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Abstract
This thesis explores Uncertainty Quantification for probabilistic models of physical

systems. In particular, the thesis works towards a long term goal of automating nu-

merical methods by combining traditional techniques with perspectives from Machine

Learning. Uncertainty Quantification refers to the use of probabilistic models for es-

timating the potential variability of unknown quantities that may be present. For

engineering, the types of models of interest are those that estimate the behaviour

of future states of the world by simulation. In particular, as these are relevant to

the types of problems arising in Civil Engineering, Partial Differential Equations

with probabilistic inputs are analysed. Uncertainty Quantification can be used to

assess the risk associated with proposed designs and existing structures rigorously

by explicitly calculating the variability of unknown quantities. This thesis begins by

detailing how Uncertainty Quantification can be incorporated into a decision mak-

ing framework by reference to Game Theory and Bayesian probability. Spatially

distributed data is often encountered in Civil Engineering. Probabilistic models of

spatial variability, random fields, are discussed extensively. Simulation and modelling

techniques for random fields are presented and analysed to facilitate later develop-

ments in the thesis. Rare event reliability analysis is discussed in detail. Civil En-

gineering projects frequently have a “low probability, high consequence” risk profile

that presents unique computational challenges. Numerical methods for rare event

probabilistic analysis based on Markov Chain Monte Carlo are demonstrated. The

computational challenges associated with probabilistic computational mechanics are

significant. If suitable self-improving numerical methods could be developed, then

these computational challenges would be lessened. The thesis introduces an Artifi-

cial Neural Network surrogate model method to improve the efficiency of sampling

based Uncertainty Quantification. Following this, the structure of probabilistic com-

putational mechanics problems are analysed from a Bayesian perspective. From this

interpretation of the solution of Partial Differential Equations, an adaptive Element

Free Galerkin method is derived. The combination of Machine Learning, Bayesian

probability and Partial Differential Equations presented indicates directions for future

research in automated probabilistic numerical techniques.
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1.1 Introduction

This thesis presents a number of contributions in the area of Uncertainty Quan-

tification for simulations of physical systems. Uncertainty Quantification, in

the context of this thesis, uses probability theory to describe the variability of

the inputs and outputs to computational methods. This thesis will be primar-

ily concerned with Uncertainty Quantification of computational mechanical
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models, that is, the variability associated with numerical simulations of phys-

ical phenomena. In particular, this thesis introduces extensions to existing

Uncertainty Quantification methods before going on to present techniques for

the synthesis of Uncertainty Quantification, Bayesian probability theory and

recent developments in Machine Learning.

Uncertainty Quantification for computational mechanical problems involves

the estimation of probability densities and expectation values for unknown

quantities. Typically, this involves estimating a probability distribution over

the inputs to a given simulation algorithm and then using numerical meth-

ods to estimate a probability distribution over the outputs of the simulation

algorithm. The purpose of Uncertainty Quantification in this context is to fa-

cilitate decision making processes by enabling rigorous estimates of the future

behaviour predicted by a chosen model of some physical process. Primarily, the

physical systems of interest in this thesis are continuum mechanical problems

modelled by Partial Differential Equations. The techniques detailed are, how-

ever, applicable to a wider range of methods for simulating physical systems.

Uncertainty Quantification can be extended to other simulation techniques not

based computational mechanics, but this is not the focus of this thesis. The

particular applications presented are related primarily to Civil Engineering

but, because the focus is on PDE modelling rather than particular systems,

the techniques presented are applicable to virtually all fields that make use of

PDE simulation for design and more general decision making.

In Civil Engineering, risk analysis for decision making regarding the design of

large scale construction and infrastructure projects is crucial for both safety

and efficiency. As the potential consequences of poor design in Civil Engineer-

ing may be catastrophic, focussing Uncertainty Quantification development

in this area will hopefully have a large impact by enabling safer and more

cost-effective infrastructure in the future. As detailed within this thesis, de-

cision making that utilises Uncertainty Quantification can be more rigorously

understood in terms of Game Theory. From a Game Theoretic perspective,

physical system Uncertainty Quantification for decision making can be seen to

be one aspect of a more general framework that also encapsulates risk, model

selection and utility theory. The general Game Theoretic framework, in con-

junction with probability theory, renders clear how the developments in this

thesis can be used as a part of a general decision making process.
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Simulations of physical behaviour are computationally demanding. Uncer-

tainty Quantification introduces additional computational challenges and ne-

cessitates the use of numerical methods capable of dealing with these chal-

lenges. These challenges place Uncertainty Quantification at the intersection

of physics, probability and information theory. This thesis details both the-

oretical and practical aspects of simulation based Uncertainty Quantification

for physical systems. This involves simulation of the probabilistic inputs to

a computational physics algorithm, computations using these algorithms and

finally probability density and expectation value estimation over the output

space for the computational model. For physical systems, the spatial char-

acter of the models is an important factor controlling the structure of the

probabilistic models used. To generate and model the necessary input space

probability distributions, this thesis details the random field theory (spatially

autocorrelated probability distributions) required for this purpose.

The thesis then documents several approaches to numerical methods for Un-

certainty Quantification over several Chapters. The thesis details sampling

(Monte Carlo) based methods for estimating output probability distributions

for physical systems. In particular, rare event reliability probability estima-

tion using Subset Simulation and Markov Chain Monte Carlo for nonlinear

continuum mechanical problems is detailed. Next, the thesis introduces tech-

niques based on Machine Learning for estimating the output space probability

distributions from computational models. These techniques leverage the self-

improvement capabilities of Deep Artificial Neural Networks for adaptive com-

putation of output response distributions. The thesis then returns to theoreti-

cal developments presented in earlier Chapters and describes a Bayesian inter-

pretation of Uncertainty Quantification for physical systems. These theoreti-

cal developments suggest avenues for future research based on model selection

uncertainty. Using the Bayesian perspective, the thesis adopts a probabilis-

tic approach to numerical methods to derive an adaptive basis Element Free

Galerkin method for solving PDEs based on the Expectation-Maximisation al-

gorithm. This suggests that Variational Bayesian methods could be leveraged

to derive improved algorithms in the future. The applications of Machine

Learning to Uncertainty Quantification presented in this thesis, along with

the Game Theoretic and Bayesian interpretation of Uncertainty Quantifica-

tion for decision making, introduces the beginnings of a unified approach to

decision making, risk, model selections and simulation. This general frame-
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work will hopefully lead to deeper integration of Uncertainty Quantification

into a variety of fields in the future.

1.2 Chapter summary

In this thesis an attempt will be made at advancing techniques for Uncertainty

Quantification by making use of ideas from a range of different fields. The

review of existing work is interspersed throughout the thesis. Efforts have been

made, however, to ensure that surveys of existing literature are positioned near

to the start of the relevant chapters.

The roadmap of the text is as follows:

• Chapter 1 introduces the Uncertainty Quantification problem from an

intuitive perspective and presents this Chapter summary. Further, a

number of mathematical preliminaries are presented in the Chapter 1

Appendix in preparation for the developments in the rest of the thesis.

• Chapter 2 begins by describing the necessary background in probability

theory required for the remainder of the thesis. Using these develop-

ments, a rigorous interpretation of Uncertainty Quantification and how

it relates to techniques for decision making in the face of uncertainty

(with reference to Game Theory and Markov Decision Processes) is dis-

cussed. Following these discussions, the structure of methods suitable

for Uncertainty Quantification is detailed. A brief review of existing

methods for Uncertainty Quantification is also included.

• Chapter 3 introduces Random Fields as these can be used to model

the type of spatially correlated data that arises in Civil Engineering

problems. Theoretical background in random field theory is presented.

Following this, a number of example simulation of Gaussian and non-

Gaussian random fields are presented. An analysis of the computational

complexity and numerical stability of random field sampling for Monte

Carlo simulation of physical systems is also presented.

• Chapter 4 explores rare event reliability estimation, a difficult problem

that arises in Civil Engineering, via nonlinear finite element analysis.

Subset Simulation is applied to probability of failure estimation in non-
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linear elasto-plastic finite element problems. The efficacy of different

Markov Chain Monte Carlo methods for Subset Simulation are com-

pared and contrasted. Further, a derivation of confidence intervals for

the estimated relative error for Subset Simulation is presented. This

new technique allows for vastly improved efficiency in the computation

of error estimates for Subset Simulation.

• Chapter 5 demonstrates that Artificial Neural Networks can be used

as effective regression surrogate models for Partial Differential Equation

(PDE) Uncertainty Quantification. When the inputs to the equation are

probabilistic, estimation of the output distribution is a computationally

intensive. Calculation of the solution space distribution for a given input

distribution requires evaluation of numerical PDE solutions many times.

Surrogate models cache known solution values and attempt to generalise

from known points to unknown values and can be used to estimate the

output distribution. Feedforward Neural Networks can be trained to

predict the solution of boundary value problems and fixed time initial

value problems. Recurrent Neural Networks can be used for initial value

problem time sequence prediction. Three numerical test case problems

applying these techniques are presented.

• Chapter 6 extends the Bayesian interpretation of probabilistic numerical

analysis by uncovering the connection between traditional approaches to

Uncertainty Quantification and the Bayesian viewpoint. In particular, it

is demonstrated that traditional approaches to Uncertainty Quantifica-

tion are in fact a type of implicit Importance Sampling that uses Maxi-

mum Likelihood Estimates to generate sampling locations. The Bayesian

approach to Uncertainty Quantification replaces minimum residual so-

lutions with a probability distribution defined by the residual function

of an equation to be solved. By exploring the link between the two

paradigms, both the traditional forward and inverse approaches can be

fully incorporated into the Bayesian viewpoint.

• Chapter 7 introduces a Bayesian form of Element Free Galerkin for the

solution of PDE. By adopting a probabilistic perspective, it is possible to

derive an adaptive basis PDE solver that does not rely on expanding the

order of a function series. Instead, a Bayesian model likelihood is used to

derive an Expectation-Maximisation type gradient descent algorithm for
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iteratively improving basis functions. The basis functions are encoded

in an Artificial Neural Network. Automatic Differentiation is leveraged

to compute the necessary derivatives. The convergence of this method

is demonstrated on a test case problem.

• Chapter 8 concludes the thesis by reflecting on the content of earlier

Chapters and suggesting directions for future work.

1.3 Published contributions

The specific research contributions of this thesis published at the time of writ-

ing are as follows:

• Techniques suitable for simulating random fields in the presence of nu-

merical stability problems, as well as an analysis of the computational

complexity and numerical stability of these simulation methods. See

Chapter 3. Published in [158].

• Demonstrated that Subset Simulation can be applied to rare event Un-

certainty Quantification for nonlinear FEM problems. Further, derived

confidence interval bounds that can be computed much more efficiently

than was previously possible. See Chapter 4. Published in [157, 156].
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1.4 Mathematical preliminaries and the structure

of physical theories

To understand models of physical systems and how they can be analysed by

Uncertainty Quantification methods, a number of mathematical preliminar-

ies are detailed in the Chapter 1 Appendix. This background material is

used to describe the structure of mathematical models of physical systems

used in practice with particular reference to Partial Differential Equations

(PDE). Knowledge of the material in the Chapter Appendix (primarily re-

garding Functional Analysis) will be assumed through the remainder of the

thesis.

As this thesis is concerned with the simulation of physical systems, it is nec-

essary to understand the mathematical anatomy of how these systems are

modelled. Useful texts in this regard are [125, 277]. In modern physics, mod-

els of physical systems rely primarily on the conservation of various quanti-

ties. Conversation laws are directly related to symmetries of action functionals

(Lagrangians). This is true of Quantum Field Theory, General Relativity and

Classical Mechanics. As the focus within is on Civil Engineering problems,

it is sufficient to consider only Classical Mechanics. Without the structure

of these symmetries, there is nothing to restrict the manner in which future

states may evolve as a result of earlier states. PDEs are the primary tool used

to model the evolution of these states. Continuum mechanics [149, 250] is par-

ticularly relevant from a Civil Engineering perspective. Further relevant texts

on continuum mechanics include [202, 62, 349, 27, 248, 14] and the references

contained within [367].

Civil Engineering is a broad field and it is not possible to include direct numer-

ical examples from all areas in a single thesis which is focussed on probabilistic

methods. Instead, physical examples are mixed with the analysis of abstract

probabilistic PDE models. The Uncertainty Quantification techniques ex-

plored in this thesis can (and are) utilised in all areas of Civil Engineering.

Examples of probabilistic PDE models are found in structural engineering

[141], geotechnical problems [118], groundwater hydrology [361, 362], contam-

inant transport [135] and many others [356]. The results presented in this

thesis, which are demonstrated essentially independent of the type of PDE

chosen, will be applicable across all of these areas. The interested reader will
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hopefully be able to adapt the techniques presented within to their specific

problem.

The theoretical developments in this thesis can be extended to non-PDE mod-

els used in Civil Engineering (such as Discrete Element Models [306]). How-

ever, a choice was made to restrict the numerical demonstrations to PDE as

they are both fundamental to Classical Mechanics and sufficiently complex so

as to not render the demonstrations trivial.

As well as those given in the following Sections of this discussion on preliminary

definitions, background mathematical references relevant to the formalisms

used in this thesis include:

• Logic, set theory and category theory [274, 247]

• Functional analysis [309, 221]

• Measure and Probability Theory [168]

• Topology, algebraic topology, differential topology [274, 172, 273, 163]

• Linear algebra [148, 191]

• Riemannian geometry and vector calculus [251, 236]

• Exterior algebra, exterior calculus [125, 86]

Important references usefully related to the analysis of PDEs for mechanics

problems are given in [82, 389, 222] and the extensive reference lists in the

volumes [331, 332]. For probabilistic modelling, relevant reference works with

a Civil Engineering focus include [106, 171, 295].

Chapter 1 Appendix: Mathematical preliminaries

This Appendix describes key aspects of mathematics, in particular Functional

Analysis. That is required to fully appreciate several aspects of the later

Chapters of this thesis. Mathematical notation used throughout the thesis is

also defined in this Appendix.

After setting out various terms from set theory and logic, progressively less

abstract mathematical structures are defined. Abstract algebraic structures

(Fields and Vector Spaces) are defined. Topological spaces, which define spaces
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in terms of features not related to the distances between points within the

space, are introduced. Metric spaces, which introduce notions of distance on

sets, are defined. Norms, normed vector spaces and Hilbert spaces are dis-

cussed. Each of these structures are of crucial importance for understanding

the solution of PDEs and the spectral decompositions used to simulate spa-

tially autocorrelated probabilistic structures. The reader familiar with this

material should feel free to skip forward to Chapter 2.

1.5.1 Sets theory and notation

At the fundamental level, mathematics requires notions from predicate and

propositional logic before defining notions such as sets [379]. Assuming stan-

dard logic, this Section gives some notation and definitions that will be in use

throughout the rest of the thesis. A useful overview is also provided in [285].

The definitions of logical relations are described in §2 of [108]. The following

logical symbols from §1 of [285] are used in the text:

• Logical implication: ⇒

• Logical equivalence: ⇔

Axiomatic set theory is detailed fully in [226, 363]. Following §1 of [108], the

definition of a set is taken as the intuitive definition that a set is a collection

of elements. The notation here is adopted from §1 of [274].

If an element, a, is a member of a set, A, this will be denoted:

a ∈ A

If a does not belong in A then this will be denoted:

a /∈ A

If two symbols for elements a and b of a set A refer to the same element, this

will be denoted a = b. A = B means that the symbols A and B refer to the

same sets. Symbols enclosed by braces refers to a collection of elements of a

set, for example for a set A composed of elements a, b and c can be written

A = {a, b, c}. Similarly, a 6= b and A 6= B means that the symbols do not

refer to the same element of set respectively. Further, the set builder notation
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is used to specify sets by indicating properties that elements in the set must

follows. Let A denote a set and P (a) be a property that elements of A may or

may not satisfy. Then a new set, B is defined by set-builder notation as the

set of all elements of A such that P (a) is true. This is denoted by:

B = {a ∈ A|P (a)} (1.1)

or the equivalent form B = {a ∈ A : P (a)} which uses : in place of |.

From [108], if a set B is a subset of A if every element of B is also an element

of A. This is denoted B ⊆ A. If B is a subset of A that is also different from

A (there exist elements of A which are not in B), this will be denoted B ⊂ A.

In that case, B is a proper subset of A.

From [274], the union of sets A and B refers to the new set:

A ∪B = {x|x ∈ A or x ∈ B} (1.2)

The intersection of sets A and B refers to the new set:

A ∩B = {x|x ∈ A and x ∈ B} (1.3)

If there are no elements in A∩B, the intersection is denoted by the empty set,

∅ (the set with no elements).

From [108], there are several formal definitions of an ordered pair. However, the

most commonly adopted definition in modern mathematics is that an ordered

pair of elements a and b in A is a a set of the form {{a}, {a, b}}. The intuitive

definition of an ordered pair is suitable for this thesis. An ordered pair of

elements a, b ∈ A is denoted by (a, b) and means that the elements a and b are

taken together in such a way that they are the first and second elements of

the pair respectively. Two ordered pairs, (a, b) and (c, d), are equal if and only

if a = c and b = d. A tuple or n-tuple is an ordered collection of n elements

analogous to an ordered pair, for example a 3-tuple of elements a, b and c

would be denoted (a, b, c). Equality between tuples is defined pairwise between

ordered elements of the tuples, that is (a1, a2, · · · , an) = (b1, b2, · · · , bn) if and

only if a1 = b1, · · · , an = bn. There are several formal definitions of a tuple.

When considering sets, tuples can be constructed from nested ordered pairs

[108]. The elements of an ordered tuple may also be referred to as items.
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The position within an ordered pair is referred to as the n-th coordinate. For

example, in the tuple (a, b, c), the elements a, b and c are the items in the first,

second and third coordinates respectively.

The Cartesian product will be the first formal definition specified in this thesis.

From §1.2 of [108]:

Definition 1.5.1. Cartesian product: Given sets A and B, the Cartesian

product of A and B is denoted by A × B and is the set of all ordered pairs

(a, b) such that:

A×B = {(a, b)|a ∈ A and b ∈ B}

4

From §1.3 in [108] a relation is defined as:

Definition 1.5.2. Relation: Let A and B be sets. A relation R from A to

B is a subset of A×B such that, for (a, b) ∈ A×B, a R b is true if (a, b) ∈ R.

The set A is termed the domain of R and B is the co-domain of R. Denote

(a, b) /∈ R by a��R b. 4

Following §2 [274], to define a function it is useful to first define a rule of

assignment. A rule of assignment is a subset R ∈ A× B having the property

that each element a ∈ A appears as the first coordinate of at most one ordered

pair in R. Then the image set of R is the subset of D consisting of all second

coordinates of R:

domain(R) = {a| there exists b ∈ B such that (a, b) ∈ R}
image(R) = {b| there exists a ∈ A such that (a, b) ∈ R}

Then, a function is defined as:

Definition 1.5.3. Function: A function f is a rule of assignment, R, together

with a set B that contains the image set of R. The domain of the rule R is

also the domain of the function f . The image set of R is also the image set of

f . The set B is the range of f . A function is denoted:

f : A −→ B

If a ∈ A, then f(a) denotes the element of B that f assigns to a. 4

Let f−1 : B → A denote the inverse of f : A → B (note that this function

does not always exist, see §2 [274]). Let A0 be a subset of A. Then f(A0)
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denotes the image of A0 under f . Let B0 be a subset of B. Then f−1(B0) is

the preimage of B0 under f .

Other useful terminology for logical quantifiers, following §5 of [127] used in

this thesis are the universal quantifier and the existential quantifier. The

universal quantifier, denoted by ∀ (read as “for all”), can be taken to be short

hand for the statements “for each”, “for any” or “for all”. For example, given

a set A, ∀a ∈ A would refer to all elements in A. Next, let : be short hand for

the statement “for each”. The existential quantifier, denoted by ∃ can be taken

as shorthand for the statement “there exists”. For example ∃a ∈ A : a ∈ B
says that there exists an element a in the set A such that the element a is

B.

Further, other notation used in this thesis is as follows:

• := - definition symbol.

•
∑n

i=1 xi - sum of elements xi indexed by i.

•
∏n
i=1 xi - product of elements xi indexed by i.

• {xi}ni=1 - the sequence of elements. x1, x2, · · · , xn indexed by i.

• N - the set of integers.

• iff - shorthand for “if and only if”.

• 4 - end of definition symbol.

• � - end of proof symbol.

1.5.2 Towards inner product spaces via vector and normed

spaces

With basic notation in place, further progress requires the definition of a field

(the most important example of which for the purposes of this thesis will be

the real numbers, R) which is a set with two operations defined, from §7 of

[74] and Definition Definition 4.1.1 in [28], as follows:

Definition 1.5.4. Field: A field is a set, A, with two binary operations

(operations that map two elements a, b ∈ A to c ∈ A). The addition operation

is denoted a+ b. The multiplication operation is denoted a · b. The operations

satisfy the following properties (field axioms) for all a, b, c ∈ A:
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• Associativity of addition and multiplication: a + (b + c) = (a + b) + c

and a · (b · c) = (a · b) · c.

• Commutativity of addition and multiplication: a+b = b+a and a·b = b·a.

• Additive and multiplicative identity: there exist two different elements,

0 and 1 in A such that a+ 0 = a and a · 1 = a.

• Additive inverses: for every a ∈ A, ∃b ∈ A, called the additive inverse of

a, denoted by b = −a, such that a+ (−a) = 0.

• Multiplicative inverses: for every a 6= 0 ∈ A, ∃b ∈ A called the multi-

plicative inverse of a, denoted by 1/a, such that a · 1/a = 1.

• Distributivity of multiplication over addition: a · (b+ c) = (a · b) + (a · c).

4

As well as the real numbers, the complex numbers, C are also a field. Al-

though not used within, a number of concepts described in this Section can

be formulated in terms of other entities from abstract algebra, such as groups

and rings. See [74, 28] for overviews of abstract algebra.

On the path towards geometry, the starting point will be the definition of a

topological space from §2 of [274]:

Definition 1.5.5. Topological space: A topology on a set X is a collection

T of subsets of X having the following properties:

• ∅ and X are in T .

• The union of the elements of any subcollection of T is in T .

• The intersection of the elements of any finite subcollection of T is in T .

A set X for which a topology T has been specified is called a topological

space. 4

Roughly, topology defines the structure of mathematical spaces in terms of

features not related to the distances between points within the space. The

introduction of distance into a space introduces further rigidity in such a way

that the usual features of mathematical spaces familiar to those solving PDEs

for physical systems emerge. Following §1 of [221] and [309], the next step

towards geometry is to introduce distance functions and metric spaces (from

Definition 1.1-1 of [221]):
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Definition 1.5.6. Metric space and metric: A metric space is a pair (X, d)

where X is a set and d is a metric on X (also known as a distance function),

which is a function

d : X ×X → R (1.4)

such that for all x, y, z ∈ X the following is true:

• d is real-valued, finite and nonnegative

• d(x, y) = 0 iff x = y

• d(x, y) = d(y, x)

• The triangle inequality holds, that is, d(x, y) ≤ d(x, z) + d(z, y)

4

Note that metric spaces are a type of topological space (see §1.3 in [221]).

Introducing further structure requires notions of vector spaces and normed

spaces. Vector spaces introduce operations between pairs of elements within a

space (specifically vector addition and multiplication by scalars). In contrast

with a metric (which assigns a distance between pairs of elements of sets)

a norm defines the size of vectors within a space and can be used to define

a metric. As such, all normed spaces are a type of metric space (§4.6 of

[285]).

From Definition 2.1-1 in [221], a vector space is defined by:

Definition 1.5.7. Vector space: A vector space over a field K (whose el-

ements are called scalars) is a nonempty set X of elements x, y, z, · · · ∈ X

(called vectors) together with two algebraic operations called vector addition

and multiplication of vectors by scalars defined by:

• Vector addition is a map X × X → X that associates to each ordered

pair of vectors (x, y) a vector x + y (the sum of x and y) such that the

following holds:

– Vector addition is commutative: x+ y = y + x

– Vector addition is associative: (x+ y) + z = x+ (y + z)

Further there exists is a vector 0, the zero vector such that

– x+ 0 = 0
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Also, for every vector x there exists a vector −x such that the following

holds:

– x+ 0 = 0

– x+ (−x) = 0

• Multiplication of vectors by scalars is a map K×X → X that associates

to each vector x ∈ X and scalar α ∈ K a vector αx (the product of x

and α) such that, for x, y ∈ X and α, β ∈ K the following holds:

– α(βx) = (αβ)x

– 1x = x

– α(x+ y) = αx+ βy

– (α+ β)x = αx+ βy

4

Vector spaces are frequently discussed in relation to their basis vectors. From

§2.1 of [221], as elements within a vector space can be combined, a linear

combination of vectors v1, v2, · · · , xn ∈ V is an expression of the form:

α1v1 + α2v2 + · · ·+ αnvn (1.5)

or scalars α1, α2, · · · , αn. A subspace of V is a nonempty subset W ⊂ V such

that ∀w1, w2 ∈ W and scalars α, β ∈ W , αw1 + βw2 ∈ W . For W ⊂ X,

W 6= ∅, the set of all linear combinations is called the span of W and is

denoted span(W ). A set, W , of n vectors in a vector space, if the only set of

scalars for which a linear combination is zero, that is:

α1v1 + α2v2 + · · ·+ αnvn = 0 (1.6)

is true only for α1 = α2 = · · · = αn = 0 then the vectors in the set W

are linearly independent. If W is not linearly independent then W is linearly

dependent. Linear dependence can be used to define the dimension of a vector

space. From Definition 2.1-7 of [221]:

Definition 1.5.8. Dimension of a vector space and basis vectors: A vector

space, V , is finite dimensional if there is a positive integer n such that V

contains a linearly independent set of n vectors while any set of n+ 1 vectors
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is linearly dependent. Then n is the dimension of V , denoted dim(V ). If X

is not finite dimensional, it is infinite dimensional. If dim(V ) = n, a linearly

dependent n-tuple of vectors of V is called a basis of V . 4

Given a basis, it is possible to represent any vector in a vector space V as a

linear combination of the basis vectors. For some v ∈ V , the values of the

scalars used to multiply the basis vectors are called the components of the

vector v.

Real and complex vector spaces are taken to refer to vector spaces over the

field of real numbers, R, or complex numbers, C, respectively. The typical

example of a vector space used in engineering type applications, the space of

N -dimensional real numbers RN , is often used with the intuitive Euclidean

notion of distance. However, there is no direct link between the algebraic

notion of a vector space as defined above and the definition of a metric space

on which has a notion of distance is present. As outlined in §2 of [309] and §2.2

of [221], it is necessary to first introduce the concept of a norm. A norm gives,

in a sense, a way to measure the size of elements of a vector space. Using a

norm, a metric can be constructed. Via this route, the usual intuitive notions

of geometry can be recovered. From Definition §2.2-1 of [221] and §1 [309], a

normed space is defined as follows:

Definition 1.5.9. Normed space: A normed space X is a pair (V, ‖ ◦ ‖)
where V is a vector space with the norm ‖ ◦ ‖ defined on it. A norm on a real

or complex vector space is a real-valued function on X whose value at x ∈ X
(the norm of x) is denoted ‖x‖ with the following properties (for x, y vectors

in V and α is a scalar in V ):

• ‖x‖ ≥ 0

• ‖x‖ = 0 iff x = 0

• ‖αx‖ ≥ 0

• The triangle inequality: ‖x+ y‖ ≤ ‖y‖

A norm on X defines a metric d on X, the metric induced by the norm, given

by:

d(x, y) = ‖x− y‖ for x, y ∈ X (1.7)

4
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A Banach space is a particular type of normed space. Specifically a Banach

space is a normed space that is complete in the metric defined by the norm.

Norms and notions of completeness allow for concepts such as continuity to be

defined rigorously. See [309, 217] for more details. From §1 in [309], a Cauchy

sequence is defined as:

Definition 1.5.10. Cauchy sequence: Given a metric space, (X, d), a se-

quence of elements {xn} ∈ (X, d) is called a Cauchy sequence if (∀ε > 0)(∃N)

such that n,m ≥ N (where n,m andN are integers) implies d(xn, xm) < ε. 4

A sequence {xn} ∈ (X, d) is said to converge to x ∈ X if d(x, xn) approaches

zero as n approaches infinity (see [309, 217] for rigorous definitions). Further,

all convergent sequences are Cauchy. A metric space in which all Cauchy

sequences converge is called complete. Intuitively, completeness means that

sequences of elements in X converge to another point in X such that, in a

sense, there are no points “outside” of X.

1.5.3 Operators and functionals

Operators and operator theory provide a means to understand functions be-

tween vector (and other) spaces. From this point on, the terms operator,

function and mapping will be used essentially interchangeably. From §2.6 in

[221], a mapping between vector spaces is termed an operator. Different types

of operators have different mathematical properties. Of particular importance

are linear operators. From Definition 2.6-1 in [221]:

Definition 1.5.11. Linear operator: A linear operator T is an operator such

that:

• The domain of T is a vector space and the range of T lies in a vector

space over the same field.

• ∀x, y ∈ domain(T ) and scalars α:

T (x+ y) = Tx+ Ty

T (αx) = αTx

Note that the null space of T is the set of all x ∈ domain(T ) such that

Tx = 0. 4
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The linearity of an operator is also often expressed by writing:

T (αx+ βy) = αTx+ βTy

Due to the centrality of the operator concept in essentially all of the relevant

mathematical developments in this thesis, it is worth considering a few rel-

evant examples. For example, given the vector space of all polynomials on

the interval [a, b] ∈ R, differentiation is the linear operator Tx(t) = dx(t)
dt .

Similarly, given the space of all continuous functions on the space [a, b] ∈ R,

denoted C[a, b] (see §1 [221]), integration can be seen to be a linear operator

where Tx(t) =
∫ b
a x(s)ds. Finally, standard operations from linear algebra

such as matrix multiplication and vector products (for more details see [191])

are operators on finite dimensional vector spaces.

A linear functional refers to a linear operator that maps vectors in a vector

space to the scalar field of the vector space. From §2.8-1 of [221], a linear

functional is defined as:

Definition 1.5.12. Linear functional: A linear functional f is a linear

operator with domain in a vector space, V , and range in the scalar field K

such that:

f : domain(f) −→ K (1.8)

where K = R is V is real and C if V is complex. 4

Norms and definite integrals are important examples of linear functionals [221,

309]. Introducing linear functionals brings this Section closer to the goal of

defining inner product spaces.

1.5.4 Dual spaces

With the definitions of vector spaces and linear functional in place, it is useful

to consider the structure of linear functionals on vector spaces. From §2.1 of

[125], consider a vector space V of dimension n with basis e1, e2, · · · , en. Then

v ∈ V can be written:

v =
n∑
i=1

αiei (1.9)

Note that here, subscripts and superscripts are indices and not powers. The

use of raised and lowered indices to represent vectors and scalars in this way
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is a notational convenience for later concepts in abstract algebra and geome-

try.

Foreshadowing later developments in this Section, in matrix notation (see

[148], this can be written such that the scalars vi (known as components) are

the entries of a column vector a and the basis vectors ei are the entries of a

row vector, e so that v = ea such that v is a one by one matrix.

Let α be a linear functional on the n dimensional real vector space V such

that α : V → R. Due to linearity, α(av + bw) = aα(v) + bα(w) for a, b ∈ R
and v, w ∈ V . By induction and the linearity of α it can be shown that, for

any basis e:

α

(
n∑
i=1

viei

)
=

n∑
i=1

viα (ei) (1.10)

Defining ai := α(ei), α (v) =
∑n

i=1 v
iαi. Then, a selection of the scalars αi

defines a linear functional on V .

Following §2.1 of [125], the collection of all linear functionals on a real vector

space are defined to be the dual space:

Definition 1.5.13. Dual space: The collection of all linear functionals α on

a vector space V form a new vector space called the dual space to V denoted

V ∗ under the operations:

(α+ β)(v) := α(v) + β(v) α, β ∈ V ∗ v ∈ V
(cα)(v) := cα(v) c ∈ R

4

It is important to note that the dual space is not the same space as the original

vector space. This is discussed in §2.1 of [125].

From §2.1 of [125], if a vector space V is n dimensional, then so is V ∗. This can

be seen by introducing the dual basis. The dual basis is a particular, conve-

nient, selection of the vectors in V ∗. First, define the Kroenecker delta:

δij =

1 if i = j

0 if i 6= j

Then, if e1, · · · , en are elements of the basis e of V , then define the dual basis
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e1, · · · , en of V ∗ by setting ei(ei) := δij . With this definition, the dual basis

selects the components a vector in V as follows:

ej(v) = ej(
n∑
i=1

viei)

=
n∑
i=1

viej(ei)

=
n∑
i=1

viδji

= vi

That the dual basis spans V ∗ and is, as such, a basis of the dual space of V is

shown in §2.1 of [125]. Then any linear functional α ∈ V ∗ can be written as a

linear combination over the dual basis α =
∑n

i=1 αie
j such that:

α(v) =
n∑
i=1

viα(ei)

=
n∑
i=1

vi
n∑
j=1

αje
j(ei)

=

n∑
i=1

vi
n∑
j=1

αjδ
j
i

=

n∑
i=1

viαi

In terms of matrix linear algebra, the components of the linear functional, α

are written as a row matrix with i-th entry given by αi.

1.5.5 Inner product spaces

Having described linear functionals, inner product spaces can be introduced.

Whereas linear functionals are elements of the dual space to a vector space

V that map vectors to the scalar field of V , an inner product is a map from

two vectors of V to the scalar field of V . This is a subtle difference but is

significant mathematically.

Norms on vector spaces allow for the size of vectors in a space to be defined.
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Inner products introduce additional structure on a vector space, allowing for

the relative orientation of vectors to be defined in terms of their degree of

orthogonality.

From §II.1 of [309], Definition 3.1-1 of [221] and §6.1 of [285] an inner product

space is defined as:

Definition 1.5.14. Inner product space: A real (or complex) vector space V

over the field K is called an inner product space if there is a real (or complex)

valued function called an inner product defined by 〈·, ·〉 : V × V → K that

satisfies, for vectors x, y, z ∈ V and scalar α ∈ K, the following conditions:

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0

• 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

• 〈x, αy〉 = α〈x, y〉

• 〈x, y〉 = 〈y, x〉

where 〈y, x〉 denotes complex conjugation. For K = R, 〈y, x〉 = 〈y, x〉. 4

An inner product on V defines a norm on V , for x, y ∈ V , by:

‖x‖ =
√
〈x, x〉

Further, an inner product defines a metric on V by:

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉

A Hilbert Space is a complete (in the metric given by the inner product) inner

product space.

Importantly, the norm on an inner product space satisfies the parallelogram

inequality:

‖x− y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
Using this fact, following from §3.1 in [221], it can be shown that not all

normed spaces are inner product spaces.

Inner products allow for orthogonality of vectors to be defined, from Definition

3.1-2 in [221] and §II.1 in [309], by:

Definition 1.5.15. Orthogonal vectors: An element, v, of an inner product
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space, V , is said to be orthogonal to another element w ∈ V if

〈v, w〉 = 0 (1.11)

A collection of vectors {xi} ∈ V is called an orthonormal set if 〈xi, xj〉 = δij

where δij denotes the Kronecker delta. 4

Orthogonality is of great help when considering basis vectors of inner product

spaces. Given an orthonormal set of vectors {ei}ni=1 ∈ V that is also a basis

with span({ei}ni=1) = V then the vector v ∈ V can be written as:

v =
n∑
i=1

viei

From the properties of the inner product, the inner product of v with a fixed

element ej from the orthogonal basis set {ei}ni=1 is:

〈v, ej〉 = 〈
n∑
i=1

viei, ej〉

=
n∑
i=1

vi〈ei, ej〉

=
n∑
i=1

viδij

= vj

As such, coefficients of the vector v in the orthogonal basis set {ei}ni=1 can be

written:

v =
n∑
i=1

〈v, ei〉ei

From §2.1 in [125], the inner product of basis vectors need not be orthogonal.

In this case, the coefficients 〈ei, ej〉 = gij are said to be the components of the

metric tensor.
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1.5.5.1 Important Hilbert Spaces - Euclidean space and L2 func-

tions

Standard Euclidean space, Rn = R × · · · × Rn with the standard vector dot

product from linear algebra is a Hilbert space (see §3.1 of [221]). The vector

dot product on Euclidean space is defined, given an orthonormal basis, {ei}ni=1

spanning Rn, as:

〈x, y〉 = 〈
n∑
i=1

xiei,
n∑
j=1

yiei〉

=
n∑
i=1

xiyi

In many circumstances, the integrals of functions over spaces are linear func-

tionals as the integrals map from vector spaces (of functions) to scalars. Con-

vergent integrals (those that are less than infinity) have special properties.

See [221] for details on the boundedness of operators. Among the so-called

Lp spaces, the L2 space is the only Hilbert Space. All other Lp spaces are (or

can be completed to become) Banach spaces (see §III in [309]). In Chapter

2, basic measure theory is outlined including the definitions required to more

rigorously appreciate Lp spaces. At this stage, however, the reader can appeal

to their intuition regarding integration of functions over Rn. From §III in [309]

and §29 in [217], the Lp space is defined as follows:

Definition 1.5.16. Lp space: Let (X,Σ, µ) be a measure space (see Defini-

tion 2.5.1) and p > 1. Then Lp(X, dµ) is the set of measurable functions (see

Definition 2.5.3) f : X → R (or C) which satisfy:

‖f‖p :=

(∫
X
|f(x)|p

) 1
p

<∞ (1.12)

where |f(x)|p denotes the absolute value of f(x) to the p-th power. 4

The set of functions f ∈ Lp(X, dµ) form a vector space. Under the conditions

discussed in [309], the functions f ∈ Lp(X, dµ) are a Banach space.

In the complex case, L2(X, dµ) is a Hilbert space with inner product defined
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for f, g ∈ L2(X, dµ) by:

〈f, g〉 =

∫
X
f(x)g(x)dµ(x)

where g(x) denotes the complex conjugate of g(x). In the real valued case,

g(x) = g(x). The Hilbert Space of functions in L2 are also known as square-

integrable functions.
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Chapter 2 Overview

Key developments in Chapter 2 include:

• Section 2.2 contributes a discussion on how probabilistic modelling for

engineering problems can be related to decision making under uncer-

tainty frameworks. Particular reference is made to Game Theoretic con-

cepts as well as notions such as the Value of Perfect Information.

• Section 2.3 presents background definitions from Uncertainty Quantifi-

cation and discusses the need for and structure of probabilistic engineer-

ing models. Interpretations of probabilistic modelling needed for later

developments in the thesis are detailed.

• The Chapter 2 Appendix presents further background material on Prob-

ability Theory and Bayes Theorem. In particular measure theory, Bayesian

inference over time and Hidden Markov Models are discussed.

2.1 Introduction

This goal of this Chapter is to clarify the roles and aims of Uncertainty Quan-

tification for physical systems modelling and to discuss how Uncertainty Quan-

tification can be understood as a part of a decision making process more gener-

ally. To this end, this Chapter discusses Uncertainty Quantification from the

perspective of Game Theory, that is, in terms of agents that seek to maximise

some utility function over time. For example, the designers of an infrastruc-

ture project may seek to maximise their utility by reducing the risk associated
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to the project by minimising the probability that their designs will fail. Un-

certainty Quantification seeks to rigorously assess the types of probabilities

needed to characterise risks of this sort numerically.

In particular, Uncertainty Quantification for physical models that aim to pre-

dict the future behaviour of physical systems is considered by considering

‘decision making in the face of uncertainty’ models. Along with the Chapter 2

Appendix, this Chapter outlines the required background material needed to

define the Uncertainty Quantification. Uncertainty Quantification for physical

systems is considered from the perspective of planning, which can be consid-

ered to be the use of past and present knowledge to predict expected future

states. The computational resources required to undertake Uncertainty Quan-

tification analyses are discussed in terms of the Value of Information concept.

By considering numerical simulations in this way, their place within a com-

plete decision making framework can be understood. With this theoretical

structure in place, Uncertainty Quantification for physical system models is

considered from two perspectives. First a top-down approach, which seeks to

define the structure of a hypothetical optimal method for Uncertainty Quan-

tification, is discussed. Next, an overview of existing methods for Uncertainty

Quantification is presented. By considering the formal structure of Uncer-

tainty Quantification, questions of how to interpret probabilistic simulation

methodologies are addressed in preparation for the material presented in the

subsequent Chapters of this thesis.

2.2 Making decisions in the face of uncertainty

The Section discusses uses of inference by considering decision making pro-

cesses. The theory of how an agent can make decisions to achieve desired

outcomes based on beliefs about the world is founded on probability and

utility theory. Utility defines the relative desirability of a given outcome.

Combining inference, discussed in the previous Section, with utility consid-

erations leads to the problem of estimating what actions to take in order to

maximise utility. Game Theory can be applied to encapsulate different forms

of sequential decision making problems, that is, how an agent should act in

order to optimally maximise utility in a manner that balances risks and re-

wards over time. Various specific formulations of sequential decision making
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problems that are commonly used in practice include Markov Decision Prob-

lems (MDP) and Partially Observable Markov Decision Problems (POMDP).

The brief overview of these topics in decision making theory presented here

does not seek to present detailed exposition of all of these vast subject areas.

Rather, this Section presents a sufficient set of terms from Game Theory such

that Uncertainty Quantification (in particular in relation to modelling of phys-

ical systems for science and engineering) can be clearly understood. A more

full treatment on Game Theory is presented in [369]. The presentation here

will help to clarify the meaning of terms frequently encountered in engineering

design, such as acceptable risk [95], and how these can be related to a more

general cost-benefit type analysis framework.

Game Theory is a framework for understanding how an agent can estimate

what actions to take in order to maximise some utility function over time,

where the utility function assigns a level of desirability to different possible

outcomes. These utility functions can be subjective (dependent on the pref-

erences of the agent) and can be defined a variety of ways. When making

decisions to maximise utility, the full state of the world may be unknown. In

this case, because not all information is available to an agent before making

a decision, there is a value that can be placed on information by analysing

the potential utility gain from performing exploratory actions to minimise

uncertainty. These exploratory actions could potentially include expending

resources to make computations with models of the world to predict future

world behaviours (as in planning) or performing actions in the real world with

the intent to gather more information (for example, prospecting for mineral

deposits before excavating a mine). The Value of Information is further de-

scribed in this Section.

2.2.1 Utility Theory and Decision Making

For this thesis, philosophical debates regarding utility functions will be avoided.

Instead, it will be assumed that some subjective function, the utility function,

can be defined that represents the preferences of an agent. For a detailed

discussion see §1 of [369]. Following §16 of [323], a utility function is a map

U : S → R from a set of states S to real numbers such that the desirabil-

ity of states is represented by the utility of the state (with higher numbers

representing higher desirability) . Utility functions can be derived by consid-
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ering an ordering relation on the desirability of different states. Then, the

goal of a utility maximising agent is to maximise the total utility over time.

The discounted sum of future reward is a typical example of a time dependent

utility function (equation (2.1) and §17.1.2 of [323]). In the time dependent

case, an agent may move through a series of states in S, (S1, · · · , St, · · · ), over

time. At each time step an agent may take an action, a, based on a policy,

π(a|s) = P (a|s), which influences future states. A policy defines the proba-

bility to take an action a given a set of possible actions A in state s ∈ S. In

the discounted sum of future reward case, an agent seeks to maximise, over

all times t from t = 0 to t =∞ the value of:

U(s) = E

[ ∞∑
t=0

γR(St)

]
(2.1)

where U(s) is the utility (or value) of the initial state s ∈ S and γ is a discount-

ing factor used to express the relative desirability of near-future states over

far-future states. Under this model, the function R(St) is the reward function

which assigns immediate rewards upon entering a state. In this setting, the

reward function is represented as a number in R that assigns higher values to

more desirable rewards.

Reward and utility functions can be selected by agents subjectively or assigned

to an agent. In the context of Uncertainty Quantification, utility may repre-

sent any number of outcome preference orderings. For example, utility may

represent the desirability of the completion of an infrastructure problem versus

the undesirability of a large scale failure. Reward functions may represent, for

example, happiness, monetary rewards or (as a negative reward) painful states

(such as fines incurred due to design failures). A deeper analysis of reward

functions and utility theory is presented in [369]. Information itself can have

a utility if it can be leveraged to obtain additional future rewards. This Value

of Information is the key to understanding why Uncertainty Quantification

can be effective when attempting to predict the behaviour of physical sys-

tems in order reach desired future outcomes (such as the completion of some

engineering project).

If an agent can take actions that influence future states, then it is possible to

consider a decision making process in which an agent attempts to maximise

future rewards by appropriate action selection. In a typical sequential decision

29



making process, it is necessary to learn both the reward function (what rewards

are received in what states) and the action policy (how to maximise these

rewards over time). There are a large number of so-called environment or game

models describing how states, actions and rewards influence each other. This

is particularly relevant when considering different types of (Game Theoretic)

games. For example, different models may consider whether the transitions

between states are deterministic or probabilistic, if all states are observable

or if certain states are hidden and so on. For further examples, see [369].

The Markov Decision Process (MDP) is the simplest relevant model and is

described in this Section. Using the MDP as a reference point, the use of

Uncertainty Quantification for estimating the behaviour of physical systems

can be understood and discussed clearly.

After MDPs are introduced, this Section discusses reinforcement learning and

planning. Planning, in particular, can be viewed as a technique to estimate de-

sirable future states. From this discussion, Uncertainty Quantification can be

related to planning for a decision making process. Models of physical systems

can be understood as state transition models (in the sense of time-dependent

Bayesian Inference) that attempt to model future states given present states

based on previous observations of natural phenomena.

2.2.1.1 Markov Decision Process

The Markov Decision Process (MDP) is a useful framework for many problems

that can be used to facilitate understanding of models for decision making.

An MDP is a discrete time stochastic control problem defined as:

Definition 2.2.1. Markov Decision Process: A (discrete time) Markov De-

cision Process is a tuple (S,A, P,R, γ) where:

• S is a finite set of states.

• As is a finite set of actions available in state s ∈ S.

• Pa(s, s
′) = P (st+1 = s′|st = s, at = a) is the probability that, after

taking action a in state s at time t, the state at time t+ 1 will be s′ ∈ S.

• Ra(s, s
′) is the expected immediate reward received upon transitioning

to state s′ after taking action a in state s.

• γ is the future reward discount factor defined as in equation (2.1).
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such that the utility of a state is given by equation (2.1). 4

In words, an MDP models transitions between the various states of S due to

taking actions a ∈ A. At each time, an agent occupies a single state and can

take a single action. After taking action a at time t in state s, the agent is

immediately transitioned to the state s′ according to the probabilities defined

by Pa(s, s
′). After transitioning to state s′, a reward Ra(s

′, s) is given to the

agent. These rewards may be probabilistic (as in so-called bandit problems

[366]). The goal of an agent in an MDP is to maximise the rewards over time

by selecting actions that will lead to states that provide high rewards. The

value function is defined as the expected future rewards, U(s), given an initial

state s and is in this case equal to equation (2.1). Alternative value function

formulations can be defined depending on the structure of the problem being

analysed, as discussed extensively in [366]. The value function can be seen as

an encoding of the solution of a dynamic programming problem. The policy

function defines what action an agent will take in a given state, π(s) = P (a|s).
In the MDP case, it is possible to iteratively improve the value and policy

functions separately and still converge on a solution. These procedures are

known, respectively, as value iteration and policy iteration and is detailed in

[366].

In the more general case, the state that an agent is in unobserved. In this case,

decision making requires an observation model to be used to estimate the hid-

den true state. The Markov formulation of such a scenario is typically specified

as the Partially Observable Markov Decision Process (POMDP) model (see

§17 of [323]). Continuous time Markov dynamics can be modelled as stochas-

tic partial differential equations [189]. The POMDP case reflects sequential

decision making problems in the real world more closely than the fully ob-

served case in that the entire universe is not observable to individuals at all

times. Instead, inferences must be made about the current state an individual

is in, as well as likely high utility future states. Uncertainty Quantification

facilitates future state estimation by using simulations to predict the evolution

of physical systems in time.
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2.2.1.2 The Value of Information

Estimating future states based on present information (planning) requires the

use of computational resources. In order for Uncertainty Quantification to be

worthwhile, it is necessary that the opportunity cost of expending resources

on gaining new information (rather than on something else) is balanced by the

future rewards that are potentially available given that information. Value of

Information analysis (or information value theory) addresses this problem (see

§16.6 [323]). This is often modelled using the Expected Value of Perfect Infor-

mation. A clear example is provided by mineral resource prospecting. Con-

sider the problem that some valuable underground resource is unknown. In-

vestigating the location of high resource yield areas requires expensive drilling.

Building a mine to extract the resource is much more costly than exploratory

drilling, but will be profitable is the mine is placed in a high yield area. The

drilling information regarding the resource quantities has a potential value in

that it allows for the mine to be constructed in the correct place.

Following §16.2 of [323], consider a random variable Ej for which exact ev-

idence of the value of Ej , denoted ej , can be obtained. Given the current

evidence, e, the value of the best action, a′, is defined by:

E
[
U(a′|e)

]
= max

a∈A

∑
s′

P (s′|a, e)U(s′) (2.2)

In other words, the expected utility of the action a given the available evidence

e is calculated from the maximum utility resultant state, s′, reached after

taking action a′ = max
a∈A

. Assume that evidence, ej , about the value of Ej is

received upon reaching the new state s′. The best action, αj , after obtaining

new evidence, ej , would then be given by:

E [U(aj |e, ej)] = max
a∈A

∑
s′

P (s′|a, e, ej)U(s′) (2.3)

As Ej is a random variable, it is necessary to consider the expected utility due

reward gained by transitioning to the states s′ and then collecting information

upon arriving in the states s′. As the future evidence, ejk, is only found

during state transitions, the anticipated values of ejk must be estimated using

incomplete present knowledge, e. Then, the Value of Perfect Information can
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be defined as:

V PIe(Ej) =

(∑
k

P (Ej = ejk|e)E [U(aj |e, ej)]
)
− E

[
U(a′|e)

]
(2.4)

Equation 2.4 says that the random variable Ej is valuable if it has an influence

on future planning. If the expected action utility is unaltered by learning about

Ej , then the term E [U(a′|e)] (that gives the expected utility taking expected

optimal actions given present knowledge about Ej) will force V PIe(Ej) = 0.

This is because expected optimal course of action given the observed evidence,

defined as the utility maximising path given new observations expressed as

(
∑

k P (Ej = ejk|e)E [U(aj |e, ej)]), will not have a higher expected value than

the action choices that would be made given the present information. If new

plans, given new knowledge about Ej , have a higher utility then V PIe(Ej)

will be greater than zero. Although on average the expected utility of an

information gathering course of action may be higher than one which does

not seek to gather new information, an actual trajectory over information

gathering states may lead to lower utility. That is, expected utility returns

model distributions over several states but only one realisation of a trajectory

of states will actually be realised. Returning to the prospecting example given

above, a drilling location may be selected on the basis that it is expected that

a high concentration of the desired resource is located there. The future mine

is anticipated to recover the costs of the initial drilling. Upon actually drilling

in an expected likely high concentration location, it may be that the prior

beliefs were incorrect and there are no resources to be extracted.

In relation to Uncertainty Quantification (the use of physical system simula-

tions for planning expected future states of nature), the Value of Information

can be used to further reason about effective engineering design methodolo-

gies. For instance, a data collection program may help to reduce uncertainty

regarding material property strengths. As a Civil Engineering example, con-

sider the construction of a building on soil foundations. If the soil properties

are unknown, to avoid collapse it is necessary to design the foundation assum-

ing that it is possible for very low strengths to be present. Thicker, stronger

footings are more costly than simpler footings designed to withstand lower

forces. If testing can confirm that low soil strengths are very unlikely, a sim-

pler and cheaper footing can be constructed. Extracting and analysing the
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strengths of soil samples from the foundation location will incur costs, but

these may be offset by the cheaper design.

Returning to simulations of physical systems, costs will be incurred in terms of

the time and energy spent in running the various solver algorithms required. If

these algorithms can accurately predict future states (for example by predict-

ing whether a bridge can withstand the loads expected) then the likelihood of

an agent finding itself in some future state can be estimated. If future state

likelihoods can be estimated, then the agents expected future utility can also

be estimated. The evidence variable in this case is the information gained by

running simulations, which will help to restrict the expected range of future

states to those with that are more likely based on simulated knowledge. If,

for example, running a simulation can identify that a bridge is very likely to

collapse, then actions can be taken in the present (such as altering the bridge

design) to avoid low utility states in the future. The computational costs of

the simulations lower utility (relative to a hypothetical cost free simulation)

and must be balanced against the accuracy of the simulations. Inaccurate

simulations should be afforded a comparatively lower belief (higher expected

variability) in the estimated outputs than a ‘better’ simulation. More complex

simulations may require more effort to run, giving a more accurate prediction

of future states but at higher cost. By considering the Value of Information it

is clear that, for engineering and scientific design, it is ideal to use simulation

methodologies that are as accurate as possible for the minimum computational

effort. For this reason, the computational complexity of algorithms used for

Uncertainty Quantification should be analysed.

2.2.2 Reinforcement Learning and Planning for Sequential De-

cision Problems

Solving a sequential decision problem typically refers to learning both the value

function and the optimal policy required to reach maximum utility states. The

full reinforcement learning problem involves learning the system dynamics (the

reward, transition and observation models) as well as the value and policy

functions using feedback from the environment. For these problems, utility

maximisation is typically formulated as a dynamic programming problem that

attempts to learn the value and policy functions that will optimise future

rewards. In particular, Jacobi-Bellman based approaches are used to justify
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the use of value functions as a method of working backwards from goal states

to present states. These issues are discussed extensively from the perspective

of reinforcement learning in [366].

Planning solves a simplification of the full reinforcement learning problem.

Given a desired goal state and assumed known system dynamics, planning

asks what actions should be taken to reach the desired goal [218]. Planning

can be used to reduce the computational resources required to model the entire

environment and to predict how actions influence future states. For example

partial policies (see §4 of [218]), which specify actions for some (rather than

in all) states, provide one such heuristic approach to reducing the burden of

storing action choices for all possible states. As computational resources are

always finite (see [124, 245]), when considering real world problems the plan-

ning capacity of an agent is always restricted. It is necessary to make partial

estimates of future states. The combination of planning (estimating future

environmental feedback) and reinforcement learning (received actual environ-

mental feedback) is closer to a more realistic model of how humans iteratively

interact with the and then reflect on the environment. The Dyna-Q model

[366] describes one such approach to integrating planning and environmental

feedback.

Models of physical systems can be seen as estimated state transition mod-

els that describe how natural phenomena are likely to occur. Uncertainty

Quantification using these physical models can be understood as a means of

estimating potential future states of physical systems (planning). These esti-

mated future states can in turn be used to assess the relative utility of future

states. For example, consider the construction of a bridge. A simulation of

the stability of the bridge may estimate whether or not collapse is likely. This

collapse probability can then be used to estimate expected future rewards. If

the bridge fails after construction, then the negative reward will be large. If

the bridge does not collapse after construction, a desirable future state will

be reached and positive rewards for the agent are likely. Risk, in the usual

engineering sense of event probability factored by consequences [21, 118], is

thus recovered.

Acceptable risk, which seeks to estimate the level of risk tolerated by society,

is often used to discuss the possible negative consequences of large engineering

projects [95]. Acceptable risk analysis acknowledges that it is not possible to
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ensure that all risk can be eliminated in the future by actions in the present.

By considering the public perception of risk, designers can (notionally), ad-

just their utility functions in order to avoid negative repercussions of design

failures. In Civil Engineering, failures can often be associated with loss of

life. Although effective for risk comparisons between different types of risks,

acceptable risk analyses carry certain dangers to the public. In particular,

the risk and acceptable risk concepts can be leveraged by unscrupulous actors

as a justification for lowered safety standards to save on costs. In this case,

the utility functions of the designers, construction firms or investors and those

actually at risk by engineering failures may be misaligned. Viewing engineer-

ing design from the perspective of sequential decision making processes thus

suggests the need for the (actually at risk) public to maintain the means to

lower the utility of those in a position to cause them harm.

Sequential decision making processes also provide a justification for the use of

effective phenomenological physical models. The resources expended during

planning can be related to the Value of Information. Computational or energy

costs used to estimate future states and actions potentially reduce the utility

of model as these resources cannot be allocated to other tasks. If models

of physical systems successfully predict future states with high probability

for low computational effort, then they are likely to have a higher utility

than a complex model which cannot be used to predict future states easily

(despite being a more accurate model). For example, modelling fluid flow as

a continuum rather than as individual molecules is an effective model for the

purposes of dam spillway design. Given the known physics of water, modelling

all water molecules down to the level of subatomic particles within the dam

system will be a more accurate model of fluid flows. However, for a large body

of water, it will not be possible to estimate the fluid flows through the spillway

by simulating all molecules without an enormous computational expenditure.

Continuum models of fluid flow are, however, quite effective for the types of

flow conditions encountered during dam design. The utility gained by the

effective continuum model is far higher in this case as the dam spillway future

states can be estimated within a reasonable time frame. The continuum model

would be incredibly inaccurate for estimating the actual physical behaviour

of the constituent components of water, say, close to the speed of light near

a black hole singularity. Such a situation is, however, unlikely to be relevant

to an agent designing a dam (that is, the probability for an agent to be near
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these states is very small).

Expending effort to estimate actions in unlikely states will have a lower utility

than applying effective models which generate reasonably accurate estimates

over likely states. From an information theory and Shannon entropy perspec-

tive, there is essentially no new information gained by the more complicated

model compared to the simple model if, from the perspective of the agent, the

physically indistinguishable microstates (say, atomic configurations) do not

lead to observably different macroscopic future states [34]. Computational ex-

penditure on physically indistinguishable states is thus also wasteful. If there

is a model which yields the same information as another for less effort, then

the value of the information gained by the low effort model will be relatively

higher. Future state inference using effective models can be seen as a proba-

bilistic estimation problem. In particular, Bayesian Inference can be used to

improve numerical methods for simulations as is shown in Chapter 7. As such,

Uncertainty Quantification and probabilistic modelling techniques are useful

for estimating probable future states for a given model.

2.3 Uncertainty Quantification

When performing planning to facilitate decision making in the real world,

simulations of physical systems can be used to aid in predictions of future

outcomes. The essential assumption is that the true state of the world is not

known (and perhaps not completely knowable depending on ones interpreta-

tion of quantum mechanics [31]) but follows some discernible patterns. This

thesis will avoid straying too far into the philosophy of randomness (see for

example [63, 64]) and instead adopt a pragmatic view that individuals can

make inferences about future world states and, by doing so, make judgements

in the present that will increase their utility in the future. In the language of

Game Theory, simulation can be used as a part of planning in that models that

are intended to estimate future states by approximating the true behaviour

of the world. These models can be used to facilitate decision making in the

present. It is therefore beneficial to consider how Uncertainty Quantification

(probabilistic modelling of physical system simulation inputs and outputs) can

be used to facilitate planning. In engineering, for example, simulation can be

used to predict the suitability of some design and to help estimate the influ-
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ence of design changes. Similarly, in scientific work simulation can be used to,

for example, suggest the design of future experiments in order to maximise

data collection capabilities. Of course, these examples are far from the full

range of applicability of simulations in various fields.

Uncertainty Quantification in general refers to the synthesis of probability the-

ory with predictive modelling techniques in order to estimate prediction vari-

ability in the presence of uncertainty. Uncertainty Quantification for physical

systems uses probability theory to model how the range of outputs from some

simulation can be influenced by uncertainty in the inputs to the model. Note

that a model may also refer to meta-model analysis, that is, there may be

uncertainty as to which set of equations best describes some physical system,

for example see [84]. This thesis will be mainly concerned with the problem

of estimation of uncertain output quantities given a simulation method and

a probabilistic description of input parameter uncertainty. When modelling

physical systems, so-called inverse problems (for example estimating material

property parameters given known stresses and strains) can also be seen as a

problem of estimating unknown outputs given inputs. Figure 2.1 presents a

graphical description of physical system Uncertainty Quantification. Chap-

ter 3 discusses suitable models for probabilistic input distributions for physi-

cal system Uncertainty Quantification. In particular, random field models of

probabilistic spatial correlation structures are detailed.

For clarity, this Section formally defines a number of terms from Uncertainty

Quantification. In particular, the input and output space distributions refer to

the probability distributions that define the uncertainty present in the model.

The input space distribution is a given assignment of the relative confidence

possessed over a set of parameters. These uncertain parameters are then fed

into a model (defined as a part of the problem specification). Given these

uncertain parameters and the model, the goal is to estimate the uncertainty

in the model outputs (the output space distribution). Finally, one may wish

to estimate the expected value of a Quantity of Interest (QoI). A QoI, defined

below, is typically taken to be the expected value of some function of the

output space to the model. As such, calculating QoI’s requires an estimate

of the output space probability distribution. Further detailed discussion on

the structure of Uncertainty Quantification problems is presented in Chapter

6.

38



This thesis will focus on Partial Differential Equation (PDE) models as these

are sufficient to describe continuum mechanics [250]. For civil engineering ap-

plications, continuum mechanics is crucial as it can be used to define both

fluid flow and solid deformations. Common solution techniques for PDE prob-

lems include Finite Element, Finite Difference and Finite Volume methods

[198]. Beyond continuum mechanics, PDE’s can also be used to model a

wide range of physical behaviours, transport phenomena [386], electrodynam-

ics and gravitational forces [126]. Other common simulation methods, such

as N -body simulation [126] and lattice-Boltzmann particle type methods [69],

are not considered directly in this thesis. This thesis will primarily work with

Finite Element PDE solutions. However, based on the arguments presented

in Chapter 6, the Uncertainty Quantification techniques presented are suffi-

ciently general that they should be able to be applied to any typical simulation

methodology. This is further supported by the probabilistic interpretation of

solving equations presented in [175] and expanded on in Chapter 7.
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Figure 2.1: Graphical description of Uncertainty Quantification for typical engineer-
ing problems. Acceptable risk analysis considers project risks relative to societally
acceptable risks. Adapted from [356].
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2.3.1 Input and output models and distributions

The input and output spaces to a problem represent the domains on from

which full problem specifications and solutions can be drawn. For example, the

input space for an uncertain heat equation might be the selection of thermal

conductivities at every point within the spatial problem domain. The output

space would then, in this example, represent a possible solution defined at

every point within the problem spatial domain.

Definition 2.3.1. Input and output space: Let the sets X and Y be the input

space and output space respectively. Let points within the input and output

spaces be represented by x ∈ X and y ∈ Y respectively. 4

In order to carry out Uncertainty Quantification, it is necessary to consider

probability measures over the input and output spaces.

Definition 2.3.2. Input, output and joint input-output probabilities: Given

X and Y , let P (X) and P (Y ) be the input probability density and output prob-

abilities respectively. Then let P (X,Y ) be the joint input-output probability

density. 4

Deterministic mechanical models can be specified in terms of a residual func-

tional. The residual functional, discussed extensively in Chapter 6, defines a

solution of a set of equations as the output, y, for which the error functional

is a minimum. The error functional is defined as:

Definition 2.3.3. Residual functional : Given a function space H let:

H : X × Y −→ R+ (2.5)

such that

H(y|x) 7→ ε ∈ R+ (2.6)

be the residual functional. Other names for this functional include the error,

loss and energy functional. The Hamiltonian is also used to refer to equation

(2.5) in the discussion in Chapter 6. 4

2.3.2 Quantities of Interest

So far this Section has specified the general problem framework. The final

element needed for Uncertainty Quantification is the definition of Quantities
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of Interest [342], the expectation value of functions of the output space that

are to be estimated. These functions are referred to as Quantity of Interest

functions.

Definition 2.3.4. Quantity of Interest (QoI) function: A Quantity of Interest

function, ψ, is a function of the output space:

ψ : Y −→ Ψ (2.7)

where Ψ is the image space of ψ. 4

Examples of such quantities might include the maximum displacement in a

stress-strain problem, the average pressure in an instance of the Navier-Stokes

equations, the gradient of the temperature in the heat equation or whatever

other quantity that one may wish to estimate. As a particular example, given

a solution to the steady state heat equation y = u(s) over the spatial domain

S, consider the QoI function that calculates the maximum and minimum tem-

perature, then Ψ ≡ R2 such that

ψ(u(s)) =

max
s∈S

(u(s))

min
s∈S

(u(s))


One goal of Uncertainty Quantification is to calculate Quantities of Interest

given QoI functions and the output space probability density [342]:

Definition 2.3.5. Quantity of Interest (QoI): A Quantity of Interest under

P (y), 〈ψ(y)〉P (Y ), is the expectation value of a quantity of interest function,

ψ given P (y):

〈ψ(y)〉P (Y ) := E [ψ(y)]P (Y ) =
∑
y∈Y

ψ(y)P (y) (2.8)

4

It is noted here that the Quantity of Interest function can be defined over the

joint input-output space, i.e. ψ : X × Y → Ψ. This extension can be made

without the loss of generality for the results in this thesis. However, as the

focus of this thesis is on particular problems in Uncertainty Quantification, it

is more useful from an expository perspective to include only ψ acting on Y

within as this is the most typical case.
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2.3.3 Sources of uncertainty in physical systems

A probabilistic formulation of sequential decision making naturally induces

a probabilistic model of planning. The relevance of Uncertainty Quantifica-

tion for physical systems can, however, be related more directly to physical

intuition. It is debatable as to whether or not the physical universe is funda-

mentally probabilistic or deterministic [294]. Regardless of any fundamental

randomness in the universe, there are thermodynamic limitations imposed

on the ability to collect, store and process information about the physical

world [245, 124]. Information processing requires energy expenditure (which

is why computers need to be powered) and information storage requires space.

Assuming that there is a finite amount of both energy and particles in the

universe, it follows that computation is limited physically. Estimates of fun-

damental limits to computation are discussed in [245]. It is worth noting

that modern computers are very much weaker than the current estimates of

the upper bounds of computational power imposed by physical constraints.

Uncertainty Quantification, then, emerges as a tool for dealing with compu-

tational constraints when modelling physical systems.

These constraints can be viewed in terms of local resource conservation for

utility maximisation using a probabilistic planning model of physical state

estimation, as discussed in Section 2.2. This viewpoint does not, however,

require that computational resources are fundamentally limited, only limited

from the perspective of an agent. By introducing the thermodynamic limits

to computation, Uncertainty Quantification becomes required at a fundamen-

tal level. If computational resources are limited, and future physical state

estimation requires computational resources, then it becomes necessary to use

Uncertainty Quantification to make useful estimates about future states. As

will be discussed in Chapter 6, even deterministic models can be viewed as

probabilistic models by framing these problems as Bayesian Inference. In par-

ticular, deterministic models that estimate the behaviour of a physical system

to within a numerical tolerance limit can be viewed as Maximum Likelihood

Estimates taken from probabilistic models of expected future states.

Less abstractly, the sources of uncertainty when modelling physical systems are

primarily the model selection error and the uncertainties in the model inputs.

Examples of model selection problems include deciding upon a material consti-

tutive model for stress-strain analysis or allowing for discontinuous functions
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to represent a solution when solving, say, a fracture problem. Uncertain inputs

to a given model are a further cause of uncertainty. For physical systems, as

shown in Figure 2.1, typical uncertainties include unknown material property

parameters, unknown forcing and unknown boundary conditions. The ability

to collect data is frequently limited when modelling real world phenomena

such as the shear strength of soils. Probabilistic input models can be seen

to be prior distributions on the possible range of values of uncertain inputs.

The prior distributions represent subjective beliefs about the likely input pa-

rameter values. New knowledge, such as field testing, can be included into

the belief model (most rigorously by Bayesian updating). By restricting in-

put uncertainty, the estimated output probability distribution from a physical

system will be altered. Input uncertainty models can thus be used to restrict

the range of possible outputs from a model to only those that are likely given

the likely model inputs. This is the implicit procedure adopted for the major-

ity of practical engineering design. Uncertainty Quantification allows for such

ad-hoc procedures to be understood rigorously.

2.3.4 Approaches to the solution of Uncertainty Quantifica-

tion problems

Solving problems in Uncertainty Quantification is typically computationally

demanding as simulations of physical phenomena (such as PDE solvers) must

be augmented by probabilistic descriptions of the inputs and outputs to such

a simulator. This augmentation typically requires that a large number of ad-

ditional simulations must be evaluated in some form. This Section discusses

the structure of Uncertainty Quantification problems and reviews existing ap-

proaches to Uncertainty Quantification. The traditional approach (termed

here the bottom up approach) to Uncertainty Quantification research in phys-

ical systems is compared and contrasted with what will be termed the top

down approach. The bottom up approach refers to the traditional develop-

ment strategy adopted in numerical methods research, that is, iterative im-

provements and refinements on existing techniques. The top down approach

instead considers, abstractly, the ideal method for Uncertainty Quantification

and then attempts to work ‘downwards’ towards practical implementations.

The top down approach will be used to provide guidance to the numerical

methods explored in the later Chapters of this thesis and to suggest directions
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for future research. The brief outline of existing Uncertainty Quantification

methods presented in this Section will be expanded on in the later Chapters

of this thesis.

2.3.4.1 Top down perspectives on Uncertainty Quantification

Uncertainty Quantification can be viewed as a part of planning for a sequential

decision making process and, as such, a solution to the more general decision

process problem would constitute a solution to physical system Uncertainty

Quantification. However, because Uncertainty Quantification for physical sys-

tems concerns real-world decision making processes, this would require solving

the full Artificial General Intelligence (AGI) problem, described in [323]. As-

suming that solving AGI is too difficult for this thesis, it is useful to restrict

the top down approach to consider the problem of estimating unknown out-

put density and QoI values given a physical model and input space distribu-

tion. Estimating appropriate models of physical behaviour given observations

from nature is essentially the scientific method which can itself be framed

as Bayesian Inference (or induction) [354] and will not be considered in de-

tail. Estimating parameter values and their distribution, required to generate

the necessary input distributions, is also a typical application of statistics to

science and engineering and will not be extensively discussed. The QoI and

output space density estimation problems will be the key concerns of this

thesis.

Output space density estimation requires an integral over the inputs to the

physical model to be evaluated. QoI estimates require expectations over esti-

mated output space densities to be calculated. In the Bayesian setting, this is

referred to as prediction. As such, both tasks are problems of integration and

so all of Uncertainty Quantification as defined in this Chapter (given a physical

model) can then be seen as an integration problem. Integration, itself, can be

considered from a Bayesian inference perspective. Assuming that an integral

converges, the task is to infer the unknown value of the integral. With refer-

ence to the discussions on utility maximisation and the Value of Information

in this Chapter, the optimal integration method would be able to estimate the

unknown value of the integral in question with a high probability for as little

computational effort as possible. The task, then, of research into numerical

Uncertainty Quantification methods is to develop efficient methods for inte-
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gration. The challenge becomes developing methods that are effective for the

very complicated integrals encountered when high dimensional, spatially cor-

related joint distributions (for example, random fields which are discussed in

Chapter 3) are combined with, say, PDE models of physical behaviour.

2.3.4.2 Integration approaches for Uncertainty Quantification

Returning to the bottom up approach to Uncertainty Quantification, this Sec-

tion briefly introduces the two major integration techniques for physical sys-

tem Uncertainty Quantification used in practice, Monte Carlo Simulation and

Series Expansion Methods. Monte Carlo Methods evaluate integrals by repeat-

edly evaluating the function to be integrated at randomly sampled locations.

Series Expansion methods, on the other hand, utilise functional analysis tech-

niques to expand the functions of interest in terms of simpler functions. Given

such a series expansion, complicated integrals can be evaluated by the sum-

mation of a number of simpler integrals. More detailed discussions of these

methods are also presented in later Chapters of this thesis.

