that 

all students had approximately the same level of numeric ability. 

 

6.2.2 Material and procedure 
Students were tested on an individual basis. The experiment consisted of two phases; an 

acquisition phase and a test phase. For the acquisition phase, students in the real-real 

group were presented four pairs of problems, each pair consisting of a solved example 

followed by the similar problem to solve. For the real-real group all of these problems 

were presented in real-life contexts: dividing and sharing pizzas and cakes. For the 

geometric-geometric group, the four pairs of problems were presented in geometric 

contexts: dividing a circle or a rectangle into equal parts and filling in one or more parts 

(the same variations were used as in Experiment 1). The real-geometric group had their 

first two pairs of problems presented in a real-life context with the next two pairs 

presented in a geometric context. The geometric-real group was presented with two 

pairs of problems in a geometric context, followed by two pairs of problems presented 

in a real-life context. Each student had three minutes to study each worked example, 

and another three minutes to solve the associated problem. In total, each student was 

allocated 24 minutes to complete the four problems. Timing for the acquisition phase 

was the same for all groups. Table 2 explains the context sequence of each group.  
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Table 2: Context sequence for the four groups (acquisition phase) 
 

Group/Worked-

example 

Worked-

example 1 

Worked-

example 2 

Worked-

example 3 

Worked-

example 4 

Real-Real 

 

Real-Life 

context 

Real-Life 

context 

Real-Life 

context 

Real-Life 

context 

Geometric- 

Geometric 

Geometric 

context 

Geometric 

context 

Geometric 

context 

Geometric 

context 

Real-Geometric 

 

Real-Life 

context 

Real-Life 

context 

Geometric 

context 

Geometric 

context 

Geometric-Real 

 

Geometric 

context 

Geometric 

context 

Real-Life 

context 

Real-Life 

context 

 

The four worked examples had approximately the same number of words and the same 

number of steps to be solved. The problem following each worked example was 

presented on a single sheet of paper with sufficient space to permit working. Learners 

were asked to follow the worked example when solving the problem. The worked 

example was available while solving the paired problem. If a student gave an incorrect 

solution within three minutes he or she was told to try again. If the correct solution was 

not obtained within three minutes, the student was given the solution with an 

explanation similar to the explanations used in the worked examples and then moved to 

the next pair. To measure mental effort, a nine-point scale was used with participants 
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being asked ‘How easy or difficult to understand were the worked examples?’ see 

Figure 13. The time each student needed to reach the correct solution was measured up 

to the maximum of three minutes. Students were stopped at three minutes. An identical 

marking scheme to Experiment 1 was used, providing a score out of eight for each 

participant over the four acquisition phase problems. Worked examples pairs in a real-

life context can be found in Appendix B1. Worked examples pairs in a geometric 

context are in Appendix B2.  

The fractions compared in the learning phase were: 

1/3 and 1/5 

2/3 and 4/6 

3/8 and 2/4 

6/10 and 4/5 

 

In the test phase, the four groups were given a common test to examine the effect of the 

acquisition phase. This test contained 10 context-free arithmetic problems of the type 

used in Experiment 1 to solve immediately after the acquisition period with up to two 

minutes for each problem (see Appendix A4). The time that each participant took to 

solve each problem was measured up to two minutes. If a student failed to solve a 

problem within two minutes, the next problem was presented. Solutions to unsolved 

problems were not provided until after the test was completed. Each problem was 

provided on a separate sheet of paper to be solved using pen and paper. Students were 

asked to write explanations concerning their solutions to avoid random solutions.  
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A marking scheme identical to Experiment 1 provided a score out of 20 for the 10 

problems each participant was presented. No feedback during the test was given to 

participants until the whole test was completed. The worked examples sheet was not 

available to participants during the test-problem phase.  

 

6.3  Results and Discussion  
 

In the acquisition phase, the variables under analysis were cognitive load (mental 

effort), time spent to solve the problems associated with the worked examples, and 

learning score. In the test phase, the variables under analysis were time needed to solve 

the test problems and test score. Table 3 indicates the means and the standard deviations 

of each variable for each group. 
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Table 3: Means and standard deviations (in parentheses) for Experiment 2 
 

 

Variable/Group 

 

Real-Real 

 

 

Real-Geometric 

 

 

Geometric-Real 

 

 

Geometric – 

Geometric 

Cognitive load/                            

mental effort 

(out of 9) 

2.42 

(1.40) 

3.33 

(1.03) 

4.13 

(1.24) 

3.83 

(1.50) 

Learning time 

(minutes) 

11.73 

(0.53) 

11.66 

(0.45) 

11.73 

(0.56) 

11.90 

(0.28) 

Learning score 

(out of 8) 

5.33 

(1.72) 

6.13 

(1.68) 

3.67 

(2.06) 

3.4 

(2.61) 

Test time 

(seconds) 

508.2 

(146.1) 

511.53 

(95.47) 

645.20 

(188.73) 

576.2 

(123.79) 

Test score 

(out of 20) 

12.67 

(3.22) 

14.67 

(4.23) 

9.8 

(4.33) 

8.73 

(2.96) 

Efficiency 0.863 

(1.06) 

0.705 

(1.24) 

-0.76 

(1.09) 

-0.80 

(1.24) 

 

A 2 (real vs. geometric1st) x 2 (real vs. geometric 2nd) ANOVA was run on the cognitive 

load (mental effort estimates). It indicated a significant difference between real and 

geometric presentations on the 1st two pairs, F (1, 56) = 10.8, MSe = 27.3, partial η2 = 

0.16. A significant difference between real and geometric presentations was not found 
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for the 2nd two pairs F (1, 56) = 0.83, MSe = 27.3, nor was there an interaction between 

the two sub-phases, F (1, 56) = 3.25, MSe = 27.3. 

 

 With respect to the learning time variable a 2x2 ANOVA indicated no significant effect 

due to the 1st two pairs, F (1, 56) = 0.93, MSe = 0.22, 2nd two pairs, F (1, 56) = 0.17, 

MSe = 0.22, nor was there a significant interaction, F (1, 56) = 0.93, MSe = 0.22. 

 

An identical 2x2 ANOVA was conducted on the learning score variable for the learning 

problems. It revealed a significant difference between real and geometric presentations 

of the 1st two pairs F (1, 56) = 17.23, MSe = 4.12, partial η2 = 0.24, but no significant 

difference was found between the 2nd two pairs F (1, 56) = 0.25, MSe = 4.12. The 

interaction between the 1st and the 2nd two pairs was not significant, F (1, 56) = 1.01, 

MSe = 4.12.  

 

An analysis on the test time variable indicated a significant main effect of the 1st two 

pairs in test times, F (1, 56) = 7.5, MSe = 20351.33, partial η2 = 0.12, but neither a 

significant difference between the 2nd two pairs F (1, 56) = 0.75, MSe = 2035.33, nor a 

significant interaction between the two phases was found, F (1, 56) = 0.96, MSe = 

2035.33. 

 

A 2 (real vs. geometric on the 1st two pairs of the worked examples in the acquisition 

phase) x 2 (real vs. geometric on the 2nd two pairs of worked examples in the 
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acquisition phase) ANOVA on the test score revealed a significant difference between 

the real and geometric presentation of the 1st two pairs (sub-phase 1), F (1, 56) = 20.8, 

MSe = 13.96, partial η2 = 0.27. There was neither a significant difference between real 

and geometric presentation due to the 2nd two pairs (sub-phase 2), F (1, 56) = 0.23, MSe 

= 13.96, nor a significant interaction between the two sub-phases, F (1, 56) = 2.52, MSe 

= 13.96. 

 

The instructional efficiency was calculated using Paas and van Merrienboer’s (Paas & 

van Merrienboer, 1993; Paas et al., 1994)  formula. The relative efficiency means and 

standard deviations are shown in Table 2. A 2(1st two pairs) x 2(2nd two pairs) ANOVA 

on the efficiency measures indicated a significant effect of the 1st two pairs, F (1, 56) = 

27.34, MSe = 1.35, partial η2 = 0.33. Neither a significant effect due to the 2nd two 

pairs, F (1, 56) = 0.1, MSe = 1.35, nor a significant interaction effect was found, F (1, 

56) = 0.44, MSe = 1.35.  

 

In summary, the results of the second experiment support the results of the first 

experiment. Those results indicate that worked examples are best presented in a real-life 

context. There was no evidence from Experiment 2 of a superiority of geometric 

presentation following a realistic presentation. All differences between groups depended 

on whether geometric or realistic materials were used in the first two pairs of examples 

and problems. There were no differences between geometric and realistic presentations 

when these were located in the second pair of examples and problems. 
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Chapter 7: Experiment 3 
  

                                                 

7.1  Introduction 
 

The results of the second experiment showed that there was a significant difference in 

performance between the four groups with the Real-Real and Real- Geometric groups 

superior to the Geometric-Geometric and the Geometric-Real groups. The Geometric-

Geometric and Geometric-Real groups had significantly lower test scores in the test 

phase and experienced more mental effort during the acquisition phase. Nevertheless, a 

significant difference between the Real-Real and the Real-Geometric test score was not 

obtained. However, the Real-Geometric group did not have significantly higher test 

scores than the Real-Real group. Therefore, Experiment 3 had two goals; firstly, to 

generalize the results further by testing whether the results of the previous experiments 

would still be obtained using word-based rather than diagrammatic worked examples, 

and secondly to test the hypothesis that a Real- Geometric condition will be superior to 

a Real-Real condition for more distant transfer problems. 

  

7.2  Method 
 

7.2.1 Participants 
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Forty five Year four students were assigned randomly to three groups of 15 students 

each: Real-Real, Real-Geometric, and Geometric-Geometric. Because this experiment 

was conducted at the end of the school year, Year four students had the same age range 

of 10-11 years as the previous experiments’ Year five participants who were tested at 

the beginning of the school year. Since there were neither theoretical grounds nor 

empirical evidence for a Geometric-Real advantage, this combination was omitted. 

 

7.2.2 Material and procedure 
The procedure of this experiment was similar to the procedure of Experiment 2 except 

that for the learning phase, all worked examples were presented in a word-based format. 

No figures were used to present the examples. Students in each group were presented 

six pairs of worked examples, each pair consisting of a solved example followed by a 

problem to solve. Figure 14 shows a representative sample of the worked examples that 

were used in Real-Context condition. Figure 15 demonstrates a representative sample of 

worked examples that were used in Geometric-Context condition (the whole two sets 

are given in Appendix C1 and Appendix C2 respectively). 
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Problem 3    Solution 3 

Mark who can eat 2/3 of his 

birthday cake, argued with Jack 

who is allowed to eat 4/6 of his 

birthday cake about who is allowed 

to eat more cake! They both have 

the same size birthday cakes. Who 

do you think will eat more cake? 

Mum divided Mark’s cake into 3 

equal parts. She said that Mark can 

eat 2 of these 3 parts.   

Mark will eat 2/3 of his cake. 

 

To sort out this situation mum halved 

Mark’s portion. He now can eat 4 

pieces out of 6, instead of 2 out of 3 

but that is still the same amount of 

cake. 

He is allowed to eat 4/6 of his cake. 

 

Mum divided 

Jack’s cake into 

6 equal parts. 

She allowed 

Jack to eat 4 of 

these 6 parts: 

Jack will eat 4/6 

of his cake. 

 

 

Conclusion  Now compare: Mark is allowed to eat 2/3 of his cake, 

which is the same amount as 4/6 of the cake. Jack is 

allowed to eat 4/6 of the cake. Both cakes are the same 

size. 

Conclusion: If we have 2/3 and we halve it we will get 

4/6. Mark and Jack will eat the same amount of cake 

because both can eat 4/6 of the whole cake. 

 
Figure 14: A representative example of real-context condition worked examples 
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Problem 3    Solution 3 

One group of children, who 

painted 2/3 of a rectangle 

blue, got into an argument 

with another group of 

children who painted 4/6 of a 

same size rectangle blue. 

They said that the children in 

the second group got more 

blue than the first. Are they 

right? 

 

The first group of children drew a 

rectangle and divided it into 3 

equal parts. 

They painted 2 of these parts 

blue. 

They have 2/3 of this rectangle 

painted blue. 

____________________ 

To sort out this argument, the 

teacher suggested that the first 

group halve the 3 parts of the 

rectangle. 

They have now 4 blue parts out of 

6. 

The second group of 

children drew a 

rectangle. 

They divided it into 6 

equal parts. 

They painted 4 out of 

these 6 parts blue. 

They have 4/6 of the 

rectangle painted blue. 

 

 

 

Conclusion  Now compare: In the first rectangle you have 2/3 of it 

painted blue, which is the same amount as 4/6. Both of 

them had 4/6 painted blue. 

Conclusion: if we have 2/3 and we halve it we will have 

4/6. It will still have the same painted area. So 2/3 is equal 

to 4/6. 

 
Figure 15: A representative example of geometric-context condition worked examples 
 

The fractions used in the worked examples during the acquisition phase were: 

1/3 and 1/5; 1/5 and 1/9; 2/3 and 4/6; ½ and 2/4; 3/8 and 2/4; 6/10 and 4/5 

 



 
 
 
 

110 

For the test phase, students were presented 12 arithmetic problems classified into two 

categories: Eight near transfer problems, and four more distant transfer problems. An 

example of a near transfer problem is (the whole set of the test problems can be found 

in Appendix C3): 

Is ¾ greater, less than or equal to 5/8? 

To solve the near transfer problems, students needed to use similar procedures as in the 

learning phase such as numerically doubling the numerator and denominator of a given 

fraction to enable it to be compared with another given fraction with the same, larger 

numerical value in the denominator.  

 

An example of a more distant transfer problem is: 

How many ninths are equal to 2/3? 

To solve the more distant transfer problems, procedures beyond the ones used in the 

acquisition phase were required such as combining fractions rather than re-dividing or 

enlarging the numbers of a fraction by a factor of three instead of two to enable 

comparisons.  

