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Abstract

Pointer analysis, a process that statically computes the possible runtime values

of a pointer in a program, enables the understanding of program behaviours. It

lies in the heart of software engineering and has laid foundations for extensive

applications, such as compiler optimisation, software bug detection and program

verification. The long existing challenge of the analysis, however, is to improve

its e�ciency while maintaining high precision, especially when applied to large

programs.

Parallel platforms, which are prevalent nowadays, provide a great opportunity

to enhance the e�ciency of pointer analysis. Yet, it is challenging to parallelise

this analysis, which is essentially an irregular graph algorithm. In general, pointer

analysis comes in two styles: whole-program and demand-driven. Whole-program

analysis, which computes the points-to information of all variables in a program, is

often formulated as a graph-rewriting problem that makes extensive modifications

to data structures representing the graph. Demand-driven analysis, which only

targets the variables requested by queries, is solved in terms of a graph traversal

problem.

This thesis presents the design and implementation of a parallel pointer analy-

sis framework that enables e�cient pointer analysis for large-scale software. This

framework consists of three parts, each targeting one of today’s most popular par-
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allel platforms, and is implemented with a combination of Java, C++ and CUDA.

The first part is a parallel solution to pointer analysis driven by queries, on multi-

core CPUs. It has achieved significant speedups over the sequential solution, since

a large amount of unnecessary graph traversals have been eliminated by informa-

tion sharing and query scheduling. The second part is an e�cient GPU solution to

whole-program pointer analysis. With e↵ective load balancing and reduced redun-

dant computation, it demonstrates considerable speedups over the state-of-the-art

GPU implementation. The third part is a heterogeneous CPU-GPU solution to

whole-program pointer analysis. It prioritises the distribution of di↵erent work-

loads to CPU/GPU according to the processing unit’s ability for processing them,

and therefore has achieved speedups over the corresponding CPU-only and GPU-

only solutions. The e↵ectiveness of each part of the framework is demonstrated via

an evaluation with a set of open-source Java/C programs.
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Chapter 1

Introduction

Pointers are an essential feature of mainstream programming languages (e.g., C,

C++, Java). Pointer analysis, which determines statically what a pointer may

point to at runtime, is a fundamental analysis for understanding the behaviours

of a program. This analysis provides points-to information, which enables many

applications such as compiler optimisation [7], bug detection [9, 66] and security

analysis [6]. With a rich literature, it has been one of the most popular research ar-

eas in computer science [18]. Depending on how points-to information is provided,

two types of pointer analyses have been studied for long: (1) whole-program anal-

ysis, which computes points-to information for all variables in the program; and

(2) demand-driven analysis, which determines the points-to information only for

the variables that are requested by clients. Both types of analyses are important,

with the whole-program analysis incorporated in production-quality compilers for

all kinds of analysis and transformation, and the demand-driven analysis laying

foundations for clients such as software debugging [43, 45, 48] and alias disam-

biguation [52].

The main problem with developing a practical pointer analysis tool is enhanc-

1



Chapter 1. Introduction 2

ing its e�ciency while maintaining its precision. Great e↵orts have been made

on making tradeo↵s between precision and e�ciency across several dimensions,

including field-sensitivity (by matching field accesses) [37], context-sensitivity (by

distinguishing calling contexts) [44, 45, 52, 60, 62, 68] and flow-sensitivity (by

considering control flow) [15, 23, 57, 68]. Over the years, many performance

improvements have been made, in the sequential setting, on accelerating both

whole-program analysis [10, 11, 14, 34, 36, 38, 52] and demand-driven analy-

sis [26, 42, 43, 45, 48, 65, 71]. However, precise pointer analysis is still costly

when applied to large programs. In recent years, with the ubiquity of parallel plat-

forms, including multicore CPUs [8, 29, 31, 33, 40] and GPUs [28, 32], boosting the

performance of pointer analysis by exploring parallelisation techniques has become

an increasingly popular research topic.

1.1 Challenges

Pointer analysis, which is essentially an irregular graph problem, is very challenging

to parallelise e�ciently on multicore CPUs, GPUs or heterogeneous CPU-GPU sys-

tems. Whole-program pointer analysis, which often comes in Andersen’s inclusion-

based style (by considering pointer assignments as subset constraints) [2], is a graph

algorithm that makes extensive modifications to the underlying graph representing

the program being analysed. Demand-driven pointer analysis, which is driven by

queries from clients and founded on Context-Free Language (CFL) reachability [41],

is a graph traversal problem with massive parallelism-inhibiting dependences.

CFL-reachability-based demand-driven pointer analysis has never been paral-

lelised in the literature. Previous studies are focused on its sequential algorithm,

by resorting to refinement [45, 48, 71], summarisation [43, 65], incrementalisa-
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tion [26, 42], pre-analysis [64] and ad-hoc caching [45, 64]. On parallel platforms,

however, it is crucial but di�cult to avoid the redundant graph traversals both

within and across the queries, in order to fully utilise the computational resources.

The new points-to/alias information discovered in answering some queries during

graph traversals is not directly available to other queries on the (read-only) graph

representation of the program. For precise CFL-reachability-based analysis with

field- and context-sensitivity, there are massive parallelism-inhibiting dependences

as well. These dependences are introduced into its various analysis stages since

processing a query involves matching calling contexts and handling heap accesses

throughout the program.

Andersen’s inclusion-based pointer analysis is promising yet di�cult to par-

allelise on GPUs. In recent years, several parallel implementations of Ander-

sen’s analysis have been introduced to enhance its performance on multicore

CPUs [29, 40] and GPUs [28]. The latter platform is chosen for such an analysis in

this thesis since a GPU is possible to deliver better performance than a multicore

CPU at a lower price [28]. However, existing work [28] is still ine�cient due to

extensive modifications to the underlying graph representing the program being

analysed. These modifications are highly irregular, input-dependent and statically

unpredictable. The skewed and dynamically-changing distribution of edges in a

graph leads to a highly imbalanced workload distribution across its nodes, where

the higher-degree nodes induce larger processing tasks. As a result, GPUs can

perform poorly when their computational resources are severely underutilised.

It is another challenge to parallelise Andersen’s pointer analysis on a hetero-

geneous CPU-GPU system. The obstacle lies in making full use of computational

resources of both CPU and GPU. It is important to notice that CPUs behave better

for some applications while GPUs prevail for others, indicating that the relative
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suitability of CPUs or GPUs for applications varies depending on their workload

characteristics. The challenges in exploring a heterogeneous CPU-GPU system

are two-fold. First, the workload distribution between the CPU and GPU must

be balanced with negligible runtime overhead. This is non-trivial since di↵erent

programs give rise to di↵erent graphs to be analysed and the structure of a graph

changes unpredictably during the analysis. Second, the CPU-GPU communication

must be minimised in terms of the amount of data exchanged and the degree of

overlap with computation on CPU and GPU. This is also non-trivial because the

graphs being analysed are dynamically changing, making it hard to extract the

“right” amount of information to communicate between the CPU and GPU with

reasonable overhead.

1.2 Our Approaches

In order to address the above challenges, this thesis proposes a series of paralleli-

sation techniques to speed up both CFL-reachability-based pointer analysis and

Andersen’s inclusion-based pointer analysis.

Reducing Unnecessary Graph Traversals for CFL-Reachability-based

Analysis Redundant graph traversals can be the major cost to CFL-reachability-

based pointer analysis. We present two novel techniques, data sharing and query

scheduling, to reduce redundant graph traversals. With data sharing, the original

graph traversal problem is recast into a graph rewriting problem. By adding new

edges to the graph representation to shortcut the paths traversed in a query, re-

traversing (redundantly) the same paths can be avoided by taking their short-cuts

instead when handling subsequent queries. With query scheduling, the queries to

be issued (in batch mode) are prioritised according to their statically estimated
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dependences so that more redundant graph traversals can be further reduced.

Balancing Workload for Whole Program Analysis on GPU Load im-

balance causes underutilisation in GPU cores and results in severe performance

issues. We propose an imbalance-aware workload partitioning scheme that divides

the workload dynamically among the concurrent warps, initially in a warp-centric

manner as in [28] (during its coarse-grain stage) but later switches to a task-pool-

based model (during its fine-grain stage) as soon as a workload imbalance is de-

tected. The coarse-grain stage makes use of a so-called pull-based method so that

addition of edges can be performed in a synchronisation-free manner. This stage

is e�cient as long as workload is balanced and the computational resources on the

GPU are fully utilised. The fine-grain stage tackles situations where load imbal-

ance is detected by further decomposing long tasks. When propagating edge sets

for nodes during the analysis, there can be redundant traversals and computations.

We propose an adaptive group propagation scheme to reduce unnecessary graph

traversals and edge set propagations. This scheme also facilitates load balanc-

ing when redundant traversals and propagations involving high-degree nodes are

reduced.

Workload Distribution and Communication Management for Hetero-

geneous Systems CPUs and GPUs behave in di↵erent manners in processing

workloads with distinct characteristics. We prioritise the distribution of di↵erent

types of graph-rewriting rules (i.e., workloads) to CPU or GPU according to the

degrees of the processing unit’s suitability for processing them. In this way, both

CPU and GPU are more likely to get the workload which they are able to process

more e�ciently. With separate memory spaces, communication can be a major

cost for the analysis. We adopt di↵erence propagation to transfer new points-to
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information between CPU and GPU and overlap this process with some computa-

tions.

1.3 Contributions

Demand-Driven Pointer Analysis on Multicore CPUs This is the first

parallel implementation of context- and field-sensitive pointer analysis with CFL-

reachability for Java programs. This implementation uses a data sharing scheme

to reduce redundant graph traversals (in all query-processing threads) by graph

rewriting, and a query scheduling scheme to eliminate unnecessary traversals fur-

ther, by prioritising queries according to their statically estimated dependences.

Evaluated with a set of 20 Java benchmarks, this parallel solution achieves an av-

erage speedup of 16.2X over a state-of-the-art sequential implementation with 16

threads on 16 CPU cores.

E�cient Whole-Program Pointer Analysis on GPU While [28] focuses on

producing the first-ever GPU implementation of Andersen’s analysis via graph-

rewriting, this thesis leverages that implementation but addresses its load bal-

ancing problem, thereby accelerating this analysis significantly further as well as

providing insights for parallelising other graph algorithms that also make modifi-

cations to their input graphs. This is achieved by an imbalance-aware workload

partitioning scheme that includes a warp-centric stage (coarse-grain) and a task-

pool-based stage (fine-grain), and an adaptive group propagation scheme to avoid

some redundant graph traversals and computations. The evaluation in terms of 14

C benchmarks used in prior work shows that this parallel implementation achieves

a significant speedup of 46% on average over the state-of-the-art GPU implemen-

tation [28].
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Whole-Program Pointer Analysis on Heterogeneous CPU-GPU Systems

This is the first implementation of Andersen’s analysis on a heterogeneous CPU-

GPU system. It takes advantage of a previous formulation of this analysis in

terms of graph-rewriting rules [28] to ensure that all rule applications on CPU

and GPU are synchronisation-free. It proposes a dynamic workload distribution

scheme that dispatches a particular type of workload to the processor, CPU or

GPU, that is better suited for the workload. It employs a di↵erence propagation

scheme for transferring new points-to information discovered between CPU and

GPU to reduce communication cost. The evaluation using seven C benchmarks

shows that this CPU-GPU solution outperforms (on average) (1) the CPU-only

solution by 50.6%, (2) the GPU-only solution by 78.5%, and (3) an oracle that

behaves as the faster of (1) and (2) on every benchmark by 34.6%, where (1) and

(2) are variants of state-of-the-art implementations introduced in [28].

1.4 Thesis Organisation

The rest of this thesis is organised as follows:

Chapter 2 provides the general background of pointer analysis. As the targets

of our parallel solutions in this thesis, Andersen’s inclusion-based pointer analysis

and CFL-reachability-based pointer analysis are introduced in details.

Chapter 3 presents the first parallel solution to CFL-reachability-based pointer

analysis. With a data sharing scheme and a query scheduling scheme, it successfully

reduces redundant traversals in the analysis.

Chapter 4 describes an e�cient GPU solution to Andersen’s inclusion-based

pointer analysis, which is based on an state-of-the-art GPU implementation and

improves its performance with an imbalance-aware workload balancing scheme and
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a group propagation scheme.

Chapter 5 introduces the first parallel solution to Andersen’s inclusion-based

pointer analysis on a heterogeneous CPU-GPU system. It presents techniques

for matching suitable workload to CPU or GPU and minimising communications

between them.

Chapter 6 concludes the thesis and discusses future work.



Chapter 2

Background

This thesis focuses on both whole-program and demand-driven analyses, given their

importance in program analysis and software engineering. We provide some prelim-

inaries on these two types of pointer analyses in Sections 2.1 and 2.2 respectively,

before introducing our parallel solutions to them.

2.1 Whole-Program Pointer Analysis

Due to its scalability, Andersen’s pointer analysis, an inclusion-based flow- and

context-insensitive whole-program analysis, has been adopted by production com-

pilers such as Open64, LLVM and GCC, and also has become the focus of this

thesis. Section 2.1.1 introduces this analysis with its sequential algorithm and

Section 2.1.2 describes its state-of-the-art parallel implementation on a GPU.

2.1.1 Andersen’s Inclusion-based Pointer Analysis

Andersen’s analysis for a program is often formulated by solving a set-constraint

problem over a directed graph, G = (V, E), called a constraint graph. We first

9
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discuss its initialisation and constraint resolution, then present its algorithm, and

finally, illustrate it with an example.

Initialisation Given a C program, its constraint graph G = (V, E) is created with

its node set V being the variables in the program and its edge set E representing

five di↵erent types of pointer-manipulating statements in the program, as shown

in Table 2.1. At this stage, there is one edge for every such a statement in the

program.

Name Statement Edge

points-to (P) x = &y x
P�! y

copy (C) x = y x
C�! y

load (L) x = ⇤y x
L�! y

store (S) ⇤x = y x
S�! y

o↵set (F) x = y + o x
F�!
o

y

Table 2.1: Initialisation: mapping program statements to constraint edges.

For example, x
P�! y represents a points-to (i.e., P) edge directing out of node

x into node y. The four other types of edges are understood similarly. O↵set edges

are introduced for enabling field-sensitivity so that a field of a struct is treated as

a separate variable. However, an array is usually analysed as a whole (with its

elements collapsed).