The dimensionality of the functions to be integrated represents the primary

difficulty when attempting to solve Uncertainty Quantification problems. Spa-

tial randomness models induce infinite (or very high) dimensional probability

distributions. Then, Uncertainty Quantification for models with spatial ran-

domness requires evaluating these high dimensional integrals. For example, the

uncertain inputs to a stress-strain simulation may involve uncertainty in the

material elastic stiffness. If the elastic stiffness is modelled so that each point

within the material domain is drawn from some probability distribution, the

dimension of the induced probability measure of the spatial domain will have

dimension related to the total number of points in the spatial domain.

The challenges of high dimensional integration are a manifestation of the curse

of dimensionality [32]. The volume of a mathematical space increases ex-

ponentially with the number of dimensions present. Brute force numerical

integration would require that the function to be evaluated is computed at

all points within the integration domain. This is obviously intractable for

all but the most simple problems. Quadrature methods integrate functions

by approximating a function of interest with simpler functions with a priori

known integral values [111]. This allows for generalisation (interpolation) be-
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tween known function values. Unfortunately, standard numerical quadrature

integration methods, such as Gaussian quadrature, fail in high dimensional

spaces. The number of integration points required to evaluate high dimen-

sional integrals by standard quadrature methods increases exponentially with

the dimensionality of the problem and as such renders this form of integra-

tion computationally intractable [179]. The sparse grid method [130] is a high

dimensional quadrature technique that addresses the curse of dimensionality

by a careful choice of quadrature points. In particular, the tensor product of

one dimensional quadrature rules are combined carefully in such a way that

the truncation error increases slowly with increasing dimensionality. Appli-

cations of sparse grid methods to Uncertainty Quantification are presented

in [105, 231]. As these methods can be difficult to implement and alternative

method (discussed below) are available, they are not considered further in this

thesis. The various analyses presented in Chapters 4 and 5 could, however,

potentially be modified to use sparse grid techniques. As will be expanded on

in Chapter 5, one of the goals of this thesis is to avoid hand design of the struc-

ture of the numerical algorithms used in favour of self-improving algorithms.

Examples of self-improving algorithms for problems related to Uncertainty

Quantification are detailed in Chapters 5 and 7.

One approach to solving high dimensional integrals is to reduce the effective

dimensionality of the problem. Series Expansion methods, such as the Spectral

Stochastic Finite Element Method (SSFEM) [141, 356], perform dimensional-

ity reduction by projecting high dimensional functions onto a series of lower

dimensional basis functions. Techniques related to Series Expansion methods

are Polynomial Chaos methods, generalised Polynomial Chaos and Orthogonal

Series Expansions [351]. A key tool in these series expansion methods is the

Karhunen-Loève Expansion of a random field (discussed in detail in Chapter

3). These methods project the random, spatially correlated, response function

of the solutions of a physical simulation with random inputs onto a basis ex-

pansion of a high dimensional probability distribution. SSFEM is one example

of such a method. The lower dimensional problem over the basis functions can

be solved more efficiently than the original high dimensional problem. These

methods can be very effective, in particular when considering the first and

second moments of problems with Gaussian uncertainty.

As will be discussed in Chapter 4, these SSFEM-type methods can be difficult
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to apply for nonlinear PDEs. Additionally, these methods can be unsuitable

for rare event simulation. By contrast, Chapter 4 demonstrates that Monte

Carlo Simulation (MCS) can be used effectively in these instances. Monte

Carlo Simulation evaluates high dimensional integrals of the form:

I(X) =

∫
Ω
f(x)dµ(x) (2.9)

by the approximation:

I(X) ≈ Î(X) =
1

N

N∑
i=1

f(xi) (2.10)

where each xi is a sample from the probability distribution defined by dµ(x).

Moving away from a probabilistic perspective, a special case of Monte Carlo

Integration is integrating functions over spaces without reference to a proba-

bility density over the space. In this case, the integration points are sampled

uniformly at random from the function domain. By the law of large numbers

and the Central Limit Theorem (see Chapter 4), the value of the integral is

given by the distribution:

N
(
Î(X),

σ2

N

)
(2.11)

after N simulation steps. The curse of dimensionality is avoided by Monte

Carlo Integration as error on the estimated integral solution, σ2

N , is indepen-

dent of the integral domain dimension. Essentially, Monte Carlo can be viewed

as a randomised dimensionality reduction technique as more likely function

values are more likely to be sampled from more often. Monte Carlo Simula-

tion is useful for Uncertainty Quantification in that, given a method to sample

from an input distribution and a deterministic numerical solver, the output

space distribution can be approximated by repeated sampling. Markov Chain

Monte Carlo (MCMC) can be a more efficient sampling methodology than

direct MCS [55]. Applications of Monte Carlo Simulation and MCMC for

the probabilistic analysis of a nonlinear stress-strain problem are presented is

presented in Chapter 4 based on work published by the author [157]. Quasi-

Monte Carlo (QMC) methods are an alternative method for improving MCS

by sampling so-called low-discrepancy points [57, 227]. QMC methods attempt

to improve on the convergence rate of regular MCS by sampling from care-

fully spaced points over the function domain, capturing more of the function
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variability with a higher probability. Latin Hypercube methods are related to

QMC in that they attempt to sample from the function domain in a structured

way [197]. Low discrepancy sampling can cause degraded performance in some

circumstances (see [227]) and are not considered in this thesis. Incorporating

low discrepancy sampling with the methods explored in subsequent Chapters

would be a useful avenue for future research.

The basic MCS procedure for solving an Uncertainty Quantification method

is to repeatedly sample from the input distribution, pass these inputs to a

numerical PDE solver and then evaluate the PDE solutions. This process is

repeated until satisfactory integral convergence is obtained. Although this

method is simple, Monte Carlo methods face a serious deficiency in that the

function to be integrated must be evaluated a large number of times. When the

function in question is a PDE solution, actually evaluating these solutions is

computationally intensive. Moreover, high probability points will be sampled

from frequently, meaning that the solution of only very slightly different PDE

problems will be calculated repeatedly. This is computationally wasteful and

it would be more efficient to store the results of known PDE evaluations in such

a way that the solution for new, unseen inputs can be estimated based on prior

knowledge. To reduce the computational burden of MCS, Chapter 5 introduces

an Artificial Neural Network based surrogate model. The surrogate model

learns the mapping from inputs to outputs and how to generalise solutions

to unseen input instances. This surrogate model can then be integrated by

MCS far more cheaply than the PDE solver. This reduces the time taken

for MCS integration for computationally expensive sampling. Chapters 6 and

7 present theoretical and practical developments towards a full probabilistic

interpretation of both the uncertain problem inputs and the uncertain problem

solution. The goal of combining these techniques is to enable the development

of self-improving algorithms in the future.

2.4 Conclusions

This Chapter formally introduced Uncertainty Quantification from a Bayesian

perspective, as well as the probabilistic concepts required to appreciate this

perspective. In particular, the interpretation of Uncertainty Quantification as

a part of a sequential decision making process was described. This framing is
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useful in that it allows for various aspects of Uncertainty Quantification to be

understood more clearly. Engineering and scientific design can be understood

as part of a decision making process that seeks maximise some utility function.

The simulation of physical systems is a form of planning. The utility of a sim-

ulation procedure can be understood, with reference to Value of Information

theory, in terms of the information gained versus the computational cost of

the simulations. By introducing Uncertainty Quantification and probabilistic

physical simulation, variability in the physical system to be simulated can be

accounted for by computing the probabilities for various outputs from a sys-

tem. Using Uncertainty Quantification, engineering and scientific design can

be fit into a more universal decision making framework that rigorously assesses

risks associated with design and construction processes.

Chapter 2 Appendix: Probability Theory and Bayes

Theorem

As this thesis is concerned with Uncertainty Quantification, the use of proba-

bility theory is an essential component. As such, a number of standard formal

definitions from probability and measure theory are given for notational clarity

and consistency. Definitions relating to Bayes Theorem and Bayesian updat-

ing are also formally stated. The reader is assumed to have some familiarity

with probability theory more generally. Note that in this thesis, all spaces

considered are either discrete or continuous as appropriate. Summation sym-

bols denote either an integral on a continuous space (in the sense of Lebesgue

measure) or a sum on a discrete space (in the sense of counting measure) as

necessary. See [168, 309] for more details on measure theory and Lebesgue

integration. The reader, however, should understand that although at times

summation symbols (rather than integrals) are used for convenience the re-

sults presented are not restricted to discrete probability mass functions on

discrete spaces. Further, note that all function spaces are assumed to satisfy

the conditions specified in [355]. The notation ‖a− b‖ is intended to signify a

norm of the difference of two items a and b appropriate for the chosen working

space.
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2.5.1 Probability and Measure Theory

Probability theory is, typically, formally based on measure theory. Measure

theory describes how so-called measures (real valued functions) can be assigned

to elements of sets (in a set theoretic sense). As well as helping to formalise

probability theory, measure theory is crucial for formally defining integration

theory. A number of definitions relevant to the developments in this thesis are

given in this Section.

Definition 2.5.1. Measure space: From §17 in [168], a measure space is a

three element tuple (Ω,Σ, µ) where:

• The tuple (Ω,Σ) is termed a measurable space such that:

• Ω is an arbitrary non-empty set.

• Σ is a σ-algebra, where Σ ⊆ P(Ω) such that:

– Ω ∈ Σ

– Σ is closed under complements: if A ∈ Σ, Ω \A ∈ Σ

– Σ is closed under countable unions: if Ai ∈ Σ for i = 1, 2, . . . then

also ∪∞i=1Ai ∈ Σ

• µ : Σ→ [0, 1] ∈ R+ is a measure, a function from Σ to R+.

4

Note that a measurable space is, following Definition 2.5.2, a measure space

without a measure assigned, that is the pair (Ω,Σ).

Definition 2.5.2. Probability space: From §17 in [168], a probability space

is a three element tuple (Ω,Σ, P ) where:

• (Ω,Σ) is a measurable space where:

– Ω is termed the sample space of all possible outcomes.

– Σ is a σ-algebra, consisting of events which are sets consisting of

zero or more outcomes.

• P : Σ → [0, 1] ∈ R+ is the probability measure, which is a measure such

that:
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– P is countably additive: if {Ai}∞i=1 ⊆ Σ is a countable collection of

pairwise disjoint sets, then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).

– P (Ω) = 1. Note that this is sometimes referred to as the law of

total probability [403].

4

Definition 2.5.3. Measurable map: From [168], given two measurable spaces

(A,ΣA) and (B,ΣB) a function f : A → B is a measurable map if for every

C ∈ ΣB, the inverse image satisfies f−1(C) ∈ ΣA. 4

Throughout this thesis, the term probability distribution is also used to refer to

a probability measure on a space. Where not stated, the σ-algebra is assumed

to be the maximal σ-algebra on the underlying space [168].

The Dirac delta function will be required. It is defined here based on [309]

and §2.1 of [35]:

Definition 2.5.4. Dirac delta function: In this thesis the Dirac delta function

is taken to mean the Dirac measure which is a measure δ on a set X (with

any σ-algebra of subsets of X) for x ∈ X and a measurable set A ⊆ X by

δX(A) := χA(x) =

1, x ∈ A
0, x 6= A

(2.12)

In the case that X is a single element, x′ ∈ X, the Dirac measure may be

written:

δ(x− x′) := δx′(A) (2.13)

4

For example, on a real valued continuous space the Dirac delta function can

be used to select a particular value of a function:∫
X
f(x)δ(x)dx = f(0)

The Dirac measure can also be interpreted as a Kronecker delta for a discrete
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sum:

δij :=

1, i = j

0, i 6= j

so that, for example: ∑
i

δijf(xi) = f(xj)

To actually make use of probability theory in this thesis, a number of addi-

tional definitions are required which are given below. In particular, a definition

of conditional probability is required. Although there are several possible defi-

nitions of conditional probability this thesis will, for simplicity, adopt the stan-

dard Kolmogorov definition of conditional probability and avoid some of the

difficulties faced when defining conditional probabilities on continuous spaces.

Products and sums of probabilities are also discussed. For a more full mea-

sure theoretical treatment of product measures and conditional probability see

[168, 50].

Definition 2.5.5. Conditional probability ([216]): Let (Ω,Σ, P ) be a prob-

ability space. Let A and B be events Σ with P (B) > 0. The conditional

probability of A given B is defined as:

P (A|B) =
P (A ∩B)

P (B)
(2.14)

4

Reorganising the definitions of conditional probability yields P (A|B)P (B) =

P (A ∩ B). As per Theorem 1.3 in [224], from the reorganised conditional

probability rule and the definition of probabilities on intersections of events

the chain rule for probabilities or product rule is defined as:

Definition 2.5.6. Chain rule for probabilities and independence: Let (Ω,Σ, P )

be a probability space. Let A = {A1, A2, · · ·An} be a set of events in Σ such

that P (A) > 0. Then P (A1, A2, · · · , An) := P (A1 ∩A2 ∩ · · · ∩An) and:

P (A1, A2, · · · , An) = P (A1)P (A2|A1)P (A3|A2, A1)× (2.15)

· · · × P (An|An−1, · · · , A2, A1)

the events {A1, A2, · · ·An} are independent if

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2)P (A3) · · ·P (An) (2.16)
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4

Next, following §1.5.2 of [224], define a partition of a probability space as:

Definition 2.5.7. Partition of a probability space: Let (Ω,Σ, P ) be a proba-

bility space. Let B = {B1, B2, · · ·Bn} be a partition of Ω where a partition is

set of events in Σ that are pairwise disjoint (non-overlapping) that cover the

space Ω (that is,
⋃n
i=1Bi = Ω). It follows that P (B) = 1. 4

Given a partition, following Theorem 1.4 in [224] define the law of total prob-

ability for an event as:

Definition 2.5.8. Law of total probability for an event: Let (Ω,Σ, P ) be a

probability space. Let B = {B1, B2, · · ·Bn} be a partition of Ω. Then:

P (A) =

n∑
i=1

P (A|Bi)P (Bi) (2.17)

4

The measure theoretic definition of a random variable is a map from a prob-

ability space to a measure space which, following §1.3 of [317], is formally

defined as:

Definition 2.5.9. Random Variable: Let (Ω,Σ, P ) be a probability space.

Let (A,A) be a measurable space. Then an (A,A)-valued random variable (or

A-valued random variable) is a function X defined by:

X : Ω→ A (2.18)

such that for all a ∈ A, X−1(a) ∈ Σ (the subset a has preimage under X in

Σ) with X−1(A) = {ω : X(w) ∈ a}. 4

By defining a random variable in this way, the probability of any event in

a ∈ A is defined by the probability measure calculated over the region defined

by X−1(a) on the original probability space. This is a typical pushforward

operation to transfer some function from one space to another (see [125]). For

real-valued random variables (that is, X : Ω → R), this definition can be

extended to the usual definition of a real-valued random variable in terms of

a cumulative distribution function. A real-valued random variable X(ω) on

(Ω,Σ, P ) can be shown to be given by:

{ω : X(ω) ≤ v} ∈ Σ ∀v ∈ R (2.19)
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because {(−∞, v] : v ∈ R} generates a (Borel) σ-algebra on R and {ω : X(ω) ≤
v} = X−1((−∞, v]) (see §2 of [302]). What this means is that a function, the

cumulative distribution function FX(x), can be defined from equation (2.19).

First, note that P ({ω : X(ω) ≤ x}) = X−1((−∞, x]) which can be written

more concisely as:

P (X ≤ x) := P ({ω : X(ω) ≤ x}) = X−1((−∞, x]) (2.20)

from which the cumulative distribution function can be defined:

FX(x) = P (X ≤ x) (2.21)

The the joint probability of two (or potentially more) random variables is

defined as follows:

Definition 2.5.10. Joint Probability: Let (Ω,Σ, P ) be a probability space.

Let X and Y be random variables. Then the joint probability of X and Y is

defined as:

P (X = x and Y = y) = P (Y = y|X = x)P (X = x) (2.22)

= P (X = x|Y = y)P (Y = y) (2.23)

4

which can be extended to multiple random variables, X1, X2, · · ·Xn by appli-

cation of the probability chain rule in Definition 2.5.6:

P (X1 = x1, · · · , Xn = xn) = (2.24)

P (Xn = xn|Xn−1 = xn−1, · · · , X1 = x1)×
· · · × P (X2 = x2|X1 = x1)P (X1 = x1)

With the appropriate measure theoretic definitions in place, it is possible to

define integration. A complete exposition of measure theoretic integration

would be more detailed than is necessary for this thesis and the interested

reader is referred to [168], [317] (in particular §4), §3 of [285] and §8 of [217].

Consider the measure space (Ω,Σ, µ) and a partition of Ω. A partition, from

Definition 12 in §1.3 of [317] is a collection of sets {Ai}ni=1 such that Ai∪Aj = ∅
is i 6= j and

∑n
i=1Ai = A. Next, define a simple random variable (from
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Definition 13 in §1.3 of [317]) as X : Ω → R by X =
∑n

i=1 αjχAj over the

(countably infinite measurable) partition {Ai}ni=1 with that αj ∈ R where χAj

is the indicator function (equivalent here to the Dirac measure) over Aj . Then,

from §23 of [168], the simple function X is said to to integrable if µ(Aj) <∞
for all Aj for which αj 6= 0. Symbolically, the integral of X is denoted:∫

Ω
X(ω)dµ(x) (2.25)

or, equivalently by
∫
Xdµ. The integral is defined by:

∫
Xdµ =

n∑
j=1

αjµ(Aj) (2.26)

Further, for some subset E ∈ Ω the integral over E is defined by:∫
E
Xdµ =

∫
Ω
χEXdµ (2.27)

From §8 Definition 29.1 of [217], the Lebesgue integral defines integration by

partitioning the range of a function and is defined as follows:

Definition 2.5.11. Lebesgue integral: Let f be a simple Y -valued measur-

able function on (Ω,Σ, µ). Let y be a partition of Y so that f has no more than

a countable number of distinct values, y1, y2, · · · , yn, · · · . Then the Lebesgue

integral over E is denoted as:∫
E
f(ω)dµ(ω) :=

∑
i

µ(Ai) (2.28)

where

Ai := {ω : ω ∈ A, f(ω) = yi} (2.29)

provided that the series in equation (2.28) exists and is absolutely convergent.

4

See [217] for a definition of “absolutely convergent”. For the standard case of

integration of real valued functions over the number line encountered in typical

engineering mathematics, the Lebesgue integral is equivalent to the Riemann

integral (see §8.30.3 of [217]).

This definition of an integral is sufficient to define the expectation value or
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(expected value) operator of a random variable defined, from Theorem 13 in

§4.3 of [317], as:

Definition 2.5.12. Expectation value: Given a probability space (Ω,Σ, P ),

let X be an A-valued random variable on (Ω,Σ, µ). Then the expectation value

of X is defined as the Lebesgue integral of X:

E[X] :=

∫
Ω
XdP =

∫
Ω
X(ω)dP (ω) (2.30)

if this integral exists. Other notation for the expectation value includes 〈X〉
or EP [X] and 〈X〉P where the subscript denotes the probability measure. 4

2.5.2 Bayesian Inference and Bayesian Probability

2.5.2.1 Introduction

Bayes Theorem is an essential component for understanding how Uncertainty

Quantification can be incorporated into a rigorous decision making framework.

Note that the grammatically correct Bayes’ Theorem (with the apostrophe)

will not be used in this thesis for notational convenience. Starting with a

definition of Bayes Theorem, this Section also defines concepts from Bayesian

Inference. Bayesian Inference uses Bayes Theorem to formulate how observed

data can be used to reason about the value of Latent variables (or Hidden

variables). This is done by using a set of initial, subjective beliefs regarding

the probability of various outcomes (the prior distribution over hypotheses)

which can be updated (to the posterior distribution) given additional obser-

vations (data) by using the joint distribution over both data and hypotheses

as a representation of known information. This type of model can be rep-

resented by a Bayesian Network [323, 215], a directed graph which indicates

conditional dependencies between the joint distribution random variables. The

relationship between Bayesian Inference and Maximum Likelihood Estimation

is briefly discussed, with a more detailed discussion presented in Chapter 6.

Bayesian Inference can be extended to include time as a variable by considering

how the probability of hidden states changes over time. This leads to notions

of filtering, smoothing, prediction and learning. These concepts are demon-

strated in this Section by a Hidden Markov Model. This framework provides a

means to understand probabilistic numerical methods [175]. Such methods are
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utilised in Chapter 7 to derive an Expectation-Maximisation based algorithm

for Element Free Galerkin adaptive basis function refinement.

At the core of these ideas lies Bayes Theorem which relies on the simple ob-

servation that the joint probability of two different events is related to the

conditional distributions of one event given another. Bayes Theorem is for-

mally defined, from Theorem 1.5 [224], as:

Definition 2.5.13. Bayes Theorem: Let (Ω,Σ, P ) be a probability space.

Let A ∈ Σ be an event with P (A) > 0. Let B = {B1, B2, · · ·Bn} be a partition

of Ω where a partition is set of events in Σ that are pairwise disjoint (non-

overlapping) that cover the space Ω such that P (B) = 1. Bayes Theorem is

defined as:

P (Bj |A) =
P (Bj |A)∑n

i=1 P (A|Bi)P (Bi)
(2.31)

4

where Bayes Theorem is derived by combining the law of total probability for

an event (Definition 2.5.8) with the definition of conditional probability:

P (Bj |A) =
P (A ∩Bj)
P (A)

(2.32)

P (Bj |A) =
P (A|Bj)P (Bj)

P (A)
(2.33)

P (Bj |A) =
P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

(2.34)

Bayesian Inference, in the most simple form, uses observed data (the evidence),

d, to estimate hypothesis, h, from a space of possible hypotheses, H, best

models the data:

P (h|d) =
P (d|h)P (h)∑
h∈H P (d|h)P (h)

(2.35)

where:

• d is the current evidence.

• h is a hypothesis in the hypothesis space H.

• P (h) is the prior distribution.

• P (h|d) is the posterior distribution.

• P (d|h) is the likelihood.

57



• P (d) =
∑

h∈H P (d|h)P (h) is the marginal likelihood or model evidence.

Bayesian Inference aims at calculating the probability that some hypothesis

h is correct. Hypotheses may also be referred to as models. The prior distri-

bution, P (h) defines a subjective belief that the hypothesis h is correct prior

to observing the latest data, d. The posterior distribution, P (h|d), defines

the belief in the hypothesis h after incorporating knowledge of the latest ob-

servation. The likelihood term, P (d|h) is used as a part of the calculation

and defines how probable the observed data is for a given model. Intuitively,

Bayes Inference says that observations with a low likelihood given h will cause

the posterior probability for that hypothesis to decrease. Conversely, observa-

tions with a high likelihood under h will increase the probability of h under

the posterior distribution. The marginal likelihood term is also referred to as

the normalisation constant and reweights the posterior probabilities under all

hypotheses to sum to one. For many inference problems, this is not necessary

as only the relative probability of the various hypotheses is needed. In par-

ticular, Maximum a Posteriori (MAP) Estimation selects the hypothesis with

the greatest posterior probability as the correct hypothesis and disregards all

others [275]. Maximum Likelihood Estimation (MLE) is a special case of MAP

that uses a uniform prior over the hypothesis space [46, 275].

The joint distribution over variables can be represented using graphs. There

are a variety of what are termed probabilistic graphical models and detailed

treatments are provided in [215, 292]. For example, the joint distribution can

be represented as an undirected graph where unlinked nodes represent condi-

tionally independent variables. A Bayesian Network is a graphical model that

uses acyclic directed links between nodes to represent conditional dependen-

cies between random variables. Links in the network point from child nodes

to parent nodes where conditional dependencies are present in factorisations

using the chain rule for probability (Definition 2.5.6) of a joint distribution,

as in P (parent|child).

Consider the following example. Let P (a4, a3, a2, a1) be a joint distribution

over each variable ai. Using the chain rule for probability factorise this distri-

bution as P (a4|a3, a2, a1)P (a3|a2, a1)P (a2|a1)P (a1). Further, it is given that,

due to conditional independence of a4 from a1 and a2, the factorisation can be

written as P (a4|a3)P (a3|a2, a1)P (a2|a1)P (a1). Let each variable ai be a node

in the graph. Then let ei : {a1, · · · , an} denote a set of directed links starting
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at ai and terminating on nodes a1, · · · , an. Then the factorisation:

P (a4|a3)P (a3|a2, a1)P (a2|a1)P (a1) (2.36)

for the example can be expressed as the set of links:

• e1 : {a2, a3}

• e2 : {a3}

• e3 : {a4}

• e4 : ∅

where ∅ denotes the empty set. This example Bayesian Network is shown

in Figure 2.2. Graphical models can be useful for visualising the structure

of dependencies in probabilistic algorithms. Other types of graphical models,

such as factor graphs, are discussed in [215].

a1

a2

a3

a4

Figure 2.2: Example of Bayesian Network showing the distribution in equation (2.36).

2.5.2.2 Bayesian Inference over time

Static Bayesian Inference aims to estimate the probability over hidden states

given a fixed set of observations. Time dependencies can be introduced by

indexing states and observations with a time variable (either continuous or

discrete). The belief state represents the current belief about the hidden states.

In such a model, states change in time by a transition model. Hidden states

generate observations (data) from which the hidden state is to be inferred.

This inference is aided by maintaining a sensor model. The discrete time case

will be discussed here. Following the notation in §15 of [323], let Xt denote

the set of unobservable state variables at time t. Let Et denote the random

variable of observations at time t. Lower case will be used to indicate actual
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data value samples from the random variables, for example et will denote a

fixed set of values of the observation at time t from the random variable Et.

Subscripts separated by a colon, as in Aa:b refer to all values of the variable A

at all times from a to b, that is Aa, Aa+1, · · · , Ab.

The transition model defines how the hidden states change with time by

P (Xt|X0:t−1). The sensor model P (Et|X0:t−1, E0:t−1) defines the probabil-

ity for making different observations at time t given information about the

previous states and observations. The Markov assumption is that the current

hidden states depend on only a fixed number of time steps into the past (§15

of [323]). For example, first-order Markov transition and sensor models could

be written respectively as:

P (Xt|X0:t−1) = P (Xt|Xt−1) (2.37)

P (Et|X0:t−1, E0:t−1) = P (Et|Xt) (2.38)

The current states of n-th order Markov process would depend on a maximum

of n earlier time steps.

Introducing a prior distribution over initial hidden states, P (X0), in combi-

nation with the transition and sensor models allows (assuming a first-order

Markov model) the joint distribution over states and observations to be ex-

pressed as:

P (X0:t, E1:t) = P (X0)
t∏
i=1

P (Xi|Xi−1)P (Ei|Xi) (2.39)

A graphical model of an illustrative time dependent Bayesian Inference joint

distribution, the Hidden Markov Model (HMM), is shown in Figure 2.3. Dy-

namic Bayesian Networks are a more general formulation of the time depen-

dent inference problem and are described in [323]. The HMM is particular

subcase of a Dynamic Bayesian Network, as is Kalman Filtering (see §17 and

§18 of [275]).

Following §15.2 in [323], inference using temporal models, as in equation (2.39),

can be classified into several different tasks. The main four tasks are Filtering,

Prediction, Smoothing and Most Likely Explanation estimation. Filtering

involves calculating the belief regarding the hidden state given all available

evidence (the posterior distribution over Xt), that is filtering is the task of

computing P (Xt|e1:t). Prediction computes beliefs regarding future states,
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X0 X1 X2

E1 E2

Xt

Et

Figure 2.3: Hidden Markov Model Bayesian Network Diagram. Random variables
X0, X1, X2 and Xt denote hidden variable at times 0, 1, 2 and t. Random variables
E1, E2 and Et denote observed variable at times 0, 1, 2 and t.

Xt+k for k > 0, given evidence available in the present, e1:t. That is, prediction

computes the posterior P (Xt+k|e1:t) for k > 0 and as such is like filtering

without including new data. Smoothing uses observational data from the

future, e1:t, to update beliefs regarding past states, Xk for 0 ≤ k < t. By

using more observational data, smoothing can provide better estimates of past

behaviour than was available at the time the observation was made. The Most

Likely Explanation in this context refers to the most likely set of hidden states

given the observational data, that is argmaxx1:t
P (x1:t|e1:t).

To summarise each of these inference tasks are:

P (Xt|e1:t) Filtering

P (Xt+k|e1:t) for k > 0 Prediction

P (Xk|e1:t) for 0 ≤ k < t Smoothing

argmax
x1:t

P (x1:t|e1:t) Most Likely Explanation

Under a Bayesian Inference framework, the above tasks are carried out by

splitting the dependencies between states and observations across time using

Bayes Theorem and the sensor and transition models. The temporal depen-

dencies are handled by a recursive formulation that enables for computations

to be carried forward and backward in time.

For example, for a first-order Markov model, the recursive posterior updates

for single time steps can be written (following the full derivations in §15 of

[323]) in terms of messages passed forward and backward through time. The

forward messages are used for Filtering and Prediction, whereas the backward

messages are used for smoothing. The forward and backward messages are

written respectively as:
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• Forward message: f1+t := P (Xt|e1:t) with f1:0 = P (X0).

• Backward message: bk+1:t := P (ek+1:t|Xt)

where the forward and backward messages are computed respectively in terms

of functions the forward and backward functions F (·) and B(·). Let ff (·)
denote the filtered forward message and fp(·) denote the predicted forward

message. Then the forward and backward messages are computed for filtering,

prediction and smoothing respectively by:

ff1:t+1 ∝ P (et+1|Xt+1)F (f1:t, et+1) (2.40)

fp1:t+1 = F (f1:t, et+1) (2.41)

bk+1:t = B(bk+2:t, ek+1) (2.42)

Note that the forward message update for filtering incorporates new informa-

tion via the sensor model. Finally, the time-step update functions, F (·) and

B(·), can be written:

F (f1:t, et+1) =
∑
xt

P (Xt+1|xt)P (xt|e1:t) (2.43)

B(bk+2:t, ek+1) =
∑
xk+1

P (ek+1|xk+1)P (ek+2:t|xk+1)P (xk+1|Xk) (2.44)

For discrete models, an efficient smoothing algorithm that uses the above

formulation is the forward-backward algorithm (§13 of [275]). Again for dis-

crete models, the Most Likely Explanation can be efficiently estimated by the

Viterbi algorithm (§17 of [275]).

With the introduction of temporal structures, numerical problems can be

framed in terms of Bayesian Inference. Random or dynamic hidden state

estimation problems can clearly by incorporated into the temporal Bayesian

Inference framework by following the prescriptions above. Deterministic hid-

den state estimation problems that rely on iterative algorithms can also be

understood as Bayesian Inference problems. Problems such as search and

optimisation can be seen as temporal Bayesian Inference by using simple tran-

sition models (for example constant transitions from hidden state to hidden

state through time). Then, the recursive inference formulation described above

can be used to reason about the nature of the estimation problem at hand by

treating the observational data as a time ordered sequence. Such an approach
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is useful for thinking about the structure of problems in Uncertainty Quan-

tification that, although modelling random phenomena, are themselves deter-

ministic algorithms when run on a classical computer. For example Monte

Carlo Sampling (discussed in Section 2.3.4), can be thought of as an inference

algorithm with a given sensor model in this way. This is also related to the

discussion in [175].

The final task associated with inference in the Bayesian Inference setting is

Learning. If the transition and sensor models are fully known, then there is no

learning required for inference and only state estimates over time need to be

calculated. If the transition and sensor models are unknown, then they must

be learnt in order to perform accurate inference. In the context of science

and engineering, model learning is often conducted by using empirical data to

build phenomenological models that approximate behaviour sufficiently well

over some reasonable level of detail such that useful predictions of the future

behaviour of natural phenomena can be made. These empirical models can

be assumed to be approximations to the actual behaviour of nature. Model

learning strategies are applied in Chapter 7 to formulate an adaptive basis

Element Free Galerkin scheme.
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Chapter 3 Overview

Key developments in Chapter 3 include:

• Section 3.2 discusses background theory relating to the simulation of

spatially autocorrelated random fields.

• Section 3.3 presents numerical examples of both Gaussian and non-

Gaussian random field simulations.

• Section 3.3.1.4 contributes a method for simulation of random fields with

numerically singular covariance matrices.

• Section 3.3.3 contributes a so-called phase field method for simulating

non-smooth inclusions in a spatial field.

• Section 3.4 contributes an original, detailed analysis of the computa-

tional complexity of random field simulation for Monte Carlo analysis,

including an analysis of the numerical accuracy of matrix decomposition

methods for random field simulation in Section 3.4.2.
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• Section 3.5 provides an overview of techniques from the literature for

conditional random field simulation with reference to Bayesian updating

of Gaussian processes.

3.1 Introduction

This Chapter details the necessary random field probability theory required

to understand the developments in the remainder of this thesis. The goal of

Uncertainty Quantification is typically to estimate uncertainty in the outputs

of some function given a set of uncertain inputs to the function. Uncertainty

Quantification uses probability theory to model the variability potential of the

various parameters of some function. Important, relevant references on prob-

abilistic modelling theory that provide additional background detail for this

Chapter include [252, 337, 338, 393, 394]. This thesis focusses on Uncertainty

Quantification for models of physical phenomena. Models of physical systems

for many problems of interest (such as Partial Differential Equation contin-

uum mechanical models) are too complicated to be solved analytically and

numerical methods must be used. Further, when considering simulation mod-

els of physical phenomena, the geometry over which the physical behaviour is

to be analysed must be factored into the probabilistic estimates of parameter

uncertainty.

It is often the case that spatially distributed properties of a physical model

display variability, but in such a way that nearby values of a parameter field

are more similar and distant parts of the parameter field are less similar. For

example, the shear strengths at two different points in some soil are more

likely to be similar the closer the two points are to one another [116, 117, 298,

159]. This property is referred to as spatial autocorrelation. Other example

applications of spatial autocorrelation include modelling of structural material

properties [255], diffusion coefficient variability in transport phenomena [100],

and electrostatics [230] as well as applications beyond engineering, for example,

population genomics [109] and city-wide health data analysis [220]. Random

fields can be used to describe and model these features of physical systems

using probability theory in a rigorous way [381, 5, 4]. The focus of this Chapter

is, however, on the abstract methodological aspects of random field modelling.

It is noted here that [158] (published work by the author) includes a physical
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example of random field modelling for a Geotechnical slope stability model.

The reader interested in a direct application example of the techniques in this

Chapter is referred to [158]. Further physical problem based examples are

presented in this thesis, in particular in Chapter 4.

This Chapter details relevant aspects random field theory and then describes

several methods for random field simulation. Gaussian and non-Gaussian ran-

dom field modelling methods (based on copula theory [280]) are detailed.

A numerical error analysis for a fast random field simulation methodology

is detailed. Random field simulation is utilised for physical system Uncer-

tainty Quantification in the subsequent chapters of this thesis. As well as

smooth random fields, this Chapter also describes techniques for phase field

and threshold random simulation. Modelling of discrete features in a spatially

distributed field has applications many applications [229]. Relevant examples

for Civil Engineering include modelling fractures in quasi-brittle materials or

in simulating aggregate within concrete. Several examples of Gaussian, non-

Gaussian and phase field random field model simulations are presented. These

field simulation techniques demonstrate the potential range of input parame-

ter distributions that can be modelled and indicate that analytical solutions of

many Uncertainty Quantification problems are not feasible. This serves to fur-

ther motivate the introduction of sampling based Uncertainty Quantification

methods detailed in the later Chapters of this thesis. An analysis of the com-

putational complexity of random field methods for use with sampling based

Uncertainty Quantification is described, based on the analysis published by

the author in [158]. Further, conditional random fields and their application

to estimating random field parameters from data are also discussed.

3.2 Random field theory overview

To describe randomly varying functions over space and time, random fields

combine both geometry and probability theory. Following on from the math-

ematical preliminaries and probability theory introduced in Chapter 2, this

Section defines further functional analytic and geometric concepts before in-

troducing random fields. In particular, a discussion of the eigenvalues and

eigenfunctions of linear operators on function spaces is provided, expanding

on the mathematical preliminaries presented in Chapter 1. Gaussian random
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fields are introduced. Using the definitions of the eigenvalues and eigenfunc-

tions of operators, the Karhunen-Loève Expansion representation of a Gaus-

sian random field is discussed. Further, non-Gaussian random fields defined

via copula theory are also described. This background material introduces the

theory necessary to properly understand random field simulation techniques

which are described in Section 3.3.

3.2.1 Random fields

A random field is a measurable mapping from a probability space to the space

of all functions (of a given particular type) over a topological space. Essen-

tially, in this framework, all functions in a function space over some domain

are assigned a probability. Specifically, with reference to Definition 1.1.1 in

[5], a random field is defined as:

Definition 3.2.1. Random Field: Let (Ω,F , P ) be a probability space and

T a topological space. Let ET be the space of all E-valued functions on T . A

measurable map, f , with:

f : Ω→ ET (3.1)

is called an ET -valued random field. 4

When considering the physical systems of interest in this thesis, manifolds

provide a useful characterisation of the spaces of interest [236]. The manifold

structure of the random field definition is important as it enables the distance

between points to be defined clearly. For practical problems, modelling the

time and space similarity of random fields requires a way to define the dis-

tance between points. Additionally, there is a close correspondence between

manifold metric tensors and correlation structures (for example see §12.2 in

[5]). Although these geometric aspects will not be dealt with explicitly in this

thesis, it is useful to keep the underlying mathematical structure of random

fields in mind.

In the case that the topological space is a manifold, the space of functions of

interest is some fibre bundle, E, over the base space M . The random field

map takes samples ω ∈ Ω (in a measurable manner as per Definition 2.5.3)

to a section e of E such that the probability of the section, P (e), is given

by the probability P (f−1(e)) where f−1(e) ∈ F . The most important type

of random fields for this thesis will be real valued vector fields over subsets
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of N -dimensional Euclidean space, T ⊂ RN . A real vector-valued random

field on part of N -dimensional Euclidean space, T ⊂ RN , would map a set of

d-dimensional vectors, Rd, to each point in T .

From §5 in [195], two useful ways of considering random fields are as either

a function parameterised by the outcome set of a probability space or as a

random function parameterised over the topological space T . As an example,

consider a random real valued function over [0,∞) ∈ R where t ∈ [0,∞) is

interpreted as time. This type of random field is referred to as a stochastic

process [90]. The random function of interest could be described as:

f : [0,∞)× Ω→ R

where Ω is the space of outcomes in a probability space. Then, for t ∈ [0,∞)

and ω ∈ Ω, f(t, ω) is the value of the process at time t for the outcome ω.

Fixing ω ∈ Ω gives a deterministic function over time:

fω : t 7→ f(t, w) (3.2)

which is termed a realisation of the process. With this parametrisation, the

functions fω are a collection of functions for ω ∈ Ω with probability defined

by the probability measure P (ω). As such, the probability measure is a dis-

tribution over a function space.

Instead of fixing the random event, the parametrisation over the topological

space can be fixed. In the case of this example, this means fixing t. Then ft

is a random variable:

ft : ω 7→ f(t, w) (3.3)

Viewed in this way, the random field is a collection of random variables indexed

by the topological space parametrisation, t. The probability measure, then,

describes the joint distribution of these random variables defined at each t ∈
T .

As an example, before considering random fields and their simulation in more

detail, consider the Ornstein-Uhlenbeck process, a particular Stochastic Dif-

ferential Equation, defined in [378, 145] as:

dxt = θ (µ− xt) + σdWt (3.4)

70



where θ > 0 is a scaling parameter, µ is the mean and σ > 0 is the drift param-

eter. Wt denotes a white noise process, that is, Gaussian noise (also known as

a Weiner Process, see §14.1 of [90]). The Ornstein-Uhlenbeck process is a type

of so-called mean reverting process in that, despite random fluctuations in the

function value, it tends towards a central value over time. Figure 3.1 demon-

strates the different parametrisations of a random field shown in equations

(3.2) and (3.3) diagrammatically. The realisations of the Ornstein-Uhlenbeck

process shown were generated by the Euler-Murayama Method, the details

of which are discussed in [213, 60]. Other techniques for simulating random

fields are discussed at length in Section 3.3 after the necessary mathematical

formalities are provided. The process realisations in Figure 3.1 demonstrate

a number of features of random fields of the types of interest in this thesis

over real function spaces more generally. In particular, despite random fluc-

tuations, points nearby in time are more similar than points separated by

large times. It is this feature random fields that will be of the most interest

when considering how the properties of physical systems vary across space and

time.

3.2.1.1 Gaussian Random Fields

When considering physical systems, it is often useful to think of random fields

as the joint probability distribution over space and/or time of some random

function. It is often desirable to specify a pointwise marginal distribution for

the random variables of the type in equation (3.3). For example, measurements

of soil strengths across some area may be found to follow a beta distribution.

In this case, it would be desirable for a random field model of the real physical

scenario to replicate this fixed point marginal distribution behaviour. The

most common type of random field encountered when simulating physical sys-

tems is the Gaussian random field. These random fields use Gaussian random

variables to model the pointwise marginal distribution. A Gaussian random

variable is defined, following §1.2 of [5] and [224], as follows:

Definition 3.2.2. Gaussian Random Variable: A random variable X is

said to be Gaussian or normally distributed if it has the probability density

function:

g(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 x ∈ R (3.5)

71



0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

t

f
ω

(t
) fω1(t)

fω2(t)

fω3(t)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

ω ∈ Ω

f t
(ω

)

ft(ω)

ω ∈ Ω

t ∈ [0, 10]

Figure 3.1: A conceptual illustration of two different parametrisations used to model
random fields, demonstrated using the Ornstein-Uhlenbeck process. In this case,
random fields are also known as random processes or stochastic processes. For the
probability space (Ω,F , P ), each function f(t, ω) is a random real valued function
over the space T (in the diagram, t ∈ [0, 10)) and is assigned a probability P (ω).
The rectangular region on the right of the Figure is a graphical representation of
the space T × Ω. Random processes can be parameterised as per equation (3.2) by
considering deterministic functions, fω(t), over T . Three examples of such realisa-
tions (or simulations) are shown in the upper left plot. The three fixed ω values are
indicated in the rectangle on the right of the Figure by lines with fixed ω as ω1, ω2

and ω3. Conversely, as per equation (3.3), a random process can be parameterised by
considering random variables at fixed t ∈ T by ft(ω). The lower left plot indicates
the probability distribution for the value of the random real function ft(ω) for a fixed
t. Where valid, the probability distribution at a fixed t may also be termed the point
marginal distribution. The vertical line shown on the illustration of the space T × Ω
indicates the parameterisation of the ft(ω) at a fixed t.

for mean µ and standard deviation σ. The variance of a Gaussian random

variable is given by σ2. A Gaussian random variable X is also denoted X ∼
N (µ, σ2). In the case that µ = 0 and σ = 1, X is said to have a standard

normal distribution. 4

Before introducing the multivariate Gaussian distribution, it is useful to intro-

duce the notion of positive definite and positive semi-definite matrices:
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Definition 3.2.3. Positive and semi-positive definite matrix: A matrix C ∈
Rd×d is said to be positive definite if, for all x ∈ Rd, xTCx > 0. A matrix

C ∈ Rd×d is said to be positive semi-definite (or nonnegative definite) if, for

all x ∈ Rd, xTCx > 0. 4

These terms are described in detail in §4 of [148] and §7 of [191].

Following §1.2 in [5] and §3.6 of [224], the multivariate Gaussian distribu-

tion extends the Gaussian distribution to vector valued random variables as

follows:

Definition 3.2.4. Multivariate Gaussian distribution: An Rd-valued ran-

dom variable X (that is, X is a real valued random vector) is said to have

a multivariate Gaussian distribution if all linear combinations of the compo-

nents of x = [x1, · · ·xd] ∈ Rd are Gaussian random variables. That is, for

all α = [α1, · · ·αd] ∈ Rd, the inner product 〈α, x〉 =
∑d

i=1 αixi is a Gaussian

random variable. Further, given the above conditions, there will exist a mean

vector µ ∈ Rd with µi = E[Xi] (the expected value of the i− th component of

X) and positive semi-definite covariance matrix Σ ∈ Rd×d with components

Σij = E [(Xi − µi)(Xj − µj)]. Given these definitions, the probability density

of a vector x sampled from the Gaussian random vector X is:

g(x) =
1

(2π
d
2 |Σ| 12 )

e−
1
2

(x−µ)TΣ−1(x−µ) (3.6)

where |Σ| is the matrix determinant of Σ. The density of a Gaussian ran-

dom vector with mean vector µ and covariance matrix Σ is also written

X ∼ N (µ,Σ). 4

A real valued Gaussian random field over T assigns to each point t ∈ T a

random real value, v(t), such that the random variables at each point, t, have

a Gaussian distribution. Gaussian random fields have a number of desirable

properties. Mathematically, a Gaussian random field, f , is completely de-

scribed by its first two moments. The first moment is the mean function and

is given by:

µ(t) = E [f(t)] (3.7)

The second moment is the covariance function which (for s, t ∈ T ) is given
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by:

C(s, t) = E [(f(s)− µ(s))(f(t)− µ(t))] (3.8)

where C(s, t) : T × T → R is also known as a kernel function. More details

regarding the mean and covariance functions are given in §1.2 of [5] and [381].

Further, from §1.3 in [5], note that Gaussian random fields can be defined to

take values over Banach spaces (see [221]) by replacing the correlation function

with families of operators from the topological dual to the base space. This

level of detail will, however, not be required for the later developments in this

thesis.

There are a large number of possible correlation functions, also known as kernel

functions, that satisfy the positivity requirements (see [359, 381, 3] and §14

of [275]). Two point correlation functions, C(s, t), of interest for modelling

spatial data include:

C(s, t) =
−‖s− t‖22

θ2
Exponential Decay (3.9)

C(s, t) = max(1.0− ‖s− t‖1, 0) Linear (3.10)

C(s, t) =
1

(a2 + τ2)ν
Rational quadratic (3.11)

As a Gaussian random field depends only on its first and second moments,

both sampling and parameter estimation from data is much easier than in the

fully general case. The particular nature of the correlation structure between

the random variables renders Gaussian random fields amenable to simulation

(sampling). In later parts of this thesis, Monte Carlo Simulation is used for Un-

certainty Quantification. This requires repeated sampling from random fields

and the ability to rapidly sample from complicated random fields facilitates

this. Gaussian random field sampling given mean and correlation functions is

described later in this Chapter. The Gaussian distribution is, however, not a

suitable random model for many parameters one may wish to model proba-

bilistically for Uncertainty Quantification. For example, the Young’s Modulus

of a material is a non-negative quantity. Using copula theory (described in

Section 3.2.1.3), the Gaussian random field correlation structure can be ex-

tended to models with non-Gaussian pointwise marginal distributions. This

requires only minor extensions to techniques for Gaussian random field simula-
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tion. Further, when it is necessary to estimate the spatial correlation structure

(that is the covariance function) from real sampling data, it is rarely the case

that there will be enough data to fit a very complicated correlation model.

The Gaussian correlation structure is sufficiently complicated for many typi-

cal Civil Engineering applications. These issues are discussed in [118].

3.2.1.2 Mercer’s Theorem and the Karhunen-Loève Expansion

The covariance structure of Gaussian random fields allows them to be repre-

sented in terms of a mathematically convenient infinite series expansion. Simu-

lation and discretisation for the random field of interest is based on truncations

of this infinite series. The mathematical details are given in this Section in

preparation for the details of random field simulation presented in Section 3.3.

Briefly, for Gaussian copula, the positive semi-definite covariance function can

be seen to be a Mercer Kernel (§18 of [323]). Following from this, an infinite

series expansion (the Karhunen-Loève Expansion), can be used to express a

random field in terms of the eigenvalues and eigenvectors of the random field

correlation structure.

Following from §3 in [5], a zero mean Gaussian random field, f(t), can be

represented in terms of orthogonal basis functions, φ(t), as

f(t) =

∞∑
i=1

ξiφi(t) (3.12)

where each ξi is a N (0, 1) random variable and the functions φi(t) are func-

tions on T which are related (via Mercer’s Theorem discussed below) to the

covariance function of the random field. This representation is known as the

Karhunen-Loève Expansion (KL Expansion). Although not considered in de-

tail in this thesis, there are a number of requirements regarding the L2 con-

vergence of the series expansion representation of a Gaussian random field.

These issues are discussed in [5]. Formal statements and proofs of the validity

of the series expansion representation of a Gaussian random field are given in

§3 of [5] and [4]. Calculating the functions φi(t) is typically done by solving

an eigenvalue decomposition problem.

For simulation purposes, it is of more interest to consider how the eigenfunction

structure of the correlation function can actually be calculated. Assume that
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the Gaussian random fields of interest are taken over a compact subset, T

of RN (that is, T ⊂ RN ), and that the field is square integrable as defined

in Chapter 1 (in other words, f(t) ∈ L2 space). Further, assume that the

Gaussian random field of interest has mean zero so that E [f(t)] = µ(t) = 0.

Consider the linear integral operator TC : L2(T )→ L2(T ) (see §8.1.4 of [310])

given by:

(TCφ)(t) :=

∫
T
C(s, t)φ(s)ds (3.13)

so that TC : T × T → R is, specifically, a Hilbert-Schmidt Kernel (see Lemma

8.20 in [310]) meaning that:∫
T

∫
T
|C(s, t)|2dsdt <∞ (3.14)

where TC is also known as a Hilbert-Schmidt Kernel Integral Operator.

Let λ1, λ2, · · · be the eigenvalues (ordered such that λ1 ≥ λ2 ≥ λ3 ≥ · · · )
with associated eigenfunctions φ1, φ2, · · · of the integral operator TC . Specifi-

cally, the eigenfunctions and eigenvalues refer to the solutions of the integral

equation:

(TCφi)(t) =

∫
T
C(s, t)φi(s)ds = λiφi(t) (3.15)

Additionally, the eigenfunctions are normalised to be orthogonal such that the

inner product of the eigenfunctions is the Kroenecker delta:

〈φi, φj〉 =

∫
T
φi(t)φj(t)dt = δij (3.16)

The theory of the eigenvalues and eigenfunctions of integral operators is known

as Fredholm Theory and is discussed at length in [87].

From Theorem 3.2.1 in [5](due to Mercer), a positive semi-definite kernel func-

tion admits a decomposition of the form:

C(s, t) =
∞∑
i=1

λiφi(s)φi(t) (3.17)

With these definitions in place, the KL Expansion theorem can be stated,

following [141], §2.4.3 of [356] and §3.2 of [5], as follows:

Theorem 3.2.1. Karhunen-Loève Expansion: Let f(t) be a zero-mean

square integrable random field on (Ω,F , P ) over T ⊂ RN with covariance
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function C(s, t) (a Mercer kernel). Let the operator TC , see equation (3.13),

have eigenfunctions {φi(t)}ni=1 that form an orthonormal basis on L2(T ) with

associated eigenvalues {λi}ni=1 (ordered such that λ1 ≥ λ2 ≥ λ3 ≥ · · · ). Then

f(t) has the representation:

f(t) =
∞∑
i=1

fiφt(t) (3.18)

with convergence of the summation in L2 that is uniform in t with:

fi =

∫
T
f(t)φi(t)dt (3.19)

Further, the fi are independent random variables with zero mean variance λi

such that:

E[fi] = 0

E[fi · fj ] = λjδij

for all integers i and j.

Proof. (Proof sketch) Begin by projecting the process f(t) onto the eigenvalue

basis, {φi(t)}∞i=1, using the L2 inner product by:

f(t) =
∞∑
i=1

〈f(t), φi(t)〉φi(t) (3.20)

where

fi := 〈f(t), φi(t)〉 =

∫
T
f(t)φi(t)dt (3.21)

Each fi is a random variable.

Then the expectation of the each fi coefficients from the eigenfunction basis
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projection can be expressed as:

E[fi] = E
[∫

T
f(t)φi(t)dt

]
=

∫
T
E [f(t)]φi(t)dt

=

∫
T

0 · φi(t)dt

= 0

Further, the covariance of the random variable coefficients of the eigenvalue

projection can be expressed as:

E[fi · fj ] = E

[∫
T
f(t)φi(t)dt

∫
T
f(s)φj(s)ds

]
= E

[∫
T

∫
T
f(t)f(s)φi(t)φj(s)dtds

]
=

∫
T

∫
T
E [f(t)f(s)]φi(t)φj(s)dtds

=

∫
T

∫
T
C(s, t)φi(t)φj(s)dtds

=

∫
T
φj(s)

(∫
T
C(s, t)φi(t)dt

)
ds

using equation (3.15), the term
(∫
T C(s, t)φi(t)dt

)
is equal to λiφi(s) so:

E[fi · fj ] =

∫
T
φj(s)λiφi(s)ds

= λi

∫
T
φj(s)φi(t)ds

= λi〈φj(s), φi(s)〉
= λiδji

Showing that the summation representation of the process converges in L2

uses Mercer’s Theorem. Truncating the summation to m terms yields:

fm(t) =

m∑
i=1

fiφi(t) (3.22)

Expanding the expectation of the truncated sum squared error, E
[
|f(t)− fm(t)|2

]
,
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yields:

E
[
|f(t)− fm(t)|2

]
= E

[
f(t)2

]
− 2E [f(t) · fm(t)] + E

[
fm(t)2

]
= C(t, t)− 2E

[
f(t) ·

m∑
i=1

fiφi(t)

]
+ E

 m∑
i=1

fiφi(t)
m∑
j=1

fjφj(t)


= C(t, t)− 2E

[
f(t) ·

m∑
i=1

〈f(t), φi(t)〉φi(t)
]

+

m∑
i=1

m∑
j=1

E [fifjφi(t)φj(t)]

= C(t, t)− 2E

[
f(t) ·

m∑
i=1

(∫
T
f(s)φi(s)ds

)
φi(t)

]
+

m∑
i=1

m∑
j=1

E [fifj ]φi(t)φj(t)

= C(t, t)− 2
m∑
i=1

E
[(∫

T
f(t)f(s)φi(s)ds

)
φi(t)

]
+

m∑
i=1

m∑
j=1

λiδjiφi(t)φj(t)

= C(t, t)− 2
m∑
i=1

(∫
T
E [f(t)f(s)]φi(s)ds

)
φi(t) +

m∑
i=1

λiφi(t)φi(t)

= C(t, t)− 2
m∑
i=1

(∫
T
C(t, s)φi(s)ds

)
φi(t) +

m∑
i=1

λiφi(t)φi(t)

= C(t, t)− 2
m∑
i=1

λiφi(t)φi(t) +
m∑
i=1

λiφi(t)φi(t)

= C(t, t)−
m∑
i=1

λiφi(t)φi(t)

then, by Mercer’s Theorem,
∑m

i=1 λiφi(t)φi(t) converges to C(t, t) as m goes

to ∞ then:

E
[
|f(t)− fm(t)|2

]
→ 0 m→∞ (3.23)

For a detailed proof of the theorem see §3.2 of [5].

From §2.4.3 of [356], the Karhunen-Loève Expansion can be used to represent

a Gaussian random field. Given a mean function µ(t), a Gaussian random

field f(t) can be written:

f(t) = µ(t) +

∞∑
i=1

ξi
√
λiφi(t) (3.24)

where λi and φi(t) are the eigenvalues and eigenfunctions as defined in The-
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orem 3.2.1. The random variables ξi are N (0, 1) random variables. In terms

of the KL Expansion, the correlated Gaussian process f(t) can be understood

as being generated from a white noise source, ξi, which is then scaled to the

correct standard deviation,
√
λi. Finally, the correlation structure of the co-

variance function kernel, C(s, t), is enforced by the basis eigenfunctions. As

shown in the proof sketch of Theorem 3.2.1, the infinite summation in equa-

tion (3.23) converges to the correct value as i → ∞. The summation can,

therefore, be truncated to yield an approximation to the true Gaussian ran-

dom field. Gaussian random field simulation theory is discussed in Section

3.3.

3.2.1.3 Non-Gaussian Random Fields by copula theory

Simulating fully arbitrary non-Gaussian random fields is a significant chal-

lenge, as discussed in [93, 58, 401, 324, 296]. However, for a process with a

second order correlation structure and fixed pointwise marginal distribution,

copula theory can be used to simulate non-Gaussian fields. When modelling

the types of random fields of interest in Civil Engineering, pointwise marginals

with second order spatial correlation is typically sufficient as any sort of more

complicated model is likely to be unjustified given the limited data available.

For example, [117] and [21] demonstrate geotechnical applications of random

field models for which data is expensive to obtain. The more complicated the

model, the more difficult it is to fit [323, 275, 46] (which is a consequence of

information theory [335]). As such, this thesis will describe copula models of

non-Gaussian L2 random fields. Further reading in this area is presented in

[356, 136].

Copula theory is described in great detail in [280]. From §2 of [280], expanding

Definition 2.10.6 of [280] and with reference to §4.2.2.3 of [356] and §1 of [322],

a copula can be defined as:

Definition 3.2.5. Copula: A copula, C, is a function over the unit hypercube

[0, 1]N ∈ RN , with:

C : [0, 1]N −→ [0, 1] (3.25)

such that C is a joint cumulative distribution function of an N -dimensional

random vector with uniform marginal distributions. 4

Specifically, let X = (X1, · · · , XN ) be a random vector with distribution func-
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tion F (x1, · · · , xn) = P (X1 ≤ x1, · · · , XN ≤ xN ) and marginal distribution

functions Fi, Xi ∼ Fi for 1 ≤ i ≤ N , that is, Fi(xi) = P (Xi ≤ x). From

Sklar’s Theorem (see [341] and §4.2.2.3 of [356]), a continuous joint cumula-

tive distribution function F (x1, · · · , xN ) has a unique representation in terms

of the marginal distributions Fi(x1) and the copula function C(u1, · · · , uN )

as:

F (x1, · · · , xn) = C(F1(x1), · · · , FN (xN )) (3.26)

To illustrate the meaning of this representation, first note that (via the prob-

ability integral transform, see [11]) that the random variable Y given by

Y = F (X) for cumulative distribution function F and random variable X

has a uniform distribution. Then consider the random vector given by:

(F1(X1), · · · , FN (XN )) = (U1, · · · , UN ) (3.27)

that is, the vector (F1(X1), · · · , FN (XN )) is a vector of uniform random vari-

ables (U1, · · · , UN ). The copula of (X1, · · · , XN ) is given by:

C(u1, · · · , un) = P (u1 ≤ U1, · · · , uN ≤ UN ) (3.28)

so that the copula C(u1, · · · , un) is the joint cumulative distribution for the

random vector (F1(X1), · · · , FN (XN )) = (U1, · · · , UN ). The copula contains

information regarding the correlation structure between the different random

variables X1, · · · , XN .

From §4.2.2.3 of [356], the copula density function is given by the derivative

of C as:

c(u1, · · · , uN ) =
∂NC(u1, · · · , uN )

∂u1 · · · ∂uN
(3.29)

then the probability density f(x1, · · · , fN ) corresponding to the joint cumula-

tive distribution F (x1, · · · , xN ) is:

f(x1, · · · , xN ) = c(F1(x1), · · · , FN (xN ))f1(x1)× · · · × fN (xN ) (3.30)

where fi(xi) are the probability density functions corresponding to the marginals

Fi(xi).

For simulation, the definition of a copula can be exploited in order to sample

from non-Gaussian random fields. First note that for a uniform distribution,
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U = F (X) that F−1(U) = X for a continuous cumulative distribution function

F . Then note that:

(F1(X1), · · · , FN (XN )) = (U1, · · · , UN ) (3.31)

(X1, · · · , XN ) = (F−1
1 (U1), · · · , F−1

N (UN )) (3.32)

So that, given a sample (u1, · · · , uN ∼ C(u1, · · · , uN ) from the copula, samples

from the multivariate distribution of (X1, · · · , XN ) can be generated by:

(x1, · · · , xN ) ∼ (F−1
1 (U1), · · · , F−1

N (UN )) (3.33)

(x1, · · · , xN ) = (F−1
1 (u1), · · · , F−1

N (uN )) (3.34)

The most relevant copula function when considering spatially distributed data

in Civil Engineering applications is the Gaussian copula (see [301]):

C(u1, · · · , uN |Σ) := ΦN
Σ (Φ−1(u1), · · · ,Φ−1(un)) (3.35)

where Φ−1(ui) is the inverse standard normal cumulative distribution function

and ΦN
Σ is the N -dimensional normal cumulative joint distribution function

with mean zero and covariance matrix Σ.

The Gaussian copula density is given by:

c(u1, · · · , uN |Σ) :=
1

|Σ| 12
exp

(
Φ−1(u)T

(
Σ−1 − I

)
Φ−1(u)

)
(3.36)

where I is the N ×N identity matrix, |Σ| is the determinant of Σ and Φ−1(u)

is the vector:

Φ−1(u) =


Φ−1(u1)

...

Φ−1(uN )

 (3.37)

As will be expanded in Section 3.3.2, given a technique for simulating a Gaus-

sian random field, a non-Gaussian random field with a Gaussian copula cor-

relation structure can be simulated using the above transforms. This is the

main motivation for introducing copula theory in this thesis.
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3.3 Random Field Simulation

For Uncertainty Quantification of physical systems it is often necessary to

generate realisations of samples of the random field. Monte Carlo Simulation,

for instance, requires repeated sampling from a given distribution in order

to calculate the expectation values. Series Expansion methods for Stochastic

PDE may also require realisations of a random field to be generated as a type

of integral quadrature point [356, 351]. When numerically simulating random

fields over spaces with an infinite number of points such as N -dimensional

Euclidean space, RN , some form of discretisation must be introduced to enable

a finite length representation of the field simulation. This Section will discuss

the discretisation and simulation of random fields.

Gaussian and non-Gaussian random field simulation over subsets of Euclidean

space will be introduced. Modelling spatial autocorrelation for the types of

fields of interest in this thesis can, to a sufficient level of detail, be carried out

using Gaussian copula correlation structures. More general expositions regard-

ing spatially autocorrelated non-Gaussian random fields are given in [93, 324].

This Section first details techniques for simulating Gaussian random fields.

Then, using Gaussian random field techniques, simulation methodologies for

non-Gaussian fields with Gaussian copula correlation structures is described.

As these non-Gaussian random fields can be generated by transformations

from Gaussian random fields, Gaussian random field simulation also enables

this form of non-Gaussian random simulation. This Section also describes a

method for generating novel random field samples by combining random fields

with point processes and phase field models. This is demonstrated by the

phase field simulation of a circular inclusions in a random field and phase field

simulation of jointed rock mass. A number of example random field simu-

lations are presented in Figures 3.2, 3.3, 3.5, 3.6 and 3.7. All random field

simulations were generated using the Python SciPy package [204].

Simulation and discretisation of random fields in this Section is based on a

truncated orthogonal function series expansion. The mathematical details are

given in this Section. Briefly, for Gaussian copula, the positive semi-definite

covariance function can be seen to be a Mercer Kernel, as discussed in Section

3.2. Following from this, an infinite series expansion (the KL Expansion), can

be used to express a random field in terms of the eigenvalues and eigenvec-
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tors of the correlation function. Truncating the infinite series expansion to

a fixed number of eigenbasis functions allows for a discrete representation of

a random field. For a Gaussian random field, the eigenbasis decomposition

can be combined with a vector of independent Gaussian samples to generate a

random field sample. To generate a non-Gaussian field with a Gaussian copula

and an alternative pointwise marginal distribution, it is possible to generate

a Gaussian random field, recover the copula distribution and then apply the

desired marginal function to generate the final random field simulation. This

Section details methods of covariance matrix decomposition based simulation

for Gaussian random fields. As well as eigenvalue and Cholesky decomposition

methods, an analysis of a Cholesky decomposition based method suitable for

dealing with numerically singular covariance matrices is presented, based on

work published by the author in [158]. The numerical examples in [158] also

demonstrate the random field simulation techniques described in this Chapter

for a Geotechnical Engineering problem. In particular, probabilistic simu-

lations of Mohr-Coulomb soil constitutive model parameters are presented.

Further physical examples of the techniques demonstrated in the following

sections are given in the following Chapters of this thesis.

3.3.1 Gaussian Random Field Simulation by Covariance Ma-

trix Decomposition

Following the discussion in Section 3.2.1.2 on the KL Expansion, a Gaussian

random field can be represented by truncating an infinite series expansion, as

in equation (3.22). In practical terms, this means that the covariance structure

of a random field can be approximated at N points as a matrix with entries Cij

given by the covariance function evaluated between points xi, xj for i, j ≤ N .

Using the “correlating” properties of the eigenvectors of the covariance matrix,

a vector of standard normal samples can be converted to a correlated sample

from a (truncated approximation) to a correlated zero mean Gaussian random

field. A specified mean vector with constant valued entries can be added on to

the correlated sample vector as needed. Simulations of Gaussian random fields

using decompositions of the covariance matrix are referred to as covariance

matrix decomposition methods. Other methods are discussed below, however,

the focus of this thesis will be restricted to in depth discussions of covariance

matrix methods.
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The majority of the simulation based Uncertainty Quantification analyses in

this thesis use finite element basis functions to discretise fields over spatial

regions. When simulating random fields for subsequent mapping onto the basis

used for PDE analysis, it is not necessary to use the same discretisation for

the random field as that used for the PDE numerical analysis. However, using

the same basis functions for all fields is the most convenient for simulation.

Covariance matrix decomposition simulation of Gaussian random fields, using

the PDE analysis basis functions, will be used for the analyses later in this

thesis and is discussed in this Section. In this Section, a justification for the

use of matrix decomposition methods is presented in terms of computational

complexity and numerical precision. Methods for resolving numerical stability

problems that may arise with matrix decomposition random field generators

are also discussed.

While several methods exist for the simulation of random fields, as detailed

in [118], the majority of these methods are only appropriate for generating

random field samples discretised by rectangular, or almost rectangular, grids.

For example, LAS and the fast Fourier transform (FFT) algorithms generate

random fields over regular grids. Complicated mesh geometry can destroy

the required form of the random field correlation structure that make LAS

and FFT generators efficient and would be difficult to apply to arbitrary basis

functions sets. One possible technique to do so would be to generate a random

field over a sufficiently fine regular grid and then project this fine field onto

the desired basis functions. Such a method would prevent the correlation

structure from being discretised accurately unless a very fine grid was used.

It may also be possible to use some curvilinear mapping of, say, arbitrarily

shaped finite element mesh basis elements to some regular rectangular grid.

FFT or LAS could then be applied to this rectangular grid and then an inverse

transform applied. Such a transformation from the unstructured space to the

rectangular space and its inverse is would not, in general, be bijective. An

arbitrary basis formulation of LAS, potentially based on renormalisation group

flow (see [385]), would be an interesting topic for future research.

Alternatively, the Turning Bands Method (TBM), detailed in [118], is suitable

for handling arbitrary geometry. TBM involves generating a series of one

dimensional random field samples along arbitrarily oriented lines and building

the desired higher dimensional random field sample from these line processes.
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At each point in the discrete output field, a weighted contribution from each

one dimensional random field is added based on the perpendicular distance of

the point to the line. However, when the correlation function is anisotropic,

TBM can be difficult to use as discussed in [115]. The precision of the method

is dependent on both the one dimensional random field generator and the

number of individual lines used. If an insufficient number of lines are used,

streaked patterns emerge that may cause unrealistic preferential stress or flow

paths during subsequent PDE analysis [115, 118]. Finally, difficulties also

arise in deciding how to discretise the one dimensional line processes and the

interaction of this discretisation with arbitrary basis functions. If, for example,

a very dense finite element discretisation is used to minimise errors caused by

the generation of the line process, any potential efficiency gains from using a

graded mesh will be lost. Alternatively, some discretisation that is calculated

based on the relative orientation and size of finite element basis mesh elements

to the current line process could be calculated although this calculation would

be, again, necessarily constrained by the smallest elements in the mesh and

difficult to calculate. Once the discretisation of the line processes becomes

fine enough, then essentially one is generating a random field over a fine grid

and then mapping this by projection to some other set of basis functions. The

problems with this are discussed above.

Methods based on decomposition of the covariance matrix are able to gener-

ate random fields with an accurate correlation structure over arbitrary basis

functions with accuracy defined by the expansion order of the KL expansion.

The structure of the basis functions are directly incorporated into the simu-

lation, without any need for remapping the random field to the PDE analysis

mesh. Matrix decomposition methods include the Cholesky, LDL and Modal

decompositions [148, 224, 118]. Very roughly, these methods extract a set of

basis vectors from the covariance matrix, such that a set of uncorrelated ran-

dom samples can be transformed into a correctly correlated sample from the

random field. For a Gaussian copula, pairs of basis vectors can be considered

as representing an ellipse. The correlation between a pair of basis vectors is ef-

fectively represented by the orientation of this ellipse. Techniques for random

field generation by covariance matrix decomposition and potential pitfalls are

discussed in the remainder of this Section.

Matrix decomposition, in particular the Cholesky decomposition, is widely
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used in many fields to generate samples from multivariate normal distribu-

tions [224]. The theoretical properties of matrix decomposition techniques in

terms of infinite precision arithmetic are first addressed. Any practical im-

plementation will be limited to some finite precision approximate calculation.

The implications of finite precision floating point arithmetic on the decompo-

sition of the covariance matrix are discussion in Section 3.4.2.

All matrix decomposition random field generators first start by forming the

covariance matrix C. The covariance matrix is always symmetric [118] and

positive semi-definite [191]. These properties will be relevant for the rest

of this Section. For a locally averaged random field (see [158, 118]) over

finite element-type locally supported basis functions, the entries of C are the

covariances between local averages. For n elements in a finite element mesh, C

is of size n×n. The entries of C are given by Cij equal to Cov [Xi, Xj ].

3.3.1.1 Eigenvalues and eigenvectors of the covariance matrix

To facilitate discussion of random field sampling by covariance matrix decom-

position, it is useful to first explore the eigenvalues and eigenvectors of the

covariance matrix. By Theorem 8.1.1 in [148], given a symmetric matrix C

of size n× n, there exists an orthogonal matrix Q (that is, all column vectors

are orthogonal) such that:

QTCQ = Λ = diag (λ1, . . . , λn) (3.38)

Where T denotes the matrix transpose. Also, diag (λ1, . . . , λn) refers to a di-

agonal matrix, a matrix with zero in all entries except along the main diagonal

which instead has λ1 in the first row, λ2 in the second row and so on. Equation

(3.38) can be reorganised to the form:

CQ = QΛ (3.39)

Presented in this way, Q is more clearly the matrix whose columns are the

eigenvectors of C and Λ stores the corresponding eigenvalues along the main

diagonal. As the eigenvalues can always be reordered into any permutation,

let λi denote the i− th largest eigenvalue of C. As C is positive semi-definite,

all of the eigenvalues, λ1, . . . , λn are greater than or equal to zero (Theorem
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4.1.10 in [191]). Then, if there are k non-zero eigenvalues:

0 = λn = · · · = λk+1 < λk ≤ · · · ≤ λ1 (3.40)

By Theorem 4.1.10 of [191], if all of the eigenvalues are strictly greater than

zero, that is k = n in equation (3.40), then C is positive definite (rather

than semi-definite). By Observation 1.1.7 in [191], a matrix is singular if and

only if 0 is in the set of eigenvalues. By conditions 3.7.5 and 3.7.6 (and the

proof of their equivalence) in [264], if an n×n matrix is non-singular then the

rank (number of linearly independent columns) of the matrix is n. So then a

symmetric positive definite matrix of size n × n is non-singular and has full

rank (all columns are linearly independent).

Conversely, the rank-nullity theorem states that for an n×n matrix C:

n = rank(C) + dim(nullspace(C)) (3.41)

where nullspace(C) is defined by Cx = 0 where x is a vector of length n. But

if zero is in the set of eigenvalues, the matrix is singular and so rank(C) < n

and the columns of C have linear dependencies. From [129]:

dim(nullspace(C)) = k (3.42)

Where k is the number of zero eigenvalues as in equation (3.40).