 

7.3  Results and Discussion 
 

In the acquisition phase, the variables under analysis were cognitive load (mental effort) 

that was imposed by the learning materials, learning time and learning score. In the test 

phase, the variables under analysis were test time and test score (the total test score), the 
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near transfer questions score, the more distant transfer questions score and the 

instructional method efficiency. Table 4 indicates the means and the standard deviations 

of each variable for each group.  

 

Table 4: Means and standard deviations (in parentheses) for Experiment 3  
 

 

Variable/Group 

 

Real- Real 

 

Real-Geometric 

 

Geometric-

Geometric 

Cognitive load 

(mental effort out of 9) 

2.77 

(1.24) 

2.87 

(1.40) 

3.62 

(1.79) 

Learning time 

(in minutes) 

16.67 

(0.94) 

14.67 

(1.33) 

16.57 

(1.5) 

Learning score 

(out of  12) 

9.20 

(2.21) 

9.80 

(2.04) 

5.60 

(2.58) 

Test time 653.67 

(249.23) 

658.47 

(232.78) 

556.80 

(232.06) 

Global test score 

(out of 24) 

15.93 

(3.70) 

18.27 

(2.34) 

9.87 

(5.055) 

Near transfer questions test 

score (out of 16) 

11.40 

(3.54) 

13.73 

(2.71) 

7.80 

(4.63) 

More distant transfer 

questions test score 

(out of 8) 

3.07 

(2.22) 

4.67 

(1.34) 

0.93 

(0.96) 

Efficiency 0.3948 

(1.03) 

0.7304 

(0.75) 

-1.1252 

(1.62) 
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A one-way analysis of variance followed by Tukey post-hoc tests were used to analyse 

these variables. Tests on the cognitive load measure revealed no significant difference 

among the three groups, F (2, 44) = 1.46 MSe = 80.54. A one-way ANOVA on the 

learning time revealed a significant difference among the three groups, F (2, 44) = 

11.66, MSe = 1.63, partial η2 = 0.36. A Tukey post-hoc test indicated that the real-

geometric group needed significantly less time than both the real-real group and the 

geometric-geometric group. Tests on the learning score revealed a significant difference 

among groups F (2, 44) = 14.75, MSe = 5.25, partial η2 = 0.41. A Tukey post-hoc test 

indicated that both the real-real and the real-geometric groups did not differ 

significantly, but achieved significantly higher scores than the geometric-geometric 

group. 

  

 Variables analyzed in the test phase were the test time, the global test score (out of 24 

based on 12 questions), the near transfer questions score (out of 16 based on eight 

questions) and the more distant transfer questions score (out of eight based on four 

questions). The scoring system, both in the acquisition and test phase, was identical to 

the one used in the previous experiments. 

 

A one-way analysis of variance followed by Tukey post-hoc tests were run on the test 

time, the global test score, the near transfer test score and the more distant transfer test 

score. Tests on the test time variable revealed that the difference among the three 

groups was non significant. F (2, 44) = 0.87, MSe = 56718.46. Tests revealed a 
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significant difference among the 3 groups on the global test score, F (2, 44) = 18.93 

MSe = 14.89, partial η2 = 0.47. A Tukey post-hoc showed that the real-real and the 

real-geometric group did not differ significantly, but performed significantly better in 

the test than the geometric-geometric group. Moreover, tests revealed a significant 

difference among the three groups on the near transfer test scores, F (2, 44) = 9.72 MSe 

= 13.78, partial η2 = 0.32. A Tukey post-hoc test showed that the real-real and real-

geometric groups did not differ significantly but obtained significantly higher scores 

than the geometric-geometric group in the near transfer questions.  

 

The same analysis was conducted on the more distant transfer questions scores. It 

revealed a significant difference among the three groups, F (2, 44) = 20.62 MSe = 2.55, 

partial η2 = 0.49. A Tukey post-hoc test indicated that all three groups differed 

significantly from each other with the real-geometric group having the highest score and 

the geometric-geometric having the lowest score. 

 

Since the analysis conducted on the learning times revealed a significant difference 

among the three groups, favoring the real-geometric group, a substitute analysis of 

covariance (ANCOVA) was run on each variable to control for the effect of learning 

time. The analyses revealed that the covariate, learning time, was non-significantly 

related to other measures used in the ANOVA. An identical pattern of results was 

obtained when controlling for the effect of learning time as when running the previously 

indicated ANOVA’s. 
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These results are consistent with the results of the previous two experiments. The real-

real and the real-geometric conditions performed significantly better when solving test 

problems. In the test problems, in this experiment, there is a transfer continuum. The 

first eight problems tested for near transfer while, the last four problems tested for more 

distant transfer. The superiority of a real-geometric condition over a real-real condition 

is significant when solving the more distant transfer problems. This experiment 

indicates that the superiority of a real-life over a geometric context can be obtained not 

only in a visual format but also in a wording-based format. It also indicates that when 

solving more distant transfer problems it is advantageous to commence with realistic 

problems before moving to geometric problems. 
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Chapter 8: Experiment 4 
 

 

8.1  Introduction 
 

Presenting worked examples in a real-life context proved to be a more efficient 

instructional method than presenting them in a geometric context, both in a 

diagrammatic and word-based format in the previous experiments. Furthermore, it was 

demonstrated that students perform better on more distant transfer problems if these 

realistic worked examples were followed by worked examples presented in a geometric 

context rather than having all of the worked examples in a realistic context only. The 

first three experiments were conducted using the worked-example method as an 

instructional technique. Testing the context effect under a different instructional method 

would strengthen the findings and generalize the results. Thus, Experiment 4 and 

Experiment 5 were designed to confirm and generalize the hypothesis that a real-life 

context facilitates learning fractions more than a geometric context, using problem 

solving as an instructional method. Experiment 4 was designed to examine the effect of 

using a real-life context compared with a geometric context as a cover story using 

problem solving rather than studying worked examples during instruction. It was 

hypothesized that a realistic context would have an equally beneficial effect on 

students’ performance on the test problems following problem solving practice 

compared to practice studying worked examples. 
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8.2  Method 
 

8.2.1 Participants 
Sixty Year five (10-11 years old) students from a Sydney public school were assigned 

randomly to four equal groups, realistic problem solving, geometric problem solving, 

realistic worked examples, and  geometric worked examples, of 15 students each (each 

group contained approximately an equal number of boys and girls). 

 

8.2.2 Procedure 
Each participant was given two booklets, an acquisition booklet at the beginning of the 

acquisition phase, and a test booklet when commencing the test phase. These booklets 

contained A4 sheets of paper with sufficient space for students to write their solutions.  

 

For the acquisition phase, the problem solving groups’ booklets (realistic problem 

solving and geometric problem solving) contained four pairs of problems to solve. Each 

pair contained two similar, but not identical, problems Similarity between problems sets 

was determined in terms of the schemas and procedures that need to be used to solve 

them. An example of one set of problems pairs is: 1/3, 1/5 and ¼, 1/6. Every aspect of 

the problems given to the two groups was identical except the context. The two booklets 

can be found in Appendix D3 and Appendix D4 respectively. 
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The two worked examples groups’ booklets, realistic worked examples and geometric 

worked examples (The booklets can be seen in Appendix D1 and Appendix D2 

respectively), contained four pairs of examples and problems consisting of an example 

followed by a similar, but not identical, problem to solve (in total, eight problems half 

of which consisted of worked examples). All problems, including the problems 

embedded in the worked examples, were identical to the problems presented to the 

problem solving groups. 

 

The realistic groups had a realistic context, sharing a pizza or a cake as a cover story. 

The geometric groups, problems were in a geometric context, dividing and shading a 

geometric shape. All students in the two problem solving groups were given a 

maximum of three minutes to solve each problem. Following each problem, they were 

asked to rate how easy or difficult they found the problem on a nine-point scale 

provided on the next page. Next, they were given a minute to read a detailed solution 

provided on the next page.  

 

Students in the worked examples groups were told to study the given worked example 

for three minutes and then were asked to rate the difficulty of understanding the worked 

example using the nine-point scale provided on the next page. After that, they had one 

minute to re-read the given solution. The procedure for each corresponding problem 

was identical to that for the problem solving groups. Thus, all participants in all of the 
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four groups had an equivalent time for the acquisition phase. The students were told to 

turn the page over when their time was up. The learning booklets for all groups were 

designed to look similar in terms of length and space occupied. 

 

The score on the problems in the acquisition phase for the two worked examples groups 

(realistic and geometric) was determined by giving two marks if a correct answer and a 

correct explanation were given, one marks if the correct answer was combined with an 

incorrect explanation or a failure to provide an explanation, and zero marks if an 

incorrect answer or no answer was given. Regarding the four problems, a maximum 

score of eight was therefore available for each student. The learning score for the two 

problem solving groups (realistic and geometric) was also out of eight, since only the 

scores of each second problem corresponding to the problem presented to the worked 

example groups was analyzed. 

 

An example from the realistic worked example group booklet is shown in Figure 16 (the 

complete set can be found in Appendix D1): 

 

 

Figure 16: A representative example of the real-life context problems 

Who will eat more pizza; Beverly who eats 3 slices of a large pizza divided into 6 

equal parts (3/6 of one large pizza), or Clair who eats 2 slices of a large pizza 

divided into 3 equal parts (2/3 of one large pizza)? 
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The respective problem in the geometric worked example booklet is shown in  

Figure 17   (the complete set can be found in Appendix D2) 

 

 

 
 
 

 
 
Figure 17: A representative example of the geometric context problems 
 
 

The cognitive load average during the acquisition phase was calculated by adding up all 

ratings for all problems or worked examples pairs and then dividing the total by eight.  

The booklets for the test phase were identical for all groups. They contained 12 

arithmetic problems, eight problems that test for near transfer followed by four more 

distant transfer problems (same problems as in the previous experiment). All 

participants were given two minutes to solve each problem. The experimenter told the 

students after a two minute period that they had to turn the page and start the next one. 

The complete set of test problems can be found in Appendix C3. 

 

The test score was determined in the same way as the acquisition score, providing a 

score out of 16 for the near problems and a score out of eight for the more distant 

transfer problems.  

 

What will have more red; one circle divided into 6 equal parts with 3 parts painted 

red (3/6 of a circle is painted red), or a circle divided into 3 equal parts with 2 

parts painted red (2/3 of a circle is painted red)? 

Formatted: Draft1

Deleted: ¶
Figure 17
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8.3  Results and Discussion 
 

In the acquisition phase, the variables under analysis were cognitive load and problem 

solving score. In the test phase, the variables under analysis were near transfer problems 

score and more distant transfer problems score. Efficiency was calculated according to 

Paas and van Merrienboer’s (Paas & van Merrienboer, 1993; Paas et al., 1994) formula. 

The means and standard deviations are displayed in Table 5. 
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Table 5: Means and standard deviations (in parentheses) of the variables and instructional 
efficiency across groups for Experiment 4 
 
 

 

Variable/Group 

 

Realistic 

worked 

examples 

 

 

Geometric 

worked 

examples 

 

Realistic 

problem 

solving 

 

Geometric 

problem 

solving 

Acquisition 

cognitive load (/ 9) 

3.08 

(2.09) 

3.00 

(1.28) 

2.61 

(1.25) 

2.41 

(0.84) 

Acquisition 

problems score(/8) 

4.27 

(2.50) 

4.80 

(1.67) 

3.90 

(1.44) 

3.50 

(1.19) 

Near transfer  

problems score 

(/16) 

11.20 

(3.19) 

10.26 

(3.24) 

10.20 

(4.62) 

11.40 

(3.06) 

More distant 

transfer problems 

score(/8) 

5.40 

(1.95) 

2.93 

(1.87) 

4.33 

(2.44) 

2.40 

(1.72) 

Efficiency 0.35 

(1.30) 

-0.37 

(1.02) 

0.26 

(1.11) 

-0.240 

(0.73) 
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A 2 (context-realistic vs. geometric) x 2 (method- worked examples vs. problem 

solving) ANOVA was conducted on the acquisition cognitive load. There was neither a 

significant main effect of the context, F (1, 56) = 0.14, MSe = 2.07, partial η2 = 0.002 

nor of the method on the average of cognitive load the students experienced in the 

acquisition phase, F (1, 56) = 2.02, MSe = 2.07, partial η2 = 0.035. No interaction 

between the context and the method was found to be significant, F (1, 56) = 0.03, MSe 

= 2.07, partial η2 = 0.001.  

 

The same analysis was conducted on the acquisition score. It revealed no significant 

main effect of the context, F (1, 56) = 0.06, MSe = 497.77, partial η2 = 0.001 nor was 

the method shown to have a significant main effect on the acquisition score, F (1, 56) = 

3.40, MSe = 497.77, partial η2 = 0.06. The interaction between the context and the 

method was found to be non-significant, F (1, 56) = 0.82, MSe = 497.77, partial η2 = 

0.01.  

 

An identical 2 x 2 ANOVA was used to analyze the near transfer test score. Neither a 

significant context main effect, F (1, 56) = 0.02, MSe = 12.84, partial η2 = 0.00 nor a 

significant method main effect was found, F (1, 56) = 0.005, MSe = 12.84, partial η2 = 

0.00. The interaction between the context and the method was also non-significant, F (1. 

56) = 1.33, MSe = 12.84, η2 = 0.02. 
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A 2 x 2 ANOVA was conducted on the more distant transfer test problem scores. There 

was a significant main effect of the context, F (1, 56) = 17.87, MSe = 4.06, partial η2 = 

0.24. However, neither a significant method main effect on the performance of these 

problems, F (1, 56) = 2.36, MSe = 4.06, partial η2 = 0.04, nor a significant interaction 

between context and method was found, F (1. 56) =0.26, MSe = 4.06, partial η2 = 0.005.  

 

For the instructional efficiency, the same analysis was used. It revealed a significant 

main effect of the context, F (1, 56) = 4.94, MSe = 1.13, partial η2 = 0.08. Neither a 

significant method main effect, F (1, 56) = 0.003, MSe = 1.13, partial η2 = 0.00, nor an 

interaction was found F (1, 56) = 0.17, MSe = 1.13, partial η2 = 0.003. 