We use Et to represent a subset of E containing all the edges of type t. For

example, EP is the set of all P edges in E and EC is the set of all C edges in E.

This notation will be used heavily in many algorithms presented later in the thesis.

Constraint Resolution Once the constraint graph G = (V, E) for a program

is initialised, we can start discovering new points-to information in the program
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during a so-called constraint resolution process. V (as the set of program variables)

will obviously stay unchanged. However, E may grow as new points-to (P) and

copy (C) edges are added by applying graph-rewriting rules iteratively until a fixed-

point is reached. Note that the load (L), store (S) and o↵set (F) edges will remain

the same.

Propagating the points-to information initially available in G along its edges

iteratively is time-consuming. In practice, we can avoid some redundant compu-

tations by propagating only the new information discovered to where it is needed.

This can be achieved with di↵erence propagation [11, 36, 46], in which the newly

added �P and �C edges to G in one iteration are distinguished from the P and C
edges available before this iteration.

Rule Semantics

R
copy

(x) x
C�! y ^ y

�P��! z ) x
�P�! z

R
load

(x) x
L�! y ^ y

�P��! z ) x
�C�! z

R
store

(x) x
�P�1���! y ^ y

S�! z ) x
�C�! z

R�copy(x) x
�C�! y ^ y

P�! z ) x
�P�! z

R
o↵set

(x) x
F�!
o

y ^ y
�P��! z ) x

�P�! z + o

Table 2.2: Constraint resolution: graph-rewriting rules.

Table 2.2 lists five types of graph-rewriting rules used in constraint resolution.

Note that there are two types of newly added points-to edges, �P and �P . For each

iteration, the �P edges in the premise signify the new points-to edges generated

in the previous iteration and being used in the current iteration, and the �P edges

in the conclusion represent the new points-to edges being produced in the current

iteration. For new copy edges, only one version, i.e., �C is maintained, because they

are produced by R
load

and R
store

and used only later by R�copy in the same iteration
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(by Algorithm 1).

Algorithm 1 Sequential Andersen’s Analysis.
Procedure Andersen()
begin

1 G = (V, E) - CreateGraph();
2 repeat
3 Apply(C, �P , �P , V );
4 Apply(L, �P , �C, V );
5 Apply(�P�1,S, �C, V );
6 Apply(�C,P , �P , V );
7 ApplyOffset(F , �P , �P , V );
8 E

�P  - E�P \ EP ; // update
9 EP  - EP [ E�P ; // update

10 EC  - EC [ E�C; // update
until fixed-point ;

Procedure Apply(t1, t2, t3, V )
begin

11 foreach x 2 V do
12 foreach y 2 Et1(x) do
13 Et3(x) - Et3(x) [ Et2(y);

Procedure ApplyOffset(t1, t2, t3, V )
begin

14 foreach x 2 V do
15 foreach y 2 Et1(x) do

16 Let this o↵set edge (x, y) be x
F�!
o

y;

17 Et3(x) - Et3(x) [ {z + o | z 2 Et2(y)};

Algorithm Algorithm 1 gives a sequential procedure for performing Andersen’s

analysis. Given a program, CreateGraph is called to initialise its constraint

graph G = (V, E) as discussed earlier and the graph-rewriting rules in Table 2.2

are applied in sequence until a fixed-point is reached as discussed above. Recall

that we use Et to represent a subset of E containing all the edges of type t. In this

algorithm, for example, EP is the set of all P edges in E and Et1(x) denotes the



Chapter 2. Background 13

set of edges of type t1 associated with the node x being processed.

For each rule of the form of x
t1�! y ^ y

t2�! z ) x
t3�! z in Table 2.2, we call

Apply or ApplyOffset, whichever is appropriate, to apply it to every node x in

the program to discover any new edges of type t3 for node x. At the end of each

iteration (lines 8 – 10), the �P , P and C edges are updated to prepare for the next

iteration.

Example Let us apply Algorithm 1 to a program given in Figure 2.1(a). The

analysis starts with the constraint graph created by CreateGraph in Fig-

ure 2.1(b). This graph is then modified into the ones in Figures 2.1(c) – 2.1(e)

during iterations 1 – 3, respectively. A fixed-point is reached at the end of iteration

3. In each iteration, the newly discovered edges are highlighted in dashed arrows.

Figure 2.1(f) illustrates the di↵erence propagation in terms of the �P , �P and �C
edges during each iteration.

In the first iteration, E
�P contains x

�P��! a and a
�P��! o, which were added

during initialisation. R
copy

is applied to y, resulting in y
�P�! a added. At this stage,

none of the rules is applicable. Then y
�P�! a is included to the �P and P edges

(lines 8 – 9).

In the second iteration, applying R
load

to b causes b
�C�! a to be discovered.

Then R�copy is applied to b with b
�P�! o added. Next, R

o↵set

is applied to z, with

z
�P�! a + 2 discovered. Finally, the �P , P and C edges are updated accordingly

(lines 8 – 10).

In the last iteration, R
store

is applied to a + 2, giving rise to a + 2
�C�! b, and

resulting in a + 2
�P�! o to be discovered by R�copy. These two new edges become

a + 2
C�! b and a + 2

P�! o (as a + 2
�P��! o initially due to di↵erence propagation) at

the end of this iteration. A fixed-point is then reached since no more rules can be

applied.
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a = &o
x = &a
y = x
b = ⇤y
z = y + 2
⇤z = b

Iteration 1 Iteration 2 Iteration 3

�P x! a y ! a b! o
a! o z ! a + 2

�P y ! a
b! o

a + 2! o
z ! a + 2

�C b! a a + 2! b

(a) Program code (f) Di↵erence propagation

x

y

z

a

b

a+2

o

C F
2

P L S

P

x

y

z
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b
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o
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P

(b) Initialisation (c) Iteration 1
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C

x
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z

a

b

a+2

o

C F
2

P L S

P

P

P

P
C C

P

(d) Iteration 2 (e) Iteration 3

Figure 2.1: An example illustrating Andersen’s analysis. The initial graph is the
one in (b), where a is a variable representing the address of a struct and the address
of its first field, and a+2 denotes its third field. Note that for illustration purposes,
this graph only shows variables directly relevant to the example. For instance, the
second field a + 1, which never occurs in the program, is not shown in the graph.
The new edges added in an iteration are shown in dashed arrows. The fixed-point
is reached after iteration 3.
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2.1.2 State-of-the-Art

We explain the first GPU implementation of Andersen’s analysis [28]. We start

by reviewing the GPU architecture and the CUDA programming model. We then

describe a sparse bit vector representation that is often used in pointer analysis

but adapted for this GPU implementation. Finally, we examine its workload par-

titioning scheme used, together with its inherent load balancing issues.

GPU Architecture We use an NVIDIA TESLA K20c GPU in our evaluation,

but the general techniques introduced in this thesis are not tied to any specific GPU

architecture. This GPU consists of 13 streaming multiprocessors (SMXs), each

containing 192 cores, giving rise to 2496 GPU cores in total. In addition, the GPU

has a global memory (i.e., o↵-chip memory) bandwidth of 208GB/s. However, each

GPU core clocks at only 0.71GHz and the global memory access latency reaches

400 – 800 cycles. This suggests that a GPU is well suited for regular, balanced

workloads with abundant data parallelism when its massive number of cores and

high memory bandwidth are fully utilised. However, a GPU can perform poorly

when its cores and memory bandwidth are underutilised, which usually happens

for irregular, imbalanced workloads.

In the CUDA programming model, threads are organised in thread blocks. All

the threads in one block are executed on one SMX, while one SMX can have multiple

concurrent blocks. One block has several warps, each containing 32 parallel threads.

In the case of imbalanced workloads, the computational resources in a GPU

may be underutilised in two scenarios. First, all the threads in a warp execute

the same instruction concurrently in an SIMD (Single Instruction Multiple Data)

manner, but can be severely serialised on divergent control flows (known as intra-

warp divergence). Second, all the warps in a thread block running on an SMX are
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time-shared to hide memory latency, but a few long-running warps may lead to

underutilisation of its cores (known as inter-warp load imbalance).

Sparse Bit Vectors A sparse bit vector, implemented as a singly linked list,

represents a set of integers. Each element in the list consists of three fields: bits

(several words) represents whether the corresponding integer belongs to the set,

base (1 word) indicates the range of integers that is represented in this element,

and next (1 word) points to the next element. The prior work in pointer analysis [14]

has demonstrated that sparse bit vectors are compact for representing constraint

graphs while facilitating e�cient applications of graph-rewriting rules. In their

GPU implementation of Andersen’s analysis, [28] used 32-word elements, where

the bits field spans 30 words (960 bits). This helps mitigate intra-warp divergence,

since all 32 threads in a warp can perform operations (e.g., a coalesced global

memory access [61, 70] and a bitwise OR for [) on the 32 words in parallel.

In a constraint graph G = (V, E), all the variables, i.e., nodes in V are mapped

to consecutive integers, starting from 0. Given a node x, all its (outgoing) edges

in Et(x) of type t are stored in a separate list. Let us consider an example when x

has two outgoing points-to edges x
P�! y and x

P�! z, of type t, where y and z are

identified by integers 958 and 1920, respectively. The sparse representation of x’s

(outgoing) edges of type t is illustrated in Figure 2.2. It is a linked list with two

elements. The first element’s base is 0 and the 958th bit in bits is 1. So it contains

the integer 960⇥ 0 + 958 = 958, i.e., y. The second element’s base is 2 and the 0th

bit in bits is 1. As a result, it contains z, identified by integer 960⇥ 2 + 0 = 1920.

Note that a sparse bit vector is implemented as a singly sorted linked list, with its

elements sorted in increasing order of their bases. In addition, di↵erent elements

on the same list will always have di↵erent bases.

With sparse bit vectors, the set union operation in line 13 in Algorithm 1 can
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00 . . . 00
base

010 . . . . . . . . . 0
bits next

0 . . . 010
base

00 . . . . . . . . . 01
bits

NULL
next

Figure 2.2: Sparse bit vector representing {958, 1920}.

be implemented as follows. If z 2 Et2(y) has a base that is not available in Et3(x),

then z is inserted into Et3(x) wherever appropriate. Otherwise, the bits field of z is

merged (via a bitwise OR) with the bits part of the element in Et3(x) that shares

the same base. The set union in line 17 in Algorithm 1 is handled similarly.

Warp-Centric Workload Partitioning In the GPU implementation intro-

duced in [28], Andersen’s analysis (given in Algorithm 1) is parallelised in a warp-

centric manner [19]. During each iteration (of its repeat loop), the five types of

rules (in lines 3 – 7) are applied sequentially, with synchronisation enforced be-

tween every two consecutive rule applications. However, each rule is applied in

parallel to all the nodes in the program. So the foreach loops in lines 11 and

14 are essentially DOALL loops. When applied to every individual node x (lines

12 – 13 in Apply and lines 15 – 17 in ApplyOffset), each rule is executed by

one warp, warpx, in a warp-centric manner. As warpx will add new edges only at

node x and such new edges are never used by the other concurrent warps (due to

di↵erence propagation), di↵erent applications of the same rule at di↵erent nodes

do not require any synchronisation.

To apply R
store

, the pointed-by (�P�1) edges are required. For space consider-

ations, E
�P�1 is not explicitly stored as it can be obtained from its inverse E

�P

e�ciently. For this rule, the set �P involved is small since the number of store

edges is relatively small and remains unchanged during the analysis. In addition,

pairs (x, y) are extracted from E
�P only when both y has some outgoing store

edges and y
P�! x holds. All pairs with the same first component are assigned to
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the same warp.

For this particular GPU implementation, intra-warp divergence is mitigated by

letting the 32 threads in a warp run in parallel on a 32-word element in a sparse

bit vector, with one word per thread. However, this simple warp-centric approach

su↵ers from underutilisation of warp resources, since some warps processing low-

degree nodes finish much earlier than those processing high-degree nodes. Several

heuristics are employed in [28] to alleviate this inter-warp imbalance problem. First,

due to the absence of read-write conflicts between R
copy

(x) (line 3) and R
load

(x)

(line 4), no synchronisation is necessary in between. Second, R�copy(x) (line 6) is

combined with both R
load

(x) and R
store

(x) (so that R
copy

(x) is applied immediately

after each of these two rules at a node). Finally, R
store

(x) is applied in a block-

rather than warp-centric manner so that a node is processed by all warps in a

thread block. Despite these heuristics, the GPU implementation [28] still su↵ers

from extremely imbalanced workloads for many programs.

2.2 Demand-Driven Pointer Analysis

Demand-driven pointer analysis is founded on CFL-reachability [41] [26, 42, 43, 45,

48, 65, 71]. By computing the points-to information of some variables (instead of all

variables as in whole-program Andersen’s analysis), demand-driven analysis can be

performed both context- and field-sensitively to achieve better precision more scal-

ably than Andersen’s analysis, especially for Java programs. Section 2.2.1 describes

the intermediate representation used for analysing Java programs. Section 2.2.2 re-

views the standard formulation of pointer analysis in terms of CFL-reachability.
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2.2.1 Program Representation

We focus on Java although this thesis applies equally well to C [71]. A Java program

is represented as a Pointer Assignment Graph (PAG), as defined in Figure 2.3.

n := v | o Node

v := l | g Variable

e := l
1

new �� o Allocation

| l
1

assign

l ��� l
2

Local Assignment

| g
assign

g ���� v | v
assign

g ���� g Global Assignment

| l
1

ld(f) �� l
2

Load

| l
1

st(f) �� l
2

Store

| l
1

parami ��� l
2

Parameter

| l
1

reti �� l
2

Return

l 2 Local g 2 Global o 2 Object
i 2 CallSite f 2 Field

Figure 2.3: Syntax of PAG (pointer assignment graph).

A node n represents a variable v or an object o in the program, where v can be

local (l) or global (g). An edge e represents a statement in the program oriented in

the direction of its value flow. An edge connects only to local variables (l
1

and/or l
2

)

unless it represents an assignment involving at least one global variable (assigng).