Combining equation (3.41) and (3.42) the results concerning singularity and

positive definiteness can be summarised. Let k be the number of eigenvalues

equal to 0 of C. If k is greater than zero, then C is singular and positive

semi-definite. If k = 0, then C is positive definite. Additionally, the number

of linearly dependent columns of C is equal to k so:

rank(C) = n− k (3.43)

It is useful to provide a bound on the eigenvalues of C to facilitate the rounding

error analysis in Section 3.4.2. As the effect of variance reduction on σ only

reduces the order of magnitude of σ, the effect of γ on σ can be excluded to

simplify the eigenvalue bound estimate without changing the rounding error

analysis. For a stationary random field, σ is constant across the field. Then a
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scalar factor of σ2 can be taken from C so:

C = σ2R (3.44)

where R is the correlation matrix with entries bounded between −1 and

1.

From equation (3.39), CQ = QΛ = σ2RQ so:

RQ = σ−2QΛ (3.45)

Then, with reference to equation (3.39), the eigenvalues of R are proportional

to σ−2Λ. From the discussion in Section 3.3.1.2, taking the eigenvalue decom-

position of C gives eigenvalues proportional to σ2. Then the eigenvalues of

R are proportional to unity. From this the largest eigenvalue, λmax(C), for a

stationary random field is:

λmax(C) . σ2 (3.46)

3.3.1.2 Random field simulation by eigenvalue decomposition for

positive definite covariance matrices

It is instructive to examine the generation of random fields first by eigenvalue

decomposition (essentially discretised KL Expansion). This decomposition is

one of several possible decompositions of the covariance matrix that can be

used to generate random fields. First, the simpler case of a positive definite

matrix is considered. In infinite precision arithmetic, a positive definite covari-

ance matrix may occur, for example, when the covariance function is monoton-

ically decreasing. By Definition 6.1.9 in [191], a matrix is strictly diagonally

dominant if the diagonal entries are strictly greater than all other entries in

the matrix. By Theorem 6.1.10, Conditions a and b of [191], a strictly diago-

nally dominant matrix is non-singular and has positive real eigenvalues. If the

covariance function is monotonically decreasing (for example, if an exponen-

tial decay correlation function is used), the diagonal entries in the covariance

matrix are always greater than the diagonals as the largest correlation occurs

between an element and itself.

Even in the case of a monotonically decreasing correlation function, finite
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precision arithmetic may result in the covariance matrix becoming diagonally

dominant, rather than strictly diagonally dominant. Then the diagonal entries

are greater than or equal to the rest of the entries in the matrix. Indeed, if

care is not taken with algorithms, diagonal dominance can be lost completely.

Numerical stability issues are addressed in Section 3.4.2.

Given an n × n positive definite covariance matrix decomposed into eigen-

vectors and eigenvalues as C = QΛ, a sample from Gaussian random field,

Z(x, y), can be generated:

Z(x, y) = QΛ(1/2)a+ µ (3.47)

where a is a vector of size n whose entries are given by random samples

of a standard normal distribution and µ is the mean of the random field

[390, 118].

Equation (3.47) can be understood as generating a random field in three steps.

First a set of n uncorrelated, unit length random degrees of freedom are scaled

relative to each other by b = Λa. This can be thought of as generating a se-

ries of ellipses with principal axes aligned with the canonical basis vectors.

Then each b represents a set of uncorrelated samples from Gaussian distribu-

tions such that bi has standard deviation
√
λi. In the case that the matrix is

positive definite,
√
λi is always strictly greater than zero. The implication of

this is that each random degree of freedom, in this representation, is linearly

independent.

Multiplication by orthogonal matrices rotates a set of vectors while preserving

the lengths and angles between the vectors [148]. The second step in generating

a random field sample by this method is then multiplication of b by Q to

rotate the scaled, uncorrelated vectors b to the correct correlation required for

Z(x, y). The rotation of the principal axes of the ellipses mentioned previously,

relative to the canonical basis vectors, describes the correlation between the

random variables of Z(x, y). The shape of the ellipse also changes, becoming

more eccentric as the rotation increases [249]. The third and final step is

the addition of the scalar valued mean function, µ, to each point within the

random field.
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3.3.1.3 Random field simulation by Cholesky decomposition for

positive definite covariance matrices

The Cholesky decomposition can be computed more quickly than an eigenvalue

decomposition and thus can be used to improve the run time of a covariance

matrix decomposition based random field generator. This is discussed in more

detail in Section 3.4.

Given a symmetric, positive definite matrix C, the Cholesky decomposition

algorithm can be used to decompose C into a lower triangular matrix L such

that:

C = LLT (3.48)

where T denotes the matrix transpose. Various algorithms implementing the

Cholesky decomposition can be found in [148].

A random field can be generated using L. After calculating L given equation

(3.48), the random field Z(x, y) can be obtained by:

Z(x, y) = La+ µ (3.49)

Where a is a vector of size n whose entries are given by random samples of a

standard normal distribution. Equation (3.49) gives a single value of a random

field per finite element. To generate additional random field realisations for

Monte Carlo Simulation it is necessary to retain L between simulations. For

each realisation, a new vector of random samples a is generated and multiplied

with L as per equation (3.49).

In a rough sense, the Cholesky decomposition takes the ‘square root’ of a

matrix (although the square root of a matrix is not necessarily equal to L

[148]). Recall from the previous Section that the eigenvectors of C can be

thought of as representing the principal axes, with magnitude σ, of a set of

ellipses. In contrast, L describes the same ellipses in a different form. The

column and row vectors of L are the direction of the linear regression lines of

one column vector over all others [326, 249, 129]. Let Z(i) denote the value of

the random field associated with the element in the discretisation mesh with

index i. Also, let Li denote the i − th row vector of L. Then, more simply,

each Li describes the random variable associated with Z(i). If the correlation

between some Z(i) and Z(j) is ρ, then correlation between these degrees of
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freedom is equal to:

ρx,y = cos θ (3.50)

φ =
π

4
+
θ

2

where θ is the angle between the two possible regression lines describing the

ellipses for Z(i) and Z(j) and φ is the angle between vectors Li and Lj [73,

129].

To see how a random field is constructed by equation (3.49), consider the

following. L is a lower triangular matrix and so for a row j, all entries in

columns greater than j are zero. Consider the result of Z(x, y) = La. The

first two entries will be:

Z(x, y)1 = L1,1 × a1 + 0

Z(x, y)2 = L2,1 × a1 + L2,2 × a2 + 0

For a finite element-type basis functions, the Cholesky Decomposition method

for random field simulation has a clear interpretation. As the ordering of mesh

elements is arbitrary, the row ordering of C should not impact on the final

result. The first degree of freedom in the random field is taken up by a1, the

choice of which element is represented by a1 is arbitrary. The second degree

of freedom also represents an arbitrary element. Ignoring other elements in

the random field, a2 only needs to be correlated to itself and the first degree

of freedom. Proceeding in this manner, the uncorrelated a values are assigned

the correct correlation structure. In practice, the row and column structure

of matrices may impact numerical performance [148].

3.3.1.4 Random field simulation by Cholesky decomposition for

positive semi-definite (singular) covariance matrices

The eigenvalues of the covariance matrix, C may become zero, or even nega-

tive, as a result of finite precision arithmetic and associated rounding errors.

Additionally, even in theoretical infinite precision mathematics, if the covari-

ance function is constant then linear dependencies between the columns of C

may occur and C will be positive semi-definite. As a result, the covariance
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matrix may become singular, or will be in the case of linear dependence. In

this Section a method to generate random fields in the event that the covari-

ance matrix is singular is presented. An analysis of the errors of this method

is presented in Section 3.4.2. Methods exist to ensure that the covariance

matrix is positive semi-definite. Näıve modifications to the Cholesky decom-

position matrix can remove negative eigenvalues by adding a small error term

to the main diagonal. This ensures diagonal dominance. More sophisticated

variations on such a technique and the associated error bounds are detailed in

[112, 66].

With negative eigenvalues removed, the n × n covariance matrix, C, may be

positive semi-definite and therefore singular. A method for resolving this prob-

lem is given in [17, 158], which is discussed here. A modification of the results

in [17] to allow generating random field samples when the covariance matrix

is singular is presented. First, recall that by equation (3.43), the number of

linearly independent columns of C is equal to n−k where k is the multiplicity

of zero eigenvalues, as in equation (3.40). To find a useful decomposition of

C, it is possible to split the singular and non-singular parts of C. The follow-

ing procedure is from [17]. First reorder the columns of C such that the first

p = n−k columns are linearly independent. Then it is possible to write:

C =
[

CI CD

]
where CI is an n× p matrix and CD is n× (n− p) = n× k so:

CD = CIB

where B is size p × k. Also, CI can be split into an upper p × p part, CIU ,

and a lower k × p part, CIL. Then:

C =

[
CIU CIUB

CIL CILB

]

Then, as C is symmetric, CT
IL = CIUB and then finally:

C =

[
CIU CIUB

BTCT
IU BTCT

IUB

]
(3.51)
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In this form, C can be made from just two parts. CIU is a non-singular

p×p matrix and B contains the coefficients describing the linear dependencies

between the columns of CIU . Numerical examples are given in [17, 158]. To

find CIU and B, the first step is to find the linearly dependent columns of C.

From Lemma 12.2 of [155], two column vectors, x and y are linearly dependent

if: ∣∣∣∣∣ x · x x · y
y · x y · y

∣∣∣∣∣ = 0 (3.52)

where |A| is the determinant of A and x · y is the scalar product of x and

y.

The linear dependencies in C can be found by comparing columns from left

to right. Let the column vectors of C be C1, . . . Cn. Start by comparing C1

with all columns Ci for 1 < i ≤ n. Then compare C2 with all Ci for 2 < i ≤ n.

Once a Ci has been found to be linearly dependent, it can be excluded from

subsequent checks. Continuing in this fashion, the linear dependence of all

columns can be checked. If two columns, say Cj and Ck with j < k are found

to be dependent, a new row is made in B to represent column Cj and a new

column to represent Ck. The corresponding entry into B is the factor ωjk,

from:

Ck = ωjkCj (3.53)

After the entries of B are filled in, CIU is formed by deleting k dependent

rows and columns from C. Specifically, for each column Ck that is linearly

dependent on a Cj with j < k, delete both row and column k from C.

A random field sample can now be generated using CIU and B. For the non-

singular part CIU , the procedure in Section 3.3.1.3 can be applied. Let LIU be

the lower triangular matrix produced by applying the Cholesky decomposition

to CIU . Then, as in equation (3.49), Z(x, y) = LIUaI + µ where aI is of size

p = n− k. This gives part of the random field sample.

To complete the sample, the linear dependencies described by B must be

included. From the discussion in Section 3.3.1.3, the degree of correlation be-

tween two random degrees of freedom is represented in the covariance matrix

by the angle between the two representative basis vectors. When the basis
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vectors are linearly dependent they are, by definition, co-linear. Then linear

dependence between basis vectors also indicates perfect correlation between

these degrees of freedom. As in equation (3.53), let each Ck be linearly de-

pendent on some Cj . Then BTLIUaI + µ gives the value of the random field

for each of the k linearly dependant elements.

Let Z(i) be the value of the random field over the discrete element with index

i. Then a random field can be generated from a singular covariance matrix by

a modified Cholesky decomposition by:

Z(i) = LIUaI + µ (3.54)

Z(k) = BTLIUaI + µ (3.55)

where the Z(i) entries come from the non-singular degrees of freedom con-

tained in CIU and the Z(k) are linearly dependant on the Z(i) parts of the

random field sample.

In practice, it is preferable to first run a rank-revealing Cholesky decomposi-

tion as in [148, 178]. Such a decomposition fills in the entries of LIU , reorder-

ing the columns C as necessary, until the diagonals of LIU become sufficiently

small. Once this cut off, ε, is reached after rank(LIU ) ≈ p, the remaining k

columns can be scanned for linear dependencies to fill in the entries of the B

matrix. If B is filled in first, then there may be no linear dependencies and

therefore computer time is wasted for no gain. By computing a rank-revealing

Cholesky decomposition first, if C is non-singular so rank(LIU ) = n, then

there is no need to expend computation effort searching for linear dependen-

cies.

3.3.1.5 Gaussian random field simulation examples

To illustrate the random field theory discussed so far, this Section presents

a number of simulations of Gaussian random fields. All random fields pre-

sented were simulated using the Cholesky decomposition technique described

in Section 3.3.1.3.

Figure 3.2 demonstrates the effect of isotropic correlation structures on Gaus-

sian random field samples with mean zero, point marginal variance σ2 = 1 and

correlation function C(s, t). Figures 3.2a and 3.2b demonstrate the effect of
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correlation length scaling for the correlation function based on the exponential

decay of the (standard Euclidean) L2 distance between points s = (sx, sy) and

t = (tx, ty):

C(s, t) = exp

(−‖s− t‖22
θ2

)
(3.56)

for correlation length θ. For correlation lengths θ = 1 and θ = 2 for Figures

3.2a and 3.2b respectively, the random field samples are seen to become more

smooth with higher correlation length. Figure 3.2c is a random field sample

with the correlation function:

C(s, t) = exp

(−‖s− t‖1
θ2

)
(3.57)

with θ = 2.0. This is an exponentially decaying correlation based on the L1

distance between the points in the random field domain. In comparison to

Figure 3.2b, the random field sample in Figure 3.2c shows high correlations

in the directions aligned with the x and y axes, as would be anticipated when

the L1 distance between points is considered.

Figure 3.3 demonstrated the effect of anisotropy of the correlation function on

random field simulation. Each random field in Figure 3.3 is generated using

the correlation function between points s = (sx, sy) and t = (tx, ty):

C(s, t) = exp

(−‖sx − tx‖22
θ2
x

+
−‖sy − ty‖22

θ2
y

)
(3.58)

where θx and θy are termed the x and y correlation length parameters.

Figure 3.3a demonstrates a random field sample with high horizontal correla-

tion described by θx = 10.0 and θy = 1.0. Figure 3.3a demonstrates a random

field sample with high vertical correlation using θx = 1.0 and θy = 2.5. Spatial

similarity structures, such as those found in soil masses, can be modelled by

introducing anisotropy in the correlation function [118]. Figure 3.3c demon-

strates a random field with a rotated anisotropic structure. This random field

was simulated by calculating the correlation structure using points rotated 30

degrees from (x, y) to (xr, yr) and taking the correlation lengths aligned to

the rotated principal axis as θrx = 5.0 and θry = 1.0. By introducing rotations

in the random field structure, it is possible to model a more broad range of

phenomena than if the anisotropy is limited to particular axes.
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Figure 3.2: Gaussian random field simulation examples showing the effect of correla-
tion length scaling. Figures 3.2a and 3.2b use an exponentially decaying L2 distance
autocorrelation function with correlation lengths θ = 1 and θ = 2 respectively. Figure
3.2c demonstrates an exponentially decaying L1 distance correlation function.
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(c) C(s, t) = exp
(
−‖srx−trx‖22

θ2x
+
−‖sry−try‖22

θ2y

)
for (θrx, θ

r
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Figure 3.3: Gaussian random field simulation examples showing the effect of correla-
tion length anisotropy. Figures 3.3a and 3.3b respectively demonstrate increased hori-
zontal and increased vertical correlation lengths. Figure 3.3c demonstrates anisotropic
correlation on a rotated axis.
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3.3.2 Non-Gaussian Random Field Simulation

Non-Gaussian random fields are often required for modelling the types of pa-

rameters encountered in practice. For example, in Civil Engineering, mate-

rial strengths are often strictly non-negative parameters. Examples of such

parameters include Young’s Modulus and yield stresses [265]. This Section

demonstrates examples from two non-Gaussian random field methods useful

for simulating continuous random fields based on transformations of underly-

ing Gaussian fields. Specifically, simulations of lognormal random fields and

arbitrary continuous point marginal distribution fields via copula theory are

presented. Note that when using copula theory, the pointwise marginal dis-

tribution is not required to be non-negative, only continuous (as discussed in

Section 3.2.1.3).

Lognormal random fields are frequently used in spatial statistical modelling

to generate non-negative parameters and are detailed in [118, 237]. Lognor-

mal random variables are random variables, X, such that their logarithm is

normally distributed:

ln(X) ∼ N
(
µ, σ2

)
(3.59)

Given an underlying sample from a Gaussian random field, β, samples from a

lognormal random field can be generated by taking the entrywise exponential

of the vector of values representing the Gaussian random field sample (see

[167]):

β ∼ N (µ,Σ) (3.60)

γ ∼ exp (β) (3.61)

such that γi = exp (βi).

Copula theory, discussed in Section 3.2.1.3, can be used to generate samples

from a non-Gaussian random field. Of particular interest in this thesis are

those fields with a Gaussian correlation structure (that is, a Gaussian cop-

ula) but non-Gaussian pointwise marginal distributions. When considering

spatially distributed data, pointwise marginal measurements can be combined

with the Gaussian copula spatial similarity model given by equation (3.36).

Simulation of non-Gaussian random fields via copula theory is described in this

Section. First, a Gaussian sample is drawn from a correlated Gaussian distri-
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bution. Applying the inverse normal transform to the marginals of the Gaus-

sian sample recovers the desired copula. Finally, the desired marginals can be

used to construct the final non-Gaussian random field sample by applying the

inverse of the marginals to the copula sample as in equation (3.34).

Mathematically, the process can be described by transforming a sample from

Gaussian random field, β to a sample from the desired non-Gaussian field, η,

with the desired marginal cumulative distribution F . The copula simulation

method proceeds by first sampling the vector β from a zero mean Gaussian

random field with the appropriate correlation structure:

β ∼ N (0,Σ) (3.62)

Then, to recover the copula distribution, the cumulative Gaussian Φ (also

related to the error function, see §2 [224] for details) is applied entrywise to

β:

ξ = Φ (β) (3.63)

such that ξi = Φ(βi). Finally, the desired marginal distribution, F , is recovered

by mapping from the copula sample, ξ, to the final distribution sample by

applying the inverse cumulative distribution, F−1, to the entries of ξ:

η = F−1 (ξ) (3.64)

such that ηi = F−1(ξi). As the entries of ξ are from the copula distribu-

tion, they are samples from uniform distributions. Then F−1(ξi) is a sample

with the distribution described by F as this is a form of inverse transform

sampling (see §2.7.2 of [224]), as per the theoretical developments in Section

3.2.1.3.

3.3.2.1 Numerical Demonstrations

Non-Gaussian random field simulations are demonstrated in this Section. Fig-

ure 3.4 demonstrates a number of distributions used as the pointwise marginal

distributions for the random field simulations in Figure 3.5. The Gaussian dis-

tribution is included in Figure 3.4 for comparison. The distributions in Figure
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3.4 are:

P (x) = N (µ, σ2) Normal(µ, σ2) (3.65)

P (x) = exp(µ+ σN (0, 1)) Lognormal(µ, σ2) (3.66)

P (x) =
λαxα−1e−λx

Γ(α)
Gamma(α, λ) (3.67)

P (x) = 2N (0, 1)Φ(αx) Skew-Normal(α) (3.68)

where Γ(α) is the Gamma function (see equation (2.20) of [224]) and Φ(x) is

the cumulative normal distribution (see §A of [323]). For further details of

the Gamma distribution see §2.6.4 of [224]. For details regarding the skew-

normal distribution, see [286, 176, 18]. Note that the Gamma and lognormal

distributions are non-negative.

Figure 3.5 demonstrates a number of non-Gaussian random fields. Each ran-

dom field was generated over a 10m×5m region using an underlying Gaussian

distribution mean zero, pointwise variance σ2 = 1 and Gaussian copula corre-

lation structure derived from the correlation function:

C(s, t) = exp

(−‖s− t‖22
θ2

)
(3.69)

for θ = 1.0.

Figure 3.5a shows a lognormal random field generated as per equations (3.60)

and (3.61). Figure 3.5b demonstrates a Gaussian copula random field with

Gamma distribution point marginals for parameters α = 1, λ = 1. Figure 3.5c

demonstrates a Gaussian copula random field with Skew-Normal distribution

point marginals for parameters α = −1. The non-Gaussian fields in Figures

3.5b and 3.5c were generated as per the method described in equations (3.62),

(3.63), (3.64).
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Figure 3.4: Example point marginal probability distributions for non-Gaussian ran-
dom field simulations in Figure 3.5 and, for comparison, the Gaussian distribution.
The distributions shown are the lognormal distribution (used for Figure 3.5a), the
gamma distribution (used for Figure 3.5b) and the skew-normal distribution (used
for Figure 3.5c). The formulas for these distributions are shown as equations (3.65),
(3.66), (3.67), (3.68).
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(a) Lognormal random field simulation with point marginal: exp(N (0, 1))
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(b) Gamma random field simulation with point marginal: Gamma(α = 1, λ = 1)
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(c) Skew-Normal random field simulation with point marginal: Skew-Normal(α = −1)

Figure 3.5: Non-Gaussian random field simulation examples using Gaussian copula
correlations. The type of random field refers to the pointwise marginal distribution.
All simulations generated by transformations of a Gaussian random field N (0,Σ) (see
Section 3.3.2) with the correlation function in equation (3.69). Figures 3.5a, 3.5b
and 3.5c are sampled respectively from lognormal (exp [N (0,Σ))], equation (3.66)),
Gamma(α = 1, λ = 1) (equation (3.67)) and Skew-Normal(α = −1) (equation (3.68)).
Note the different ranges on the colour bars for each plot.
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3.3.3 Phase field techniques for simulating arbitrary field fea-

tures

One advantage of sampling based methodologies for Uncertainty Quantifica-

tion is that random fields with complicated analytical expressions can be used

for analyses as long as samples can be generated from the distribution of inter-

est. This Section presents a phase-field threshold based technique for including

non-smooth features in probabilistic input distributions by combining Poisson

Point Processes and Bernoulli Processes with the smooth random field simu-

lation methods presented earlier in this Chapter. Related work in this area is

presented in [229].

Phase field models can be used to simulate combinations of material states by

modelling the presence or absence of different states (or phases) by reference

to an order parameter. Prominent applications of phase field models include

multiphase fluid flows [53] and fracture modelling [207, 165, 348]. In the fluid

flow case, the order parameter can be used to model the relative volumetric

fraction of different fluids, defining the fluid boundary at a particular value of

the order parameter. For example, in a mixed air and water simulation the

order parameter, α, could be taken to range from α = 0 (all air) to α = 1

(all water) with the interface boundary defined as points with α = 0.5. The

multiphase dynamics can be simulated by modelling transport of the order

parameter itself [53]. In the fracture mechanics case, the order parameter can

be taken to represent fracture intensity, defining a distinction between intact

and broken as well as crack tip locations.

Section 3.3.3.1 demonstrates a phase field modification to smooth random

field simulation, representing a problem similar to, say, modelling aggregrate

particles within a binder matrix. Circular inclusions over a smooth random

field are simulated via a Poisson point process. In Section 3.3.3.2, a simulation

of jointed rock is also presented. The jointed rock is modelled by a spatially

autocorrelated lognormal random field of the intact rock strength. This model

is combined with a Bernoulli Process to indicate the presence or absence of

a rock defect intersecting a trace line in a particular location, emulating the

type of information gleaned from core logging [187].
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3.3.3.1 Modelling field inclusions by a Poisson Point Process

This Section demonstrates a phase field model of inclusions to a random field.

In the particular example demonstrated, the two fields modelled (the base

random field and the inclusions) are taken to represent the values of two

separate scalar fields, f1(x) and f2(x) respectively. These presence or absence

of these inclusions is modelled using the order parameter, α(x), of a phase

field. The final estimated value of the sampled field is calculated using the

volume fraction estimated by the order parameter such that:

f(x) = (1− α(x))f1(x) + α(x)f2(x) (3.70)

An example of an application of such a model in practice is the Volume of

Fluid method for multiphase fluid flow [283, 162].

The Poisson distribution can be used to model the number of instances of

some event occurring in a given interval (of say space or time). From §2 of

[224], a random variable with a discrete probability mass function describing

the number of times an event occurs, k, has a Poisson distribution if:

P (k) = e−λ
λk

k!
k ∈ N (3.71)

where the parameter λ is the average number of times an event occurs per

interval.

From §4.6 of [90] and [261, 316], taking the events of interest to be situated

at locations within some spatial domain, Ω, with volume, V , the Poisson

point process can be used to model the probability of k point events within Ω

as:

P (k) =
(λV )ke−λV

k!
(3.72)

As such, a Poisson point process can be used to model inclusions to a field.

Given the parameters for a Poisson distribution and the shape of the inclusions

to be added, the Poisson distribution can be sampled from by the procedure

discussed in [214] to generate a number, k, of inclusions. Then, the spatial

domain can be sampled from uniformly k times. Each inclusion is placed at

the k sampled locations by adding to the value of α(x) in the region defined

by the inclusion. The phase field is then truncated to be between the values
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of 0 and 1. Finally, the field sample f(x) can be calculated as per equation

(3.70).

Figure 3.6 demonstrates a phase field model combining Gaussian random field

(Figure 3.6a) with circular inclusions via an order parameter (Figure 3.6b) on

a 10m × 5m rectangular region, Ω discretised by a regular 200 by 100 grid.

The combined field simulates the values of the function f(x) which describes

the pointwise scalar field fluctuations (relative to a mean value) over a spatial

region (Figure 3.6c). A base Gaussian random field models the overall scalar

fluctuations, f1(x). The random field is simulated as a having zero mean and

correlation function:

C(s, t) = exp

(−‖s− t‖22
θ2

)
(3.73)

for θ = 1. The presence or absence of inclusions are modelled using an order

parameter field, α(x). The inclusion centres are modelled as a Poisson point

process with λ = 10. Given a sample k from a Poisson distribution, k points,

(s, t) ∈ Ω, are sampled uniformly over Ω. The samples are used to represent

the centre, (cx, cy), of the inclusions. The circular inclusions are represented

by truncated, upscaled Gaussian density equal to 10.0×N
(
(cx, cy), r

2
)

where

r is proportional to the radius of the inclusions. The circular inclusions are

truncated by restricting α(x) to be between zero and one. The value of the

field f2(x) is taken be a constant, C = 1.5. The scalar field f(x) could rep-

resent, for example, material density in a matrix-with-aggregate combination

model.
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(a) Base Gaussian random field sample, f1(x)
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(b) Order parameter field α(x) after sampling k = 15 circular inclusions
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(c) Estimated field f(x) = (1− α(x))f1(x) + α(x)f2(x) for f2(x) = 1.5

Figure 3.6: Phase field scalar field simulation of combined random field and inclu-
sion features model. Figure 3.6a demonstrates a sample from f1(x), a Gaussian
random field with mean zero and correlation function from equation (3.73). Figure
3.6b demonstrates a sample of the order parameter field, α(x), after sampling k = 15
circular inclusions (modelled by scaled, truncated Gaussians). Figure 3.6c presents
the final scalar field f(x) = (1− α(x))f1(x) + α(x)f2(x) for f2(x) = 1.5.

107



3.3.3.2 Simple phase field jointed rock mass model

A phase field model of a sample of jointed rock mass can be generated in a

similar manner as the model in Section 3.3.3.1. Consider a rock mass with

several defect sets (see [187]), modelled as planes with uncertain orientations.

Modelling of fractured rock is typically carried out using Discrete Fracture

Networks (DFNs) [56, 263, 107]. These methods describe the geometric struc-

ture of the defect planes present. The model presented in this Section uses a

phase field defect intensity model that is more suitable than DFNs for later in-

clusion in, for example, structural deformation analysis. Although such struc-

tural modelling is not presented, given a rock mass simulation technique, it is

simple to incorporate new spatial material models into a sampling based Un-

certainty Quantification analysis. DFN methods attempt to model the exact

geometry of the defects, while the phase field model presented in this Section

models only the relative intensity of defects within a volume. In this sense,

there is a parallel between Eulerian and Lagrangian descriptions of flow fields

in continuum mechanics [150, 250]. The Lagrangian, material tracking model

is philosophically aligned with the DFN model. The Eulerian, fixed control

volume approach is related more closely to the phase field approach to discrete

field inclusions.

In this Section, an example two dimensional rock mass is simulated. The

simple model presented in this Section is not sufficient to make detailed mech-

anistic evaluations of fracture network responses. However, the techniques

presented suggest directions for future work. As the example simulations pre-

sented are intended to be illustrative, a two, rather than three, dimensional

simulation is modelled. The intact rock strength is modelled as a lognormal,

spatially autocorrelated random field. The defects are modelled as a phase

field, α(x), laid over the intact rock model. In two dimensions, only the dip

(or slope) relative to the viewing angle needs to be modelled. The defect dip

for each defect set is estimated, in this example, by Gaussians. To simulate

the defect intensity, consider a line passing through a rock mass (simulating

the drill path from a core logging procedure [187]). Intersections of defect sets

with this line can be considered to be a Bernoulli process (defined below).

Given a set of intersections for each defect set, defect dips can be sampled

from probabilistic models of the defect set dips. Given a sampled intersection

location and dip angle, defects can be modelled as line inclusions in a phase
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field, α(x). The line inclusions can be modelled using a Gaussian density on

the perpendicular distance of the point, x, to the line. That is, for a point x,

the α(x) value is proportional to:

α(x) ∝ exp

(
−1

(dp)
2

2δ2

)
(3.74)

where dp is the perpendicular distance from x to the line. The exponentially

decaying influence width of the line is controlled by the term δ. Given a

random field, f1(x), of the material strength, the defect indicator phase field

α(x) ∈ [0, 1] and the defect strength modification field, f2(x), the rock strength

at a location can be simulated by:

f(x) = (1− α(x))f1(x) + α(x)f2(x) (3.75)

Although this is a simple model of spatially distributed rock mass strengths, it

indicates a path to more complex phase field synthetic rock simulations.

Following §10.5 of [90], a Bernoulli process is defined as a sequence of random

variables, {Xi}∞i=1, such the value of the random variable Xi is 0 or 1 and the

probability for Xi to be 1, P (Xi = 1) = p, is the same for all random variables

in the sequence. Samples can be drawn from a Bernoulli process by taking

a finite vector, β, and then assigning a value of 0 or 1 with probability p for

each vector entry, βi. Computationally, this can be done by sampling a value

u ∼ U([0, 1]) from a random number generator and setting:

βi =

1 if u < p

0 otherwise
(3.76)

For modelling defects, the intensity of defect intersections is reflected in the

probability, p. Defects crossing the intersection line in the simulated rock mass

are assumed to continue to the edge of the spatial domain modelled. Although

the defect extent within the rock is unknown and not modelled accurately by

this method, it is typically the case that it is very difficult to estimate and

then subsequently accurately model the length and volume characteristics of

defects. This is also the case for DFN models [243].

Figure 3.7 demonstrates a sample from a phase field simulated rock mass,

on a 10m × 5m rectangle, Ω, discretised by a regular 200 by 100 grid. The
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intact rock strength is modelled as a lognormal random field, f1(x), taken as

the exponential of an underlying Gaussian random field with mean zero and

correlation matrix calculated using the correlation function:

C(s, t) = exp

(−‖s− t‖22
θ2

)
(3.77)

for θ = 1.0. The base random field sample is shown as in Figure 3.7a. Two

defect sets are modelled (in angular units of degrees) as:

• Defect set A apparent dip: N (−60, 102)

• Defect set B apparent dip: N (5, 32)

The intensity (to intersect the vertical line through the centre of the rectangle

Ω for each defect set) is taken as:

• Defect set A intersection intensity: pA = 0.06

• Defect set B intersection intensity: pB = 0.1

The defect phase field sample is shown as Figure 3.7b. A defect influence width

of δ ≈ 0.11 (approximately 1.5 times the radius of the discrete grid squares)

was used for the simulation. The defect strength field value was set to a con-

stant f2(x) = C with C = 0.01. Figure 3.7c shows the final rock strength field

calculated using equation (3.75). More advanced simulations of jointed rock

masses could include physical fracture models to estimate crack propagation

within rock (or other quasi-brittle material such as concrete). This would be

a worthwhile topic for future research. In particular, to extend the phase field

model to mechanistic analysis of jointed rock masses, it would be useful to

include information about joint roughness, strength and stress states. Joint

shear strength estimation models, specifically the Barton model (summarised

in §4.2.6 of [143]) based on Joint Roughness Coefficient (JRC) and Joint wall

Compressive Strength (JCS) could be utilised for such simulations in the fu-

ture.
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(a) Base Lognormal random field sample, f1(x)
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(b) Order parameter field α(x) after sampling defect set inclusions
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(c) Estimated field f(x) = (1− α(x))f1(x) + α(x)f2(x) for f2(x) = 0.01

Figure 3.7: Scalar Phase field field simulation of jointed rock mass random field.
Figure 3.7a shows the intact rock strength as a lognormal random field f1(x) sampled
from exp(N (0,Σ)) with correlation function from equation (3.77). Figure 3.7b is
a sample of the order parameter field, α(x), generated from two defect sets with
orientations N (−60, 102) and N (5, 32) and intersection intensities pA = 0.06 and
pB = 0.1. Figure 3.7c presents the final rock strength field f(x) for f2(x) = 0.01.
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3.3.4 Discussion

This Section presented a series of random field simulation techniques suitable

for modelling spatially autocorrelated fields. Example simulations of each of

these random field models were demonstrated. Gaussian random fields were

simulated based on covariance matrix techniques. Techniques for simulating

non-Gaussian random fields based on copula theory were discussed. Finally,

phase field simulation of combination fields, suitable for empirical models of

physical phenomena, were presented. All of these simulation techniques can

be combined with Monte Carlo Simulation for Uncertainty Quantification for

physical systems modelling.

3.4 Computational complexity of PDE Monte Carlo

Analysis combined with covariance matrix de-

composition

3.4.1 Computational complexity considerations for Uncertainty

Quantification

For Uncertainty Quantification analysis, the combination of a PDE solver with

random field models is computationally intensive. Applying Monte Carlo Sim-

ulation, for example, to the estimation of output space probability distribu-

tions and Quantities of Interest requires sampling from the input probability

distribution, feeding the inputs into a PDE solver and using the output of

this solver to generate samples from the output distribution. The Random

Finite Element Method (RFEM) [118], for example, combines random field

simulation with finite element analysis to perform Uncertainty Quantification.

Such an approach relies on the generation of a very large number of both

random field samples and the solution of finite element problems. Assessing

the computational requirements and accuracy is a useful tool to check that a

given procedure is feasible. This Section discusses the numerical accuracy and

computational complexity of covariance matrix decomposition based random

field sampling, following the authors published analysis in [158].

These results are discussed with reference to an analysis of the computational

complexity of Stochastic PDE MCS with random field inputs based on co-
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variance matrix decomposition simulation of a spatial field. In particular, as

FEM is used extensively in this thesis, the computational complexity anal-

ysis is discussed using the Finite Element Method as a representative of a

PDE solver for MCS. It is noted, however, that the solution of PDE problems

can be framed as an optimisation problem [198]. Optimisation (and search)

problems are subject to the so-called No Free Lunch Theorems (NFL Theo-

rems) [398, 396, 397] which essentially state that (for the types of optimisation

problems of interest) the computational performance of any solution, averaged

over all problems in a class, is the same for all solution methods. That is, no

algorithm performs better than all others over all problems. The relevant im-

plication of the NFL Theorems here is that, in the absence of prior knowledge

about an optimisation problem, no strategy can be expected to perform better

than another and as such a general purpose optimisation algorithm essentially

impossible. That is, given an optimisation strategy that performs well on one

type of problem, this algorithm is unlikely to perform better on a different

problem than another algorithm that has been specifically designed for the

second problem [185].

For the Uncertainty Quantification analyses in this thesis, this leads to several

important implications when considering the computational complexity of the

PDE solver selected for MCS based analysis. This rough discussion here is used

to justify the computational complexity analysis of covariance matrix decom-

position for MCS Uncertainty Quantification by considering FEM rather than

all PDE solvers. The first implication of the NFL Theorems to be considered

here is that if, for a given problem, an FEM-based method has ideal perfor-

mance (in the sense of computational complexity and approximation accuracy)

then another PDE method may not perform well. Specifically, any other PDE

solver method will only be as good as or worse than FEM on average. The

second implication is the converse of the first and follows directly from the

NFL Theorems. If, for a given problem some given PDE method works well

(for example Finite Volume representation based solvers, see [386]), then FEM

may not be well suited to solving the problem. Specifically, FEM will perform

on average as well as or worse than the more suitable method. Then, analysing

the average to worst case computational performance of an FEM based MCS

method for Uncertainty Quantification is abstractly equivalent (via the NFL

Theorems and the discussion above) to analysing any PDE solver for MCS

Uncertainty Quantification. If a suitable PDE method performs well on some
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class of problems, it will have similar performance to the average to worst case

performance of FEM on problems for which FEM-based analysis is known to

be an efficient PDE solver method for MCS Uncertainty Quantification. As

such, the asymptotic performance of any PDE solver method will be similar to

the analysis presented here for FEM assuming that a PDE solver reasonably

well suited to the problem of interest is considered. This is a rough analysis,

but is intended to demonstrate that the computational complexity analysis

presented here is applicable to a wide range of problems despite the fact that

the detailed analysis later in this Section is presented with specific reference to

FEM in order to suit the numerical analyses presented in the later Chapters

of this thesis.

Before discussing these analysis, the following brief note on some required

notation is necessary. To estimate the computational complexity of algorithms,

it is useful to adopt big-O notation as in [80]. To count the time to complete

an algorithm, each floating point operation (flop) is summed. An algorithm

may take, for example, O(n5) ≈ 7n5 + 6n2 flops to complete where n is the

number of inputs. In big-O notation, coefficients are dropped and only the

dominating terms as n approaches infinity are retained.

3.4.1.1 Computational complexity of covariance matrix decompo-

sition

Both the Cholesky and eigenvalue decompositions take roughly O(n3) flops

[148]. However, Cholesky decomposition can be completed in approximately

n3/3 flops versus 4n3/3 for a typical tridiagonal QR based eigenvalue decom-

position [148]. While the asymptotic runtime of the two algorithms is the

same, the speed of the Cholesky decomposition is beneficial.

To generate a set of random fields for, say, Monte Carlo analysis using covari-

ance matrix decomposition, the decomposition need only be completed once.

After the initial O(n3) decomposition, a random field sample can be generated

rapidly. For example, with Cholesky decomposition, as in equation (3.49), the

vector a and multiplication with the lower triangular matrix L is required.

Then a can be generated in O(n) flops. Multiplication of a vector with a

lower triangular matrix is also fast, taking just O(n2) flops [148].

If the covariance matrix is singular, then the procedure in Section 3.3.1.4 can
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be applied to find and delete linear dependencies. Calculating a scalar product

of two vectors takes O(n) flops [148]. Then computing equation (3.52) takes

4O(n) + 5 ≈ O(n) flops. To find all linear dependencies, each column must

be iterated over from left to right, taking O(n) work. Then from column Ci,

columns Cj for i < j ≤ n must be iterated over, also taking O(n). Then the

total complexity of the column elimination algorithm is O(n3) and is there-

fore not asymptotically any worse than the decomposition itself. If a parallel

and block matrix approach was taken for very large n, then care would need

to be taken to minimise the overhead associated with moving data, such as

reordering columns.

The total computational complexity of random field generation by covariance

matrix decomposition is then:

O(n3) +m · O(FEM) · O(n2) (3.78)

where m is the number of MCS iterations used for RFEM and O(FEM) is the

complexity of each finite element analysis. These components are discussed in

the following Sections.

3.4.1.2 Computational complexity of finite element analysis

The computational complexity of finite element analysis is discussed in [353]

and summarised in [113]. Linear FEM for elliptical problems (for example

linear elasticity) takes approximately O(nw2) where n is the number of input

elements and w is the stiffness matrix bandwidth. The bandwidth term reflects

the fact that stiffness matrices are often sparse, that is, mostly filled with

zeroes. If plastic (hysteresis induced nonlinearity), or some other form of

nonlinear FEM is used, then a number of iteration steps, l must be carried

out. Then:

O(FEM) = O(nw2l) (3.79)

where l is low for a convergent problem and higher for an unstable problem.

These steps l, for a typical nonlinear FEM method, represent iterations of

Newton’s method [111]. When modelling plasticity (hysteresis) it is often nec-

essary to include additional corrective steps when iterating Newton’s Method
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via the so-called return-mapping (see [98, 340] and §17 of [78]). These addi-

tional computations introduce additional computational complexities.

3.4.1.3 Computational complexity of RFEM

Combining equations (3.78) and (3.79), the following total complexity of RFEM

is obtained:

O(RFEM) = O(n3) +m · O(nw2l) · O(n2)

This can be simplified to:

O(RFEM) = O(mn3w2l) (3.80)

It can then be noted that the computational complexity of RFEM by covari-

ance matrix decomposition is not limited by the decomposition itself. It is the

MCS finite element iterations which cause a computational bottleneck. Con-

sider, for example, an FFT based random field generator. In two dimensions,

this takes O
(
n2 log n

)
work [118, 80]. This work must be carried out for each

of the k MCS iterations. In this case, O(RFEM) = k · O(n3w2l log n). LAS

has a similar run time complexity to FFT, taking 1.5 to 2 times longer per

realisation in two dimensions [119]. Thus LAS has a similar asymptotic run

time to FFT. As such, the choice of random field generator is not the compu-

tationally limiting factor for RFEM. Rather, the Monte Carlo FEM iterations

are the most significant computational cost, especially for large m.

3.4.2 Precision of RFEM with covariance matrix decomposi-

tion

3.4.2.1 Preliminaries

Finite precision arithmetic carries round off errors. The numerical precision of

covariance matrix decomposition random field sampling for use with RFEM is

addressed. Specifically, an estimate of the roundoff errors associated with the

generation of stationary random fields by Cholesky decomposition for RFEM

is given.
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The error analysis presented requires the concept of backward and forward

errors. First, consider a simple calculation y = f(x). Let ŷ denote the finite

precision approximation to y. Then ŷ = f(x + ∆x) and ∆x is termed the

backward error. Let x + ε be some measured quantity, where ε is the error

in x. If ∆x � ε then it is difficult to reject the computed ŷ on the basis

of finite precision rounding errors. Similarly, the forward error is given by

y − ŷ = ∆y.

Modern computers use the IEEE standard 754 for binary floating point arith-

metic. The 64 bit double precision type is used for many analyses in this

thesis. From [178], the unit roundoff, u, for a double is defined to be:

u = 2−53 ≈ 1.11× 10−16 (3.81)

The vector two norm and the matrix two and Frobenius norms are required.

From [148], the vector two norm is defined, for some vector x of length n,

as:

‖x‖2 =

(
n∑
i=1

|xi|2
)(1/2)

(3.82)

Also from [148], the matrix two and Frobenius norms are, for some n × n

matrix A, defined as:

‖A‖2 = λmax(A) (3.83)

‖A‖F =

 n∑
i=1

n∑
j=1

|Ai,j |2
(1/2)

(3.84)

The following inequalities from [178] are also useful:

‖A‖F ≤
√

rank(A)‖A‖2 (3.85)

‖A‖2 ≤ ‖A‖F (3.86)

To generate a random field as in equation (3.49), a Cholesky decomposition

followed by a matrix-vector multiplication is required. Let Ẑ = L̂a+µ be the

computed random field sample in finite precision arithmetic. The roundoff
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error for the addition of µ is of size u and negligible and will be ignored for

the remainder of the error analysis.

3.4.2.2 Random field sample error bounds covariance matrix de-

composition

The error associated with the Cholesky decomposition is considered. First,

the case of a positive definite C is analysed. The backward error is given by

∆C where:

L̂L̂T = C + ∆C

From §10.1.1 of [178]:

‖∆C‖2 ≤ O(n2u)‖C‖2 +O(u2) (3.87)

By equation (3.46), an estimate for ‖C‖2 is:

‖C‖2 . σ2

For a stationary random field, σ2R = C. The Cholesky decomposition can be

calculated for R and then each of the independent degrees of freedom scaled

by σ. By ordering the calculations this way, the forward error estimates can

be reduced. To demonstrate this, calculations of bounds for both R and C

are included. An estimate for ‖R‖2 is:

‖R‖2 . 1

From §4.2.6 of [148], ‖L‖22 = ‖C‖2 so:

‖L‖2 . σ (3.88)

For a stationary random field, if the decomposition is done using R = LRLR
T ,

then:

‖LR‖2 . 1 (3.89)
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The backward error in C can be estimated from the above equations. Ad-

ditionally, the result below holds for all (not just positive definite) C if the

algorithms in [112] are adopted. The backward error in C and R is then:

‖∆C‖2 . O(n2u)σ2 (3.90)

‖∆R‖2 . O(n2u) (3.91)

Combining equations (3.85), (3.90) and (3.91):

‖∆C‖F . O(n(3/2))uσ2

‖∆R‖F . O(n(3/2))u

This gives the following useful result:

‖∆C‖F
‖C‖2

. O(n(3/2))u (3.92)

The forward error of the Cholesky decomposition is given by ∆L = L − L̂.

From Theorem 10.8 of [178] and [65]:

‖∆L‖F
‖L‖2

≤ O (κ2(C))
‖∆C‖F
‖C‖2

(3.93)

(3.94)

where κ2(C) is the condition number of C. A large condition number repre-

sents an ill-conditioned system. Let λmax(C) and λmin(C) be the maximum

and minimum eigenvalues of C respectively.

From §4.2.6 of [148], as C is symmetric positive definite:

κ2(C) =
λmax(C)

λmin(C)
(3.95)

Bounds for κ2(C) can be derived if a rank-revealing decomposition, as dis-

cussed in Section 3.3.1.4, is used. Then, from §10.1.1 of [178], the decompo-

sition will succeed if 20n(3/2)κ2(C)u ≤ 1. Then, for the linearly independent
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part CIU :

κ2(CIU ) ≤ 1

20n(3/2)u
(3.96)

This gives a lower bound estimate for λmin(CIU ):

λmin(CIU ) & O(n(3/2)u)σ2 (3.97)

or for a stationary random field:

λmin(RIU ) & O(n(3/2)u) (3.98)

The error bound in equation (3.93) is affected by the size of κ2(C) and may

be as bad as O(κ2(C)u) for a general symmetric positive definite matrix

[178].

An improved error bound estimate can be made investigating the structure

of covariance matrices. From equation (3.50), the correlation between two

random degrees of freedom, represented by vectors x and y, in a random field is

given by the relative angle between them. The angle between two independent

degrees of freedom is at most π/2 ≈ O(1). As the x and y become co-linear,

the angle between them approaches zero. Additionally, as x and y become

co-linear C approaches singularity and one of the eigenvalues of the system

approaches 0.

From [249], the equation of the ellipse described by two column vectors Li and

Lj of LRIU , with correlation ρ = cos θ as in equation (3.50) is:

x2
1 − 2ρx1x2 + x2

2 =
(
1− ρ2

)
x2

1 − 2 cos θx1x2 + x2
2 = sin2 θ (3.99)

where x1 and x2 are canonical basis vectors. Let A be the area of the ellipse

given by equation (3.99). For the implicit equation of an ellipse in the form
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a1x
2
1 + a2x1x2 + a3x

2
2 = 1, the area of the ellipse is:

A =
2π√

4a1a3 − a2
2

A =
2π√

4
(

1
sin2 θ

)2
−
(
−2 cos θ
sin2 θ

)2

A =
2π√(

4
sin4 θ

)
(1− cos2 θ)

A =
2π√

4
sin2 θ

A = π sin θ (3.100)

The area of an ellipse is also, however, given by A = πab where a and b are the

lengths of the semi-major axes of the ellipse. From [129] and the discussion

in Section 3.3.1.2, for RIU , the length of semi-major axes of the ellipse are

equal to
√
λ1 and

√
λ2 where λ1 and λ2 are the eigenvalues corresponding to

the random degrees of freedom that represent elements i and j. Then:

sin θ =
√
λ1λ2 (3.101)

The eccentricity of an ellipse with semi-major axis lengths a and b with b ≤ a
is defined as e =

√
1− b2/a2. By definition, e = 0 for a circle and e < 1

for an ellipse. So when λ1 = λ2, sin θ = 0. Then as θ increases,
√
λ1λ2

must also increase. As θ approaches the maximum of π/2, sin θ approaches 1.

Then increasing λ1 must decrease λ2 and vice versa. From equations (3.44)

to (3.46), λmax(RIU ) and λmin(RIU ) are bounded between λmin(RIU ) and 1.

Fixing λ1 = λmax(RIU ):

θ → π

2
, λ2 → λmin(RIU ) (3.102)

Let ψmin be the minimum angle, as in equation (3.50), between two correlated

degrees of freedom represented by vectors x and y. Then the maximum error,
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δ, in the distance of y from x is:

δ ≈ α sinψmin

δ ≈ αO(ψmin) (3.103)

where α is the distance moved along y. So:

sinψmin ≈
√
λmax(RIU )λmin(RIU ) (3.104)

In standard IEEE 754 floating point arithmetic, there is no loss of precision for

the square root operation [196]. Then, if the lower bound in equation (3.98)

is satisfied, the precision of
√
λmin is roughly the same as that of λmin:

√
λmin ≈ O(n(3/2)u) (3.105)

Combining equations (3.104) and (3.105):

O(ψmin) ≈ αO(n(3/2)u) (3.106)

From equation (3.54), a random field is generated by multiplying LRIU by a

vector, a, of n samples from a standard normal distribution. Each value in the

final random field is then generated by moving a distance ai along at most n

of the random degrees of freedom described by the row vectors of LRIU . From

equation (3.106), the error in each of these n multiplications is:

aiO(n(3/2)u) (3.107)

To make use of equation (3.107), an estimate for the magnitude of each ai is

needed. Technically each ai is unbounded as it is a sample from a standard

normal distribution, and therefore the theoretical upper bound of |ai| is infi-

nite. However, it would be exceedingly unlikely for each of the n entries in a

to be much more than ±3 and certainly less than say ±100. Then, a practical

estimate for |ai| is:

|ai| . O(10) (3.108)
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Note that the result of the multiplication LRa must be increased by a factor of

σ to scale the random field to the correct standard deviation. By §2.7.8 of [148],

the error associated with scalar multiplication is approximately O(uσ‖LR‖) ≈
O(uσ). Then, for a stationary random field, decomposing R and multiplying

LRIUa by σ only scales up the error in LRIUa by approximately σ. Then the

roundoff error, ∆Z = Z − Ẑ, for entry, Z(i), in the random field sample is

approximately:

∆Ẑ(i) . 10σnO(n(3/2)u)

∆Ẑ(i) . σO(10n(5/2)u) (3.109)

For a singular correlation matrix, if the procedure in Section 3.3.1.4 is adopted,

all random degrees of freedom separated by less than ψmin are considered

co-linear. Then, by a similar argument above, the maximum angular error

between two degrees of freedom, r and s, is ψmin. If the angular error were

more than this, then the λ2 for the ellipse representing r and s would be larger

than λminLRIU and r and s would not be numerically co-linear. Then if the

angular error for assumed co-linear degrees of freedom is at most ψmin, then

the same error given by equation (3.109) holds.

Finally, the magnitude of the variance reduction γ needs to be considered.

The actual magnitude of the minimum eigenvalue of R is:

λmin(RIU ) ≈ O(n(3/2)u)

γmin
(3.110)

If the magnitude of γmin is greater than approximately 0.5, the magnitude

of the error in λmin(RIU ) is unchanged. So then to maintain the precision

estimates given in this Section, the following bound on the minimum variance

reduction should be adopted as:

γmin ≥ 0.5 (3.111)

From equation (3.109) and u as in equation (3.81), the rounding error can be
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estimated for different n:

For n ≈ 103, |∆Ẑ| . 10−8σ

For n ≈ 104, |∆Ẑ| . 10−5σ

For n ≈ 105, |∆Ẑ| . 10−3σ

Note that these error estimates are very rough and represent a worst case

scenario without any attempt to alleviate rounding errors by, say, iterative

refinement as in [178, 148].

3.4.2.3 Rounding errors in FEM

To complete the error analysis of the covariance matrix decomposition ran-

dom field generator, the rounding errors of FEM are discussed. Aside from

measurement errors in the inputs, there are several sources of error in FEM.

These sources of error include the fineness of the mesh (h-refinement), degree

of the approximating polynomials (p-refinement) and the machine precision

unit round off u.

Error estimates for the maximum theoretical precision of FEM, sufficient for

the approximate bounds in this Chapter, are given in §6.8.3 of [377]. Although

increasing h improves the accuracy of the computed FEM solution as O(h−2),

eventually rounding errors prevent finer mesh elements from improving accu-

racy. Let q be the order of the finite element approximating polynomial. Then

the maximum theoretical precision of FEM, δ is approximately:

δ ≈ O(u(q+1)/(q+3)) (3.112)

Then, from [377], the estimates for the best case precision for FEM are:

For q = 1, δ ≈ 10−8

For q = 2, δ ≈ 10−10

For q = 3, δ ≈ 10−11

Further, for implicit plastic finite element analysis, some form of residual con-

vergence tolerance must be specified. The rounding errors in plastic FEM are
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at least as large as the specified tolerance [54].

3.4.3 Discussion

The error and computational complexity characteristics of RFEM, MCS based

Uncertainty Quantification using an FEM solver representation and covariance

matrix decomposition as a random field generator, were discussed. The com-

putational complexity of the repeated FEM iterations were found to be the

computationally limiting factor for RFEM, not the random field generator.

Also, bounds on the rounding errors for FEM and Cholesky decomposition

were discussed. The rounding errors for Cholesky decomposition, without er-

ror reducing techniques, may become problematic for 104 or 105 elements.

However, for this many elements, an RFEM analysis, particularly for a high

probability of failure, will be very time consuming. For a specific problem,

the bounds presented in this Chapter may help to estimate the approximate

size of a feasible solution compared to the rounding errors. It is also worth

noting that the measurement accuracy for many Civil Engineering problems

are likely to be worse than any rounding errors for a reasonable problem. Ad-

ditionally, improving the p order of the finite element approximation allows

for the number of elements to be reduced, which would lessen errors in the

random field sample.

3.5 Conditional random fields

Conditional random fields can be used to model the effect of observation data

on random fields. Conditional models can also be used to fit probabilistic mod-

els to spatial data by calculating model likelihood terms. These techniques,

along with a numerical demonstration, are presented in this Section. In the

context of Machine Learning and Bayesian statistics, Gaussian random fields

are typically referred to as Gaussian processes and are used to model probabil-

ity distributions over functions, F . That is, given data T , a distribution over

a space of functions given data, P (f |T ), is modelled. The desired predictive

distribution is then given by:

P (y∗|x∗, T ) =

∫
F
P (y∗|f, x∗)P (f |T )df (3.113)
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Using Bayesian updating, observed data about the values of a function can

be incorporated with prior beliefs over a function space into a posterior dis-

tribution over functions. Viewed in this way, conditional random fields are

non-parametric probability density models. A Gaussian process is a particu-

lar model of distributions over functions that assumes (as per the discussion

in Section 3.2) that any collection of function values has a multivariate normal

distribution.

3.5.1 Gaussian Process prediction and regression

Following from the more formal definition in Section 3.2, in the notation used

by [308] and §15 of [275], the Gaussian process model of a function, f(x), is

denoted:

f(x) ∼ GP
(
m(x), κ(x, x′)

)
(3.114)

µ(x) = E [f(x)] (3.115)

κ(x, x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))T

]
(3.116)

where m(x) is the mean function and κ(x, x′) is the covariance (positive defi-

nite) function between the points x, x′.

For any finite collection of N points, {xi}Ni=1 = X, the Gaussian process model

says that the function values are jointly normal:

P (f |X) = N (f |µ,K) (3.117)

where µ = (m(x1), · · · ,m(xN )) is a mean vector of a Gaussian with covariance

matrix K with entries Kij = (κ(xi, xj)).

Of interest is the posterior distribution of the Gaussian process given new

data. Observing new data (values of the function to be inferred) reduces the

variability over the function space and thereby restricts the forms of the func-

tions that are considered likely. Specifically, high probability functions should

be those that predict the data values with high probability. The Bayesian

updating procedure for the posterior distribution is also known as Kriging

in the geostatistics literature and conditional random field simulation (see

[229]).

126



First, consider the noise free case. Let X = T be a training set of values

{(xi, f(xi)}Ni=1 where f(xi) is the value of the unknown function at xi. Given

a test set of points X∗ ∈ RN∗×D where D is the dimension of each xi, the

goal is to predict the outputs of the function f∗ at the test points. From the

definition of a Gaussian process, any collection of points is jointly Gaussian.

Then, the joint distribution over the training data and the test points is:[
f

f∗

]
∼ P (f∗, f |X,X∗) = N

([
µ

µ∗

]
,

[
K K∗

K∗,T K∗∗

])
(3.118)

where the covariance matrix blocks are given by:

Kij = κ(xi, xj) xi, xj ∈ X;K ∈ RN×N (3.119)

K∗ij = κ(xi, x
∗
j ) xi ∈ X;x∗i ∈ X∗;K∗ ∈ RN×N

∗
(3.120)

K∗∗ij = κ(x∗i , x
∗
j ) x∗i , x

∗
j ∈ X∗;K

∗∗ ∈ RN
∗×N∗ (3.121)

3.5.2 Bayes Rule for Gaussian Linear Systems

Before continuing, consider the Gaussian Linear System from §4.4 in [275].

Let h ∈ RDh be a vector of hidden variables and v ∈ RDv be a vector of noisy

observations of h. Consider the Gaussian prior on h:

P (h) = N (x|µx,Σx) (3.122)

and the associated likelihood P (v|h):

P (v|h) = N (v|Ah+ b,Σv) (3.123)

with the transformation matrix A ∈ RDv×Dh .

Then, the Bayes posterior update for h given v is given, from Theorem 4.4.1

of [275], as:

Theorem 3.5.1. Bayes Rule for linear Gaussian Systems: Consider a linear

Gaussian system for P (h) and P (h|v), as described in equations (3.122) and

127



(3.123). Then, the posterior P (h|v) is:

P (h|v) = N (h|µh|v,Σh|v) (3.124)

Σ−1
h|v = Σ−1

h +ATΣ−1
v A (3.125)

µh|v = Σh|v
[
ATΣ−1

y (v − b) + Σ−1
h µh

]
(3.126)

with normalisation P (v):

P (v) = N
(
v|Aµh + b,Σv +AΣhA

T
)

(3.127)

Proof. See §4.3 of [275].

The proof computation relies on the equations for the marginal and condi-

tional probabilities of the normal distribution. Consider a joint Gaussian

distribution, P (x1, x2), with marginals P (x1) and P (x2) and conditional dis-

tributions P (x2|x1) and P (x1|x2). The marginal and conditional distributions

are also Gaussian. Following [308] and §4.3 [275], given a joint normal distri-

bution:

P (x1, x2) = N
(
µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

])
(3.128)

with inverse covariance matrix:

Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
(3.129)

has marginal distributions:

P (x1) = N (x1|µ1,Σ11) (3.130)

P (x2) = N (x2|µ2,Σ22) (3.131)

(3.132)
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and conditional distributions:

P (x1|x2) = N (x1|µ1|2,Σ1|2) (3.133)

µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2) (3.134)

= µ1 − Λ−1
11 Λ12(x2 − µ2) (3.135)

= Σ1|2(Λ11µ1 − Λ12(x2 − µ2)) (3.136)

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21 = Λ−1

11 (3.137)

Note that Σ1|2 = Σ11 −Σ12Σ−1
22 Σ21 is termed the Schur compliment of Σ22 in

Σ [148].

3.5.3 Conditional random field posterior

Using the formulas for conditional distributions of a joint Gaussian given in

equations (3.133), (3.134) and (3.137), the posterior P (f∗|X∗, X, f) is given

by:

P (f∗|X∗, X, f) = N (f∗|µ∗,Σ∗) (3.138)

µ∗ = µ(X∗) +K∗,TK−1(f − µ(X)) (3.139)

Σ∗ = K∗∗ −K∗,TK−1K∗ (3.140)

For a full derivation of these equations, see §2 of [308] and §15.2.1 of [275].

When the observations of the true function are noisy and if the form of the

noise is not complicated then this error can be incorporated into the Gaussian

process estimate of f(x). Let the noise estimate of f(x) be given by:

f̂(x) = f(x) + ε (3.141)
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where ε ∼ N (0, σ2
x). Then, the covariance is given by:

Cov[x, x′] = E
[
(f̂(x)−m(x))(f̂(x′)−m(x′))T

]
Cov[x, x′] = E

[
(f(x) + σ2

x −m(x))(f(x′) + σ2
x′ −m(x′))T

]
Cov[x, x′] = E

[
(f(x)−m(x))(f(x′)−m(x′))T

]
+ E

[
σ2
x(f(x′) + σ2

x′) + f(x)σ2
x′ −m(x)σ2

x′ −m(x′)σ2
x

]
Cov[x, x′] = κ(x, x′) + E

[
f(x)σ2

x′ + f(x′)σ2
x + σ2

xσ
2
x′
]

−m(x)E
[
σ2
x′
]
−m(x′)E

[
σ2
x

]
Cov[x, x′] = κ(x, x′) + E

[
f(x)σ2

x′
]

+ E
[
f(x′)σ2

x

]
+ E

[
σ2
xσ

2
x′
]

The simplest case is to assume that the noise is independent of the signal and

that the noise is pointwise independent from itself so:

E
[
f(x)σ2

x′
]

= 0 (3.142)

E
[
f(x′)σ2

x

]
= 0 (3.143)

E
[
σ2
xσ

2
x′
]

= δ(x, x′)σxσx′ = δ(x, x′)σ2
x (3.144)

so that the covariance is given by:

Cov[x, x′] = κ(x, x′) + δ(x, x′)σ2
x (3.145)

Other more complex models of the noise are discussed in §2 and §9 of [308].

Given the noise model in equation (3.145), the covariance matrix of N points

from the Gaussian process is:

Cov[f̂ |X] = K + σ2
xIN = Kε (3.146)

so that the effect of the noisy estimates is to add a diagonal component to the

covariance matrix.

To evaluate the posterior distribution using the noisy training data, the joint

distribution in equation (3.118) is modified to use Kε rather than K. Note that

the mean of a Gaussian process can always be subtracted away and the process

modelled by a zero mean Gaussian. The mean function can be added back

on to the process for simulation. For notational convenience the zero mean

formulation is given below. The modified joint distribution that incorporates
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data noise, with zero mean, is given by:[
f̂

f∗

]
∼ P (f∗, f̂ |X,X∗) = N

([
0

0

]
,

[
Kε K∗

K∗,T K∗∗

])
(3.147)

which yields the posterior distribution under noisy data:

P (f∗|X∗, X, f) = N (f∗|µ∗,Σ∗) (3.148)

µ∗ = K∗,TK−1
ε (y) (3.149)

Σ∗ = K∗∗ −K∗,TK−1K∗ (3.150)

An important case is when the test point is a single location in the function

domain, x∗. In this case, the posterior predictive distribution is, from §15.2.2

of [275], given by:

P (f∗|x∗, X, f̂) = N (f∗|k∗,TK−1
ε f̂ , k∗∗ − k∗,TK−1

ε k∗ (3.151)

where k∗ denotes the covariance operator between the test point and the data

and k∗∗ is the covariance operator at the test point:

k∗ = [κ(x∗, x1), · · · , κ(x∗, xN )] (3.152)

k∗∗ = κ(x∗, x∗) (3.153)

The posterior predictive mean at a single test point is also often given by:

E [f∗(x)] = k∗,TK−1
ε f̂ (3.154)

=

N∑
i=1

αiκ(xi, x
∗) (3.155)

where αi are the entries vector α which is the product:

α = K−1
ε f̂ (3.156)

3.5.4 Model likelihood

Consider a parameterised representation of a covariance function, κ(x, x′; θ).

One approach to estimate possible values for θ is to maximise the marginal
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likelihood (that is, the model evidence) of the estimated function values given

the data. Other methods for optimising the model parameters include Varia-

tional Bayesian methods [46]. Following §15.2.4 in [275] and [308], the goal is

to estimate and maximise:

P (f̂ |X) =

∫
F
P (f̂ |f,X)P (f |X)df (3.157)

P (f̂ |X) =

∫
F
P (f̂ , f |X)df (3.158)

under the Gaussian process prior for f(x) and under the assumption that the

noisy estimate f̂(x) = f(x) + ε has independent noise, as in equation (3.141),

so that:

P (f |X) = N (0,K) (3.159)

P (f̂ |f) =
N∏
i=1

N (yi|fi, σ2) (3.160)

From equation (3.146), the covariance of f̂ given X is Kε so then, assuming

the measured values for f̂ have had their estimated mean removed, the model

evidence is given by:

P (f̂ |X) = N (0,Kε) (3.161)

As maximising the log of the marginal likelihood is equivalent to maximising

the marginal likelihood, the objective is to maximise:

logP (f̂ |X) = N (0,Kε) (3.162)

logP (f̂ |X) = −1

2
f̂K−1

ε f̂ +
1

2
det [Kε]−

N

2
log(2π) (3.163)

For further details on equation (3.163), see §15.2.4 of [275] and §2 of [308].

Consider a covariance function parameterised by the vector θ with components

θi so that the likelihood in equation (3.163) is expressed as logP (f̂ |X; θ). From

[374], the gradient of the likelihood function with respect to θi has an analytical

form:

∂

∂θi
logP (f̂ |X; θ) =

1

2
f̂TK−1

ε

∂K−1
ε

∂θi
K−1
ε f̂ − 1

2
tr

(
K−1
ε

∂K−1
ε

∂θi

)
(3.164)
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Although it is possible to perform gradient ascent on the likelihood by via

the gradient in equation (3.164), there are two dual analytical solutions in the

isotropic Gaussian noise case. Probabilistic Principal Components Analysis

(see [374]) considers a regression type formulation of the latent function and

analyses the principal components of the basis function regression weights.

The Gaussian Process-Latent Variable Model (see [215]) performs an eigen-

analysis on the empirical covariance matrix calculated directly with the ob-

served function values. These methods can be used to estimate the model

likelihood of a proposed Gaussian process model of spatial data. In this way,

Conditional Random Field theory can be used fit models to data in preparation

for additional probabilistic analysis.

3.5.5 Practical information

A variety of software is available for Conditional random field simulation. In

particular, the Python library Scikit-learn [293] features a large number of

Conditional Random Field examples, along with code to generate these exam-

ples, from a variety of data sets. Further, there are a number of computation

saving techniques that may be more efficient in certain cases. Of particular

note are classical approaches based on the Turning Bands Method as discussed

in [205, 91].

For examples of applied conditional random field simulation in Civil Engi-

neering contexts, see [382, 118, 201]. In [333], conditional simulations are used

to estimate the effective permeability of heterogeneous media. The effective

permeability is described by the geometric mean of a lognormal distribution,

which is known to be the distribution’s median [114].

3.6 Conclusions

This Chapter provided an overview of the theoretical and computational as-

pects of modelling spatially random fields. The intention of this overview is to

enable the further developments in Uncertainty Quantification methods and

probability theory presented in the subsequent Chapters of this thesis. Gaus-

sian random fields were discussed with reference to the KL Expansion. Non-

Gaussian random fields were discussed with reference copula theory. Phase
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field models combining point processes with spatial processes were also de-

tailed. Simulation techniques and examples for each of these methods were

detailed. Further, numerical issues and the computational complexity of the

simulation methods were analysed with reference to Uncertainty Quantifica-

tion. The simulations presented were all shown in two dimensions. However,

the techniques presented are not limited to two dimensional simulations. This

choice was made to allow for illustrative Figures to be presented, rather than

because of mathematical limitations.

Gaussian random field methods based on covariance matrix decomposition

were discussed. Without significant modifications, however, the methods for

spatially autocorrelated random field simulation presented are limited to Gaus-

sian random fields, non-Gaussian fields with Gaussian copula, and other simple

transformations of Gaussian random fields such lognormal random fields. The

same is true of most random field simulation techniques [351] and the simu-

lation of non-Gaussian random fields remains an active area of research. As

such, this limitation of matrix decomposition is not considered to be major.

Further, only simple phase field models were presented. Improving these tech-

niques, with reference to the developments in [229], would be a worthwhile

area of future research.

Conditional random field simulation, or Kriging, was also discussed in this

Chapter. Conditional random field simulation can be used to generate ran-

dom samples with fixed (or approximately fixed) values at certain locations.

By considering the form of the posterior distribution after observing data,

conditional random fields can also be used to fit models to data (for example

selecting an appropriate correlation function) by calculating model likelihoods.

Parameter estimation for random field models from data was not discussed ex-

tensively. Conditional random field models can be used to fit Gaussian Process

models by estimating model likelihood values. Further discussion is presented

in [118, 21, 275]. The developments in this Chapter are a sufficient founda-

tion from which to discuss the Uncertainty Quantification of physical systems

presented analyses in subsequent Chapters.
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Chapter 4 Overview

Key developments in Chapter 4 include:

• Section 4.2.5 details background material on MCMC techniques suitable

for use with a Subset Simulation method for rare event estimation using

random, nonlinear Finite Element models.

• Section 4.2.7 presents an original contribution. Specifically, a rigorous

confidence interval based convergence estimator for analysing the accu-

racy of Subset Simulation estimates of rare events is detailed. The con-

fidence interval estimator is derived based on the product probability

distribution of Monte Carlo Gaussian estimates implied by the Central

Limit Theorem.

• Section 4.2.8 presents applications of the theoretical developments in

this Chapter. The relative efficiency of different MCMC techniques are

compared.

• Section 4.3.3 contributes new empirical results showing that the esti-

mation accuracy for Subset Simulation on a probabilistic linear elastic

problem can exceed both the Spectral Stochastic Finite Element Method

and direct Monte Carlo Simulation.

• Section 4.3.4 contributes an analysis of the computational efficiency of

Subset Simulation on a probabilistic test case problem: a footing on

a elastoplastic soil. Subset Simulation is shown to be more compu-

tationally efficiency than direct Monte Carlo for rare event reliability

estimation.
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4.1 Introduction

This Chapter explores the application of Subset Simulation, a sampling based

numerical integration technique, to the probabilistic analysis of structural

models. Subset Simulation was originally presented in [15] for the estima-

tion of rare event probabilities. Subsequent developments are detailed in [16].

In Civil Engineering, structural problems often have very small probabilities of

failure but very large consequences of failure. The efficient estimation of these

small probabilities would help to improve risk based estimates of structural

safety. A useful definition of risk that can be adopted is probability times

the consequence of an event [118]. By quantifying the risk associated with

a given design, the level of risk can be assessed based on a comparison with

other accepted risks [95]. For risk based analysis of consequential rare events

the potential severity of an outcome may still carry high associated risks. In

this scenario, it becomes necessary to estimate rare event probabilities for

structural systems.

In soils, for example, spatial autocorrelation of material property parame-

ters is known to have a significant impact on calculated failure probabilities

[270]. Probabilistic analyses that aim to quantify risks accurately in such sys-

tems must then incorporate the effects of spatial autocorrelation into physical

models. Ideally, spatial autocorrelation should be incorporated into existing

advanced numerical models, allowing for the developments in probabilistic

techniques and general numerical modelling of physical phenomena to occur

in parallel. This Chapter uses spatially autocorrelated models of material

property parameters for the physical models discussed.

Popular existing methods for calculating failure probabilities when random

fields are used to define the input distribution are the Random Finite Element

Method (RFEM) and the variants of the Stochastic Finite Element Method

(SFEM). The original RFEM uses a direct Monte Carlo Simulation (MCS) pro-

cedure which is discussed further in Section 4.2.3 of this Chapter. SFEM and

variants such as the Spectral SFEM (SSFEM) [141, 142] perform an integra-

tion over the random dimensions of the input probability space by expressing

this space in terms of orthogonal polynomials (termed the Polynomial Chaos).

The disadvantage of the SFEM style approach is that it is maximally inac-

curate on the tails of the distribution [356] and as such is a poor candidate

138



for estimating small threshold probabilities very far from the mean response

of the model output distribution. Additionally, the size of the probabilistic

linear systems that must be solved during an SFEM analysis increases very

rapidly with the dimensionality of the problem [141]. The convergence rate

of Monte Carlo Simulation, by contrast, is independent of the dimensionality

of the problem. Further, elastoplastic and other nonlinear material models

are of interest in engineering practice. Unfortunately, using such models in

SFEM type analyses is challenging and remains an active area of research, see

[203, 334].