 

It was hypothesized that a context and a worked example effect such that students 

would benefit from real-life context and worked example conditions. The results 

supported the hypothesis partially. They indicated that the real-life context was 

beneficial only when students attempted more distant transfer problems but not when 

solving for nearer transfer problems. The reason could possibly be attributed to the fact 

that these students had previous knowledge concerning fractions. They had finished a 

textbook chapter on fractions a short time before conducting the experiment. The near 

transfer problems may have been too easy for students resulting in a ceiling effect. 

Furthermore, a worked example effect was not obtained in this experiment. This result 

can possibly be explained by the expertise reversal effect. The previous knowledge 
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students had about fractions made them more experts in this field and thus the expertise 

reversal effect may have eliminated the worked example effect.  
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Chapter 9: Experiment 5 
 

 

9.1  Introduction 
 

In the previous experiment, a context effect was obtained favoring a realistic context 

over a geometric context in more distant transfer problem scores, but not in near 

transfer problem scores. As mentioned previously, the result could be due to the fact 

that the students had specific prior knowledge regarding fractions. Furthermore, a 

worked examples effect was not obtained in this experiment. Thus, Experiment 5 was 

designed to investigate if a context-method interaction could be obtained on more 

distant transfer as well as near transfer problem scores, if the participants had less prior 

knowledge. It was hypothesized that the students’ performance would be affected by the 

context regardless of the technique used during the acquisition phase. 

 

9.2  Method  
 

9.2.1 Participants 
Sixty Year four (9-10 years old) students from a Sydney public school were assigned 

randomly to four equal groups, realistic worked examples, geometric worked examples, 

realistic problem solving, and geometric problem solving, of 15 students each. Each 

group contained approximately the same number of males and females.  
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9.2.2 Procedure 
The procedure was identical to that of the previous experiment.  

 

9.3  Results and Discussion 
 

The variables under analysis in the acquisition phase were the cognitive load mean, 

obtained by adding up all self rating outcomes, using a nine-point scale after each 

problem, and then dividing this total by the number of problems. The second variable to 

be analyzed in this phase was the acquisition score. In the test phase the variables under 

analysis were the near transfer problem test scores, the more distant transfer problem 

test scores, and the instructional efficiency. The means of all variables and standard 

deviations are displayed in Table 6 
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Table 6:  Means and standard deviations (in parentheses) for all variables under analysis 
and instructional efficiency across groups, for Experiment 5 
 

 

Variable/Group 

 

Realistic 

worked 

examples 

 

Geometric 

worked 

examples 

 

Realistic 

problem 

solving 

 

Geometric 

problem 

solving 

 

Acquisition 

cognitive load 

(/ 9) 

2.78 

(1.64) 

3.85 

(1.19) 

3.72 

(1.52) 

4.05 

(2.21) 

Acquisition 

problems score 

(/8) 

4.67 

(2.84) 

2.27 

(1.53) 

4.07 

(2.12) 

3.47 

(2.10) 

Near transfer 

problems score 

(/16) 

11.73 

(4.73) 

8.067 

(4.16) 

10.87 

(3.04) 

7.80 

(3.74) 

More distant 

transfer problems 

score 

(/8) 

4.60 

(2.26) 

1.27 

(1.44) 

2.13 

(1.46) 

0.80 

(.77) 

Efficiency 1.14 

(0.99) 

-0.41 

(0.72) 

-0.07 

(0.90) 

-0.65 

(1.00) 
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A 2 (context-realistic vs. geometric) x 2 (method- worked examples vs. problem 

solving) ANOVA was conducted on the acquisition cognitive load. There was neither a 

significant main effect of the context, F (1, 56) = 2.61, MSe = 2.83, partial η2 = 0.05 nor 

of the method, F (1, 56) = 1.69, MSe = 2.83, partial η2 = 0.03 on the average cognitive 

load the students experienced in the acquisition phase. The interaction between the 

context and the method was found to be non- significant, F (1, 56) = 0.72, MSe = 2.83, 

partial η2 = 0.01.  

 

The same analysis was conducted on the outcomes of the students’ performance in the 

acquisition phase problems. It revealed a significant main effect of the context, F (1, 56) 

= 10.17, MSe = 682.30, partial 2h = 0.15. Neither a main effect of the method, F (1, 56) 

= 0.16 MSe = 682.30, partial 2h  = 0.00 nor the interaction were found to be significant, 

F (1, 56) = 3.07 MSe = 682.30, partial 2h = 0.05. 

 

An identical analysis on the near transfer problem scores showed a significant main 

effect of the context, F (1, 56) = 10.80, MSe = 15.75, partial 2h  = 0.16. Neither a 

significant main effect of the method, F (1, 56) = 0.30, MSe = 15.75, partial 2h  = 0.00, 

nor of the interaction between context and method were found, F (1, 56) = 0.08, MSe = 

15.75, partial 2h  = 0.00. 
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The context F (1, 56) = 32.98, MSe = 2.48, partial 2h  = 0.37 and the method, F (1, 56) 

= 13.03, MSe = 2.48, partial 2h  = 0.19, appeared to have a significant main effect on 

the students’ performance when solving more distant transfer problems. The interaction 

between context and method was shown also to be significant F (1, 56) = 6.06, MSe = 

2.48, partial 2h  = 0.10. Following the significant interaction, simple effect tests showed 

that there was a significant difference between the realistic and geometric contexts 

under worked example conditions, F (1, 59) = 7.31 MSe = 4.38, partial 2h  = 0.11 in 

favor of the realistic context, and a significant difference between realistic and 

geometric context under problem solving conditions, F (1, 59) = 4.03 MSe = 4.38, 

partial 2h  = 0.07 in favor of the realistic context. The significant interaction can be 

attributed to differential effect sizes. 

 

To calculate instructional efficiency, the more distant transfer test problem scores were 

used since differences in the near transfer test problem scores were found to be non-

significant. An analysis of instructional efficiency revealed a significant main effect of 

the context, F (1, 56) = 20.24, MSe = 24.08, partial 2h  = 0.27. Neither a significant 

main effect of method, F (1, 56) = 2.58, MSe = 24.08, partial 2h  = 0.04, nor a 

significant interaction was shown, F (1, 56) = 1.05, MSe = 24.08, partial 2h  = 0.02. 

 

In this experiment it was hypothesized that the context will affect students’ performance 

when learning the fraction concept regardless of the instructional method. The results 

support the hypothesis by indicating that in both near and more distant transfer test 
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problems, students in the real-life context condition performed better than students in 

the geometric condition regardless of whether a worked example or a problem solving 

technique was used in the acquisition phase. Moreover, a worked example effect was 

obtained in this experiment.  
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Chapter 10: General Discussion 
 

 

10.1  Summary of results 
 

In a series of experiments, learning fractions was investigated from a cognitive load 

perspective. Cognitive load theory has provided considerable evidence that extraneous 

cognitive load can be reduced by using worked examples as an instructional method. 

Furthermore, cognitive load theory argues strongly in favor of relying on prior-

knowledge to introduce novel material. Familiarity with the context of new material is 

assumed to connect to previously constructed and stored schemas, thus it is likely to 

facilitate learning particularly when dealing with complex, novel material.  

 

This study examined whether presenting worked examples in a real-life context 

facilitates learning a complex concept. Since cognitive load theory suggests that the 

level of intrinsic cognitive load depends on the interaction between new material and a 

learner’s previously stored knowledge, linking to-be-learned material with learners’ 

prior-knowledge may play a crucial role in reducing the total cognitive load. 

Consequently, it was hypothesized that worked examples presented in a real-life context 

can connect to existing schemas from daily experiential practice and therefore enhanced 

learning can be predicted. 
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The series of experiments conducted in this study provided evidence of contextual 

effects on learning fractions. A real-life context was significantly more beneficial 

compared to a geometric context. Worked examples presented in real-life contexts, 

were a significantly more efficient instructional method in facilitating learning the 

fraction concept amongst grade five students, than the same examples presented in a 

geometric context.  

 

In the first experiment, students reported less cognitive load and performed better in 

both the acquisition and the test phase when they learned to compare fractions using 

worked examples presented in a realistic context in contrast to students who practiced 

worked examples presented in a geometric context. The second experiment supported 

the results of the first experiment. In this experiment, the context sequence was tested. 

Four sequences were examined: a realistic context followed by a realistic context again, 

a realistic context followed by a geometric context, a geometric context followed by a 

realistic context, and a geometric context followed by a geometric context again. It was 

found that the differences among conditions were determined by the first presentation. 

There was no evidence to suggest that the context had an effect in the second stage of 

worked examples. However, the real-geometric group had the highest test score. This 

trend may have resulted from improved performance on more difficult test questions. 

  

This hypothesis was examined in the third experiment in which a real-life context 

followed by a geometric context was examined, against a realistic followed by a 
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realistic and a geometric followed by a realistic context, including test questions that 

test for more distant transfer. It was found that the real-real and the real-geometric 

conditions performed significantly better in the test problems than the geometric-real 

group. Moreover, the real followed by geometric context was shown to be more 

advantageous than the real-real context when testing for more distant transfer. 

Furthermore, the third experiment generalized the results to a word-based format. In the 

first two experiments, the worked examples were presented using a diagrammatic form 

whereas, in the third experiment a word-only format was used to present all worked 

examples in both contexts.  

 

In the fourth and the fifth experiments another factor was tested. In both experiments, 

besides the context effect, an instructional method effect was investigated; worked 

examples versus problem solving. In Experiment 4, it was found that the real-life 

context groups performed better in more distant transfer problems but not in nearer 

transfer problems although a worked example effect could not be obtained. These 

results could be explained by a possible expertise reversal effect since participants in 

this experiment had learned about fractions a short time prior to running the experiment.  

 

Therefore, in the fifth experiment the same hypotheses were examined using 

participants who did not have classroom-based prior-knowledge about fractions. In this 

experiment, both a context and a method effect were obtained. Students in real-life 

context groups outperformed students under geometric context conditions both when 
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testing for nearer and further transfer problems regardless of the method used. 

Furthermore, when testing for further transfer problems, students who learned using 

worked examples were superior to students who had to solve problems in the 

acquisition phase. The five experiments’ results were consistent and provided some 

evidence to indicate that a real-life context was advantageous when learning fractions.  

 

10.2  The context effect 
 

The major finding of the experiments of this thesis is that a fraction concept expressed 

in terms of familiar, real-life objects is more easily dealt with by children than when 

expressed in the more commonly used, geometrical representations. While children in 

upper primary school are likely to be familiar with circles and rectangles, they appear to 

be better able to think geometrically when dealing with round pizzas and rectangular 

cakes than circles and rectangles. When taught fractions, a fraction of a round pizza or 

rectangular cake is significantly easier to grasp by a child than a fraction of a circle or 

rectangle. For most educated adults, a ‘circle’ (which incorporates a higher order 

concept, Skemp, 1971, p.25) is just as real, and entrenched in long-term memory as a 

pizza (a round pizza is considered to incorporate a lower order concept than a circle, 

Skemp, 1971, p.25). Most adults are unlikely to have difficulty retrieving our schema 

for a circle from long-term memory and a quarter of a circle is just as meaningful as a 

quarter of a pizza (Skimp, 1971). For children learning fractions, their ability to 

conceptualize a quarter of a circle seems more difficult than conceptualizing a quarter of 
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a pizza. Therefore, presenting new material in a familiar context can make a significant 

difference.  

 

Furthermore, in Experiment 4 students benefited from a real-life context more than a 

geometric context only when solving more distant transfer problems. These results 

could possibly be attributed to the fact that participants had some previous knowledge 

about fractions since they learned fractions shortly before conducting the experiment. 

Students learned fractions using the traditional method of dividing and shading parts of 

geometric shapes.  Therefore, these results could be explained by two factors. Firstly, 

the nearer transfer problems were easier than the further transfer problems and may 

have been too easy to generate cognitive load effects. Conversely, this issue did not 

affect the further transfer problems, where the superiority of students under a real-life 

context condition was found to be significant. Secondly, classroom prior-knowledge 

(which was presented in a more geometric context) might have interfered, thus 

eliminating a context effect. 

 

These results are, to some extent, consistent with other studies that emphasize 

contextual significance from other perspectives such as Mack (1990; 1993),  Empson 

(1999), Streefland (1991; 1993) and Gravemeijer  (1999; Gravemeijer & Doorman, 

1999). However, the results are not in complete agreement with Mack’s, Empson’s and 

Streefland’s assertion that a sharing schema rather than context is the reason behind the 

effect. The results suggest that the difference is due to the context and this can be 
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explained by two points: firstly, in these experiments sharing was used solely in one 

worked example (in Experiments 1 and 2) and in two worked examples out of six in 

Experiment 3, while in the rest of the worked examples an emphasis on dividing rather 

than on sharing was made in both contexts. Therefore, it can be suggested that it is not 

only a sharing schema, but also the context (whether realistic or geometric) that is likely 

to be the cause of difference.  

 

It can be argued that a real-life context plays a role in activating a sharing schema, 

however, this can be true only in the sharing worked examples (only one worked 

example implied a sharing context in Experiments 1, 2, 4 and 5 and two in Experiment 

3) not in the rest of the worked examples, and hence it can be argued that the obtained 

effect is more likely to be accredited to the context rather than a sharing schema. The 

second point that supports this assertion is that participants were tested on arithmetic 

problems not on sharing. The test problems were solely arithmetic and not associated 

with any context.  

 

The main effect of this study was that a real-life familiar context facilitates the 

acquisition process and therefore enhances learning. These results are in concurrence 

with other studies’ findings that emphasize the contextual role in learning mathematics 

such as Koedinger and Nathan (2004). In this study, money as a familiar context was 

used as a cover story for teaching algebraic word problems. Participants of that study 

who solved word problems associated with money as a context outperformed their 
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counterparts who had to solve equivalent non-contextual equations. Furthermore, using 

familiar word problems to connect to learners’ prior-knowledge formed the core of the 

‘Pittsburgh urban mathematics project’ (Koedinger et al., 1997). This project was 

developed to teach algebra by designing word problems using cover stories from 

students’ environmental contexts. The success of this project shows the importance of 

linking to familiar prior knowledge. Similarly, Goldstone and Sakamoto (2003) 

demonstrated that better abstract understanding was shown when concrete (real) rather 

than idealized (abstract) illustrations were used in a simulation. In addition, Rittle-

Johnson and Koedinger (2005) in their study into fractions found that fewer errors were 

made when a real-world contextual scaffold was provided.  