Let us look at the seven types of edges in detail. l
1

new �� o captures the flow of

object o to variable l
1

, indicating that l
1

points directly to o. l
1

assign

l ��� l
2

represents

a local assignment (l
1

= l
2

). A global assignment is similar except that one or both

variables at its two sides are static variables in a class (i.e. g). l
1

ld(f) �� l
2

represents

a load of the form l
1

= l
2

.f and l
1

st(f) �� l
2

represents a store of the form l
1

.f = l
2

.

l
1

parami ��� l
2

models parameter passing, where l
2

is an actual parameter and l
1

is

its corresponding formal parameter, at call site i. Similarly, l
1

reti �� l
2

indicates an
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assignment of the return value in l
2

to l
1

at call site i.

Figure 2.4 gives an illustrating example and its PAG representation. Note that

oi denotes the object created at the allocation site in line i and vm represents

variable v declared in method m. Loads and stores to array elements are modeled

by collapsing all elements into a special field, denoted arr.

2.2.2 CFL-Reachability-based Pointer Analysis

CFL-reachability [41] is an extension of traditional graph reachability. Let G be

a directed graph with edges labelled by letters over an alphabet ⌃ and L be a

CFL over ⌃. Each path p in G is composed of a string s(p) in ⌃⇤, formed by

concatenating in order the labels of edges along p. A path p is an L-path i↵

s(p) 2 L. Node x is L-reachable to y i↵ a path p from x to y exists, such that

s(p) 2 L. For a single-source reachability analysis, the worst-case time complexity

is O(�3N3), where � is the size of a normalised grammar for L and N is the number

of nodes in G.

Field-Sensitivity Let us start with a field-sensitive formulation without context-

sensitivity. When calling contexts are ignored, there is no need to distinguish the

four types of assignments, assignl, assigng, parami and reti; they are all identified as

assignment edges of type assign.

For a PAG G with only new and assign edges, the CFL L
FT

(FT for flows to)

is a regular language, meaning that a variable v is L
FT

-reachable from an object o

in G i↵ o can flow to v. The rule for L
FT

is defined as:

flowsTo ! new (assign)⇤ (2.1)

with flowsTo as the start symbol. If o flowsTo v, then v is L
FT

-reachable from o.

For example, in Figure 2.4(a), since o
15

new��! v1
main

param15�����! this
Vector

, o
15

flows
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1 class Vector {

2 Object[] elems;

3 int count;

4 Vector(){

5 count = 0;

6 t = new Object[MAXSIZE];

7 this.elems = t;}

8 void add(Object e){

9 t = this.elems;

10 t[count++] = e;} // W t.arr

11 Object get(int i){

12 t = this.elems;

13 return t[i];} // R t.arr

14 static void main(String[] args){

15 Vector v1 = new Vector();

16 String n1 = new String("N1");

17 v1.add(n1);

18 Object s1 = v1.get(0);

19 Vector v2 = new Vector();

20 Integer n2 = new Integer(1);

21 v2.add(n2);

22 Object s2 = v2.get(0);}}

(a) Java Code.

this
add

t
add

e
add

n1
main

n2
main

o16 o20

this
get

t
get

ret
get

s1
main

s2
main

v1
main

v2
main

this
Vector

t
Vector

o6

o15

o19

ret18 ret22

ld(arr)

ld(elems)

param17 param21

st(arr)

ld(elems)

new new

param18
param17

param21

param22

param15
param19

new

new

st(elems)

new

(b) PAG.

Figure 2.4: A Java example and its PAG.
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to this
Vector

.

When field accesses are also handled, the CFL L
FS

(FS for field-sensitivity) is

defined as follows:

flowsTo ! new ( assign | st(f) alias ld(f))⇤

alias ! flowsTo flowsTo

flowsTo ! ( assign | ld(f) alias st(f))⇤ new

(2.2)

The rule for flowsTo matches fields via st(f) alias ld(f), where st(f) and ld(f)

are like a pair of parentheses [48]. For a pair of statements q.f = y (st(f)) and

x = p.f (ld(f)), if p and q are aliases, then an object o that flows into y can

flow first through this pair of parentheses (i.e. st(f) and ld(f)) and then into

x. For example, in Figure 2.4(b), as o
15

new��! v1
main

param15�����! this
Vector

and

o
15

new��! v1
main

param18�����! this
get

, we have this
Vector

alias this
get

. Thus o
6

new��!
t
Vector

st(elems)�����! this
Vector

alias this
get

ld(elems)�����! t
get

, indicating that o
6

flows to

t
get

.

To allow the alias relation in the language, flowsTo is introduced as the inverse

of the flowsTo relation. For a flowsTo-path p, its corresponding flowsTo-path p

can be obtained using inverse edges, and vice versa. For each edge x
e � y in p, its

inverse edge is y
e � x in p. Therefore, o flowsTo x i↵ x flowsTo o, indicating that

flowsTo actually represents the points-to relation. To find the points-to set of a

variable, we use the CFL given in (2.2) with flowsTo as the start symbol.

Context-Sensitivity When context-sensitivity is considered, parami and reti are

treated as assign as before in L
FS

. However, assignl and assigng are now distin-

guished.

A context-sensitive CFL requires parami and reti to be matched, also in terms

of balanced parentheses, by ruling out the unrealisable paths in a program [45].
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The CFL R
CS

(CS for context-sensitivity) for capturing realisable paths is:

c ! entryi c exiti | c c | ✏

entryi ! parami | reti

exiti ! reti | parami

(2.3)

When traversing along a flowsTo path, after entering a method via parami from

call site i, a context-sensitive analysis requires exiting from that method back to

call site i, via either reti to continue its traversal along the same flowsTo path or

parami to start a new search for a flowsTo path. Traversing along a flowsTo path

is similar except that the direction of traversal is reversed. Consider Figure 2.4(a).

s1
main

is found to point to o
16

as o
16

reaches s1
main

along a realisable path by first

matching param
17

and param
17

and then param
18

and ret
18

. However, s1
main

does

not point to o
20

since o
20

cannot reach s1
main

along a realisable path.

Let L
PT

(PT for points-to) be the CFL for computing the points-to information

of a variable field- and context-sensitively. Then L
PT

is defined in terms of (2.2)

and (2.3): L
PT

= L
FS

\R
CS

, where flowsTo is the start symbol.

Algorithm With CFL-reachability, a query that requests for a variable’s points-

to information can be answered on-demand, according to Algorithm 2. This algo-

rithm makes use of three variables: (1) E represents the edge set of the PAG of

the program, (2) B is the (global) budget defined as the maximum number of steps

that can be traversed by any query, with each node traversal being counted as one

step [48], and (3) steps is query-local, representing the number of steps that has

been traversed so far by a particular query.

Given a query (l, c), where l is a local variable and c is a context, pointsTo

computes the points-to set of l under c. It traverses the PAG with a work list W

maintained for variables to be explored. pts is initialised with an empty set and W
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Algorithm 2 CFL-reachability-based pointer analysis, where pointsTo com-
putes flowsTo and flowsTo is analogous to its inverse pointsTo and thus
omitted.
Global E; Const B; QueryLocal steps; // initially 0

Procedure pointsTo(l, c)
begin

1 pts ;;
2 W  {<l, c>};
3 while W 6= ; do
4 <x, c> W.pop();
5 steps steps + 1;
6 if steps > B then outOfBudget(0);

7 foreach x
new �� o 2 E do pts pts [ {<o, c>};

8 foreach x
assignl ��� y 2 E do W.push(<y, c>);

9 foreach x
assigng ���� y 2 E do W.push(<o, ✏>);

10 foreach <y, c0> 2 reachableNodes(x, c) do
11 W.push(<y, c0>);

12 foreach x
parami ��� y 2 E do

13 if c = ✏ or c.top() = i then
14 W.push(<y, c.pop()>); // ✏.pop() ⌘ ✏

15 foreach x
reti �� y 2 E do W.push(<y, c.push(i)>);

16 return pts;

Procedure reachableNodes(x, c)
begin

17 rch ;;
18 foreach x

ld(f) �� p 2 E do

19 foreach q
st(f) �� y 2 E do

20 alias ;;
21 foreach <o, c0> 2 pointsTo(p, c) do
22 alias alias [ flowsTo(o, c0);

23 foreach <q0, c00> 2 alias do
24 if q0 = q then rch rch [ {<y, c00>};

25 return rch;

Procedure outOfBudget(BDG)
begin

26 exit();
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with <l, c> (lines 1 – 2). By default, steps for this query is initialised as 0. Each

variable x with its context c, i.e., <x, c> obtained from W is processed as follows:

steps is updated, triggering a call to outOfBudget if the remaining budget is 0

(lines 5 – 6), and the incoming edges of x are traversed according to (2.2) and (2.3)

(lines 7 – 15).

Field-sensitivity is handled by reachableNodes(x, c), which searches for the

reachable variables y to x in context c, due to heap accesses by matching the load

(x = p.f) with every store (q.f = y), where p and q are aliases (lines 17 – 25).

Both pointsTo and flowsTo are called (recursively) to ensure that p and q are

aliased base variables.

To handle context-sensitivity, the analysis stays in the same context c for assignl

(line 8), clears c for assigng as global variables are treated context-insensitively

(line 9), matches the context (c.top() = i) for parami but allows for partially bal-

anced parentheses when c = ✏ since a realizable path may not start and end in the

same method (lines 12 – 14), and pushes call site i into context c for reti (line 15).



Chapter 3

Demand-Driven Analysis on

Multi-CPUs

In this chapter, we describe the first parallel implementation of demand-driven

pointer analysis with CFL-reachability. We explore query level parallelism in the

analysis and further accelerate it by reducing redundant graph traversals via a

data sharing scheme and a query scheduling scheme. Our solution was previously

proposed in [50]. Section 3.1 describes our parallel solution in terms of the data

sharing and query scheduling schemes used. Section 3.2 evaluates our solution. Sec-

tion 3.3 discusses the related work on demand-driven pointer analysis. Section 3.4

summarises this chapter.

3.1 Methodology

CFL-reachability-based pointer analysis is driven by queries issued by application

clients. There are two main approaches to dividing work among threads, based on

di↵erent levels of parallelism available: intra-query and inter-query.

To exploit intra-query parallelism, we need to partition and distribute the work

26
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performed in computing the points-to set of a single query among di↵erent threads.

Such parallelism is irregular and hard to achieve with the right granularity. In

addition, considerable synchronisation overhead that may be incurred would likely

o↵set the performance benefit achieved.

To exploit inter-query parallelism, we assign di↵erent queries to di↵erent

threads, harnessing modern multicore processors. This makes it possible to obtain

parallelism without incurring synchronisation overhead unduly. In addition, some

clients may issue queries in batch mode for a program. For example, the points-to

information may be requested for all variables in a method, a class, a package or

even the entire program. This provides a further optimisation opportunity. The

focus of this chapter is on exploiting inter-query parallelism.

3.1.1 A Naive Parallelisation Strategy

A naive approach to exploiting inter-query parallelism is to maintain a lock-

protected shared work list for queries and let each thread fetch queries (to process)

from the work list until the work list is empty. While achieving some good speedups

(over the sequential setting), this naive strategy is ine�cient due to a large num-

ber of redundant graph traversals made. We propose two schemes to reduce such

redundancies. Section 3.1.2 describes our data sharing scheme, while Section 3.1.3

explains our query scheduling scheme.

3.1.2 Data Sharing

Given a program, we are motivated to add edges to its PAG to serve as shortcuts for

some paths traversed in a query so that subsequent queries may take the shortcuts

instead of re-traversing their associated paths (redundantly). The challenge here

is to perform data sharing context- and field-sensitively. We first formulate data
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sharing in terms of graph rewriting, and then give an algorithm for realising data

sharing in the CFL-reachability framework.

Data Sharing by Graph Rewriting We choose to share paths involving heap

accesses, which tend to be long (time-consuming to traverse) and common (re-

peatedly traversed across the queries). As illustrated in Figure 2.4, we do so by

avoiding making redundant alias tests in reachableNodes(x, c). For its loop at

line 18, each iteration starts with a load x = p.f and then examines all the N

matching stores q
1

.f = y
1

, . . . , qN .f = yN at line 19. For each qk.f = yk accessed

in context ck such that qk is an alias of p, (yk, ck) is inserted into rch, meaning

that (x, c) is reachable from (yk, ck) (lines 20 - 24). Note that during this process,

mutually recursive calls to pointsTo(), flowsTo() and reachableNodes() for

discovering other aliases are often made.

There are two cases due to the budget constraint. Figure 3.1(a) illustrates the

case when an iteration of line 18 is completely analysed in s steps starting from

(x, c) within the pre-set budget. A jmp edge, x
jmp(s)(=====

<c, ck>
yk, is added for each qk

that is an alias of p. Instead of rediscovering the path from (x, c) to (yk, ck), a

subsequent query will take this shortcut.

Figure 3.1(b) explains the other case when an iteration of line 18 is only partially

analysed since the analysis runs out of budget after s steps have elapsed from (x, c).

A special jmp edge, x
jmp(s)(=====
<c, ✏>

O, is added to record this situation, where O is a

special node added and ✏ is a “don’t-care” context. A later query will benefit from

this special shortcut by making an early termination (ET) if its remaining budget

is smaller than s.

Therefore, we have formulated data sharing as a graph rewriting problem by

adding jmp edges to the PAG of a program, in terms of the syntax given in Fig-

ure 3.2.
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x p

q
1

y
1

. . .

q
i

y
i

. . .

q
N

y
N

ld(f)

st(f)

st(f)

st(f)

alias 3

alias 7

alias 3

jmp(s)
<c, c1>

jmp(s)
<c, c

N

>

(a) Within budget: all N stores analysed completely in s steps from (x, c)

x p

q
1

y
1

. . .

q
i

y
i

. . .

q
N

y
N

O

ld(f)

st(f)

st(f)

st(f)
jmp(s)
<c, ✏>

(b) Out of budget: fewer than N stores analysed in s steps from (x, c)

Figure 3.1: Adding jmp edges by graph rewriting, for a single iteration of the loop

in line 18 of reachableNodes(x, c). In (a), x
jmp(s)(=====

<c, ck>
yk is introduced for each

(yk, ck) added to rch in line 24 of reachableNodes(x, c) when p and qk are aliases.

In (b), a special x
jmp(s)(=====
<c, ✏>

O edge is introduced.
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l := . . . | O Extended Local Variable

e := . . .

| l

1

jmp(s)(=======
<c1, c2>

l

2

Jump (or Shortcut)

O is Unfinished c

1

, c

2

2 Context

Figure 3.2: Syntax of extended PAG.