For sampling-type solutions of stochastic Partial Differential Equations (PDE),

the nonlinearity of constitutive models can be accommodated easily as long

as deterministic solutions for that material model are available. RFEM, a

direct MCS method [118], is a powerful way of incorporating material property

spatial autocorrelation into existing numerical models. RFEM proceeds by

first selecting a random field model of material property parameters and/or

applied loads, then repeatedly sampling random field realisations from the

input distribution, running the deterministic inputs through a finite element

solver and then using the output from the discrete deterministic problems

to estimate the distribution of outputs. For reliability analysis, RFEM is a

very useful approach because no specific assumptions are made on the output

distribution (although this carries some disadvantages if the form of the output

distribution is known a priori) and as such the full system reliability can be

calculated regardless of the complexity of the input distribution.

Reliability analysis for Civil Engineering problems often involves the estima-

tion of vanishingly small probabilities of failure [15, 16, 270]. Direct MCS is

theoretically able to compute rare event probabilities, but may require a pro-

hibitively large number of discrete simulations to do so accurately [336, 15].

For an RFEM approach, the dimensionality of the probabilistic input space is

on the order of the number of elements in a mesh needed to approximate the

discrete, deterministic simulations accurately. In the case that nonlinear PDE

problems must be solved for each Monte Carlo iteration, the computational

cost of random field simulation is negligible compared to the cost of the PDE

problems. This issue is discussed in Section 4.2 of this Chapter. In this case,

the particular choice of random field simulator is not nearly as significant as

minimising the number of Monte Carlo iterations. Direct MCS is poorly suited
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to estimating rare event probabilities associated with numerical approxima-

tions to nonlinear PDE systems because the number of iterations can not be

reduced without sacrificing accuracy.

The underlying problem for rare event simulation with combined finite ele-

ment and random field models is the difficulty of search in high dimensional

spaces. As high dimensional spaces are very “large” volumetrically, it can take

a long time to find rare portions of the search space by a stochastic search.

Human intuition, which is well suited for explorations of one to three dimen-

sional spaces, is poorly adapted to high dimensional search [6]. Further, as

the number of probabilistic dimensions increases, it becomes increasingly time

consuming to compute quantities of interest accurately and quickly. Tech-

niques that are successful in a small number of dimensions may fail in very

high dimensional spaces, as is the case with SFEM. The dimensionality of

the numerical problem to be solved in an SFEM type analysis grows by the

factorial of the approximation order [356].

To address the small probability of failure problem, Subset Simulation can be

applied [15, 16]. Subset Simulation, also known as Sequential Monte Carlo, has

been applied in areas other than probabilistic engineering mechanics [169, 99].

This method is able to calculate small threshold event probabilities more ef-

ficiently than direct MCS and is discussed in more detail in Section 4.2.4.

Subset Simulation proceeds by performing a series of Markov Chain Monte

Carlo analyses. Essentially, these analyses estimate the probability of some

lesser failure condition than the full, desired failure condition. For example, if

failure is deemed to occur once displacements of a system exceed some thresh-

old value, a subset failure event would be perhaps one in which displacements

reach 80% of the failure threshold level. Subset Simulation has previously been

combined with RFEM and applied to slope stability problems [329, 239, 238].

These publications demonstrate that the Subset Simulation approach is able

to capture small probabilities of failure for finite element systems with mate-

rial property parameters modelled by spatially autocorrelated random fields.

The componentwise Markov Chain Monte Carlo approach in [329, 239], how-

ever, can be improved on by using a more appropriate sampling methodology.

These improvements are the subject of this Chapter.

This Chapter seeks to address some of the known issues (see [290, 55]) related

to Markov Chain Monte Carlo in high dimensional spaces. In particular, this
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Chapter compares the performance of Metropolis-Hastings (MH), Gibbs and

Componentwise Metropolis Hastings (CMH) sampling. CMH is sometimes

referred to as Modified-Metropolis or Metropolis-in-Gibbs sampling. In this

Chapter, the term Componentwise Metropolis Hastings is preferred for the

reasons outlined in [137]. Metropolis-Hastings generates new samples based on

the previous random sample from a distribution. In high dimensional spaces,

Metropolis-Hastings faces both numerical stability issues and problems with

disappearing sample acceptance rates [16]. Both Gibbs and CMH sampling

attempt to avoid these issues by adjusting only a single probabilistic degree

of freedom per iteration [137]. CMH, in particular, is the favoured approach

in the Subset Simulation literature [15, 16, 239, 329]. The justification for

adopting this sampling technique is that the rejection rate for MCMC random

walk in high dimensional spaces is too low to allow for effective traversal of the

search space [16, 290]. Higher acceptance rates can be achieved by adjusting

only a single random dimension in the random field per Monte Carlo iteration.

Componentwise random walk MCMC, however, requires a larger number of

discrete simulations to be carried to converge on a target probability estimate

[55]. This is not desirable for probabilistic FEM analyses or any other case in

which sampling is computationally expensive.

This Chapter directly compares different MCMC sampling methodologies for

Subset Simulation. The theoretical developments detailed in Section 4.2 are

verified by two test case analyses. The first numerical analysis is a verification

study that compares the performance of Subset Simulation using MH, CMH

and Gibbs sampling to MCS and SSFEM on the linear elastic footing problem

originally presented in [359, 360]. The second numerical analysis is a com-

parative study of the performance of Subset Simulation (for MH, CMH and

Gibbs sampling) and MCS for a footing on elastoplastic soil. General details

on elastoplasticity in geomaterials are provided in [70, 96, 88, 299]. For the

comparative study, the footing problem from the verification study is modified

and extended. The parameters of the material model were selected to be sim-

ilar to real world values and also to intentionally create a small probability for

far from mean responses to allow for a comparison between Subset Simulation

and MCS. Numerical results are presented in Section 4.3.

The performance of Subset Simulation is tested by considering the relative

performance of Gibbs sampling and Componentwise Metropolis-Hastings sam-
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pling (as used in [239, 16]) to direct Metropolis-Hastings sampling which has

been adjusted to allow for stable numerical computation in high dimensional

spaces. The numerical analysis indicated that for both linear and nonlinear

finite element problems, Metropolis-Hastings outperformed (in the sense of

computational effort versus accuracy) both Gibbs and CMH sampling. §4.5

of [16] argues that the acceptance rate for state transitions in Metropolis-

Hastings tends to zero as the size of the random vector increases and so it

becomes very difficult to locate a sample that is accepted. As such, [16] rec-

ommend adopting componentwise techniques, in particular CMH. However,

in the context of nonlinear finite element analysis, the rejection of samples in

the MCMC phase is not nearly as significant a computation problem as the

solution of the discrete finite element problems. The vast difference in compu-

tational effort between nonlinear FEM and MCMC random step search means

that it is preferable to minimise the number of FEM solutions computed by

tolerating a higher search time for the next MCMC step rather than jumping

more frequently between less significant parts of the stationary distribution. In

the event that a random step is not made to a new sample, the FEM equations

do not need to be re-evaluated and as such the search for the next MCMC

sample can proceed rapidly.

This Chapter also presents a new derivation of confidence interval error esti-

mation for Subset Simulation. The typical approach to computing confidence

intervals for Subset Simulation is to run repeated Markov Chain analyses

to bound the output response range [15]. When sampling is computation-

ally expensive (as is the case for Subset Simulation combined with nonlinear

FEM), multiple repeats of Markov Chains is an extremely inefficient method

for generating reliability expectation range estimates. This Chapter presents

a technique for efficiently estimating Subset Simulation confidence intervals

directly from an analytic integral formula, rendering the estimation of these

intervals computationally tractable for any Subset Simulation problem.

The Central Limit Theorem allows for the error for either MCS or MCMC

to be given in terms of a normal distribution. The product of normal distri-

butions is, however, not a simple distribution. The variance of the product

distribution can be calculated directly from a simple formula and then used to

provide standard error estimates [16]. The calculation of confidence intervals,

however, requires that integrals of the product distribution function can be
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evaluated. Moreover, the product distribution is asymmetrical which creates

further difficulties when estimating confidence intervals. The derivation of the

product distribution mass function for approximation of Subset Simulation

confidence intervals is presented in Section 4.2.7 along with a description of

numerical techniques for estimating these confidence intervals.

4.2 Sampling methodologies for reliability analysis

4.2.1 Introduction

The goal of numerical reliability analysis is to quantify the distribution of

possible outputs from a particular physical model. In this Chapter, the focus

is on quantifying probabilities associated to threshold events. An example of

a threshold event would be the probability that the displacements of a nu-

merical model exceed some value. Given a mathematical model of a physical

system, §2 in [356] identifies the sources of uncertainty in the system outputs

as material property parameters, loading, boundary conditions and the prob-

lem geometry. These sources of uncertainty do not address the approximation

error of the mathematical model compared to physical phenomena, which is

discussed in [94]. Numerical reliability analysis allows for the outputs from a

particular numerical model to be quantified, but practitioner judgement is still

required in selecting a reasonable mathematical approximation to real world

physical systems. Although minimising the discrepancy between mathemat-

ical and probabilistic models remains challenging, improving techniques for

probabilistic analysis is still a critical part of engineering practice. Improv-

ing probabilistic models allows for better comparison between model and real

world data, facilitating future improvements in probabilistic analysis. This

Chapter will focus on reliability analysis for physical problems modelled as

stochastic PDE’s.

Adopting modified notation from §3 in [244] and [141], the reliability analysis

problem can be stated as follows. Let (Ω,A, P ) be a probability space where

ω ∈ Ω are the input configurations, A is the σ-algebra generated by Ω and P

is the probability measure, see [168] for the definitions of these terms. Assume

that a physical model is defined over a domain D with points x ∈ D. Let the

stochastic PDE representing some physical process over this domain can at
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time t be represented as:

L(x, t, ω)u(x, t, ω) = f(x, t, ω) (4.1)

In the remainder of this Chapter, the explicit time dependence in equation

(4.1) will be left out, as the focus of the numerical analyses in Section 4.3 will be

on steady state problems. L(x, ω) represents some differential operator defined

at each point x ∈ D with source terms f(x, ω) and solutions u(x, ω).

The reliability analysis problem can be stated as [244]:

Ψ ≈ E [Ψ(ua(·))] =

∫
Ω

Ψ(ua(ω))P (dω) (4.2)

where P (dω) is the probability to have sampled ω, ua(ω) is the numerical

approximation of the solution to equation (4.1) for a given input sample ω.

Then, let the threshold event of interest for reliability analysis be given by

Ψ(u(ω)) as follows:

Ψ(ua(ω)) = χT =

1 if threshold event occurs for ua(ω)

0 if threshold event does not occur for ua(ω)
(4.3)

The expectation of the indicator function is equal to the probability of the

indicated region, so E[χT ] = P (T ). For example, in the reliability analysis of

structural systems, a common Ψ would be a function which decides whether

a given ua(ω) counts as a failure or not.

Exact integration of the reliability integral in equation (4.2) is, almost always,

completely intractable and so estimation techniques are required. If Ψ is van-

ishingly small, then standard integral approximation techniques can become

computationally intractable. For example, quadrature based integration re-

quires a rapidly increasing number of points to improve the tolerance of the

solution of an integral problem [139]. Unmodified Monte Carlo based inte-

gration has an effectively fixed rate of convergence towards the solution of an

integral problem but this convergence rate can be too slow to handle reliability

problems with small Ψ in a reasonable amount of time. This Chapter presents

extensions to a technique, Subset Simulation [15], for dealing with this issue

when the space of probabilistic inputs is very high dimensional and the value

of Ψ is very small.
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4.2.2 Reliability problems with random field material param-

eter models

In this Chapter, ua(·) is considered for PDE’s representing physical systems.

Further, only uncertainty in the material property parameters is considered.

Material property uncertainty is modelled by a random field. The fully general

definition of a real valued random field is given in Definition 1.1.1 in [5]. The

multivariate Gaussian distribution with mean µ and correlation matrix Σ,

denoted by N (µ,Σ), can be used to represent a random field. For example,

spatial correlation of material parameters within a physical domain can be

captured in Σ. Numerical simulation of random fields is typically restricted

to multivariate Gaussian distributions or simple transformations (for example

multivariate log-normal) of Gaussian fields [118].

In this Chapter, as the focus is on the integration technique rather than on

random field simulation, only Gaussian random fields are used. Although a

Gaussian distribution is a potentially questionable choice as a model of soil

properties [118], the numerical analyses presented in Section 4.3 are based

on the problem originally analysed in [360]. The problem in [360] adopts a

Gaussian random field as a model of soil properties. In order to perform the

verification analyses in this Chapter against the results in [360], it was nec-

essary to restrict the input model to a Gaussian random field. Further, the

sampling integration techniques tested in this Chapter are independent of the

method used to generate samples from a random field and as such could be

extended to non-Gaussian random fields. Non-Gaussian random fields with

specified marginal distributions and covariance structures can be simulated

efficiently using the translation process concept, see [160], the methods de-

scribed in [324, 296] and using the methods described in Chapter 3.

For the probabilistic problem in equation (4.2), the selection of a random field

defines a probability distribution over the space of possible inputs to the func-

tion u(·). A random field defined over a d dimensional geometric domain, D

in Rd, is technically infinite dimensional. That is, there is a random vari-

able for each point in the problem domain. To make random field simulation

tractable, it is necessary to discretise the random field. There are two main

methods that are used to discretise random fields for subsequent finite element

analysis, local averaging and orthogonal series expansion methods. Local av-

eraging simulation methodologies compute a single correlated random variable
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for each element in the mesh. Series expansion random field simulation meth-

ods over FEM meshes typically compute a single random field parameter for

each quadrature integral gauss point within each discrete element. For either

case, let the number of discrete points at which the random field is to be

approximated be given by M .

At a high level, random field simulation for finite element analysis proceed in

essentially the same way. For both the locally averaged random field simulators

in [118] and the Karhunen-Loève orthogonal series expansion simulators in

[43], discrete realisations field are produced by generating a vector, γ of M

independent, identically distributed (i.i.d.) standard normal samples. Then,

a transformation, G is applied to γ that enforces the correlation structure

between the random variables, so G : RM → RM .

Consider the particular case:

Gγ 7→ β (4.4)

The vector β contains a set of correlated samples from a standard normal

distribution. To produce the desired output distribution, the β vector can

be transformed to the correct mean and standard deviation. β could also be

transformed from a Gaussian to another related distribution, such as a log

normal distribution [118].

The general transformation G may be expressed in terms of matrix multipli-

cation. The transformation matrix can be found by a variety of methods, for

example, matrix decomposition of the covariance structure on either locally

averaged elements [390, 158], between the Gauss points of an FEM mesh [43]

or by some more general form of the Karhunen-Loève orthogonal series expan-

sion [356, 351]. For Componentwise Metropolis-Hastings sampling all that is

required of the random field sampling methodology is that the components of

γ can be changed individually between subsequent random field simulations.

As this procedure is very general it is not restricted to a particular random

field simulator. Similarly, the direct Metropolis-Hastings procedure discussed

in Section 4.2.5.5 adjusts the entire γ vector in a manner independent of the

choice of the random field simulator represented by G.

The remainder of this section discusses techniques to estimate the integral in

equation (4.2) in the case that the threshold event probability, Ψ, is vanishingly

small.
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4.2.3 Integration by direct Monte Carlo Simulation

The direct Monte Carlo Simulation procedure for RFEM is briefly described

in this Section. This is for both notational consistency and because a di-

rect Monte Carlo stage may be used for the Subset Simulation procedure

described in Section 4.2.6. In combination with finite element analysis, direct

MCS has been used to model uncertain material property parameters, loading

and geometry [118]. The Subset Sampling methodology extends MCS. Only

material property uncertainty is modelled in the analyses presented in Section

4.3. The methodology presented could, however, be applied to loading and

geometry uncertainty as long as discrete samples can be drawn from distribu-

tions modelling these random variables. Geometric uncertainty is discussed in

[141, 325].

In very high dimensional spaces, the well known curse of dimensionality [13]

prevents quadrature techniques from being used to compute the integral in

equation (4.2). Let N be the number of points at which a function to be

integrated is estimated at and M be the dimensionality of the problem. Then

as M increases, the solution of the integral estimated by quadrature converges

to the true solution like O(N−1/M ) (§11, [13]). For finite element problems

with input distributions defined by random fields, the dimensionality of the

inputs is at least M , which is the dimension of the approximation, Ωa, to the

random field Ω. For a locally averaged random field, M is on the order of the

number of elements in the finite element mesh. Integration by quadrature is

thus not viable for rare event random field/finite element analysis.

The simplest method to evaluate a high dimensional integral like equation (4.2)

is Monte Carlo Simulation. From [118, 224], samples ωa are taken uniformly

at random from the approximation to the input distribution and Ψ(ua(ωa))

solved for. Repeating this process, the reliability can be estimated by:

Ψ =

∫
Ω

Ψ(ua(ω))P (dω) ≈ ΨN =
1

N

N∑
i=1

Ψ(ua(ωa,i)) (4.5)

Further, it can be shown that, as a consequence of the Central Limit Theorem

(CLT), the convergence of the approximation in equation (4.5) is O(N−1/2)

[57]. Following [55], this is because as N becomes large, the CLT says that the

ΨN approaches a Gaussian distribution if the samples Ψ(ua(ωa)) are indepen-
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dent and identically distributed (which is the case for Monte Carlo Simula-

tion). Specifically, let σ2 be the variance of Ψ(ua(ωa)). Then as N approaches

infinity, by the CLT, ΨN ≈ N
(

Ψ, σ
2

N

)
. Finally, 95% confidence intervals for

probabilities estimated by MCS can then be calculated using ΨN ± 1.96 σN√
N

[55].

The convergence of equations (4.5) and its associated variance is independent

of the dimensionality of the problem. Unfortunately, when attempting to es-

timate very small probabilities, the convergence rate of MCS is poor. As the

convergence rate improves like 1√
N

, an additional significant figure of accuracy

requires (in base ten) that the sample size is increased by a factor of 102 = 100.

For example, in a typical Civil Engineering design problem, the probability of

failure may be as small as ∼ 10−2 to 10−5 (see §5, [21]). A probability of failure

of ×10−2 would require on the order of N = 106 analyses to achieve an accu-

rate probability estimate by RFEM. For example, the case study presented in

[103] is considered to have a high probability of unacceptable performance (ap-

proximately 0.2× 10−2) for a typical problem and so a full analysis in practice

may require the estimation of much smaller probabilities of failure.

4.2.4 Subset Simulation

Subset Simulation is a useful technique for estimating small probabilities by

calculating a chain of more easily estimated conditional probabilities. Subset

Simulation avoids the poor convergence rate of direct MCS by estimating the

desired probability in terms of a series of conditional probabilities, each of

which converges rapidly. The methodology given here is described at least as

early as [15]. Subsequent related works and developments of Subset Simulation

for structural reliability problems are given in [16, 239, 238, 190].

Let the threshold event of interest be given by T , where T is defined as the

region in the output distribution such that Ψ = χT = 1 as in equation (4.3).

To perform Subset Simulation, it is necessary to be able to define the event T

in terms of a series of more likely events. Specifically, adopting the definition

in [15], denote the monotone sequence of subsets converging to T as:

T1 ⊂ T2 ⊂ · · · ⊂ Tm = T (4.6)

Expressed in terms of set intersections, T = Tm =
⋂m
i=1 Ti for i = 1, . . . ,m.

148



The final subset T is denoted by Tm to make the index notation consistent.

As a useful example of a selection of subsets, consider the probability that

the maximum deformation, v, of a structural system exceeds some threshold

value W . Then a decreasing subset series of failure events could be defined as

Ti = {v > Wi} where W1 < · · · < Wm = W .

Conditional probabilities of the subsets can be used to estimate the probability

of T occurring, which is given by P (T ) = Ψ where Ψ is defined as in equation

(4.2). The subset probability derivation is simple calculation. Essentially,

by basic probability theory definitions, P (Ti+1|Ti)P (Ti) = P (Ti|Ti+1)P (Ti+1).

But, as T is a monotone sequence, P (Ti|Ti+1) = 1 so P (Ti+1|Ti)P (Ti) =

P (Ti+1). An induction argument, given in [15, 16], yields:

P (T ) = P (T1)
m−1∏
i=1

P (Ti+1|Ti) (4.7)

Equation (4.7) states the probability P (T ) can be calculated by the product

of P (T1) and each P (Ti+1|Ti) for i = 1, · · · ,m− 1.

If P (T ) is vanishingly small direct MCS techniques will not be efficient in

calculating the event probability, as described in Section 4.2.3. By careful se-

lection of intermediate threshold levels (the Ti values), a series of intermediate

analyses can be carried out, each of which evaluate the P (Ti+1|Ti) efficiently.

The initial probability P (T1) can be estimated effectively by a direct (or po-

tentially quasi) Monte Carlo approach [15, 16]. T1 can be selected such that

convergence of P (Ti) requires only a comparatively small number of simula-

tions. Sampling from the conditional distributions, P (Ti+1|Ti), can be carried

out by combining Markov Chain Monte Carlo with an additional phase of

accept/reject sampling [15, 16]. Techniques for Markov Chain Monte Carlo

are described in Section 4.2.5. The Subset Simulation accept/reject phase is

described in Section 4.2.6.
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4.2.5 Markov Chain Monte Carlo for high dimensional random

fields

4.2.5.1 Markov Chain Monte Carlo overview

Markov Chain Monte Carlo (MCMC) is not a single technique, but rather a

family of techniques for sampling from complicated distributions. The basic

Markov Chain procedure is to sample from the target distribution by a random

walk, moving between points probabilistically. The probability to transition

from one point to another is given by a factor dependent on the target distri-

bution probability density. MCMC techniques are useful when it is difficult to

sample from a distribution directly. The original Markov Chain Monte Carlo

was the Metropolis-Hastings algorithm [262]. The history of this algorithm is

discussed in [313]. The basic format of all MCMC techniques are very simi-

lar to the Metropolis-Hastings technique. In this Section, after briefly defining

Markov Chains and some of their properties, three Markov Chain Monte Carlo

sampling techniques are described. These are Metropolis-Hastings, Compo-

nentwise Metropolis-Hastings and Gibbs sampling. As the performance of

these three sampling algorithms are compared in Section 4.3 of this Chapter,

it is useful to briefly describe these methods here, with reference to the details

in [144, 55, 266, 311].

Markov Chain Monte Carlo integration relies on the convergence to a sta-

tionary distribution implied by the Fundamental Theorem of Markov Chains

(Theorem 6.2 in [271]). A transition function, Q(·), is defined such that the

Fundamental Theorem of Markov Chains is satisfied. If f(Y ) is a function of

the random variables Y , the expectation E[f(Y )] can be estimated, after N

sampling steps, by:

fN =
1

N

N∑
t=1

f(Yt) (4.8)

where the function f(Yt) is evaluated at a sampled value yt ∈ Yt. The random

samples are sampled using the transition function so that the random sample yt

comes from the distribution Q(yt−1) (see §1.3.2 of [144] for more detail).

For stationary Markov Chains, the Central Limit Theorem holds and the error

of fN can be taken to be normally distributed by fN ≈ N
(
E [f(Y )] , σ

2

N

)
[55].

This is identical to the MCS case, except that the estimate for σ2 is more
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complex for Markov Chains.

The variance of the estimate of E [f(Y )] in equation (4.8) is given by:

σ2 = Var[f(Yi)] + 2
∞∑
k=1

Cov[f(Yi), f(Yi+k))] (4.9)

The presence of the covariance term makes the estimation of the variance of

a Markov Chain Monte Carlo integral substantially more difficult than in the

direct Monte Carlo Simulation case. This is because the covariance term in

equation (4.9) cannot be estimated directly. A detailed discussion of the issues

regarding variance estimation for MCMC is given in [140] and §1.8 to §1.10 of

[55].

From Theorem 3.1 in [140], for increasing k, Γk is is strictly positive, decreasing

and convex. Then the chain variance can be estimated by summing the first

m values of Γk:

σ2 = −ν0 +
m∑
k=0

Γk (4.10)

where Γk = ν2k + ν2k+1 and ν0 = Var[f(Yi)]. The value of m is selected

depending on the variance estimator used. The initial monotone sequence es-

timator selects m such that the Γk sequence are in the initial convex minorant.

That is, m is increased until Γm+1 breaks the convexity of Γ0, . . . ,Γm. In this

Chapter, the initial convex sequence estimator is used to compute all Markov

Chain variances for the numerical analyses presented in Section 4.3.

The Markov Chain Monte Carlo algorithms applied to the numerical Sub-

set Sampling problems in Section 4.3 are presented in the remainder of this

Section.

4.2.5.2 The Metropolis-Hastings algorithm

Let Ω be a space from which random samples are to be drawn and f(ω) be a

distribution proportional to the desired probability distribution P (ω). Given

a symmetric proposal distribution Q(ωi|ωj) = Q(ωj |ωi), the basic Metropolis-

Hastings algorithm proceeds as follows:

1. Let the current sample be ωi ∈ Ω
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2. Generate a new potential sample, ωp, from Q(ωp|ωi).

3. Calculate the acceptance ratio:

α =
Q(ωi|ωp)f(ωp)

Q(ωp|ωi)f(ωi)
=
f(ωp)

f(ωi)
(4.11)

4. If α ≥ 1, then ωp is more likely than ωi and is accepted, so xi+1 is set

to xp.

5. If α < 1, then the potential sample is less likely than ωi. ωp is accepted

with probability α and ωi+1 = ωp. If the sample is rejected, then the

random walk does not transition to a new location and xi+1 = xi.

6. Repeat.

The convergence of Metropolis-Hastings to the stationary distribution π fol-

lows from the discussion in Section 4.2.5.1. The choice of a symmetric proposal

distribution coupled with the acceptance ratio technique guarantees that the

detailed balance condition is satisfied. That this is the case is discussed in

detailed in [72]. Then, as long as sampling is performed over an aperiodic and

irreducible space, ergodic convergence to the stationary distribution follows

[144].

4.2.5.3 Gibbs and Componentwise Metropolis-Hastings sampling

for high dimensional spaces

In high dimensional spaces, Gibbs sampling is often used instead of Metropolis-

Hastings [55]. The basic Gibbs sampling procedure is to carry out the Markov

Chain random walk by re-sampling from only a single probabilistic degree of

freedom per Monte Carlo step. This method is detailed in [134]. Gibbs sam-

pling has two potential advantages. First, as Gibbs sampling does not require

the acceptance ratio to be calculated (§1 of [55]), there is no need to deal with

the problems associated with tuning the acceptance ratio in high dimensional

spaces. This problem is described in [290]. Second, any numerical stability is-

sues associated with estimating joint distribution sample probabilities in high

dimensional spaces can be bypassed. However, componentwise sampling may

exhibit slower convergence than methods which resample the entire sample

vector every iteration [55].
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For a random field with M degrees of freedom, calculating the total sample

probability directly requires that the probability from each of the M marginal

distributions are multiplied together to find the probability from the joint

distribution P (ω ∈ Ω). For a random field simulator that draws samples from

independent marginal distributions before applying some correlation transform

(either by matrix or spectral methods [118, 351]), the joint probability can be

estimated by:

P (ω ∈ Ω) =
M∏
i=1

P (ωi) (4.12)

Unfortunately, equation (4.12) is highly numerically unstable for even a small

number of degrees of freedom. This problem can be resolved by simply taking

log-probabilities, as described briefly in Section 4.2.5.4.

To avoid calculating acceptance ratios in high dimensional spaces, rather

than using Gibbs sampling, many authors adopt Componentwise Metropolis-

Hastings sampling. This method proceeds by performing a Metropolis-Hastings

step for each independent degree of freedom in turn, as in [15, 238, 239]. This

bypasses both the numerical stability issue above and the problems that can be

faced when tuning the acceptance ratio as in equation (4.11) for high dimen-

sional probabilistic spaces. Componentwise Metropolis-Hastings still, however,

requires a much larger number of iterations than direct Metropolis-Hastings

or other more advanced MCMC methods [55].

The problems solved by Gibbs and CMH sampling, primarily avoiding high

dimensional acceptance ratio calculations, are not worth the additional cost

incurred in the slow convergence of these methods for nonlinear FEM prob-

lems, as demonstrated empirically in Section 4.3. For RFEM, each iteration

requires the evaluation of finite element equations. For nonlinear problems,

these FEM evaluations are computationally very demanding and so the goal

of efficient RFEM must be to minimise the number of FEM solutions. The

Metropolis-Hastings methodology, adopted for the test case analyses presented

in Section 4.3, is discussed in Section 4.2.5.5.
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4.2.5.4 Log probabilities for avoiding numerical stability issues in

Metropolis-Hastings

Avoiding Gibbs or Componentwise Metropolis-Hastings sampling requires re-

solving the numerical stability issue described in Section 4.2.5.3. This Section

very briefly describes the log-probability workaround to this problem. Taking

the logarithm of equation (4.12), the joint probability of a particular sample

from the random field becomes:

log (P (ω ∈ Ω)) = log

(
M∏
i=1

P (ωi)

)
=

M∑
i=1

log (P (ωi)) (4.13)

The MCMC acceptance ratio becomes:

logα =

∑M
i=1 log (P (ωp))∑M
i=1 log (P (ωi))

=
M∑
i=1

log (P (ωp))−
M∑
i=1

log (P (ωi)) (4.14)

This simple modification allows for acceptance ratios to be calculated in a

numerically stable fashion as the difference of logarithms.

4.2.5.5 Metropolis-Hastings and random fields for high dimensional

MCMC

As stated in Section 4.2.5.3, Gibbs and Componentwise Metropolis-Hastings

sampling typically converge more slowly than Metropolis-Hastings or other

MCMC methods that perform a random walk by adjusting more than a single

probabilistic degree of freedom per iteration when sampling is computationally

expensive. Although, for example, Metropolis-Hastings may involve no tran-

sition from one sample point to another during a random walk iteration, this

is computationally not a problem for combined Subset Simulation - RFEM

type analyses. If the random walk remains in place, then there is no need to

re-evaluate the FEM equations. Considering computational cost only, as long

as the time taken to find a new random sample is less than the time taken

to evaluate the FEM equations, Metropolis-Hastings will outperform Gibbs

sampling for an entire Subset Simulation - RFEM computation. In Section

4.3, a numerical comparison of Componentwise Metropolis-Hastings sampling

and Metropolis-Hastings sampling is presented.
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This Section details a method for Metropolis-Hastings sampling from a ran-

dom field discretised as per the discussion in Section 4.2.2 suitable for use in

Subset Simulation - RFEM analyses. The random walk procedure adopted for

the analyses in Section 4.3 follows the algorithm in Section 4.2.5.1. Acceptance

probabilities are calculated using the logarithmic formula in Section 4.2.5.4.

The transition function is given by a multivariate Gaussian distribution. Ef-

ficient search through the probabilistic space is performed, with reference to

§6 of [144], by altering the M dimensional γ vector in equation (4.4). That

is, the random stepping is performed on the space of uncorrelated Gaussian

samples given by the vectors γ.

In more detail, let the random field sample at the current stage of the Metropolis-

Hastings sampling be given by βt = Gγt. To calculate βt+1, each of the entries

in γt+1 can be updated before applying G. Specifically, set γt+1 equal to a

random sample from N (γt, σ2I) where I is the M dimensional identity matrix

and σ is a scalar parameter that must be tuned to find an acceptable conver-

gence rate for the MCMC stages. Then each entry γt+1
i is a random sample

from N (γti , σ
2). Finally, given the updated set of uncorrelated Gaussian γt+1

samples, βt+1 is given by:

βt+1 = Gγt+1 where γt+1
i ∼ N (γi, σ

2) ∀i ∈M (4.15)

Such a sampling scheme is obviously irreducible in that the Gaussian transition

function has a non-zero probability to jump from any state to any other state in

a single time step, so that P (i|j) > 0 ∀i, j where i, j are possible configurations

of γ. Further, because of this, the sampling methodology is also aperiodic.

To see this, consider that each state can return to itself in a minimum of

two steps by jumping from one state and then immediately jumping back, i.e.

i→ j → i. Each state can return in three steps by jumping via an intermediate

state k back to itself: i.e. i → j → k → i. As the greatest common divisor

of 2 and 3 is 1, the Markov Chain is aperiodic. Finally, the acceptance ratio

technique of the Metropolis-Hastings method is constructed to ensure that the

detailed balance condition is satisfied and so that the stationary distribution

exists as discussed in Section 4.2.5.2. Then, by the Fundamental Theorem of

Markov Chains discussed in Section 4.2.5.1, the time average of the sampling

methodology will converge to the average over all possible samples for a large

enough number of samples regardless of the initial sample.
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By adjusting the γ vector, rather than adjusting β, the convergence rate of

the integral should improve as the correlation structure of the random field

does not prevent the random walk from finding high probability portions of

the search space (see §6 and in particular Figure 6.1 of [144]).

4.2.6 Subset Simulation accept-reject sampling

To compute the conditional probability in equation (4.7), an additional ac-

cept/reject stage can be added onto the MCMC algorithm. This method is

described in [15]. Modifications to this technique are discussed in [290]. Con-

sider computing the probability P (Ti+1|Ti). After generating a proposal sam-

ple, the sample is required to satisfy Ψi(ua(ω)) = 1. That is, if the proposed

sample causes the solved equations to reach the minimal subset threshold level,

the sample can be accepted. Otherwise, the sample is rejected and ω is left

unchanged. The probability of P (Ti+1|Ti) can then be estimated by:

P (Ti+1|Ti) =
1

K

K∑
j=1

Ψi+1(ua(ωj)) (4.16)

where K is the number of accepted samples. Acceptance or rejection of a

sample (subset accept/rejection) at this stage is distinct from the MCMC

sampling accept/reject stage that is required for both Metropolis-Hastings

and Componentwise Metropolis-Hastings sampling.

4.2.7 Subset Simulation error estimation

In Section 4.2.3, a well known technique for estimating the standard error

for MCS was presented. The estimation of errors for Subset Simulation is

significantly more complicated. The estimation of the standard deviation of

estimated Subset Simulation responses have been presented by others (see §5.3

[16]). The calculation of confidence intervals is, however, more difficult. The

derivation of confidence interval estimates are presented in this Section.

The estimate of P (T ) is, with reference to equation (4.7), made by taking the

product of several estimated subset probabilities. From the discussion in Sec-

tions 4.2.3 and 4.2.5.1, each of the subset probabilities P (T1) and P (Ti+1|Ti) ∀i
are normally distributed by the Central Limit Theorem. Then estimated value
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of P (T ) is distributed according to the product of several normal distribu-

tions:

P (T ) ≈
∏
i=1

N (µi, σ
2
i ); (4.17)

Let Zk be the product distribution formed from random variables Xi so that

Zk =
∏k
i=1Xi. From [152], the expectation and variance of the product of N

independent probability distributions are given by:

E[Zk] =

k∏
i=1

E[Xi]

Var(Zk) = Var(Xk)V ar(Zk−1) + Var(Xk)E [Zk−1]2 + Var(Zk−1)E [Xk]
2

The product of normal distributions is not a normal distribution. Then, to es-

timate confidence intervals for P (T ) it is necessary to calculate the confidence

interval limits for the product distribution.

From §4.7, Theorem 3 and Corollary 4 from [161] and Theorem 3, §4.4 in

[315], the density, fZ(z), for the product Z = XY of two random variables

with probability density fX(x) and fY (y) is given by:

fZ(z) =

∫ ∞
−∞

fY
( z
x

)
fX(x)

1

|x|dx (4.18)

Next, consider the case of the product of k distributions. Let Z1 = X1 and

Zk =
∏k
i=2Xi. Let the density function for any Zi and Xi(xi) be given by

fZi (zi) and fXi (xi) respectively. Then for i = 1, fZ1 (z1) = fX1 (x1). It is

shown in the Chapter Appendix by means of an induction argument that for

(k ≥ 2) ∈ N:

fZk (zk) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fXk

(
zk
wk−1

)[k−1∏
i=2

fXi

(
wi
wi−1

)
1

|wi−1|

]

× 1

|wk−1|
fX1 (w1)dw1 . . . dwk−1 (4.19)

Following from [224] Definition 5.1, the limits for a confidence interval of

1 − α, over the product distribution can be estimated by finding
[
zL, zU

]
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such that:

1− α =

∫ zU

zL
fZ(w)dw (4.20)

The product density function is, in general, asymmetrical. There are multiple

methods to express confidence intervals for an asymmetrical probability distri-

bution. One technique, which will be adopted in this Chapter, is to calculate

confidence intervals with equal probability mass above and below the median.

Let the median of Zk be denoted Z̃k. Then the upper and lower confidence

intervals for Subset Simulation can be found by calculating:

zLk such that

∫ Z̃k

zLk

fZk (wk)dwk =
1− α

2

zUk such that

∫ zUk

Z̃k

fZk (wk)dwk =
1− α

2

where fZk (zk) is given by equation (4.19). Binary search (see [80]) can be used

to rapidly locate the confidence interval limits and the median. For small k,

the integral problems above can be efficiently estimated by quadrature. For

k > 3 or 4, high dimensional integration techniques such as MCS can be

used.

4.2.8 Summary and discussion

The extension of the Random Finite Element Method to include Subset Sim-

ulation, based on [15, 329, 239], was described. A method for applying

Metropolis-Hastings, rather than Gibbs or Componentwise Metropolis-Hastings,

sampling for probabilistic FEM using Subset Simulation when random fields

are present was described. The method presented is not dependent on the par-

ticular random field simulation methodology used. Any of the common field

generators, such as those in [118, 43] or any other reasonable method, could

be used. Further, the extension of Subset Simulation for FEM techniques to

full Metropolis-Hastings sampling should allow for the more advanced MCMC

techniques that rely on adjusting all probabilistic degrees of freedom simulta-

neously to be applied in the future. For example, Hamiltonian Monte Carlo

and other techniques detailed in [55] may be an interesting avenue for future

work. Further, the derivation of the full product density function will allow for

more detailed analysis of Subset Simulation convergence than can be achieved
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by simply evaluating the product distribution variance.

4.3 Applications

4.3.1 Introduction

The theoretical developments in Section 4.2 are tested empirically in this Sec-

tion. Two probabilistic numerical analyses of a footing load on soil are pre-

sented. The general reliability analysis problem described by equation (4.2) is

explored by finite element stress-strain analysis.

The first analysis compares the performance of Subset Simulation to Monte

Carlo Simulation (MCS) and SSFEM results published in §4 of [359] and

[360] on the reliability analysis of a footing on linear-elastic soil. This first

set of analyses will be referred to as the verification study and will serve to

demonstrate that the MCS and MCMC implementations give similar results to

independent results by SSFEM. Further, because the verification study anal-

yses consist of a series of deterministic linear elastic FEM problems, a very

large number of analyses can be completed in a reasonable amount of time.

In contrast, nonlinear FEM analysis is far more computationally demanding.

By carrying out a large number of linear simulations, the convergence char-

acteristics of the MCS and MCMC techniques presented can be compared to

a higher degree of accuracy than can be achieved with plastic analyses. The

results of the verification study analyses are presented in Section 4.3.3.

The second analysis modifies the problem presented in [360] by altering the

constitutive model to an elastoplastic Mohr-Coulomb model. The mean and

standard deviation of the modified material parameters were selected to be

like the typical values encountered in practice. Further, the parameters were

chosen such that the probability of failure using MCS was very small allowing

for the relative performance of Subset Simulation and MCS to be compared.

The second analysis will be referred to as the comparative study. The results

for the comparative study are presented in Section 4.3.4.
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4.3.2 Common problem description - verification and compar-

ative study

4.3.2.1 Problem geometry, random fields and FEM details

The footing problem geometry is a two dimensional rectangle of soil 30 m high

by 120 m wide with a centrally placed load. To match the values in [360], a

deterministic load of q = 200 kPa was applied at the top of the soil over a

width of 10 m for all analyses. The same mesh as that presented in [360]

with 80 elements is used for all analyses. The problem geometry with the

finite element mesh overlaid is shown in Figure 4.1. As in [360], a plane strain

model is used for all analyses.

Technically, including random material property parameters disrupts the re-

flective symmetry of the problem. However, for comparison with [360], only

half of the problem domain was meshed for the analyses in this Chapter. This

does also raise the question as to whether two-dimensional modelling is appro-

priate for this scenario. The plane strain analysis effectively assumes perfect

infinite ‘into-the-page’ correlation of the spatially random material properties.

For small vertical deformations of the footing (compared to the scale of fluc-

tuation of the material property parameters), such an assumption is unlikely

to cause large model errors. Small approximation errors regarding the phys-

ical properties of soils can be considered to be negligible for the purposes of

comparing different probabilistic reliability estimation techniques.

Convergence tolerance for all finite element analyses was set at 1 × 10−6. A

maximum of 5000 Newton-Raphson iterations was adopted (mainly relevant

for the nonlinear comparative study analyses). The y-displacements were fixed

to 0 along the base of the problem domain and the x-displacements were fixed

to 0 along the left and right edges. With these parameters, the maximum

displacement u = 54.2 mm occurs at the centre of the loaded area, matching

the result in [360].

All random fields are modelled as independent from one another in all anal-

yses. All random fields were simulated using the same correlation structure.

Specifically, the distribution of material property inputs was taken to be a mul-

tivariate Gaussian, N (µ,Σ), with an exponentially decaying autocorrelation
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q = 200 kPa

Figure 4.1: Footing problem geometry and mesh for both the verification and com-
parative studies.

function, from [118]:

C(τx(p1, p2), τy(p1, p2)) = exp

(
−τx
θx
− τy
θy

)
(4.21)

where p1 and p2 are the (x, y) coordinates of two points within the random

field. τx(p1, p2) = |p2x−p1x|, τy(p1, p2) = |p2y−p1y|, that is, τx and τy are the

l1-norm distance between points along each axis. In this Chapter, the variance

of a random parameter is expressed in terms of coefficient of variation, δ, which

is the ratio of the standard deviation σ and the mean µ so δ = σ
µ .

The material property parameters and coefficients of variation were taken from

the typical ranges for clays listed in Table 1 of [297]. The parameters were

selected to ensure that the calculated probability of failure would be small

enough that a Subset Simulation, rather than direct MCS, would be required

to estimate the system reliability. A slight dilation angle, 0.1°, was adopted

for all analyses.

For the probabilistic finite element analysis, each discrete simulation was gen-

erated by sampling values, ω, from the appropriate random fields and then

constructing the stiffness matrix, K(ω). After assembling K(ω), the finite

element equations, K(ω)u(ω) = f are solved for u(ω) = K−1(ω)f(ω).

A parallel implementation of the eigenvalue random field simulator described

in [158, 118] was used. In particular, [158] details a method to accurately sim-

ulate Gaussian random fields with positive definite correlation functions even

in the presence of numerically singular covariance matrices by identifying lin-

ear dependencies in the random field correlation structure. As the correlation

function presented in equation (4.21) is trivially positive definite and the ran-
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dom field generator described in [158] was used, singular and non-positive

definite covariance matrices were not an issue for the analyses presented in

this Chapter.

Numerical issues resulting from the use of Gaussian distributions for non-

negative material property parameters were handled by truncating the distri-

butions. If the numerical value sampled were such that the numerical problems

were unstable and could not be solved, these results were discarded and the

Markov Chain (if being used) did not accept the next step. For the parameters

tested, the probability to sample a value causing a truncation was several or-

ders of magnitude below the probability of interest and as such the error caused

by such truncation was much smaller than the confidence intervals bounding

the mean response. This situation could be improved by the application of

non-Gaussian random field models.

All code was written in C++ using freely available software libraries. Parallel

random field simulation code was written using PETSc [26, 25, 24] (nonlinear

matrix solvers, in particular Jacobian-Free Newton-Krylov methods) and El-

emental [303] (dense linear algebra). The finite element simulation, including

the plasticity model, code is a part of the MOOSE framework [131] which also

makes use of PETSc.

For the elastic analyses, the elastic strain energy should remain positive def-

inite at the scale of elements within the mesh. This is because the Young’s

Modulus and Poisson’s Ratio are restricted to be positive in all simulated

cases, forcing positivity of the element stiffness matrices. This should hold in

all cases (up to machine precision and assuming no errors in the software used).

Further, for elastoplastic analysis, the plastic energy dissipation is required to

remain positive definite in the plastic domain. The software used for all analy-

ses, the MOOSE framework [131], employs a return mapping scheme designed

to ensure the physically correct behaviour of strain hardening materials (as

used in the numerical analyses presented in this Chapter). The return map-

ping scheme is described in detail in the MOOSE framework documentation

in [133].

All Metropolis-Hastings and Componentwise Metropolis-Hastings sampling

adopted a Gaussian transition probability distribution with a standard devi-

ation σ = 0.25 in the space of uncorrelated, standard normal samples. These

samples form the entries of γ in equation (4.4).
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4.3.2.2 Reliability assessment limit state function

Both studies assess the probability P (u(ω) > u0) = P (T ) where ω represents

the random dimension of the problem, u(ω) is the maximum displacement at

the centre of footing area and u0 is a limit state deformation of interest. As

in equation (4.3), the limit state reliability can be represented as an indicator

function:

Ψ(u(ω)) = χT =

1 if u(ω) > u0

0 otherwise
(4.22)

For comparison with the results published in [360], the following limit state

deformations were used to calculate P (u(ω) > u0) for all analyses: u1
0 =

60 mm, u2
0 = 80 mm, u3

0 = 100 mm, u4
0 = 120 mm, u5

0 = 150 mm. For Subset

Simulation in particular, the notation P (Ti) = P (u(ω) > ui0) will also be

used. Additionally, from [360], the expected P (u(ω) > u0) should decrease

by approximately one order of magnitude for each increase in the limit state

function value, i.e. P (Ti+1) ≈ 10−1 × P (Ti.) From this point on in this

Chapter, the notation P (u(ω)) > u0) will be written P (u > u0).

4.3.3 Verification study - linear elastic footing

4.3.3.1 Problem description

For the verification study, the performance of Subset Simulation and MCS was

compared to SSFEM results published in [360]. A linear elastic material model

was adopted with the properties given in Table 4.1. Note that the reliability

analysis results presented in [360] are expressed as reliability indices, β. In

this Chapter the probability for the displacement, u, to exceed the limit state

displacement u0 will be preferred and so the results from [360] are presented

here after conversion to probability, P (u > u0). Both β and P (u > u0) are

simple transforms of each other. The conversion is P (u > u0) = 1 − Φ(β)

where Φ is the cumulative standard normal distribution, see §13.6 in [21] for

detailed discussion.

The following analyses were conducted for the verification study. First, a

comparison of SSFEM and MCS was conducted. A large number (1× 106) of

FEM simulations were carried out. The results of these analyses were used to
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estimate P (u > u0) for each u0 = {60, 80, 100, 120, 150} mm. These were then

compared to the range of results presented in [360] to check that there was a

reasonable agreement. It is worth noting that [360] argues that the accuracy

of the SSFEM analysis is expected to decrease for increasing u0. From the

discussion in Section 4.2.3, it was also anticipated that a larger number of

FEM analyses will be required for MCS to accurately estimate reliabilities for

larger u0, that is, further from mean output responses.

The verification study next compared the performance of direct MCS with

Subset Simulation. Three MCMC samplers were tested: Metropolis-Hastings

(MH), Componentwise Metropolis-Hastings (CMH) and Gibbs sampling. These

three samplers were detailed in Section 4.2.5. The performance of MCS and

Subset Simulation was evaluated by estimating the number of runs required

to reach a particular relative accuracy of the estimated mean value for each

u0 = {60, 80, 100, 120, 150} mm.

Parameter
Symbol
(Units)

Mean, µ
Coeff. of
Variation,

δ

Applied load q (kPa) 200 NA
Young’s Modulus E (kPa) 50 0.2

Poisson’s Ratio ν (NA) 0.2 NA
Correlation length (x) θx (m) ∞ NA
Correlation length (y) θy (m) 30 NA

Table 4.1: Parameters used for the Verification Study. Note: NA = Not applicable.
These parameters match those published in [360].

4.3.3.2 Numerical results

Monte Carlo Simulation was used to establish base line results for the ver-

ification study. A single MCS analysis of one million FEM simulations was

conducted. Trace plots showing the convergence of the MCS simulation are

presented in Figure 4.3. The numerical values of the MCS simulation values

for P (u > u0) for N = 1× 105 and N = 1× 106 FEM simulations are listed

in Table 4.2. The accuracy of the estimates in Table 4.2 are given as relative

errors on the 95% confidence intervals. The confidence intervals were calcu-

lated by the methods described in Section 4.2.3. The relatives errors for MCS
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are expressed in terms of the 95% confidence intervals as percentages:

Rel. Err. (%) =
1.96× σN√

N

P (u > u0)
× 100 (4.23)

u0 MCS - 1× 105 FEM runs MCS - 1× 106 FEM runs
(mm) P (u > u0) (± Rel Err.) P (u > u0)(± Rel Err.)

60 2.79× 10−1 (± 9.97× 10−1 %) 2.78× 10−1 (± 3.16× 10−1 %)

80 1.40× 10−2 (± 5.19× 100 %) 1.44× 10−2 (± 1.62 × 100 %)

100 7.90× 10−4 (± 2.20× 101 %) 9.09× 10−4 (± 6.50× 100 %)

120 4.00× 10−5 (± 9.80× 101 %) 1.21× 10−4 (± 1.78× 101 %)

150 1.00× 10−5 (± 1.96× 102 %) 1.20× 10−5 (± 5.66× 101 %)

Table 4.2: Summary of Monte Carlo Simulation results (1× 105 and 1× 106 FEM
simulations) for linear elastic verification study. Probabilities P (u > u0) are ex-
pressed as factors between 0 and 1. Relatives errors are calculated for 95% confidence
intervals, see equation (4.23).

Figure 4.2 compares the MCS analysis for both 1× 105 and 1× 106 simulations

in Table 4.2 to SSFEM results published in Table 4 of [360]. Note that multiple

values are provided for each u0 in [360]. Each of these published values has

been marked with a triangle on the plot. The MCS values are shown as 95%

confidence interval bands. Figure 4.2 also displays the 95% confidence interval

bands for Subset Simulation by MH, CMH and Gibbs sampling using 1× 105

FEM simulations at each subset level. The confidence intervals for Subset

Simulation were calculated by the method detailed in Section 4.2.7.

The convergence versus number of FEM simulations is shown in Figure 4.3,

which demonstrates the estimated mean and 95% confidence intervals for

MCS, MH, CMH and Gibbs sampling for each u0. Note that in Figure 4.3,

the x-axis labels are the number of FEM solutions, N , but the axis scale is
1√
N

as this scale best demonstrates the convergence rate of MCS. The Sub-

set Simulation results in Figure 4.3 are shown for a large number of runs to

demonstrate that the estimates converge for increasing N . Additionally, to

compare to the convergence of MCS, note that the number of runs for Subset

Simulation is expressed as a cumulative total. That is, the accuracy for Subset

Simulation is estimated assuming that the same number of runs was used for

each earlier level. For example, an estimate of P (u > u3
0) with N = 3× 103

is calculated assuming 1× 103 runs were used for each P (u > u1
0), P (u > u2

0)

and P (u > u3
0). In practice, a Subset Simulation Markov Chain analysis would
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Figure 4.2: Verification study - SSFEM, MCS and Subset Simulation reliability anal-
ysis comparison. All probabilities expressed as a factor between 0 and 1. SSFEM
results are from the results published in Table 4 [360], each published value is drawn
as a single triangle. MCS and Subset Simulation values are shown for 95% confidence
intervals. MCS values are shown for 1× 105 and 1× 106 total FEM simulations.
Subset Simulation values are shown for 1× 105 FEM simulations at each level u0.

more likely run until a fixed tolerance or number of simulations was met. This

approach is used for the comparative study. For the verification study, how-

ever, a large number of simulations was used to demonstrate the convergence

of the sampling methodologies.
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(f) Legend: All plots

Figure 4.3: Verification Study - MCS vs Subset Simulation convergence. The x-
axis for all plots shows labels for N = number of FEM simulations with scale 1√

N
.

Shaded areas indicate 95% confidence interval regions for each sampling methodology
(MCS, MH, CMH, Gibbs). The number of FEM simulations for Subset Simulation is
calculated as a cumulative total for each Ti+1|Ti, including N for initial MCS step,
T1.
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4.3.3.3 Discussion

The results of the verification study indicate that SSFEM, MCS and Subset

Simulation all converged to similar estimates P (u > u0) for each u0. MCS and

SSFEM both perform well for closer to mean responses, e.g. for u0 = 60 and

80 mm. For further from mean responses, the performance of both MCS and

SSFEM degrade. The poor convergence of SSFEM for far from mean responses

is to be expected based on the discussion in [360]. The worsening performance

of MCS far from the mean is also expected, based on the discussion in Section

4.2.3 of this Chapter.

With reference to Figures 4.2 and 4.3, for u0 = 80 mm MCS clearly out-

performs Subset Simulation. However, for u0 = 100 mm, Subset Simulation

begins to outperform MCS. For u0 = 120 and 150 mm, Subset Simulation

performs significantly better than MCS. These empirical results support the

anticipated response that Subset Simulation should converge more rapidly

than MCS for far from mean responses. It is noted that for the linear elastic

analyses, there is no significant variation in the run time to solve each FEM

simulation and so the total number of simulations is an adequate measure of

the performance.

For Subset Simulation, the choice of sampling methodology was observed to

be significant. MH was shown to converge the most rapidly and exhibited

the least oscillation about the estimated response. Gibbs sampling displayed

the second best performance, with similar but slightly worse convergence than

MH. Although CMH did eventually converge to the same estimated value

as MH and Gibbs sampling for each u0, the performance was significantly

worse. The fluctuations about the estimated value were significantly higher.

Further, presumably because the CMH chains mixed poorly, when estimating

P (Ti+1|Ti), a large number of simulations had to be conducted. This is in

contrast to the more rapid convergence displayed by both MH and Gibbs

sampling.

Overall, it was observed that SSFEM, MCS and Subset Simulation converged

to similar values for the estimated probability to exceed the limit state thresh-

old. For further from mean responses, Subset Simulation converged more

rapidly than MCS. MH was found to be the most efficient MCMC methodol-

ogy, followed by Gibbs and then CMH sampling.
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4.3.4 Comparative study - elastoplastic soil

4.3.4.1 Problem description

The comparative study modifies and extends the problem from the verifica-

tion study to include an elastoplastic constitutive model describing the onset

of yield within the soil. The elastic parameters, Young’s Modulus and Pois-

son’s ratio are modelled using random fields. In addition, the parameters for

the yield state are also modelled as random fields within the soil. The use

of multiple random fields in this manner is not a particular challenge for a

sampling-type methodology (e.g. MCS and MCMC) assuming that a deter-

ministic solution can be evaluated for each sample. The particular material

parameters used for the analyses presented were selected to ensure that the

probability of failure as calculated by MCS would be very low in order to test

the relative performance of Subset Sampling. Further, the material parameters

were selected to be within the ranges typical of a realistic soil.

The elastoplasticity model used is a cap-smoothed variant of the Mohr-Coulomb

model, detailed in [2]. Although this model is the simplest of those commonly

used in the engineering of soils (see [272]), it is sufficiently complicated for

testing the performance of MCS and Subset Simulation. Further, the tech-

niques presented in this Chapter could be extended to other models. From

§7 in [272], the basic Mohr-Coulomb model says that if the shear stress, τ ,

reaches a critical value on any plane within the material then yield will occur.

The yield condition is given by:

τ = σ tan(φ) + c (4.24)

where σ is the normal stress to the given plane, φ is the internal friction angle

and c is the material cohesion. The parameters φ and c define the onset of

yield within the material. For numerical stability, the analyses presented also

include a slight dilation angle ψ which causes the material to harden while

yielding, see §8 of [272]. The plasticity model used in the analyses is described

in the MOOSE framework software [131] documentation detail in [132]. In

particular, it is noted that the Mohr-Coulomb framework adopted uses a non-

associated flow rule if the dilation angle is not equal to the friction angle (as

is the case for the analyses in this Chapter).
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For the simulations, the random field variables are stored at the finite element

mesh integration points. As FEM is an element-scale method, the pointwise

positive definiteness guarantees that are required can only be made on the

scale of the mesh elements. In effect, the choice of a mesh type discretisation

is equivalent to filtering out of high frequency fluctuations of the random field.

Such approximations are necessary when translating mathematical techniques

to practical numerical algorithms.

The parameters used for the comparative study are summarised in Table 4.3.

The correlation lengths chosen were selected based on the typical values in

[194] and the fact that the critical correlation length tends to be on the di-

mensional scale of the problem domain [118].

The Mohr-Coulomb parameters were chosen to be similar to the values found

for real clays. For example, [387, 298] find mean values of c = 36 kPa and

φ = 25°. The analyses in this Chapter have increased the cohesion value to

100 kPa to ensure that the probability of failure is small enough to test whether

Subset Simulation can outperform MCS. Although 100 kPa is approximately

three times larger than the values reported in [387, 298], it is equal to the value

used in [116] and as such is within the region of typical values used for similar

problems. The coefficients of variation adopted for c and φ are also typical for

footing problems of the type analysed in this Chapter, see also [71, 116].

Parameter
Symbol
(Units)

Mean, µ
Coeff. of
Variation,

δ

Applied load q (kPa) 200 NA
Young’s Modulus E (kPa) 50 0.2

Poisson’s Ratio ν (NA) 0.2 NA
Correlation length (x) θx (m) 30 NA
Correlation length (y) θy (m) 10 NA

Cohesion c (kPa) 100 0.2
Friction Angle φ (Degs.) 25 0.2
Dilation Angle ψ (Degs.) 1 NA

Table 4.3: Parameters used for the Comparative Study. Note: NA = Not applicable.

The comparative study assessed the relative performance of MCS and Subset

Simulation by MH, CMH and Gibbs sampling for the nonlinear FEM problem

described. The computational complexity of elastoplastic FEM problems is

much higher than for linear elastic analyses. Then, for sampling-based prob-
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ability estimation, the number of FEM simulations can be expected to be the

time critical component of rare event simulation. The introduction of mate-

rial yielding will induce multimodality in the output distribution not present

in the verification study, decreasing the ability of the Markov Chains to mix

easily when compared to the linear elastic case.

The aim of the study was to confirm whether Subset Simulation could converge

more quickly than MCS for small probability of failure problems. The study

also aimed to empirically (i.e. by observation) confirm the expected result

that MH should converge more rapidly then CMH or Gibbs. This result was

expected for two reasons. First, MH outperformed both MH and Gibbs for the

verification study. Second, the more complex shape of the output distribution

may prevent componentwise samplers from being able to efficiently explore

the state space.

The comparative study was conducted to more closely match the way a real

analysis might proceed. First, MCS was run to estimate P (u > 60 mm) to a

fixed relative error, see equation (4.23), of 1%. In the verification study, each

subset level probability was estimated assuming each earlier level had used

the same number of simulations. For the comparative study, each subset level

MCMC estimate was made using the fixed accuracy estimate for P (u(ω) >

60 mm). Each MCMC analysis was run as a single chain for 1× 105 FEM

simulations.

To check the results, MCS was run for a total of 1× 106 simulations. For anal-

ysis in practice, running a very large MCS analysis as well as Subset Simulation

would defeat the purpose of using Subset Simulation at all. The MCS analysis

with 1× 106 FEM simulations was only intended to confirm that Subset Sim-

ulation did indeed converge to a reasonable result and indicate that Subset

Simulation can therefore perform well in practice. For nonlinear FEM analysis,

the time to solve each discrete FEM problem can vary significantly depending

on the input parameters. By fixing the number of simulations allowed, the

total run time of each of the Subset Simulation MCMC methodologies can be

compared.
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4.3.4.2 Numerical Results

The initial 1% fixed tolerance MCS analysis required 1.2× 105 simulations.

For 1.2× 105 simulations, the probability to exceed u0 = 60 mm was P (T1) =

0.257 ± 0.96%. This value was used to estimate each subsequent P (Ti+1|Ti)
for Subset Simulation. All Subset Simulation results presented use this fixed

value of P (T1) for 1.2× 105 simulations for all estimated P (Ti) for i > 1.

Figure 4.4 demonstrates the estimated probabilities for each u0 after complet-

ing all FEM simulations. Probability estimates are expressed as 95% confi-

dence interval regions. The results for Subset Simulation in Figure 4.4 were

calculated using 1× 105 FEM simulations for all Subset Levels. The num-

ber of runs per subset level were counted cumulatively. For example, the

estimated values for P (u > 100 mm) were found using a total of 3.2× 106

FEM simulations. These 3.2× 106 runs are the total of 1.2× 106 MCS runs

completed to estimate P (u > 60 mm), followed by 1.0× 105 MCMC runs

for P (u > 80 mm) and finally 1.0× 105 MCMC runs for P (u > 100 mm).

Note that for the probability to exceed u0 = 150 mm, random sampling by

MCS failed to detect a single event in 1× 106 iterations. Thus, the estimated

probability P (u > 150 mm) by MCS is less than 1 in 1× 106.
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Figure 4.4: Comparative study - MCS and Subset Simulation reliability analysis
convergence comparison. All probabilities expressed as a factor between 0 and 1. MCS
and Subset Simulation values are shown for 95% confidence intervals. MCS values
are shown for 1× 105 and 1× 106 total FEM simulations. Note that for 1× 105,
no displacements were detected greater than 120 mm. For 1× 106 MCS simulations,
no displacements were detected greater than 150 mm. Subset Simulation values are
shown for fixed 1% relative error for P (u > 60 mm) and 1× 105 FEM simulations at
each subsequent u0 level.

Figure 4.5 shows trace plots of the mean and 95% confidence regions for each
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u0 as estimated by MCS, MH, CMH and Gibbs sampling. Note that, as in

Figure 4.3, the x-axis labels are the number of FEM solutions, N , but the axis

scale is 1√
N

as this scale best demonstrates the convergence rate of MCS.
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Figure 4.5: Comparative study - MCS vs Subset Simulation convergence. The x-axis
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N
. Shaded

areas indicate 95% confidence interval regions for each sampling methodology (MCS,
MH, CMH, Gibbs). N for Subset Simulation was calculated as a cumulative total for
each Ti+1|Ti, including N for initial MCS step, T1.
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Figure 4.6 compares the convergence and simulation time for each sampling

methodology. The relative efficiency of each sampling methodology is ex-

pressed in terms of the reduction in the width of the 95% confidence intervals

versus simulation time. The average simulation time for each MCS analysis

does not vary significantly as the sampler is likely to run many analyses in the

more numerically stable (lower output displacement) regions of the sample

space. More numerically stable samples require less computational resources

for the solver to converge. By contrast, the MCMC samples for far from mean

u0 values sample more frequently from less numerically stable parts of the

sample space and so each discrete FEM problem is likely to require more time

to solve. In Figure 4.6, relative efficiency is calculated by taking half of the

average 95% confidence interval width and multiplied by the normalised simu-

lation time. Simulation times are normalised such that 1× 105 MCS analyses

have an average run time of 1 unit. Then, in Figure 4.6, higher efficiency is

indicated by lower values on the y-axis as reducing confidence interval width

and decreasing run time both lower the value on the y-axis.
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Figure 4.6: Comparative study - MCS and Subset Simulation reliability analysis
comparison. Computational complexity is expressed as average confidence interval
width times normalised average simulation time. Simulation times are normalised so
that 1× 105 MCS analyses have a time of 1 unit. Higher values on the y-axis indicate
less efficient sampling methodologies.

4.3.4.3 Discussion

As in the verification study, the comparative study found that Subset Sampling

was able to estimate far from mean responses more efficiently than MCS.

However, MCS requires less computational effort to estimate P (u > u0) for
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small u0. Further, as in the verification study, it was found that Metropolis-

Hastings sampling was the most efficient sampling methodology tested for

Subset Simulation combined with nonlinear finite element analysis, followed

by Gibbs and then Componentwise Metropolis-Hastings sampling.

With reference to Figures 4.4 and 4.5, all sampling methodologies converged

to similar values for each u0. However, the performance of MCS degraded

rapidly and was not effective for estimating either P (u > 120 mm) or P (u >

150 mm). For Subset Simulation, MH and Gibbs sampling displayed very

similar convergence rates. The slightly faster convergence of MH is likely

because the Gibbs sampler may take larger jumps than the MH sampler and

so would be more likely to jump to a sample that would be rejected for not

having enough displacement to remain in the current minimum subset level.

CMH exhibited slower convergence than the other methods. This was possibly

because the CMH sampler was unable to mix through the state space as quickly

as MH of CMH. The more oscillatory behaviour shown by CMH in Figure

4.5 suggests that a large amount of simulations were spent above the limit

state followed by a large number of simulations below the limit state. Hence,

although the CMH sampler did give similar mean estimates for P (u > u0) as

the other samplers, the oscillations prevented convergence of the confidence

intervals.

Figure 4.6 demonstrates that for u0 = 80 mm and u0 = 100 mm, MCS was

more efficient than Subset Simulation. This is interesting because the proba-

bility P (u > 100 mm) was found to be approximately 1× 10−4 which is still

quite small. This is approximately one order of magnitude greater than 1√
N

for N =1× 105 simulations, which was about the number of simulations used

to find a relative accuracy of 1% for P (u > 60 mm). For all u0 > 100 mm,

however, all Subset Simulation MCMC samplers were more efficient than di-

rect MCS. Figure 4.6 additionally demonstrates that MH was found to be

slightly more efficient than Gibbs sampling. The lower efficiency of CMH is

likely because it accepts transitions more often than MH or Gibbs sampling

and therefore spends a large number of FEM analyses computing far from

mean (i.e. difficult to solve) FEM problems. Gibbs sampling is more likely

to sample regions of the state space with low displacements than either MH

or CMH. MH sampling, on the other hand, is more likely to spend a large

number of cycles searching for a sample that will be accepted. In the context
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of nonlinear FEM, each sample evaluation is very computationally expensive.

It is therefore reasonable to expect that it would be more efficient to spend

slightly more time searching for a suitable FEM sample before evaluating the

sample, rather than accepting a very large number of samples (as in CMH).

The discussion in §4.5 of [16] discusses how the transition acceptance probabil-

ity, see equation (4.11), tends to zero as the dimension of the random samples

vector goes to infinity.

The analyses in the comparative study suggest that as large a number as

possible of probabilistic degrees of freedom in the random vector should be

adjusted as a batch per iteration without altering so many degrees of freedom

that the transition probability becomes vanishingly small.

4.4 Summary and conclusions

This Chapter discussed an algorithm, Subset Simulation, suitable for estimat-

ing very small probabilities of failure for probabilistic reliability problems with

high dimensional, autocorrelated stochastic input spaces. Subset Simulation

and Markov Chain Monte Carlo improves on direct Monte Carlo Simulation

by reducing the number of discrete samples required to estimate the system

reliability, without sacrificing the ability of direct MCS to find the critical fail-

ure mechanisms. Markov Chain Monte Carlo techniques suitable for use with

Subset Simulation combined with nonlinear finite element analysis were pre-

sented. Further, a derivation of confidence intervals for the Subset Simulation

mean estimate error probability distribution was presented.

The theoretical developments were tested numerically in Section 4.3. Both a

linear and a nonlinear version of a probabilistic footing problem with spatially

autocorrelated material property parameters were analysed by FEM. In the

linear analysis, the performance of the Stochastic Finite Element Method was

compared to direct Monte Carlo Simulation and Subset Simulation. While all

three methods converged to similar values, Subset Simulation was found to be

the most efficient technique for estimating far from mean responses. For the

nonlinear analysis, an elastoplastic material model was introduced. Subset

Simulation and Monte Carlo Simulation were compared and, again, Subset

Simulation was found to be more efficient than Monte Carlo Simulation when

estimating the far from mean structural response.
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It is also worth noting that the efficiency assessment has been made by consid-

ering only a simple reliability quantity of interest (in particular, the threshold

indicator function). If a more complicated reliability measure was used for

each simulation, such as Factor of Safety, the performance of Subset Simula-

tion relative to Monte Carlo for far from mean responses would be degraded.

This is because the computational complexity of evaluating such a measure

would increase as the degree of failure increased (for nonlinear models). The

average complexity of evaluation of a Quantity of Interest will be fixed for a

direct Monte Carlo simulation. As such, Subset Simulation may not be more

efficient than direct Monte Carlo in some cases [193]. Investigation of these

issues would be an interesting avenue for future work.

Three different Markov Chain Monte Carlo samplers were tested. Specif-

ically, the performance of Metropolis-Hastings, Gibbs and Componentwise

Metropolis-Hastings were compared on the numerical problems above. Metropolis-

Hastings was found to be the most effective MCMC sampler used in all analy-

ses, followed by Gibbs and then by Componentwise Metropolis-Hastings sam-

pling.

Improved Markov Chain Monte Carlo techniques may also be interesting av-

enues for future research. As Metropolis-Hastings was found to be more effi-

cient for nonlinear finite element problems than either of the componentwise

samplers tested, the number of potential MCMC samplers available for Sub-

set Simulation increases. In particular, Hamiltonian Monte Carlo techniques

may possibly improve the rate of convergence for subset level simulations [55].

Methods to reduce the rejections during subset sampling, outlined in [290],

would also potentially be useful.

A further interesting avenue for future work would be a more detailed consid-

eration of the influence of spatially random fields on the positive-definiteness

of elastic strain and plastic dissipation energies. The discretisation of spa-

tially autocorrelated random fields on the level of finite element mesh inte-

gration points serves to effectively filter out high frequency field fluctuations.

To address positive definiteness issues, the scale of fluctuations of random

field models of material parameters would have to be considered. In par-

ticular, it would be interesting to analyse the impact of the choice of random

field discretisation (basis functions and quadrature points) on pointwise energy

constraints. This could potentially be assessed using random field threshold
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crossing probabilities, as discussed in [5], as a means to explore the likelihood

of material parameter fluctuations into values that would cause inadmissible

energy states.

By combining Subset Simulation with the Random Finite Element Method,

it is possible to compute small probabilities of failure for complex problems.

The computational complexity limits imposed by the solution of the finite

element problems are still, however, challenging. It will be necessary to ap-

ply advances in computational techniques and numerical methods to address

stochastic problems of increasing complexity.

Chapter 4 Appendix: Proof of equation (4.19) - a k-

fold product distribution density function equation

The proof of equation (4.19) proceeds by a simple induction argument. The

probability of the product of two random variables, Z = XY is given in

equation (4.18) as, after reorganising:

fZ(z) =

∫ ∞
−∞

fY
( z
x

) 1

|x|f
X(x)dx (4.25)

where fX(x), fY (y) and fZ(z) are probability density functions for X,Y, Z

respectively.

Let Zk be the product distribution formed from random variables Xi so that

Zk =
∏k
i=1Xi. Then Z1 = X1 and Zi = XiZi−1 for 1 < i ≤ k. Let the

density function for any Zi be fZi (zi) and the density function for any Xi be

fXi (xi). Also, for i = 1, fZ1(z1) = fX1(x1). It will be shown that the product

probability density for k distributions can be written, for k ≥ 2:

fZk (zk) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fXk

(
zk
wk−1

)[k−1∏
i=2

fXi

(
wi
wi−1

)
1

|wi−1|

]

× 1

|wk−1|
fX1 (w1)dw1 . . . dwk−1 (4.26)

Starting with the base case, for k = 2, equation (4.25) gives:

fZ2,?(z2) =

∫ ∞
−∞

fX2

(
z2

w1

)
1

|w1|
fX1 (w1)dw1 (4.27)
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where x1 has been re-written as w1. Expanding equation (4.26) for k = 2

gives:

fZ2 (z2) =

∫ ∞
−∞

fX2

(
z2

w1

)
1

|w1|
fX1 (w1)dw1 (4.28)

Note that the terms in the product
∏k−1
i=2 do not appear in equation (4.28)

because (k − 1 = 2 − 1) < (i = 2). Then, from equations (4.27) and (4.28),

fZ2,?(z2) = fZ2 (z2) so equation (4.26) is true for k = 2.