 

Nevertheless, children do need to learn to deal with fractions of circles and rectangles as 

abstract entities. Some evidence was obtained to suggest that presenting learners with 

more familiar, concrete examples first, followed by the more important, geometric 

versions, facilitated learning, especially when dealing with more difficult, transfer 

problems. Findings confirm that moving from familiar realistic to less familiar 

geometric objects is important, even when dealing with seemingly well-known 

geometric objects such as circles or rectangles. To some extent, this evidence is in line 

with other studies such as Goldstone and Son (2005) who found that a concrete fading 

strategy helped the abstraction of scientific principles compared to a concrete only 

strategy.  
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Familiarity with the context was explored from a cognitive load theory perspective as a 

factor that reduces cognitive load, and consequently elevates performance. This 

approach is entrenched in schema theory suggesting that once to-be-learned material is 

incorporated in a pre-existing schema, several elements of the new material can be 

processed as a single element in working memory, resulting in a low level of cognitive 

load (Carlson et al., 2003; Marcus et al., 1996; van Merrienboer et al., 2006; van 

Merrienboer et al., 2003). Findings are in complete agreement with this hypothesis and 

have provided further evidence to support it.  

 

10.3  The worked example effect 
 

The last two experiments of this thesis introduced further findings; in Experiment 4, the 

performance on the test problems of students who were presented worked examples in 

the acquisition phase was similar to students who were asked to solve the equivalent 

problems. In other words, a worked example effect was not obtained in this experiment. 

This result could possibly be explained by the expertise reversal effect (Kalyuga et al., 

2003). Since students had learned about fractions a short time before participating in 

this experiment, they might have gained a sufficient level of expertise for worked 

examples to be partially redundant. Consequently, the worked example effect was 

eliminated.  
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Experiment 5 found a worked example effect. Students who learned to compare 

fractions by studying worked examples and then solving near transfer problems 

performed better in the test phase than students who learned using the problem solving 

conventional method. These findings are in accord with many studies in this field (e.g. 

Cooper & Sweller, 1987; Paas, 1992; Paas & van Merrienboer, 1994; Sweller & 

Cooper, 1985).   

 

10.4  Theoretical issues 
 

The results conform with the evolution-based cognitive architecture used recently by 

cognitive load theory. That architecture places a central emphasis on a very large store 

of information held in long-term memory – the information store principle. Information 

held in that store can be dealt with readily via the environmental organizing and linking 

principle. Information not well represented in that store must be dealt with by a limited 

working memory via the narrow limits of change principle. For children, round pizzas 

and rectangular cakes are well entrenched in the long-term memory allowing the 

environmental organizing and linking principle to closely align that knowledge in long-

term memory with the external environment. In turn, that knowledge can be readily 

processed in working memory when learning to deal with fractions. In contrast, 

information concerning circles and rectangles may not be as well entrenched in long-

term memory. Less emphasis can be placed on the environmental linking and 

organizing principle with commensurately more emphasis on the narrow limits of 
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change principle exemplified by a limited working memory. That increased working 

memory load due to the use of abstract circles and rectangles interferes with learning. 

 

By relying on the borrowing principle by using worked example as an instructional 

method, the imposed extraneous cognitive load was minimized increasing free working 

memory to handle the complex concepts. In addition, using a familiar, real-life context 

enabled a smooth alignment with previously stored knowledge and less weight was 

placed on the narrow limits of change principle.   

 

10.5  Educational implications 
 

In general, learning about fractions is best done in a familiar environment. From a 

practical perspective, until children’s knowledge of circles and rectangles is as well 

entrenched as their knowledge of pizza and cake shapes, they should be taught fractions 

using more rather than less familiar concepts.  

 

The results of this research might have more general educational implications. The use 

of worked examples has been well researched and found to be a beneficial instructional 

technique. Several factors have been found to contribute positively to well-designed 

worked examples. However, worked examples that incorporate a contextual factor have 

not been previously examined. This has been investigated here by using randomized, 

controlled experiments. In this research, the context appeared to have a considerable 
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effect on learning the fraction concept. Distinctively, worked examples presented in a 

real-life context were found to be advantageous. Such worked examples reduce 

extraneous cognitive load because they connect to previously experienced and stored 

knowledge and activate previously constructed schemas, and hence they should 

decrease the level of intrinsic cognitive load as well as extraneous cognitive load.  

 

This research emphasized the importance of connecting to prior-knowledge. This prior-

knowledge could be used to enhance the learning process. Familiar contexts are highly 

beneficial in connecting to already stored schemas and activate these schemas to lessen 

the cognitive load. There was some evidence to indicate that a familiar daily life 

context, if used as a cover story for teaching fractions at an initial stage followed by a 

geometrical context afterwards, was beneficial. This evidence can be generalized to 

other material, particularly complex concepts that are characterized by their high-

element interactivity across the domain of mathematics. This approach, based on 

cognitive load theory, has shown to be promising in a specific area. There may be 

grounds to suggest that the approach may be successfully implemented in other 

complex domains.  

 

10.6  Limitations of the study 
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This study has some limitations. Firstly, only two contextual variations (pizzas and 

cakes as opposed to circles and rectangles) were used in the experiments. The results 

would have been more generalized if more contextual variations had been used.  

 

Secondly, the experimenter had to repeatedly emphasize that the pizzas being dealt with 

were homemade pizzas and therefore they were not yet divided, unlike a normal 

purchased pizza which is usually divided into eighths. Thus, another context should 

have been chosen instead, such as a pie instead of a pizza. Moreover, it was assumed 

that children are familiar with the two chosen variations (pizzas and cakes). However, it 

would have been more informative if the degree of familiarity was examined and thus, 

further tests could have been conducted on the results.  

Thirdly, more worked examples are needed to generate more general schemas, but the 

allocated time for each experiment was limited as a result of being conducted in 

schools. 

  

Finally, the obtained results have to be interpreted cautiously. Since a school curriculum 

was run in parallel to the experiments, it was not possible to determine how students’ 

school learning could have interfered with the content of the experiments.  

 

Despite these limitations, there are grounds to argue that the results appear to have a 

solid theoretical base and significant educational implications. However, these results 

would be reinforced by further research.     
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10.7  Further research 
 

The main aim of this study was to investigate the context effect. Cognitive load theory 

suggests several methods to handle extraneous cognitive load. The context effect in this 

research was examined using a worked examples method and in the last two 

experiments, worked example as opposed to problem solving. A further study to explore 

the context effect using other instructional methods that reduce extraneous cognitive 

load would be beneficial and would add to the generalization of these results across 

other instructional methods such as completion problems. In fact, using completion 

problems instead of worked examples or conventional problems could test for the 

completion problem effect and demonstrate that the current results hold across 

instructional techniques. Using goal-free problems might also attain the same objective.   

 

In line with recent research into variability and germane cognitive load (van 

Merrienboer et al., 2006) it would be interesting to examine the context effect with 

methods that induce germane cognitive load. Van Merrienboer and his colleagues (van 

Merrienboer et al., 2006) suggested a training design approach intended to achieve 

transfer learning in complex tasks using methods that stimulate germane cognitive load. 

Variability and limited guidance were used in their study to induce germane cognitive 

load. A possible study might be to explore a variability effect using random versions of 

real-life contexts and random practice of geometric contexts versus a contextual fading 
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strategy that starts with complete real-life contexts and ends with abstract contexts to 

achieve transfer learning using complex material. Results may show which variation is 

the most effective to balance intrinsic and germane cognitive load and enhance transfer 

learning. 

 

The results were obtained by testing students immediately after the acquisition phase. It 

would be appropriate, therefore, to conduct a longitudinal study to confirm whether a 

long-term contextual effect can be obtained. In such a study, an intervention program 

could be created in two versions; one that incorporates a real-life context along with the 

program content, and a second one that uses a geometric context to teach fractions. In 

this case, more worked examples can be used, thus more general schemas might be 

generated, and hence an enduring contextual effect can be hypothesized. To examine a 

short-term effect, an immediate test can be conducted. Then, a follow up test after a 

period of time could be carried out to investigate a long-term contextual effect. 

However, it should be taken into account that while running this kind of program, 

students are expected to gain expertise; therefore, an adaptive program that decreases 

the guidance level as a function of the degree of expertise should be applied. In other 

words, a completion strategy would be an appropriate method for this program (Renkl 

& Atkinson, 2003; van Merrienboer, 1990). 
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Appendix A1: Worked examples set for the 
realistic context condition used in Experiment 1 

 
Problem 1 (real-
life context group) 

  Solution 1 (real-life context group) 

Where will one get 
more pizza; at a 
table with three 
children sharing 
one large pizza, 
with each child 
getting 1/3, or at a 
table with five 
children sharing 
one large pizza 
with each child 
getting 1/5? 

Draw a circle for one large 
pizza: 

 
Draw 3 stick children 

 
Divide this pizza into 3 equal 
parts. 

  
Give each child one part.  
Each child has 1/3 of the pizza 

 

Draw another circle for another large 
pizza. 

 
Draw 5 stick children: 

 
Divide this pizza into 5 equal parts. 

 
Give each child one part. 
Each child has 1/5 of the pizza 

 

Conclusion  Now compare: each child in the first situation gets more pizza than each 
child in the second situation. 
Conclusion: the less sharers, the more pizza each sharer gets. So one gets 
more pizza at a table with 3 children sharing one pizza, than at a table 
with 5 children sharing one pizza. Therefore, 1/3 is greater than 1/5.  
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Similar problem 
 
Now use the worked-example to solve this problem: 

 

Where will one get more pizza; at a table with three children sharing one large pizza, 

with each child getting 1/3, or at a table with five children sharing one large pizza with 

each child getting 1/5? 
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Worked-example number 2: Real life context group 
Problem 2 (real-
life context 
group) 

  Solution 2 (real-life context group) 

Mark who can eat 
2/3 of his 
birthday cake, 
argued with Jack 
who is allowed to 
eat 4/6 of his 
birthday cake 
about who is 
allowed to eat 
more cake! They 
both have the 
same size 
birthday cakes. 
Who do you 
think will eat 
more cake? 

Here is Mark’s birthday cake: 
 

                                                                                 
Mum divided this cake into 3 equal 
parts. She said that Mark can eat 2 of 
these 3 parts: 

     
Mark will eat 2/3 of his cake. 
Mark couldn’t eat such big parts so 
mum halved his portion but, he insisted 
on eating all of it. Now it looks like 
this: 

 
It is 4/6 of the cake. 

Here is Jack’s birthday 
cake: 

      
Mum divided this cake into 
6 equal parts. She allowed 
Jack to eat 4 of these 6 
parts: 

         
 
 
Jack will eat 4/6 of his cake 

Conclusion  Now compare: Mark is allowed to eat 2/3 of his cake, which is the 
same amount as 4/6 of the cake. Jack is allowed to eat 4/6 of the cake. 
Both cakes are the same size. 
Conclusion: If we have 2/3 and we halve it we will got 4/6. Mark and 
Jack will eat the same amount of cake because both can eat 4/6 of the 
whole cake. 
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Similar problem 
 
Now use the worked example to solve this problem 

 

Mark who can eat 2/3 of his birthday cake, argued with Jack who is allowed to eat 4/6 

of his birthday cake about who is allowed to eat more cake. They both have the same 

size birthday cakes. Who do you think will eat more cake? 
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Worked-example number 3: Real life context group 
Problem 3    Solution 4  
Who will eat 
more pizza; Sam 
who eats 3 slices 
of large pizza 
divided into 8 
equal parts (3/8 
of one large 
pizza), or Tim 
who eats 2 slices 
of large pizza 
divided into 4 
equal parts (3/4 
of one large 
pizza)? 

Draw one large pizza. 

      
Divide this pizza into 8 
equal slices. 

 
Mum said that Sam can eat 3 
slices, which is 3/8 of the 
pizza.  
He will eat this portion: 

 
Sam will eat 3/8. 

Draw another large pizza. 

      
Divide this pizza into 4 equal slices. 

 
 Mum said that Tim can eat 2 slices of 
the four slices. This is his portion: Tim 
will eat 2/4. 

 
Before eating, a few friends came and 
mum re-divided the pizza into 8 parts, 
but she said that Tim still can eat the 
same amount of pizza. 
Now Tim’s  portion will look like this: 

 
Tim can eat 4 slices of 8 (4/8) which is 
the same amount as 2 slices of 4 (2/4). 

Conclusion  Now compare: Sam will eat 3/8 but, Tim will eat 2/4 which is the 
same as 4/8. 
Conclusion: Sam will eat less pizza than Tim.  
So, 3/8 is less than 2/4. 
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Similar problem 
 
Now use the worked-example to solve a similar problem 
 
Who will eat more pizza; Sam who eats 3 slices of large pizza divided into 8 equal parts 

(3/8 of one large pizza), or Tim who eats 2 slices of large pizza divided into 4 equal 

parts (3/4 of one large pizza)? 
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Appendix A2:  Worked examples set for the 
geometric context condition used in Experiment 1 
Worked-example number 1- Geometric context group 

 
Problem 1 Solution 1  
Which results is 
a larger shaded 
area; if you 
divide a circle 
into three parts 
and shade one 
part resulting in 
1/3 of the circle 
being shaded or 
if you divide a 
circle into five 
parts and shade 
one part 
resulting in 1/5 
of the circle 
being shaded? 

Draw a circle: 
 
 
 
 
 
Divide this circle into 3 equal 
parts 

  
 Shade one part of these three 
parts. You have 1/3 of the circle 
shaded. 

 

 Draw another circle: 
 
 
 
 
 
Divide this circle into 5 equal 
parts. 

 
 Shade one part of these five 
parts. You have 1/5 of the circle 
shaded.  