As described below, jmp edges are added on the fly during the analysis. Given

a PAG extended with such jmp edges, the CFL given earlier in (2.2) is modified to:

flowsTo ! new ( assign | jmp(s) | st(f) alias ld(f))⇤

alias ! flowsTo flowsTo

flowsTo ! ( assign | jmp(s) | ld(f) alias st(f))⇤ new

(3.1)

By definition of jmp, this modified CFL generates the same language as the

original CFL if all jmp edges of the type illustrated in Figure 3.1(b) (for handling

outOfBudget) in the PAG of a program are ignored, since the jmp edges of the

other type illustrated in Figure 3.1(a) serve as shortcuts only. Two types of jmp

edges are exploited in our parallel implementation to accelerate its performance as

described below.

Algorithm With data sharing, reachableNodes(x, c) in Algorithm 2 is revised

as shown in Algorithm 3. There are three cases, the original one plus the two shown

in Figure 3.1:

• In the if branch (line 2) for handling the scenario depicted in Figure 3.1(b),

the analysis makes an early termination by calling outOfBudget() if its

remaining budget at (x, c), B � steps, is smaller than s. Otherwise, the

analysis moves to execute the second else.



Chapter 3. Demand-Driven Analysis on Multi-CPUs 31

Algorithm 3 reachableNodes with data sharing.
Global E; Const B; QueryLocal steps, S;

Procedure reachableNodes(x, c)
begin

1 rch ;;
2 if 9 x jmp(s)(=====

<c, ✏>
O 2 E then

3 if B � steps < s then outOfBudget(s);

4 else if 9 x jmp(s)(======
<c, c0>

y 2 E then

5 steps steps+ s;

6 foreach x

jmp(s)(======
<c, c0>

y 2 E do

7 rch rch [ {<y, c0>};
8 return rch;

9 else

10 s

0
= steps;

11 S  S [ {<x, c, s0>};
12 foreach x

ld(f) �� p 2 E do

13 foreach q

st(f) �� y 2 E do

14 alias ;;
15 foreach

<
o, c

0> 2 pointsTo(p, c) do
16 alias alias [ flowsTo(o, c0);

17 foreach

<
q

0
, c

00> 2 alias do

18 if q

0
= q then

19 rch rch [ {<y, c00>};
20 E  E [ {x jmp(steps�s0)(========

<c, c00>
y};

21 S  S \ {<x, c, s0>};
22 return rch;

Procedure outOfBudget(BDG)

begin

23 foreach

<
x, c, s

> 2 S do

24 E  E [ {x jmp(min(B,BDG+steps�s))(=================
<c, ✏>

O};
25 exit();
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• In the first else branch for handling the scenario in Figure 3.1(a), the analysis

takes the shortcuts identified by the jmp(s) edges instead of re-traversing its

associated paths. The same precision is maintained even if we do not check

the remaining budget B � steps against s, since the source node of a jmp

edge is a variable (not an object). When this variable is explored later,

the remaining budget will be checked in line 6 of Algorithm 2 or line 3 of

Algorithm 3.

• In the second else branch, we proceed as in reachableNodes(x, c) given

in Algorithm 2 except that we will need to add the jmp edge(s) as illustrated

in either Figure 3.1(a) (line 20) or Figure 3.1(b) (line 24).

outOfBudget(BDG) is called from line 6 (by passing 0) in Algorithm 2 or

line 3 in Algorithm 3 (by passing s). In both cases, let n be the node visited before

the call. With a remaining budget no larger than BDG on encountering n, the

analysis will surely run out of budget eventually. For each (x, c, s) 2 S, the analysis

first reaches (x, c) and then n in steps� s steps. Thus, x
jmp(min(B,BDG+steps�s))(================

<c, ✏>
O

is added.

3.1.3 Query Scheduling

The order in which queries are processed a↵ects the number of early terminations

made, due to B � steps < s tested in line 3 of Algorithm 3, where s appears in a

jmp(s) edge that was added in an earlier query and steps is the number of steps

already consumed by the current query. In general, if we handle a variable y before

those variables x such that x is reachable from y, then more early terminations

may result.

To increase early terminations, we organise queries (available in batch mode)
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in groups and assign a group of queries rather than a single query to a thread at

a time to reduce synchronisation overhead on the shared work list for queries. We

discuss below how the queries in a group and the groups themselves are scheduled.

We first describe how to group queries. Then we discuss how to order queries.

Lastly, we give an illustrating example.

Grouping Queries A group contains all possible variables such that every mem-

ber is connected with at least another member in the PAG of the program via the

following relation:

direct ! ( assignl | assigng | parami | reti)⇤ (3.2)

Both l
1

ld(f) �� l
2

and l
1

st(f) �� l
2

edges are not included since there is no reachability

between l
1

and l
2

.

Ordering Queries For the variables in the same group, we use their so-called

connection distances (CDs) to determine their issuing order. The CD of a variable

in a group is defined as the length of the longest path that contains the variable in

the group (modulo recursion). For the variables in a group, the shorter their CDs

are, the earlier they are processed.

For di↵erent groups, we use their so-called dependence depths (DDs) to de-

termine their scheduling order. For example, computing pointsTo(x, c) for x in

Algorithm 2 depends on the points-to set of the base variable p in load x = p.f

(line 21). Preferably, p should be processed earlier than x.

To quantify the DD of a group, we estimate the dependences between variables

based on their (static) types. We define the level of a type t (with respect to its
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containment hierarchy) as:

L(t) =

8
>><

>>:

maxti2FT (t) L(ti) + 1 isRef(t)

0 otherwise

where FT (t) enumerates the types of all instance fields of t (modulo recursion) and

isRef(t) is true if t is a reference type. The DD of a variable of type t is defined to

be 1/L(t). Note that the DD of a static variable is also approximated heuristically

this way. The DD of a group of variables is defined as the smallest of the DDs of

all variables in the group.

During the analysis, groups are issued (sorted) in increasing values of their DDs.

Let M be the average size of these groups. To ensure load balance, groups larger

than M are split and groups smaller than M are merged with their adjacent groups,

so that each resulting group has roughly M variables.

An Example In Figure 3.3, we focus on its three variables x, y, and z, which are

assumed to all run out of budget B. According to (3.2), as shown in Figure 3.3(a),

x and y (together with w) are in one group and z (together with p) is in another

group. The CDs of x, y and z are 100, 200 and 300 steps, respectively. As both x

and y depend on z, the latter group will be scheduled before the former group. As

a result, our query scheduling scheme will likely cause x, y and z to be processed

sequentially according to O
3

(in some thread interleaving) among the three orders,

O
1

, O
2

and O
3

, listed in Figure 3.3(b).

For O
1

, y is processed first, which takes B steps (i.e., the maximum budget

allowed), with the two jmp edges added as shown, where sz = B � 500 and sw =

B � 200. When x is processed next, neither shortcut will be taken, since x still

has more budget remaining: B � 400 > B � 500 at z and B � 100 > B � 200 at

w. Similarly, the two shortcuts do not benefit z either. Thus, no early termination
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x

y

w p z q . . . O

direct

100

direct

200

ld(f) direct

300

ld(g)

jmp(s
z

)
< , >

jmp(s
w

)
< , >

(a) PAG with the direct relation

Order
Traversed #Steps jmp(s)

#ETs
x y z sz sw

O
1

: y, x, z B B B B � 500 B � 200 0

O
2

: x, y, z B 200 B B � 400 B � 100 1

O
3

: z, x, y 400 200 B B B 2

(b) Three scheduling orders

Figure 3.3: An example of query scheduling, where x has a smaller CD than y and
{x, y} has a higher DD than {z}.

occurs.

For O
2

, x is issued first, resulting in also the same two jmp edges added, except

that sz = B � 400 and sw = B � 100. So when y is handled next, an early

termination is made at w, since its budget remaining at w is B � 200 (< sw =

B � 100).

According to O
3

, the order that is mostly likely induced by our query scheduling

scheme, z is processed first. Only the jmp(sz) edge at z is added, where sz = B.

When x is analysed next, z is reached in 400 steps. Taking jmp(sz) (since B�400 <

sz = B), an early termination is made. Meanwhile, the jmp(sw) edge at w is added,

where sw = B. Finally, y is issued, causing w to be visited in 200 steps. Taking

jmp(sw) (since B�200 < sw = B), another early termination is made. Of the three

orders illustrated in Figure 3.3(b), O
3

is likely to cause more early terminations,
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resulting in fewer traversal steps.

Discussion The optimal order for scheduling the queries is hard to compute,

if possible, before the points-to information for all variables is gathered. With-

out points-to information, the time complexity of computing the optimal order is

also di�cult to estimate. Therefore, it is a simple yet e↵ective solution to em-

ploy heuristics for query ordering so that some redundant graph traversals can be

eliminated.

3.2 Evaluation

We demonstrate that our parallel implementation of CFL-reachability-based

pointer analysis achieves significant speedups than a state-of-the-art sequential im-

plementation.

3.2.1 Implementations

The sequential one is coded in Java based on the publicly available source-

code implementation of the CFL-reachability-based pointer analysis [45] in Soot

2.5.0 [58], with its non-refinement (general-purpose) configuration used. Note that

the refinement-based configuration is not well-suited to certain clients such as null-

pointer detection. Our parallel implementation given in Algorithms 2 and 3 are

also coded in Java. In both cases, the per-query budget B is set as 75,000 steps,

recursion cycles of the call graph are collapsed, and points-to cycles are eliminated

as described as in [45].

In our parallel implementation, we use a ConcurrentHashMap to manage jmp

edges e�ciently. We apply a simple optimisation to further reduce synchronisation

incurred and thus achieve better speedups.
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If we create jmp edges exhaustively for all the paths discovered in Algorithm 3,

the overhead incurred by such operations as search, insertion and synchronisation

on the map may outweigh the performance benefit obtained. As an optimisation,

we will introduce the jmp(s) edges in Figure 3.1(a) only when s � ⌧F and the

special jmp(s) edge in Figure 3.1(b) only when s � ⌧U , where ⌧F and ⌧U are

tunable parameters. In our experiments, we set ⌧F = 100 and ⌧U = 10000. Their

performance impacts are evaluated in Section 3.2.4.

For the case in Figure 3.1(a), the set of all jmp edges is associated with the key

(x, c) when inserted into the map. So no two threads reaching (x, c) simultaneously

will insert this set of jmp edges twice into the map. For the case in Figure 3.1(b),

if one thread tries to insert < (x, c), x
jmp(s1)(=====
<c, ✏>

O > and another tries to insert

< (x, c), x
jmp(s2)(=====
<c, ✏>

O > into the map, only one of the two will succeed. An

attempt that selects the one with the large s value (to increase early terminations)

can be cost-ine↵ective due to the extra work performed.

3.2.2 Experimental Settings

The multi-core system used in our experiments is equipped with two Intel Xeon

E5-2650 CPUs with 62GB of RAM. Each CPU has 8 cores, which share a unified

20MB L3 cache. Each CPU core has a frequency of 2.00GHz, with its own L1

cache of 64KB and L2 cache of 256KB. The Java Virtual Machine used is the Java

HotSpot 64-Bit Server VM (version 1.7.0 40), running on a 64-bit Ubuntu 12.04

operating system.

3.2.3 Methodology

We evaluate the performance advantages of our parallel implementation over the se-

quential one by comparing the query-processing times taken in both cases. SeqCfl
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denotes the sequential implementation. In order to assess the e↵ectiveness of our

parallel implementation, we consider a number of variations. ParCfltm represents

a particular parallel implementation, where t stands for the number of threads

used. Here, m indicates one of the three parallelisation strategies used: (1) the

naive solution described in Section 3.1.1 when m = naive, (2) our parallel solution

with the data sharing scheme described in Section 3.1.2 enabled when m = D,

and (3) the parallel solution (2) with the query scheduling scheme described in

Section 3.1.3 also enabled when m = DQ.

Benchmark #Classes #Methods #Nodes #Edges #Queries

200 check 5,758 54,514 225,797 429,551 1,101

201 compress 5,761 54,549 225,765 429,808 1,328

202 jess 5,901 55,200 232,242 440,890 7,573

205 raytrace 5,774 54,681 227,514 432,110 3,240

209 db 5,753 54,549 225,994 430,569 1,339

213 javac 5,921 55,685 240,406 473,680 14,689

222 mpegaudio 5,801 54,826 230,349 435,391 6,389

227 mtrt 5,774 54,681 227,514 432,110 3,241

228 jack 5,806 54,830 229,482 435,159 6,591

999 checkit 5,757 54,548 226,292 431,435 1,473

avrora 3,521 29,542 108,210 189,081 24,455

batik 7,546 65,899 252,590 477,113 64,467

fop 8,965 79,776 266,514 636,776 71,542

h2 3,381 32,691 115,249 204,516 44,901

luindex 3,160 28,791 108,827 191,126 22,415

lusearch 3,120 28,223 109,439 193,012 17,520

pmd 3,786 33,432 110,388 195,834 56,833

sunflow 6,066 56,673 233,459 447,002 21,339

tomcat 8,458 83,092 265,015 574,236 185,810

xalan 3,716 33,248 109,317 192,441 56,229

Average 5,486 50,972 198,518 383,592 30,624

Table 3.1: Benchmark information.
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Table 3.1 lists a set of 20 Java benchmarks used, consisting of all the 10 SPEC

JVM98 benchmarks and 10 additional benchmarks from the DaCapo 2009 bench-

mark suite. For each benchmark, the analysed code includes both the application

code and the related library code, with their class and method counts given in

Columns 2 and 3, respectively. The node and edge counts in the original PAG of

a benchmark are given in Columns 4 and 5, respectively. For each benchmark, the

queries that request points-to information are issued for all the local variables in

its application code, collected from Soot 2.5.0 as in prior work [43, 64]. Note that

more queries are generated in some DaCapo benchmarks than some JVM98 bench-

marks even though the DaCapo benchmarks have smaller PAGs. This is because

the JVM98 benchmarks involve more library code.

3.2.4 Performance Results

We examine the performance benefits of our parallel pointer analysis and the causes

for the speedups obtained.