Next, assume equation (4.26) is true for k = j. Then, for k = j + 1:

fZj+1(zj+1) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fXj+1

(
zj+1

wj

)[ j∏
i=2

fXi

(
wi
wi−1

)
1

|wi−1|

]

× 1

|wj |
fX1 (w1)dw1 . . . dwj

and, using equation (4.25):

fZj+1,?(zj+1) =

∫ ∞
−∞

fXj+1

(
zj+1

wj

)
1

|wj |
fZj (wj) dwj (4.29)

Using the induction hypothesis that equation (4.26) is true for k = j, equation

(4.29) can be written:

fZj+1,?(zj+1) =

∫ ∞
−∞

fXj+1

(
zj+1

wj

)
1

|wj |

×
∫ ∞
−∞
· · ·
∫ ∞
−∞

fXj

(
wj
wj−1

)[j−1∏
i=2

fXi

(
wi
wi−1

)
1

|wi−1|

]

× 1

|wj−1|
fX1 (w1)dw1 . . . dwj−1dwj

Reorganising:

fZj+1,?(zj+1) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fXj+1

(
zj+1

wj

)
×
[
j−1∏
i=2

fXi

(
wi
wi−1

)
1

|wi−1|

]
fXj

(
wj
wj−1

)
1

|wj−1|
1

|wj |
fX1 (w1)dw1 . . . dwj
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Finally, collecting terms:

fZj+1,?(zj+1) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fXj+1

(
zj+1

wj

)[ j∏
i=2

fXi

(
wi
wi−1

)
1

|wi−1|

]

× 1

|wj |
fX1 (w1)dw1 . . . dwj (4.30)

From equations (4.29) and (4.30), fZj+1,?(zj+1) = fZj+1(zj+1). Then, as equa-

tion (4.26) is true for the base case k = 2 and for the inductive case k = j+ 1,

equation (4.26) is true for all k ∈ N, k ≥ 2 by induction.
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Chapter 5 Overview

Key developments in Chapter 5 include:

• Section 5.2 provides background material on Deep Learning with Artifi-

cial Neural Networks (ANNs), including both feedforward and Recurrent

Neural Networks (RNNs).

• Section 5.3 details an original contribution: a method for using ANNs

as surrogate models for complicated numerical PDE solvers, for exam-

ple Finite Element Methods, for both time dependent and independent

problems. The proposed surrogate model method is used to accelerate

the convergence of Monte Carlo based Uncertainty Quantification.

• Section 5.3.4 studies the theoretical computational complexity of the

proposed Monte Carlo simulation acceleration method.

• Section 5.4 presents a number of case study analyses. A linear random

boundary value problem and nonlinear initial value scalar PDE problem

is analysed. Suitable training schemes and architectures for ANN PDE

surrogates are demonstrated.

5.1 Introduction

This Chapter will demonstrate that modern Machine Learning techniques can

be used to great effect for augmenting Uncertainty Quantification for physi-

cal systems modelled by Partial Differential Equations (PDEs). Uncertainty

Quantification will refer to estimating probability densities and the expected

value of Quantities of Interest over the space of outputs of some Stochas-

tic PDE for a given distribution of inputs. Probabilistic problems of this

sort require the solution of computationally demanding integrals. First, the

high dimensionality of the discretisations used to approximate PDE problems

presents challenges, necessitating the use of specialised integration methods.

Second, any numerical integration method requires multiple evaluations of

the function to be integrated. For probabilistic PDE problems, these function

evaluations can be computationally demanding. To mitigate this, regression

methods can and have been used as so-called surrogate models. Surrogate

models attempt to infer unknown function values based on known values.
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Given a surrogate model with low error, it is possible to perform fast high di-

mensional numerical integration for Uncertainty Quantification by repeatedly

evaluating the surrogate, rather than the full PDE equations.

In this Chapter, it is shown that modern incarnations of Artificial Neural Net-

works (ANNs) can be used as highly effective surrogate models for probabilistic

PDE problems. In particular, it is demonstrated that by the use of appropri-

ate activation functions the training issues that have typically plagued earlier

attempted applications of deep Multilayer Perceptron Models can be avoided.

Feedforward Neural Networks can be used effectively to model boundary value

PDE problems and fixed time outputs for initial value problems. Recurrent

Neural Networks can be used for initial value problem PDE time sequence pre-

diction. This is demonstrated by three numerical test case problems based on a

finite element analysis of a linear Poisson problem and nonlinear, time depen-

dent heat equation with uncertain inputs modelled by spatially autocorrelated

random fields. The results indicate indicate that direct Monte Carlo Simula-

tion based Uncertainty Quantification can be improved upon by introducing

Neural Networks as surrogate models for the PDE equations. This Chapter

also demonstrates effective techniques for designing and training these ANN

surrogate models. Further, an overview meta-analysis of the time complexity

of surrogate modelling in a supervised learning context is presented.

With reference to §18 of [323], learning can be thought of as a process which

asks some system to generate a predictive model of its environment. This

Chapter focuses on how techniques from supervised learning can be leveraged

for PDE Uncertainty Quantification with specific reference to ANNs. From

§18 of [323] and [122], in supervised learning an agent or algorithm attempts

to infer a function from labelled data. The labelled data, or training examples,

consist of pairs of inputs and the corresponding outputs to a function. The goal

of the learning process is to use the training examples to infer the structure of

the function that maps from inputs to outputs such that the error when gener-

alising from the training examples to an unseen input is minimised. When the

classification function to be learnt is real valued, the supervised learning task

is referred to as regression. This Chapter demonstrates the use of ANNs as

adaptive surrogate models for accelerating sampling based Uncertainty Quan-

tification. The supervised learning approach to Uncertainty Quantification

requires that a deterministic PDE solver is available for the computation in
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order to collect training samples. The goal of the learner is to optimally gen-

eralise across sampled solution instances and learn a function that maps from

PDE inputs to PDE outputs. This surrogate model can then be used to for

Uncertainty Quantification for a given input distribution.

Polynomial Chaos Expansions (PCE) [351] and Support Vector Regression

(SVR) [323, 81] are closely related forms of supervised learning. In particular,

SVR with a polynomial kernel is very similar to PCE methods. Both of these

techniques leverage projections onto high dimensional polynomials to repre-

sent nonlinear functions for regression over some space via Mercer’s Theorem

[356, 253, 210, 256, 254, 351]. Polynomial Chaos approaches can be seen as an

alternative to explicit specification of a SVM polynomial kernel [328]. Instead,

polynomial feature functions are constructed using orthogonal polynomial se-

quences such as Hermite polynomials [141]. For other polynomial series choices

see [399, 356]. It is important to note that the optimisation objective is often

calculated differently for Polynomial Chaos based methods when compared

to what is used for Support Vector Regression [343]. Regression features are

the type of functions used to represent the surrogate model and the interac-

tions between these features. PDE Uncertainty Quantification by PCE and

SVR are limited in part because of the need to define the regression features.

Manual feature engineering becomes difficult for complicated high dimensional

functions. By using ANNs, the feature functions do not have to be designed

by hand. Rather, the challenge is to design the ANN architecture.

Recently, Artificial Neural Networks (ANNs) have seem dramatic performance

gains and have become the dominant method for supervised learning. This

is in part due to the success of deep learning methods which have resolved

some of the issues with traditional Multilayer Perceptron networks. An ex-

tensive review of the recent history of ANNs is given in [327]. Following from

these developments, this Chapter demonstrates that ANNs can be used for

PDE Uncertainty Quantification. The use of ANNs for this purpose has long

been known, for example see [312] and the discussion in §4.5.6 in [359]. The

waning popularity of ANNs in by the late 1990’s (see [232] and discussion

below for more details) is mirrored in the relative lack of publications between

that period and now. Techniques to mitigate the feature engineering problem

for surrogate models based on adaptive response surfaces computation (see

[42, 47, 48, 357]) became the dominant method. Recently, however, with the

186



resurgence of ANNs across many fields have led to new research into Uncer-

tainty Quantification using ANNs [7, 211, 209].

ANNs are effective at learning adaptive basis function representations of func-

tions [344]. The numerical experiments in this Chapter demonstrate that, by

sensible architecture choices, ANNs can be used as accurate surrogate mod-

els. In particular, it is demonstrated that deep networks (both in space and

time) are well suited to Uncertainty Quantification regression tasks. Rather

than using the traditional sigmoid ANN activation functions as in Multilayer

Perceptron networks [173], rectified units (such as ReLU and ELU functions

[276, 77]) can be used to increase the efficacy of deep networks. Recurrent

Neural Networks (in the context of this Chapter) model sequences of outputs

for a given PDE input. Long Short-Term Memory cells [186] are shown to

be a useful addition for PDE time series prediction using Recurrent Neural

Networks. Unfortunately, the design of ANN architectures is still, itself, chal-

lenging and a current area of research [258, 388, 151]. Trial and error is one

approach to architecture design and is the method adopted in this Chapter.

By demonstrating that ANNs can be used as effective surrogate models, this

Chapter suggests that the more complicated problem of automated architec-

ture discovery would be a worthwhile avenue for future research.

Section 5.4 presents three numerical experiments to support the claims of this

Chapter. The numerical experiments are based on finite element solutions of

a scalar diffusion PDE. First, a probabilistic linear Poisson equation is anal-

ysed. The input diffusion coefficient and source fields are modelled by spatially

autocorrelated random fields. The solution space probability distribution is

estimated by a Kernel Density approximation. The performance of Monte

Carlo Simulation and ANN based surrogate model augmentation techniques

for estimating the solution space density are compared. Several different ANN

architectures are analysed. It is shown that deep, rectified ANNs outperform

direct Monte Carlo analysis for the experiments presented. Next, time de-

pendency and nonlinearity are introduced by extending the first problem into

a heat equation with a nonlinear material diffusion function. An additional

random field representing the unknown initial condition is introduced. This

experiment compares the performance of two types of ANN to Monte Carlo

Simulation for estimating the output probability at a fixed time. It is again

shown that the deep rectified ANN has the best performance. Suggestions
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for an appropriate training schedule are also discussed. Finally, the third nu-

merical experiment demonstrates that Long Short-Term Memory Recurrent

Neural Networks can be used as surrogate models for predicting, given an

input, the entire sequence of outputs of the nonlinear heat equation used for

the second experiment. These numerical experiments demonstrate and dis-

cuss effective ANN and RNN design for PDE Uncertainty Quantification and

demonstrates that these networks can be used as accuracy surrogate models

for both boundary and initial value problems. Although more complicated

analyses, such as time-dependent random forcing, were not considered the

proof-of-concept analysis presented in this Chapter are promising. The exten-

sion of the proposed method to more complex and realistic problems would

be a useful area of future research.

5.2 Supervised learning

Supervised learning can be subdivided into classification and regression [323].

Classification refers to learning problems where the space of outputs from the

function of interest is a finite set and the output for any given input is one

of these values. A critical relevant example for Uncertainty Quantification

is the reliability analysis problem [30, 157]. The unacceptable performance

indicator function applied to the output space of a Stochastic PDE reduces

each output from the PDE to one of two classes, 0 or 1 (i.e. ‘no failure’ or

‘failure’ respectively). A “good” supervised learning classifier for the reliability

analysis problem would learn to correctly assign the label 0 or 1 to each possible

input. By contrast, regression refers to learning problems where the proposed

output value is some number or vector. As such, the principal difference

between regression (in the real number case) and classification is that the

probability to find the exact right value in a regression problem is zero because

the probability of selecting a precise value from a continuous random variable

is zero (see §1.6 of [61]). An Uncertainty Quantification based example for

regression would be to infer the correct solution of a PDE given a particular

input.

This Section gives formal definitions for supervised learning problems. Fol-

lowing this, the Artificial Neural Networks approach to supervised learning

is detailed. By contrast, the popular Polynomial Chaos based approaches to
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PDE Uncertainty Quantification [399, 357, 356, 141, 142] can be viewed as a

form of Support Vector Regression using particular types of polynomial kernel

[188]. Rather than explicitly define a polynomial kernel as in Support Vectors

methods [67], Polynomial Chaos methods build the polynomials using pre-

defined series expansion polynomial sequences. The end effect, regression in a

space with higher dimensionality than the input space, is the same. The dif-

ference is in the method used to build the polynomial representations. ANNs

have two major advantages over SVMs. First, there is no need to explicitly de-

fine feature kernels. Second, deep ANNs can be used to automatically generate

highly nonlinear representations of the function to be learnt without relying

on human designers hand crafting complicated representations. This Section

details the general aspects of ANN models that are useful for the Uncertainty

Quantification specific developments in Section 5.3 and the numerical experi-

ments in Section 5.4. In particular, deep feedforward and recurrent networks,

as well as training algorithms suitable for deep networks, are described.

5.2.1 Supervised learning definitions

The goal of the supervised learning task is (§18.2 [323], §2 [79] and [97]) to

infer a function, h, from the function space H (the hypothesis space) that is

the best approximation to the unknown function f : X→ Y. f is a map from

the input space, X to the output space, Y. The approximation of f using h is

made given a training set, TN (τ) for τ = (x, y), of N input-output pairs:

TN = {(x1, y1), (x2, y2), . . . , (xN , yN )} ∈ (X×Y)N

where each xi ∈ X and yi ∈ Y forms a pair τi = (xi, yi). Additionally, each

yi is generated by the unknown function f(xi). Note that the pairs in the

training set are ordered pairs, that is, (a, b) 6= (b, a).

A test set can be withheld from the training set and used to evaluate the per-

formance of h in approximating f . The generalisation error on novel examples

is quantified using a functional L : Y ×Y → R+. The function L(h(x), y) is

known by several names including the loss functional (§10 [22]), loss function

or the cost function (§2 [79]). For a general regression problem, the best hy-
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pothesis is selected such that the expected value of the loss is minimised:

h∗(x) = argmin
h∈H

E [L[h(x), y]] (5.1)

A typical loss functional for regression is some form of mean squared error of

h(x), for example:

L[h(x), y] =
1

2
‖h(x)− y‖2 (5.2)

By contrast, the function to be learnt may be a probability distribution. In

this case, the training examples are assumed to have been sampled according

to f(x, y) = P (x, y). Learning, in this case, can be categorised as either

discriminative or generative learning [68]. In discriminative modelling, the

goal is to estimate the conditional probability h(x) = P (y|x). In generative

modelling, the goal is to estimate the probability h(x, y) = P (x, y).

For a given loss functional and h, the risk R[h] is the expected loss of h over

the training set:

R[h] = E [L(h(x), y)] =

∫
L[h(x), y]dPT (τ = (x, y)) (5.3)

The risk here is distinct from the risk associated with other usages common in

Uncertainty Quantification (for example, the probability of and consequences

due to a building collapsing). The intended usage of the term risk should be

clear from the context. The goal of learning is to find h∗ ∈ H such that the

risk is minimised. As the generating distribution P (x, y) (in other words, the

function f) is unknown, the risk must be estimated by the empirical risk. The

empirical risk estimates the true R[h] using the training data T :

R[h] ≈ R̂[h] =
1

N

∑
i

L(h(xi), yi) (5.4)

Supervised learning attempts to approximately learn the unknown function f

by minimising the empirical risk:

ĥ∗(x) = argmin
h∈H

R̂[h] (5.5)

The foundational assumption of supervised learning is that it is possible to

infer information about the unknown function f using only partial information
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from the training samples. Quoting §2.2.2 of [269]:

The inductive learning hypothesis. Any hypothesis found to

approximate the target function well over a sufficiently large set

of training examples will also approximate the target function well

over other unobserved examples.

However, it is important to note that there is a trade-off between the expres-

siveness of a hypothesis space (range of functions within the space) and the

complexity of finding a good hypothesis within that space (§18.2 [323]). Using

too large a hypothesis renders search within the space difficult. Different su-

pervised learning techniques, such as ANNs and kernel methods, use different

restrictions on the possible hypothesis spaces and different search techniques

within these spaces.

The choices made when setting up a supervised learning task, such as the

choice of a hypothesis space and the choice of a loss functional, effectively

encode prior beliefs of the human designers into the task. These priors may

help an algorithm perform well on a machine learning task by, for example,

restricting the hypothesis search space to a smaller set. Conversely, a poor

encoding of prior beliefs may hurt the performance of a machine learning

algorithm by oversimplifying a problem or being unable to effectively capture

the true relationships within the data. These issues are discussed in detail in

the review publication [37]. The central prior belief that is encoded in the

majority of supervised learning methods is that of smoothness. That is, for a

function f to be learnt, if x ≈ y then f(x) ≈ f(y). Techniques that require

smoothness to work, such as linear regression and kernel (or basis) learning

are not effective when this assumption is not true.

To improve learning performance a regularisation term, C[h], is often applied

to the empirical risk such that the learning problem is to find:

ĥ∗(x) = argmin
h∈H

R̂[h] + λC[h] (5.6)

where λ is a constant controlling the strength of the regularisation. In this

case, empirical risk minimisation may be referred to as regularised empirical

risk minimisation or as structural risk minimisation [383, 384]. One of the

goals of regularisation is to improve the generalisation performance of fitted

models by favouring certain functions more than others. There are a num-
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ber of interpretations of regularisation terms that appear in the literature.

Intuitively, regularisation terms are often applied to favour simpler functions

over more complex ones. This can greatly improve the performance on fitting

data with many irrelevant features [281, 282]. Regularisation can be under-

stood, directly in a Bayesian sense as a selection of a particular prior over the

hypothesis space, P (h), where P (h|data) ∝ P (data|h)P (h) [121, 206].

Commonly, Tikhonov regularisation [372, 373] is used for this purpose. Tikhonov

regularisation can be applied to ill-posed problems (see [164]) which frequently

arise in the solution of inverse problems, particularly when finite computa-

tional precision is used. For example, even if there is a unique solution to

Ap = q for some operator A and unknown function q with functions p, q ∈ Q,

finding p will be ill-posed if there are numerical stability problems present

when calculating a solution. Specifically, for an unstable problem ‖q− qδ‖ < ε

for small ε then ‖p−pδ‖ will be large. In this case, risk minimisation on pδ will

fail to find a hypothesis close to f even if ε approaches zero. With the addition

of a regularisation term, the minimisation of the regularised risk will be able

to converge to the correct solution. Detailed discussion is presented in [383].

An alternative method for regularisation called dropout, which averages the

results of several approximate models by disabling links within a connectionist

model, has shown to work well and is discussed in [350].

5.2.2 Artificial Neural Networks

An Artificial Neural Network (ANN), in very general terms, computes some

function by representing a computation as a graph. A history of the early

development of Artificial Neural Networks is given in §18.7 of [323]. Later

developments are described in [151]. The description here follows from [151]

and §18 in [323]. The state of the nodes of the graph is dependent on the

weighted sum of values stored connected graph vertices. Each vertex of the

graph is called a node or a unit. The links between units i and j are assigned

a numeric weight, wij . Units output activation values, denoted ai for unit

i.

The input to a node with n incoming links is calculated as a weighted sum of

the incoming activations:

inj =

n∑
i=0

wi,jai (5.7)
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The activation with index 0 is called the bias. Bias inputs to a unit are

typically always activated and help units to compute translations of the input

[173].

Given the input to a unit, inj , the unit applies an activation function, σ(in):

aj = σ(inj) = σ

(
n∑
i=0

wi,jai

)
(5.8)

Activation functions are defined in more detail in Section 5.2.2.2.

There are a number of ANN architectures that specify different connection

graphs. Two architectures, feedforward and Recurrent Neural Networks are

discussed in this Chapter in Sections 5.2.2.1 and 5.2.2.3 respectively. Other

types of architectures include Restricted Boltzmann Machines [180, 184], Helmholtz

machines [182], and Echo-State Networks [199]. The choice of graph architec-

ture influences the training algorithm. Training algorithms for Neural Net-

works (typically) find the values of the weights required to ensure the calcula-

tion performed by the Neural Network is suitable. In a supervised learning re-

gression setting, the training objective is to minimise the error when estimating

the value of a function for a given input by adjusting the connection weights.

The backpropagation training algorithm is suitable for directed acyclic graph

networks. The feedforward and recurrent architectures are appropriate for re-

gression. In particular, it can be shown that these network architectures are

capable of universal function approximation [85, 192] and have the theoretical

capacity to represent essentially any relevant function.

Actually achieving accurate representations in practice is, however, challeng-

ing. Deep ANN architectures are particularly interesting because they learn

hierarchical function approximations, with more abstract features learnt in

deeper layers [223, 400]. By structuring function approximations in this way,

information can be encoded very efficiently. Following from the discussion and

review in §6.4 [151], although these advantages of deep networks have been

anticipated for several decades [44], it has only recently become possible to

train such networks effectively. Wide, shallow networks on the other hand were

historically favoured as they could be trained and satisfied the universal ap-

proximation theorems [85, 192]. However, the width of the single layer network

required increases exponentially with the size of the problem. Deep networks

can avoid this problem. This Chapter demonstrates that deep networks can
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be used effectively as function approximation surrogates for PDE Uncertainty

Quantification problems. The necessary ANN definitions and discussion are

presented in this Section.

5.2.2.1 Feedforward networks

The feedforward architecture organises ANN connections in a directed acyclic

graph, that is, the connections are only in one direction. An input is fed into

one end of the network and and an output is calculated at the other end. There

is no internal state dependency on previous inputs or outputs as the flow of

information in the network is unidirectional. Only the weights represent the

current network state. It will be shown in Sections 5.3.3 and 5.4.2 that the

feedforward architecture is well suited as a surrogate model for boundary value

Partial Differential Equation problems. Further, it will also be shown that the

feedforward model can be used for initial value problem prediction by, for

example, prediction of the solutions of the initial value problem at some fixed

time.

Feedforward networks are typically organised into several layers. Commonly,

these layers consist of an input layer, output layer and a number of intermedi-

ate hidden layers. The advantage of a layerwise architecture is that the graph

problem is vectorised. The incoming activations to all the units in a layer, as

in equation (5.7), can be calculated by matrix multiplication. The outgoing

activations from each unit in a layer, as in equation (5.8), are calculated for

the result vector from the equation (5.7) matrix multiplication. The layer-

wise architecture is also useful for implementing the backpropagation training

algorithm, described in Section 5.2.2.5.

Although there is no formal definition of a deep network, a deep feedforward

network may be taken to be 3 or more layers. The number of layers for large

neural networks, such as those for image classification, can be very high [223].

Networks with over 1000 layers have successfully been applied to supervised

learning benchmarks [174]. Figure 5.1 demonstrates the feedforward archi-

tecture for three densely connected layers. Dense connections between layers

connect each unit in the input layer to each unit in the output layer. By con-

trast, sparse connections set a number of the dense connections to zero [170].

Only densely connected layers are considered in this Chapter.
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i

j

k
w1

ij w2
jk

Layer 1 Layer 2 Layer 3

Figure 5.1: Three layer Feedforward Artificial Neural Network architecture showing
units (circles), weighted connections (arrows). In the diagram, unit i in Layer 1 feeds
forward to unit j in Layer 2 by weight w1

ij . Similarly, j feeds forward to k in layer

three by weight w2
jk. Weight superscripts refer to the owning layer. Layers are shown

as grey boxes surrounding the contained units. Densely connected weights are shown,
that is, each unit the layer feeds forward all units in the next Layer. For the network
shown, Layer 1 is an input layer, Layer 2 is a hidden layer and Layer 3 is an output
layer.

5.2.2.2 Activation functions

ANNs are able to represent nonlinear functions by using nonlinear activation

functions. It was discovered that part of the difficulty in training deep networks

generally was related to the choice of activation function and the associated

gradients of these functions (see Section 5.2.2.5). In this Chapter, it is shown

that using rectifier units improves ANN training. Five types of activation

functions are considered within:

Linear: σ(x) = x (5.9)

Sigmoid: σ(x) =
1

1 + exp(−x)
(5.10)

Tanh: σ(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(5.11)

ReLU: σ(x) = max(0, x) (5.12)

ELU: σ(x) =

{
x if x ≥ 0

a (exp(x)− 1) otherwise
(5.13)
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The sigmoid, tanh, Rectified Linear Unit (ReLU) and Exponential Linear Unit

(ELU) functions are shown in Figure 5.2. Linear units are used in this Chapter

to allow for regression ANNs to output convenient real values with a suitable

function range. Sigmoid and tanh units have a similar shape, but tanh units

are known to have some desirable numerical properties relating to the scale of

the function gradients when compared to sigmoid units [234]. ReLU and ELU

units are examples of rectifier units. Note that the parameter a in equation

(5.13) must be set. A constant value of a = 1.0 is used for all analyses in

this Chapter. The main feature of rectifier units is the shape of the first

derivative which is (roughly) zero over part of the domain and constant or

linear (approximately) for the rest of the function domain [77].

The traditional ANN architecture is the Multilayer Perceptron network [173],

a feedforward ANN with sigmoid units. These networks were found to to be

hard to train when using a large number of layers [147, 327] due to the vanish-

ing/exploding gradient problem. This is discussed in detail in Section 5.2.2.5.

Further, Section 5.2.2.5 discusses how rectifier units (such as the ReLU and

ELU) functions were found to be useful for mitigating the vanishing/exploding

gradient problem [276]. In particular the piecewise linearity of rectified units

helps to prevent repeatedly multiplied gradients from becoming too large or

small [77]. ReLU and ELU units were found to be more effective than sigmoid

units for the numerical experiments presented in Section 5.4.

5.2.2.3 Recurrent Neural Networks

By contrast with feedforward ANNs, Recurrent Neural Networks (RNNs) have

loops in their graph structure. RNNs are dynamical systems and the response

of the network to a given input depends on the previous inputs (§18.7, [323]).

As such, RNNs are able to use memory of previously seen inputs to make

predictions in the present. A simple RNN architecture is shown in Figure

5.3. Further, RNNs can be used to generate sequences [364, 153]. This can

be achieved, for example, by taking the RNN to represent a time dependent

function.

Following [154], the equations for a standard RNN are as follows. Let i =

(i1, · · · iT ) be termed the input sequence. An RNN computes the hidden se-

quence h = (h1, c . . . , hT ) and the output vector sequence v = (v1, · · · , vT ) by
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Figure 5.2: Neural Network activation functions used in this Chapter. See equations
(5.10), (5.11), (5.12) and (5.13) for function definitions. For equation (5.13), a = 1.

iterating (over t = 1 to T ) the following equations:

ht = H(wvhit + whhht−1)

yt = whyht

where wij terms denote weight matrices between units i and j and H is the

hidden layer function. Note that bias terms are included in the weight matrices

as index zero.

For example, consider an RNN that has been trained to predict the next

value in an ordered sequence of T vectors, vt for t = 0 to t = T , so that the

network outputs the next value in the sequence given an input vector. That

is, the network will attempt to predict vt+1 given vt. The current value of

the hidden unit can be sent forward through time to itself and a new output

predicted at the subsequent time step. This process can be repeated until a

sequence of the desired length has been output by the RNN. This sequence

prediction architecture is depicted in Figure 5.4. Note that Figure 5.4 presents

a one-to-many RNN architecture. The Seq2Seq algorithm, for example, uses a

many-to-many architecture [365]. A one-to-many architecture is used for the

numerical experiment in Section 5.4.4.
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Although the function H can simply be one of the activation functions dis-

cussed in Section 5.2.2.2, this has been shown to be problematic when training

networks to learn long time dependencies [39, 364, 291]. This is discussed in

more detail in Section 5.2.2.5. Briefly, error gradients are unable to be com-

puted in a numerically stable fashion for deep-in-time RNNs using standard

activation functions and as such training these networks was difficult. Long

Short-Term Memory (LSTM) units have been shown to help overcome some of

these difficulties. LSTM units use so-called memory cells to control the flow

of information through the network. Following from [154], an LSTM RNN

computes the following update functions:

pt = σ(whp + whpht−1 + wcict−1) (5.14)

ft = σ(wif + whfht−1 + wcfct−1) (5.15)

ct = ftct−1 + pt tanh (wicit + whcht−1) (5.16)

vt = σ (wivit + whvht−1 + wcvct) (5.17)

ht = vt tanh(ct) (5.18)

where σ(·) is the sigmoid activation, p, f and v are the input, forget and output

gates vectors and c is the cell activation vector. Each of these vectors has the

same dimension as h. Further, each of the weight matrices, wij , are diagonal.

See [186] for a more detailed description. The essence of the LSTM is that

the input, output and forget gates are able to control the flow of gradients by

storing temporal correlations over long time periods. The various gates allow

temporal dependencies to be dropped or amplified in a differentiable manner

such that training can be carried using backpropagation. Further, the LSTM

function has a gradient that helps to prevent vanishing gradients (discussed

further in Section 5.2.2.5) and as such LSTMs are useful for deep-in-time

networks. LSTM units are used for this purpose in the numerical experiments

in Section 5.4.4.

5.2.2.4 Training directed acyclic ANNs by Stochastic Gradient De-

scent

Consider the supervised learning problem defined in Section 5.2.1. The feed-

forward and recurrent architectures are suitable for regression. Feedforward

networks use a directed acyclic graph as a connection pattern. Recurrent
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Figure 5.3: Schematic of simple Recurrent Neural Network architecture. Each of the
layers i, h and v are connected by dense sets of weights, wih and whv. In addition to
this feedforward architecture, layer h is connected to itself by a set of weights whh.

Neural Networks can be unfolded into a directed acyclic graph for training.

Minimisation of the empirical risk (or expected loss across the training sam-

ples) using a given loss functional for discriminative learning is an optimisa-

tion problem. The most common approach to loss minimisation for ANNs

is Stochastic Gradient Descent or SGD. Combined with the backpropagation

algorithm, ANNs can be trained effectively.

Stochastic Gradient Descent (SGD) is an optimisation technique for finding

the optimal function, h(x), from the hypothesis space. SGD iteratively adjusts

the current fitted hypothesis so as to minimise the error of h(x) over a number

of training examples. Let the hypothesis space H be parameterised by some

vector θ. In the case of ANNs, the values of θ are the trainable weights

in the network. With reference to equation (5.3), denote the ANN risk by

J(θ) = R[h] so that θ represents the parameterisation of functions h(x; θ) ∈ H.

Then for a given loss functional, L[h(x; θ), y], and training examples, y, denote

the risk of some hypothesis function, R[h(θ)], by

J(θ) = R[h(θ)] =

∫
L[h(x; θ), y]dPT (τ) = E [L[h(x; θ), y]] (5.19)

Stochastic Gradient Descent attempts to minimise the value of the loss func-

tional by altering the parameters, θ, in a direction that will minimise the

expected value of the loss given the training data. Denote the gradient of J(θ)
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with respect to θ by:

∇θJ(θ) = ∇θE [L[h(x; θ), y]] (5.20)

SGD iteratively updates the values θ in the direction that will decrease the

empirical risk over minibatches (defined below):

θi+1 = θi − η∇θiJ(θi) (5.21)

where the parameter η is termed the learning rate. The learning rate controls

the size of the jump θ takes in the direction of decreasing J(θ). Too low a

learning rate and convergence to the optimal θ will be slow. Too high a learning

rate and the training algorithm will oscillate, jumping over more optimal θ’s

or even causing the weights to diverge [181].

The gradient of the expected value of the loss is approximated by SGD using

the loss gradients over subsets of the full training data set called minibatches

(see §5 in [151]). Minibatch training can improve the efficiency of gradient

descent algorithms [51, 242]. The approximate loss gradient over a minibatch

of size n is:

∇θJ(θ) ≈ ∇θ
1

n

n∑
i=1

L[h(xi; θ), yi] (5.22)

≈ 1

n

n∑
i=1

∇θL[h(xi; θ), yi] (5.23)

The SGD approach of estimating the loss gradient over minibatches is com-

putationally much more efficient than the (non-stochastic) Gradient Descent

method of using the full training set for every weight update [234]. Practically,

SGD training is broken into a number of epochs. A single epoch updates θ

by calculating the gradient ∇θJ(θ) over each minibatch in the training set.

This process is repeated for some number of epochs to progressively find the

optimal J(θ).

As SGD attempts to greedily update the weights by always moving in the

direction that will decrease the loss, it is a local optimisation algorithm [345].

This means that the initialisation values for the weights will impact on the

final trained network as the starting position in weight space will influence

the local minimum found by the SGD algorithm. Historically, attempts at
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training deep networks were unsuccessful until the introduction of greedy layer-

wise pre-training [183, 38]. Further research suggested that the success of the

layerwise method was due to the fact that it found useful starting locations in

weight space [110]. More importantly, it was also found that greedy layerwise

pre-training acted as an effective regulariser (in the sense discussed in Section

5.2.1) [36]. When training ANNs, using appropriate units (such as rectified

activation functions) a similar regularisation effect can be achieved [350]. The

deep ANNs in Section 5.4 of this Chapter were trained without using layerwise

pre-training. Layerwise pre-training and rectified units also help to deal with

the vanishing gradient problem discussed in Section 5.2.2.5.

Adaptive learning rate control has proven to be a significant factor in improved

training for deep ANNs [36]. An important aspect of adaptive learning rate

control algorithms is that they help to mitigate SGD local optimisation issues

by avoiding convergence to poor local optima. There are a large number of

competing SGD variants used for adaptive learning rate control including ada-

Grad [101], RMSProp and Adam [212]. RMSProp adapts the learning rate for

each of the trainable parameters in the model, roughly, by dividing the learn-

ing rate for a particular weight by the mean gradient of recent weight updates.

The Adam (Adaptive Moment estimation) algorithm extends RMSProp by in-

cluding weight update factors based on the variance of recent weight updates.

The Adam algorithm is used for the numerical analyses in Section 5.4 of this

Chapter.

5.2.2.5 Backpropagation gradients for directed acyclic ANNs

The final component of ANN training is the calculation of the loss gradi-

ent with respect to θ. Backward propagation of errors or backpropagation is

the primary technique used for calculating the required gradients for ANN

Stochastic Gradient Descent when training networks with a directed acyclic

graph structure. This algorithm evaluates the loss functional value at the

output of the network for a given input and then passes these error values

backwards through the network, accumulating the error at each unit. The

gradient of the weights with respect to these errors can then be calculated.

Backpropagation is simply the chain rule applied to the network function com-

position structure, see [45], §18 of [323] and §6 of [151]. A particularly useful

derivation of the backpropagation equations is given in [44]. To compute the
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layerwise weight gradients, using the error gradient, the first step is to compute

the layerwise errors.

For a network that computes h(x; θ), let J(θ) = E(a; θ) be the error at the

network output given activations. Let the input to the network be written

a1 = x. The activations on layer l in the network can be written in terms of

the layerwise activations, al, and activation functions σl(·):

al = σl−1(al−1) = σl−1

(
n∑
i=0

wi,jai

)
(5.24)

The network output is the activation values at the final layer (M − 1):

h(x; θ) = aM−1 (5.25)

The error is computed in terms of the loss function (for example the sum of

squared errors):

∇θJ(θ) =
1

n

n∑
i=1

∇θL[h(xi; θ), yi]

where the loss at the final layer with respect to the final layer activations is

given by:

aM = L(aM−1; θ)

For each layer, l, at each node i, the error derivative δli is calculated by passing

layerwise errors backwards (from the output to the input) through the network.

These errors can be used to compute the derivative of the loss with respect to

the layer weights, θl.

δli =
∂L

∂ali
(5.26)

δli =

m∑
j=0

∂L

∂al+1
j

∂al+1
j

∂ali
(5.27)

δli =
m∑
j=0

δl+1
j

∂al+1
j

∂ali
(5.28)

where, at the final layer, δM = 1.

202



Using the backward errors, δ, the gradient of the loss with respect to the layer

weights, θl can be calculated by considering that the loss is a function of the

output of layer l, al+1
j , which is itself a function of the layer weights:

al+1
j = σl

(∑
i=0

θli,ja
l
i

)
(5.29)

so that at layer l the gradient of the weights, θl, with respect to the loss is

given by:

∇θlL =
∂L

∂θl
[al+1(θl)] (5.30)

∇θlL =
m∑
j=0

∂L

∂al+1
j

∂al+1
j

∂θl
(5.31)

∇θlL =
m∑
j=0

δl+1
j

∂al+1
j

∂θl
(5.32)

These gradients are used to compute the gradient descent updates as in equa-

tion (5.21).

As the gradients of every function in the network must be computed for back-

propagation, all functions within the network must be differentiable. This is

particularly relevant when choosing activation functions so that the derivative

∂al+1
j /∂ali can be computed. Other ANN training algorithms, such as the

REINFORCE method often used for policy gradient algorithms [395, 366], do

not necessarily require full network differentiability.

It has long been known that the so-called vanishing gradient problem was re-

sponsible for difficulties faced when training deep ANNs [146, 327]. When

passing error gradients backwards through an ANN for backpropagation, the

error gradients at each layer are multiplied. For certain activation functions,

for example sigmoid units, the gradients are bounded. When the error is large,

the gradients will be small. When the error gradients are small, it will take

SGD a very large number of iterations to reach better weights. As the error

gradients are multiplied together through each layer, the error gradients can

vanish with depth through the network. Similarly, the exploding gradient prob-

lem occurs for units with unbounded gradients. The impact of the exploding

gradient problem is essentially the same on the ANN as vanishing gradients in

that the network will not converge in either case. By using rectified units (see
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Section 5.2.2.2) the vanishing/exploding gradient problem can be alleviated in

deep networks [276, 147]. Rectifier units achieve this, in part, by ensuring that

the backpropagation gradients are of a reasonable (often linear) form.

These difficulties are magnified in RNNs when long time dependencies are

modelled [39, 364, 291]. Although backpropagation can be applied directly to

feedforward networks, Recurrent Neural Networks must be unfolded in time.

This unfolding allows for the function represented by an RNN to be computed

using a directed acyclic graph computation structure and is shown in Figure

5.4. This then allows for the appropriate gradients to be passed backwards

through the network along the directed network links. This process is referred

to as Backpropagation Through Time [392]. For RNNs, LSTM units (see

Section 5.2.2.3), help to alleviate the vanishing gradient problem [186]. The

LSTM effective gradient is either 0 or 1 meaning that gradients simply pass

through (or are blocked) at the LSTM cells. This does not totally solve the

vanishing gradient problem for LSTM networks, but is effective in practice

[153].

Modern backpropagation implementations are typically based on Automatic

Differentiation [307, 279], a technique for calculating function gradients in com-

puter programs by considering the gradients of all functions evaluated when a

program executes. Popular implementations used for ANN programming in-

clude TensorFlow [1] and Theano [371]. The use of Automatic Differentiation

based backpropagation decreases development time as only simply function

differentials need to be found a single time for inclusion in a program. Fur-

ther, human error is reduced as difficult differentials of program routines do

not need to be found manually.
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Figure 5.4: One-to-Many Recurrent Neural Network architecture after unfolding three
steps deep in time. The input to this network is the vector (i1) and the output is the
sequence of vectors (v1, v2, v3). Sequences for this network are generated by starting
with an initial state, i1 and then feeding forward through the network. Arrows indicate
the flow of information through the network unit sets (depicted as boxes). wab labels
refer to dense weight sets between unit sets a and b.
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5.3 Supervised learning for Uncertainty Quantifica-

tion

Artificial Neural Networks can be used as a nonlinear regression technique to

estimate the output of deterministic PDE solvers. By explicitly considering

how to optimally generalise from known data about the input and output

spaces, it is possible to make estimates of the probabilities of output quantities

of interest that are as accurate as possible in the minimum amount of time.

ANNs are useful for this task as they can be shown to be universal function

approximation tools [85, 192]. In particular, recent developments in deep

learning have opened up the possibility for improved feature representation

by ANNs [232]. In the language of Uncertainty Quantification, supervised

learning can be used to build surrogate models to estimate model outputs for

a given input. In this Section, a particular ANN approach to Uncertainty

Quantification is described.

5.3.1 Uncertainty Quantification

Before continuing, it is useful to give a clear definition of Uncertainty Quantifi-

cation [29, 318, 356] for PDE problems and the relationship to what is termed

supervised learning in the Machine Learning literature. There are two main

goals of Uncertainty Quantification. The first goal is to infer the probability

measure induced on one space given a probability measure on another space

and a measurable map between the two spaces. The second problem is to es-

timate the expected value of some function defined on the second space given

the induced probability measure.

More formally, let x ∈ X be the input space with points x and y ∈ Y be the

output space with points y. Let y = f(x) be a measurable map (as per the

definition in §18 in [168]). Let PX(x) be the input space distribution. Both

f(x) and P (X) are given as a part of the problem specification. The goal is to

infer PY (y), the output space distribution induced on Y by the map f(x) and

the pushforward measure (see §3 and §9 of [50], Proposition 3.2.1 from [219]

and [244]):

PY (y) = PX(f−1(y)) (5.33)
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The second problem of Uncertainty Quantification is to estimate Quantities of

Interest (QoI). These are defined in this Chapter as the expected value of some

function, g(y), of the output space, given the output space distribution:

E [g(y)] =

∫
Y
g(y)PY (y)dy (5.34)

When considering Uncertainty Quantification for Partial Differential Equa-

tions, f(x) represents the map from inputs to solutions defined by the PDE.

PX(X) typically represents some distribution over the possible inputs to the

PDE solver. It is typically not possible to exactly solve and invert f(x) and

therefore numerical approximations must be used. There are several forms

that these approximations may take, however, a typical example of an approx-

imation process is the Finite Element Method and the numerical variational

problems solved by this technique. In this Chapter, the Finite Element Method

will be used for the numerical analyses in Section 5.4. For these probabilistic

PDE numerical analyses, the focus is on the first Uncertainty Quantification

problem, estimating the output space probability density.

Integration of PY (Y ) on the output space requires evaluations of the map-

ping function f(x) and/or its inverse (depending on the form estimator used).

Uncertainty Quantification can be augmented by the use of surrogate models

[12]. A surrogate model learns an approximation to a function which, if it can

be evaluated more rapidly than the original function, can be used to facilitate

approximation of PY (Y ). For PDE Uncertainty Quantification, if a distribu-

tion over inputs is known, then the surrogate model to be learned is map that

calculates a PDE solution for a given input. For numerical PDE approxima-

tions, these functions can be computationally expensive to evaluate. Learning

the surrogate model for real valued functions using known PDE solutions is a

regression problem which is, following the discussion in Section 5.2, a form of

supervised learning.

5.3.2 Polynomial Chaos and Support Vector Kernel approaches

to Uncertainty Quantification

To compare to the ANN methods developed in this Section, Uncertainty Quan-

tification based on Polynomial Chaos expansions is very briefly discussed.
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Reflecting the popularity of Support Vector Machine techniques in Machine

Learning, Polynomial Chaos approaches have been used extensively for PDE

Uncertainty Quantification, for example see [356, 253, 210, 256, 254, 351].

Both Polynomial Chaos Expansions and Support Vector Regression fit a high

dimensional regression surface to the known PDE solution values. These sur-

faces are frequently based on polynomial kernels functions [323, 81]. Polyno-

mial Chaos models can be used in either an intrusive or non-intrusive mode.

Non-intrusive solvers are independent of the PDE solver used to evaluate the

PDE solution for a given input. Examples of non-intrusive Polynomial Chaos

from the literature are presented in [177, 42, 104]. Non-intrusive surrogate

models are particularly attractive from a practical point of view as it is far

easier to use existing software than to implement new software. This is partic-

ularly true for complex cases such as PDE solvers. The ANN based surrogate

models described in Section 5.3.3 are also non-intrusive in this sense. For Un-

certainty Quantification, Polynomial Chaos methods often directly estimate

the output distribution for a given input distribution. PCE based regres-

sion analysis is used to great effect by the Spectral Stochastic Finite Element

Method [356]. §5 in [359] discusses a number of extensions to the basic SS-

FEM structure. Typically, though, varying the input distribution cannot be

achieved without re-analysis. Probabilistic collocation can be used to mitigate

some of these issues [240]. By contrast, the ANN based models explored in

this Chapter are always independent of the input distribution used for the

analysis.

In contrast with existing PCE and other kernel function methods [357, 356],

ANNs do not require kernel basis functions to be pre-decided. Rather, ANNs

adaptively learn basis functions to represent the data based on the more gen-

eral form of the activation functions. This helps to displace the burden of

feature design from the kernels to the design of the ANN [232]. In particu-

lar, because of the complexity of deep data representations, it is difficult to

directly engineer kernels for these spaces. The two methods can, however, be

combined [75]. Additionally, it is noted here that adaptive kernel methods

have been used with PCE approaches [358]. The convergence rate of a Series

Expansion Polynomial Chaos Stochastic PDE solution method is heavily de-

pendent on the basis function selected, yet the optimal basis functions cannot

be known a priori. For a PCE method, the number of terms required to reach

a given convergence level increases with a factorial of the approximation order
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[358]. If the expansion point is far from the point to be approximated or the

shape of the basis is poorly suited to the function to be approximated, a large

expansion order will be required. The factorial growth in the computational

complexity of the approximation may render PCE methods intractable for

certain problems. This is often the case for the far from mean response com-

putations (crucial in Civil Engineering reliability problems [157]) for which the

error in the tails of the distributed needs to be minimised.

5.3.3 PDE Uncertainty Quantification using ANNs

When applied to Uncertainty Quantification, supervised learning can be used

as a surrogate model that estimates outputs for a given input. In addition to

the challenges that apply generally to supervised learning (discussed in Section

5.2.2) probabilistic problems require high dimensional integration. A typical

approach to integration using regression is to project the unknown function

onto basis functions with known (or easily estimated) integral values. Inte-

grals can then be easily approximated by factoring the basis function integrals

appropriately by the regression coefficients. Directly integrating the functions

represented by an ANN in this manner is not feasible for most problems. A

general ANN model is the composition of transcendental functions of polyno-

mials. Even given the regression weights, computing such an integral directly

is very difficult. These models typically lack bijectivity which creates further

issues. To avoid these problems, the function represented by an ANN can be

integrated simply by Monte Carlo simulation. In this Chapter, the integra-

tion of trained surrogate models by Monte Carlo integration will be referred

to as ANN-MCS and RNN-MCS for feedforward and RNN surrogate network

architectures respectively.

The application of ANNs to PDE Uncertainty Quantification problems has

been proposed previously, for example in §4.5.6 of [359], but has seen little

traction. The historical issues with training ANNs (discussed in Section 5.2.2)

are, as in Machine Learning more generally, the likely cause for the lack of

progress made using ANNs for Uncertainty Quantification. By applying mod-

ern and deep learning methods, ANNs can be applied to boundary and initial

value PDE problems, as demonstrated by the numerical experiments in Sec-

tion 5.4. These numerical experiments also demonstrate that traditional Mul-

tilayer Perceptron networks [173] are less effective than modern deep rectified
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networks as PDE surrogate models. This Section briefly describes basic use

patterns for using feedforward and recurrent architectures with ANN surrogate

models for discretised boundary value and initial value PDE problems.

Feedforward ANNs can be applied to both boundary and initial value prob-

lems. Consider a problem with a fixed geometry discretisation such as a static

finite element mesh. For boundary value problems, the inputs to the feedfor-

ward network are taken to be all variable fields other than the solution field.

These may include material coefficient fields, source terms, boundary condi-

tions and others. The dimensionality of the ANN input will depend on the

discrete representation of the variable fields used. The ANN is trained using

the approximate numerical solutions of the PDE for a number of input values.

The output dimension will be the size of the solution field discretisation. After

training, the ANN will (hopefully) be able to predict the value of the solution

field for a given input set. One method to perform Uncertainty Quantification

for a given input distribution is to perform Monte Carlo simulation, replacing

the PDE solver with the surrogate model. As the ANN surrogate is able to

rapidly calculate values of the output field, Monte Carlo estimates for a large

number of simulations can be run quickly. For initial value problems, feedfor-

ward networks can be used to predict the output of the PDE solver equation

for a given input.

Recurrent Neural Networks can be used for initial value problem time series

solution prediction. An RNN can be fitted to the sequence of solutions from

a time stepping PDE solver, forming a surrogate model with time dependen-

cies. This surrogate model can than be used for Uncertainty Quantification

by applying Monte Carlo integration as in the feedforward case described pre-

viously. Importantly, although not fully explored in this Chapter, RNNs with

memory can learn non-smooth functions in time with long range dependencies

[23, 153]. This is in contrast to Series Expansion based methods [52]. Poten-

tially RNNs could be used for time series prediction for physical simulations

with sudden jumps in the solution function, such as collision simulations [89]

or bifurcation problems, however training such networks a network is likely a

challenging problem. RNNs with LSTM units are successfully used to build a

surrogate model for an probabilistic heat flow equation finite element simula-

tion problem in Section 5.4.4.

Although it can be empirically demonstrated that ANNs can be used as ef-
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fective surrogate models for PDE Uncertainty Quantification (the main con-

tribution of this Chapter), there are several limitations. These limitations

affect ANN design across all ANN application areas. The choice of architec-

ture cannot be known a priori. Further, the choice of training regime is also

an unknown input to the ANN model design. Methods to determine effec-

tive architectures is an area of current research [151]. The ANNs used in this

Chapter were found by experiment. ANN architecture design is a challeng-

ing problem, but because of the widespread adoption of ANNs across many

fields, it is hoped that these issues will be resolved, allowing for the methods

presented in this Chapter to be applied with greater ease in the future. In

particular, Bayesian model design methods present a promising direction for

future advances in this area.

5.3.4 Understanding the time complexity of supervised learn-

ing surrogate models for Uncertainty Quantification

This Section discusses the time complexity of regression based Uncertainty

Quantification compared to direct Monte Carlo Simulation. It is necessary to

ask whether the extra effort of learning a regression model is worth it when

this computational time could be used to simply run a number of additional

Monte Carlo simulations. In particular, many problems are run only once or

only for a small number of input parameters. In these cases it is unlikely that

the time spent on designing and training a surrogate model by regression will

be worthwhile. By contrast, if a model is re-run repeatedly, then the time

taken to train a surrogate model will become worthwhile if a number of con-

ditions are met. This Section gives a rough overview of the computational

complexity of applying regression models (in particular ANNs for ANN-MCS)

to the task of learning the solution map of a differential equation for Uncer-

tainty Quantification versus just running additional Monte Carlo simulations.

This discussion is useful in that it suggests what conditions must be met in

order for regression analysis to be worthwhile.

In the typical Uncertainty Quantification problem for probabilistic PDEs, a

known distribution of inputs is fixed and a deterministic PDE solver (for the

equation of interest) is available. The goal of Uncertainty Quantification is

then to estimate the probability density of either the space of PDE outputs

or expectations of Quantities of Interest (that are functions of this space of
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outputs). One avenue for the application of supervised learning to Uncertainty

Quantification using ANNs is as a method to generalise from the solution of

one input problem to another, building up a surrogate model of the PDE

solver mapping to avoid the wasteful repeated calculations that are present

in sampling based techniques. Effective generalisation is the key to reducing

the computational effort required for PDE Uncertainty Quantification using

supervised learning.

Evaluation of an input using a deterministic PDE solver is typically computa-

tionally intensive. Sampling based methods, such as [320, 55], for estimating

the probability density of the outputs will typically repeatedly sample from

high density parts of the input space. This is wasteful as the same (or very

similar) inputs to the PDE solver will be sampled and evaluated repeatedly.

In the case of a finite and discrete input space with only a few possible inputs,

it is obvious that the results of the evaluation of the mapping from inputs to

outputs should be cached, allowing for the solution of a repeated input prob-

lem to be looked up quickly rather than recalculated. Then, sampling based

methods for estimating the output probability density can proceed using only

a single evaluation of the costly solver for each possible input, followed by a

series of much cheaper lookups. Consider the case of MCS analysis with a

finite input space of size m, a time to generate an input sample of c and a

function evaluation time of k. Then, as MCS converges like
√
n in n simu-

lations (see [57]), the total cost for the näıve MCS to some fixed tolerance

is O((k + c)
√
n). On the other hand, if each storage takes time s and each

lookup takes time l, the cached version of discrete MCS can be evaluated in

time O(m(s+ k+ c) + (l+ c)
√
n). For the cached discrete MCS to be a faster

algorithm, the following inequality must be satisfied:

O(m(k + s+ c) + (l + c)
√
n) < O((k + c)

√
n) (5.35)

Reorganising equation (5.35), for the case that the discrete cached MCS runs
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faster than the original MCS:

O(m(k + s+ c) + (l + c)
√
n) < O((k + c)

√
n)

O(m(k + s+ c)) +O((l + c)
√
n) < O((k + c)

√
n)

O(m(k + s+ c)) < O((k − l)√n)

O(m) < O
(

(k − l)
(k + s+ c)

√
n

)

assuming further that k � l, k � s and k � c so that (k−l)
(k+s+c) ≈ 1, the

approximate inequality of interest is:

O(m) < O(
√
n) (5.36)

Note that using the formal definition of big-O notation described in §3 of

[80] this inequality could have been arrived at immediately but at the cost of

some clarity. For l < k, in the case of m = 0 (the input is a single point),

O(l
√
n) < O(k

√
n) is of course always satisfied. Equation (5.36) expands on

this and says that the cached discrete MCS algorithm is the better choice

for small m only, after which the inequality shown will fail to hold. This is

also clearly visible from a simple graph of f(x) = x−√x which shows x will

dominate
√
x for x > 1. Then, in the case of a continuous input space, m

(in some discretised approximation of a continuous space) will become very

large. As such, it would be more computationally efficient to perform the näıve

MCS analysis without any precaching of all possible inputs than attempting to

evaluate all possible inputs before probability density estimation on the output

space. This is another manifestation of the so-called curse of dimensionality

[32, 304], which renders certain algorithms intractable in high dimensional

spaces.

The discussion on generalisation using supervised learning in the previous

Section suggests, however, an alternative to computing all possible inputs for

accelerating MCS density estimation. A small number of inputs can be gener-

ated from the known input distribution and the correct output calculated by

the PDE solution function. An approximation to the output of the PDE solu-

tion function can be made using the ANN techniques for regression discussed

in Section 5.2.2. Then, probability density estimation on the output space can

be carried out by MCS with generated inputs and outputs estimated by an
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ANN. In order for this generalisation to be worthwhile, the inequality (derived

earlier) must hold:

O(m̂) < O
(

(k − l)
(k + ŝ+ c)

√
n

)
(5.37)

where now, m̂ represents the total number of training samples (such that

m̂ ∈ m), c is the time to generate input vectors (for example random field

simulations), ŝ represents storage time as ANN training time per sample (dis-

cussed below) and l represents lookup time as ANN feedforward time per sam-

ple. There are some important changes in the ANN surrogate model case com-

pared to the discrete cached MCS case. The condition that O(m̂) < O(
√
n)

must be true for to make the surrogate model computationally valuable is still

valid. However the size of numerical constants (in particular the ANN training

time, ŝ) are very significant and may render the algorithm not worthwhile even

for small m̂, especially if k < ŝ. Intuitively, this makes sense. If the function

evaluation time, k, is very small many more MCS runs can be fit into the time

that it would take to train an ANN to learn to represent the mapping (the

time represented by ŝ).

In the discrete case the cached model had an identical MCS tolerance to the

näıve direct MCS case. This is no longer true for the ANN surrogate case

as the ANN function is only a hypothesis that is attempting to infer the

structure of the true PDE solver function. In that case, the inaccuracy in

the solution approximated by the ANN model can be represented as a part of

the approximation storage time, ŝ ≥ s. s represents the time taken to cache

output sample data corresponding to a given input at maximum accuracy.

ŝ represents the actual time taken to store data (by training an ANN) to a

given accuracy in a given function approximation. Equality could be possibly

achieved (ŝ = s) only when the output sample for a given input can be stored

at maximum accuracy. For example, in the discrete case s is the cost to store

an (input, output) pair. In this case, ŝ = s as one simply needs to store the bits

corresponding to the particular output. In the case that an ANN is used as a

function approximator, the lookup (feedforward) time is fixed but it may take

multiple rounds of training to converge the ANN to an acceptable tolerance

for a given output by gradient descent, so ŝ ≥ s. In this case equation (5.37)

can be modified and the time complexity inequalities that must be satisfied
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represented as:

O(m̂(k + s+ c)) ≤ O(m̂(k + ŝ+ c)) < O((k − l)√n) (5.38)

Equation (5.38) expresses the intuitive result that the increased time cost

required to store ŝ, rather than s, hurts the efficiency of the function ap-

proximation algorithm relative to direct MCS. A fast function approximation

algorithm is required to make the ANN function approximation model com-

putationally competitive.

The important part of this analysis is that in order to make regression compet-

itive against direct Monte Carlo, several factors must be considered. First, the

regression model must be sufficiently accurate. Second, there is a time cost in

designing features for a regression surrogate model. The time spent on feature

engineering and problem set up for a complicated regression method, such as

SVM and Polynomial Chaos [47] based approaches using sparse polynomials

[49], may perhaps be better put to use by running a Monte Carlo estimator

for a long time in a “fire and forget” manner, running the solver in a simple

loop. By using a more general adaptive method, specifically ANNs, the fea-

ture engineering time can be reduced. However, the feature design issue is

displaced from the function selection in the SVM or Polynomial Chaos case to

the design of the ANN architecture. Finding useful ANN architectures is still

a type of feature engineering problem. For example, the numerical analyses in

Section 5.4 demonstrate that certain architectures perform well while others

are less accurate. In particular for the heat equation-based analyses shown,

rectifier units provide a significant ANN convergence performance boost when

compared to more traditional Mulitlayer Perception networks. However, the

design of efficient ANN architectures is still difficult. There is the potential

that an ANN could be trained for many problems across Uncertainty Quan-

tification and applied to new problems by transfer learning [267, 376]. This is

will be a challenge for future research. Bayesian model selection for ANNs is

also a promising direction from which future developments in this area may

appear [275].

The regression model must also be able to be trained efficiently. If the regres-

sion model training is too slow, then the computational resources spent on

the regression would be better spent on increasing the number of Monte Carlo

analyses. Training deep ANNs can be problematic, but advances like rectifying
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activation functions has helped to unlock the potential of deep function rep-

resentations. Training the Multilayer Perceptron network models with more

than two or three layers became almost impossible [173]. It was not feasible to

apply these models to anything but simple problems [232]. Wide, shallow net-

works were favoured, discarding the advantages of deep data representations,

as these were the only networks that could be trained efficiently. Modern ANN

techniques have mostly been able to address the vanishing (or exploding) gra-

dient issue that was the primary cause of difficulty when training Multilayer

Perceptron networks, as discussed in Section 5.2.2. In general, ANNs require

large amounts of training time and data. Increases in computational power

have made the application of ANNs to PDE Uncertainty Quantification prob-

lems feasible in part by allowing for the networks of a reasonable size to be

trained sufficiently quickly. The design of an appropriate training schedule is

challenging and currently requires a good understanding of the factors causing

ANNs to fail to converge. While existing optimisers do partially adjust learn-

ing rates adaptively (see discussion in Section 5.2.2.4), further improvements

will be needed in this area to allow for broad uptake of ANN methods in prac-

tice. Due to the widespread adoption of ANNs in a large number of areas,

research into these issues can be expected to continue and accelerate.

Importantly, the time complexity analysis above has been taken largely given

from the perspective of a single use analysis. For a model that is to be used

repeatedly, ANNs have the advantage that, once trained, they can be used

multiple times for different input distributions. For example, if the input dis-

tribution is changed, direct Monte Carlo analysis would have to be restarted

from the beginning. An ANN trained for one input distribution could be reused

with no (or perhaps minimal) retraining because the training is independent

of the Uncertainty Quantification input distribution. Consider the example of

weather forecasting. New random data is collected frequently from weather

stations, the numerical models are very large and analyses are repeated many

times. A trained ANN could be used to facilitate rapid Uncertainty Quan-

tification given the latest data and input value distributions. When models

are to be used repeatedly with different inputs, the relative time cost of the

data caching (that is, training) for generalisation is reduced. Further, if the

inference accuracy is high, then it would be increasingly worthwhile to train

an ANN for PDE Uncertainty Quantification. Variable input distributions

are considered in the literature (for example [84]), however for large scale
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PDE problems these methods add additional computational difficulties be-

yond those already faced for a fixed input distribution. By utilising ANNs for

generalisation, it will be easier to consider variability in the input distribution

itself for computationally expensive PDE problems.

The overall conclusion of this analysis is that for single use PDE Uncertainty

Quantification problems that can be solved very efficiently, ANN regression

is unlikely to be competitive compared to simply running a large number of

MCS analyses. However, there are several important cases where training

ANN surrogate models is worthwhile. Complex PDE problems that require

significant computational overheads to solve are likely to benefit from the

proposed ANN method by caching the costly known solutions. For models

that are used repeatedly (such as for weather forecasting), the time taken to

train the ANN will likely be made up for by avoiding running costly PDE

solvers. Additionally, for parametric studies, sensitivity analysis and Uncer-

tainty Quantification (all models with repeated evaluations of a model) it is

likely to be worth the computational effort to train an ANN surrogate. The

numerical experiments presented in Section 5.4 demonstrate that the ANN

augmented output probability distribution are more accurate than those com-

puted by MCS and so ANN-MCS would also be worthwhile when the training

data examples are very difficult to obtain.

5.3.5 Kernel Density Estimation

The output probability distribution can be estimated from point data by a

variety of techniques. Histograms are the simplest method and are used for

the third numerical experiment presented in this Chapter [128]. For the first

two numerical experiments in this Chapter, as the focus is not on advanced

density estimation techniques, a simple Kernel Density Estimator (KDE) is

used for the numerical analyses in Section 5.4. While technically the choice

of a kernel is a form of feature engineering, Kernel Density Estimators were

found to work well for all of the test case problems considered without any

unreasonable efforts. Kernel Density Estimators have the useful feature that

they have representations that can be integrated easily, although this was not

used for the numerical analyses presented in this Chapter. Estimating Quanti-

ties of Interest for problems such as reliability estimation requires integration

over the output space and as such KDE models can be used to facilitate QoI
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analyses.

Following §7.2 in [224], §2.5 in [46] and [339, 330], given a set of N data points

(d1, · · · cN ), drawn independently from an unknown probability density, f(d),

the Kernel Density Estimator, D(d), of an unknown probability density, f , is

defined as:

f(d) ≈ D(d) =
1

N

N∑
i=1

K(d− di;h) (5.39)

where h is a smoothing parameter called the bandwidth. The bandwidth must

be selected as a part of the model fitting process and controls the bias-variance

tradeoff of the model [224]. There are a variety of methods for selecting appro-

priate bandwidths, but these are not discussed in detail here. For simplicity,

only fixed bandwidth density estimators are used for the analyses in Section

5.4.

The function K(u) is called a kernel function and is taken to be a a non-

negative function with expectation zero and unit integral. There are a variety

of choices of kernel functions available [10]. However, in this Chapter attention

will be restricted to the Gaussian kernel in the form used by the Scikit-learn

Python library [293]:

K(u;h) ∝ exp

(
− u2

2h2

)
(5.40)

5.4 Numerical analyses

This Section demonstrates how deep ANNs can be applied to problems in

Uncertainty Quantification for PDE problems. Three test case problems in

order of increasing complexity are considered, each based on the heat equa-

tion. First, the steady state boundary value Poisson problem is considered.

In this experiment, the task is to estimate the output distribution given ran-

dom, spatially correlated diffusion and source fields. Kernel Density Estimates

produced by a small number of direct Monte Carlo Simulation analyses are

compared to those by ANN-MCS (that is ANN regression augmented MCS).

The second and third numerical experiments are nonlinear initial value prob-

lems, reintroducing the time dependent part of the heat equation. Further,

the diffusion coefficient is taken to be a nonlinear function of the current tem-

perature. For these analyses, the initial value field is uncertain and modelled

218



as a spatially correlated random field. The second numerical experiment is

similar to the first, except the goal is to estimate the uncertain solution field

after a set number of time steps. The Kernel Density Estimates results using

data from direct Monte Carlo Simulation and ANN-MCS are compared. In

the final experiment, the goal is to estimate the entire sequence of values for

the solution field across all time steps. For this purpose, the performance of a

Recurrent Neural Network for RNN-MCS is compared to direct Monte Carlo

Simulation. For each numerical experiment, the results are verified against a

direct Monte Carlo analysis with a large number of simulations.

In all cases, the random fields and boundary conditions have been selected

to ensure that a steady state distribution is reached. The Heat equation

PDEs analysed will converge to a steady state in all cases as fixed Dirichlet

boundary conditions and a fixed (random) source field are used. Further, the

ANN model only reads output results from the PDE solver. As such, the

ANN-MCS technique will not influence the steady-state distribution of the

numerical FEM solver. There are, however, no guarantees that an ill-fitting

surrogate model will reach any sensible steady state. In the limit that an

ANN surrogate model is perfectly accurate, it will output the same steady

state condition as the PDE solver.

5.4.1 Specification details common to each numerical experi-

ment

5.4.1.1 Equations and numerical PDE solver specifications

Each of the numerical experiments in this Section are based on solutions of

the heat equation. Following the notation in [246]:

∂u(ω)

∂t
= ∇ · (g(ω)q(u)∇u(ω)) + f(ω) in Ω× [0, T ] (5.41)

u(ω) = uD = 0 on ∂Ω× [0, T ] (5.42)

u(ω) = u0(ω) at t = 0 (5.43)

where ω are points in the spatial domain Ω, ∂Ω is the boundary of this domain,

the time is given by t taken to run from 0 to T . For all numerical analyses, the

spatial domain was taken to be a unit square in R2. For all three numerical

problems considered, the boundary condition is taken to be uD = 0 at all
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times. The field f(ω) is termed the source field. The field g(ω) is termed

the material coefficient field. The field u0(ω) is termed initial condition field.

Finally, the function q(u) is termed the constitutive model function.

All numerical analyses of equation (5.41) were carried out using the FEniCS

finite element library [9]. In particular, the solver code in §1 of [246] was used

with only minor modifications. For each of the numerical experiments in this

Section, the same finite element mesh geometry is used. This mesh consisted

of 128 elements P1 elements (see [246]) with a total of 81 nodes arranged in

a 9 by 9 vertex grid. The discretised problem geometry is shown in Figure

5.5.

For all numerical experiments, the input fields f(ω), g(ω) and u0(ω) are as-

sumed to be uncertain. Each of these input fields was taken to be distributed

independently from one another. Each uncertain input field is modelled prob-

abilistically as a spatially autocorrelated random field with exponentially de-

caying correlation function (see [5] for more details):

ρ(ω1, ω2) = exp

(
−‖ω1 − ω2‖2

γ

)
(5.44)

where ‖ω1−ω2‖2 is the square of the distance between ω1 and ω2 and γ is the

correlation length parameter. For all random fields analysed, the correlation

length scale was set to γ = 0.25. This represents a intermediate amount

of correlation and will force simulated random fields to be undulating over

the scale of the problem domain. The source and initial value fields were

taken to be zero mean Gaussian random fields with unit standard deviation

and covariance structure induced by equation (5.44). To ensure positivity of

the heat equation diffusivity term (g(ω)q(u)), the material coefficient field is

set to be a lognormal random field with zero mean, standard deviation 0.25

and covariance structure induced by equation (5.44) applied to the underlying

Gaussian field. In summary, the uncertain input distribution was taken to
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be:

P (X(ω)) = P (f(ω))× P (g(ω))× P (u0(ω))

P (f(ω)) = N
(
~0, ρ(ω1, ω2)

)
P (u0(ω)) = N

(
~0, ρ(ω1, ω2)

)
P (g(ω)) = exp

(
N
(
~0, 0.252×ρ(ω1, ω2)

))
where N (~a, σ2ρ(ω1, ω2)) denotes a normal distribution with mean vector with

all values equal to a, standard deviation σ and correlation as defined by equa-

tion (5.44).

Random fields on the spatial domain were all simulated using the same un-

derlying Gaussian random field generator. The Gaussian random fields were

generated by taking the eigenvalue decomposition (KL Expansion) of the cor-

relation structure discretised by the finite element mesh. Each is generated by

a transformation, L, of a vector of Independent Identically Distributed (IID)

standard normal samples, α such that a correlated Gaussian random field is

given by β = Lα. Lognormal Gaussian random fields, γ, are simulated by

applying the elementwise transform γ = exp(β) to an underlying Gaussian

random field simulation. The full method is detailed in [158, 118]. All random

field simulations were generated using the matrix operations in the Python

library NumPy [380].

ω1

ω2

(0, 0)

(1, 1)

Figure 5.5: Finite Element Mesh adopted for all analyses on domain Ω = [0, 1]
2 ∈ R2

consisting of 81 nodes and 128 evenly equally sized triangular P1 (see [246]) elements.
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5.4.1.2 Analysis methodology specification

For each of the numerical experiments in this Section, roughly the same

methodology was used. To test the performance of the proposed ANN based

regression methods, three analyses were completed. First, a solution estimate

was generated for verification using 1×105 direct Monte Carlo analyses. A

KDE of the output distribution at each node, ω, in the finite element mesh

was constructed using the results of this verification analysis. This estimated

density will be referred to as the verification KDE, Dv(ω; ξ). To compare the

performance of direct MCS and ANN-MCS, the error of the KDEs calculated

by these methods compared to the verification KDE was approximated using

the method described below in Section 5.4.1.3.

For the first two numerical test cases, the performance of MCS and ANN-

MCS was compared by the KDE error at a point within the spatial domain.

The methods tested are direct Monte Carlo analysis and a ANN-MCS for a

number of ANN architectures. Each method was tested using a set number

of known values of the solver function. Specifically, the number of known

values of the function to be evaluated was restricted to one of elements of

the set {1000, 2000, 3000, 4000, 5000}. For MCS analyses, known function val-

ues were found by sampling from the input distribution and then running

the FEM solver. For the ANN-MCS analyses, the samples were generated by

scaled input sampling by the method described in Section 5.4.1.4 below. To

further test the different ANN architectures, when testing the ANNs with dif-

ferent training set sizes, the network weights were reinitialised. As described

in Section 5.2.2.4, Stochastic Gradient Descent optimisation finds local min-

ima. By restarting the ANN analysis randomly each time the same network

architecture type was analysed, the effect of the weight initialisation starting

point was minimised. The different architectures trialled could be compared

more effectively by removing the confounding effect of the starting state of the

weights.

For the third numerical experiment, the RNN-MCS study, a single architec-

ture was tested using 1000 data points for MCS and RNN-MCS. Accuracy

was assessed by comparison to a verification analysis of 1×105 direct Monte

Carlo runs. The RNN-MCS integration was performed using 1×104 integra-

tion trajectory simulations. Further, the RNN was restricted to only predict

a solution field value at a single point within the output space, rather than
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the entire solution field (which was modelled for the ANN-MCS tests).

5.4.1.3 KDE specification

For the different numerical experiments presented, a number of Kernel Density

Estimates are compared. The value of a probability density estimate for a

given value using a Kernel Density Estimator is denoted by:

Pω(ξ) = DID(ω, ξ) (5.45)

where ID is an identification label, ω refers to the spatial coordinate in the

finite element mesh and ξ refers to the random variable value assigned a prob-

ability by DID(ω, ξ). For the first two numerical experiments, errors were

assessed as follows. Given an approximately correct verification value KDE

Dv(ω, ξ), the error of another KDE estimate, Da, for a location ω is given by

the sum of squared errors:

E(ω;Da) = ‖D(ω, ξ)−Dcheck(ω, ξ)‖2 =

∫
R

(D(ω, ξ)−Dcheck(ω, ξ))
2dξ (5.46)

For all analyses in the first two numerical tests, this value is approximated

by taking the predicted KDE values at 2000 points evenly spaced over points

within a fixed distance from ξ = 0. Note that KDE’s for the first two nu-

merical experiments are rescaled to the correct probability density values by

taking into account the spacing between the 2000 approximation points. An-

other type of error estimator is used for the time series prediction in the third

numerical test case and is described in Section 5.4.4.