 
Conclusion  Now compare: you have more shading in the first circle than in the 

second circle. 
Conclusion: The less parts, the more the shaded area. So a circle 
divided into 3 parts with 1 part shaded has more shading than a circle 
divided into 5 parts with 1 part shaded. Therefore, 1/3 is greater than 
1/5. 
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Similar problem 
 
Now use the worked-example to solve a similar problem 
 
Which results is a larger shaded area; if you divide a circle into three parts and shade 

one part resulting in 1/3 of the circle being shaded or if you divide a circle into five 

parts and shade one part resulting in 1/5 of the circle being shaded? 
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Worked-example number 2: Geometric context group 
 
Problem 2  Solution 2  
One group of kids, 
who painted blue 
2/3 of a rectangle, 
got into an 
argument with 
another group of 
kids who painted 
blue 4/6 of a same 
size rectangle. 
They said that the 
kids in the second 
group got more 
blue than the first. 
Are they right? 
 

Draw a  rectangles : 

 
Divide this rectangle into 3 equal 
parts 

 
Paint 2 of these 3 parts blue.  

 
 You have 2/3 painted blue. 
Re-divide this rectangle(add two 
more lines): 

  
You have the same area, 4/6 
painted blue. 

 Draw another rectangle : 

 
Divide this rectangle into 6 equal 
parts. 

 
Paint 4 of these 6 parts blue. 

 
You have 4/6 painted blue. 

Conclusion  Now compare: In the first rectangle you have 2/3 of it painted blue, 
which is the same amount as 4/6. Both of them had 4/6 painted blue. 
Conclusion: if we have 2/3 and we halve it we will got 4/6. It will still 
be the same painted area. So 2/3 is equal to 4/6. 
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Similar problem 
Now use the worked-example to solve a similar problem 
  
One group of kids who painted blue 2/3 of a rectangle, got into an argument with 

another group of kids who painted blue 4/6 of a same size rectangle. They said that the 

kids in the second group got more blue than the first. Are they right? 
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Worked-example number 3: Geometric context group 
 
Problem 3   Solution 3  
What will have more 
red; one circle divided 
into 8 equal parts with 
3 parts painted red 
(3/8 of a circle is 
painted red), or a 
circle divided into 4 
equal parts with  2 
parts painted red (2/4 
of a circle is painted 
red) ? 
 

Draw a circle: 
                                
 
 
                                              
Divide this circle into 8 
equal parts 

       
Paint three parts of these 
eight parts red.  

      
 You have 3/8 painted red.  
 

 Draw another circle: 
 
 
 
 
Divide this circle into 4 equal parts. 

 
Paint two parts of these four parts red. 

 
You have 2/4 painted red.  
Now, repeat halving this circle (add 2 
lines) 

 
Now you have a circle divided into 8 
parts, 4 of them painted red. You have 
4/8 painted red which is the same area 
as 2/4. 

Conclusion  Now compare: In the first circle you have 3/8 painted red whereas, 
in the second circle you have 2/4 painted red which is identical to 
4/8 painted red. 
Conclusion: we have less red area in the first circle than the second 
circle.  
So, 3/8 is less than 2/4. 
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Similar problem 
 
Now use the worked-example to solve a similar problem 
 
What will have more red; one circle divided into 8 equal parts with 3 parts painted red 

(3/8 of a circle is painted red), or a circle divided into 4 equal parts with 2 parts painted 

red (2/4 of a circle is painted red)? 
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Appendix A3: Samples of students’ explanations 
 

A correct answer with a correct explanation: 

 

A correct answer with an incorrect explanation: 
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A correct answer with a correct explanation: 

 

 

A correct answer that lacks an explanation: 
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A correct answer with an incorrect explanation 

 

 

An incorrect answer with an incorrect explanation: 
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 A correct answer with a correct explanation: 
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 Appendix A4: Test problems for Experiments 1 
and 2 

 
1. Draw   a diagram to show 1/3 then draw another diagram to show a fraction larger than 

1/3  
 

2. Draw a diagram to show 1/2, and then draw another diagram to show a fraction equal to 
1/2. 

 
3. Draw a diagram to show 3/4 then draw another diagram to show a fraction less than 3/4. 

 
4. Is 1/5 greater than, less than or equal to 1/6?  
 

5. Is 1/3 greater than, less than or equal to 1/8? 
 

6. Is 2/3 greater than, less than or equal to 3/4?  
 

7. Is 5/6 greater than, less than or equal to 2/3? 
 

8. Is 1/2 greater than, less than or equal to 2/4?  
 

9. Is 3/4 greater than, less than or equal to 6/8? 
 

10. How many eighths are equal to 1/4?  
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Appendix B1: Worked example for real-life 
context conditions used in Experiment 2 

The first three worked example were identical to the worked-examples used in 

Experiment 1 (see Appendix A). The fourth worked example is as follows: 

Worked example number 4- Real-life context group 

Problem 4    Solution 4  
Does one 
have more 
pizza, if one 
eats 6 slices 
from a large 
pizza divided 
into 10 equal 
slices, or if 
one eats 4 
slices from a 
large pizza 
divided into 5 
equal slices? 

Draw one large pizza: 

                                                            
 
Divide this pizza into 10 
equal slices: 

 
 
Here one will eat 6 slices 
of 10, meaning 6/10 of a 
large pizza: 

 

 Draw another large pizza: 
 

 
 
Divide this pizza into 5 equal parts. 

 
 
Here one will eat 4 slices of 5, meaning 4/5 
of a large pizza: 

 
 
 
Try to halve these parts, and you will have: 

 
You have 8 slices of large pizza divided into 
10 equal parts. 
You have 8/10 of a large pizza. 

Conclusion  Now compare: in the first situation one eats 6 slices of 10 (6/10 of a 
pizza).In the second situation one eats 4 slices of 5 (4/5 of a pizza) which 
is equal to 8 slices of 10 (8/10 of pizza). 
Conclusion: One can eat less from the first pizza than the second one. 
Solution:  6/10 is less than 4/5. 
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Similar problem 
Now use the worked-example to solve a similar problem 
 
Does one have more pizza, if one eats 6 slices from a large pizza divided into 10 equal 

slices, or if one eats 4 slices from a large pizza divided into 5 equal slices? 
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Appendix B2: Worked example for geometric 
context conditions used in Experiment 2 

The first three worked example were identical to the worked-examples used in 

Experiment 1 (see Appendix A2).The fourth worked example is as follows: 

 

  

Problem 4  Solution 4  

 
Who will have 
more green; a 
child who drew a 
circle, divided it 
into ten equal 
parts, and painted 
six parts green, or 
a child who drew a 
circle, divided it 
into five equal 
parts and painted 
four parts green? 

Draw a circle: 
 
                                                                                       
 
 
Divide this circle into 10 
equal parts: 

 
  
Paint 6 of these ten parts 
green. 

 
 

 Draw another circle: 
 
 
               
 
Divide this circle into 5 equal parts. 

 
 
Paint 4 of these five parts green. You have 
4/5. 

 
 
Halve each part of this circle and you will 
get: 

 
Now you have 8 of 10 parts painted green. 
You have 8/10 painted green. 

Conclusion  Now compare: in the first circle you have 6/10 painted green, in the 
second circle you have 4/5 painted green which is equal to 8/10 painted 
green. 
Conclusion: In the first circle you have less green than the second circle. 
Solution: 6/10 is less than 4/5. 
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Similar problem 
 
Now use the worked-example to solve a similar problem 
 
Who will have more green; a child who drew a circle, divided it into ten equal parts and 

painted six parts green, or a child who drew a circle, divided it into five equal parts and 

painted four parts green? 
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Appendix C1: Worked examples used for real-life 
context conditions used in Experiment 3 

 

Problem 1    Solution 1  

Where will one get more 

pizza; at a table with three 

children sharing one large 

pizza, with each child 

getting 1/3, or at a table 

with five children sharing 

one large pizza with each 

child getting 1/5?  

When sharing one large 

pizza among 3 

children, each one will 

get 1/3. 

When sharing one large 

pizza among 5 kids, each 

one will get 1/5. 

Conclusion  Now compare: each child in the first situation gets 

more pizza than each child in the second situation. 

Conclusion: the less sharers, the more pizza each 

sharer gets. So one gets more pizza at a table with 3 

children sharing one pizza, than at a table with 5 

children sharing one pizza. Therefore, 1/3 is greater 

than 1/5.  
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Similar problem  
 
Now use the worked-example to solve a similar problem 
 
Where will one get more pizza; at a table with three children sharing one large pizza, 

with each child getting 1/3, or at a table with five children sharing one large pizza with 

each child getting 1/5? 
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Worked example number 2- Real life context group 
Problem 2    Solution 2   

Where will one get more 

pizza; at a table with five 

children sharing one large 

pizza, with each child getting 

1/5, or at a table with nine 

children sharing one large 

pizza with each child getting 

1/9?  

When sharing one large 

pizza among 5 children, 

Each one gets 1 slice 

out of 5 equal slices. 

Each child gets 1/5.  

 

When sharing one large 

pizza among 9 

children,  

Each one gets one slice 

out of 9 equal slices. 

Each child gets 1/9. 

Conclusion  Now compare: each child in the first situation gets 

more pizza than each child in the second situation. 

Conclusion: the less sharers, the more pizza each 

sharer gets. So one gets more pizza at a table with 

5 children sharing one pizza, than at a table with 9 

children sharing one pizza.  

Therefore, 1/5 is greater than 1/9.  
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Similar problem  
Now use the worked-example to solve a similar problem 
 
Where will one get more pizza; at a table with five children sharing one large pizza, 

with each child getting 1/5, or at a table with nine children sharing one large pizza with 

each child getting 1/9?  
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Worked example number 3- Real life context group 
 
Problem 3   Solution 2  

Mark who can eat 2/3 

of his birthday cake, 

argued with Jack who 

is allowed to eat 4/6 

of his birthday cake 

about who is allowed 

to eat more cake! 

They both have the 

same size birthday 

cakes. Who do you 

think will eat more 

cake? 

Mum divided Mark’s cake into 3 

equal parts. She said that Mark can eat 

2 of these 3 parts.   

Mark will eat 2/3 of his cake. 

To sort out this situation mum halved 

Mark’s portion. He now can eat 4 

pieces out of 6, instead of 2 out of 3 

but that is still the same amount of 

cake. 

He is allowed to eat 4/6 of his cake. 

Mum divided 

Jack’s cake into 6 

equal parts. She 

allowed Jack to 

eat 4 of these 6 

parts: 

Jack will eat 4/6 

of his cake. 

 

 

Conclusion  Now compare: Mark is allowed to eat 2/3 of his cake, 

which is the same amount as 4/6 of the cake. Jack is 

allowed to eat 4/6 of the cake. Both cakes are the same 

size. 

Conclusion: If we have 2/3 and we halve it we will get 4/6. 

Mark and Jack will eat the same amount of cake because 

both can eat 4/6 of the whole cake. 
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Similar problem  
 
Now use the worked-example to solve a similar problem 
 
Mark who can eat 2/3 of his birthday cake, argued with Jack who is allowed to eat 4/6 

of his birthday cake about who is allowed to eat more cake! They both have the same 

size birthday cakes. Who do you think will eat more cake? 
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Worked example number 4- Real life context 

 

Problem 4    Solution 4 

Who will eat more pizza; Sam 

who eats 1 slice of a large pizza 

divided into 2 equal parts (1/2 of 

one large pizza) , or Tim who eats 

2 slices of large pizza divided into 

4 equal  parts (2/4 of one large 

pizza)? 

Sam’s pizza is divided into 

2 equal parts. 

He can eat 1 of these 2. 

He can eat ½ of the pizza. 

To find out which portion 

is a bigger, Sam halves his 

pizza again, now he has 4 

equal parts and his portion 

is 2 out of these 4.  

Sam’s portion is 2/4 of the 

pizza. 

Tim’s pizza is 

divided into 4 

equal parts. 

He can eat 2 out 

of these 4 parts. 

He can eat 2/4 

of the pizza. 

 

 

Conclusion  Now compare: Tim will eat 2/4 of a pizza but 

Sam will eat 1/2 which is the same as 2/4. 

Conclusion: Sam will eat the same amount of 

pizza as Tim.  

So, 1/2 is the same as 2/4. 
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Similar problem  
 
Now use the worked-example to solve a similar problem 
 
Who will eat more pizza; Sam who eats 1 slice of a large pizza divided into 2 equal 

parts (1/2 of one large pizza), or Tim who eats 2 slices of large pizza divided into 4 

equal parts (2/4 of one large pizza)? 
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Worked example number 5- Real life context group 
 
Problem 5  Solution 5  

Who will eat more 

pizza; Sam who 

eats 3 slices of a 

large pizza divided 

into 8 equal parts 

(3/8 of one large 

pizza), or Tim who 

eats 2 slices of 

large pizza divided 

into 4 equal parts 

(2/4 of one large 

pizza)? 

Sam’s pizza is divided 

into 8 slices. 

He can eat 3 slices out 

of these 8. 

He can eat 3/8 of the 

pizza. 

Tim’s pizza is divided into 4 equal 

slices. 

   He can eat 2 slices out of these 4. 

He can eat 2/4 of the pizza. 

To figure out this problem mum 

halved Tim’s pizza again.  

Now it is divided into 8 equal 

slices. 

But still Tim can eat the same 

portion. 

Tim’s portion now is 4 slices out 

of 8, 

 4/8 of the pizza. 

Conclusion  Now compare: Sam will eat 3/8 but Tim will eat 2/4 which is 

the same as 4/8. 

Conclusion: Sam will eat less pizza than Tim.  

So, 3/8 is less than 2/4. 
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Similar problem  
Now use the worked-example to solve a similar problem 
 
Who will eat more pizza; Sam who eats 3 slices of a large pizza divided into 8 equal 

parts (3/8 of one large pizza), or Tim who eats 2 slices of large pizza divided into 4 

equal parts (2/4 of one large pizza)? 

 



 
 
 
 

199 

Worked example number 6- Real life context group 
 
Problem 6    Solution 6  

Does one have 

more pizza, if one 

eats 6 slices from 

a large pizza 

divided into 10 

equal slices, or if 

one eats 4 slices 

from a large pizza 

divided into 5 

equal slices? 