Speedups Figure 3.4 shows the speedups of our parallel implementation over

SeqCfl (as the baseline), where the analysis times of SeqCfl for all the bench-

marks are given in Column 7 of Table 3.1. Note that SeqCfl is 49% faster than

the open-source sequential implementation of [45] in Soot 2.5.0, since we have sim-

plified some of its heuristics and employed di↵erent data structures. When the

naive parallelisation strategy is used, ParCfl1naive (with one single thread) is as

e�cient as SeqCfl, since the locking overhead incurred for retrieving the queries

from the shared work list is negligible. With 16 threads, ParCfl16naive attains an

average speedup of 7.3X. When our data sharing scheme is used, ParCfl16D runs a

lot faster, with the average speedup being pushed up further to 13.4X. When our
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query scheduling scheme is also enabled, ParCfl16DQ, which traverses significantly

fewer steps than SeqCfl, has finally reached an average speedup of 16.2X. The

superlinear speedups are achieved in some benchmarks due to the avoidance of

redundant traversals (a form of caching) in all concurrent query-processing threads

as analysed below.

E↵ectiveness of Data Sharing Our data sharing scheme, which enables the

traversal information obtained in a query to be shared by subsequent queries via

graph rewriting, has succeeded in accelerating the analysis on top of the naive par-

allelisation strategy (ParCfltnaive) for all benchmarks. Our data sharing scheme,

which enables the traversal information obtained in a query to be shared by sub-

sequent queries via graph rewriting, has succeeded in accelerating the analysis on

top of the naive parallelisation strategy (ParCfltnaive) for all benchmarks.

To understand its e↵ectiveness, some statistics are given in Table 3.2. For

a benchmark, #Jumps denotes the number of jmp edges added to its PAG due

to data sharing, #S represents the total number of steps traversed by SeqCfl

(without data sharing) for all the queries issued from the benchmark, and RS is

the ratio of the number of steps saved by the jmp edges for the benchmark over the

number of steps traversed across the original edges (when data sharing is enabled).

For the 20 benchmarks used, 22,023 jmp edges have been added on average per

benchmark. The number of steps saved by these jmp edges is much larger than

that of the original ones, by a factor of 28.6X on average. This implies that a large

number of redundant traversals (#S⇥ RS
RS+1

for a benchmark) have been eliminated.

Thus, ParCfl16D exhibits substantial improvements over ParCfl16naive, with the

superlinear speedups observed in 202 jess, 213 javac, 222 mpegaudio, batik,

fop and tomcat.

The optimisation described in Section 3.2.1 for adding jmp edges selectively
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Benchmark TSeq (secs) #Jumps #S (⇥106) RS

200 check 2.88 428 4.14 25.76

201 compress 3.72 1,210 4.21 8.42

202 jess 121.11 4,755 193.77 42.68

205 raytrace 9.39 2,325 62.02 92.84

209 db 16.98 4,202 10.06 10.02

213 javac 258.34 5,309 467.28 64.60

222 mpegaudio 46.52 2,306 86.17 53.33

227 mtrt 10.38 2,358 62.17 115.70

228 jack 39.54 25,030 79.48 40.03

999 checkit 12.61 2,180 10.14 7.94

avrora 51.16 32,046 47.46 6.18

batik 72.72 14,876 114.57 11.95

fop 118.22 25,418 169.92 19.03

h2 25.50 22,094 91.38 12.39

luindex 23.28 62,457 60.93 8.72

lusearch 57.78 77,153 66.26 7.90

pmd 61.05 77,313 69.10 7.93

sunflow 55.56 20,946 49.04 5.57

tomcat 202.89 24,601 243.90 23.14

xalan 54.11 33,459 60.35 7.90

Average 62.19 22,023 97.62 28.6

Table 3.2: Statistics for data sharing.

to reduce synchronisation overhead is also useful for improving the performance.

Figure 3.5 reveals the histograms of added jmp edges with and without this optimi-

sation. In the absence of such optimisation, many jmp edges representing relatively

short paths are also added, causing ParCfl16DQ to drop from 16.2X to 12.4X on

average.

E↵ectiveness of Query Scheduling When query scheduling is also enabled,

queries are grouped and reordered to increase early terminations made. ParCfl16DQ
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Figure 3.5: Histograms of jmp edges (identified by the number of steps saved).
Finished represents jmp edges in Figure 3.1(a) and Unfinished jmp edges in Fig-
ure 3.1(b). Finished

opt (Unfinishedopt) is the version of Finished (Unfinished) with the
selective optimisation described in Section 3.2.1 being applied.

achieves superlinear speedups in two more benchmarks than ParCfl16D : avrora

and sunflow. ParCfl16DQ is faster than ParCfl16D as the average speedup goes up

from 13.4X to 16.2X.

To understand its e↵ectiveness, some statistics are given in Table 3.3. For

a benchmark, Sg gives the average number of queries in a group, #ETs is the

number of early terminations found without query scheduling, and RET is the

ratio of #ETs obtained with query scheduling over #ET s obtained without query

scheduling. On average, our query scheduling scheme leads to 35% more early

terminations, resulting in more redundant traversals being eliminated.

Scalability To see the scalability of our parallel implementation, Figure 3.6 plots

its speedups with a few thread counts over the baseline. ParCfl1DQ achieves an

average speedup of 8.1X, due to data sharing and query scheduling. Our parallel

solution scales well to 8 threads for most benchmarks. When moving from 8 to

[D • 

[D • 



Chapter 3. Demand-Driven Analysis on Multi-CPUs 44

20
0

ch
ec

k

20
1

co
m

pr
es

s 20
2

je
ss

20
5

ra
yt

ra
ce

20
9

db 21
3

ja
va

c

22
2

m
pe

ga
ud

io
22

7
m

trt

22
8

ja
ck 99

9
ch

ec
kit

av
ro

ra
ba

tik
fo

p
h2

lu
in

de
x lu

se
ar

ch
pm

d
su

nfl
ow

to
m

ca
t

xa
la

n

AV
ER

AG
E

051015202530

Speedups(X)

38
.739

.1
40

.4
40

.4
35

.4
34

.5
39

.5
45

.6
40

.0

8.
1

11
.813
.915
.8

16
.2

PA
R

C
FL

1 D
Q

PA
R

C
FL

2 D
Q

PA
R

C
FL

4 D
Q

PA
R

C
FL

8 D
Q

PA
R

C
FL

16 D
Q

F
ig

u
re

3.
6:

S
p
ee

d
u
p
s

of
ou

r
p
ar

al
le

l
m

od
es

w
it

h
d
i↵

er
en

t
nu

m
b
er

s
of

th
re

ad
s

n
or

m
al

is
ed

w
it

h
re

sp
ec

t
to

S
e
q
C
f
l
.

I I 



Chapter 3. Demand-Driven Analysis on Multi-CPUs 45

Benchmark Sg #ETs RET

200 check 16.7 0 1

201 compress 4.6 5 1.00

202 jess 16.1 617 1.15

205 raytrace 7.2 8 0.88

209 db 10.3 18 1.17

213 javac 9.2 76 0.99

222 mpegaudio 3.8 53 3.17

227 mtrt 7.2 7 0.86

228 jack 14.2 100 1.62

999 checkit 16.9 23 0.78

avrora 9.4 24 2.83

batik 10.3 38 1.37

fop 18.6 76 1.20

h2 16.0 283 0.66

luindex 8.2 113 0.71

lusearch 9.3 75 1.52

pmd 9.2 84 1.06

sunflow 7.4 24 2.38

tomcat 13.1 574 1.33

xalan 9.4 82 1.43

Average 10.9 114.0 1.35

Table 3.3: Statistics for query scheduling.

16 threads, ParCfl16DQ su↵ers some performance drops over ParCfl8DQ in some

benchmarks (with 209 db being the worst case at 31%). However ParCfl16DQ is

still slightly faster than ParCfl8DQ on average.

Memory Usage As garbage collection is enabled, it is di�cult to monitor mem-

ory usage precisely. By avoiding redundant graph traversals, ParCfl16DQ reduces

the memory usage by SeqCfl (the open-source sequential implementation [45]) by

35% (32%) in terms of the peak memory usage, despite the extra memory required
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for storing jmp edges. In the worst case attained at tomcat (fop), ParCfl16DQ

consumes 103% (118%) of the memory consumed by SeqCfl ([45]).

3.3 Related Work

While no parallel solutions to CFL-reachability-based pointer analysis have been

proposed before, there is no shortage of optimisations in the sequential setting.

To ensure quick response, queries are commonly processed under budget con-

straints [43, 45, 48, 65, 71]. In addition, refinement-based schemes [45, 48] can

be e↵ective for certain clients, e.g., type casting if field-sensitivity is gradually in-

troduced. Summary-based schemes avoid redundant graph traversals by reusing

the method-local points-to relations summarised statically [65] or on-demand [43],

achieving up to 3X speedups. Must-not-alias information obtained during a pre-

analysis can be exploited to yield an average speedup of 3X through reducing un-

necessary alias-related computations [64]. Incremental techniques [26, 42], which

are tailored for scenarios where code changes are small, take advantage of previously

computed CFL-reachable paths to avoid unnecessary reanalysis.

Unlike these e↵orts on sequential CFL-reachability-based pointer analysis, this

chapter introduces the first parallel solution on multicore processors with signifi-

cantly better speedups.

3.4 Chapter Summary

This chapter presents the first parallel implementation of CFL-reachability-based

pointer analysis on multi-core CPUs. Despite the presence of redundant graph

traversals, this demand-driven analysis is non-trivial to parallelise due to the de-

pendences introduced by context- and field-sensitivity during graph traversals. We
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have succeeded in parallelising it by using (1) a data sharing scheme that enables

the concurrent query-processing threads to avoid traversing earlier discovered paths

via graph rewriting and (2) a query scheduling scheme that allows more redundan-

cies to be eliminated based on the dependences statically estimated among the

queries to be processed. For a set of 20 Java benchmarks evaluated, our parallel

implementation significantly boosts the performance of a state-of-the-art sequential

implementation with an average speedup of 16.2X on 16 CPU cores.



Chapter 4

Whole-Program Analysis on GPU

This chapter describes an e�cient GPU solution to Andersen’s whole-program

pointer analysis. This solution leverages the state-of-the-art GPU implementa-

tion [28] and also improves it by solving its load imbalance issue, via an imbalance-

aware workload partitioning scheme. We also improve its performance further by

using an adaptive group propagation scheme to reduce unnecessary graph traver-

sals. Our solution was previously introduced in [51]. Section 4.1 examines the

inherent irregularity of graph workloads in Andersen’s analysis on GPUs and mo-

tivates our solution. The details of our imbalance-aware workload partitioning and

adaptive group propagation schemes will be given in Section 4.2. Section 4.3 eval-

uates and discusses our solution. In Section 4.4, the related work on Andersen’s

analysis is reviewed. Finally, Section 4.5 contains the conclusions of this chapter.

4.1 Challenges and Motivation

In this section, we use vim, one of the benchmarks used in our evaluation, as an

example to highlight (1) highly irregular graph workloads in Andersen’s analysis

and (2) redundant graph traversals that are both present even in a state-of-the-

48
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art GPU implementation [28]. Figure 4.1 depicts the execution times of all its

iterations, which are di�cult to predict statically due to severe fluctuations.
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Figure 4.1: Execution times of all iterations in vim (with the 0th for the initialisation
phase).

4.1.1 Load Imbalance

Figure 4.2 plots the points-to edges for vim, with all the P edges obtained up to

iteration 5 depicted in blue and the new �P edges added in iteration 6 depicted in

red. Figure 4.3 shows how the outgoing degrees, non-zero |EP(x)| and |EC(x)|, for

the P and C edges, respectively, are distributed across the nodes x at the end of

the analysis. For example, some nodes can have over 1,000 outgoing edges while

others have only a few.

We can observe that the distribution of edges in a graph is highly skewed and

also changes dynamically, leading to a highly imbalanced workload distribution

across its nodes. As a result, the warps processing low-degree nodes will have to

wait for those processing high-degree nodes, causing the computational resources

in a GPU to be underutilised. It is di�cult but beneficial to address this inter-warp

imbalance problem.
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Figure 4.2: The points-to edges for vim, with the P edges obtained up to iteration
5 shown in blue and the new �P edges added in iteration 6 shown in red.

Figure 4.3: Distributions of non-zero outgoing degree |EP(x)| and |EC(x)| in vim.

4.1.2 Redundant Traversals

When each rule is applied to a node x (lines 12 – 13 or 15 – 17 in Algorithm 1), its

sparse bit vector Et3(x) is traversed |Et1(x)| times, one for each y 2 Et1(x). As a

result, many such redundant traversals are made, especially when Et3(x) is a long

list.

It is important to avoid such redundant traversals on long sparse bit vectors,

as doing so not only speeds up rule applications but also facilitates load balancing.

However, long sparse bit vectors are di�cult to identify e�ciently before they



Chapter 4. Whole-Program Analysis on GPU 51

are actually traversed, since they grow dynamically and unpredictably during the

analysis, as illustrated earlier in Figure 4.2.

4.2 Methodology

We describe an e�cient GPU implementation of Andersen’s analysis by both lever-

aging the state-of-the-art GPU implementation [28] and addressing its two deficien-

cies described in Section 4.1. In Section 4.2.1, we present a new imbalance-aware

workload partitioning scheme to reduce its inter-warp imbalance significantly. In

Section 4.2.2, we present an adaptive group propagation scheme to reduce redun-

dant traversals, thereby improving also its inter-warp imbalance further. These two

techniques together are expected to provide insights on parallelising other graph

algorithms that also make modifications to their input graphs on GPUs.

4.2.1 Imbalance-Aware Workload Partitioning

To maximise utilisation of warp resources with a balanced workload throughout

the analysis, we divide a rule application in two stages: (1) a coarse-grain stage

when the rule is executed based on the warp-centric model, and (2) a fine-grain

stage when the rule is executed based on the task pool model. The first stage aims

to exploit coarse-grain parallelism without resorting to any synchronisation. Even

though the distribution of degrees (number of edges per node) is highly skewed, the

warp-centric model can still be desirable, provided that there are su�ciently many

warps to keep all the computational resources busy. As soon as warp resources be-

come underutilised due to workload imbalance, the analysis will start decomposing

the remaining workload into smaller tasks and depositing these smaller tasks in

a central task pool. The fine-grain stage then comes into play with these smaller
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tasks being mapped to warps in a more balanced way (than otherwise). There-

fore, this second stage aims to expose fine-grain parallelism at the expense of some

synchronisation overhead.