The Scikit Kernel Density Estimator [293] was for all KDEs. For all analyses,

fixed bandwidths were used. The value of these bandwidths are given in each

of the numerical experiments. These bandwidths were tuned manually. A

more careful analysis of appropriate bandwidths would be required in certain

instances.

5.4.1.4 Artificial Neural Network Details

All ANNs were generated using the Keras software library [76] to interface with

Theano [371]. Weight tolerances were set to 64 bit precision (Python ‘Float64’
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[380, 204]) and the learning accuracy tolerance of was set to 1×10−8. All

ANN training was carried out using the Adam optimiser (see [212] and Section

5.2.2.4) with a mini-batch size of 10. Learning rates were set differently for the

different numerical experiments presented and are described in the Sections

5.4.2, 5.4.3 and 5.4.4. With reference to Section 5.2.1, a mean squared error

loss function of the form:

J(θ) =
1

2
‖output− target‖2 =

1

2
‖h(x)− y‖2 (5.47)

was used for ANN training in all cases tested.

As ANNs are poor at extrapolation but effective for interpolation tasks [368],

the input samples were generated by spread out samples from the input dis-

tribution. To spread out the ANN samples, before applying the correlation

transformations L to the IID standard normal vector, a scaling factor of λ was

applied to α such that for the ANN analysis:

β = L(λα) (5.48)

Different scaling factors were used for different analyses and are described in

the relevant Sections.

5.4.1.5 ANN and RNN Architecture specification

For the numerical analyses, a number of different ANN architectures were

tested. To simplify the description of these architectures, they are described

using the framework in this Section. Each ANN architecture is given as a set

of layer connections and activations. Each architecture is specified by a set of

size N + 1 of the following form:

Name := {X0, C(X1, A1), C(X2, A2), · · · , C(XN , AN )}

where Name is an identifier, X0 is the input dimension and C(Xi, Ai) is a

layer connection that outputs with Xi units and then applies an activation

function Ai. If a value C(X,A) is repeated p times, the shorthand notation

C(X,A)p is used.

The following layer connections are considered:
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• D(X,A): Fully connected layer - see Section 5.2.2.1

• M(X,A): Long Short Term Memory (LSTM) connection - see Section

5.2.2.3

The following activation functions (choices for A) were considered:

• L: Linear - equation (5.9)

• S: Sigmoid - equation (5.10)

• T : Hyperbolic Tangent - equation (5.11)

• R: Rectified Linear Unit (ReLU) - equation (5.12)

• E: Exponential Linear Unit (ELU) - equation (5.13)

5.4.2 Steady state linear Poisson Equation

The first test case considered is the simplest. A two dimensional steady state

heat conduction boundary value problem is analysed using the Finite Element

Method. Random forcing and diffusion coefficients are modelled by random

fields. The goal of the analysis is to generate a Kernel Density Estimate of

the output field at a particular point (the centre) of the spatial domain. Two

probabilistic analysis methods are compared. First, a direct Monte Carlo ap-

proach is used to estimate the distribution of the output space. Next, a deep

ANN is used as a surrogate model for ANN-MCS using the same FEM solver.

Several different ANN architectures are considered. The Kernel Density Esti-

mates of the output field at the central point calculated by both methods are

compared.

5.4.2.1 Problem definition

With reference to Section 5.4.1 and equation (5.41), the equation analysed for

this first numerical experiment is the Poisson Equation:

−∇ · (g(ω)q(ω)∇u(ω)) = f(ω) (5.49)

As there is no time dependence, the initial value of the field u0 is irrelevant for

this problem. For this linear problem the constitutive field is constant, that

is, q(u) = 1.
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The goal of this analysis is to estimate the probability density of the solution

field to equation (5.49). In particular, the aim is to train an ANN to predict

the value of the solution to equation (5.49). These predictions are then to

be used to provide improved Kernel Density Estimates (compared to Monte

Carlo Simulation) of the probability density of u(ω). For each of the ANNs

tested, to allow for comparison between each, training is restricted to 1000

epochs. A fixed KDE bandwidth of 0.0008 was used for the verification KDE

as well as all ANN-MCS KDE. A fixed bandwidth of 0.0012 was used for all

test MCS analyses as this higher bandwidth reduced the MCS error relative

to the verification analysis. These values were selected empirically based on

the criteria described in [46] to be neither too small (insufficient smoothness

of output distribution) nor too large (the output density is exactly the kernel

density). A more detailed and complicated analysis could be performed using

the likelihood of the kernel parameter using a Gaussian Process formulation.

For the demonstrations presented in this Section, the empirical approach is

sufficient.

5.4.2.2 ANN details and architectures

A fixed learning rate of η = 0.001 was used for all analyses. A training set

sampler scaling factor of λ = 2.0 (see Section 5.4.1.4) was used for all ANN

analyses. With reference to the definitions in Section 5.4.1.5, the following

ANN architectures were considered:

• Deep Rectified := {I,D(I, S), D(I,R), D(O,S), D(O,R), D(2×I,R)2, D(O,L)}

• Wide Sigmoid := {I,D(I, S), D(2000, S), D(O,L)}

• Multilayer Perceptron (MLP) := {I,D(I, S), D(2×I, S)3, D(O,L)}

where I = 81×2 = 162 is the common input dimension, O = 81 is the common

output dimension to the ANN. Note that the input dimension, I, of each ANN

is the size of the coefficient vector field, g(ω), plus the source vector field, f(ω).

The output dimension of each ANN is the dimension of the solution field, u(ω).

The Deep Rectified network consists of several layers of ReLU and sigmoid

activations. The Multilayer Perceptron network is a traditional architecture

consisting of only sigmoid activations. The Wide Sigmoid network is a wide,

single layer Perceptron network.
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5.4.2.3 Numerical Results

The analysis was carried out following the description given in Section 5.4.1.2.

Fixed bandwidth KDE estimates were calculated for direct Monte Carlo Sim-

ulation and for each of the ANN architectures described in Section 5.4.2.2.

Performance measures of each of the methods tested for estimating the prob-

ability density of u(ω = (0.5, 0.5)) are presented. Note that ω = (0.5, 0.5) is

the centre of the spatial domain.

The shape of the KDE estimators and their errors using a training set size of

5000 known values is summarised in Figure 5.6. Figure 5.6a plots the Kernel

Density Estimates for the verification analysis, Dv(ω = 0.5, 0.5, ξ), and for

each of the methods tested. Figure 5.6b plots the error (as the difference)

between the KDEs in 5.6a and the verification density. Table 5.1 presents

the error E(Di, ω = 0.5, 0.5) for each KDE Di compared to the verification

density, Dv(ω = 0.5, 0.5, ξ), for direct Monte Carlo Simulation and for each

of the ANN architectures described in Section 5.4.2.2. Figure 5.7 plots the

estimator error versus number of input values using the data from Table 5.1

for each of the methods tested.

Method Type
KDE Error per number of training examples

Number of training examples

1000 2000 3000 4000 5000

MCS N.A. 0.81446 0.87507 0.81473 0.57427 0.44319

ANN Rectified 1.13293 0.62516 0.53372 0.14418 0.09717

ANN Wide Sigmoid 0.55119 0.67793 0.63492 0.51531 0.80421

ANN MLP 4.55736 3.58707 3.75562 2.21758 2.38577

Table 5.1: Steady State Poisson Equation Kernel Density Estimator (KDE) error
for u(0.5, 0.5) (the central point in the spatial domain) calculated for each numerical
method tested. Errors are calculated for the specified number of training examples.
Error is estimated as the sum of squared errors relative to the 1×105 verification KDE
MCS analyses as per the description in Section 5.4.1.3. The method column refers
to either direct Monte Carlo Simulation (MCS) or Artificial Neural Network (ANN)
regression for ANN-MCS. Type N.A. denotes ‘not applicable’. The type column for
ANN methods refer to the ANN architectures in Section 5.4.2.2.

5.4.2.4 Discussion

The numerical results for the linear Poisson problem problem directly demon-

strated that feedforward ANNs can be used as surrogate models for FEM
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(b) Errors of Kernel Density Estimates of u(0.5, 0.5) compared to verification analysis.

Figure 5.6: Steady State Poisson Equation Kernel Density Estimates and errors.
Figure 5.6a shows, for each method tested, the KDEs of u(0.5, 0.5) which is the
solution to probabilistic Poisson Equation described in Section 5.4.2.1 at the centre of
the spatial domain shown in Figure 5.5. Figure 5.6b shows the error of each of these
KDE estimates compared to the verification analysis KDE (from 1×105 direct Monte
Carlo Simulations).

boundary value PDE solutions. If the right type of ANN architecture is used,

these surrogate models can generalise well and estimate probabilities for Un-

certainty Quantification more accurately than direct Monte Carlo Simulation.

The ANN architectures used were found by trial and error, but the presented

results should aid future design efforts. Further, the numerical results demon-

strated a number of anticipated results. For the sigmoid only networks, the
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Figure 5.7: Comparison of errors for MCS and different ANN surrogate model ar-
chitectures for the Steady State Poisson Equation analysed. Monte Carlo Simulation
analyses were calculated from Kernel Density Estimates using the the number of
analyses shown on the horizontal axis. The three ANN models tested were fit using
training set of size shown on the horizontal axis. A Kernel Density Estimate was then
built from 1×105 simulations from the surrogate model. Errors are calculated as the
mean sum of squared differences from between the Kernel Density Estimate using the
different function approximation techniques and the verification analysis KDE (from
1×105 direct MCS analyses). Note that the errors were calculated with a fixed width
Gaussian kernel for all analyses, as such the error shown should be considered rela-
tive to one another and not as absolute error indicators (which are kernel bandwidth
dependent).

wide and shallow network outperformed the deep Multilayer Perceptron net-

work. This was expected based on the discussion in Section 5.2.2. Addi-

tionally, it was shown that deep networks with rectifier units can be used as

accurate function approximation surrogate models.

Figure 5.6a demonstrates that all of the networks tested converged roughly

to the output probability density for u(0.5, 0.5) predicted by the verification

analysis (direct MCS with 1×105 simulations). The error analyses in Figures

5.6b and 5.7, as well as Table 5.1, indicate that that the deep network with

mixed ReLU and sigmoid activations converged the most quickly to the correct

output probability density, converging more quickly than either of the sigmoid

only networks. The shallow, wide sigmoid network performed better than the

deep sigmoid network. The deep sigmoid only network did not completely

finish converging to the correct distribution. This is likely due to the fixed

training length (1000 epochs) that was used. With additional training it is

possible that the deep sigmoid network would have converged more closely
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to the correct distribution. The reasons for the superior performance of the

network with rectifier units follows from the discussion in Section 5.2.2.5.

The nonlinearity in the convergence trends visible in Figure 5.7 for each net-

work tested are due to the random reinitialisation of each networks weights

for each training set size considered. Further, the training data points are

randomly reselected for every analysis. This methodology is as described in

Section 5.4.1.2. As SGD is a local optimisation algorithm, the starting net-

work weights will impact on the ANN weights at the end of training. The deep

ReLU sigmoid mixture network displayed a more consistent improvement with

increasing training data than the other networks tested. In order to test this

convergence, it was found to be useful to use the results of MCS sampling in

order to verify the shape of the ANN predicted output distribution. For a real-

istic analysis, the solution (in the form of the verification analysis in this case)

would not be available. This means that errors of the type shown in Figures

5.6b and 5.7, as well as Table 5.1, would not be available as a means for as-

sessing the quality of the ANN approximation. Of course, standard supervised

learning validation techniques such as ‘leave one out cross validation’ (for de-

tails see [269]) could be used to assess the performance of the ANN. However,

as even a small number of MCS samples can be used to easily approximate the

rough shape of the output distribution, these MCS samples could be used to

check the convergence of the estimated output probability distribution with

less computational overhead than methods like leave one out cross validation.

For example, with reference to Table 5.1, the ANN predicted output distri-

bution should converge in the direction predicted by an increasing number

of direct MCS samples. It is important to note that, in this context, ANNs

learn the function from inputs to outputs and is not dependent on the input

distribution selected for the Uncertainty Quantification problem. That is, the

training examples need not follow the input distribution to be analysed. This

is in contrast with direct MCS which estimates the output distribution for a

given input set. As such, care should be taken when using MCS density estima-

tion as an ANN validation technique for Uncertainty Quantification problems

with variable input distribution or when the training set is not composed of

independent samples drawn from the input distribution.

The overall result of the analysis was that by using an appropriate ANN,

deep networks can be used as very effective surrogate models for steady state
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boundary value PDE Uncertainty Quantification problems. By making the

right choices regarding training techniques and activation functions, deep ar-

chitectures can be used effectively. The most challenging aspect of the design

of this numerical experiment was the selection of an appropriate deep archi-

tecture. The results are not shown, but deep networks consisting only of

ReLU units performed very poorly. The combination of units with nonlinear

and linear gradients likely simultaneously improved the ability of the network

to calculate the required functions while preventing vanishing or exploding

gradients. Further, the deep ReLU sigmoid mixture network features a bot-

tleneck after a few layers. This bottleneck drops the dimensionality of the

network by mapping from a subset of R162 to a subset of R81. The network

then widens out again, to a subset of R324, before reaching the output space,

R81. The bottleneck architecture was found to be very effective for this nu-

merical experiment. This is likely because, when considering the structure

of the problem being solved (essentially matrix inversion for different vectors

and matrices), there are sparse connections between the input space features

initially but dense interactions between the input components after matrix

inversion. The wide part of the network allows for the network to find which

interactions of input components are relevant. By using a bottleneck, the net-

work is forced to pick a small number of dominant principle components in

a way that is similar to dimensionality reducing auto encoders [184]. As the

function to be learnt is the PDE solution output, it is sensible to set the bot-

tleneck width (number of principle components) to be the dimensionality of

the output field. Although the bottleneck architecture was successful for this

numerical experiment, it was found primarily by trial and error. Improving

techniques for finding useful ANN model architectures remains an open area

of research [151].
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5.4.3 ANN-MCS analysis of an initial value nonlinear heat

equation problem

The second numerical problem extends the first by reintroducing the time

dependency in heat equation, see equation (5.41). This is an initial value

problem, rather than the boundary value problem presented in Section 5.4.2.

The initial conditions for this problem are uncertain and modelled as a spa-

tially autocorrelated random field. The values of the solution field, u(ω), at

the final analysis time at the central point within the spatial domain are to be

estimated. As a further modification, nonlinearity is introduced to the diffu-

sion coefficients. The introduction of these nonlinearities makes ANN training

more difficult than in the linear case.

5.4.3.1 Problem description

With reference to Section 5.4.1, the heat equation described in equation (5.41)

was solved for the constitutive model:

q(u) = 1 + u2 (5.50)

For numerical analysis, time was taken to run from t = 0 to t = 1 in 50 discrete

and evenly spaced intervals.

For this numerical experiment, the goal is to estimate the probability density

of u(ω) at t = 1 given the probabilistic input random fields for the mate-

rial coefficient, source and initial value fields given by g(ω), f(ω) and u0(ω)

respectively. The probability distributions for the input fields are given in

Section 5.4.1. In particular, the aim is to train an ANN to predict the value

of u(ω) at t = 1.0 given the input field values. These predictions are then to

be used to provide improved Kernel Density Estimates (compared to Monte

Carlo Simulation) of the probability density of u(ω) by ANN-MCS. A fixed

KDE bandwidth of 0.0015 was used for all analyses. This value was fit em-

pirically based on the observed data to be neither too small (rendering the

output PDE very rough) or too large (output PDE hidden by kernel func-

tion). For further discussion regarding the selection of kernel parameters, see

Section 5.3.5. Note that the estimated error for the method tested is depen-

dent on the KDE bandwidth. As the (non-verification) MCS analyses use a
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lower number of density estimation points to calculate the KDE compared to

the ANN methods, the MCS KDE error is likely to be higher than if a higher

bandwidth was used. The errors between the two ANN methods tested can be

compared directly, but the MCS error should be considered as an indicative

relative error.

5.4.3.2 ANN details and architecture

To train the ANNs for this numerical experiment successfully, a reducing learn-

ing schedule was used. The following 100 epoch schedule was adopted for all

ANN analyses:

1. η = 1×10−3 for 20 epochs

2. η = 1×10−4 for 20 epochs

3. η = 1×10−5 for 20 epochs

4. η = 1×10−6 for 20 epochs

5. η = 1×10−7 for 20 epochs

This training schedule was found by trial and error to perform well. The

reducing learning rate schedule is simplified form of simulated annealing. A

training set sampler scaling factor of λ = 1.1 (see Section 5.4.1.4) was used

for all ANN analyses.

With reference to the definitions in Section 5.4.1.5, the following ANN archi-

tectures were considered:

• Deep ELU & Tanh = {I,D(I, L), D(W,T ), D(W,E), D(W,T ), D(O,L)}

• Multilayer Tanh = {I,D(I, L), D(W,T ), D(W,T ), D(W,T ), D(O,L)}

where I = 81×3 = 243 is the common input dimension, O = 81×3 = 243 is the

common output dimension to the ANN and W = 10×O = 2430. The input

and output dimensions are the sum of the dimensions of the coefficient vector

field, g(ω), the source vector field, f(ω) and the solution field, u(ω). The

Multilayer Tanh (or ML Tanh) network is a traditional Multilayer Perceptron

architecture with three tanh activation layers. The Deep ELU & Tanh network

consists of two tanh activation layers with an ELU nonlinear rectifier layer in

the middle of the network.
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5.4.3.3 Numerical results

The analysis was carried out following the description given in Section 5.4.1.2.

KDE estimates were calculated for direct Monte Carlo Simulation and for each

of the ANN architectures described in Section 5.4.3.2. All KDE estimates were

made using the value of u(ω) at the final time, t = 1.0.

As in the first numerical experiment, the performance of each of the methods

tested for estimating the probability density of u(0.5, 0.5) (the centre of the

spatial domain) at t = 1.0 is presented. The shape of the KDE estimators

and their errors using 5000 known values (either training set size or Monte

Carlo Simulations) is summarised in Figure 5.8. Figure 5.8a plots the Kernel

Density Estimates for the verification analysis, Dv(ω = 0.5, 0.5, ξ), and for

each of the methods tested. Figure 5.8b plots the error (as the difference)

between the KDEs in 5.8a and the verification density. Table 5.2 presents

the error E(Di, ω = 0.5, 0.5) for each KDE Di compared to the verification

density, Dv(ω = 0.5, 0.5, ξ) at t = 1.0, for direct Monte Carlo Simulation and

for each of the ANN architectures described in Section 5.4.3.2. Figure 5.9

plots the estimator error versus number of input values data from Table 5.2

for each of the methods tested.

Method Type
KDE Error per number of training examples

Number of training examples

1000 2000 3000 4000 5000

MCS N.A. 1.24082 0.75807 0.36820 0.21342 0.21013

ANN ELU & Tanh 0.06893 0.03584 0.01574 0.04145 0.03398

ANN ML Tanh 0.52755 0.38912 0.08152 0.08368 0.06613

Table 5.2: Nonlinear heat equation problem Kernel Density Estimator (KDE) error
for u(0.5, 0.5) at t = 1.0. Errors are calculated for the specified number of training
examples as the sum of squared errors relative to the verification KDE (from 1×105

MCS analyses) as per the description in Section 5.4.1.3. The method column refers
to either direct Monte Carlo Simulation (MCS) or Artificial Neural Network (ANN)
regression. Type N.A. denotes ‘not applicable’. The type column for ANN methods
refer to the ANN architectures in Section 5.4.3.2.

5.4.3.4 Discussion

This numerical experiment demonstrated that ANNs can successfully be used

as fixed time surrogate models for nonlinear PDE initial value problems. From
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(b) Errors of Kernel Density Estimates of u(0.5, 0.5) at t = 1.0 compared to verifica-
tion analysis.

Figure 5.8: Nonlinear heat equation problem Kernel Density Estimates and error
for u(0.5, 0.5) at t = 1.0. Figure 5.8a shows, for each method tested, the KDEs
of u(0.5, 0.5) which is the solution field of the probabilistic heat equation problem
described in Section 5.4.3.1 at the centre of the spatial domain shown in Figure 5.5.
Figure 5.8b shows the error of each of these plotted density estimates compared to
the verification analysis KDE (from 1×105 direct Monte Carlo Simulations).

Figure 5.9 it is clear that while both types of ANNs tested were more accurate

than direct MCS, the ELU rectified network consistently outperformed the

tanh only network. Figure 5.8a demonstrates that both networks tested fit

the verification analysis KDE distribution well but the ELU rectified network

was more accurate, as shown in Figure 5.8b. The oscillations in the accuracy

in the ELU network shown in Figure 5.9 are due to the fact that the network
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Figure 5.9: Comparison of errors for MCS and ANN-MCS using different ANN surro-
gate model architectures for the nonlinear heat equation problem at t = 1.0. Monte
Carlo Simulation analyses were calculated directly using the the number of analyses
shown on the horizontal axis. The ANN models tested were fit using training set of
size shown on the horizontal axis. The ANN-MCS Kernel Density Estimates were
built from 1×105 simulations from the surrogate models. Errors are calculated as
the mean sum of squared differences between the Kernel Density Estimate using the
different function approximation techniques and the verification analysis KDE (from
1×105 direct MCS analyses). Note that the errors were calculated with a fixed width
Gaussian kernel for all analyses, as such the error shown should be considered rela-
tive to one another and not as absolute error indicators (which are kernel bandwidth
dependent).

weights were reinitialised for all ANNs for each analysis.

Although it is not shown in the numerical results, it took some time to find

a workable training schedule to adopt. Failure to use an adequate training

schedule led to poor ANN convergence. Estimating a good training schedule

for ANN-MCS will likely remain a difficult task for future research. It was

found that waiting for the estimated training loss at a particular learning rate

to begin to oscillate before reducing the learning rate by a factor of ten worked

well in practice, as shown in the numerical results presented.
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5.4.4 Sequence prediction for a nonlinear heat equation using

RNN-MCS

The third numerical experiment presented introduces Recurrent Neural Net-

works for initial value PDE problem time sequence prediction. The nonlinear

heat equation presented in Section 5.4.3 is reanalysed using the RNN-MCS

method described in Section 5.3.3. This example demonstrates that it is pos-

sible to use RNNs for predicting the sequence of values output at discrete times

by a initial value problem solver. This is in contrast to the second experiment

which used an ANN to predict the solution field value at the final time only.

Note that the transient nature of the equation solved is only dependent on

the initial conditions. A more complex problem would be to deal with time

dependent forcing. This would be a useful avenue for future research.

5.4.4.1 Problem definition

The equations analysed for this numerical problem are identical to those used

for the second numerical experiment, described in Section 5.4.3.1. As in the

second numerical experiment, time was taken to run from t = 0 to t = 1 in

and discretised into 50 intervals.

For this numerical experiment, the goal is to estimate the probability den-

sity of u(0.5, 0.5) (the central point) at every discrete time analysed given the

probabilistic input random fields for the material coefficient, source and initial

value fields denoted g(ω), f(ω) and u0(ω) respectively. The probability dis-

tributions for the input fields are given in Section 5.4.1. With 51 time steps

(50 steps plus t = 0) the discrete approximation u(ω) for all ω and all t is a

sequence of 51 vectors. In particular, the aim is to train a RNN to predict

sequences of u(0.5, 0.5) for all t for a given input. As the experiment in this

Chapter is a demonstration only, RNN-MCS was used to only predict the out-

put values at the single location required rather than the full u(ω) field at all

times.

5.4.4.2 RNN architecture and training details

A single Recurrent Neural Network architecture (see Section 5.4.1.5 for defi-

nitions) was used for this test case:
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• LSTM Network : {I,D(I, L),M(I×5), D(I×5, E),M(I×3), D(I, E), D(1, L)}

where where I = 81×3 = 243 is the common input dimension. The input

dimension is the sum of the dimensions of the coefficient vector field, g(ω),

the source vector field, f(ω) and the solution field, u(ω). The output is one

dimensional per time step (O = 1) for a total output dimension of 1×51. The

network layers have widths of I, I×3 = 729 and I×5 = 1215. The network

consists of alternating LSTM and ELU layers. The layers decrease in width

from the input to the output. The LSTM and ELU combinations make this

architecture is similar to the successful tanh & ELU architecture used for the

second numerical experiment presented (see Section 5.4.3.2).

A training set sampler scaling factor of λ = 1.1 (see Section 5.4.1.4) was used

for the RNN-MCS analysis. The RNN was trained using a reducing learning

schedule for 50 epochs as follows:

1. η = 1×10−3 for 10 epochs

2. η = 1×10−4 for 10 epochs

3. η = 1×10−5 for 10 epochs

4. η = 1×10−6 for 10 epochs

5. η = 1×10−7 for 10 epochs

As with the other numerical experiments presented, this training schedule was

found empirically and is based on a simplified form of simulated annealing

(time decaying learning rate). Automating this process would be a useful

avenue for future research.

5.4.4.3 Numerical results

Following the description in Section 5.4.1.2, u(0.5, 0.5) trajectories from t = 0.0

to t = 1.0 at 51 evenly spaced time steps were calculated using both MCS

and an RNN surrogate model. Trajectory probability densities using each

method were calculated using a two dimensional histogram. The discrete time

steps were used as histogram bins in the time dimension. The ξ dimension

consisted of 202 bins per time with a width of 0.001 from −0.1 to 0.1 (200

bins) plus a ξ ≥ 0.1 bin and a ξ < −0.1 bin. A verification analysis, MCS

using 1×105 simulations, was carried out. The test MCS analysis histogram
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was calculated using 1000 trajectory simulations. The RNN model was fit

using 1000 training simulations and the RNN-MCS histogram was calculated

from 1×104 integration trajectory predictions.

Histograms for each of the analyses are presented in Figure 5.10. Figures

5.10a, 5.10b and 5.10c show histograms for the verification, MCS and RNN-

MCS tests respectively. The histogram error for the MCS and RNN-MCS

tests was calculated by subtracting the calculated histograms from that for

the verification analyses. Plots of these errors are shown in Figure 5.11 where

Figure 5.11a and 5.11b are the errors histogram errors for the MCS and RNN-

MCS tests respectively. Finally, the sum of squared errors for the MCS and

RNN-MCS analysis at each time is shown in Figure 5.12. The sum of square

error values shown were calculated using the histogram errors in Figure 5.11

at each discrete time step.
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Figure 5.10: Nonlinear heat equation time sequence prediction problem histograms
for u(0.5, 0.5). u(0.5, 0.5) is the solution to equation (5.41) at all time steps at the
centre of the spatial domain shown in Figure 5.5. Histogram bins are calculated using
discrete time steps from t = 0 to t = 1.0 in 50 steps (51 bins total) and for u(0.5, 0.5)
using 200 bins of width 0.001 from −0.1 to 0.1. Figure 5.10a shows the histogram for
the verification analysis, 1×105 trajectories from a Monte Carlo Simulation. Figure
5.10b shows the histogram calculated from 1000 direct MCS trajectories. Figure
5.10c shows the histogram calculated from 1×104 predicted trajectories from the
RNN LSTM surrogate model trained on 1000 known trajectories. The color bar is
shared between all plots.

5.4.4.4 Discussion

This numerical experiment demonstrated that LSTM RNN networks can be

used as time series prediction surrogate models. This was demonstrated for a

nonlinear heat equation problem. It would be worthwhile, as a future applica-

tion test, to extend the RNN surrogate model method to a more complicated
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Figure 5.11: Nonlinear heat equation time sequence prediction problem histogram
error for u(0.5, 0.5). Figures 5.11a and 5.11b show the histogram error for MCS
and RNN-MCS respectively. The histogram errors are calculated by subtracting the
estimated histogram from the verification analysis histogram. Specifically, Figure
5.11a shows the histogram in Figure 5.10a minus that in Figure 5.10b. Figure 5.11b
shows the histogram in Figure 5.10a minus that in Figure 5.10c. The color bar is
shared between both plots.
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Figure 5.12: Nonlinear heat equation time sequence prediction problem histogram
sum of squared errors versus time for direct MCS and LSTM RNN-MCS surrogate
model. Errors are calculated using the sum of squares at each time step from the error
plots shown in Figures 5.11a and 5.11b for MCS and RNN-MCS errors respectively.

hyperbolic PDE Uncertainty Quantification problem as well as problems with

time dependent forcing. The histograms in Figure 5.10 demonstrate that the

output distribution predicted by the RNN is very similar to the true distribu-
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tion predicted by the verification analysis.

Interestingly, the RNN predicted output distribution was slightly too narrow

compared to direct MCS and the verification analysis. The RNN-MCS test

underestimates the variance of u(0.5, 0.5) for times from around t ≈ 0.15 on-

wards. The direct MCS error is fairly randomly distributed, as shown in Figure

5.11a. The RNN error, shown in Figure 5.11b, shows a different structure. In

particular, the error RNN is less than the MCS error for early time steps.

However, the RNN predicts too narrow a distribution after t ≈ 0.15. This

is the cause of the negative error values concentrated near u(0.5, 0.5) = 0.0

flanked by positive error values in Figure 5.11b. These observations are fur-

ther supported by Figure 5.12 which shows that the RNN predicted output

distribution demonstrated better convergence (lower error) than the MCS dis-

tribution for times up to around t ≈ 0.15. After this point, MCS predicts the

spread of values is predicted slightly more accurately than the RNN distribu-

tion. However, the errors of the MCS and RNN-MCS methods for later times

are within the same order of magnitude.

Overall, the performance of the RNN surrogate model was quite good, pre-

dicting errors that were at best two orders or magnitude better than the direct

MCS estimate. The worst case errors were not much different from the MCS

errors. These errors were partly caused by the short training schedule (50

epochs). A longer training schedule would likely reduce the error of the RNN

surrogate to below that of the MCS estimator for all time steps. A more

intensive training schedule would be appropriate for a surrogate model that

was to be used repeatedly in the long term, such as for weather prediction.

Despite the slight narrowing of the predicted output distribution, the RNN

surrogate model technique demonstrated could also be used to as a tool for

estimating when, for example, a monitored physical system was likely to ex-

ceed acceptable tolerances by quickly predicting future performance based on

current monitoring data.

It is important to note that the transient nature of the heat equation as mod-

elled is purely due to the variability in the initial conditions. Time dependent

stochastic source fields were not modelled, despite the fact that such models

would be of practical utility. As these analyses are a first demonstration of the

analysis concept, this more challenging problem has not yet been attempted.

Further research will be required to evaluate the performance of the proposed
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RNN-MCS method for problems with time dependent forcing.

5.5 Conclusions

This Chapter demonstrated that Artificial Neural Networks can be used to

augment Uncertainty Quantification problems for Partial Differential equa-

tions by acting as surrogate models. It was shown that feedforward ANNs

can be used as surrogate models for boundary value PDE problems and for

static time prediction with initial value problems. In addition, it was shown

that Recurrent Neural Networks can be used as time dependent surrogate

models for initial value PDE problems by learning to generate a time-ordered

sequence of values for a given PDE input. Uncertainty Quantification using

these ANN and RNN surrogate models was demonstrated using finite element

solutions for a linear boundary value problem and a nonlinear initial value

problem.

The use of numerical simulation to model physical phenomena, in general, will

contain errors associated to the choice of model. The choice of physical laws

to be modelled, material constitutive equations, boundary conditions as well

as the choice of numerical simulation procedure (for example, the Finite Ele-

ment Method) are all potential sources of model error. Further inaccuracies

may be introduced by approximation procedures used to find minimum resid-

ual solutions to some numerical approximation. The typical approach is to

assume that these effective models are sufficiently accurate for some range of

reasonably observable behaviour such that the simulation models can still be

employed for future state prediction. Surrogate models of some physical phe-

nomena based on observations of the solution of a numerical method will be

at most as accurate as the numerical method used to approximate the actual

physical situation. As such, the procedures described in this Chapter for ac-

celerated Uncertainty Quantification are an additional source of model error.

However, as the simulation model is available (unlike the hidden true physics

of the world) it is possible to estimate the surrogate model error in terms of

the loss function. The description of these errors clearly using language from

supervised learning helps to render clear the accuracy of the surrogate model

for Uncertainty Quantification problems.

The run time analysis presented in Section 5.3.4 discussed how the computa-
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tional time complexity of surrogate model training should influence decisions

on when to apply such models. In the numerical experiments analysed, the

ANNs took some time to train but, once fitted, were able to produce predic-

tions faster than the PDE solver for a given input. If a PDE function is to be

reused repeatedly or if multiple different input distributions to a PDE are to

be analysed, ANN based surrogate models are likely to be a worthwhile time

investment. Note that for the analyses presented, the ANN training schedule

was restricted to a fixed number of epochs. This was because of the compara-

tive nature of the numerical studies in Section 5.4. If a trained model was to

be used repeatedly, for example in the case of weather forecasting, it would be

prudent not to artificially restrict the number of training epochs to be used

for the network. The size of the networks could also be increased in practice

for larger analyses than than those presented in this Chapter.

The ANNs demonstrated in this Chapter improved on earlier work in a num-

ber of ways. It was shown that by selecting an appropriate training schedule,

it is possible to train many different network architectures for use as surro-

gate models. Deep networks were successfully trained as surrogate models

by incorporating rectifier units (ReLU and ELU activations) and appropriate

Stochastic Gradient Descent optimisation algorithms. It was demonstrated

that the rectified deep ANN architectures outperformed traditional percep-

tron (sigmoid) style networks regardless of the widths or depths tested. Fi-

nally, it was shown that nonlinear time dependent functions can be learnt by

using deep-in-time Recurrent Neural Networks with Long Short-Term Memory

cells.

In the future, hopefully ANNs can be incorporated more widely into the Un-

certainty Quantification tool kit along with existing, well-developed PDE sur-

rogate model techniques such as Polynomial Chaos Expansions and Support

Vector Regression. The surrogate model integration technique used in this

Chapter, Monte Carlo integration, could be replaced by other methods. This

would be an interesting subject for future research. Further, more test case

analyses such as those presented here will help to uncover effective ANN ar-

chitectures and training schedules appropriate for the various PDE problems

encountered by numerical analysts. As automating ANN architecture design

is a current area of research, the proof-of-concept analyses presented in this

Chapter suggest that further progress could be made given effective adaptive
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ANN architecture tools.
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Chapter 6 Overview

Key developments in Chapter 6 include:

• Section 6.2 explores a Bayesian interpretation of the solution of numer-

ical equations through the lens of probabilistic numerical methods and

analogies from Statistical Mechanics. The interpretation of the solution
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of equations for Uncertainty Quantification as a type of joint input-

output space marginalisation is discussed.

• Section 6.3 discusses background material on Importance Sampling.

• Section 6.4 provides an original contribution: that traditional approaches

to Uncertainty Quantification based on pushforward measures are in fact

a form of unnormalised Importance Sampling for which the normalisa-

tion constant is unjustifiably discarded.

• Section 6.5 presents numerical experiments to illuminate the theoretical

material in the other parts of the Chapter.

6.1 Introduction

This Chapter takes recent developments in the Bayesian interpretation of equa-

tion solving and asks how the traditional approach based on residual minimi-

sation can be understood from the Bayesian perspective. From the Bayesian

viewpoint, as discussed in this Chapter, deterministic problems are in fact

a special case of the broader set of probabilistic problems. As discussed in

[175], typical numerical tasks such as optimisation and integration can be

interpreted as Bayesian Inference problems. Moving from deterministic prob-

lems to Uncertainty Quantification, the main contribution of this Chapter

is to demonstrate that Monte Carlo estimates of uncertain quantities by re-

peated function evaluation using residual minimisation is in fact an implicit

form of Importance Sampling. By understanding equations from a Bayesian

perspective, the variance of the implicit Importance Sampling estimate can be

evaluated and as such the proposal sampling distribution modified depending

on need. The variance of Importance Sampling estimates is dependent on

the selected proposal distribution. The full Bayesian understanding of this

Importance Sampling estimate makes clear the relevance of multimodality in

the solution error space by identifying a likelihood probability term that is, in

traditional techniques, simply assumed to be unity. By explicitly addressing

this likelihood term, the weaknesses of traditional techniques can be miti-

gated and the ability to numerically evaluate uncertain output functions of an

equation can be improved. It is noted here that in this Chapter residual min-

imisation refers to the solution of equations, not to finding fitted probability
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density functions, which may still be evaluated by residual minimisation over

the space of appropriate probability density functions.

To ‘solve an equation numerically’ is often taken to mean finding a solution

that, within a certain tolerance, satisfies the constraints placed on the possible

solutions by the form of the given equation. The constraints defining a solution

are often specified directly in terms of an objective function. The term residual

function is also used. A numerical equation solver can be taken to mean a

program (which may be abstractly represented by just an algorithm) that

takes a set of input values and produces (if possible) the minimum residual

output. The criteria defining a ‘good’ solver may include the ability to find a

global residual minimum and the speed at which the residual is reduced [178,

305, 148]. For physical problems, it is not easy to compare the performance

of two different solvers on the same problem in the sense of whether or not

the model is actually achieving a solution with the correct physical behaviour

when the residual is minimised. For the purposes of this Chapter, it is assumed

that the solvers used do not suffer from significant model error. This issue is

discussed in more detail in Section 6.2. However, given a particular solver it

is possible to ask if a solution is of a high quality or not based on the given

residual.

Moving away from the single input, single output paradigm, it is becoming

increasingly popular in science and engineering to ask probabilistic questions

regarding the outputs of some equation. This can be framed in terms of Un-

certainty Quantification [95, 21, 118, 351, 359, 356, 357, 40, 253], that is, given

a set of uncertain inputs to an equation, what is the probability distribution

over the space of outputs? The space of potential problems is incredibly vast.

As single particular example from Civil Engineering, imagine a designer wishes

to know the probability for the displacements of a structure to exceed some

threshold value, for example in [141, 142, 94, 157]. The input strengths or po-

tential loads applied to a structure may be unknown, but able to be estimated

probabilistically. In this case, the physical model defines an energy function

which constrains the relationship between the input and output space. As

a more scientific example, an experimenter may wish to measure the power

output from a laser and the variability in such a measurement [352].

Note that the examples typically raised in an Uncertainty Quantification con-

text focus mainly on uncertainty in the input distribution. The probability
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measure over the space of inputs to a model is assumed to include noise in the

input data. Sources of input data noise could be low accurate measurement

equipment or observations of complicated processes, such as chaotic dynamical

systems. When carrying out numerical Uncertainty Quantification, it is suf-

ficient to assume all sources of uncertainty are effectively factored into both

the uncertain input distribution and the uncertainties in evaluation of the

map from inputs to outputs. From the Uncertainty Quantification viewpoint,

a ‘good’ solution can be considered to be an output distribution that is as

close as possible (in a sense which can be quantified [300, 83, 225]) to the

true distribution that is to be estimated. That is, the optimal encoding of

the distribution over the solution space is desired. To this end, probabilis-

tic problems are often interpreted as inverse problems. Considerable work has

been done in advancing the interpretation of inverse problems from a Bayesian

perspective [355, 257]. This interpretation of inverse problems considers that

the error residual of a solution to a problem with a given input can be used

to define a Gibbs measure where this error is taken to be a Hamiltonian (or

energy functional).

The above two approaches to equation solving can be unified into a coherent

framework. Understanding this unification provides the key to understand-

ing the meaning of Uncertainty Quantification. Specifically, the probabilistic

viewpoint subsumes the single solution case. The key principle is that the

only indicator of the quality of a solution available when solving an equation

is the residual function. For a given space of possible solutions (for example,

Rn) the residual function contains all of the constraints on the possible solu-

tions and so fully specifies the structure of the equation to be solved. In this

sense, which is detailed in Section 6.2, the residual function can be considered

as a Hamiltonian on the solution space where high energy levels correspond

directly to high residual values. Assuming that this residual function is fixed

for a given problem, then the residual function can be considered to represent

the Hamiltonian term in a canonical ensemble at a fixed inverse temperature,

typically denoted β.

Given the representation of the residual function as a Hamiltonian, the Gibbs

Measure can then be used to represent a probability distribution over the joint

input and output space to the problem to be solved [355]. This is analogous to

the log-linear model in machine learning [233, 323] and the Boltzmann Distri-
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bution in statistical mechanics [284, 228]. In a thermodynamic canonical en-

semble (by definition in thermodynamic equilibrium with a fixed temperature

heat bath), the inverse temperature β is a Lagrange multiplier representing

the accessibility of the various energy levels (§12 in [83]). In the probabilistic

numerics framework presented here, β can be taken to represent the desired

solution tolerance level. High β corresponds to low energy level accessibil-

ity, reducing the probability allocated to higher energy (high residual) states.

The actual probability of the output distribution then can be calculated by

assuming a prior distribution over the space of inputs and then conditioning

the joint distribution of inputs and outputs by the input distribution. This is

equivalent to marginalisation to extract the output probability distribution if

the conditioning is taken over all possible inputs.

The meaning of a typical numerical procedure that produces a single output

at a sufficiently low residual for a single input can then be understood in this

way. The single input can be represented as a Dirac delta prior on the input

distribution centred at that single point. Assuming that there is no prior over

the output distribution, then the ‘single output’ is a Maximum Likelihood

Estimate (MLE) of the output distribution. That is, the single solution is an

estimate of the mode of the conditional output distribution [59]. This Bayesian

viewpoint is in contrast with Fisher’s original views on Maximum Likelihood

which have been frequently criticised for a lack of consistency [8, 166]. The

relationship between Maximum Likelihood and solving equations is discussed

in detail in Section 6.2.

Typically, Uncertainty Quantification is performed by calculating the propa-

gation of probability mass through the solution function to the output space.

Specifically, a pushforward measure is implicitly calculated. Given these esti-

mates of probability mass on the output space, a probability density function

over the output distribution can be estimated based on the available data.

There are two main components to this uncertainty propagation procedure,

generating data on the output space and probability density estimation given

this data. This is described in detail in Section 6.2. The inverse required to

compute the pushforward measure is, in all but trivial cases, likely to be a

multi-valued function. For physical problems, this causes a number of difficul-

ties. Parameter identification by the solution of probabilistic inverse problems,

for instance, is difficult if a solution is assumed to be single valued when it is
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in fact multi-valued (that is, that there is no unique inverse). This suggests

that a Bayesian approach based on measures of the proposed solution to some

inverse function can be used to avoid issues of non-uniqueness. In particular,

the solution of probabilistic problems can be interpreted as marginalisation

over the joint input-output space of some physical model.

Direct Monte Carlo Simulation (MCS) is the simplest of the typical estima-

tion procedures used [158, 118]. For example, the output probability density

can be estimated by MCS by repeatedly sampling from the input distribution,

then finding the solution of the problem using some given solver (for exam-

ple a Finite Element Method representation of a partial differential equation).

These sampled solutions can then be used to build a representation of the

output distribution. Examples include simple histograms [224] or a more so-

phisticated series expansion in some optimal basis, as in Polynomial Chaos

methods [141, 142, 254]. Direct Monte Carlo can be augmented by Markov

Chain Monte Carlo [313, 55, 157], Karhunen-Loève expansion (as in the Spec-

tral Stochastic Finite Element Method) [141] or any of the assortment of nu-

merical techniques that have been developed for Uncertainty Quantification

[351]. Traditionally, these uncertainty propagation techniques have been used

to calculate the output distribution directly, minimising the residual error in

what is in effect a series of intermediate MLE evaluations that are used to

estimate the output distribution.

From the Bayesian perspective, it is clear that Uncertainty Quantification tech-

niques that rely on residual minimisation follow a three step process. First,

a residual function is constructed that is a functional of the input given the

output. Second, an optimisation procedure is applied to find an MLE that is

within a specified tolerance. Finally, a Dirac delta distribution is implicitly

assumed that trivialises the marginalisation over the joint input-output dis-

tribution by implicitly setting the integral equal to the residual evaluated at

the single non-zero input point. Probabilistic sampling estimates calculated

in this way are in fact an implicit form of Importance Sampling that use a

proposal distribution based on Maximum Likelihood Estimates. Demonstrat-

ing that this is indeed the case and exploring the consequences of this choice

of proposal distribution is the primary contribution of this Chapter. Common

objective optimisation procedures include assorted forms of function inversion,

such as solving matrix equations [148], simulated annealing [305], genetic algo-
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rithms [102] and stochastic gradient descent [347] and several others [178, 305].

The MLE produced would be a Maximum a Posteriori (MAP) estimate if a

prior distribution over the output space was used. In the remainder of the

Chapter, it is assumed that the description of the final phase of traditional

optimisation as an MLE, rather than a MAP, is without loss of generality.

This implicit MLE based approach to solving equations is not useful from

an Uncertainty Quantification perspective. An MLE may not be desirable,

especially if there are degenerate ground state solutions present and/or the

residual is unimodal. Instead, one may wish to calculate a probability that

is a function over the space of possible outputs. As a simple but illustrative

example, the probability that a spring with a variable stiffness under random

loading exceeds a certain strain cannot be calculated simply by an MLE. Fur-

ther, if a distribution more complicated than a Dirac delta is used to model

the input space, as is the case in Uncertainty Quantification problems, it is

no longer possible to ignore the effect of the input distribution in reweighting

the probability mass of the conditional output distribution.

Given the Bayesian interpretation of problem solving it is interesting that the

traditional methods of Uncertainty Quantification solving often work quite

well. In particular, traditional methods can be highly effective for estimating

the mean of an output distribution [118] but fail for the rare event estimation

that is often required for reliability analysis [15, 16, 290, 157, 13]. This Chap-

ter demonstrates that the traditional methods for Uncertainty Quantification

can be interpreted as Importance Sampling with the possibly unwarranted as-

sumption that the conditional probability of the solution given the input is

unity. Importance Sampling refers to the density estimation of a probability

distribution by considering the ratio of the distribution to be estimated with

a different distribution called the proposal distribution [314, 320]. Sampling

from this proposal distribution is used calculate random variable expecta-

tions.

The utility of Importance Sampling is that often the proposal distribution can

be selected such that it is of a simpler structure in some sense than the original

distribution and so that the variance in an estimated functional of the original

distribution is reduced. The variance reduction of Importance Sampling is

heavily dependent on the selected proposal distribution. A poor selection can

actually increase the variance in an estimated quantity. By understanding the

253



implicit proposal distribution used in traditional Uncertainty Quantification,

new proposal distributions can be constructed that better achieve better vari-

ance reduction for the quantity that is to be estimated. Further, the success

of traditional Uncertainty Quantification for certain problems, such as those

with unimodal input distributions coupled with unimodal residual functions

at high tolerance, can be understood by realising that the implicit proposal

distribution happens to have a low variance for the estimate of the mean of

the output distribution. This is detailed in Section 6.4.

Finally, in Section 6.5, several numerical experiments are presented to support

the theoretical developments of this Chapter. The first experiment demon-

strates and explains the failure of the traditional forward approach for far from

mean threshold estimation problems. A multivariate Gaussian, for which very

high accuracy probability estimates can be found independently, is used to

describe the joint input-output probability space for an Uncertainty Quantifi-

cation problem. By calculating the true variance of a Monte Carlo Simulation

estimate using the full Bayesian approach, it is clear that the implicit MLE

Importance Sampler (i.e. the traditional forward approach) has high vari-

ance which does not reduce with further simulation iterations. This suggests

that an improved sampling regime can be designed based on an understanding

of the variance Importance Sampling due to a selected proposal distribution

(discussed in Section 6.3) and the Bayesian interpretation of the residual func-

tion as a conditional probability on the joint input-output space. The second

numerical experiment supports the first by introducing a bimodal residual sur-

face for a forward problem where the quantity to be estimated is far from the

global minimum. It is shown that by including the correct Bayesian variance

estimate, an improved proposal distribution can be designed to estimate quan-

tities for which the traditional residual minimisation methods fail. Finally, a

third numerical experiment is presented that explores the effect of multimodal-

ity of the residual function and demonstrates that Uncertainty Quantification

can be carried out without finding the minima of the problem residual func-

tion. Specifically, it is shown that Markov Chain Monte Carlo sampling can

be used directly on the joint input-output probability space. These numerical

results open the way for future work in the definition of improved sampling

regimes for Monte Carlo based Uncertainty Quantification.

In general, any simulation model based on mapping observations to an alter-
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native function space can be reasoned about in the abstract by the approach

discussed in this Chapter. This encompasses Civil Engineering numerical Un-

certainty Quantification problems, which map observations (such as strains,

mass flow rates and temperatures) to output spaces (such as stresses and

material property parameters) via simulation techniques including the Finite

Element and Finite Volume Methods. In particular, as Uncertainty Quantifi-

cation is becoming an increasingly popular approach to deal with problems in

Civil Engineering, the abstract techniques discussed in this Chapter may lead

to applications as a part of future research.

6.2 Interpretations of solving equations and Uncer-

tainty Quantification

6.2.1 Preamble

For notational consistency, this Section defines several terms before the main

result of this Chapter is presented in Section 6.4. The Bayesian and function

inversion paradigms for Uncertainty Quantification are detailed. The Bayesian

interpretation of Uncertainty Quantification starts by reframing the problem

error residual functional as a probability distribution via the Gibbs measure

[355, 228]. A full mathematical treatment of when this is possible is given in

[355]. It suffices to say here that the conditions under which this identification

is possible are sufficiently broad that the vast majority of numerical problems

can be considered under this framework. The residual functions in [355] are

taken over a Banach space [309], as this is captures both the L1 and L2 norms.

As these are the most common forms of residual function used in practice, it

is sufficient for the discussion here. Traditional Uncertainty Quantification

techniques using residual minimisation are demonstrated to be a Maximum

Likelihood Estimate on the solution probability space. Further, it is argued

that the numerical solution tolerances and deterministic problems from func-

tion inversion theory can be subsumed by the Bayesian interpretation of solv-

ing equations. Finally, Uncertainty Quantification is defined. After having

gone through these necessary preliminaries, the main result is given in Section

6.4. It is again noted here that in this Chapter residual minimisation refers to

the solution of equations, not to finding fitted probability density functions,
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which may still be evaluated by residual minimisation over the space of ap-

propriate probability density functions. This will not be detailed further in

this Chapter, but it is will be clear from the discussion in Section 6.2.3 that

selecting a single fitted probability density estimate by residual minimisation

over probability densities is also a Maximum Likelihood Estimate.

6.2.1.1 Input, output and residual functional distributions

The input and output spaces to a problem represent the domains on from

which full problem specifications and solutions can be drawn. For example, the

input space for an uncertain heat equation might be the selection of thermal

conductivities at every point within the spatial problem domain. The output

space would then, in this example, represent a possible solution defined at

every point within the problem spatial domain.

Definition 6.2.1. Input and output space: Let the sets X and Y be the input

space and output space respectively. Let points within the input and output

spaces be represented by x ∈ X and y ∈ Y respectively. 4
Definition 6.2.2. Input, output and joint input-output probabilities: Given

X and Y , let P (X) and P (Y ) be the input probability density and output prob-

abilities respectively. Then let P (X,Y ) be the joint input-output probability

density. 4
Definition 6.2.3. Residual functional : Given a function space H let:

H : X × Y −→ R+ (6.1)

such that

H(y|x) 7→ ε ∈ R+ (6.2)

be the residual functional. Other names for this functional include the error,

loss and energy functional. The Hamiltonian is also used to refer to equation

(6.1) in this Chapter. 4

Definition 6.2.4. Conditional output probability density : Given X,Y and H,

that E(y|x) represents the self-information or surprisal [83] associated with a
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value y ∈ Y given x ∈ X:

H(y|x) = − ln(P (y|x)) (6.3)

Further, let the conditional output probability density be given by the Gibbs

Measure (see [228]):

P (y|x) =
e−βH(y|x)

ZXY
(6.4)

where ZXY is the normalisation constant or partition function:

ZXY =
∑
x∈X

∑
x∈X

e−βH(y|x) (6.5)

and β is the tolerance parameter.

The distribution P (y|x) will also be referred to as the residual probability

density in this Chapter. 4

6.2.2 The Bayesian interpretation of solving equations

The law of total probability (see Definition 2.5.2) can be used to calculate the

probability density on the output space given a probability density P (X) on

the input space.

Definition 6.2.5. Output probability density : Given the input probability den-

sity P (x) ∀x ∈ X, the output probability density, P (y) ∀y ∈ Y , is calculated

by the law of total probability (marginalisation):

P (y) =
∑
x∈X

P (y|x)P (x) (6.6)

4

The output probability density can be interpreted by considering Bayes theo-

rem:

P (m|d) =
P (d|m)P (m)

P (d)
(6.7)

where m represents a model of the data, d, and states that the posterior prob-

ability, P (m|d), of a model given data depends on the conditional probability

of the data given the model, P (d|m), and the prior distribution, P (m).
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For Uncertainty Quantification, the Bayesian interpretation starts by consid-

ering the input probability distribution as defining a prior, P (X). The condi-

tional output probability density P (Y |X) (fixed by the Hamiltonian) defines

the conditional expectations required to calculate the probability of an output

for a given input. This induces an inverse function residual (detailed in Section

6.2.4) which defines the solutions of inverse problems by H(x|y) = ‖x−x′(y)‖
[355, 257]. As in the case of the H(y|x), H(x|y) also defines a probability

density, P (X|Y ), by the Gibbs measure. These conditional probabilities can

be combined, by considering Bayes theorem, into an expression for the joint

input-output probability:

P (X|Y ) =
P (Y |X)P (X)

P (Y )

P (X|Y )P (Y ) = P (Y |X)P (X)

P (X,Y ) = P (Y |X)P (X)

where the final step above used the fact that the joint input-output probability

P (X,Y ) is equal to P (Y |X)P (X) [224]. Finally, the Bayesian interpretation

of the output probability distribution is that P (Y ) is the marginal probability

of y from P (X,Y ) given by equation (6.6).

From Definition 6.2.4 it is clear that the specification of the equation to be

solved is essentially contained in the Hamiltonian and is independent of the

choice of prior distribution P (X). The selection of P (X) can be made based

on, for example, measurement data. Further, it is noted here that the selection

of a model as H(y|x) is actually a delta prior over the space of representable

models. Expanding this definition would allow for information from multiple

models to be combined. For more detailed philosophical and mathematical

discussion on prior selection see [241, 346].

6.2.3 The relationship between energy and probability

The relationship between energy and probability is simply that increasing

energy indicates decreasing probability and vice versa. From definition 6.2.4,
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consider:

P (y|x) =
e−βH(y|x)

ZY |X

− lnP (y|x) = βH(y|x)− lnZY |X

βH(y|x) = − lnP (y|x) + lnZY |X

βH(y|x) = − lnP (y|x) + F (y|x)

where F (y|x) := lnZY |X is termed the variational free energy [123]. The

variational free energy is positive for all x, y.

From these equations, note that H(y|x) ≥ 0 and P (y|x) ∈ [0, 1] by definition.

Then, the variational free energy is always positive:

F (y|x) = βH(y|x)− lnP (y|x) ≥ 0

Note that, for fixed F (y|x):

∇βH(y|x) = ∇ (− lnP (y|x) + F (y|x)) (6.8)

β∇H(y|x) = −∇ lnP (y|x) +∇F (y|x) (6.9)

β∇H(y|x) ∝ −∇P (y|x)

P (y|x)

β∇H(y|x) ∝ −∇P (y|x) (6.10)

so β∇H(y|x) decreases as − lnP (y|x) increases and as P (y|x) decreases.

Further, − lnP (y|x) ≥ 0, and monotonically increases as P (y|x) decreases (by

the properties of ln). Finally, limP (y|x)→0 [− lnP (y|x)] =∞ as− ln [P (y|x) = 1] =

0. Then − lnP (y|x) is an upper bound on βH(y|x):

βH(y|x) = − lnP (y|x) + F (y|x)

βH(y|x) ≥ − lnP (y|x)

βH(y|x) ≥ − lnP (y|x) ≥ − ln [P (y|x) = 1]

This shows that the minimum energy is lower bounded by the monotonic log

probability and as such the minimum energy coincides with the maximum
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probability for fixed β, ∀x ∈ X:

argmin
y∈Y

H(y|x) = argmax
y∈Y

P (y|x) (6.11)

6.2.3.1 Likelihood and parameterised distributions

The conditional probability of an event given another is defined to be the

likelihood of the parameter [59, 323]:

Definition 6.2.6. Likelihood : Given P (a, b) for a ∈ A and b ∈ B:

L(b; a) := P (a|b) (6.12)

4

Maximum likelihood estimation refers to selecting the conditioning event with

the maximum conditional probability [59, 323]:

Definition 6.2.7. Maximum Likelihood Estimate (MLE): Given P (a, b) for

a ∈ A and b ∈ B:

bmle := argmax
b∈B

[L(b; a)] = argmax
b∈B

[P (a|b)] (6.13)

4

The argmax operator in equation (6.13) is defined in the following Section in

Definition 6.2.8.

If a particular prior distribution is assumed over P (b), the MLE becomes a

Maximum a Posteriori (MAP) estimate. Only the MLE case is considered

in this Chapter, but there is no significant loss of generality of the results

presented as the MAP case can be found from the MLE case by Bayes rule.

More detail on MAP and MLE’s can be found in [275].

6.2.3.2 The argmin and argmax operators and their inverses

It will be useful, before discussing an interpretation of the standard prob-

lem solving paradigms to carefully define the argmax and argmin operators.

These operators return the input to a function that returns the maximum

or minimum respectively of an evaluation of that function and are defined as
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follows.

Definition 6.2.8. argmax (and argmin) operator: Given the set of maps

f ∈ B with f : A→ R+. Then the argmax of f over A′ ⊆ A is defined by the

map:

argmax : B −→ P(A) (6.14)

such that:

argmax
a∈A′⊆A

f(a) :=
{
a|a ∈ A′ ∧ ∀a′ ∈ A′ : f(a′) ≤ f(a)

}
(6.15)

Similarly, the argmin of f over A′ is defined by the map:

argmin : B −→ P(A) (6.16)

such that:

argmin
a∈A′⊆A

f(a) :=
{
a|a ∈ A′ ∧ ∀a′ ∈ A′ : f(a′) ≥ f(a)

}
(6.17)

4

It will also be useful to define the inverse of argmax and argmin. Simply,

the inverse of the argmax and argmin operators of f : A → R+ is the set

of all points in A that would return the argmax or argmin for b = f(a) for

b ∈ B.

With reference to Definition 6.2.8, consider the set of all maps in some function

space from A to R+:

B := [f : A −→ B]

Then, the argmax (or argmin) are maps from B to the power set (set of all

subsets) of A as the output value of the argmax (argmin) operators is in some

subset of A:

argmax : B −→ P(A)

argmin : B −→ P(A)
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that is

argmax
a∈A′⊆A

(f(a) = b) 7→ a ∈ A′ ∈ P(A)

Then the inverse of argmax (argmin) is then defined by the map to subsets

B′ ⊆ B ∈ P(B):

argmax−1 : P(A) −→ P(B)

argmin−1 : P(A) −→ P(B)

Definition 6.2.9. Inverse argmax (and argmin) operator: Given the set of

maps f ∈ B with f : A → R+. Then the inverse argmax operator for f over

A′ ⊆ A is given by the map:

argmax−1 : P(A) −→ P(B)

such that, for some a ∈ Â ⊆ A:

argmax
a∈A′⊆A

−1(a) =

{
b ∈ B : argmax

a∈A′⊆A
(b(a)) = a

}

Similarly, the inverse argmin operator is given by the map:

argmin−1 : P(A) −→ P(B)

such that, for some a ∈ Â ⊆ A:

argmin
a∈A′⊆A

−1(a) =

{
b ∈ B : argmin

a∈A′⊆A
(b(a)) = a

}

4

6.2.3.3 MLE and the energy-probability relationship

Having defined terms, the relationship between energy and probability in the

context of Uncertainty Quantification can be further explored. From equation

(6.11), the minimum energy point in the output space is equivalent to the

maximum probability point in the output space. In combination with Defi-
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nition 6.2.6 of likelihood and equation (6.13), which defines MLE’s, it can be

shown that the argmax operator is simply the MLE. Given a fixed x = x′,

let P (y|x = x′, θ) be a parametrised probability distribution (in the sense of

[123]) with parameters θ ∈ Θ so:

θmle = argmax
θ∈Θ

L(θ; y, x = x′)

θmle = argmax
θ∈Θ

P (y|x = x′, θ)

Then, if the parameters θ are taken so that Θ = Y , then θ = y′(x′) ∈ Y so

that:

L(y′;x = x′, y) = P (y|x = x′, y′(x′)) := P (y = y′(x′)|x = x′) (6.18)

then

θmle = argmax
θ∈Θ

P (y|x = x′, θ) (6.19)

θmle = argmax
y′(x′)∈Y

P (y = y′(x′)|x = x′) (6.20)

so then the MLE parametrised can be identified with y(x) by:

θmle = y′(x′)mle (6.21)

Following equation (6.21), the argmax operator can be expressed as an MLE:

y′(x)mle := argmax
y′(x)∈Y

P (y = y′(x)|x) = argmax
y∈Y

P (y|x) (6.22)

Using equation (6.22), consider then that the minimum energy output can

be considered to be a maximum likelihood estimate of the output distribu-

tion:

argmin
y∈Y

H(y|x) = argmax
y∈Y

P (y|x) = y′(x)mle (6.23)

Further, consider that often the inverse of a function is calculated by the min-

imisation of some residual, H(x|y), for example in iterative matrix inversion

[148]. With arguments identical to those for the forward residual minimisation
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problem, letting Θ = X:

x′(y)mle := argmin
x∈X

H(x|y) = argmax
x∈X

P (x|y) (6.24)

As MLE’s find the minimal value of residual functions, they are the key part

in understanding the traditional solution of forward and inverse problems as

discussed in the following section.

6.2.4 Interpreting standard methods of solving equations

It will be shown that both the forward and inverse techniques can be under-

stood in terms of the Bayesian perspective by MLE’s and the pushforward

measure. Standard or traditional Uncertainty Quantification methods use a

either a forward or inverse problem paradigm to estimate P (Y ). The inverse

problem framework calculates P (Y ) by pushing forward (in the sense of push-

forward measure, [50, 219] and Definition 6.2.12) the input distribution to

the output space. Then both the forward and inverse problems rely on a

change of variables formula derived from the pushforward measure (Definition

6.2.13).

In both cases, the traditional approach to problem solving uses MLE’s to eval-

uate both forward and inverse values of functions. It will be shown in Section

6.4 that this is a form of Importance Sampling with an additional unjustified

assumption on the likelihood of parameters. By contrast, Bayesian methods

make use of the conditional output probability density in combination with

the input density to find P (Y ). Fundamentally, the Bayesian viewpoint is

that function inversion for the solution of equations defined by a residual is

subsumed by the understanding that the residual must be specified over both

the input and output spaces simultaneously and as such there is a joint prob-

ability over both of these spaces that should be accounted for. By detailing

the standard forward and inverse solution procedures, the need in Section

6.4 for the Bayesian approach will become clear as it enables handling of the

likelihood term that is ignored by the standard approach. This section, af-

ter defining pushforward measures, gives a definition of forward and inverse

problems based the understanding of MLEs given in Section 6.2.3.
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6.2.4.1 The solution of forward and inverse problems

The solution of a problem is typically defined from a standard perspective

on solving equations as residual minimisation. However, from the discus-

sion in Section 6.2.3.3, residual minimisation can be interpreted as finding

MLE’s.

Definition 6.2.10. Forward problem solution: Given input and output

spaces X and Y , a function u : X → Y and residual function H : X×Y → R+,

the forward problem solution is defined as:

u(x) := argmin
y∈Y

H(y|x) (6.25)

4

From equation (6.22), the forward problem solution has a direct interpretation

as an MLE for a given x:

y′(x)mle = argmin
y∈Y

H(y|x) = u(x) (6.26)

An inverse problem is defined similarly, although more care must be taken.

First, notice that from Definition 6.2.10 u can be considered a map:

u : X
u1−→ H u2−→ Y (6.27)

This is because u(x) first selects a residualH(◦|x) and the evaluates the argmin

on H(◦|x) over Y . Then the definition of the inverse of u must be such that

this process is reversed:

u−1 : P(Y )
u−1

2−→ P(H)
u−1

1−→ P(X) (6.28)

With reference to Definition 6.2.9, the first part of u−1 is the inverse of the

argmin which will map from P(Y ) to H(◦|X). Call this map u−1
2 . Denote

the remaining part of the inverse by the map u−1
1 : P(H) → P(X). Then

u−1
1 (H(◦|x)) must find all x ∈ X such that H(◦|x) ∈ u−1

2 (y).

In other words, the inverse problem solution finds the input value set X ′ ⊆
X such that, given an output, ym ∈ Y , each x′ ∈ X ′ evaluates H(y|x) to

the minimum value, minH(y = ym|x) ∀x′ ∈ X ′. Intuitively, the inverse
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solution finds all of the input values that, given a particular output, evaluate

the residual function to its minimum value. Given y′, any selected single value

x′ ∈ X ′ should evaluate to the correct residual.

Definition 6.2.11. Inverse problem solution: Given input and output spaces

X and Y , a residual function H ∈ H such that H : X × Y → R+, the inverse

problem solution is defined as the map:

u−1(y) : Y → P(H)→ P(X) (6.29)

such that

u−1(y) := X ′(y) =

[
argmin
y∈Y

H(y|x)

]−1

(y) (6.30)

4

Inverse problems are often expressed in terms of residual minimisation. The

iterative solution of matrix problems is a common example [178, 148]. Defining

inverse problems in terms of residual minimisation induces a new residual,

H(x|y), which gives the error of the evaluated MLE for x′ from the true

residual given y′ and x′:

H(x = x′|y = y′) = ‖x′ − u−1(y′)‖ (6.31)

Equation (6.31) reveals how inverse problems are also solved by Maximum

Likelihood Estimates. By a virtually identical argument for that used to find

equation (6.23), the solution set X ′ is populated by MLE’s of H(x|y) because

H(x|y) also defines a probability distribution by the Gibbs measure as in

Definition 6.2.4:

argmin
x∈X

H(x|y) = argmax
y∈Y

P (x|y) = x′(y)mle (6.32)

Then, the solution of the inverse problem is given by the set X ′mle(y) of all

MLE’s, x′(y)mle, of the inverse function:

X ′mle(y) =
{
x′ ∈ X ′ ⊆ X|x′ = x′(y)mle

}
(6.33)

If it is assumed that there is a single inverse, (as is often the case for numerical

problems [373]) then the MLE inverse solution reduces to a selection x′mle ∈
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X ′mle so that

u−1(y) = x′(y)mle ∼
[

argmin
y∈Y

H(y|x)

]−1

(6.34)

Solving problems by function inversion is typically ill-posed [372]. The reason

for this ill-posedness is highlighted by equations (6.29) and (6.30). Inversion

of the argmin operator is non-surjective as the preimage of this operator is a

region X ′ ∈ X. Further, the second inversion from the function space H to X

is also possibly non-surjective. Traditional inversion solutions, as discussed,

effectively make MLE’s to evaluate the required inverses. These MLE’s are

often framed in terms of regularisation, for example Tikhonov regularisation

[372, 373], which approximates inverse problem solutions by a single value

using the modified residual. For example, in a linear matrix inversion prob-

lem:

‖Ax− b‖ (6.35)

can be augmented by the Tikhonov matrix, Γ, such that

‖Ax− b‖+ ‖Γx‖ (6.36)

yields unique solutions

x̂ = (ATA+ ΓTΓ)−1AT b (6.37)

The effect of this regularisation is to prefer certain solutions within the set

of inverse solutions, allowing for easier numerical evaluation. Extensions of

Tikhonov Regularisation to nonlinear cases are described in [370]. Further,

there is a direct interpretation of regularisation in terms of Bayesian linear

regression and prior distributions, as discussed in [275].

It is clear that for the forward and inverse problems (Definitions (6.2.10) and

(6.2.11) respectively), that MLE’s are used to find solutions that are optimal

in the sense of a minimising residuals. It is demonstrated in Section 6.3.4 that

the use of MLE’s in this way is implicitly a form of Importance Sampling that

assumes a certain likelihood term can be ignored. The Bayesian viewpoint is

that these MLE’s are not necessarily required to find a solution to a problem

and in fact may introduce errors if the relative likelihood of these MLE’s is not

calculated, particularly for multimodal solutions. This is made more clear by
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considering probabilistic estimation using the traditional forward and inverse

problem viewpoints, which first requires an understanding of the pushforward

measure.

6.2.4.2 Pushforward measures and change of variables

The pushforward measure is a technique for, in a sense, transferring a measure

from one space to another. The pushforward measure allows for a particular

change of variables for a probabilistic function to be expressed in terms of

function inverses. These definitions will allow for the traditional methods of

probabilistic analysis of equations to be understood in terms of MLE’s. The

pushforward measure is defined from Proposition 3.2.1 in [219] as:

Definition 6.2.12. Pushforward measure: Given measurable spaces (A,ΣA)

and (B,ΣB), a measurable map f : A→ B and a measure µ : ΣA → [0,+∞],

the pushforward of µ is the measure f∗(µ) : ΣB → [0,+∞] given by:

(f∗(µ))(B) = µ(f−1(B)) B ∈ ΣB (6.38)

4

The pushforward measure on Y is simply the probability under P (X) of the

preimage of f(Y ). The detailed conditions on the pushforward measure are

discussed in (specifically §3 and §9) of [50]. Further, a change of variables

formula can be defined for the pushforward measure.

Definition 6.2.13. Change of variables by pushforward measure: By Theo-

rem 3.6.1 in [50], with reference to given a pushforward measure as in Defini-

tion 6.2.12, the change of variables by pushforward measure of a function g(b)

on B by with measurable map f : A → B given probability measures P (A),

P (B) on spaces A and B respectively is defined by:∑
b∈B

g(b)P (a = f−1(b)) =
∑
a∈A

g(f(a))P (a) (6.39)

4

Equation (6.39) allows allows for a change of measure to be expressed without
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reference to a function g (by taking g = 1) as:∑
b∈B

P (a = f−1(b)) =
∑
a∈A

f(a)P (a) (6.40)

6.2.4.3 Probabilistic forward and inverse problems

From Definition 6.2.13 of the change of variables by pushforward measure,

both forward and inverse probabilistic problems (under a traditional residual

minimisation solution framework) can be defined. For forward problems, a

solution is defined as the output probability distribution P (Y ) given a residual

function H(y|x) and input probabilities P (X). An inverse problem is defined

as the input probability distribution P (X) given a residual function H(x|y)

and input probabilities P (Y ). In both cases, the known measure on one space

is pushed forward to the desired space. The change of variables formula can

then be applied to find an expression for an estimate that can be calculated

by a minimisation procedure.

Definition 6.2.14. Probabilistic forward problem: Given the input and out-

put spaces X and Y , the input probability P (X), the residual functional

H(y|x) and the measurable map:

u : X −→ Y (6.41)

where u is a measurable map such that

u(x) := argmin
y∈Y

H(y = u(x)|x) (6.42)

the probabilistic forward problem solution is defined as

P (Y )fwd = 〈u(x)〉P (X) =
∑
y∈Y

yP (x = u−1(y)) =
∑
x∈X

u(x)P (x) (6.43)

4

The condition that u be a measurable map is given in Definition 2.5.3. The

intuitive understanding of what it means for u to be a measurable map is

simply that u−1(B) ∈ X ∀B ∈ Y , that is, the inverse under u of any subset

in Y is in X.

Probabilistic inverse problems compute the expectation of a random variable
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of the output space on the input space. To define the probabilistic inverse

problems, consider the inverse of equation (6.42) and the definition of the

inverse argmin from Definition 6.2.9.

X ′(y) =

[
argmin
y′∈Y

H(y|x)

]−1

The elements of the set X ′(y) is estimated in traditional inverse solution

paradigms by minimisation of the induced residual H(x|y) := ‖x − u−1(y)‖,
then as per the discussed in Section 6.2.4.1, the inverse u−1(y) can be esti-

mated by an MLE of H(x|y).