                                                        

In the first situation: 

One can eat 6 slices 

out of 10 from a large 

pizza divided into 10 

equal slices. 

One eats 6/10 of the 

pizza. 

 

In the second situation: 

One can eat 4 out of 5 slices from a large 

pizza divided into 5 equal slices. 

One eats 4/5 of the pizza. 

To figure out which portion is more,  

We can halve each of the slices of the 

second pizza,  

Instead of 4 out of 5 

We will have now 8 out of 10 

Instead of 4/5 now we have 8/10 but still 

it is the same amount of pizza. 

Conclusion  Now compare: in the first situation one eats 6 slices of 10 (6/10 

of a pizza). In the second situation one eats 4 slices of 5 (4/5 of a 

pizza) which is equal to 8 slices of 10 (8/10 of pizza). 

Conclusion: One can eat less from the first pizza than the second 

one. 

Solution:  6/10 is less than 4/5. 
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Similar problem  
Now use the worked-example to solve a similar problem 
 
Does one have more pizza, if one eats 6 slices from a large pizza divided into 10 equal 

slices, or if one eats 4 slices from a large pizza divided into 5 equal slices? 
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Appendix C2: Worked examples used for the 
geometric context conditions used in Experiment 

3 
 
Problem 1 Solution 1 

Which results in a larger 

colored area; if you divide a 

circle into three parts and 

color one part resulting in 1/3 

of the circle being colored or 

if you divide a circle into five 

parts and color one part 

resulting in 1/5 of the circle 

being colored? 

When dividing a circle  

into 3 equal parts and 

coloring in one of these 

parts, you will have 1/3 of 

the circle colored in.  

When dividing a 

circle into 5 equal 

parts and coloring in 

one of these parts, 

you will have 1/5 of 

the circle colored in. 

 

 

Conclusion  Now compare: you have more color in the first 

circle than in the second circle. 

Conclusion: The less parts, the more the colored 

area. So a circle divided into 3 parts with 1 part 

colored has more color than a circle divided into 5 

parts with 1 part colored. Therefore, 1/3 is greater 

than 1/5.  
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Similar problem  
Now use the worked-example to solve a similar problem 
 
Which results in a larger colored area; if you divide a circle into three parts and color 

one part resulting in 1/3 of the circle being colored or if you divide a circle into five 

parts and color one part resulting in 1/5 of the circle being colored? 
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Worked example number 2- Geometric context 
 
 
Problem 2 Solution 2 

Which results in a larger 

colored area; if you divide a 

circle into five equal parts 

and color one part resulting 

in 1/5 of the circle being 

colored or if you divide a 

circle into nine equal parts 

and color one part resulting 

in 1/9 of the circle being 

colored? 

When dividing a circle into 

5 equal parts, you are 

coloring in 1 of these 5 

parts. 

Resulting in 1/5 of the circle 

being colored in.  

                      

 

 

When dividing a 

circle into 9 equal 

parts and coloring in 1 

of these 9 parts. 

Resulting in 1/9 of the 

circle being colored 

in. 

Conclusion  Now compare: you have more color in the first circle 

than in the second circle. 

Conclusion: The less parts, the more the colored area. 

So a circle divided into 5 equal parts with 1 part 

colored has more color than a circle divided into 9 

equal parts with 1 part colored.  

Therefore, 1/5 is greater than 1/9. 
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Similar problem  
Now use the worked-example to solve a similar problem 
 
Which results in a larger colored area; if you divide a circle into five equal parts and 

color one part resulting in 1/5 of the circle being colored or if you divide a circle into 

nine equal parts and color one part resulting in 1/9 of the circle being colored? 
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Worked example number 3- Geometric context 
Problem 3    Solution 3  

One group of children, 

who painted 2/3 of a 

rectangle blue, got into 

an argument with 

another group of 

children who painted 

4/6 of a same size 

rectangle blue. They 

said that the children 

in the second group 

got more blue than the 

first. Are they right? 

 

The first group of children 

drew a rectangle and divided 

it into 3 equal parts. 

They painted 2 of these parts 

blue. 

They have 2/3 of this 

rectangle painted blue. 

To sort out this argument, the 

teacher suggested that the 

first group halve the 3 parts 

of the rectangle. 

They have now 4 blue parts 

out of 6. 

The second group of 

children drew a 

rectangle. 

They divided it into 

6 equal parts. 

They painted 4 out 

of these 6 parts blue. 

They have 4/6 of the 

rectangle painted 

blue. 

 

 

Conclusion  Now compare: In the first rectangle you have 2/3 of 

it painted blue, which is the same amount as 4/6. 

Both of them had 4/6 painted blue. 

Conclusion: if we have 2/3 and we halve it we will 

have 4/6. It will still have the same painted area. So 

2/3 is equal to 4/6. 
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Similar problem  
Now use the worked-example to solve a similar problem 
 
One group of children, who painted 2/3 of a rectangle blue, got into an argument with 

another group of children who painted 4/6 of a same size rectangle blue. They said that 

the children in the second group got more blue than the first. Are they right? 
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Worked example number 4- Geometric context 
 
 
Problem 4    Solution 3  

What will have more 

red; one circle 

divided into 2 equal 

parts with 1 part 

painted red (1/2 of a 

circle is painted red), 

or a circle divided 

into 4 equal parts 

with 2 parts painted 

red (2/4 of a circle is 

painted red)? 

 

The first circle is divided into 2 

equal parts. 

1 part is painted red. 

½ of the circle is painted red.                                             

To find out which circle has more 

red, we halve each of the 2 parts to 

divide the circle into 4 equal parts. 

  Now you have a circle divided into 

4 equal parts with 2 of them painted 

red. You have 2/4 painted red, which 

is the same area as ½. 

The second circle 

is divided into 4 

equal parts. 

2 parts are painted 

red. 

2/4 of the circle is 

painted red. 

 

 

Conclusion  Now compare: In the second circle you have 2/4 painted 

red whereas, in the first circle you have 1/2 painted red 

which is identical to 2/4 painted red. 

Conclusion: we have the same red area in the two circles. 

So, 1/2 is equal to 2/4. 
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Similar problem  
Now use the worked-example to solve a similar problem: 
 
What will have more red; one circle divided into 2 equal parts with 1 part painted red 

(1/2 of a circle is painted red), or a circle divided into 4 equal parts with 2 parts painted 

red (2/4 of a circle is painted red)? 
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Worked example number 5- Geometric context 
 
Problem 5    Solution 5  

What will have more 

red; one circle 

divided into 8 equal 

parts with 3 parts 

painted red (3/8 of a 

circle is painted red), 

or a circle divided 

into 4 equal parts 

with 2 parts painted 

red (2/4 of a circle is 

painted red)? 

 

The first circle is 

divided into 8 equal 

parts. 

We paint 3 parts out 

of these 8 red. 

We have 3/8 of a 

circle painted red. 

The second circle is divided into 4 

equal parts. 

We paint 2 parts out of these 4 red. 

We have 2/4 of this circle painted 

red 

To compare between the red areas 

in the two circles, we halve each 

of the 4 parts to give 8 equal parts.  

Now the red area will be 4 out of 8 

parts. 

It is 4/8 of the circle. 

Conclusion  Now compare: In the first circle you have 3/8 painted red 

whereas, in the second circle you have 2/4 painted red 

which is identical to 4/8 painted red. 

Conclusion: we have less red area in the first circle than the 

second circle.  

So, 3/8 is less than 2/4. 
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Similar problem  
Now use the worked-example to solve a similar problem 
 
What will have more red; one circle divided into 8 equal parts with 3 parts painted red 

(3/8 of a circle is painted red), or a circle divided into 4 equal parts with 2 parts painted 

red (2/4 of a circle is painted red)? 
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Worked example number 6- Geometric context 
 
Problem 6  Solution 6  

Who will have more 

green; a child who 

drew a circle, divided 

it into ten equal parts 

and painted six parts 

green, or a child who 

drew a circle, divided 

it into five equal parts 

and painted four parts 

green? 

 In the first situation: 

Dividing a circle into 

10 equal parts and 

painting 6 of these 

parts green will result 

in 6/10 of the circle 

area being green. 

 

In the second situation: 

Dividing a circle into 5 equal parts 

and painting 4 out of these 5 parts 

green will result in 4/5 of the circle 

area being green. 

To figure out which area is larger,  

We halve each part of the second 

circle by adding 5 more lines, 

resulting in 10 parts. 8 of the 10 

parts are green so 8/10 of the 

second circle is green. 

Conclusion  Now compare: in the first circle you have 6/10 painted 

green, in the second circle you have 4/5 painted green 

which is equal to 8/10 painted green. 

Conclusion: In the first circle you have less green than the 

second circle. 

Solution: 6/10 is less than 4/5. 
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Similar problem  
Now use the worked-example to solve a similar problem 
 
Who will have more green; a child who drew a circle, divided it into ten equal parts and 

painted six parts green, or a child who drew a circle, divided it into five equal parts and 

painted four parts green? 
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Appendix C3: Test problems used in Experiments 
3, 4 and 5 

 
(Near Transfer problems are 1 to 8, more distant transfer problems are 9 to 12) 
 

1. Draw a diagram to show 1/3 then draw another diagram to show a fraction larger 

than 1/3. 

2. Draw a diagram to show 3/4 then draw another diagram to show a fraction less 

than 3/4. 

3. Draw a diagram to show two equal fractions. 

4. Is 1/4 greater, less than or equal to 1/5? 

5. Is 2/5 greater, less than or equal to 4/10?  

6. Is ¾ greater, less than or equal to 5/8? 

7. Is 2/3 greater, less than or equal to 5/6? 

8. Is ¾ greater than, less than or equal to 6/8? 

9. How many ninths are equal to 2/3? 

10. How many tenths are equal to 2/5?  

11. How many thirds are equal to 2/6? 

12. Is 3/5 greater, less than or equal to 4/7? 
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Appendix D1: The complete learning booklet of 
the realistic worked examples condition used in 

Experiments 4 and 5 
 
 
Cover Page 
 
Learning booklet 
Worked examples group- Realistic context (RWE) 
 
In this booklet you have 4 pairs of worked examples. 
You need to study each one carefully because you need to solve a similar problem in the next 
page. 
 
 When you solve, you need to explain your answer.  
 
You have 3 minutes to study the worked example and 3 minutes to solve the similar problem 
following it.  
You need to write on the same sheet of paper. 
Please read the question carefully, solve as accurately and as neatly as you can. 
You do NOT need to write your name 
This is your number please keep it to the next stage. 
 
N.B- In this study we are talking about a home made pizza, which we can cut into as many 
slices as we like J 
 
 
 
 

Boy or Girl 
Group- RWE 
Number _______ 
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Page 1 
Problem 1 (real-
life context group) 

  Solution 1 (real-life context group) 

Where will one 
get more pizza; at 
a table with three 
children sharing 
one large pizza, 
with each child 
getting 1/3, or at a 
table with five 
children sharing 
one large pizza 
with each child 
getting 1/5? 

Draw a circle for one large pizza: 

 
Draw 3 stick children: 
 
Divide this pizza into3 equal parts: 

Give each child one 
part.  
Each child has 1/3 of the pizza 

 

Draw another circle for another 
large pizza. 

 
Draw 5 stick children: 
 
Divide this pizza into 5 equal 
parts. 

Give each child 
one part. 
Each child has 1/5 of the pizza 

 
Conclusion  Now compare: each child in the first situation gets more pizza than each 

child in the second situation. 
Conclusion: the less sharers, the more pizza each sharer gets. So one 
gets more pizza at a table with 3 children sharing one pizza, than at a 
table with 5 children sharing one pizza. Therefore, 1/3 is greater than 
1/5.  
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Page 2 
 
Now you have 1 minute to read the answer again 
 
 
Solution: 
 
You will get more pizza at a table with 3 children sharing one large pizza (1/3), than at 

a table with 5 children sharing one large pizza (1/5) because the fewer the number of 

sharers, the more pizza a person can get. 

Conclusion: 1/3 is greater than 1/5  
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Page 3 
 
Solve a similar problem, use the example! (You have 3 minutes) 
 
Where will you get more pizza; at a table with 4 children sharing one large pizza, with 

each child getting 1/4, or at a table with 6 children sharing one large pizza with each 

child getting 1/6? 

Solution: 

 
 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
Write your final answer in the box   
Score_________ 
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Page 4 
 
How easy or difficult did you find the worked-examples to be understood and solved (tick one 
box)?   
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Extre
mely 
Easy 

Very 
easy 

Easy    Rather 
easy 

Neither 
easy nor 
difficult  

Rathe
r 
diffic
ult 

Diffic
ult  

Very 
difficult 

Extre
mely 
difficu
lt 

Worked 
example 
number 1 
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Page 5 
 
 
Now you have 1 minute to read the correct answer 
  
Solution: 
You will get more pizza at a table with 4 children sharing one large pizza (1/4), than at a table 
with 6 children sharing one large pizza (1/6) because the fewer the number of sharers, the more 
pizza a person can get. 
 
Conclusion: ¼ is greater than 1/6  
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Page 6 
Problem 2   Solution 2 
Mark who can 
eat 2/3 of his 
birthday cake, 
argued with Jack 
who is allowed 
to eat 4/6 of his 
birthday cake 
about who is 
allowed to eat 
more cake! They 
both have the 
same size 
birthday cakes. 
Who do you 
think will eat 
more cake? 

Here is Mark’s birthday cake: 

                                                           
Mum divided this cake into 3 equal parts. She 
said that Mark can eat 2 of these 3 parts: 

Mark will eat 2/3 of his cake. 
Mark couldn’t eat such big parts so mum halved 
his portion but, he insisted on eating all of it. 
Now it looks like this: 

 It is 4/6 of the cake. 