Algorithm 4 Imbalance-Aware Workload Partitioning. W is a worklist formed
from V .
Procedure Apply(t1, t2, t3, V )
begin

1 W  - V ;
2 ⌦ - ;;
3 foreach warp w do waitingWarpCountblk(w)

 - 0;
4 synchronise all warps in blk(w);
5 foreach warp w do
6 while W 6= ; do
7 x - GetFrom(W );
8 Prop(w, x, t1, t2, t3, ⌦);

9 waitingWarpCountblk(w)

++; // atomic increment

10 synchronise all warps;
11 foreach warp w do
12 while ⌦ 6= ; do
13 <x, y, t2, t3>  - GetFrom(⌦);
14 Et3(x) - Et3(x)

U
Et2(y);

the coarse-grain stage

the fine-grain stage

To implement this two-staged approach, we have modified Apply in Algo-

rithm 1 as shown in Algorithm 4. However, ApplyOffset in Algorithm 1 remains

the same, for the following reason. Recall that there are five types of pointer-

manipulating statements considered in Table 2.1. Without loss of generality, we

have adopted an Intermediate Representation (IR) from [28] that is similar to the

LLVM IR so that all top-level variables are in Static Single Assignment (SSA)

form. For an o↵set statement, x = y + o, both x and y must be top-level variables,

because all address-taken variables, such as z in a points-to statement · · · = &z,

can only be accessed indirectly via a load · · · = ⇤p or a store ⇤p = · · · . As a result,
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each top-level variable x can only be defined once in an o↵set statement, x = y +o,

meaning that the sparse bit vector for x contains only y for this particular o↵set,

o. In addition, no graph-rewriting rule listed in Table 2.2 generates any new o↵set

edge during the analysis. Therefore, R
o↵set

does not cause workload imbalance as

the other four rules do.

We first describe the warp-centric model modified for achieving coarse-grain

parallelism in the coarse-grain stage. We then describe our task-pool-based tech-

nique for achieving fine-grain parallelism in the fine-grain stage.

The Coarse-Grain Stage In this stage, each rule application, which is realised

in lines 5 – 8 of Algorithm 4 (by ignoring the initialisation code in its lines 1 – 4),

together with lines 1, and 6 – 7 in Algorithm 5, proceeds exactly the same as before

in a warp-centric manner. Every warp, w, is dedicated to handling one node, x.

This warp executes each rule of the form of x
t1�! y ^ y

t2�! z ) x
t3�! z for all

elements y in the sparse bit vector Et1(x). For a given y, the rule is executed in an

SIMD manner, but di↵erent elements in Et1(x) are processed sequentially.

Algorithm 5 Imbalance-Aware Propagation. Ww
x is a worklist formed from

Et1(x).

Procedure Prop(w, x, t1, t2, t3, ⌦)
begin

1 Ww
x  - Et1(x);

2 while Ww
x 6= ; do

3 if waitingWarpCountblk(w)

> ⌧
imba

then
4 ⌦ - ⌦ [ {<x, y, t2, t3> | y 2 Ww

x };
5 return;

6 y  - GetFrom(Ww
x );

7 Et3(x) - Et3(x) [ Et2(y);

In addition, warp w for node x is also responsible for detecting a workload imbal-

ance for its own thread block (lines 3 – 4 in Algorithm 5). An alert is raised when
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waitingWarpCountblk(w)

> ⌧
imba

, where waitingWarpCountblk(w)

is the number

of finished warps in the thread block blk(w) that contains warp w and ⌧
imba

is a

global threshold set for all the thread blocks. We do not detect imbalanced work-

loads globally since that would require expensive global synchronisation across all

the thread blocks.

On detecting a workload imbalance, warp w stops its warp-centric processing

at node x. At this point, w may have only partially processed the sparse bit

vector Et1(x), with Ww
x indicating the remaining part of the list that has not

been processed. In line 4 of Algorithm 5, warp w will decompose the remaining

workload in Ww
x into smaller tasks, with one task <x, y, t2, t3> corresponding to

every unprocessed element y 2 Ww
x , insert these tasks into the central task pool

⌦, and finally, suspend its execution. Note that once one warp has suspended its

execution this way, all the other non-finished warps in the same block will also do

so due to line 3 in Algorithm 5.

The warp w dedicated to node x will reach line 8 in Algorithm 4 in one of the

two ways: (1) it has finished processing all the elements in Et1(x) or (2) it has done

so only partially but has suspended its execution due to workload imbalance. As

soon as all the warps in the program have reached this synchronisation point, the

fine-grain stage, as discussed below, will begin. Some imbalance across the thread

blocks may occur as its detection requires global synchronisation, which is avoided

here as discussed above.

The Fine-Grain Stage In this stage, as realised in lines 11 – 14 of Algorithm 4,

all the warps will work together executing all the tasks in the central task pool ⌦

(protected by a lock). Unlike the coarse-grain stage, in which a node x is always

updated by the same warp w in line 7 of Algorithm 5, the fine-grain stage allows

di↵erent warps to update the same node x at the same time. This can happen when
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Figure 4.4: Two lock-free atomic operations for merging an element pointed to by
⇡src from a source sparse bit vector src with a destination sparse bit vector dst.

one warp w fetches <x, y, t2, t3> from ⌦ and another warp w0 fetches <x, y0, t2, t3>

from ⌦ in line 13 of Algorithm 4. As a result, the same sparse bit vector Et3(x)

is updated by both warps, w and w0, in line 14 of Algorithm 5, where
U

stands

for a race-free union operation. Below our primary focus is on how to perform
U

e�ciently (in a race-free manner).

We describe how a warp executes line 14 in Algorithm 4 abstracted as dst  -

dst
U

src, where dst and src are sparse bit vectors, by assuming that dst may also be

concurrently updated by another warp executing dst - dst
U

src0. This set union

operation will be implemented e�ciently by using lock-free atomic operations. Note

that src and src0 remain unchanged. In addition, dst, src and src0 may contain

elements e1, e2 and e3, respectively, with the same base, so that e2 and e3 will

both be combined with e1 concurrently.

Let us discuss how to merge a given element pointed to by ⇡src from the source

list src with the destination list dst. There are two cases as illustrated in Figure 4.4:

Insertion In this case, ⇡src points to the element with ⇡src�base = 3 such that

no element in dst has the same base, 3. Let ⇤⇡new be a copy of ⇤⇡src (by

ignoring ⇡src�next). Then ⇤⇡new will be inserted between the two elements

pointed to by ⇡prev and ⇡cur, respectively, in dst. Recall that each 32-word
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element is processed by the 32 threads in a warp. This insertion will be made

so that ⇡prev�next is updated atomically by one thread. After this insertion,

dst remains sorted.

Disjunction In this case, the element pointed to by ⇡src is merged with the one

pointed to by ⇡cur, where ⇡src�base = ⇡cur�base = 5. There are 30 words

represented by ⇡cur�bits. Each of these words will be updated atomically

by one thread. For correctness, it su�ces to update each of the 960 bits in

⇡cur�bits atomically since the variables represented by these bits are indepen-

dent. Thus, updating all the 30 words atomically (as a whole) is unnecessary

and also less e�cient.

There are generally more insertions than disjunctions, with their ratio being

1.6:1 on average for the 14 benchmarks evaluated in Section 4.3. There are two

main reasons behind. First, �P and �C are reset to ; at the beginning of each

iteration and grow with new edges being inserted with subsequent rule applications.

Second, sparse bit vectors tend to be very sparse. So src and dst tend to contain

elements with di↵erent bases.

Algorithm 6 describes how a warp executes dst  - dst
U

src by calling (1)

Insertion in Algorithm 7 to perform the basic insertion operation illustrated in

Figure 4.4(a) and (2) Disjunction in Algorithm 8 to perform the basic disjunc-

tion operation illustrated in Figure 4.4(b). To avoid dealing with special cases

in the two operations, we assume that every sparse bit vector has a pseudo head

with its base being �1 and a pseudo tail with its base being +1. In our im-

plementation, neither pseudo heads nor pseudo tails are actually used. In both

Insertion and Disjunction, a word-wise atomic operation is implemented by

atomicCAS 1, which is an atomic compare-and-swap operation provided by CUDA.

1
atomicCAS(addr, old, new) updates the value val stored in addr, with new if val is tested
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Algorithm 6 Performing dst - dst
U

src by a warp.

Procedure Union(dst, src)
begin

1 ⇡prev  - address of dst’s pseudo head;
2 ⇡cur  - ⇡prev�next;
3 ⇡src  - address of src’s pseudo head;
4 ⇡src  - ⇡src�next;
5 while ⇡src�base 6= +1 do
6 if ⇡cur�base > ⇡src�base then
7 Insertion(⇡prev, ⇡cur, ⇡src);

8 else if ⇡cur�base = ⇡src�base then
9 Disjunction(⇡prev, ⇡cur, ⇡src);

else
10 ⇡prev  - ⇡cur;
11 ⇡cur  - ⇡cur�next;

Algorithm 7 Atomic insertion of one element from src into dst.
Procedure Insertion(⇡prev, ⇡cur, ⇡src)
begin

1 ⇡new  - fetch a memory block for representing a new element from a pre-
allocated chunk of memory space;

2 ⇤⇡new  - ⇤⇡src;
3 for only one thread in warp w do
4 ⇡new�next - ⇡cur;
5 val  - atomicCAS(&⇡prev�next, ⇡new�next, ⇡new);

6 if ⇡new�next 6= val then
7 ⇡cur  - val;

8 else
9 ⇡prev  - ⇡new;

10 ⇡src  - ⇡src�next;

Try to insert
⇡new after ⇡prev

failure

success
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Algorithm 8 Atomic disjunction of an element from src with another in dst.
Procedure Disjunction(⇡prev, ⇡cur, ⇡src)
begin

// The 30-word-wide bits field of an element is accessed by 30 threads in
parallel.

1 foreach thread t in warp w, where t.id 2 {0, 1, . . . , 29} do
2 oldt  - ⇡cur�bits[t.id];
3 uniont  - oldt [ ⇡src�bits[t.id]; // bitwise OR operation
4 if uniont 6= oldt then
5 valt  - atomicCAS(&⇡cur�bits[t.id], oldt, uniont);
6 while oldt 6= valt do
7 oldt  - valt;
8 uniont  - oldt [ ⇡src�bits[t.id]; // bitwise OR operation
9 valt  - atomicCAS(&⇡cur�bits[t.id], oldt, uniont);

10 ⇡prev  - ⇡cur;
11 ⇡cur  - ⇡cur�next;
12 ⇡src  - ⇡src�next;

In Insertion, new elements to be inserted are created in pre-allocated memory

for e�ciency considerations. In Disjunction, each of the 30 words in ⇡cur�bits

is updated atomically by one thread individually, as discussed above. The update

for all the 30 words in ⇡cur�bits is finished after all 30 threads have succeeded.

To show that Algorithm 6 is correct, we argue that a warp performs dst  -

dst
U

src correctly in the presence of concurrent modifications to dst by other

warps, from a few facts. First, src never changes during the fine-grain stage.

Second, dst does not admit any delete operations (due to the nature of Ander-

sen’s analysis). Third, Algorithm 6 calls Insertion and Disjunction appropri-

ately as expected. Fourth, Insertion(⇡prev, ⇡cur, ⇡src) inserts ⇡src into dst only

when ⇡prev and ⇡cur point to a pair of two consecutive elements in dst such that

⇡prev�base < ⇡src�base < ⇡cur�base. If the atomic CAS operation in Insertion

succeeds (line 5), we let ⇡prev point to what ⇡new points to (line 9) so that the next

the same as old. It returns val.
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element pointed to by ⇡src in src (line 10) will be merged somewhere in dst after

the element pointed to by ⇡prev. Otherwise, we let ⇡cur point to the successor of

the element pointed to by ⇡prev (line 7), so that the element pointed to by ⇡src will

be inserted either just before the element pointed to by ⇡cur or merged somewhere

after in dst. In either case, if ⇡prev and ⇡cur do not yet happen to point to two

consecutive elements in dst, they will eventually be made to do so after some unsuc-

cessful atomic CAS operations. Finally, Disjunction(⇡prev, ⇡cur, ⇡src) performs a

disjunction operation as illustrated in Figure 4.4(b). Once it is successful, ⇡prev,

⇡cur and ⇡src are adjusted appropriately in lines 10 – 12.

4.2.2 Adaptive Group Propagation

In this section, we introduce a so-called adaptive group propagation scheme to

reduce the number of redundant traversals highlighted in Section 4.1 in both stages

of our workload partitioning scheme. Let us examine the problem in more detail

by considering a scenario when a warp executes a rule (lines 12 – 13 in Apply

from Algorithm 1) at a node during the coarse-grain stage. The same problem

remains for ApplyOffset from Algorithm 1 and during the fine-grain stage (once

modified as discussed shortly).

For a node x, its dedicated warp will execute Et3(x)  - Et3(x) [ Et2(y) in an

SIMD manner for every y 2 Et1(x), with di↵erent y’s being processed sequentially.

As a result, each source sparse bit vector Et2(y) (for a given y) is propagated into

(i.e., combined with) the destination sparse bit vector Et3(x) individually, resulting

in the destination list being traversed a total of |Et1(x)| times, once for each element

in Et1(x). Such redundant traversals can be ine�cient, particularly when Et1(x) is

a long list.

Our basic idea for reducing redundant traversals is simple. Let y
0

, . . . , yn�1
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be a group of n variables taken from Et1(x). There are n (sorted) source lists

Et2(y0), . . . , Et2(yn�1

), where each list may contain at most one element of a given

base. Instead of solving Et3(x)  - Et3(x) [ Et2(yi) for each yi individually for a

total of n times, we combine Et2(y0), . . . , Et2(yn�1

) into a so-called virtual sparse

bit vector Et2(y) = [
06i<nEt2(yi) conceptually (but not actually in our implemen-

tation), by merging their elements with a common base, where y can be under-

stood to encapsulate all the n variables y
0

, . . . , yn�1

in the group. We then execute

Et3(x)  - Et3(x) [ Et2(y) as before but only once. Of course, such a group prop-

agation scheme will be performed adaptively so that the benefit reaped will o↵set

the overhead incurred.

We first give an illustrating example. We then describe how our earlier algo-

rithms are modified to incorporate this group propagation scheme. Lastly we give

a cost-benefit analysis in order for the scheme to be used profitably.