Definition 6.2.15. Probabilistic inverse problem: Given the input and out-

put spaces X and Y , the output probability P (Y ), the residual functional

H(y|x) and the function:

u : X −→ Y (6.44)

where u is a measurable map such that

u(x) := argmin
y∈Y

H(y|x) (6.45)

define the induced inverse residual given by the map:

H(x|y) : X × Y → R+ (6.46)

as:

H(x|y) = ‖x− u−1(y)‖ (6.47)

the inverse as the set X ′(y) ∈ X

X ′(y) =
{
X ′ ∈ P(X)|x′ ∈ X ∧ x ∈ X ′ = [argmin H(y|x)]−1

}
(6.48)

Let x′(y) be an element in the inverse such that:

u−1(y) = x′(y) = argmin
x∈X

H(x|y) (6.49)

then the probabilistic inverse problem solution is defined as

P (X)inv = 〈u−1(y)〉P (Y ) =
∑
x∈X

xP (y = u(x)) =
∑
y∈Y

u−1(y)P (y) (6.50)

270



4

The relationship between the forward and inverse probabilistic problems is

clear from equations (6.43) and (6.50). Both the forward and inverse prob-

lems evaluate a pushforward measure from one space to another based on the

conditional distribution defined by a residual function.

The forward and inverse probability solutions are defined in terms of residual

minimisation. As such these solutions are implicitly MLE’s. Consider equation

(6.26), which shows that the solution of forward problems found by residual

minimisation are MLE’s. Equation (6.33) and (6.24) indicate that minimum

residual estimates for the inverse problem are also MLE’s. Then the solution

of forward and inverse problems can be expressed as:

P (Y )fwd =
∑
x∈X

y′(x)mleP (x) (6.51)

P (X)inv =
∑
y∈Y

x′(y)mleP (y) (6.52)

In Section 6.3.4 it is shown that these MLE’s are a form of implicit Importance

Sampling for estimating P (Y )fwd or P (X)inv. As both the traditional forward

and inverse techniques are essentially equivalent, the remaining discussion will

focus mainly on the forward method with the understanding that the expo-

sition is valid for both methods. By understanding probabilistic estimation

in this way the theoretical and numerical problems associated with implicitly

making these MLE’s can be resolved. It will be demonstrated in Section 6.5

that the MLE assumptions required for traditional residual minimisation based

solutions can increase the variance of estimated output probabilities and thus

render a calculation useless. However, by understanding both perspectives,

new light can be shed on existing techniques and how they may be modified

to properly incorporate the Bayesian perspective in the future.

6.2.5 Deterministic problems and the β tolerance parameter

For completeness, this Section details how the solution of deterministic forward

(and therefore inverse) problems can be bought into the Bayesian framework.

This will also enable clarification of the β tolerance parameter from Definition

6.2.4. A deterministic problem can be understood as a problem for which
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there is only a single input, x′. This can be interpreted directly as a Dirac

delta prior such that P (X) = δ(x − x′). Under a Bayesian framework, the

deterministic case can be incorporated directly in a coherent manner, that

is:

P (Y ) =
∑
x∈X

P (Y |x)P (x)

P (Y ) =
∑
x∈X

P (Y |x)δ(x− x′)

P (Y ) = P (Y |x′)

P (Y ) = P (Y |x′) is defined by the output conditional probability, P (Y ) can

be interpreted directly. Specifically:

− lnP (Y ) ∝ βH(Y |x′) (6.53)

then, from equations (6.9,6.10) increasing β increases P (Y ). That is, increas-

ing β increases the accessibility of higher values of H(Y |x′) and so increases the

spread of P (Y ) over Y . β is in fact a Lagrange multiplier over the eigenvalues

of the residual energy functional [83].

From an informatation-theoretic perspective, − lnP (y|x) defines the surprisal

of − lnP (y|x) which is essentially the self-information of a particular observa-

tion from H(y|x) [335, 83]. If the β is related to (that is, computations are

regularised by) the machine precision of a computer, one would indeed expect

that the effect of this coarse graining would be to increase the change to make

observations from a broader region of Y .

6.3 Importance Sampling

6.3.1 Importance Sampling Estimates

A particular technique for estimating expectation values of quantities is Im-

portance Sampling [320, 314]. In Section 6.4 it will be demonstrated that

traditional Uncertainty Quantification is a form of Importance Sampling and

so a full definition is supplied here. Importance sampling estimates 〈ψ(a)〉P (A)

by introducing the likelihood ratio w(a) (see Definition 6.3.1) and the proposal
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distribution Q(y) by calculating 〈ψ(y)〉P (a) = 〈ψ(a)w(a)〉Q(A).

Definition 6.3.1. Likelihood ratio: Given the nominal probability distribu-

tion P (A), and the proposal distribution (also termed the importance distri-

bution [314]) the likelihood ratio, for a ∈ A, is:

w(a) =
P (a)

Q(a)
(6.54)

4

Given the likelihood ratio, the Importance Sampling estimate can be found by

expanding the definition of the expectation:

〈ψ(a)〉P (A) =
∑
a∈A

ψ(a)P (a)

〈ψ(a)〉P (A) =
∑
a∈A

ψ(a)
Q(a)

Q(a)
P (a)

〈ψ(a)〉P (A) =
∑
a∈A

ψ(a)
P (a)

Q(a)
Q(a)

〈ψ(a)〉P (A) =
∑
a∈A

ψ(a)w(a)Q(a)

〈ψ(a)〉P (A) = 〈ψ(a)w(a)〉Q(A)

Under the condition that q(x) > 0 ∀x ∈ X such that ψ(x)P (x) 6= 0 (see

[320, 314] for a detailed derivation). Then the Importance Sampling estimate

can be defined by:

Definition 6.3.2. Importance Sampling estimate (ISE): Given:

〈ψ(a)〉P (A) =
∑
a∈A

ψ(a)P (a) (6.55)

and Q(a) with w(a) = P (a)
Q(a) such that condition that q(x) > 0 ∀x ∈ X such

that ψ(x)P (x) 6= 0, the Importance Sampling estimate of 〈ψ(a)〉P (A) is given

by:

〈ψ(a)〉P (A) = 〈ψ(a)w(a)〉Q(A) (6.56)

4
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6.3.2 Variance of Importance Sampling Estimates

Importance sampling is a particular variance reduction technique [320, 314].

By selecting different proposal distributions, the variance of an estimate can

be modified [13]. The quality of one proposal distribution versus another can

be defined in terms of the variance reduction achieved. The optimal proposal

distribution is defined as that with zero variance. The optimal proposal dis-

tribution, however, depends on the function to be estimated. As the goal of

this Chapter is to explore the effect of the implicit Importance Sampling used

in traditional forward and inverse probability estimates, it is useful to state

the variance of a proposal distribution.

From §4.3.1 in [320], the variance of an Importance Sampling estimate can be

calculated directly in terms of the definition of variance, Var(X) = E[(X −
E[X])2] = E[X2]− E[X]2, by:

Var(ψ(a)w(a))Q(A) = 〈(ψ(a)w(a))2〉Q(A) − 〈ψ(a)w(a)〉2Q(A) (6.57)

Var(ψ(a)w(a))Q(A) =
∑
a∈A

(ψ(a)P (a))2

Q(a)
− 〈ψ(a)w(a)〉2Q(A) (6.58)

Var(ψ(a)w(a))Q(A) =
∑
a∈A

ψ(a)2w(a)P (a)− 〈ψ(a)w(a)〉2Q(A) (6.59)

Var(ψ(a)w(a))Q(A) = 〈ψ(a)2w(a)〉P (A) − 〈ψ(a)w(a)〉2Q(A) (6.60)

With reference to §4.3.1 in [320] and Theorem 3.3.4 in [314], the choice of

Q(a) that minimises the estimate variance, the optimal proposal distribution

is given by:

Q∗(a) :=
|ψ(a)|P (a)∑

a′∈A |ψ(a′)|P (a′)
(6.61)

Unfortunately, it is impossible to evaluate the optimal proposal distribution

exactly without knowing
∑

a′∈A |ψ(a′)|P (a′) which is almost exactly the un-

known expectation that is to be estimated by Importance Sampling in the

first place. A large number of techniques exist for approximating the optimal

sampling distribution for example using approximate normalisation (§3.2.2 in

[314] and the powerful cross entropy method [319].
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6.3.3 Unnormalised Importance Sampling

A crucial aspect of Importance Sampling is that the proposal distribution does

not need to be normalised to make numerical estimates [320, 314]. By setting

up the problem correctly, the normalisation constants of the proposal distri-

bution can be essentially divided away. This is a well known, but very useful

feature of Importance Sampling as normalisation constants (or partition func-

tions) can be very difficult or impossible to feasibly calculate analytically [233].

As the unnormalised estimate is a key part in the main result of this Chapter

(that traditional residual minimisation techniques for Uncertainty Quantifica-

tion are an implicit form of Importance Sampling) it is useful to provide the

details of the derivation of the unnormalised estimation technique.

To derive the unnormalised estimate, begin with the unnormalised distribu-

tions P̃ (A) and Q̃(A). Define the following:

P (A) :=
P̃ (X)

ZP
ZP :=

∑
a∈A

P̃ (a) (6.62)

Q(A) :=
Q̃(X)

ZQ
ZP :=

∑
a∈A

Q̃(a) (6.63)

w̃(a) :=
P̃ (a)

Q̃(a)
(6.64)

then expand the required expectation value, 〈f(a)〉P (A), in terms of P (A) and

Q(A):

〈f(a)〉P (A) =
∑
a∈A

f(a)P (a)

〈f(a)〉P (A) =
∑
a∈A

f(a)
P (a)

Q(a)
Q(a)

〈f(a)〉P (A) =
∑
a∈A

f(a)
P̃ (a)

ZP

ZQ

Q̃(a)
Q(a)

〈f(a)〉P (A) =
∑
a∈A

f(a)w̃(a)
ZQ
ZP

Q(a)

〈f(a)〉P (A) =
ZQ
ZP

∑
a∈A

f(a)w̃(a)Q(a)
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Next, expand the ratio of the unknown normalising constants:

ZP
ZQ

=
1

ZQ

∑
a∈A

P̃ (A) (6.65)

Note that, by reorganising equation (6.63):

ZQ =
Q̃(A)

Q(A)

so equation (6.65) becomes:

ZP
ZQ

=
∑
a∈A

Q(a)

Q̃(a)
P̃ (a)

ZP
ZQ

=
∑
a∈A

w̃(a)Q(a)

which can be written expressed as the useful equation:

ZP
ZQ

= 〈w̃(a)〉Q(A) (6.66)

Then, the unnormalised Importance Sampling estimate can be written:

〈f(a)〉P (A) =
〈f(a)w̃(a)〉Q(A)

〈w̃(a)〉Q(A)
(6.67)

The expectations in both the numerator and denominator in equation (6.67)

can be estimated numerically by Monte Carlo Simulation, defined in Section

6.3.4.

6.3.3.1 Variance of unnormalised Importance Sampling estimates

The variance of an unnormalised Importance Sampling estimate can be calcu-

lated in essentially the same way as for the normalised case. The unnormalised

variance estimate will be a key component for understanding the failure of tra-

ditional methods on certain problems and so is given here in detail. From the
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definition of variance:

Var(ψ(a)w(a))Q(A) =
∑
a∈A

ψ(a)2w(a)2Q(a)−
(∑
a∈A

ψ(a)w(a)Q(a)

)2

Var(ψ(a)w(a))Q(A) =
∑
a∈A

ψ(a)2

(
ZQ
ZP

)2

w̃(a)2Q(a)−
(∑
a∈A

ψ(a)

(
ZQ
ZP

)
Q(a)

)2

Var(ψ(a)w(a))Q(A) =

(
ZQ
ZP

)2

〈ψ(a)2w̃(a)2〉Q(A) −
(
ZQ
ZP

)2 (
〈ψ(a)w̃(a)〉Q(A)

)2
from equation (6.66), the ratio of the partition function terms can be writ-

ten:

Var(ψ(a)w(a))Q(A) =
〈ψ(a)2w̃(a)2〉Q(A) −

(
〈ψ(a)w̃(a)〉Q(A)

)2
〈w̃(a)2〉Q(A)

(6.68)

The above derivation has yielded the variance of an Importance Sampling

estimate using an unnormalised proposal distribution. This can be written in

a shorthand notation that should be clear from the context:

Var(ψ(a))P (A) =
〈ψ2w̃〉 − 〈ψw̃〉2

〈w̃〉2 (6.69)

By inspection of equation (6.69), when estimating the variance terms numer-

ically, difficulties may when 〈w̃(a)〉Q(A) is very small (and so 〈w̃(a)〉2Q(A) is

even smaller) when ψ is not. In this case, catastrophic cancellation (see §1.7

in [178]) of the variance reducing negative term in equation (6.69) will ren-

der this term unable to reduce the estimated variance. This will occur when

〈w̃(a)〉 is far from unity. These derivations will be useful when considering the

further developments in Section 6.4.

6.3.4 Monte Carlo Simulation

To numerically estimate expectation values, standard Monte Carlo Simulation,

defined in detail in [118, 314], will be used.

Definition 6.3.3. Monte Carlo Simulation (MCS): Given spaces A and B,

a function f : A → B and probability distribution P (A), the Monte Carlo
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estimate of the expectation of f(a) over P (A) is:

〈f(a)〉P (A) ≈ µ̂(f(a))P (A) :=
1

NA

NA∑
i=i

f(Ai) Ai ∼ P (A)

where Ai ∼ P (A) denotes sampling from P (A) and NA is the total number of

samples drawn from P (A). 4

Further, by the Central Limit Theorem it is a standard result (see [314]) that

given µ̂(f(a))P (A) and the variance of the samples Var f(Ai) = σ̂2(f(a))P (A),

the mean and variance of the MCS estimate is normally distributed:

µ̂(f(a))P (A) ∼ N
(
µ̂(f(a))P (A),

σ̂2(f(a))P (A)

NA

)
(6.70)

so that the standard deviation of the MCS estimate of µ̂(f(a))P (A) decreases

like N
− 1

2
A .

6.4 Traditional Uncertainty Quantification is a form

of Importance Sampling

This Section presents the main result of this Chapter, that traditional Uncer-

tainty Quantification can be interpreted as Importance Sampling using MLE’s.

The overall structure of this demonstration is as follows. First, a QoI estima-

tion on the output space is framed as an estimate on the joint input-output

probability space. Next, Importance Sampling is introduced to this estimate.

By a particular choice of proposal distribution, the Importance Sampling es-

timate of the QoI is shown to be almost equivalent to the standard estimates

as defined by equations (6.51) and (6.52). In particular, it is shown that an

additional likelihood term prevents the identification. This likelihood term

is the probability of the output given the input, that is the likelihood of the

input given the output. By assuming this probability is unity, the traditional

estimate is recovered. The significance of the assumption that this likelihood

term can be ignored is discussed in Section 6.4.4 and explored numerically in

Section 6.5. The variance of the implicit traditional method proposal distri-

bution is detailed. By understanding both the output-input likelihood term

and the variance of Importance Sampling estimates, the relative success and
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failure of traditional approaches to Uncertainty Quantification for different

QoI estimation problems can be understood clearly.

6.4.1 Equating the Bayesian and traditional perspectives

The goal of this Section (and primary contribution of this Chapter) is to

demonstrate the (almost) equivalence of the Bayesian QoI estimates by Impor-

tance Sampling and the traditional forward and inverse QoI estimates based on

residual minimisation. From the discussion in Section 6.2.4, the forward and

inverse problems can be framed essentially identically as pushforward mea-

sures from one space to another. Then, to demonstrate that the traditional

techniques are an implicit form of Importance Sampling it will be sufficient to

show in this Section that, for the forward case, the following is satisfied:

〈ψ(y)〉P (Y )
?
= 〈ψ(u(x))〉P (X) (6.71)

where ψ is a QoI function, 〈ψ(y)〉P (Y ) represents the Bayesian QoI estimate

and 〈ψ(u(x))〉P (X) represents the forward QoI estimate. It will be shown

that equation (6.71) can not be satisfied exactly. However, the traditional

approach and the Bayesian estimates are approximately equal, but that the

lack of exact equality of these estimates is precisely the term required to render

the traditional forward and inverse methods coherent when multiple minima

of the residual function are present.

6.4.2 Expansion of Bayesian QoI on the joint space

The Bayesian QoI estimate can be expressed as a QoI on the joint space.

The typical case that ψ(y) is independent of x is shown. This is without

significant loss of generality from the case that ψ(x, y) (the QoI function is a
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joint probability on the input and output). For ψ(y):

〈ψ(y)〉P (Y ) =
∑
y∈Y

ψ(y)P (y)

〈ψ(y)〉P (Y ) =
∑
y∈Y

ψ(y)
∑
x∈X

P (y|x)P (x)

〈ψ(y)〉P (Y ) =
∑
y∈Y

ψ(y)
∑
x∈X

P (x, y)

〈ψ(y)〉P (Y ) =
∑
y∈Y

∑
x∈X

ψ(y)P (x, y)

〈ψ(y)〉P (X,Y ) =
∑
x∈X

∑
y∈Y

ψ(y)P (x, y)

then

〈ψ(y)〉P (Y ) = 〈ψ(y)〉P (X,Y ) (6.72)

Introducing an Importance Sampling estimate with proposal distributionQ(x, y)

and expanding yields:

〈ψ(y)〉P (X,Y ) = 〈ψ(y)w(x, y)〉Q(X,Y ) (6.73)

〈ψ(y)w(x, y)〉Q(X,Y ) =
∑
x∈X

∑
y∈Y

ψ(y)
P (x, y)

Q(x, y)
Q(x, y) (6.74)

or, if an unnormalised proposal distribution Q̃(x, y) is used:

〈ψ(y)〉P (X,Y ) =
〈ψ(y)w̃(x, y)〉Q(X,Y )

〈w̃(x, y)〉Q(X,Y )
(6.75)

〈ψ(y)〉P (X,Y ) =

∑
x∈X

∑
y∈Y ψ(y) P̃ (x,y)

Q̃(x,y)
Q(x, y)∑

x∈X
∑

y∈Y
P̃ (x,y)

Q̃(x,y)
Q(x, y)

(6.76)

6.4.3 The forward problem case

6.4.3.1 The required proposal distribution

First, the forward and Bayesian QoI estimates will be related by Importance

Sampling. Q(x, y) must be selected so as to recover the forward QoI estimate

from the Bayesian case. To this end, let Q̃(x, y) be given by an unnormalised

probability distribution that samples the same y that would be found by u(x)

280



with x selected with probability P (x):

Q̃(x, y) = δ

(
y − argmax

y∈Y
P (y|x)

)
P (x) (6.77)

that is:

Q̃(x, y) = Q̃(y|x)Q̃(x)

Q̃(y|x) = δ

(
y − argmax

y∈Y
P (y|x)

)
Q̃(x) = P (x)

To be a valid proposal distribution, it is a requirement that Q̃(x, y) > 0

if ψ(y)P (x, y) 6= 0 and that ZQ(X,Y ) > 0. These conditions are proven in

Theorems 6.6.1 and 6.6.2 presented in the Chapter Appendix.

Note that, from equation (6.120), although Q(X,Y ) is in fact normalised over

the joint space X × Y , it will not be normalised when used as the proposal

distribution for emulating the traditional forward probability estimate by the

Bayesian approach. This will be demonstrated as part of the developments

in the following section, justifying the use of the unnormalised Importance

Sampling technique to relate the Bayesian and traditional forward probabilistic

approaches.

6.4.3.2 Expanding the Importance Sampling estimate

For convenience, with reference to equation (6.23), define:

y′(x)mle := argmax
y∈Y

P (y|x) (6.78)

Using conditional expectations [224]:

P (x, y)

P (x)
= P (y|x) (6.79)

Then, expanding the required proposal distribution equation (6.77) into equa-
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tion (6.76) yields, for the numerator:

〈ψ(y)w̃(x, y)〉Q(X,Y ) =
∑
x∈X

∑
y∈Y

ψ(y)
P̃ (x, y) [δ (y − y′(x)mle)P (x)]

[δ (y − y′(x)mle)P (x)]

〈ψ(y)w̃(x, y)〉Q(X,Y ) =
∑
x∈X

∑
y∈Y

ψ(y)
P (x, y)ZP (X,Y ) [δ (y − y′(x)mle)P (x)]

[δ (y − y′(x)mle)P (x)]

〈ψ(y)w̃(x, y)〉Q(X,Y ) =
∑
x∈X

∑
y∈Y

ψ(y)
P (y|x)ZP (X,Y ) [δ (y − y′(x)mle)P (x)]

[δ (y − y′(x)mle)]

〈ψ(y)w̃(x, y)〉Q(X,Y ) =
∑
x∈X

ψ(y′(x)mle)P (y = y′(x)mle|x)ZP (X,Y )P (x)

〈ψ(y)w̃(x, y)〉Q(X,Y ) = 〈ψ(y)P (y = y′(x)mle|x)ZP (X,Y )〉P (X)

〈ψ(y)w̃(x, y)〉Q(X,Y ) = ZP (X,Y )〈ψ(y)P (y = y′(x)mle|x)〉P (X)

and for the denominator, following the essentially identical expansion used for

the numerator:

〈w̃(x, y)〉Q(X,Y ) =
∑
x∈X

∑
y∈Y

ψ(y)
P (y|x)ZP (X,Y ) [δ (y − y′(x)mle)P (x)]

[δ (y − y′(x)mle)]

〈w̃(x, y)〉Q(X,Y ) =
∑
x∈X

P (y = y′(x)mle|x)ZP (X,Y )P (x)

〈w̃(x, y)〉Q(X,Y ) = ZP (X,Y )〈P (y = y′(x)mle|x)〉P (X)

Then, combining the above expressions for the numerator and denominator of

equation (6.76):

〈ψ(y)〉P (X,Y ) =
〈ψ(y)w̃(x, y)〉Q(X,Y )

〈w̃(x, y)〉Q(X,Y )

〈ψ(y)〉P (X,Y ) =
ZP (X,Y )〈ψ(y)P (y = y′(x)mle|x)〉P (X)

ZP (X,Y )〈P (y = y′(x)mle|x)〉P (X)

〈ψ(y)〉P (X,Y ) =
〈ψ(y)P (y = y′(x)mle|x)〉P (X)

〈P (y = y′(x)mle|x)〉P (X)

Finally, the crucial result for the Bayesian QoI forward Importance Sampling

estimate using the given Q̃(x, y) is:

〈ψ(y)〉P (X,Y ) =
〈ψ(y)P (y = y′(x)mle|x)〉P (X)

〈P (y = y′(x)mle|x)〉P (X)
(6.80)
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This can be expressed in a useful shorthand notation, whose meaning should

be clear from the context, where L := P̃ (y′|x) (the likelihood calculated by

the unnormalised P̃ (y′|x)):

〈ψ(y)〉P (X,Y ) =
〈ψL〉
〈L〉 (6.81)

6.4.4 Comparison of Bayesian Importance Sampling and tra-

ditional forward QoI estimates

The forward QoI estimate can be expressed, from equation (6.51), as:

〈ψ(u(x))〉P (X) =
∑
x∈X

ψ(y′(x)mle)P (x) (6.82)

Comparison of the Bayesian estimate in equation (6.80) and the forward QoI

estimate in equation (6.82) is revealing. The Bayesian estimate with the

appropriate proposal distribution is precisely the expectation of ψ(y)P (y =

y′(x)mle|x) over P (X), normalised by P (y = y′(x)mle|x). The traditional for-

ward estimate ignores the P (y = y′(x)mle|x) term. This term is precisely the

likelihood, with reference to equation (6.18), to have sampled the y′(x)mle

given the Gibbs distribution defined by H(y|x):

P (y = y′(x)mle|x) = L(y′(x)mle;x, y) (6.83)

Further, by comparison with the definition of unnormalised Importance Sam-

pling in Section 6.3.3, w̃(x, y) = P (y = y′(x)mle|x), so L(y′(x)mle;x, y) is

exactly the importance weight assigned to the sample y′(x)mle. The implicit

assumption made by traditional forward approaches is then made clear. For-

ward solutions based on minimum residual estimates assume that P (y =

y′(x)mle|x) = 1. It is this assumption that allows for the likelihood term

L(y′(x)mle;x, y) to be neglected without severe penalty for many problems.

For multimodal residual surfaces, this assumption is, however, clearly invalid,

especially if a local (rather than global) energy minimum is found by an

MLE. The higher the energy of a local minimum, the smaller the value of

L(y′(x)mle;x, y). Additionally, if H(y|x) has degenerate ground states (that

is, a global minimal value that is the same in multiple locations within the

output space), then the likelihood of each of these degenerate ground states
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will be less than unity. Traditional forward approaches fail in these situations

not least because the estimates have not been correctly normalised.

Why, then, has the traditional forward approach been successful for a large

number of problems, for example in [116, 118, 141, 351]. If the energy sur-

face defined by H(y|x) has a single minimum and a high solution tolerance is

used (i.e. β is very large) then L(y′(x)mle;x, y) approaches 1 and the error

caused by ignoring L(y′(x)mle;x, y) is small. The most common H(y|x) en-

countered in energy minimisation problems for partial differential equations is

the quadratic energy surface as this appears in the solution of the Laplace equa-

tion (equivalently the Poisson equation) [198]. The very common heat, wave

and advection-diffusion equations all feature a Laplacian term meaning that

the energy surface is frequently quadratic for parts or all of H(y|x). Similarly,

the standard harmonic oscillator which is a central part of many dynamical

problems [260] also features a quadratic Hamiltonian. The unimodality of the

energy surface for all of these problems lessens the error caused by the implicit

assumption that L(y′(x)mle;x, y) = 1 for high tolerance problems.

6.4.4.1 Variance of the forward estimate

This Section has detailed how the traditional forward method for making

QoI estimates is an implicit form of Importance Sampling with the additional

assumption that L(y′(x)mle;x, y) = 1. The proposal distribution, Q(x, y),

implicit in the forward method is given by equation (6.77). The quality of

a proposal distribution can be defined in terms of the Importance Sampling

variance reduction achieved by the use of one proposal distribution instead

of another as discussed in Section 6.3.2. To further analyse the effect of the

implicit Q(x, y) used by the forward probability estimation technique, consider

that the variance of this estimate can be found using equation (6.68). First,

for convenience in this section write let:

y′ := y′(x)mle (6.84)
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then the variance of the estimate is given by:

Var(ψ(y))P (X,Y ) =
〈ψ(y)2w̃(x, y)〉Q(X,Y ) − 〈ψ(y)w̃(x, y)〉2Q(X,Y )

〈w̃(x, y)〉2Q(X,Y )

Var(ψ(y))P (X,Y ) =
〈ψ(y′)2P (y′|x)〉P (X) − 〈ψ(y′)P (y′|x)〉2P (X)

〈P (y′|x)〉2P (X)

As in equation (6.81) for the expectation of the Bayesian forward estimate, the

variance can written in shorthand notation where L := P̃ (y′|x) (the likelihood

calculated by the unnormalised P̃ (y′|x)):

Var(ψ(y))P (X,Y ) =
〈ψ2L〉 − 〈ψL〉2

〈L〉2 (6.85)

Independent of the relationship with ψ(y), the crucial part in the above equa-

tion is that:

Var(ψ(y))P (X,Y ) ∝
1

〈P (y = y′(x)mle|x)〉2P (X)

(6.86)

Equation (6.86) essentially says that if the true likelihood of the MLE for y is

small, then the variance of the estimate will likely be very large, amplifying

any lack of proportionality in the numerator of the full expression for the

variance. The likelihood term will be large for multimodal distributions or

MLE’s that are local optima far from the true minimum residual.

6.4.4.2 Numerically estimating the Importance Sampling estimate

From equation (6.70), as discussed in Section 6.3.4, when expectations are

evaluated by Monte Carlo Simulation the calculated value and error of the es-

timate are described by the mean and variance of normal distribution. Specif-

ically, after N simulations the estimated value of f will be distributed as

〈f〉 ≈ N (µ, σ2) and the estimated mean value of like 〈f〉 ≈ N (µ, σ
2

N ). The

variance of the Bayesian Importance Sampling estimate, equation (6.86), is

a more accurate form of the residual minimisation forward estimate. These

forward estimates may be calculated by MCS and as such the error in the

estimate (and therefore confidence intervals) can be found directly. However,

based on the previous discussion, the correct form of the residual minimisa-

tion forward estimate is given by the Bayesian estimate in equation (6.80).
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Expansion of the variance of this estimate yielded equation (6.85). In MCS,

each of the terms in equation (6.85) will be evaluated by separate MCS es-

timates. Each of these individual estimates will have a normal distribution.

The correct Bayesian form of the forward problem variance indicates then that

the true variance of the MCS estimate made using residual minimisation can-

not be described by just a normal distribution. This is because the product

and quotient of several normal random variables is not necessarily a normal

distribution [157].

Let 〈f〉 denote the MCS estimate of the expectation of f . First, for convenience

define the mean and variance of an MCS estimate made using N simulations

by:

〈f〉 ≈ 〈f〉 = N
(
µ̂(f),

σ̂2(f)

N

)

Then, the true MCS estimate distribution of the correct Bayesian version of

the forward problem is then:

Var(ψ(y))P (X,Y ) ≈
〈ψ2L〉 − 〈ψL〉2

〈L〉2
(6.87)

Var(ψ(y))P (X,Y ) ≈

[
N
(
µ̂(ψ2L), σ̂

2(ψ2L)
N

)]
−
[
N
(
µ̂(ψL), σ̂

2(ψL)
N

)]2

[
N
(
µ̂(L), σ̂

2(L)
N

)]2 (6.88)

Equation (6.88) gives the MCS estimate of the true variance of an estimate

made by a traditional, residual minimisation MCS estimate. By consider-

ing the Bayesian perspective of solving equations, multimodality of the resid-

ual function can be correctly considered. Unfortunately, as the product and

quotient of normal distributions is not a normal distribution, estimating this

variance requires more care. If only an estimate of the variance is required,

then equation (6.69) can be estimated by the mean values calculated using

MCS directly. The fully rigorous calculation of confidence intervals would re-

quire, however, integration over the densities defined by equation (6.88) as the

estimated variance distribution will not be of a simple form.
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6.4.5 The inverse problem case

6.4.5.1 The required proposal distribution

Inverse probability problems based on residual minimisation can be under-

stood in a virtually identical manner to the forward case, as shown in Section

6.2.4. Again, a Bayesian QoI estimate can be made using Importance Sam-

pling with Q(x, y) designed to recover the implicit Importance Sampling used

in the traditional inverse problem approach.

From Definition 6.2.15 and equation (6.71), the inverse QoI estimate is

〈φ(u−1(y))〉P (Y ) (6.89)

If each inverse is estimated by minimising the residual H(x|y) = ‖x−x′(y)mle‖,
then the inverse is a set X ′(y)mle = H(x|y). However if, as is the case in

regularised inverse problem solutions [178, 355], it is assumed that the inverse

can be approximated by being sufficiently close to a particular value then the

traditional inverse problem solution can be interpreted as

〈φ(u−1(y))〉P (Y ) =
∑
y∈Y

φ(x′(y)mle)P (y) (6.90)

In the Bayesian interpretation, the inverse estimates x′mle(y) can be inter-

preted as being sampled from u−1(Y ) with probability distribution defined by

Gibbs measure with the induced inverse residual as the energy function (see

Definition 6.2.15):

H(x|y) = ‖x− x′(y)mle‖ (6.91)

Then, the required Importance Sampling proposal distribution to recover the

inverse case from the Bayesian interpretation is

Q̃(x, y) = δ

(
x− argmin

x∈X
H(x|y)

)
P (y) (6.92)

By exact analogy with Theorems 6.6.1 and 6.6.2 in the Chapter Appendix for

the forward case, this is a valid proposal distribution as Q(x, y) ≥ 0 for all

ψ(y)P (x, y) 6= 0 and ZQ ≥ 0. Also by exact analogy with the forward case,
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the Bayesian Importance Sampling estimate using Q(x, y) is given by:

〈ψ(y)〉P (X,Y ) =
〈ψ(y)P (x = x′(y)mle|y)〉P (Y )

〈P (x = x′(y)mle|y)〉P (Y )
(6.93)

As in the forward case, the Bayesian interpretation renders obvious the implicit

assumption in traditional inverse approaches that the likelihood of drawing

a particular inverse solution can be ignored (or calculated automatically).

The effect of ignoring this normalisation on the variance of a QoI estimate is

essentially the same as in the forward case discussed in Section 6.4.4.1.

6.4.6 Discussion

It was demonstrated in this Section that both the traditional forward and in-

verse approaches to Uncertainty Quantification can be recast Bayesian terms.

The benefit of the Bayesian perspective is that it makes the assumptions im-

plicit in the traditional approaches transparent. In particular, it was demon-

strated that the traditional approaches can be viewed as a type of Importance

Sampling that uses Maximum Likelihood Estimates as a proposal distribution.

The variance of these estimates was explored in detail. By understanding the

variance in the Importance Sampling estimates that result from the implicit

proposal distributions of traditional forward and inverse techniques, it is pos-

sible to better understand the types of problems for which the traditional

approaches have been or have not been successful. In particular, by under-

standing the effect of the MLE likelihood on sample variances, lower variance

estimators can be constructed. Numerical experiments supporting these de-

velopments are presented in the next Section.

6.5 Numerical Experiments

This Chapter has so far explored the theoretical links between the traditional

and Bayesian approaches to Uncertainty Quantification for estimating Quanti-

ties of Interest. In this Section, several numerical experiments are presented to

test the theoretical findings. As this Chapter is exploring the effect of residual

minimisation only on the solution of equations, rather than on fitted probabil-

ity density estimates, all of the numerical problems presented test threshold
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indicator QoI’s on the output space. Threshold indicator problems are com-

mon in reliability analysis [118, 356, 357, 21, 16] and are, as such, useful to

study. The correct probability estimates (assuming a uniform prior) are given

by the beta distribution (§8 in [224]). The single valued threshold probability

estimates for all numerical problems presented in this Section are then, in a

sense, MLE’s from the beta distribution.

The first problem investigates the effect of the implicit proposal distribution

for forward estimates on far from mean threshold probability estimates. The

second problem demonstrates how global minima far from the threshold to

be estimated can destroy the accuracy traditional forward estimates. The

Bayesian viewpoint is then used to suggest an improved sampling method.

The final problem tests the effect of multimodality. For all problems, directly

considering the joint space probability density rather than MLE’s shown to

provide better estimates of the true threshold probability.

For each problem, an understanding of the variance of Importance Sampling

is used to generate improved proposal distributions. In the first problem, a

better forward proposal distribution is tested which uses still uses residual

minimisation. It is shown that this method offers some, but not drastic im-

provements. In the second problem, a proposal distribution on the joint space

is used which avoids taking MLE’s altogether. This is shown to perform well.

Further, the choice of proposal distribution could have been found with knowl-

edge only of the conditional residual energy surface, H(y|x). This is knowledge

which would be available when solving a real problem. Finally, in the third

problem it is demonstrated that the effect of more complicated multimodality

of H(y|x) can be mitigated by Markov Chain Monte Carlo sampling on the

joint input-output space.

6.5.1 Unimodal residual function - multivariate Gaussian thresh-

old estimation

In this problem, a bivariate normal is used to represent a unimodal joint input-

output distribution. A series of threshold probability estimates on the output

space that move away from the mean are calculated. The MLE based forward

approach and Bayesian correction to this method are compared. Further, it is

demonstrated that by directly sampling from the joint probability space much
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better Quantity of Interest estimates can be obtained. From the specified

joint distribution, the residual H(y|x) is found analytically. This allows for

the numerical probability evaluations to be compared with direct integration

of the known solution. Note that for a real problem, the probability P (X,Y )

is not known a priori because, if it were, the problem would be solved already.

Thus, the direct integration approach would not typically be available for Un-

certainty Quantification. The problem presented will, however, demonstrate

the effect of including the likelihood terms in the forward method implicit

Importance Sampling estimate. The effect of the Bayesian correction to the

forward probability estimate is small because of the unimodality of the global

minimum. However, by considering the Bayesian perspective the utility using

of the joint input-output distribution for sampling becomes apparent.

6.5.1.1 Problem specification

Consider the k dimensional multivariate normal distribution with mean vector

µ and correlation matrix Σ:

f(a, b|µ, σ) = (2π)−
k
2 |Σ|− 1

2 e−
1
2

(x−µ)TΣ−1(x−µ) (6.94)

Specifically, consider the bivariate case with mean µ and correlation matrix Σ

with entries:

µ =

[
µA

µB

]
Σ =

[
σ2
A ρσAσB

ρσAσB σ2
B

]
(6.95)

For this problem, an unnormalised bivariate Gaussian will be used to rep-

resent the joint distribution of the input and output spaces X and Y . For

ρ > 0.0, P (X,Y ) = P (Y |X)P (X) can be used to find an unnormalised ana-

lytical expression for βH(Y |X) ∝ − lnP (Y |X). First, consider the conditional

bivariate Gaussian distribution [375]:

f(y|x, µ, σ) = N
(
µY +

σY
σX

ρ(x− µX), (1− ρ2)σ2
Y

)
(6.96)

For this problem, let ρ = 0.5, µX = µY = 0 and σX = σY = 1.0 so that

P (Y |x) = N
(
x

2
,
3

4

)
(6.97)
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then H(y|x) is:

H(y|x) =

(
2

3

[
y2 − xy +

x2

4

])
(6.98)

The problem is to evaluate, given the input distribution P (X) = N (0, 1), the

threshold indicator Quantity of Interest ψγ(y) on the output space:

ψγ(y) = χy≥γ(y) (6.99)

for:

γ = {γ0, γ1, γ2} = {0, 1, 2} (6.100)

A representation of the threshold density estimation problem is shown in Fig-

ure 6.1.
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γ2
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1.5
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0.15
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P (x, y)

Figure 6.1: Unimodal threshold probability estimation problem overview: find P (y ≥
γi) =?.

6.5.1.2 Comparison of Bayesian Importance Sampling and forward

QoI estimates

To estimate ψγ(y), the traditional forward QoI estimate was compared with

the Bayesian version of this estimate. The residual minimising forward esti-
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mate and Bayesian estimate are given by equations (6.82) and (6.80) respec-

tively as:

〈ψγ(u(x))〉P (X) =
∑
x∈X

ψγ(y′(x)mle)P (x)

〈ψγ(y)〉P (X,Y ) =
〈ψγ(y)P̃ (y = y′(x)mle|x)〉P (X)

〈P̃ (y = y′(x)mle|x)〉P (X)

To test the effect of the likelihood term, MLE’s y′(x)mle were calculated by

a numerical optimisation procedure. Specifically, the Python SciPy [287, 204]

implementations of Brent’s algorithm was used (see §9.3 of [305]). An MLE

tolerance parameter of ε = 1.0×10−5 was selected to ensure the accuracy and

numerical stability of the calculations. Numerical optimisation, rather than

direct analytic calculation of the minimum at y = x
2 found by calculus, was

used to make this problem closer in spirit to a more difficult optimisation

problem that would require numerical evaluation.

To estimate the effect of the likelihood term on the computed MCS estimates,

the joint probability distribution of the input and output spaces was integrated

directly using the multivariate normal techniques in [138] using the SciPy

wrapper to this function [204]. This was done to confirm the relative accuracy

of the residual minimisation forward and Bayesian estimates. The results

of these calculations were found to a tolerance of approximately 1 × 10−8

and presented to 6 significant figures in Table 6.1 under the column P (y ≥
γ)mle ± 1.0×10−7.

6.5.1.3 Numerical results

The results of the MCS estimates by the traditional residual minimisation for-

ward method and the Bayesian correction of the forward method are presented

in Table 6.1. 1×106 simulations were used for all MCS estimates. These re-

sults show that the mean and variance of the traditional forward and Bayes

corrected estimates are very similar, as would be expected given the unimodal-

ity of the energy surface and the discussion in Section 6.4.3. In fact, from the

results in Table 6.1, differences only occur in the calculated variances on the

tolerance of the MLE estimation, ε. This is a partial experimental confir-

mation of equations (6.71) using the MLE selecting proposal distribution in
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equation (6.77). However, although both methods performed well for γ0, nei-

ther method converged to a correct estimate for γ1 and γ2. This demonstrates

that using MLE’s to estimate Quantities of Interest far away from points of

maximum likelihood (the mean of the joint probability in this problem) is

not a good strategy. This failure is likely because of the poor performance of

Importance Sampling predicted by equation (6.57) which essentially says that

good performance requires the proposal distribution at each point to have a

density profile that is close to the product of the true distribution and the

random variable function of interest.

6.5.1.4 Improving the Quantity of Interest estimates

By realising that the traditional forward method is implicit Importance Sam-

pling, the results of the Bayesian approach suggest an immediate improvement.

Since the joint distribution is known, the joint distribution can be sampled

from directly. The numerical results from the Bayesian forward estimate in

Table 6.1 conform to expectations that the forward method performs better

close to the mean. However, the ‘Joint Distribution Sampling’ (or ‘JDS’)

method is vastly superior in this problem in all cases. The results of this

analysis are presented in Table 6.1.

6.5.1.5 Discussion

It is well known that traditional forward estimates are not suitable for estimat-

ing the probability for an output to exceed some far from mean output [157].

By identifying the cause of this failure as a poor proposal distribution for sam-

pling from the joint input-output space, improved estimation techniques can

be applied to future problems. A simple example was used to demonstrate

that these improvements are indeed possible. The values in Table 6.1 indi-

cate that the traditional forward method fails to calculate an accurate QoI

estimate for far from mean thresholds because the true value is outside of the

estimated (surrogate) confidence intervals. This is because the actual variance

in the estimate is very high. A combination of the Bayesian interpretation and

Importance Sampling theory predict that the Dirac delta centred at MLE’s

will cause the proposal distribution to generate high variance estimates. The

convergence of each method tested is also shown in Figure 6.2. The similarity
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γ P (y ≥ γ)mle Method MCS Estimate = ψγ(y)

±1.0×10−7 µ σ

0 5.00000×10−1
Forward 5.0140×10−1 4.99998×10−1

Bayes 5.0140×10−1 4.99996×10−1

JDS 4.9962×10−1 5.00000×10−1

1 1.58655×10−1
Forward 2.3031×10−2 1.50002×10−1

Bayes 2.3031×10−2 1.50006×10−1

JDS 1.58853×10−1 3.65539×10−1

2 2.27501×10−2
Forward 2.3000×10−5 4.795778×10−3

Bayes 2.3000×10−5 4.795776×10−3

JDS 2.2777×10−2 1.491919×10−1

Table 6.1: Numerical results comparing Bayesian and Forward estimates for the uni-
modal residual threshold problem. P (y ≥ γ)mle ± 1.0×10−7 are the true values
estimated as per [138] to a tolerance ≈ 1×10−8 and presented to 6 significant figures.
MCS estimates are shown for 1×106 simulations. The ‘Forward’ method refers to the
residual minimisation solution. The ‘Bayes’ method is the corrected estimate using
the likelihood values. The ‘JDS’ method is sampling directly from the multivariate
normal joint probability density described in Section 6.5.1.4. MLE’s were calculated
to a tolerance of 5 significant figures.

10−5 10−4 10−3 10−2 10−1 100

0

1

2

lnP (y ≥ γ)

γ

Correct values for P (y ≥ γ)
Forward
Forward +1.5σ
Bayes
Bayes +1.5σ
JDS
JDS +1.5σ

Figure 6.2: Unimodal threshold probability estimation problem results, comparing the
performance of the residual minimisation forward method (‘Forward’), the Bayesian
likelihood corrected estimate (‘Bayes’) and joint distribution sampling (‘JDS’). Solid
lines indicate mean estimates. Dashed lines indicate +1.5σ as a surrogate for the true
confidence intervals. The thick black line indicates the correct values to be estimated.
Note that the ‘JDS’ mean estimate is almost identical to the true estimate line.

of the Bayesian and traditional forward estimates is encouraging because it

numerically confirms the developments in Section 6.4 for the unimodal case.
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A bimodal problem is tested in Section 6.5.2 for which the traditional forward

and Bayesian estimates should not be expected to be equal because of the

effect of the likelihood terms in equation (6.81).

Sampling directly from the joint input-output distribution performed drasti-

cally better in all cases. For realistic problems, the full joint distribution is not

known and is likely to be far more complicated than the simple multivariate

Gaussian used for P (X,Y ) in this demonstration. However, what is true is

that the drastically improved performance suggests that avoiding MLE’s on

more complicated problems may yield better performance. By applying more

advanced techniques, such as the cross-entropy method [319] or Hamiltonian

Monte Carlo [55], to sample from the joint distribution without reliance on

MLE’s it may be possible to improve performance over traditional methods

on more difficult problems.

6.5.2 Bimodal residual function - Gaussian Mixture Model

This numerical experiment introduces a bimodal residual function in the form

of a Gaussian Mixture Model [305]. A single threshold quantity is to be

estimated. P (X,Y ) is formed by the sum of two Gaussians, NA and NB, as

shown in Figure 6.3. The global residual minimum is close to the mean of A.

However, the threshold quantity ψγ to be estimated passes through the mean

of NB. This is also demonstrated in Figure 6.4. NA and NB are far enough

apart that ψγ should essentially only depend on the mass distribution due to

NB, the influence of A simply acting like a constant factor on the probability

of ψγ . Sampling ψγ using MLE’s as in the traditional forward method can

be expected to be produce poor results as the sampling locations will be near

the mean of NA and far from γ. After demonstrating that this is the case, an

improved estimate based on samples near the mean of NB is presented. This

numerical experiment demonstrates the inability of forward methods based

on residual minimisation to properly consider the joint space. Such a failure

could have extreme consequences in, for example, reliability engineering or

when interpreting experimental results. This example demonstrates that by

taking a Bayesian view and considering the residual conditional distribution,

Importance Sampling can be leveraged to improve the convergence of QoI

estimates. Further, it is shown that sampling directly from the joint input-

output space can be used to calculate accurate QoI estimates without reference
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to MLE’s.

6.5.2.1 Problem specification

With reference to equation (6.94), let P (X,Y ) be the mixture of two Gaus-

sians, NA and NB such that:

P (X,Y ) =
1

2
NA +

1

2
NB =

1

2
N (µA,ΣA) +

1

2
N (µB,ΣB) (6.101)

where:

µA =

[
0

−2

]
ΣA =

[
1 0

0 1

]
µB =

[
0

2

]
ΣB =

[
1.52 0

0 1

]

Note that there are no correlation terms in NA or NB so x and y are indepen-

dent in each of the mixed distributions:

NA = PA(X)PA(Y ) NB = PB(X)PB(Y ) (6.102)

Then, with reference to equation (6.96), the input distribution can be found

by:

P (X) =
∑
y∈Y

P (X,Y )

P (X) =
∑
y∈Y

1

2
NA +

∑
y∈Y

1

2
NB

P (X) =
1

2
PA(X) +

1

2
PB(X)

Finally, P (X) is:

P (X) =
1

2
N (0, 1) +

1

2
N (0, 1.52) (6.103)

The problem is to evaluate, given P (X), the threshold indicator Quantity of

Interest ψγ(y) for γ = 2 on the output space:

ψγ(y) = χy≥(γ=2)(y) (6.104)

To evaluate the performance of the traditional forward method, an equation
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for H(y|x), the residual to be minimised by an optimisation procedure, is

required. The residual function was derived from P (X,Y ) by:

P (Y |X) =
P (X,Y )

P (X)

P (Y |X) =
1
2NA + 1

2NA
1
2PA(X) + 1

2PB(X)

P (y|x) =
1

2πe
−x

2

2
− (y+2)2

2 + 1
2π×1.52 e

− x2

2×1.52−
(y−2)2

2

1√
2π
e−

x2

2 + 1√
2π×1.52

e
− x2

2×1.52

so that P (y|x) is given by:

P (y|x) =
1

2πe
−x

2

2
− (y+2)2

2 + 1
4.5πe

− x2

4.5
− (y−2)2

2

1√
2π
e−

x2

2 + 1√
4.5π

e−
x2

4.5

(6.105)

then the residual function is found calculating:

H(y|x) = − lnP (y|x) (6.106)

6.5.2.2 Numerical results

To test the solutions calculated by sampling, first the known P (X,Y ) function

was used to directly calculate 〈ψγ(y)〉. Intuitively, by inspection of Figure 6.3

(and because the problem was intentionally constructed in this way) the ex-

pected value of 〈ψγ(y)〉 ≈ 0.25 as half of the joint probability mass is contained

in NA (which is concentrated far from γ) and because γ lies on the mean of

NB. To confirm this intuition, the total integral was calculated by the method

for multivariate Gaussian integration described in [138] to a tolerance of ap-

proximately 1×10−8. The following values were calculated:

〈ψ(y)〉NA(X,Y )) = 3.16712579×10−5 ± 1.45862172×10−8

〈ψ(y)〉NB(X,Y )) = 5.00000000×10−1 ± 1.46002488×10−8

〈ψ(y)〉P (X,Y )) = 2.50015836×10−1 ± 1.47604643×10−8

For the purposes of this experiment, the solution of the bimodal threshold
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Figure 6.3: Bimodal threshold probability estimation problem overview: find P (y ≥
2) =?. µA and µB are the means of the Gaussians NA and NB which are evenly
mixed to form P (X,Y ).

evaluation problem can be taken to be approximately as follows:

〈ψ(y)〉P (X,Y )) ≈ 2.50016×10−1 (6.107)

Next, the traditional forward estimate using global residual minimisation was

calculated. The inputs were sampled from the input probability given in equa-

tion (6.103). Sampling from the mixture was achieved by first sampling, u from

a uniform distribution on [0, 1], selecting NA if u ≤ 0.5 (otherwise selecting

NB) and then sampling from the selected normal distribution by the standard

inverse transform method [224]. The residual was calculated using equations

(6.105) and (6.106). Forward MLE’s were evaluated using the Python SciPy

implementation of the Basin Hopping algorithm (see [287, 204], §9.3 in [391]).

The results of these calculations are presented in Table 6.2 in the row with

method column labelled ‘Forward’. The Bayesian estimate of the forward

method performance, factoring in the likelihood term, as in equation (6.81),

is also presented in in Table 6.2 in the row with method column labelled

‘Bayes’.
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Note that although the Bayes method estimates a smaller variance than the

implicit Bayes in the forward method, the variance of the normalisation con-

stant 〈w̃(a)〉P (X) was found to be approximately 3.8533×10−2. This value is

very small and will introduce numerical instability in the variance calcula-

tion. In either case, both the Bayes and MLE forward method predict ψγ(y)

probabilities very far from the true value.

6.5.2.3 Improving the traditional forward method

From the definition of the problem and by inspection of Figure 6.3, it is clear

that a better choice of proposal distribution would be to sample from NB
directly, without reference to intermediate MLE’s. However, a forward Uncer-

tainty Quantification problem is typically specified by its input distribution

and the residual function H(y|x). It is not the case that a problem is con-

structed based on a known answer, as is done when building numerical exper-

iments to empirically test some feature from theory. Then, without resorting

to variational methods such as cross entropy [319] which would be required for

high dimensional spaces, how could a useful proposal distribution that does

not rely on MLE’s be found for this simple two dimensional problem given

just the input and residual function? Figure 6.4 shows a plot of the residual

surface H(y|x = 0) and it’s associated probability distribution P (y|x = 0).

The graph suggests sampling close to γ = 2 as it is both close to the quantity

of interest and has a reasonably low energy surface (and high likelihood prob-

abilities) in this area. The conditional distribution and residual are calculated

using equation (6.105). Then, for Figure 6.4 at x = 0:

P (y|x = 0) =
1

2πe
− (y+2)2

2 + 1
4.5πe

− (y−2)2

2

1√
2π

+ 1√
4.5π

(6.108)

Following from the above discussion, the proposal probability, QBI(y|x = 0),

termed the ‘Bayes Improved’ distribution, on the joint space is selected to

be:

QBI(x, y) = NB = N (µB,ΣB) (6.109)

The results of MCS using equation (6.109) as a proposal distribution are pre-

sented in Table 6.2 in the row labelled by the method ‘BI’.
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Finally, the joint space distribution is sampled from directly. The results of

this ‘Joint Distribution Sampling’ are shown in Table 6.2 in the row labelled

by the method ‘JDS’.
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Figure 6.4: Residual energy H(y|x = 0) and probability density P (y|x = 0) for the
bimodal estimation problem P (y ≥ γ = 2) =?. Note that the global energy minimum
is at µA, away from γ = 2. The concentration of density at γ due to NB suggests
setting Q(x, y) = NB .

6.5.2.4 Discussion

This example demonstrated several issues. First, the traditional forward

method fails to account for probability mass near a threshold that could have

been detected by considering the residual function. The forward method there-

fore underestimates the probability of threshold indicator. Such an underes-

timate could be disastrous in a reliability problem if the threshold was used

to describe, for example, the collapse state of a dam or the change for some

dangerous run-away reaction to occur. Overestimating reliability in this way

is avoidable by considering the structure of the residual function as well as the

structure of the input probability space. This example also demonstrated that

the Bayesian interpretation of the forward method is able to detect potential

failures of the traditional forward method by considering the expected value of

the normalisation constant. This suggests that if a forward method based on

MLE’s is used, the Bayesian normalisation constant may be a useful surrogate

to test the accuracy of the forward method. MLE’s may still be useful when
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γ P (y ≥ γ)mle Method MCS Estimate = ψγ(y)

±1.0×10−7 µ σ

2 2.50016×10−1

Forward 2.3100×10−4 1.5197×10−2

Bayes 1.5209×10−8 6.2825×10−4

BI 2.1820×10−1 3.4981×10−1

JDS 2.4951×10−1 4.3273×10−1

Table 6.2: Numerical results comparing Bayesian and Forward estimates for the bi-
modal residual threshold problem. P (y ≥ γ)mle ± 1.0×10−7 are the true values after
mixing NA and NB values calculated as per [138] to a tolerance ≈ 1×10−8, presented
to 6 significant figures. MCS estimates are shown for 1×106 simulations. The ‘For-
ward’ method refers to the residual minimisation solution. The ‘Bayes’ method is
the corrected estimate using the likelihood values. The ‘BI’ method is Importance
Sampling over the joint input-output space from Section 6.5.2.3. The ‘JDS’ samples
directly from the joint space distribution. Note that the low variance of the ‘Bayes’
estimate is likely due to numerical instability, see Section 6.5.2.2.

the structure of the residual function is much more complicated than the prob-

lem given here. An example of this approach would be using a combination

of MLE’s to find low residual parts of the joint space followed by Hamiltonian

Monte Carlo [55] for Markov chain sampling of the joint space.

Finally, this problem demonstrates that by taking a Bayesian view and consid-

ering the structure of the joint input-output space, both Importance Sampling

and sampling from the joint input-output space can be leveraged to improve

the convergence of QoI estimates without reference to MLE’s at all. By sam-

pling near the threshold indicator function even with a suboptimal proposal

distribution, a much more reasonable estimate of the actual threshold prob-

ability was found. This avoids the reliability overestimation problem. This

numerical experiment identified a situation that causes the traditional forward

Uncertainty Quantification method to fail (due to bimodality of the output

space distribution) that can be rectified by considering the joint input-output

space directly. This is likely to be useful for future work in Uncertainty Quan-

tification.

6.5.3 Multimodal problem - threshold estimation with com-

plicated residual function

The final numerical experiment presented asses the effect of a multimodal

residual surface on the traditional forward method based on MLE’s. The so-
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called ‘Bird function’ is used to define H(y|x). As well as multimodal, this

function is also continuous, differentiable and non-separable [200]. As in the

previous numerical experiments in this Section, a threshold indicator function

is used as a QoI. This problem again demonstrates that the traditional forward

Uncertainty Quantification method based on MLE’s may be suboptimal as

these MLE’s effectively constitute Importance Sampling with a poor choice of

proposal distribution.

Additionally, the effect of the variance of the input distribution on the joint

energy surface, H(x, y), is demonstrated. It is shown that reducing the in-

put distribution variance (for Gaussian distributions) smooths out the global

energy surface which, in the case of the problem tested, may render MLE’s

on the featureless joint energy surface even less useful for estimating a given

QoI. Further, as the structure of H(x, y) is then far simpler than H(y|x), this

suggests that Markov Chain Monte Carlo can be used to efficiently sample

from the joint space without resorting to computationally expensive MLE’s.

Markov Chain Monte Carlo on the joint input-output space is shown to be

effective for calculating the QoI estimate in this problem.

6.5.3.1 Problem Specification

Let H(y|x) be given by the so-called ‘Bird function’ [200]:

H(y|x) = (x− y)2 + e[1−sin(x)]2 cos(y) + e[1−cos(y)]2 sin(x) (6.110)

restricted to x ∈ [−2π, 2π] ⊂ R and y ∈ [−2π, 2π] ⊂ R. A plot of this highly

multimodal residual surface is shown in Figure 6.5a. The Bird function has

a global minimum of approximately −110. As such, for numerical stability,

a constant value of 110 has been added on to all evaluations of the residual

made when solving this problem.

Two input distributions, PA(X) and PB(X) are specified:

PA(X) = NA(0, 0.52) (6.111)

PB(X) = NB(0, 0.32) (6.112)

The problem is to evaluate, given P (X), the threshold indicator Quantity of
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Interest ψγ(y) for γ = 0 on the output space:

ψγ(y) = χy≥(γ=0)(y) (6.113)

6.5.3.2 Numerical results

The solution of the specified problem are given by integrals of P (X,Y ) =

P (Y |X)P (X) for each input distribution PA(X) and PB(X) [224]:

ψγ(y) =

∫ 2π

−2π

∫ 2π

0
P (X,Y )dxdy =

∫ 2π
−2π

∫ 2π
0 e−H(y|x)P (X)dydx∫ 2π

−2π

∫ 2π
−2π e

−H(y|x)P (X)dydx
(6.114)

Unfortunately, it is very difficult to evaluate equation (6.114) by some direct

form of quadrature, as was used the other numerical experiments in Section

6.5.1 and 6.5.2. As such, no independent solutions of the threshold probability

problem are supplied in this case.

The traditional forward estimate using global residual minimisation was calcu-

lated for each of the input distributions in equations (6.111) and (6.112). The

residual was calculated using equation (6.110). Forward MLE’s were evalu-

ated using the Python SciPy implementation of the Basin Hopping algorithm

(see [287, 204], §9.3 in [391]). The results of these calculations are presented

in Table 6.3 in the row with method column labelled ‘Forward’. For this

problem, the Bayesian calculation of the forward method likelihoods is very

numerically unstable and has been excluded form Table 6.3. This indicates

only that the delta function makes numerical estimates difficult, not any prob-

lem with the Bayesian interpretation of Uncertainty Quantification detailed in

this Chapter.

6.5.3.3 Effect of input variance on the joint energy surface

The effect of the changing input variance between PA(X) and PB(X) on the

global energy function is shown in Figures 6.5b and 6.5c respectively. These

Figures indicate that decreasing the variance of a Gaussian input distribu-

tion acts to smooth out the global energy surface. Where P (X) has high

probability mass, the joint energy surface is lowered and flattened out. This

means that the global energy surface, unlike the conditional energy surface,
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is not too multimodal and suggests that Markov Chain Monte Carlo tech-

niques may be used to sample from the joint space effectively [55]. To this

end, the performance of a simple Metropolis Hastings sampler was tested on

estimates of ψγ(y). The following Metropolis-Hastings proposal distribution

was used:

Q(x, y) = N
(
µ,

[
0.12 0

0 0.12

])
(6.115)

The results of the Markov Chain Monte Carlo sampling analysis are presented

in Table 6.3 in the rows labelled by the method ‘MCMC’. Note that for Markov

Chain Sampling, samples outside of the analysis bounds were rejected and not

incorporated into the QoI probability calculations. The Markov Chain Monte

Carlo Sampler does not need to evaluate any MLE’s and as such each sample

can be generated very efficiently when compared to the traditional forward

method. An acceptance ratio of approximately 0.5 was obtained during the

analysis.

P (X) Method MCS Estimate = ψγ(y)
µ σ

PA(X) = N (0, 0.52) Forward 6.4477×10−1 4.7859×10−2

MCMC 6.7517×10−1 4.6831×10−1

PB(X) = N (0, 0.32) Forward 6.3442×10−1 4.8159×10−1

MCMC 6.8655×10−1 4.6390e×10−1

Table 6.3: Numerical results comparing Forward and Metropolis Hastings estimates
for multimodal residual threshold problem. MCS estimates are shown for 1×106

simulations. The ‘Forward’ method refers to the residual minimisation solution. The
‘MCMC’ method refers to Metropolis Hastings sampling over the joint input-output
space.
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Figure 6.5: Multimodal problem energy surfaces. Figure 6.5a shows the residual
energy surface from equation (6.110). Figures 6.5b and 6.5c show the joint energy
surface H(x, y) with input distributions PA(X) and PB(X) from equations (6.111)
and (6.112) respectively.
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6.5.3.4 Discussion

For this problem, the traditional forward method performed reasonably well

because the quantity to be estimated was near to the Quantity of Interest

threshold boundary. However, the computation of each of the required MLE’s

is computationally expensive. Markov Chain Monte Carlo was shown, for

this problem, to be an effective way to sample directly from the joint input-

output space without any MLE evaluations. The effectiveness of the Markov

Chain sampler is likely because of the flattening of the joint global surface

demonstrated in Figure 6.5. More advanced Markov Chain methods such as

Hamiltonian Monte Carlo could also be applied to potentially achieve better

QoI estimates still while still retaining the speed advantage over the forward

method [55]. This is particularly likely to be the case for rare event estimation

which requires techniques such as Subset Simulation [15, 16, 157]. This nu-

merical example further demonstrates that MLE’s are not required and that

the traditional forward method may not be the most computationally efficient

procedure for Uncertainty Quantification.

6.6 Conclusions

This Chapter explored the links between traditional Uncertainty Quantifica-

tion methods based on the pushforward measure, the Bayesian interpretation

of Uncertainty Quantification and solving equations by residual minimisation.

Residual minimisation was shown to be a form of Maximum Likelihood esti-

mation. Further, it was demonstrated that the traditional Uncertainty Quan-

tification methods based on residual minimisation of the solutions of equations

are in fact an implicit form of Importance Sampling. This result is significant

because it identifies the cause of the failure of traditional Uncertainty Quan-

tification techniques for multimodal problems and for far from mean Quantity

of Interest estimates. By including the likelihood to have sampled a minimum

residual solution in the first place, the correct variance of an estimate of a

Quantity of Interest can be recovered. Further, the cause of the failure of tradi-

tional Uncertainty Quantification methods for certain problems was identified

as a poor choice of Importance Sampling proposal distribution. This suggests

that alternative sampling distributions can be selected to improve QoI estimate

convergence. Numerical experiments were also conducted, demonstrating the
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consequences of this implicit Importance Sampling for probabilistic problems.

These examples demonstrated the theoretical findings empirically. Moreover,

these numerical experiments demonstrated the potential for the traditional

forward to Uncertainty Quantification approach to overestimate reliability of

systems when the residual energy function is multimodal. The developments

presented will help find improved Uncertainty Quantification methods by im-

proving the understanding of the Bayesian interpretation of solving equations

in future applications and research.

Chapter 6 Appendix: Proof of Theorems 6.6.1 and

6.6.2 - Forward estimate proposal distribution is valid

Theorem 6.6.1. Given QoI function ψ : Y → Ψ, the proposal distribution:

Q̃(x, y) = δ

(
y − argmax

y∈Y
P (y|x)

)
P (x) (6.116)

and the joint input-output distribution:

P (x, y) = P (y|x)P (x) (6.117)

the following is true:

ZQ(X,Y ) =
∑
x∈X

∑
y∈Y

Q̃(x, y) > 0 (6.118)

Proof. First, define:

y′(x) := argmax
y∈Y

P (y|x) (6.119)

ZQ(X,Y ) =
∑
x∈X

∑
y∈Y

Q̃(x, y)

ZQ(X,Y ) =
∑
x∈X

∑
y∈Y

δ
(
y − y′(x))

)
P (x)

ZQ(X,Y ) =
∑
x∈X

P (x)
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but P (X) is a probability distribution so
∑

x∈X P (x) = 1 therefore:

ZQ(X,Y ) =
∑
x∈X

P (x) = 1 > 0 (6.120)

Theorem 6.6.2. Given QoI function ψ : Y → Ψ, the proposal distribution:

Q̃(x, y) = δ

(
y − argmax

y∈Y
P (y|x)

)
P (x) (6.121)

and the joint input-output distribution:

P (x, y) = P (y|x)P (x) (6.122)

the following is true:

N(x, y) := ψ(y)P (x, y) 6= 0⇒ Q(x, y) > 0 (6.123)

Proof. First, note that as Q(x, y) is a probability measure with minimum value

0, Q(x, y) ≤ 0⇔ Q(x, y) = 0.

Also note that from Theorem 6.6.1, Q(x, y) is normalised so Q̃(x, y) = Q(x, y).

For the main part of the proof, assume that N(x, y) 6= 0. Then the proof

is satisfied if Q(x, y) > 0 for all x, y. If N(x, y), then ψ(y)P (y|x)P (x) 6= 0

implies that ψ(y) 6= 0, P (y|x) 6= 0 and P (x) 6= 0:

N(x, y) 6= 0⇐⇒ ψ(y)P (y|x)P (x) 6= 0 (6.124)

ψ(y)P (y|x)P (x) 6= 0⇐⇒ ψ(y) 6= 0, P (y|x) 6= 0, P (x) 6= 0 (6.125)

Then the proof is satisfied if each of:

ψ(y) 6= 0
?

=⇒ Q(x, y) > 0 ∀x ∈ X,∀y ∈ Y (6.126)

P (y|x) 6= 0
?

=⇒ Q(x, y) > 0 ∀x ∈ X,∀y ∈ Y (6.127)

P (x) 6= 0
?

=⇒ Q(x, y) > 0 ∀x ∈ X,∀y ∈ Y (6.128)

is satisfied.

308



For equation (6.126), both ψ(y) = 0 and ψ(y) 6= 0 satisfy Q(x, y) > 0 so:

[ψ(y) 6= 0] & [ψ(y) = 0] =⇒ Q(x, y) > 0

is true by the definition of material entailment.

It will be useful to first consider the conditions under which:

δ

(
y − argmax

y∈Y
P (y|x)

)
?
> 0 (6.129)

For convenience, define:

y′(x) := argmax
y∈Y

P (y|x) (6.130)

Let x′ ∈ X be some arbitrary element of X. Using the definition of the argmin

operator (Definition 6.2.8), y′(x′) ∈ Y so y′(x) ∈ Y ∀x ∈ X.

Also consider that from the definition of the delta function:

δ(y − y(x)) > 0 ∀x ∈ X, y ∈ Y ⇒ ∃y ∈ Y : δ(y − y′(x)) = 1 ∀x ∈ X (6.131)

Then it follows that if δ(y − y′(x)) is defined ∀y ∈ Y and y′(x) ∈ Y ∀x ∈ X
the following statements are true:

δ
(
y − y′(x)

)
= 0 ∀x ∈ X,∀y ∈ Y =⇒ y 6= y′(x) ∀x ∈ X,∀y ∈ Y

¬
[
δ
(
y − y′(x)

)
= 0 ∀x ∈ X,∀y ∈ Y

]
=⇒ ¬

[
y 6= y′(x) ∀x ∈ X,∀y ∈ Y

]
∃y ∈ Y : δ

(
y − y′(x)

)
= 1 ∀x ∈ X =⇒ ∃y ∈ Y : y = y′(x) ∀x ∈ X

If δ(y−y′(x)) defined over the entire space y ∈ Y , then as Q(y|x) = δ(y−y′(x))

and
∑

y∈Y Q(y|x) = 1 by the definition of a probability measure, then:∑
y∈Y

Q(y|x) = 1

∑
y∈Y

δ(y − y′(x)) = 1 =⇒ y = y′(x)
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This implies the following is true, if y′(x) ∈ Y ∀x ∈ X:

∃y ∈ Y : δ(y − y′(x)) = 1 ∀x ∈ X (6.132)

Next, consider the condition on P (x) required by equation (6.128). First, if

Q(x, y) = δ(y − y′(x))P (x) > 0 and P (x) 6= 0 implies:

P (x) 6= 0 ∀x ∈ X ?
=⇒ Q(x, y) > 0 ∀x ∈ X, ∀y ∈ Y
=⇒ δ(y − y′(x))P (x) > 0 ∀x ∈ X, ∀y ∈ Y
=⇒ δ(y − y′(x)) > 0 ∀x ∈ X, ∀y ∈ Y
=⇒ ∃y ∈ Y : δ(y − y′(x)) = 1 ∀x ∈ X

From equation (6.132), ∃y ∈ Y : δ(y− y′(x)) = 1 ∀x ∈ X is always true for all

X so that:

P (x) 6= 0 =⇒ ∃y ∈ Y : δ(y − y′(x)) = 1 ∀x ∈ X

and equation (6.128) is true.

Finally, it remains to confirm equation (6.127). First consider that:

Q(x, y) 6= 0 =⇒ δ(y − y′(x))P (x) 6= 0 ∀x ∈ X,∀y ∈ Y
δ(y − y′(x))P (x) 6= 0 =⇒ δ(y − y′(x)) 6= 0

δ(y − y′(x))P (x) 6= 0 =⇒ P (x) 6= 0

Then equation (6.127) can be split into two parts:

P (y|x) 6= 0
?

=⇒ P (x) 6= 0 ∀x ∈ X,∀y ∈ Y (6.133)

P (y|x) 6= 0
?

=⇒ δ(y − y′(x)) > 0 ∀x ∈ X,∀y ∈ Y (6.134)

First, consider that equation (6.134) can expanded:

P (y|x) 6= 0 ∀x ∈ X,∀y ∈ Y ?
=⇒ δ(y − y′(x)) > 0 ∀x ∈ X,∀y ∈ Y

P (y|x) 6= 0
?

=⇒ ∃y ∈ Y : δ(y − y′(x)) = 1 ∀x ∈ X
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which is always true by equation (6.132) so:

P (y|x) 6= 0 =⇒ Q(x, y) > 0 ∀x ∈ X,∀y ∈ Y

Finally, consider equation (6.133). Using the joint and marginal probabilities:

P (x) =
∑
y∈Y

P (x, y)

P (x) =
∑
y∈Y

P (y|x)P (x)

P (x) 6= 0⇐⇒
∑
y∈Y

P (y|x)P (x) 6= 0

∑
y∈Y

P (y|x)P (x) 6= 0⇐⇒ ∃y ∈ Y : P (y|x) 6= 0

Then, equation (6.133) is true:

P (y|x) 6= 0 =⇒ P (x) 6= 0 ∀x ∈ X,∀y ∈ Y

As each of the equations (6.126), (6.127) and (6.128) are true, by equation

(6.125) the required statement, equation (6.123), is true.
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Chapter 7 Overview

Key developments in Chapter 7 include:

• Section 7.2 provides background material on the Element Free Galerkin

Method for solving PDE problems.

• Section 7.2.4 discusses parametric representations of basis functions for

PDE solutions Artificial Neural Networks, which is used for the main

result of this Chapter.
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• Section 7.3 presents background theory in Bayesian Inference and opti-

misation that is necessary to understand the main developments in this

Chapter.

• Section 7.4 presents an original contribution of this thesis: an adaptive

basis Element Free Galerkin method based on a probabilistic interpreta-

tion of the Galerkin method. ANNs are used to parametrically represent

basis functions and an iterative algorithm, analogous to Expectation-

Maximisation, is used to derive a two-stage optimisation method for the

updating basis functions.

• Section 7.5 presents a simple numerical example to demonstrate the new

algorithm proposed in this Chapter.