Here is Jack’s 
birthday cake: 

      
Mum divided this 
cake into 6 equal 
parts. She allowed 
Jack to eat 4 of these 
6 parts: 

         
 
Jack will eat 4/6 of 
his cake 

Conclusion  Now compare: Mark is allowed to eat 2/3 of his cake, which is the same 
amount as 4/6 of the cake. Jack is allowed to eat 4/6 of the cake. Both 
cakes are the same size. 
Conclusion: If we have 2/3 and we halve it we will got 4/6. Mark and 
Jack will eat the same amount of cake because both can eat 4/6 of the 
whole cake. 
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Page 7 
 
Now you have 1 minute to read the answer again 
 
Solution 
 
Mark can eat two pieces of his cake which was divided into 3 equal pieces (2/3). If we 

divide again the whole cake, cut each piece into two pieces, Mark’s portion can be seen 

as 4 pieces out of 6 (4/6) which is the same as Jack’s portion. 

Conclusion: 2/3= 4/6 
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Page 8 
 
Solve a similar problem, use the example! (You have 3 minutes) 
 
Tim who can eat 1/4 of his birthday cake, argued with Ali who is allowed to eat 2/8 of 

his birthday cake about who is allowed to eat more cake! They both have the same size 

birthday cakes. Who do you think will eat more cake? 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer in the box   
 
Score_________ 
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Page 9 
 
How easy or difficult did you find the worked-examples to be understood and solved (tick one 
box)?   
 
 
 
 
 
 

 
 
 

Extrem
ely 
easy 

Very 
easy 

Easy    Rather 
easy 

Neither 
easy 
 nor 
difficult  

Rather 
difficu
lt 

Diff
icul
t  

Very 
diffic
ult 

Extre
mely 
difficu
lt 

Worked 
example 
number 
2 
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Page 10 
 
Now you have 1 minute to read the correct answer 
 
Solution 
 
Tim can eat one piece of his cake which was divided into 4 equal pieces (1/4). If we 

divide again the whole cake, cut each piece into two pieces, this quarter can be seen as 2 

pieces out of 8 (2/8) which is the same as Ali’s portion. 

Conclusion: ¼ = 2/8 
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Page 11 
Problem 3    Solution 3  
Who will eat more 
pizza; Sam who 
eats 3 slices of a 
large pizza 
divided into 8 
equal parts  3/8 of 
one large pizza), 
or Rakin who eats 
2 slices of large 
pizza divided into 
4 equal  parts (2/4 
of one large 
pizza)? 

Draw one large pizza. 

      
Divide this pizza into 
8 equal slices. 

 
Mum said that Sam 
can eat 3 slices, 
which is 3/8 of the 
pizza.  
He will eat this 
portion: 

 
Sam will eat 3/8. 
 
 

Draw another large pizza. 

     Divide this pizza into 4 equal slices. 

Mum said that Rakin can eat 2 slices of 
the four slices. This is his portion: Rakin will eat 
2/4. 

Before eating, a few friends came 
and mum re-divided the pizza into 8 parts, but 
she said that Rakin still can eat the same amount 
of pizza. 
Now Rakin’s  portion will look like this: 

Rakin can eat 4 slices of 8 (4/8) which 
is the same amount as 2 slices of 4 (2/4). 

Conclusion  Now compare: Sam will eat 3/8 but, Rakin will eat 2/4 which is the same 
as 4/8. 
Conclusion: Sam will eat less pizza than Rakin.  
So, 3/8 is less than 2/4. 
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Now you have 1 minute to read the answer again 
 
Solution: 
 
Rakin eats 2 slices of a pizza which is divided into 4 equal slices (2/4). If we cut the 

whole pizza again, each slice into 2, he would have 4 slices of a pizza divided into 8 

equal parts (4/8). That is more than Sam’s amount of 3 slices out of 8 (3/8). 

Conclusion: 2/3 is greater than 3/6  
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Solve a similar problem, use the example. (You have 3 minutes) 
 
Who will eat more pizza; Beverly who eats 3 slices of a large pizza divided into 6 equal 

parts (3/6 of one large pizza), or Clair who eats 2 slices of a large pizza divided into 3 

equal parts (2/3 of one large pizza)? 

 
Solution 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
Write your final answer in the box   
 
Score_________ 
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How easy or difficult did you find the worked-examples to be understood and solved (tick one 
box)?   
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easy 
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easy 

Neither 
easy nor 
difficult  

Rather 
difficult 

Difficul
t  

Very 
difficu
lt 
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ult 

Worked 
example 
number 
3 
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Now you have 1 minute to read the correct answer 
 
Solution: 
Clair can eat 2 slices of a pizza divided into 3 equal slices (2/3). If we cut the whole 

pizza again, she will have 4 slices of a pizza divided into 6 equal parts (4/6). That is 

more than Beverly’s amount of 3 slices out of 6 (3/6). 

Conclusion:   2/3 is greater than 3/6  
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Problem 4    Solution 4  
Do you have 
more pizza, if 
you eat 6 
slices from a 
large pizza 
divided into 
10 equal 
slices, or if 
you eat 4 
slices from a 
large pizza 
divided into 5 
equal slices? 

Draw one large pizza: 

                                                                                
Divide this pizza into 10 
equal slices: 

 
Here one will eat 6 slices 
of 10, meaning 6/10 of a 
large pizza: 

 

 Draw another large pizza: 
 

Divide this pizza into 5 equal parts. 
 

Here one will eat 4 slices of 5, 
meaning 4/5 of a large pizza: 

Try to halve these parts, and you 
will have: 

You have 8 slices of large pizza 
divided into 10 equal parts. 
You have 8/10 of a large pizza. 

Conclusion  Now compare: in the first situation one eats 6 slices of 10 (6/10 of a 
pizza).In the second situation one eats 4 slices of 5 (4/5 of a pizza) which 
is equal to 8 slices of 10 (8/10 of pizza). 
Conclusion: One can eat more from the second pizza than the first one.  
Solution: 4/5 is greater than 6/10. 
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Now you have 1 minute to read the answer again 
 
Solution: 
 
Each of the 4 slices of a large pizza which is cut into 5 equal parts (4/5) can be cut in 

half again. It will give us 8 slices out of 10 (8/10), which is more than 6/10. 

Conclusion: 4/5 is greater than 6/10 
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Solve a similar problem, use the example. (You have 3 minutes) 
 
Do you have more pizza, if you eat 3 slices from a large pizza divided into 10 equal 

slices (3/10), or if you eat 2 slices from a large pizza divided into 5 equal slices (2/5)? 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
Write you final answer in the box 
 
 
Score_________ 
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How easy or difficult did you find the worked-examples to be understood and solved (tick one 
box)?   
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Each of the 2 slices of a large pizza which is cut into 5 equal parts (2/5) can be cut in 

half again. It will give us 4 slices out of 10 (4/10), which is more than 3/10. 

Conclusion: 2/5 is greater than 3/10. 
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Appendix D2- The complete learning booklet of 
the geometric worked examples condition used in 

Experiments 4 and 5 
 

 
Cover Page 
 
Learning booklet 
Worked examples group- Geometric context (GWE) 
 
In this booklet you have 4 pairs of worked examples. 
You need to study each one carefully because you need to solve a similar problem in the next 
page. 
When you solve, you need to explain your answer. 
You have 3 minutes to study the worked example and 3 minutes to solve the similar problem 
following it. 
You need to write on the same sheet of paper. 
 
Please read the question carefully, solve as accurately and as neatly as you can. 
You do NOT need to write your name 
This will be your number, please keep it to the next stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Boy or Girl 
Group- GWE 
Number _______ 
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Problem 1                   Solution 1  
Which results in a 
larger colored area; 
if you divide a circle 
into three parts and 
color one part 
resulting in 1/3 of 
the circle being 
colored or if you 
divide a circle into 
five parts and color 
one part resulting in 
1/5 of the circle 
being colored? 
 
 

Draw a circle: 
 
                                                            
 
 
Divide this circle into 3 
equal parts 

 
Color one part of these 
three parts. You have 1/3 
of the circle colored. 

 

Draw another circle: 
 
 
 
 
Divide this circle into 5 equal parts. 

 
Color one part of these five parts. You 
have 1/5 of the circle colored.  
 

 

Conclusion  Now compare: you have more color in the first circle than in the 
second circle. 
Conclusion: The less parts, the more the colored area. So a circle 
divided into 3 parts with 1 part colored has more color than a circle 
divided into 5 parts with 1 part colored. Therefore, 1/3 is greater than 
1/5. 
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Now you have 1 minute to read the answer again 
 
Solution: 
 
One shaded part of a circle which is divided into three equal parts (1/3), is more than 

one shaded part of a circle divided into five equal parts (1/5) because the fewer the 

number of parts the bigger the shaded area. 

Conclusion: 1/3 is greater than 1/5 
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Solve a similar problem, use the example! (You have 3 minutes) 
 
Which results in a larger colored area; if you divide a circle into 4 equal parts and color 

one part to get 1/4 of the circle being shaded or if you divide a circle into 6 parts and 

color one part to get 1/6 of the circle being shaded?  

 
Solution: 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Write your answer in the box  
Score___________ 
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How easy or difficult did you find the worked-examples to be understood and solved (tick one 
box)?   
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easy 
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difficult 
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example 
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1 

         



 
 
 
 

240 

Page 5 
Now you have 1 minute to read the correct answer 
 
Solution 
 
One shaded part of a circle which is divided into four equal parts (1/4), is more than one 

shaded part of a circle divided into 6 equal parts (1/6) because the fewer the number of 

parts the bigger the shaded area. 

Conclusion: ¼ is greater than 1/6. 
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Problem 2    Solution 2  
One group of 
children, who 
painted 2/3 of a 
rectangle blue, got 
into an argument 
with another group 
of children who 
painted 4/6 of a 
same sized 
rectangle blue. 
They said that the 
children in the 
second group got 
more blue than the 
first. Are they 
right? 
 

Here is a  rectangle 

 
This rectangle is divided into 3 equal 
parts 

 
Two of these 3 parts are painted blue.  

 
2/3 is painted blue. 
Each of the three parts can be divided 
into 2 (add three more lines): 

  
We have the same area, 4/6 painted 
blue. 

 Here is another rectangle : 

 
This rectangle is divided into 
6 equal parts. 

 
Four of these 6 parts are 
painted blue. 

 
4/6 is painted blue.  
 
 
 
 
 

Conclusion  Now compare: In the first rectangle you have 2/3 painted blue, which is 
the same amount as 4/6. Both of them had 4/6 painted blue. 
Conclusion: if we have 2/3 and we halve it we will have 4/6. It will still 
have the same painted area. So 2/3 is equal to 4/6. 

 



 
 
 
 

242 

Page 7 
 
Now you have 1 minute to read the answer again 
 
Solution: 
 
The first group painted two parts of a rectangle blue which is divided into 3 equal parts 

(2/3). If they divided each part into two, they would get 4 blue parts out of 6 parts (4/6) 

which is the same as the second group’s blue area. 

Conclusion:  2/3=4/6. 
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Solve a similar problem, use the example! (You have 3 minutes) 

 

One group of children, who painted 1/4 of a rectangle blue, got into an argument with 

another group of children who painted 2/8 of a same size rectangle blue. They said that 

the children in the second group got more blue than the first. Who do you think had 

more blue area? 

Solution: 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
Write your final answer here 
Score__________ 
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How easy or difficult was the worked-examples to be understood and solved (tick one box)?   
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easy 
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lt 
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Now you have 1 minute to read the correct answer 
 
 
Solution 
 
 
The first group painted one part of a rectangle blue which is divided into 4 equal parts (1/4). If 
they divided each part into two, they would get 2 blue parts out of 8 parts (2/8) which is the 
same as the second group’s blue area. 
 
Conclusion: ¼ =2/8 
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Problem 3    Solution 3  

 

What will have 

more red; one 

circle divided 

into 8 equal parts 

with 3 parts 

painted red (3/8 

of a circle is 

painted red), or a 

circle divided 

into 4 equal parts 

with 2 parts 

painted red (2/4 

of a circle is 

painted red)? 

 

Draw a circle: 

                                            

Divide this circle into 

8 equal parts 

       

Paint three parts of 

these eight parts red.  

      

You have 3/8 painted 

red.  

 

Draw another circle: 

 

 

Divide this circle into 4 equal parts. 

 

 

Paint tow parts of these four parts red 

 

You have 2/4 painted red.  

Repeat halving this circle (add 2 lines) 

 

Now you have a circle divided into 8 parts, 4 of 

them painted red. You have 4/8 painted red 

which is the same area as 2/4. 

Conclusion  Now compare: In the first circle you have 3/8 painted red whereas, in the 

second circle you have 2/4 painted red which is identical to 4/8 painted 

red. 

Conclusion: We have less red area in the first circle than the second 

circle.  

So, 3/8 is less than 2/4. 
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Now you have 1 minute to read the detailed answer again 
 
Solution: 
 
Let us assume that we have two red parts out of a circle which is divided into 4 equal 

parts (2/4). If we cut each part into 2 parts, we would get 4 red parts out of 6 parts (4/8). 

That is more than 3 red parts out of 8 (3/8). 

Conclusion: 2/4 is greater than 3/8.  
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Solve a similar problem (You have 3 minutes) 
 
What will have more red; one circle divided into 6 equal parts with 3 parts painted red 

(3/6 of a circle is painted red), or a circle divided into 3 equal parts with 2 parts painted 

red (2/3 of a circle is painted red)? 

Solution:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer here 
 
Score_____________ 
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How easy or difficult did you find the worked-examples to be understood and solved (tick one 
box)?   
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cult  

Very 
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lt 

Worked-
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number 3 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Let us assume that we have two red parts out of a circle which is divided into 3 equal 

parts (2/3). If we cut each part into 2 parts, we would get 4 red parts out of 6 parts (4/6). 

That is more than 3 red parts out of 6 (3/6). 

Conclusion: 2/3 is greater than 3/6.  
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Problem 4 
(geometric group) 

                 Solution 4 (geometric group) 

Who will have more 
green; a child who 
drew a circle, 
divided it into 10 
equal parts and 
painted 6 parts green 
(6/10), or a child 
who drew a circle, 
divided it into 5 
equal parts and 
painted 4 parts green 
(4/5)? 

Draw a circle: 
 
 
 
 
 
 
                                                                
Divide this circle into 10 equal 
parts: 

 
Paint 6 of these ten parts 
green. 