An Example In this example shown in Figure 4.5, there are three source lists

src
0

, src
1

and src
2

and one destination list dst
0

. Figure 4.5(a) depicts the three

individual propagations, prop
0

, prop
1

and prop
2

, in that order, producing succes-

sively, dst
1

, dst
2

and dst. Figure 4.5(b) depicts our group propagation, propg.

The three source lists are conceptually combined into a virtual one srcg, with all

elements of the same base merged, and then propagated into dst
0

only once. Fig-

ure 4.5(c) demonstrates the performance benefit of our scheme in terms of memory

accesses reduced, measured in terms of the number of instructions executed for

reading from or writing into the elements of all the sparse bit vectors involved (at

the warp level). With 20 scored by the former and 15 by the latter, our scheme

appears to be more e�cient.

The parameters regarding read and write memory accesses listed in Figure 4.5(c)

during the execution of dst  - dst [ srci, where i 2 {0, 1, 2, g}, are estimated as
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(b) Group propagation

Operation
Individual Propagation Group Propagation

prop
0

prop
1

prop
2 ⌃propi

propg Overhead
(i = j = 0) (i = j = 1) (i = j = 2) (i = g, j = 0)

Rsrci
dstj

2 3 4 9 3 -
W srci

dstj
3 1 2 6 4 -

Rsrci 2 1 2 5 8 3
Total 7 5 8 20 15 3

(c) Memory accesses incurred, where “overhead” indicates the additional number
of reads made in srcg (as pure overhead)

Figure 4.5: Comparing individual and group propagation schemes for executing
dst - dst[ srci with three source lists, src

0

, src
1

and src
2

, by a warp in terms of
their algorithms and the numbers of memory accesses incurred (at the warp level).
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follows:

• Rsrci (i 2 {0, 1, 2}), which denotes the number of reads (i.e., elements) in

srci, is |srci|, which represents the number of elements in srci.

• Rsrcg , the number of reads incurred in srcg, is divided into (1) the number of

reads in the three source lists, i.e., |src
0

|+ |src
1

|+ |src
2

| and (2) the number

of additional reads incurred for maintaining the virtual sparse bit vector srcg,

i.e., |srcg|.

• Rsrci
dst (i 2 {0, 1, 2, g}), which represents the number of reads in dst, depends

on the location in dst where the element with the largest base in srci is

merged. Let bsrci
max

be the largest base in srci and Bdst the set of all bases in

dst. Then we have:

Rsrci
dst =

8
>>>>>><

>>>>>>:

|Bdst| 8 b 2 Bdst : b < bsrci
max

|{b 2 Bdst | b  bsrci
max

}| bsrci
max

2 Bdst

|{b 2 Bdst | b < bsrci
max

}| + 1 otherwise

.

• W srci
dst (i 2 {0, 1, 2, g}), the number of writes in dst, is the sum of |srci|

and the number of elements in srci inserted into dst. In computing this

estimate, the atomic CAS operations in Algorithm 7 and 8 are assumed to

succeed optimistically. Each element in srci is merged into dst with either a

disjunction or insertion operation. In the former case, one write is incurred.

In the latter case, two writes are needed, one for cloning the inserted element

(line 2 in Algorithm 7) and one for updating a next link in dst (line 5 in

Algorithm 7).

The Modified Algorithm In order to incorporate our group propagation

scheme, we will modify Algorithms 5 � 8 slightly as follows:
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Algorithm 5 Instead of a single variable from Ww
x in line 6, a warp will fetch up

to n = min(|Ww
x |, 32) variables from Ww

x to form a group G, where |G| = n.

In line 7, y can be understood as representing the n variables y
0

, . . . , yn�1

in

G, so that the warp will be essentially executing Et3(x)  - Et3(x)
U

Et2(y),

where Et2(y) = [
06i<nEt2(yi) symbolises a so-called virtual sparse bit vector

illustrated in Figure 4.5.

Algorithm 4 Similarly, Et2(y) in line 14 is also a virtual sparse bit vector.

Algorithm 6 – 8 In all these algorithms, src represents a virtual sparse bit vec-

tor, with ⇡src indicating a virtual element in src. Let the n concrete sparse

bit vectors encapsulated by src be src
0

, . . . , srcn�1

. Let �G be an n-element

array. Then the initialisation for ⇡src in line 3 of Algorithm 6 is replaced by

the following initialisation for �G: (1) �G[i].addr is set to point to the first

non-pseudo element ⇡ in srci and (2) �G[i].base = ⇡.base. In addition, each

occurrence of ⇡src  - ⇡src�next is replaced by ⇡src = GetVirtElem(�G),

where ⇡src, which is stored in the shared memory (for e�ciency reasons), is

now representing an element instead of a pointer as before. As a result, each

occurrence of ⇤⇡src, ⇡src�base and ⇡src�bits is replaced by ⇡src, ⇡src.base and

⇡src.bits, respectively.

The basic functionality of GetVirtElem given in Algorithm 9, as illustrated

in Figure 4.5, is simple. All the n concrete sparse bit vectors src
0

, . . . , srcn�1

are

conceptually combined into a virtual one, where n = |G|. On each invocation,

its first element is removed and returned. As �G[i].base can be accessed multiple

times, �G is stored in the shared memory. However, due to the resource limits, its

bits field is not cached. Note that almost all statements are executed in parallel by

the threads in the same warp, except for a parallel reduction done in O(log
2

|G|) in
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line 2.

Algorithm 9 Implementing ⇡src  - ⇡src�next equivalently as ⇡src =
GetVirtElem(�G) for a virtual sparse bit vector src that encapsulates all
the concrete sparse bit vectors represented by �G.

Procedure GetVirtElem(�G)
begin

1 ⇧G.bits - 0; // in parallel
2 ⇧G.base - min

0i<|G| �G[i].base; // parallel reduction
3 if ⇧G.base = +1 then return ⇧G;
4 foreach i 2 {0, 1, . . . , |G|� 1} do
5 if �G[i].base = ⇧G.base then
6 foreach thread t in warp w do
7 // coalesced access by 32 threads
8 ((&⇧G))[t.id] - ((&⇧G))[t.id] [ ((�G[i].addr))[t.id];

9 foreach thread t in warp w do
10 if 0  t.id < |G| ^ �G[t.id].base = ⇧G.base then
11 addrt  - �G[t.id].addr�next;
12 �G[t.id].addr  - addrt;
13 �G[t.id].base - addrt�base;

14 return ⇧G;

A Cost-Benefit Analysis The major source of overhead in our group prop-

agation scheme comes from the extra global memory read accesses incurred in

transforming conceptually a number of source sparse bit vectors into a virtual one.

Every element in a source list is accessed twice, once for caching its base value

before it is selected (line 13), and once for accessing its bits and next fields after

it has been selected (implemented in one coalesced global read for both fields in

lines 8 and 11). The memory reads in the first case will be more time-consuming

as being uncoalesced.

Therefore, it is necessary to conduct a cost-benefit analysis as illustrated in

Figure 4.5 to determine if our group propagation scheme is more profitable or not
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than the default individual propagation scheme. For this motivating example, the

overall memory access overhead for group propagation (as analysed earlier) is:

costgroup = Rsrcg + R
srcg
dst0

+ W
srcg
dst0

= 15 (4.1)

The overall memory access overhead for individual propagation, where the number

of source sparse bit vectors is n = 3, is given by:

costindiv =
n�1X

i=0

Rsrci +
n�1X

i=0

Rsrci
dsti

+
n�1X

i=0

W srci
dsti

= 20 (4.2)

Since costgroup < costindiv, group propagation is considered to yield better perfor-

mance.

It is impractical to conduct such sophisticated cost-benefit analysis by us-

ing (4.1) and (4.2) during Andersen’s analysis. A simple yet e�cient adaptive

strategy is to prefer group propagation when n exceeds a threshold:

n � ⌧
grp

(4.3)

4.3 Evaluation

Using a set of 14 C benchmarks, we evaluate our GPU implementation of Ander-

sen’s analysis against a reference state-of-the-art GPU solution, which was imple-

mented by the original authors in [28]. We show that our GPU implementation,

with balanced workloads and reduced redundancies, achieves significantly better

speedups than this reference GPU implementation. We also show that our GPU

implementation outperforms a state-of-the-art multi-CPU implementation, which

is also discussed in [28], in most of the benchmarks evaluated.
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Benchmark #Variables
#Statements of Five Di↵erent Types

P C L S F Total

ex 11,078 1,423 3,881 1,940 611 826 8,681

gcc 120,870 6,224 68,225 25,506 5,625 21,591 127,171

gdb 232,814 25,783 92,386 36,693 8,229 35,842 198,933

gimp 558,867 53,636 347,199 63,245 14,245 87,330 565,655

linux 919,188 83,202 129,218 79,336 38,077 69,993 399,826

mplayer 537,254 39,099 154,100 42,030 9,945 69,707 314,881

nh 97,936 12,283 52,748 14,109 1,345 20,756 101,241

perl 53,361 3,467 27,972 13,157 3,120 8,261 55,977

php 339,538 22,576 135,399 50,689 10,319 50,346 269,329

pine 612,916 33,259 142,039 43,947 10,057 37,135 266,437

python 92,599 10,274 45,020 18,396 3,037 16,100 92,827

svn 107,708 9,564 76,394 17,118 5,134 14,348 122,558

tshark 1,555,835 522,148 867,549 39,762 21,579 71,131 1,522,169

vim 246,944 9,886 42,099 16,208 3,004 18,031 89,228

Average 391,922 59,487 156,016 33,010 9,595 37,243 295,351

Table 4.1: Benchmark statistics: sizes of initial constraint graphs.

4.3.1 Methodology and Benchmarks

We have conducted Andersen’s analysis to a program to reflect the way it is used in

practice. In particular, cycle elimination is incorporated to speed up its analysis.

We have developed our GPU implementation on top of the reference GPU im-

plementation [28]. In Andersen’s analysis, every Strongly-Connected Cycle (SCC)

formed by copy edges can be collapsed since its variables have the same points-to

edges. Hybrid Cycle Detection (HCD) [14] has been employed to detect and col-

lapse such SCCs in both the reference and our implementations. HCD comes with
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two stages: an o✏ine stage that collapses all the cycles detectable on the initial

graph, and an online stage that deals with the cycles formed dynamically during

constraint resolution.

We use the same benchmark suite used in the reference GPU implementa-

tion [28]. There are 14 C programs with 11K – 1556K variables (i.e., graph nodes)

and 9K – 1522K statements (i.e., edges in their initial graphs), which are obtained

after the o✏ine stage has been performed. Some of their salient properties are

given in Table 4.1.

We compare the reference implementation, denoted Ref , with three di↵erent

configurations of our implementation: (1) I with our imbalance-aware workload

partitioning scheme used alone, (2) G with our adaptive group propagation scheme

used alone, and (3) IG with both schemes used at the same time.

4.3.2 Experimental Settings

We conducted our experiments on a 0.71GHz NVIDIA Tesla K20c GPU. This

Kepler-based GPU has 4.6GB global memory and 13 SMXs, each containing 192

cores. Each SMX has a private 64KB of on-chip memory, which is configured

as 48KB of shared memory and 16KB of L1 cache. All SMXs share a 1280KB

L2 cache. The CUDA code is compiled under NVCC v5.5, with the flag “-m64

-arch=sm 30” and the optimization level “-O2”.

Each of the five rule applications performed by calling Apply or ApplyOffset

and each of the updates (lines 3 – 10 in Algorithm 1), is executed by a separate

GPU kernel (Some rule applications in the reference implementation are combined

for more balanced workload, as discussed in Section 2.1.2). For each kernel, 13

thread blocks (for 13 SMXs) and 1024 threads per block (32 warps per block) are

used, since it is good to have many threads per block where communication among
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threads within the same block is cheaper [28].

The online phase of HCD, which detects and collapses SCCs during online

Andersen’s analysis, uses 512 threads per block (16 warps per block). Its thread

count is not maximized (1024), as restricted by shared memory (48KB per block),

which is heavily used as a cache for the operations on sparse bit vectors [28].

Table 4.2 summarises the number of blocks and the number of threads per

block used by the GPU kernels in both the reference and our implementations.

According to [28] and our own evaluations, both implementations yield the best

performance in this setting. The resource utilization of our GPU implementation

is 50% according to the CUDA occupancy calculator. We can, for example, push it

up to 70% by using 39 blocks with 480 threads per block, but the implementation

is 42% slower on average. Thus, we are better o↵ by using more threads per block

for cheaper communication.

Kernel #Blocks #Threads per Block

Apply/ApplyOffset 13 1024

Update 13 1024

HCD 13 512

Table 4.2: Kernel configurations.

For imbalance-aware workload partitioning, the threshold ⌧
imba

, which is used

to decide when to start the fine-grained stage in Algorithm 5, is set to 16, as we

consider a load imbalance to occur when fewer than half of the (32) warps in a

thread block remain active. For adaptive group propagation, ⌧
grp

in (4.3) is set to

8.
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Benchmark
Analysis Times (ms) Speedups (X)

tRef tI tG tIG rI rG rIG

ex 90 90 90 90 1.00 1.00 1.00

gcc 310 300 300 300 1.03 1.03 1.03

gdb 3,260 3,000 2,999 2,909 1.09 1.09 1.12

gimp 6,240 5,530 5,470 5,450 1.13 1.14 1.14

linux 11,400 10,090 10,320 9,880 1.13 1.10 1.15

mplayer 7,780 6,160 6,760 5,900 1.26 1.15 1.32

nh 210 190 180 180 1.11 1.17 1.17

perl 370 340 340 320 1.09 1.09 1.16

php 6,610 6,160 6,110 5,780 1.07 1.08 1.14

pine 7,070 5,980 6,439 5,850 1.18 1.10 1.21

python 1,250 1,060 1,110 1,040 1.18 1.13 1.20

svn 1,530 1,220 1,290 1,150 1.25 1.19 1.33

tshark 3,130 1,250 1,380 1,230 2.50 2.27 2.54

vim 7,940 2,100 6,490 2,000 3.78 1.22 3.97

Average 4,085 3,105 3,520 3,006 1.41 1.20 1.46

Table 4.3: Analysis times and speedups (with tx and rx representing the analysis
time and speedup of x 2 {I, G, IG} over Ref for a program, respectively).