7.1 Introduction

This Chapter demonstrates that Artificial Neural Networks (ANNs) and Auto-

matic Differentiation can be used to augment weak-form Element Free Galerkin

solutions of Partial Differential Equations in a self-improving, adaptive man-

ner. In particular, it is demonstrated that by representing the solution of

a PDE using the Bayesian form of parameter regression, an objective func-

tion for the quality of a basis set can be given and, therefore, optimised. In

Bayesian terms, this objective function is related to the model evidence (or

likelihood) for the estimated PDE solution given the current basis function

set. The objective function for the basis optimisation is derived in terms of

the Expectation-Maximisation algorithm. The formulation presented also uses

sparse-coding to enforce independence of the learnt basis functions. The ba-

sis functions are represented parametrically by an Artificial Neural Network.

The iterative refinement procedure derived within allows for the basis function

parameters to be trained directly by standard backpropagation. Boundary

constraints are the primary cause of difficulties when finding PDE solutions

by optimisation methods. Constrained optimisation is achieved in this con-

text using an Expectation-Maximisation method by splitting the optimisation

into two parts. First, the Galerkin PDE formulation is solved using the cur-

rent basis functions. Second, optimisation of the basis functions is achieved by

backpropagation using the current solution estimate. This technique is demon-

strated on a one dimensional Poisson problem. The numerical results indicate
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that the proposed algorithm, referred to sparse-coding Bayesian Element Free

Galerkin, is able to iteratively reduce the error in the estimated PDE solution.

Although only linear problems are considered in this Chapter, the results pre-

sented should facilitate the development of adaptive nonlinear PDE solvers

over higher dimensional domains in the future. Further, by uncovering the

Bayesian Inference interpretation of Galerkin methods in detail, directions for

future improvements to automated PDE solvers are suggested.

This Chapter deviates slightly from the Uncertainty Quantification focus of

the rest of this thesis in that the PDE solution methodology presented here

is intended to solve deterministic problems. However, consider the supervised

learning approach to probabilistic PDE problem response surfaces presented

in Chapter 5. In Chapter 5, PDE problems were solved by the Finite Ele-

ment Method and then an ANN map from the space of inputs to the space

of these FEM solutions for a given problem was learnt. If the FEM solver

could be replaced by an ANN based method, then it would potentially be

possible to learn an integrated solver and response surface model by using a

single large ANN to capture essentially all dependencies within a problem.

Such an approach would be advantageous in that the burden of feature and

solver design would be minimised as the PDE solutions and surrogate model

could be learnt simultaneously. Although this ambitious goal is not fully re-

alised for now, this Chapter addresses a critical sub-problem on that path

by demonstrating that deterministic PDE problems can be solved by ANN

auto-adaptive methods.

Probabilistic numerics uses Bayesian Inference as a lens through which to in-

terpret the structure of the numerical solutions of PDE’s and other problems

such as integration and optimisation [175]. The unknown solution of some nu-

merical method is treated as a hidden variable. Bayesian Inference can then be

applied to understand procedures by which the values of such hidden variables

can be estimated. The Bayesian framework allows for the quality of different

solution procedures to be compared via the model evidence equations [275].

By introducing the probabilistic framework, it is possible to understand the

algorithms for the solution of boundary value PDEs (constrained optimisa-

tion [198]) in terms of Maximum a Posteriori (MAP) estimates of the hidden

solution function. Constrained optimisation is a MAP, rather than Maxi-

mum Likelihood Estimation (MLE), problem in the sense that the boundary
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constraints can be represented in terms of prior beliefs about the unknown

solution function, as discussed in Section 7.4 (although fine distinction be-

tween the two terms is not especially critical). Introducing constraints makes

optimisation more challenging [41]. Further, when dealing with PDEs, it is

necessary to compute function derivatives. This further restricts the range of

suitable optimisation methods.

The Element Free Galerkin (EFG) method provides a method for finding PDE

boundary value problem solutions [33] and is described in more detail in Sec-

tion 7.2. The standard Galerkin Finite Element Method is to find the pro-

jection of a PDE onto a set of basis functions (termed the weak-form of a

solution) and then derive an optimisation problem from the vanishing of the

first functional derivative of the weak-form solution. The EFG method ex-

tends this approach by considering more arbitrary basis functions. A Lagrange

Multiplier approach can be used to introduce boundary constraints [19]. The

selection of basis functions is usually based on either locally supported func-

tions (as in the standard Finite Element Method [78] or orthogonal series

expansions (as in Spectral Element Methods [208]). These basis functions are

typically selected based on two criteria. First, derivatives of the basis func-

tions must be calculated and so simple basis functions are preferred. Second,

integrals using the basis functions must be carried out. Basis functions with

known integral forms, or those that are amenable to a quadrature procedure,

are leveraged to simplify these integrals. When considering adaptive basis

functions, the standard approach is to add more basis functions. PDE so-

lutions are improved either by adding additional locally supported functions

(h-refinement) or by increasing the order of the series expansion representing

the basis (p-refinement) [78, 20]. These methods can be combined to varying

degrees and are both, in a sense, based on the convergence properties of series

expansions.

This Chapter introduces the use of ANN parametric basis function models.

The adjustable basis function parameters allow for the shape of the basis

functions to be altered, given some measure of the quality of the current ba-

sis functions, to best suit the PDE problem. Modern ANN implementations

utilise Automatic Differentiation to simplify the calculation of the various

derivatives required to fit ANNs. Automatic Differentiation can thus be used

to find the basis function derivatives required to represent Partial Differential
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Equations. Integration of this arbitrary, adjustable, basis function model is

more challenging. A Monte Carlo Integration procedure is adopted for this

purpose in this Chapter. Another ANN approach to solving constrained op-

timisation PDE problems is CPROP, discussed in [120, 321]. The CPROP

method uses a more complicated form a ANN training than the direct back-

propagation method. Further, the method presented in this Chapter can easily

be used with deep ANNs, providing a very flexible representation of PDE so-

lution basis functions. Given an adjustable ANN model, along with the EFG

method to solve a boundary value PDE given a set of basis functions, the final

outstanding issue is the derivation of some optimisation objective for improv-

ing the basis functions. Utilising Bayesian probability, such a basis training

objective function can be derived.

Bayesian Inference provides a way to develop a basis function training objec-

tive in terms of model likelihoods. In particular, the Expectation-Maximisation

(EM) algorithm [92, 259, 278] is utilised to derive an optimisation objective.

The EM algorithm provides an iterative update procedure to calculate MLE or

MAP estimates of a probabilistic model with latent variables. From a prob-

abilistic perspective, fitting basis function regression models is a form Ker-

nelised Bayesian Regression [46] and is thus related to Factor Analysis [275],

Gaussian Processes [308] and Information Theory (in particular the Kullback-

Liebler Divergence) [335]. The EM adaptive basis algorithm is detailed in

Section 7.4. To summarise the method, consider a given likelihood function

that represents the quality of a PDE solution (specified as a part of the PDE

problem description). A latent variable model of the solution function can be

derived in terms of Bayesian Regression. Both the basis functions and the

regression weights for the basis functions are taken to be latent variables. EM

allows for the regression weights and the basis function parameters to be up-

dated iteratively, using the current parameters to estimate better parameter

values. Introducing an EFG formulation further simplifies the optimisation

problem by providing a clear way to introduce boundary constraints. Finally,

sparse-coding (introduced via a Laplace prior on the basis functions) [235] is

also leveraged to enforce independent basis functions and to simplify the EM

algorithm derivation.

The adaptive basis Bayesian Element Free Galerkin introduced in this Chapter

provides a clear formulation of Galerkin methods in probabilistic terms. The
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formulation can be applied to actual PDE problems (Section 7.5) and sug-

gests directions for future work. A number of simplifications were introduced,

namely the vanishing of the first functional derivative and the introduction

of sparse basis functions, to derive the model in Section 7.4. These simpli-

fications were made specifically to find a probabilistic interpretation of EFG

methods as they are presently applied. The probabilistic formulation, how-

ever, suggests that new methods could be developed. For example, Variational

Bayesian methods [123] could be used to model the full basis function posterior

distribution. Further, it may be possible to bypass the Galerkin simplification

entirely and directly improve the estimated solution likelihood function. By

investigating these methods, numerical solution procedures for complex prob-

lems could potentially be further automated, utilising the power of Machine

Learning techniques to find self-improving solutions for PDEs.

7.2 Element Free Galerkin

The Section provides a brief overview of the Element Free Galerkin method

for solving Partial Differential Equations in preparation of the adaptive ba-

sis method presented in this Chapter. As an overview, this Section does not

delve deeply into the formalities of Finite Element Methods, however, the in-

terested reader should consult, for example, the reference list in §9 [198] and

[78, 402, 353] for additional details. The basic approach of Galerkin methods

is to consider the functional derivatives of the weak-form representation of a

PDE problem. By forcing this variation to zero, an error function that is or-

thogonal to the basis representing the solution function can be minimised. The

Element Free Galerkin method, including the Lagrange Multiplier description

of boundary conditions, is also introduced based on [33]. After describing

the formalism, a parametric representation of basis functions using Artificial

Neural Networks and Automatic Differentiation is described.

7.2.1 Basic formulation

Following [353] and §9 of [198], consider the linear Partial Differential Equa-

tion:

Lu = f x ∈ Ω (7.1)
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for some functions u(x), f(x) over the domain Ω (typically Ω ⊂ Rd) and partial

differential operator L. This operational form can be converted into an integral

form more amenable to analysis by considering so-called weak solutions.

Following §7 of [310], consider the Sobolev space of functions denoted Hm. For

the purposes of this Chapter, it is sufficient to consider an informal definition

of these spaces based solely on the L2 space, however this is a simplification.

For a formal definition, see Definition 7.1 of [310]. Using the L2 simplification

of Sobolev spaces, let Hm(Ω) be defined as set of functions u ∈ L2 over Ω

such that the first α ≤ m derivatives of u (denoted Dα) are also in L2. That

is, Dαu ∈ L2 for |α| ≤ m. The norm is expressed as the norm of the sum of

squares of all u and the derivatives of u:

‖u‖m =
∑
|α|≤k

‖Dαu‖2 (7.2)

In the L2 case considered here, an inner product can be defined by:

〈u, v〉 =
∑
α≤k

∫
Ω
Dαu(x)Dαv(x)dx (7.3)

The Galerkin approximation can be derived by introducing two function spaces.

Define the unknown solution, u, as belonging to the function space U of trial

functions. Next, define the space of test functions, v ∈ V . For the purposes of

this Chapter, it is sufficient to consider U = V = Hm. Following §9 of [198],

the weak solution can by introduced by considering the error G(u) = Lu− f
for u ∈ U . If, for every v ∈ V , the inner product error functional formed with

G(u) is zero:

〈G(u), v〉 = 0 (7.4)

then u ∈ U is said to be a weak solution of the differential equation. In partic-

ular, the error is orthogonal to the trial function space and is thus optimally

minimised. The variational form of the differential equation Lu = f can be

introduced (for positive definite L) following Theorem 9.1 of [198]. The varia-

tional form defines an energy functional, I(u), from which the PDE solution,

u, can be recovered as the function which renders I(u) stationary. In other

words, Lu = f is the Euler-Lagrange equation of I(u). Before demonstrat-

ing the proof, it is necessary to place some restrictions on the form of the

differential operators L to be analysed. Consider the following properties for
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L:

if 〈Lu, v〉 = 〈Lv, u〉 ∀u ∈ U,∀v ∈ V Self-adjoint

if 〈Lu, u〉 > 0 ∀u ∈ U Elliptic

if L is both self-adjoint and elliptic Positive definite

Theorem 7.2.1. Weak-form solution functional (Theorem 9.1 [198]): Pro-

vided the differential operator L is positive definite, Lu = f is the Euler-

Lagrange equation of the functional:

I(u) = 〈Lu, u〉 − 2〈f, u〉 u ∈ U (7.5)

and, as such, the weak solution of Lu = f is the unique minimum of I(u) for

u ∈ U .

Proof. (Proof sketch) By the positive definiteness of L, the variational func-

tional in equation (7.5) possesses a minimum. Let I(u) be the minimum of

I(◦) for u ∈ U . Then consider the first variation of I(u) by ε ∈ R (a small

value) and v ∈ V :

I(u) ≤ I(u+ εv) (7.6)

where

I(u+ εv) = 〈L(u+ εv), (u+ εv)〉 − 2〈f, (u+ εv)〉
I(u+ εv) = 〈Lu, u〉 − 2〈f, u〉+ ε [〈Lu, v〉+ 〈Lv, u〉 − 2〈f, v〉] + ε2〈Lv, v〉
I(u+ εv) = I(u) + 2ε [〈Lu, v〉 − 〈f, v〉] + ε2〈Lv, v〉

so that

I(u) ≤ I(u+ εv) = I(u) + 2ε [〈Lu, v〉 − 〈f, v〉] + ε2〈Lv, v〉 (7.7)

Given ε and v, the minimum of I(u) occurs if I(u) = I(u+ εv) so that:

0 = 2ε [〈Lu, v〉 − 〈f, v〉] + ε2〈Lv, v〉 (7.8)

Since ε can be arbitrarily small and of either sign the term ε2〈Lv, v〉 must
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vanish, along with the [〈Lu, v〉 − 〈f, v〉] term, so that a minimum occurs if:

〈Lu, v〉 = 〈f, v〉 ∀v ∈ V (7.9)

Existence properties required to complete the proof are given in Theorem 9.1

of [198].

Note that it is convenient to introduce the following equivalent form of the

energy functional in equation (7.5):

I(u) =
1

2
〈Lu, u〉 − 〈f, u〉 (7.10)

Additionally, following [246], it is convenient to introduce the standard nota-

tion for the Euler-Lagrange equations:

a(u, v) = F (u) (7.11)

where: a(u, v) = 〈Lu, v〉 (7.12)

and: F (v) = 〈f, v〉 (7.13)

7.2.2 Discretisation of the weak-form

Finally, the Galerkin method introduces an approximation to discretise the

weak-form (see §9 of [353]). Specifically, the functions u and v are represented

by a basis function expansion:

u(x) =

N∑
i=1

U iφi(x) (7.14)

v(x) =
N∑
i=1

V iψi(x) (7.15)

for φi(x) ∈ U and ψi(x) ∈ V . For the purposes of this Chapter, it is sufficient

to consider the case that U = V .

The discretised equations can be used to find the weak-form solution. This is

a consequence of the Lax-Milgram Theorem (see Theorem 9.2 in [198]).

Expressing equation (7.10), the energy functional I(u), in terms of the discre-
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tised u yields a set of matrix equations:

I(u) =
1

2
a

((
N∑
i=1

U iφi

)
,

(
N∑
i=1

U iφi

))
− F

(
N∑
i=1

U iφi

)
(7.16)

I(u) =
1

2
UTKU − UTF (7.17)

where U is the column vector of coefficients of
∑N

i=1 U
iφi(x) with entries U i,

F is the column vector with entries:

Fi =

∫
Ω
f(x)φi(x)dx (7.18)

and K is an N × N matrix representing the operator L. The integral used

to calculate the values of K is typically found by first applying integration by

parts to the inner product of 〈Lu, u〉.

The discrete Euler-Lagrange equations are derived by setting the test functions

to be the basis functions in φ. This can also be derived by taking the derivative

of equation (7.17) with respect to each of the coefficients U i, which yields (see

[78]):

∂I(u)

∂U
= KU − F (7.19)

At the minimum value of I(u), the derivative with respect to U should vanish,

yielding:

KU = F (7.20)

For linear PDE problems, equation (7.20) can be solved directly to find the

discrete solution function basis coefficients, U .

7.2.3 Boundary conditions

To enforce the boundary conditions of the energy functional, a Lagrange Multi-

plier approach can be adopted. Alternative approaches, which are not consid-

ered further in this Chapter, to enforcing boundary conditions include direct

elimination and penalty methods [402]. Following [19, 402], the constrained

variational formulation of equation (7.10) can be expressed in terms of the
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Lagrangian functional:

L(u, λ) = I(u)− 〈λ,A(u)− c〉 (7.21)

where c(x) is the assigned value of the solution function, u(x), at x ∈ ∂Ω and

λ(x) is the value of the Lagrange Multiplier on the boundary. If u is a station-

ary point of I(u), then the constraint term will be zero when A(u(x))−c(x) = 0

(where A(u(x)) is some boundary condition function) so the stationary point

of the Lagrangian at L(u, λ) will also be a solution be a solution of I(u).

A more detailed analysis of necessary and sufficient conditions for stationary

points of L(u, λ) to provide a solution of I(u) are presented in [198].

As the primary aim of this Chapter is to render clear the probabilistic interpre-

tation of the Galerkin methods, it is useful to restrict the form of the boundary

conditions to the most simple type, that is, of the form A(u(x)) = u(x). As

such, only Dirichlet boundary conditions are considered in detail (fixed val-

ues of the solution function on ∂Ω, the boundary of Ω) are considered in this

Chapter. Complicated forms of A(u(x)) will render the Lagrangian functional

L(u, λ) and its derivatives. The analysis presented will hold as long as the

boundary value function A(u(x)) does not prevent the existence of a station-

ary solution u(x) of L(u, λ).

If the solution to the PDE problem is located at a stationary point of L(u, λ),

this stationary point can be estimated by considering the first functional vari-

ation of L(u, λ) with respect to both u and λ. The derivation of the first

variation of L(u, λ) is similar to that presented for the variation of I(u) in

Theorem 7.2.1. The first variation of L(u, λ) at a minimum can be calculated

by expanding:

L(u, λ) ≤ L(u+ εv, λ+ δw)

for test functions v, w and scalars ε, δ. Expanding these terms yields:

L(u+ εv, λ+ δw) = I(u+ εv) + 〈λ+ δw, u+ εv − c〉
I(u+ εv) = I(u) + 2 [〈Lu, v〉 − 〈f, v〉] + ε2〈v, v〉

〈λ+ δw, u+ εv − c〉 = 〈λ, u− c〉+ ε〈λ, v〉+ δ〈w, u〉 − δ〈w, c〉δε〈w, v〉
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Setting δ = 1
2ε and combining terms yields:

L(u+ εv, λ+ δw) = L(u, λ) + ε2 [〈Lv, v〉+ 2〈w, v〉]
+2ε[〈Lu, v〉 − 〈f, v〉+ 〈λ, v〉+ 〈w, u〉 − 〈w, c〉]

then, there is a stationary point for L(u, λ) when the first variation van-

ishes:

0 = 2ε [〈Lu, v〉 − 〈f, v〉+ 〈λ, v〉+ 〈w, u〉 − 〈w, c〉] (7.22)

Rearranging equation (7.22) yields a set of equations to solve to find the sta-

tionary point of L(u, λ):

〈Lu, v〉+ 〈w, u〉+ 〈λ, v〉 = 〈f, v〉+ 〈w, c〉 (7.23)

Following [402], discretising the Lagrange Multiplier equations, using the same

technique described in Section 7.2.2, yields the bordered Hessian matrix form

of the linear system: [
K AT

A B

][
U

Λ

]
=

[
F

C

]
(7.24)

where B is the zero matrix and A is a given by the discretised values of 〈w, u〉.
Λ represents the vector with entries equal to the values of the Lagrange Mul-

tipliers required to enforce the constraints. C is a vector with entries:

Ci = 〈wi, c〉 (7.25)

where wi is the i-th test function for the variation of the boundary con-

straints.

For the one-dimensional boundary value problem considered in the numerical

experiment in Section 7.5, the constraint terms in equation (7.24) can be

calculated directly by setting Λ to have two constraints and calculating the

entries of A to the values of the basis functions at the bounding end points.

Let φi(xl) be the value of the i-th basis function at the left boundary point,

xl, and φi(xr) be the value of the i-th basis function at the right end point,

xr. The the first row of A consists of the values of φi(xl) and the second row
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is given by the values of φi(xr):

A1i = φi(xl) (7.26)

A2i = φi(xr) (7.27)

Techniques for solving the augmented linear system derived via Lagrange Mul-

tiplier constraints are described in [402]. The simplest approach is to augment

the diagonal lower zero block in the bordered Hessian as:

B = αI (7.28)

where α is a small real valued constant. This is analogous to including a

white noise term in a Gaussian Process correlation matrix (see §15 of [275])

and renders the linear system in equation (7.24) invertible. This approach is

adopted for the numerical experiment in Section 7.5.

7.2.4 Parametric Representation of basis functions

Artificial Neural Networks can be used to represent both the solution field

and the basis functions parametrically. Consider a representation of a scalar

solution function, u(x), given by a feedforward ANN (see [173]). The inputs

to the ANN are given by the spatial position, x. The output of the ANN

is the value of uθ(x) where θ represents the network parameters. Then the

parameters θ will (along with the choice of ANN architecture) encode how to

compute u(x). Such a representation requires that the network is both wide

and deep enough to encode the value of the solution function. The second last

layer of such a network can be used to represent a series of basis functions,

Φθ(x). The final network weights represent the linear combination of these

basis functions, that is:

uθ(x) =

N∑
i=1

WiΦθ(x) (7.29)

where Wi represent the weights used to combine the basis functions. Such

an approach could easily be extended to vector-valued solution functions (as

required in elastoplastic analysis) by using a matrix of weights Wij , rather

than just a vector with entries Wi. Only the scalar case is considered in this

Chapter.
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Given a training objective, J(θ), the backpropagation algorithm (see [151])

can be used to update both the basis functions and the weights, Wi. The

challenge is to derive such an objective function. Section 7.4 demonstrates

that by applying Bayesian Inference principles, an adaptive basis function

objective function can be derived via a probabilistic interpretation of Galerkin

methods in terms of Bayesian parameter regression.

7.2.5 Discussion

This Section provided a brief overview of Galerkin PDE methods. An ANN

based parametric representation of basis functions was introduced. Using an

ANN representation, it is possible to adjust the basis functions towards bet-

ter representations of the PDE solution. However, this Chapter has not yet

discussed what training objective should be used to adjust the basis function

parameters. Both h and p refinements for FEM improve analysis accuracy

based on the a priori known convergence properties of particular function se-

ries. By introducing a probabilistic interpretation of constrained optimisation,

a gradient-based method for adapting basis functions using backpropagation

can be derived. To understand the probabilistic approach, it is necessary to

first introduce a number of concepts from probability and Information Theory.

This material is the subject of Section 7.3.

7.3 Background theory in Bayesian Inference and

optimisation

This Section describes the necessary background material to develop the Bayesian

interpretation of the Galerkin method presented in Section 7.2. Bayesian Re-

gression is first described. This provides a probabilistic interpretation of basis

function regression for solving PDEs. Next, the Kullback-Liebler (KL) diver-

gence [275] is briefly described for notation consistency. The KL divergence

provides a way to measure the distance between two probability distributions.

Finally, the Expectation-Maximisation (EM) algorithm is described. This al-

gorithm provides a way to calculate locally optimal MLE/MAP estimates of

latent variables for parameterised distributions by iterative updates. The EM

algorithm is combined with Galerkin methods to derive the parametric adap-
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tive basis function PDE solver presented in this Chapter. This Section also

describes the sparse-coding framework [288, 235]. Sparse-coding provides a

way to iteratively improve sparse, over-complete basis function sets. In prob-

abilistic terms, sparse-coding introduces latent variable priors that simplify

estimates of model likelihood integrals.

7.3.1 Kernelised Bayesian Linear Regression

To understand the Bayesian interpretation of Galerkin methods, it necessary

to first outline the Bayesian form of regression. This will be first discussed with

reference to the linear regression case, that is, finding the optimal weight vector

W such that f(x) = Wx. Kernelised regression refers to the use of feature

functions, φ(x), to introduce nonlinearity to regression representations of the

form f(x) = Wφ(x). The Bayesian framework represents the unknown weights

with distributions over weight space. This is a type of dual representation to

the Gaussian Process representation of an unknown function discussed in §15

of [275]. From the Bayesian formulation of regression, the standard Ordinary

Least Squares regression estimate can be recovered as a Maximum Likelihood

Estimate of the parameter weights.

7.3.2 Bayesian Linear Regression

Bayesian Linear Regression models the probability of the function output given

an input stochastically. §3 of [46] provides a detailed overview. The regression

weights are taken to be a set of latent variables that are to be learnt. Nonlin-

earity can be introduced by applying feature functions to the inputs and using

the regression weights to build linear combinations in the feature space [268].

The usual least squares estimate can be recovered from the Bayesian linear

regression formulation as the Maximum Likelihood Estimate (maximum prob-

ability) of the regression weights. Regularised least squares can be justified

based on the form of Bayesian linear regression under different prior distribu-

tion selections for the regression weights [275]. By adopting the Bayesian linear

regression formulation, it will be possible to write an optimisation objective

that can be used to iteratively improve the test functions used to represent

spectral element solutions of PDEs. This optimisation objective will be shown
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to be the model evidence of the estimated solution function given the obser-

vations of the PDE solution.

Consider the following model. Let x be a vector in RDx and y ∈ RDy . Assume

that y is a linear function of x with added Gaussian noise such that:

y = Wx+ ε (7.30)

ε ∼ N (0, σ2) (7.31)

P (y|x,W, σ2) ∼ N (Wx, σ2) (7.32)

where W ∈ RDx×Dy is a matrix of latent variables that are to be learnt. For

the purposes of this Chapter, it will be sufficient to consider the case that σ

is known. For the case that σ must also be inferred, see §7.6.3 of [275].

Consider the set of N training examples:

T = [(x1, y1), · · · , (xN , yN )] (7.33)

Let X be a matrix of size N×Dx (the design matrix) and Y be a matrix of size

N ×Dy. It will be sufficient for the purposes of this Chapter to consider the

simpler case that y is a scalar function so that Dy = 1. For results regarding

Bayesian Multivariate Regression, see [268].

From the properties of Gaussian distributions, the conditional probability of

Y given the current values of W is:

P (Y |X,W, σ2IN ) ∝ exp

(
− 1

2σ2

(
(Y −XW )T (Y −XW )

))
(7.34)

where IN is the N ×N identity matrix.

The Ordinary Least Squares estimate of regression weights can be recovered

as the Maximum Likelihood Estimate for equation (7.34), found by max-

imising the log of P (Y |X,W, σ2IN ) by taking derivatives with respect to the

weights:

logP (Y |X,W, σ2IN ) ∝
(
− 1

2σ2
(Y −XW )T (Y −XW )

)
∂ logP (Y |X,W, σ2IN )

∂W
= XTXW −XTY
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and setting this derivative to be zero:

0 = XTXW −XTY

W = (XTX)−1XT y

where (XTX)−1XT is the Moore-Penrose Pseudo-Inverse of X [148].

7.3.2.1 Bayesian updating of regression parameters

Rather than use the least squares estimate, a Bayesian approach considers

uncertainty over the latent parameter values. Bayesian updating provides a

way to incorporate new information about a model, m, given new data, d

[224]. The goal is to calculate the posterior distribution, P (m|d), over the

models m given new data d using the likelihood, P (d|m), and the prior model

beliefs, P (m), by:

P (m|d)︸ ︷︷ ︸
posterior

∝ P (d|m)︸ ︷︷ ︸
likelihood

P (m)︸ ︷︷ ︸
prior

(7.35)

The Bayesian updating process can be used to continue to update prior beliefs

given new data in a rigorous way. Then, in the regression case, the goal will be

to estimate the posterior distribution P (m|d) over W given the observations

in T :

P (W |X,Y, σ2) (7.36)

In Bayesian terms, the probability of the observed value y for the regression

in equation (7.34) is the likelihood P (d|m). Further, in order to carry out the

Bayesian updating for W it is necessary to select a initial prior distribution

over W given by P (W ). In summary, the Bayesian Linear Regression problem

as described is given by:

P (d|m) = P (Y |X,W, σ2IN ) : Likelihood (7.37)

P (m) = P (W ) : Prior (7.38)

P (m|d) = P (W |X,Y, σ2) : Posterior (7.39)

Although the choice of prior can be essentially arbitrary, the choice of prior

affects the convergence of the posterior distribution. For example, consider a
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Gaussian prior for P (W ) with mean W0 and covariance matrix V0:

P (W ) = N (W |W0, V0) (7.40)

The Gaussian prior for P (W ) allows for Theorem 3.5.1 to be applied to calcu-

late the posterior update for W given T . Following §7.6.1 of [275], the latent

variable posterior update for a Gaussian prior is:

P (W |X,Y, σ2) = P (Y |X,W, σ2IN )P (W ) (7.41)

P (W |X,Y, σ2) = N (WX,σ2)N (W |W0, V0) (7.42)

P (W |X,Y, σ2) = N (W |WN , VN ) (7.43)

where P (W |X,Y, σ2) = N (W |WN , VN ) follows from Theorem 3.5.1. The pa-

rameters of the posterior Gaussian are:

WN = VNV
−1

0 W0 + σ−2VNX
TY (7.44)

V −1
N = V −1

0 + σ−2XTX (7.45)

VN = σ2
(
σ2V −1

0 +XTX
)−1

(7.46)

Importantly, the posterior is also Gaussian. As such, Bayesian updating for

incorporating new information will follow the same equations given above,

using the current posterior estimate N (W |WN , VN ). This can be shown to be

equivalent to ridge regression (also known as Tikohonov Regularisation) [373].

In the case that the prior distribution for the weights is non-Gaussian, the

form of the posterior will be altered. In Section 7.4, non-Gaussian priors are

used to simplify the form of the adaptive basis Galerkin equations.

Kernelised regression can be derived simply by replacing x in equation (7.30)

by Φ(x), where Φ(x) represents a vector of basis functions evaluated at x:

y(x) = WΦ(x) + ε (7.47)

Under the assumption of independent Gaussian noise, ε, the probability of any

collection of N function values of y(x) at locations xi for 0, · · · , i, · · · , N is

then:

P (y|W,x, σ2,Φ) =

N∏
i=1

N (WΦ(xi), σ
2) (7.48)
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This is a form of mean-field approximation to the unknown function value

[289]. Note that the Bayesian formulation of regression can also be used to

derive variance estimates for the weight posterior, allowing for errors to be

quantified. This is discussed in [46, 275].

7.3.3 KL divergence

The Kullback-Liebler divergence provides a measure of the difference between

two probability distributions. Errors in the use of approximations like the

mean-field approximation in equation (7.48) can be formulated in terms of the

KL divergence between the approximation and the true distribution. Min-

imising these KL divergences yields iterative approximation algorithms such

as Expectation Maximisation and Variational Bayes [46].

From §1.6.1 of [46], the KL divergence between two distributions is defined

by:

DKL(P (x)||Q(x)) =

∫
P (x) log

(
P (x)

Q(x)

)
dx (7.49)

Importantly, the KL divergence is non-negative so that DKL(P (x)||Q(x)) ≥ 0

with equality essentially meaning that the distributions P (x) and Q(x) are

equivalent. Note that DKL(P (x)||Q(x)) 6= DKL(Q(x)||P (x)).

7.3.4 Expectation-Maximisation algorithm

The Expectation-Maximisation algorithm iteratively finds MAP and MLE es-

timates. The properties of the KL divergence (and entropy) are used to define

a two step method to optimise parametric descriptions of latent variable mod-

els. For full derivations of the EM algorithm, see §9 of [46]. Note that the EM

algorithm is a local optimisation method and is not guaranteed to find global

optima.

A parameterised likelihood function describing some observed data, L(θ;X) =

P (X|θ) can difficult to optimise directly. If latent variables, Z, are assumed

to be the cause of the observed data, X, it is often the case that a simpler

likelihood function, L(θ;X,Z) = P (X,Z|θ), is available. The original likeli-

hood function can be expressed as the marginal likelihood of the integrated
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joint observed-latent model:

P (X|θ) =

∫
z∈Z

P (X, z|θ)dz (7.50)

Directly integrating P (X,Z|θ) to find optimal θ values is often intractable and

as such an iterative approach, the EM algorithm, can be adopted. Each itera-

tion of the EM algorithm has two main steps. On iteration i, the Expectation

step calculates the expected value with respect to the current value of the

conditional distribution P (Z|X, θi), of the log of the joint likelihood function.

This gives rise to the so-called auxiliary function, Q(θ|θi):

Q(θ|θi) =

∫
z
P (z = Z|X, θi) logP (X, z = Z|θ) (7.51)

Next, the Maximisation step finds the values of θi+1 that maximise the auxil-

iary function:

θi+1 = argmax
θ

Q(θ|θi) (7.52)

Repeating the Expectation and Maximisation steps will allow θ to converge to

a local MLE/MAP estimate. A typical application of the EM algorthm is fit-

ting the parameters of a Gaussian mixture model [275]. In Section 7.4, an EM

algorithm is used to derive an method to iteratively update a parametric rep-

resentation of the Galerkin basis functions used to solve PDE equations.

7.3.5 Sparse-coding - development and probabilistic interpre-

tation

Consider the problem of learning basis functions for representing a function

as:

y(x) =
N∑
i=1

Wiφi(x) (7.53)

Sparse-coding, in contrast to PCA methods (see [374]), aims to compute sets of

basis functions with a higher dimensionality than the input dimension. Orig-

inally derived for estimating useful basis-features for unsupervised learning

tasks such as feature extraction from images [235], sparse-coding estimates

over-complete basis sets. By removing the limitations of dimensionality that
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restrict the eigen-analysis of images, over-complete basis functions allow for

effective generalisation from seen to unseen images. This has applications in

image classification. The goal of this Section is to briefly introduce sparse-

coding in order to discuss the probabilistic interpretation of this method.

Sparse-coding introduces a form of regularisation to optimisation algorithms

for estimating basis functions. The probabilistic view of this sort of regular-

isation is that particular forms of priors can be introduced to simplify the

task of estimating certain integrals.Sparse-coding priors will be used to sim-

plify the form of the adaptive basis Galerkin EM algorithm presented in this

Chapter.

From [288, 235] and §13 of [275] sparse-coding sets the following optimisation

problem objective function:

argmin
W,φ

[
‖y(xj)−W jφ‖22 − λ‖φ‖1

]
(7.54)

such that the weights, W , are normalised. The parameter λ is a hyperpa-

rameter controllng the strength of the L1 regularisation applied to the basis

functions.

This can be solved by a two step approach. First, the current values of the

weights, W , are estimated. Next, the basis functions are updated using the

current estimate of the weights. Such an optimisation objective can be derived

by setting a Laplace prior on the basis functions:

P (φ) ∝ exp(−β|φ|) (7.55)

By setting β to a large value, any integral over the space of basis functions will

be approximately a delta function centred at a particular value of distribution

over the basis functions.

7.4 Bayesian Element Free Galerkin

This Section details the main contribution of this Chapter, the Bayesian for-

mulation of Galerkin methods for solving PDE problems. By unifying prob-

ability theory and the solution of PDEs (in the probabilistic numerics sense

[175]), directions for finding improved algorithms in the future are suggested.
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Further, by applying Bayesian probability techniques it is possible to define

parametric adaptive basis Galerkin methods. This Section presents one such

approach for adaptive basis Galerkin. A Laplace prior is introduced to simpify

the derivation of an EM algorithm for updating basis functions representing

the solution of PDEs. A numerical demonstration of this algorithm is pre-

sented in Section 7.5. Although the algorithm presented introduces a number

of simplifying assumptions that will likely be unsuitable for the solution of

complex PDE problems, the derivations in this Chapter clearly identify the

probabilistic structure of PDE problems. For example, constrained optimisa-

tion for boundary value problems can be related to MAP optimisation for a

particular, restrictive prior over the solution space. The goal of this Section is

to highlight this probabilistic structure, demonstrate how Galerkin methods fit

in with the probabilistic framework and thereby facilitate future developments

in parametric adaptive PDE solution methods.

Consider a boundary value problem given by Lu = f , as in equation (7.1), over

Ω with boundary values u = c over ∂Ω. One method for solving PDE equations

via a Bayesian framework would be to attempt to directly parameterise the

solution function as, for example, an ANN with latent parameters θ:

H(uθ) =

∫
Ω

[Luθ(x)− f(x)]2 dx+

∫
∂Ω

[uθ(x)− c(x)]2 dx (7.56)

Taking the value H(uθ) as the energy of a Gibbs distribution (see [228]), the

likelihood of a set of parameters is given by:

P (uθ) =
1

Z
e−βH(uθ) (7.57)

where Z is the partition function over the parameters and β is the inverse

temperature tolerance parameter. Such a formulation can be considered be a

type of mean field approximation to the true unknown latent solution function,
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u(x), and is given by:

P (uθ) =
1

Z
e−βH(uθ) (7.58)

P (uθ) =
1

Z
e−β[

∫
Ω[Luθ(x)−f(x)]2dx+

∫
∂Ω[uθ(x)−c(x)]2dx] (7.59)

P (uθ) =
1

Z
e−β

∫
Ω[Luθ(x)−f(x)]2dxe−β

∫
∂Ω[uθ(x)−c(x)]2 (7.60)

P (uθ) =
1

Z

∞∏
i=1

e−β[Luθ(xi)−f(xi)]
2
∞∏
j=1

e−β[uθ(xj)−c(xj)]2 (7.61)

Given equation (7.61), finding a solution to the PDE Lu = f by calculating the

optimal θ would correspond to a Maximum Likelihood Estimate of θ. There is

an interpretation of equation (7.61) as the product of a prior and a likelihood

function:

P (uθ, ĉ) = P (uθ|ĉ)P (ĉ) (7.62)

P (uθ|ĉ) =
1

Z

∞∏
i=1

e−β[Luθ(xi)−f(xi)]
2
∞∏
j=1

e−β[uθ(xj)−ĉ(xj)]2 (7.63)

P (ĉ) = δ(ĉ(x)− c(x)) (7.64)

That is, the prior on the boundary values is a delta prior with P (ĉ) = δ(ĉ(x)−
c(x)) so the probability for the boundary value to be something other than

c(x) is zero. From this perspective, the constrained optimisation problems that

arise when solving boundary value PDEs can be viewed as MAP estimation

problems. The boundary constraints represent priors about particular values

of the solution function. Relaxing the prior δ(ĉ(x) − c(x)) to, for example,

the form of a Laplace prior exp(−β|ĉ(x) − c(x)|) would lead to regularised

Lagrange Multiplier type boundary constrain implementations.

Although it would be possible to directly optimise equation (7.61), the goal

of this Chapter is to demonstrate how Galerkin methods, in particular with

reference to the Lagrange Multiplier formulation presented in earlier in this

Chapter, can be understood from a Bayesian perspective. Galerkin methods

simplify the form the MLE estimate of equation (7.61). Further, the Bayesian

Galerkin approach can be used to yield a simple parametric adaptive basis

formulation based on sparse priors.
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7.4.1 Adaptive Element Free Galerkin by Expectation Max-

imisation

Galerkin methods can be used to derive a simplified form of the likelihood

distribution in equation (7.61). Consider the ANN (described in Section 7.2.4)

which represents the value of the solution uθ(x) in terms of two subsets of

parameters, the weights W and the basis functions Φθ(x):

uθ(x) = WΦθ(x) + ε (7.65)

where ε is assumed to be independent Gaussian noise with variance σ2. As in

equation (7.1), the likelihood probability of a proposed solution at a collection

of points x = {xi}Ni=1 is taken to be:

P (uθ|X,W,Φθ) =

N∏
i=1

N (uθ|WΦθ(x), σ2) (7.66)

To optimise the parameters, it will be necessary to derive a likelihood function

of the form:

P (uθ,W,Φθ|X) = P (uθ|X,W,Φθ)P (W |Φθ)P (Φθ) (7.67)

From the derivation of Galerkin methods in Section 7.2, the energy due to

error in the Lagrangian, L(u, λ), can be taken to be the log probability of

P (W |Φθ). This is the probability of the regression weights given the basis

functions. Of course, it is possible to solve the linear system in equation

(7.24) by a variety of methods. As per the discussion of Bayesian regression

in Section 7.3, the solution of linear systems of equations can be viewed as

an MLE of a probabilistic regression problem. By introducing particular prior

assumptions on P (Φθ) and using the Galerkin approximation for P (W |Φθ),

EM can be used to derive an optimisation objective, J(θ), for the ANN basis

model. The optimisation loss objective (to be minimised) is the negative of

the auxiliary function (as Q(θ|θi) is to be maximised) so that:

J(θ) = −Q(θ|θi) (7.68)

Given such a training objective, backpropagation and Stochastic Gradient

336



Descent (see [151] and Chapter 5) can be used to implement the Maximisation

step, finding the optimal values of θ in Q(θ|θi). This EM algorithm implements

an adaptive basis Element Free Galerkin method by iteratively solving the

linear system derived from L(uθ, λ) given the current basis functions and then

training the ANN basis model to more closely model the current solution MLE

estimate. The algorithm is derived in detail in this Section.

7.4.2 Derivation of adaptive basis training objective

Consider some distribution over functions, P (u), that describes the true dis-

tribution over the solutions for some linear PDE Lu = f . Introduce a param-

eterised distribution, P (u|θ), intended to approximate the distribution P (u).

If the values of θ can be adjusted such that the KL divergence between P (u)

and P (u|θ) is minimised, then P (u|θ) will be a good approximation of P (u).

That is, the goal is to find θ to minimise:

DKL (P (u)||P (u|θ)) =

∫
P (u) log

(
P (u)

P (u|θ)

)
du (7.69)

DKL (P (u)||P (u|θ)) =

∫
P (u) logP (u)du−

∫
P (u) logP (u|θ)du (7.70)

As
∫
P (u) logP (u)du is a constant and logP (u|θ) is always negative:

−
∫
P (u) logP (u|θ)du ≥ 0 (7.71)

The maximum possible value of logP (u|θ) is one and, due to the monotonicity

of log, the minimum value of DKL (P (u)||P (u|θ)) occurs when logP (u|θ) is

a maximum. That is, optimising the value of the parameters θ to maximise

logP (u|θ) is equivalent to minimising the KL divergence between P (u) and

P (u|θ). Setting P (u|θ) = P (uθ) in Section (7.4.1) suggests an EM algorithm

for maximising P (u|θ).

7.4.2.1 Expectation-Maximisation for Bayesian Element Free Galerkin

The parameterised distribution P (uθ) has a complicated form, given in equa-

tion (7.61). Rather than attempt to optimise this directly, a Galerkin method
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can be used to introduce the following latent variable model:

P (uθ) =

∫
W

∫
Φ
P (uθ, w, φ)dwdφ (7.72)

where the weights w are taken from weight space W and the basis functions

are taken from the parameterised set of functions Φθ.

The EM algorithm requires an expression for the joint likelihood function

P (X,Z|θ) which, in this case, is taken to be P (uθ,W,Φθ). The log joint

likelihood function can be decomposed as:

logP (uθ,W,Φθ) = logP (uθ|W,Φθ) + logP (W |Φθ) + logP (Φθ) (7.73)

To fully define the Expectation step of EM, the auxiliary function must be

estimated. First, consider the required marginal likelihood P (Z|X, θi). For

the Galerkin approximation algorithm, this can be given by:

P (W,Φθi) = P (W,Φ|θi) (7.74)

To estimate Q(θ|θi), the expectation of the joint likelihood with respect to the

marginal likelihood is needed:

Q(θ|θi) =

∫
W

∫
Φ
P (w, φ|θi+1) logP (uθ,W,Φθ)dφdw (7.75)

At this point, there are a number of ways to proceed. In this Chapter, as the

intent is to demonstrate the validity of the probabilistic formulation, a Laplace

prior is introduced to simplify the calculation of Q(θ|θi). More sophisticated

algorithms are relegated to future work.

7.4.2.2 Sparse-coding simplification over basis function space

The first step to simplifying equation (7.75) is to introduce a Laplace prior

over the basis function space:

P (Φ) ∝ exp(−β|φ̂|) (7.76)
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for some high value of β at some selected initial value φ̂. Then, any terms P (Φ)

appearing in integrals can be approximated as (for some arbitrary variable

A):

P (A) =

∫
Φ
P (A, φ)dφ (7.77)

P (A) =

∫
Φ
P (A|φ)P (φ)dφ (7.78)

P (A) ≈
∫

Φ
P (A|φ)δ(φ̂− φ)dφ (7.79)

P (A) ≈ P (A|φ̂) (7.80)

Returning to the derivation ofQ(θ|θi), the Laplace prior assumption on P (Φ|θi)
on parameter space yields the simplification:

Q(θ|θi) =

∫
W

∫
Φ
P (w|φ, θi+1)P (φ|θi+1) logP (uθ,W,Φθ)dφdw (7.81)

Q(θ|θi) ≈
∫
W
P (w|φ̂, θi+1) logP (uθ,W, φ̂, θ)dw (7.82)

Further, introducing a Laplace prior on the values of P (Φ|θ) will introduce an

L1 regularisation term into the training objective Q(θ|θi).

7.4.2.3 L2 regression weight regularisation

To force sparse basis functions to be learnt, it is necessary to offset any regular-

isation used to penalise the basis functions by also regularising the regression

weights. Otherwise, the weights will grow increasing large to offset the de-

creasing size of the basis functions. An L2 for the weights can be derived

by considering a Gaussian prior over the weights. This fits in well with the

Galerkin approximation adopted for the values of P (W |Φ, θ). The energy in

the Lagrangian formulation of the boundary value PDE problem (given in

equation (7.21) for a given choice of basis can be taken to have the form of the

log probability of a Gaussian. Equivalently, the error in the choice of solution

weights, W , for the discretised linear system in equation (7.24) can assumed

to be the energy function for a Gaussian. Let the constrained linear system

derived by a discretised Lagrange Multiplier formulation, approximated with

basis functions Φθi be summarised as ‖KW − F‖22. Then the distribution
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describing the likelihood of the weights, W , is given by:

P (W |Φ, θi) =
1

Z
e−β‖KW−F‖

2
2 (7.83)

The Maximum Likelihood Estimate of P (W |Φ, θi) will be found at the Or-

dinary Least Squares estimate of the weights found by solving the system

KW = F . Denote the least squares estimate of W by Ŵ . At a high value

of β, virtually all of the probability mass of P (W |Φ, θi) will be centred at Ŵ .

Then, similarly to the simplification introduced in Section 7.4.2.2, the auxil-

iary function integral in equation (7.82) can be further simplified by:

Q(θ|θi) ≈
∫
W
P (w|φ̂, θi+1) logP (uθ,W, φ̂, θ)dw (7.84)

Q(θ|θi) ≈ logP (uθ, Ŵ , φ̂, θ) (7.85)

7.4.2.4 The auxiliary function training objective

Equation (7.85) can be used to derive a training objective for the ANN de-

scribing the PDE solutions. Via the EM algorithm, maximising θ in Q(θ|θi)
(the Maximisation step) will maximise the likelihood of the parameters. From

the discussion in Section 7.4.2, this will in turn reduce the KL divergence

between the approximation P (u|θ) and the unknown true distribution P (u).

To find the training objective, equation (7.85) can be expanded by factorising

P (uθ, Ŵ , φ̂, θ) into:

P (uθ, Ŵ , φ̂, θ) = P (uθ|Ŵ , φ̂, θ)P (Ŵ |φ̂, θ)P (φ̂, θ) (7.86)

First, assume that the probability distribution P (uθ|Ŵ , φ̂, θ) represents the

output of the ANN so that for a set of inputs x = {xi}, the probability of a

proposed solution is given by:

P (uθ|Ŵ , φ̂, θ) =
N∏
i=1

N
(
u|Ŵ φ̂, σ2

)
(7.87)

where σ2 is a noise term which will not be used for the purposes of the algo-

rithm derived in this Section.

To maximise θ, the proposed solution uθ(x) from the network should be ad-
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justed (by gradient descent) to match the current prediction, Ŵ φ̂(x):

logP (uθ|x) ∝ −‖uθ(x)− Ŵ φ̂(x)‖22 (7.88)

Following the detailed description in §13 of [275], the term P (Ŵ |φ̂, θ) will

induce an L2 regularisation on the on the ANN weights, θ. This can be

implemented efficiently by considering weight decay regularisation on only the

weights, W i+1
θ , in the final layer of the ANN:

logP (Ŵ |φ̂, θ) ∝ −λW ‖W i+1
θ ‖22 (7.89)

where λW is a hyperparameter describing the strength of the regulariser.

Finally, following §13 of [275], the Laplace prior on the basis functions induces

an L1 regulariser in Q(θ|θi):

logP (φ̂, θ) ∝ −λΦ‖φ(x)‖1 (7.90)

where λΦ is a hyperparameter describing the strength of the regulariser.

From equation (7.68), the training loss for the ANN can be considered to be

the negative of the auxiliary function, J(θ) = −Q(θ|θi). Training an ANN to

minimise J(θ) will be equivalent to maximising Q(θ|θi) which will, in turn, be

equivalent to minimising the KL divergence between P (u) and P (u|θ). The

full expression for J(θ) is given by:

J(θ) = ‖uθ(x)− Ŵ φ̂(x)‖22 + λW ‖W i+1
θ ‖22 + λΦ‖φ(x)‖1 (7.91)

Note that the training objective is integrated over all of x ∈ Ω. Further, note

that the hyperparameters λW , λΦ must be selected (or also optimised) as a

part of the ANN fitting process.

Training an ANN to minimise J(θ) using the current MLE of the unknown

solution function, calculated by a solving the augmented linear system in equa-

tion (7.24), will find new basis functions that will increase the likelihood of

the estimated solutions.
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7.4.3 Summary of algorithm

The sparse-coding Bayesian Element Free Galerkin Method can be summarised

as follows. Create a feedforward ANN uθ(x) that takes a location, x, as input

and produces a scalar variable uθ(x) by:

uθ(x) = WθΦθ(x) (7.92)

Let θ denote all weights in the ANN. The weights Wθ are a subset of θ and

are taken to be the regression weights used to calculate the final scalar value

of the network given the outputs of the second last layer, denoted Φθ(x). The

second last layer, Φθ(x), is taken to be a vector in Rk where k is the number

of basis features.

Given a PDE Lu = f and boundary conditions, consider the Lagrangian

linear system discretised form of Lu = f given by equation (7.24). Using the

current basis set, Φθ(x), generate the linear system as per the description in

Section 7.2.3. Automatic Differentiation can be used to calculate the values of

∇xΦ(x). In this Chapter, Monte Carlo Simulation is used to approximate the

values of the required inner product integrals. These Monte Carlo integrals

can be carried out by repeatedly sampling uniformly from the input space and

then taking the sample average values of the vectors and matrices in equation

(7.24).

Next, for the current basis set and equations KW = F , calculate a best

estimate for the weights, Ŵ . Using the basis functions, the ANN can be

trained to reduce the loss function from equation (7.91):

J(θ) =

∫
Ω
‖uθ(x)− Ŵ φ̂(x)‖22 + λW ‖W i+1

θ ‖22 + λΦ‖φ(x)‖1dx (7.93)

where ŴΦθi(x) is the current estimate of the solution with the basis functions

used to estimate Ŵ .

Using Stochastic Gradient Descent, the loss function J(θ), can be approxi-

mated by taking N evenly spaced input locations, xi, over the solution domain

in order to generate minibatches (see [151] and Chapter 5). The loss function
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can then be approximated as:

J(θ) ≈ 1

N

N∑
i=1

‖uθ(xi)− Ŵ φ̂(xi)‖22 + λW ‖W i+1
θ ‖22 + λΦ‖φ(xi)‖1 (7.94)

After training the ANN using the current estimate of the solution function,

the process can be repeated. In summary, the algorithm is as follows:

1. Generate an ANN as in equation (7.29).

2. Using the current ANN basis functions, Φθ(x), generate the linear system

KW = F as in equation (7.24). Monte Carlo Integration or some other

method can be used to estimate the required integrals.

3. Solve KW = F for the weights Ŵ .

4. Generate an approximation of the solution function at N points, {xi}Ni=1,

using the current basis functions, Φθ(x) and the weights, Ŵ , by ŴΦθ(x).

5. Using the current values of the solution function, {ŴΦθ(xi)}Ni=1, use

minibatch Stochastic Gradient Descent to train the ANN to minimise

the loss function in equation (7.94).

6. Return to step two and repeat until convergence.

7.4.4 Discussion

This Section presented a formulation of the solution of PDE equations in

terms of Bayesian Inference. In particular, it was demonstrated that Galerkin

methods can be interpreted as a type of Maximum Likelihood Estimate based

on projection of the PDE solution onto latent variable basis functions. This

probabilistic formulation is useful for a number of reasons. Galerkin methods

can be unified into the framework of probabilistic numerics along with other

numerical optimisation methods (see [175]). Adaptive basis FEM and element

free methods can be understood in terms of the model likelihood, providing for

a rigorous way to understand the quality of different basis function choices.

Further, by adopting a Bayesian formulation, the constrained optimisation

problems arising in the solution of PDEs can be understood as MAP esti-

mates. Although a Galerkin method for solving constrained PDE problems

using Lagrange Multipliers was discussed, viewing constrained optimisation
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as a MAP problem suggests alternative procedures. In particular, the EM

algorithm (discussed in reference to improving basis functions in this Section)

could be used for constrained optimisation or for interpreting existing meth-

ods for constrained optimisation. Finally, MLE and MAP estimates could

be replaced with Variational Bayesian methods to approximate the required

posteriors, avoiding the need to explicitly introduce Galerkin methods to find

PDE solutions.

A sparse-coding based EM algorithm for improving the current set of basis

functions was discussed in this Section. This algorithm is not intended to

be an optimal algorithm for solving all PDE problems. Rather, by adopting

sparse (Laplace) priors the form of the EM algorithm can be simplified. The

numerical example in Section 7.5 applies the sparse-coding EM algorithm to

a simple PDE problem to demonstrate that the probabilistic formulation of

solving PDEs can be of practical, as well as theoretical, use. The Laplace

prior is, however, too restrictive for complicated problems. By using a prior

that places significant probability mass over only a small region of the latent

variable space, a Bayesian updating process will be slow (or unable to) con-

verge. As EM finds local, rather than global, optima the poor prior selection

problem is likely to be exacerbated when solving more complicated PDEs.

Although more advanced algorithms that could deal with these issues are not

detailed in this Chapter, by demonstrating the probabilistic structure of PDE

solutions this research suggests future directions in adaptive PDE algorithms

based on Bayesian methods. Specifically, Variational Bayesian methods and

more careful prior selection could be used to derive improved algorithms. The

material presented in this Chapter will help to derive these algorithms as a

part of future work.

7.5 Numerical example - one dimensional Poisson

equation

To demonstrate the validity of this probabilistic interpretation of Galerkin

methods, this Section analyses a simple one dimensional Poisson problem. The

sparse-coding basis function EM optimisation procedure described in Section

7.4 is an extension of the more fundamental Bayesian interpretation of PDE

solvers and Galerkin methods described in this Chapter. Rather than attempt
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to solve a complicated problem with a potentially suboptimal algorithm, it is

worthwhile to demonstrate the theory with a simple problem. The numerical

analysis in this Section suggests that the Bayesian approach to the solution

of PDEs is likely to be a viable avenue for future research. Note that one-

dimensional PDE problems are also termed Ordinary Differential Equations

(ODE). ODEs can be considered to be a subset of PDEs and so the usage of

PDE is not inaccurate when describing one-dimensional differential equation

problems.

7.5.1 Problem description

Consider the Poisson equation (see [246]):

∇2u(x) = f(x) x ∈ Ω (7.95)

u(x) = c(x) x ∈ ∂Ω (7.96)

f(x) = −1 (7.97)

c(x) = 0 (7.98)

where u(x) is the unknown solution function, f(x) is the given source field

function and c(x) is a Dirichlet boundary condition. Further, Ω is the spatial

domain, given by [0, 1] ∈ R and ∂Ω is the boundary of [0, 1].

The analytical solution to this problem can be solved trivially by taking the

integral of equation (7.95) and solving for the integration constants using

the boundary conditions. The analytical solution for equation (7.95) is given

by:

u(x) = −1

2
x2 +

1

2
x (7.99)

The goal of this Section is to validate the algorithm described in Section 7.4.3

on the problem given in equation (7.95). The analytical solution in equation

(7.99) is used as a means of verifying the solutions given by the algorithm

method proposed in this Chapter.

7.5.2 Analysis details

To implement the sparse-coding EM adaptive basis algorithm, a four layer

Artificial Neural Network was used. The ANN was comprised of two layers of
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densely connected ELU 50 units (see [77]), followed by a 50 unit wide layer of

densely connected tanh units. The final layer output, uθ(x), was used to rep-

resent the solution function, u(x), in terms of the parametric basis functions,

Φθ(x), given by the outputs of the second last layer. 10 basis functions were

used to represent the solution, so Φθ(x) is a vector in R10 for each value of

x. The L2 regularisation in equation (7.94) was applied to the weights, Wθ,

connecting Φθ(x) and the output so that uθ(x) = WθΦθ(x).

Importantly, the bias weights in the second last layer were disabled (as such

a bias basis term was not used to formulate the Euler-Lagrange equations,

KW = F ). The integrals required to formulate the terms in KW = F were

estimated by Monte Carlo Integration using 10000 random samples from Ω.

The KW = F equations were solved using the SciPy linear algebra implemen-

tations [204].

The ANN, as well as the ANN training algorithms, were generated using

the Python Tensorflow implementations [1]. The ANN was trained using the

Adam optimiser algorithm [212]. A learning rate of 0.001 was adopted for all

analyses. Each training iteration lasted for 1000 epochs (gradient descent it-

erations). Minibatches were calculated using the inputs from 20 evenly spaced

points on [0, 1]. Regularisation parameters λW = 0.01 and λΦ = 0.01 were

used for all analyses. These training parameters were found experimentally.

Automating the search for effective training regimes is an ongoing area of

research [151].

7.5.3 Numerical results

The numerical results presented in this Section indicate that the algorithm

described in this Chapter successfully solved the Poisson problem in equation

(7.95). Figure 7.1 demonstrates the convergence of the approximated solu-

tions, uθ(x), over ten iterations of the EM algorithm, as well as the analytical

solution. Solutions for iteration 1 and then all even number iterations from 2

to 10 (inclusive) are plotted. Successive approximations to the true solution

are shown as darkening lines, that is, earlier solutions are shown as lighter

lines. The analytical solution is shown as a dashed line. Figure 7.1 indicates

that the algorithm improves upon the approximated solution until the point

that the errors due to the Monte Carlo inner product approximations prevent
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further convergence.

Figure 7.2 demonstrates the over-complete basis functions learnt by the ap-

proximation algorithm at the end of the 10-th iteration of the EM algorithm.

Note that the basis functions are not sorted, as would be the case in a PCA

type algorithm [374]. The dominant basis functions are essentially the same

shape as the analytic solution. The basis functions that do not perfectly track

the shape of the solution function are likely capturing the noise present due

to numerical approximations of the solution function, in particular due to the

MCS integrals used to build the linear system solved at each iteration.

Figure 7.3 demonstrates the errors in the proposed solution versus number of

EM algorithm iterations. The errors, E(j) at iteration j, are calculated as the

average of the squared difference from the analytic solution:

E(j) =
1

N

∑
i=1

(uθ(xi)− u(xi))
2 (7.100)

where the approximation points, xi, are taken from N = 100 evenly spaced

points over Ω = [0, 1]. Figure 7.3 demonstrates that the approximation error

decreases rapidly (super-logarithmically) but then, around the fifth or sixth

iteration, begins to reach the maximum accuracy that can be obtained with

the number of MCS iterations used. This suggests that it would be advisable

to run the EM algorithm by first using a small number of MCS iterations to

build the required linear systems. Then, after several EM iterations have been

used to find a good approximation to the basis functions, the number of MCS

iterations could be increased. This could be interpreted as a form of simulated

annealing (see [305]).
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Figure 7.1: Bayesian Element Free Galerkin Poisson problem from equation (7.95)
solution convergence. The analytic solution from equation (7.99) is shown as a dashed
line. Solutions from the Artificial Neural Network, uθ(x), are shown for the initial
values and even numbered iterations from 2 to 10 (inclusive).
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Figure 7.2: Basis functions learnt by Expectation-Maximisation adaptive basis algo-
rithm. Ten basis function features were encoded in the Artificial Neural Network used
to approximate the solution, as per the algorithm in Section 7.4. Note that the basis
functions are not in any particular order.
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Figure 7.3: Bayesian Element Free Galerkin convergence analysis. Errors are calcu-
lated as per equation (7.100) and show the average squared difference between the
Artificial Neural Network encoded solution, uθ(x), and the analytic solution from
equation (7.99). Errors are shown per number of iterations of the Expectation-
Maximisation algorithm described in Section 7.4. Note that the vertical axis is loga-
rithmic.
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7.6 Conclusions

This Chapter demonstrated a Bayesian interpretation of the solution of dif-

ferential equations. As well as being of theoretical interest, the Bayesian per-

spective was used to formulate an adaptive basis element free Galerkin method

based on an Expectation-Maximisation algorithm. This was verified on a sim-

ple numerical example problem. Although the algorithm presented is unlikely

to be optimal for more complex PDE problems, by demonstrating the unifying

probabilistic structure of the solution of PDE problems (in particular Galerkin

approximations), directions for future research are revealed. By viewing the

unknown solution function as set of hidden random variables, techniques from

statistical analysis and Machine Learning can be applied to the solution of

PDE problems. Bayesian probability is the essential aspect which unlocks the

power of probabilistic numerical analysis.

Although in this Chapter, only a one dimensional Poisson equation was in-

vestigated, it is encouraging that the technique proposed was effective. More-

over, the ‘probabilistic numerics’ approach to the analysis of the chosen PDE

was useful in that the interpretation of the solution of the analysed PDE by

a Galerkin method was made clear. Through a Bayesian lens it was clear

that the Galerkin method defines the conditional probability of the regression

weights of a proposed solution given a set of basis functions. Although the

one dimensional problem tested does not provide a true test of the proposed

adaptive basis method, the real contribution of this Chapter is the develop-

ment of the probabilistic interpretation of numerical methods. It is hoped that

this will lead to improved methods, beyond simple Galerkin techniques, with

additional research.

From the perspective of Uncertainty Quantification, the ability to efficiently

solve PDE problems is essential to estimating unknown output probability den-

sities. Automating the solution of PDE problems by introducing probabilistic

models of PDE solvers will facilitate the search for algorithms that can deal

with the computational difficulties posed by problems in Uncertainty Quan-

tification. It is envisaged that merging Uncertainty Quantification techniques

with automated PDE solvers derived using probabilistic numerical methods

will be both necessary and beneficial for dealing with increasingly complicated

numerical analysis problems in the future.
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Chapter 8

Conclusions

This thesis addressed Uncertainty Quantification for PDE models of physical

systems from a number of perspectives. Although traditional methods to Un-

certainty Quantification can (as demonstrated in this thesis) be applied very

successfully to complex numerical analyses, they face numerous computational

difficulties. For example, it was shown that rare event reliability problems can

be addressed by specialised sampling techniques. However, it was also demon-

strated that numerical methods for physical systems can be computationally

intensive for deterministic problems. Probabilistic models require that a num-

ber of inputs to a given numerical method are analysed. As well as increasing

the computational burden, this presents conceptual difficulties. The space of

probabilistic inputs is typically very high dimensional and humans are not

well equipped to deal with such spaces intuitively. As such, it is difficult to

know exactly what algorithm to pick to deal with a complicated Uncertainty

Quantification problem.

From a Machine Learning perspective, the solution to the problem of deriv-

ing difficult algorithms is to use an optimisation procedure over the space of

algorithms. This thesis made a number of steps in this direction, but more

work will be necessary in order to reach fully automated Uncertainty Quan-

tification methods that can be applied to the types of complicated numerical

problems encountered in practice. It is the authors point of view that Bayesian

(or generative) models of numerical methods will be a useful approach. The

theoretical structure of these Bayesian models were explored in this thesis.

A probabilistic description of numerical method solvers allows for a unified
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interpretation of Uncertainty Quantification. The goal then becomes to quan-

tify the joint input-output and model distributions. This is supported by the

work of [175] and by the adaptive Galerkin method presented in this thesis.

By interpreting the residual as a Gibbs distribution Hamiltonian, the prob-

abilistic nature of numerical simulation solver models is revealed. The most

significant realisation to take away is that, from a probabilistic perspective,

the unknown solution to a numerical method can be considered to be a latent

variable. Following this logic, the goal of an algorithm is to identify the value

of these latent variables given observations. This has an interesting interpre-

tation. From a Variational Bayes perspective, a latent variable posterior can

be approximated by reducing the KL divergence of the latent variable model

from the estimated distribution of observed data. An optimal algorithm for

some problem would then be one that reduces KL divergence between the la-

tent variable posterior and the true, unknown solution as rapidly as possible.

This would require the cross entropy between the unknown solution and the

solution model would need to be decreased as rapidly as possible. In other

words, an optimal algorithm would be one that maximises the rate of entropy

production. This analysis applies to all numerical methods, not just those

for Uncertainty Quantification. Self-improving algorithms, based on these

unifying theoretical developments, are likely to be a fruitful avenue for both

theoretical and practical advances in algorithms for a variety of problems in

the future.
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and the return-mapping algorithm. MOOSE: A parallel computational

framework for coupled systems of nonlinear equations - online documen-

tation, 2016.

[134] A.E. Gelfand. Gibbs Sampling. Journal of the American Statistical

Association, 95(452):1300–1304, Dec 2000.

[135] L.W. Gelhar and C.L. Axness. Three dimensional stochastic analysis of

macrodispersion in aquifers. Water Resources Research, 19(1):161–180,

1983.

[136] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B.

Rubin. Bayesian data analysis, volume 2. CRC press Boca Raton, FL,

2014.
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estimation via conditional expectation: a Bayesian inversion. Advanced

Modeling and Simulation in Engineering Sciences, 3(1), Aug 2016.

[258] J.R. McDonnell and D. Waagen. Evolving neural network architecture.

Technical report, Naval command Control and Ocean Surveillance Cen-

ter RDT AND E DIV San Diego CA, 1993.

[259] G. McLachlan and T. Krishnan. The EM algorithm and extensions,

volume 382. John Wiley & Sons, 2007.

[260] J.D. Meiss. Differential Dynamical Systems. Society for Industrial and

Applied Mathematics, Jan 2007.

[261] E. Merzbach and D. Nualart. A characterization of the spatial poisson

process and changing time. The Annals of Probability, pages 1380–1390,

1986.

[262] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and

E. Teller. Equation of state calculations by fast computing machines.

The Journal of Chemical Physics, 21(6):1087, 1953.

[263] B.R. Meyer, L.W. Bazan, et al. A discrete fracture network model for

hydraulically induced fractures-theory, parametric and case studies. In

374



SPE Hydraulic Fracturing Technology Conference. Society of Petroleum

Engineers, 2011.

[264] C. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Jan

2000.

[265] M.A. Meyers and K.K. Chawla. Mechanical Behavior of Materials. Cam-

bridge University Press, 2 edition, 2009.

[266] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability.

Springer Science + Business Media, 1993.

[267] L. Mihalkova, T. Huynh, and R.J. Mooney. Mapping and revising

markov logic networks for transfer learning. In AAAI, volume 7, pages

608–614, 2007.

[268] T. Minka. Bayesian linear regression. Technical report, Technical report,

MIT, 2000.

[269] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions.

McGraw-Hill, 1997.

[270] G.R. Mostyn and K.S. Li. Probabilistic slope analysis – state of play.

In Proceedings of the conference on probabilistic methods in geotechnical

engineering., pages 89–109, Rotterdam: Balkema, 1993.

[271] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge

University Press (CUP), 1995.

[272] D. Muir Wood. Soil Behaviour and Critical State Soil Mechanics. Cam-

bridge University Press (CUP), 1991.

[273] J.R. Munkres. Elements of algebraic topology, volume 2. Addison-Wesley

Menlo Park, 1984.

[274] J.R. Munkres. Topology. Prentice Hall, 2000.

[275] K.P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive

computation and machine learning series. MIT Press, 2012.

[276] V. Nair and G.E. Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010.

375



[277] M. Nakahara. Geometry, Topology and Physics, Second Edition. Taylor

&amp; Francis, Jun 2003.

[278] R.M. Neal and G.E. Hinton. A view of the em algorithm that justifies

incremental, sparse, and other variants. In Learning in graphical models,

pages 355–368. Springer, 1998.

[279] R.D. Neidinger. Introduction to automatic differentiation and matlab

object-oriented programming. SIAM Review, 52(3):545–563, Jan 2010.

[280] R.B. Nelsen. An introduction to copulas. Springer Science & Business

Media, 2007.

[281] A. Neubauer. Tikhonov regularisation for non-linear ill-posed problems:

optimal convergence rates and finite-dimensional approximation. Inverse

Problems, 5(4):541–557, Aug 1989.

[282] A.Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational

invariance. Twenty-first international conference on Machine learning -

ICML ’04, 2004.

[283] W.F. Noh and P. Woodward. Slic (simple line interface calculation). In

Proceedings of the Fifth International Conference on Numerical Methods

in Fluid Dynamics June 28–July 2, 1976 Twente University, Enschede,

pages 330–340. Springer, 1976.

[284] W. Ochs. Basic properties of the generalized boltzmann-gibbs- Shannon

entropy. Reports on Mathematical Physics, 9(2):135–155, Apr 1976.

[285] J.T. Oden and L. Demkowicz. Applied Functional Analysis, Second

Edition. Chapman and Hall/CRC, 2010.

[286] A. O’Hagan and T. Leonard. Bayes estimation subject to uncertainty

about parameter constraints. Biometrika, 63(1):201–203, 1976.

[287] T.E. Oliphant. Python for Scientific Computing, volume 9. Institute of

Electrical and Electronics Engineers (IEEE), 2007.

[288] B.A. Olshausen and D.J. Field. Sparse coding with an overcomplete

basis set: A strategy employed by v1? Vision research, 37(23):3311–

3325, 1997.

376



[289] M. Opper and D. Saad. Advanced mean field methods: Theory and

practice. MIT press, 2001.

[290] I. Papaioannou, W. Betz, K. Zwirglmaier, and D. Straub. MCMC al-

gorithms for Subset Simulation. Probabilistic Engineering Mechanics,

41:89–103, Jul 2015.

[291] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training

recurrent neural networks. ICML (3), 28:1310–1318, 2013.

[292] J. Pearl. Graphical models for probabilistic and causal reasoning. In

Quantified representation of uncertainty and imprecision, pages 367–389.

Springer, 1998.

[293] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[294] R. Penrose. The emperor’s new mind: Concerning computers, minds,

and the laws of physics. Oxford Paperbacks, 1999.

[295] K.-K. Phoon, editor. Reliability-Based Design in Geotechnical Engineer-

ing: Computations and Applications. Taylor & Francis, 2008.

[296] K.-K. Phoon, H.W. Huang, and S.T. Quek. Simulation of strongly non-

Gaussian processes using karhunen–loève expansion. Probabilistic Engi-

neering Mechanics, 20(2):188–198, Apr 2005.

[297] K.-K. Phoon and F.H. Kulhawy. Characterization of geotechnical vari-

ability. Can. Geotech. J., 36(4):612–624, Nov 1999.
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[322] L. Rüschendorf. Mathematical risk analysis. Springer Series in Opera-

tions Research and Financial Engineering. Springer, 2013.

[323] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.

Always learning. Pearson Education, Limited, 2014.

[324] S. Sakamoto and R. Ghanem. Simulation of multi-dimensional non-

gaussian non-stationary random fields. Probabilistic Engineering Me-

chanics, 17(2):167–176, Apr 2002.

[325] C.A. Schenk and G.I. Schuëller. Uncertainty Assessment of Large Finite

Element Systems. Lecture Notes in Applied and Computational Mechan-

ics, 2005.

379



[326] J. Schmid. The Relationship between the Coefficient of Correlation and

the Angle included between Regression Lines. The Journal of Educa-

tional Research, 41(4):311–313, Dec 1947.

[327] J. Schmidhuber. Deep learning in neural networks: An overview. Neural

Networks, 61:85–117, Jan 2015.

[328] R. Schobi, B. Sudret, and J. Wiart. Polynomial-chaos-based kriging. In-

ternational Journal for Uncertainty Quantification, 5(2):171–193, 2015.
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[389] T. Von Kármán and M.A. Biot. Mathematical methods in engineering:

an introduction to the mathematical treatment of engineering problems.

McGraw-Hill book company, inc., 1940.
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