 
 
 
 
 
 
  
 

Draw another circle: 
 
 
 
 
 
Divide this circle into 5 equal 
parts. 

 
Paint 4 of these five parts green. 
You have 4/5. 

 
Halve each part of this circle and 
you will get: 

 
Now you have 8 of 10 parts 
painted green. You have 8/10 
painted green. 

Conclusion  Now compare: in the first circle you have 6/10 painted green, in the 
second circle you have 4/5 painted green which is equal to 8/10 
painted green. 
Conclusion: In the first circle you have less green than the second 
circle. 
Solution: 6/10 is less than 4/5. 
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Now you have 1 minute to read the detailed answer again 
 
Solution 
 
If we paint green 4 parts out of a circle which is divided into 5 equal parts we would 

have 4/5 of the circle painted green. If we divide each part into two parts we would have 

8 green parts out of 10 (8/10) that is a greater green area than 6/10. 

Conclusion: 4/5 is greater than 6/10. 
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Solve a similar problem, use the example! (You have 3 minutes) 
 
Who will have more green; a child who drew a circle, divided it into 10 equal parts and 

painted 3 parts green (3/10), or a child who drew a circle, divided it into 5 equal parts 

and painted 2 parts green (2/5)? 

Solution: 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
Write your final answer here 
 
Score__________ 
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How easy or difficult did you find the worked-examples to be understood and solved (tick one 
box)?   
  
 
 
 
 
 
 

 
 
 

Extre
mely 
easy 

Very 
easy 

Easy    Rather 
easy 

Neither 
easy nor 
difficult  

Rather 
difficult 

Difficult  Very 
difficu
lt 

Extre
mely 
diffic
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Worked-
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
If we paint green 2 parts out of a circle which is divided into 5 equal parts we would 

have 2/5 of the circle painted green. If we divide each part into two parts we would have 

4 green parts out of 10 (4/10) that is a greater green area than 3/10. 

Conclusion: 2/5 is greater than 3/10. 
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Appendix D3- The complete learning booklet of 
the realistic problem solving condition used in 

Experiments 4 and 5 
 

 
Cover Page  
 
Learning booklet 
Problem solving group-Realistic context (RPS) 
 
In this booklet you are to solve 4 pairs of problems. 
You need to give an answer and an explanation. 
You will be given 3 minutes for each problem  
You need to write on the same sheet of paper. 
Please read the question carefully, solve as accurately and as neatly as you can. 
You do NOT need to write your name 
 
This will be your number, please keep it to the end of the study.  
 
 
  
N.B- In this study we are talking about a home made pizza, which we can cut into as many 
slices as we like J 
 
 
 
 
 
 
 
 
 
 
 

Boy or Girl 
Group- RPS 
Number _______ 



 
 
 
 

257 

Page 1 
 
Problem 1: 
 
Where will you get more pizza; at a table with 3 children sharing one large pizza, with 

each child getting 1/3, or at a table with 5 children sharing one large pizza with each 

child getting 1/5? 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
Write your final answer in the box  
Score__________ 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
You will get more pizza at a table with 3 children sharing one large pizza (1/3), than at 

a table with 5 children sharing one large pizza (1/5) because the fewer the number of 

sharers, the more pizza a person can get. 

Conclusion: 1/3 is greater than 1/5  
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Solve a similar problem (You have 3 minutes) 
 
Where will you get more pizza; at a table with 4 children sharing one large pizza, with 

each child getting ¼ of a pizza, or at a table with 6 children sharing one large pizza with 

each child getting 1/6 of a pizza? 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Write your final answer in the box   
  
Score_________ 
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How easy or difficult did you find learning to solve these problems (please tick one box)? 
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easy 
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lt 

Problem  
1 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
You will get more pizza at a table with 4 children sharing one large pizza (1/4), than at 

a table with 6 children sharing one large pizza (1/6) because the fewer the number of 

sharers, the more pizza a person can get. 

Conclusion: ¼ is greater than 1/6  
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Problem 2 
 
Mark who can eat 2/3 of his birthday cake, argued with Jack who is allowed to eat 4/6 

of his birthday cake about who is allowed to eat more cake! They both have the same 

size birthday cakes. Who do you think will eat more cake? 

 
Solution: 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
Write your final answer here 
Score__________  
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Mark can eat two pieces of his cake which was divided into 3 equal pieces (2/3). If we 

divide again the whole cake, cut each piece into two pieces, Mark’s portion can be seen 

as 4 pieces out of 6 (4/6) which is the same as Jack’s portion. 

Conclusion: 2/3= 4/6 
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Solve a similar problem (You have 3 minutes) 
 
Tim who can eat 1/4 of his birthday cake, argued with Ali who is allowed to eat 2/8 of 

his birthday cake about who is allowed to eat more cake! They both have the same size 

birthday cakes. Who do you think will eat more cake? 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer in the box   
 
Score_________ 
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How easy or difficult did you find learning to solve these problems (please tick one box)? 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Tim can eat one piece of his cake which was divided into 4 equal pieces (1/4). If we 

divide again the whole cake, cut each piece into two pieces, this quarter can be seen as 2 

pieces out of 8 (2/8) which is the same as Ali’s portion. 

Conclusion: ¼ = 2/8 
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Problem 3 
 
Who will eat more pizza; Sam who eats 3 slices of a large pizza divided into 8 equal 

parts (3/8 of one large pizza), or Rakin who eats 2 slices of a large pizza divided into 4 

equal parts (2/4 of one large pizza)? 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer here  
Score_________ 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Rakin eats 2 slices of a pizza which is divided into 4 equal slices (2/4). If we cut the 

whole pizza again, each slice into 2, he would have 4 slices of a pizza divided into 8 

equal parts (4/8). That is more than Sam’s amount of 3 slices out of 8 (3/8). 

Conclusion:   2/3 is greater than 3/6  
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Solve a similar problem (You have 3 minutes) 
 
Who will eat more pizza; Beverly who eats 3 slices of a large pizza divided into 6 equal 

parts (3/6 of one large pizza), or Clair who eats 2 slices of a large pizza divided into 3 

equal parts (2/3 of one large pizza)? 

 
Solution: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer in the box   
 
Score_________ 
 
 
 



 
 
 
 

270 

Page 14 
 
 
How easy or difficult did you find learning to solve these problems (please tick one box)? 
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 3 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Clair can eat 2 slices of a pizza divided into 3 equal slices (2/3). If we cut the whole 

pizza again, she will have 4 slices of a pizza divided into 6 equal parts (4/6). That is 

more than Beverly’s amount of 3 slices out of 6 (3/6). 

Conclusion:   2/3 is greater than 3/6  
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Problem 4 
 
Do you have more pizza if you eat 6 slices from a large pizza divided into 10 equal 

slices (6/10), or if you eat 4 slices from a large pizza divided into 5 equal slices (4/5)? 

Solution: 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 
Write your final answer here  
Score__________ 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Each of the 4 slices of a large pizza which is cut into 5 equal parts (4/5) can be cut in 

half again. It will give us 8 slices out of 10 (8/10), which is more than 6/10. 

Conclusion: 4/5 is greater than 6/10 
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Solve a similar problem (You have 3 minutes) 
 
Do you have more pizza if you eat 3 slices from a large pizza divided into 10 equal 

slices (3/10), or if you eat 2 slices from a large pizza divided into 5 equal slices (2/5)? 

 
Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write you final answer in the box 
 
 
Score_________ 
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How easy or difficult did you find learning to solve these problems (please tick one box)? 
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276 

Page 20 
Now you have 1 minute to read the correct answer 
 
Solution: 
 
Each of the 2 slices of a large pizza which is cut into 5 equal parts (2/5) can be cut in 

half again. It will give us 4 slices out of 10 (4/10), which is more than 3/10. 

Conclusion: 2/5 is greater than 3/10. 
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Appendix D4: The complete learning booklet of 
the geometric problem solving condition used in 

Experiments 4 and 5 
 

 
Cover page 
 
Learning booklet (GPS) group 
 
In this booklet you are to solve 4 pairs of problems. 
You need to give an answer and an explanation. 
You have 3 minutes for each problem  
You need to write on the same sheet of paper. 
Please read the question carefully, solve as accurately and as neatly as you can. 
 
You do NOT need to write your name 
 
This will be your number please keep it to the next stage 
 
 
 
 
 
 
 
 
 

Boy or Girl 
Group     GPS 
Number _______ 
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Problem 1: 
 
Which results in a larger colored area; if you divide a circle into three parts and color 

one part resulting in 1/3 of the circle being shaded or if you divide a circle into five 

parts and color one part resulting in 1/5 of the circle being colored?  

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer in the box  
 
Score _________ 
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Now you have 1 minute to read the correct answer 
 
Solution 
 
One shaded part of a circle which is divided into three equal parts (1/3), is more than 

one shaded part of a circle divided into five equal parts (1/5) because the fewer the 

number of parts the bigger the shaded area. 

Conclusion: 1/3 is greater than 1/5  
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Solve a similar problem (you have 3 minutes) 
 
Which results in a larger colored area; if you divide a circle into four parts and color 

one part to get 1/4 of the circle being shaded or if you divide a circle into six parts and 

color one part to get 1/6 of the circle being colored?  

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your answer in the box  
Score___________ 
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How easy or difficult did you find learning to solve these problems (please tick one box)? 
.  
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
One shaded part of a circle which is divided into four equal parts (1/4), is more than one 

shaded part of a circle divided into 6 equal parts (1/6) because the fewer the number of 

parts the bigger the shaded area. 

Conclusion: ¼ is greater than 1/6  
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Problem 2: 
 
One group of children, who painted 2/3 of a rectangle blue, got into an argument with 

another group of children who painted 4/6 of a same size rectangle blue. They said that 

the children in the second group got more blue than the first. Are they right? 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer here 
Score_______ 
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Now you have 1 minute to read the correct answer 
 
Solution 
 
The first group painted two parts of a rectangle blue which is divided into 3 equal parts 

(2/3). If they divided each part into two, they would get 4 blue parts out of 6 parts (4/6) 

which is the same as the second group’s blue area. 

Conclusion:  2/3=4/6. 
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Solve a similar problem (You have 3 minutes) 

 

One group of children, who painted 1/4 of a rectangle blue, got into an argument with 

another group of children who painted 2/8 of a same size rectangle blue. They said that 

the children in the second group got more blue than the first. Are they right? 

 
Solution 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
Write your final answer here 
Score__________ 
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How easy or difficult did you find learning to solve these problems (please tick one box)? 
 
 
 
 
 
 
 

 
 
 

 
 
 

Extre
mely 
easy 

Very 
easy 

Easy    Rather 
easy 

Neither 
easy nor 
difficult  

Rather 
difficu
lt 

Diffic
ult  

Very 
difficu
lt 

Very-
very 
difficult 

Problem 
2 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
The first group painted one part of a rectangle blue which is divided into 4 equal parts 

(1/4). If they divided each part into two, they would get 2 blue parts out of 8 parts (2/8) 

which is the same as the second group’s blue area. 

Conclusion: ¼ =2/8 

 
 



 
 
 
 

288 

Page 11 
 
Problem 3 
 
What will have more red; one circle divided into 8 equal parts with 3 parts painted red 

(3/8 of a circle is painted red), or a circle divided into 4 equal parts with 2 parts painted 

red (2/4 of a circle is painted red)? 

 
Solution: 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Write your final answer here  
Score__________ 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Let us assume that we have two red parts out of a circle which is divided into 4 equal 

parts (2/4). If we cut each part into 2 parts, we would get 4 red parts out of 6 parts (4/8). 

That is more than 3 red parts out of 8 (3/8). 

Conclusion: 2/4 is greater than 3/8.  
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Solve a similar problem (You have 3 minutes) 
 

What will have more red; one circle divided into 6 equal parts with 3 parts painted red 

(3/6 of a circle is painted red), or a circle divided into 3 equal parts with 2 parts painted 

red (2/3 of a circle is painted red)? 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer here 
 
Score_____________ 
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How easy or difficult did you find learning to solve these problems (please tick one box)? 
 
 
 

 
 
 

Very 
very 
easy 

Very 
easy 

Easy    Rath
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easy 
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easy nor 
difficult  
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difficult 
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very 
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lt 

Problem 
3 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
Let us assume that we have two red parts out of a circle which is divided into 3 equal 

parts (2/3). If we cut each part into 2 parts, we would get 4 red parts out of 6 parts (4/6). 

That is more than 3 red parts out of 6 (3/6). 

Conclusion: 2/3 is greater than 3/6.  
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Problem 4: 
 
Who will have more green; a child who drew a circle, divided it into 10 equal parts and 

painted 6 parts green (6/10), or a child who drew a circle, divided it into 5 equal parts 

and painted 4 parts green (4/5)? 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer here  
 
Score__________ 
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Now you have 1 minute to read the correct answer 
 
Solution: 
 
If we paint green 4 parts out of a circle which is divided into 5 equal parts we would 

have 4/5 of the circle painted green. If we divide each part into two parts we would have 

8 green parts out of 10 (8/10) that is a greater green area than 6/10. 

Conclusion: 4/5 is greater than 6/10. 
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Solve a similar problem (You have 3 minutes) 
  
Who will have more green; a child who drew a circle, divided it into 10 equal parts and 

painted 3 parts green (3/10), or a child who drew a circle, divided it into 5 equal parts 

and painted 2 parts green (2/5)? 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write your final answer here 
 
Score__________ 
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How easy or difficult did you find learning to solve these problems (please tick one box)? 
 
 

 
 
 

Very-
very 
easy 

Very 
easy 

Easy     Rath
er 
easy 

Neither 
easy nor 
difficult  

Rather 
difficu
lt 

Difficul
t  

Very 
difficu
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difficu
lt 

Problem 
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297 

Page 20 
 
Now you have 1 minute to read the correct answer 
 
Solution: 
 

If we paint green 2 parts out of a circle which is divided into 5 equal parts we would 

have 2/5 of the circle painted green. If we divide each part into two parts we would have 

4 green parts out of 10 (4/10) that is a greater green area than 3/10. 

Conclusion: 2/5 is greater than 3/10. 
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