4.3.3 Speedups

Table 4.3 compares the reference implementation Ref with the three configurations,

I, G and IG, of our implementation in terms of their analysis times. Note that

the analysis time required for a large program is not always longer than that for

a smaller one (with the size of a program being measured in terms of the size

of its initial graph). The most notable examples are tshark and vim: tshark

has slightly over 6 times as many variables and 17 times as many edges initially
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as vim (Table 4.1), but it is only up to 61% as costly as vim to analyse for any

implementation (Table 4.3).

Our imbalance-aware workload partitioning scheme alone results in a substantial

average speedup of 41%, reaching 378% for vim. Our adaptive group propagation

scheme alone achieves an average speedup of 20%, reaching 227% for tshark. The

worst-case scenario happens at ex, where no speedup is observed in either scheme.

For this particular program, its graph is relatively small. Neither scheme has

yielded a performance gain that has noticeably exceeded the overhead incurred.

Among the two schemes introduced in this chapter, imbalance-aware workload

partitioning is more e↵ective overall, since it is proposed to tackle head-on the

unbalanced workloads encountered in Andersen’s analysis. However, our adaptive

group propagation scheme is also useful when used on top of our imbalance-aware

workload partitioning scheme for many programs evaluated, by pushing the average

speedup to 46%.

4.3.4 E↵ectiveness of Workload Balancing

We evaluate the e↵ectiveness of imbalance-aware workload partitioning by

analysing the maximum and average warp execution times, which provide a good

indication about the extent of imbalance among the concurrently running warps.

For each program, we include only the execution time elapsed on the kernels per-

forming rule applications, since these kernels represent the dominant workload in

the program.

Figure 4.6 plots the maximum and average warp execution times consumed

by the reference implementation Ref and our implementation IG for all the 14

benchmarks. Our solution has addressed e↵ectively the load imbalancing problem

inherent in Andersen’s analysis. In the case of IG, the gap between IG
max

and
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Figure 4.6: E↵ectiveness of load balancing achieved by the two proposed schemes
used together. According to the legend positioned at the top-left corner, the x
axis indicates the iterations performed and the y axis the maximum and average
execution times (in ms) for both the reference implementation Ref and our imple-
mentation IG.
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IG
avg

is insignificant for most benchmarks. In contrast, Ref gives rise to wide

gaps between Ref
max

and Ref
avg

in many benchmarks such as ex, gcc, nh, tshark

and vim, indicating severely imbalanced workloads exercised by Ref . In particular,

our solution IG is notably e↵ective for tshark and vim. In the case of ex, gcc and

nh, the workloads across the analysis iterations under IG are still not as balanced

as expected but have been significantly alleviated compared to the workloads under

Ref . In general, load balancing for such benchmarks with short analysis times, is

hard to improve significantly.

For each program, the gap between Ref
max

and IG
max

provides the reason for

the speedup achieved by IG over Ref . The largest gaps are found in tshark and

vim, where the best speedups (2.54X and 3.97X, respectively) are achieved. In

the case of ex and gcc, IG has achieved more balanced workloads than Ref in

terms of Ref
max

and IG
max

but has not improved the analysis times of these two

benchmarks by much (Table 4.3). This is because the analysis times for these two

benchmarks are so short that the benefits achieved do not outweigh remarkably

the overheads incurred.

4.3.5 E↵ectiveness of Adaptive Group Propagation

We evaluate the e↵ectiveness of our adaptive group propagation scheme by com-

paring G with Ref in terms of the number of memory accesses made, as discussed

in Section 4.2.2 and obtained by instrumenting these two implementations.

Table 4.4 gives the results for the 14 benchmarks used. By achieving an aver-

age reduction of 21% (with RRW = 0.79) on the number of memory accesses (both

reads and writes) made by Ref , G has achieved an average speedup of 20% over

Ref . We can see that a reduction on the number of writes is limited (at 3%) but

more pronounced for the number of reads (at 26%). Our adaptive group propa-
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gation scheme is the most e↵ective for tshark and vim, where the best speedups

(2.27X and 1.22X, respectively) are observed, with their rRW being 0.57 and 0.64,

respectively.

Benchmark
Ref (millions) G (X)

#R #W RR RW RRW Speedup

ex 0.05 0.02 0.95 1.00 0.96 1.00

gcc 2.53 1.73 0.98 0.98 0.98 1.03

gdb 222.36 64.88 0.73 0.97 0.79 1.09

gimp 175.53 97.53 0.85 0.99 0.90 1.14

linux 491.19 226.84 0.87 0.99 0.91 1.10

mplayer 793.77 107.04 0.58 0.97 0.63 1.15

nh 1.80 1.04 0.89 0.97 0.92 1.17

perl 4.08 2.01 0.90 1.00 0.93 1.09

php 328.95 111.10 0.63 0.99 0.72 1.08

pine 637.05 103.94 0.62 0.98 0.67 1.10

python 151.20 14.57 0.60 0.93 0.63 1.13

svn 69.57 22.97 0.77 0.98 0.82 1.19

tshark 15.57 5.72 0.44 0.94 0.57 2.27

vim 298.66 28.19 0.61 0.95 0.64 1.22

Average 0.74 0.97 0.79 1.20

Table 4.4: E↵ectiveness of adaptive group propagation. For a benchmark, #R
and #W denote the numbers of reads and writes (in millions), respectively, made
by Ref (measured as discussed in Section 4.2.2). RR represents the ratio of the
number of reads made by our implementation G over that of Ref . RR and RRW

are similarly defined but for writes and reads + writes (i.e., all memory accesses),
respectively.
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4.3.6 Comparing with a Parallel CPU Implementation

Table 4.5 compares our GPU implementation IG with a state-of-the-art multi-

CPU implementation in terms of the results reported in [28] on a machine running

Ubuntu 10 with four 4-core 2.7 GHz AMD Opteron processors. The baseline, CPU -

1, is a sequential Andersen’s analysis running on one CPU core. The parallel CPU

implementation, CPU -16, runs with 16 threads, one per core. For comparison

purposes, we have also included the reference GPU implementation Ref discussed

earlier.

Benchmark CPU -1 (ms) CPU -16 Ref IG

ex 400 1.54 4.44 4.44

gcc 1,000 4.63 3.23 3.33

gdb 31,300 6.95 9.60 10.76

gimp 20,500 7.83 3.29 3.76

linux 120,340 7.67 10.56 12.18

mplayer 66,260 6.07 8.52 11.23

nh 1,280 5.54 6.10 7.11

perl 1,990 6.18 5.38 6.22

php 44,670 5.97 6.76 7.73

pine 38,950 4.93 5.51 6.66

python 17,890 3.99 14.31 17.20

svn 14,630 5.70 9.56 12.72

tshark 12,110 3.53 3.87 9.85

vim 10,110 9.39 1.27 5.06

Average 5.71 6.60 8.45

Table 4.5: The speedups of Ref , IG and CPU -16 (a 16-thread parallel implemen-
tation of Andersen’s analysis introduced in [28]) over the baseline, CPU -1 (the
sequential Andersen’s analysis). The results of CPU -1 and CPU -16 are taken di-
rectly from [28], where these results are obtained on a machine running Ubuntu 10
with four 4-core 2.7 GHz AMD Opteron processors.
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On average, IG outperforms CPU -16 (and Ref as discussed earlier). In addi-

tion, IG is the best performer for all benchmarks except gcc, gimp and vim. In

particular, IG runs significantly faster than CPU -16 for python but nearly twice

as slow as CPU -16 for vim. In the case of python, there are many rule applications

of R
o↵set

, which are highly e�cient on sparse bit vectors under IG. For vim, many

operations on the BDDs (Binary Decision Diagrams) that are used for representing

points-to information under CPU -16 are cached, i.e. memorised to speed up the

same operations performed later.

4.4 Related Work

4.4.1 Sequential Andersen’s Analysis

Among a number of di↵erent styles of pointer analysis [4, 24, 25, 43, 44, 45, 60, 63,

68], Andersen’s analysis provides a good trade-o↵ between precision and e�ciency.

This analysis plays an important role in many other analyses, including program

slicing [47], interprocedural SSA analysis [5], precise pointer analysis [15, 32, 52],

and bug detection [53, 66].

There are a number of optimisations on Andersen’s analysis running on a single

CPU core [10, 11, 14, 17, 34, 36, 38, 52, 56, 59], demonstrating the importance of

Andersen’s analysis as an on-going research topic.

In the di↵erence propagation scheme introduced in [11], �P was used to avoid

propagating some points-to edges unnecessarily. Some later improvements can be

found in [36, 46]. This technique has been used in our GPU implementation, for

not only �P (�P) but also �C.

Cycle detection and elimination was proposed in [10, 14, 36] to detect and

collapse the SCCs formed by copy edges, where the variables in an SCC have the
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same points-to edges. In our implementation, HCD [14] has been employed both for

the o✏ine phase (graph initialisation) and the online phase (constraint resolution).

Some other techniques [34, 38] are introduced to speed up Andersen’s analysis

by influencing the order in which the points-to information is propagated during

constraint resolution. Unlike these techniques, our two schemes accelerate Ander-

sen’s analysis by taking advantage of the full power of GPUs. In addition, our

group propagation scheme can also be used to avoid redundant traversals in the

sequential setting.

4.4.2 Parallel Pointer Analysis

In recent years, there have been several attempts on parallelising pointer analy-

sis algorithms on GPUs. Méndez-Lojo et al. [28] proposed the first GPU imple-

mentation of Andersen’s analysis, which is o↵set-based, field-sensitive but flow-

and context-insensitive, formulated in Section 2.1. This first GPU implementation

achieves an average speedup of 7X over a sequential implementation on a 1.15GHz

NVIDIA Tesla C2070 GPU with 14 SMs (448 cores). The performance benefits

come mainly from the warp-centric workload partitioning scheme used. In partic-

ular, their graph representation is based on the warp-size sparse bit vectors (with

128 bytes per element). Furthermore, the points-to information is propagated us-

ing a so-called pull-based method, so that a rule can be applied to di↵erent graph

nodes simultaneously without synchronisation.

However, their implementation su↵ers from imbalanced workloads. While sev-

eral built-in heuristics (as described in Section 2.1.2) can alleviate moderately the

workload imbalance problem, highly imbalanced workloads are still present in some

benchmarks, as highlighted in Section 4.1. In this chapter, we focus primarily on

developing e↵ective techniques for overcoming this obstacle, achieving an average
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speedup of 46%.

Nasre [32] later introduced another GPU implementation of Andersen’s anal-

ysis, by also considering flow-sensitivity. This work explores the use of a bloom

filter, trading o↵ between precision of analysis results and performance. The flow-

insensitive GPU implementation introduced in [28] is used as a pre-analysis to

guarantee that the precision achieved lies always between that of flow-sensitive and

flow-insensitive versions. With the bloom filter data structure, this parallel analysis

achieves an average speedup of 7.8X over the sequential analysis also on a 1.15GHz

NVIDIA Tesla C2070 GPU. The techniques described in this chapter can be used

to further speed up such analysis (e.g., its flow-insensitive pre-analysis).

There are also several implementations of pointer analysis on multicore CPU

systems, targeting either C or Java programs [8, 29, 31, 40]. By considering field-,

flow- and/or context-sensitivity, these parallel implementations have achieved var-

ious speedups (2.6X – 4.4X) over the corresponding sequential analysis.

4.4.3 Parallel Graph Algorithms

Nasre et al. [33] proposed general techniques for GPU implementations of irregular

graph algorithms such as Delaunay mesh refinement, survey propagation, pointer

analysis and minimum spanning tree. This chapter aims at reducing load imbal-

ance and redundant computations in a parallel GPU implementation of Andersen’s

analysis.

There is a lot of work on parallelising graph algorithms such as breadth-first

search (BFS) [1, 12, 13, 16, 19, 20, 30, 35], single-source and all-pairs shortest

path [16], SCC detection [3], flow analysis [39] and PageRank [12, 13]. Dynamic

workload distribution is employed to divide heavy workloads into fine-grain ones

for BFS on GPUs [19]. This is similar in spirit to the use of a fine-grain stage in
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our imbalance-aware workload partitioning scheme. However, the graph workloads

in BFS are predictable since the underlying graphs do not change. In contrast,

the graph workloads in Andersen’s analysis are not as these graphs, but undergo a

series of modifications during the analysis.

4.5 Chapter Summary

This chapter describes an e�cient GPU implementation of Andersen’s analysis.

The presence of dynamic and unpredictable modifications to constraint graphs

makes it di�cult to balance such graph workloads and avoid redundant traversals

during Andersen’s analysis. We address these two challenges by introducing an

imbalance-aware workload partitioning scheme and an adaptive group propagation

scheme. For a set of 14 C programs evaluated, our GPU implementation outper-

forms the state-of-the art by achieving an average speedup of 46% on an NVIDIA

Tesla K20c GPU.



Chapter 5

Whole-Program Analysis on

Heterogeneous CPU-GPU

Systems

In this chapter, we describe the first heterogeneous CPU-GPU solution to An-

dersen’s analysis. We take advantage of a previous formulation of this analysis in

terms of graph-rewriting rules [28]. We minimise workload imbalance via a dynamic

workload distribution scheme and minimise communication by adopting di↵erence

propagation and overlapping communication and computation. Our solution was

previously published in [49]. Section 5.1 highlights some architectural di↵erences

between CPU and GPU, and motivates our solution. Section 5.2 describes our

CPU-GPU solution to Andersen’s analysis. In Section 5.3, we present several opti-

misations for further improving its performance. Section 5.4 evaluates and analyses

our solution. Related work on heterogeneous solutions to graph algorithms is pre-

sented in Section 5.5. Section 5.6 concludes this chapter.

79
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5.1 Motivation

We recall the key di↵erences [21] with respect to the CPU-GPU system used in

this chapter. The host is equipped with two eight-core Intel Xeon CPUs and the

accelerator is an NVIDIA GPU, TESLA K20c, based on the Kepler architecture.

The GPU consists of 13 SMXs, each containing 192 cores, giving rise to thousands

of GPU cores (two orders of magnitude more than the host). In addition, the GPU

has a peak memory bandwidth of 208GB/s, about 10 times of that for the host.

This suggests that the GPU is well suited for regular, balanced workloads with

abundant data parallelism when its massive number of cores and high memory

bandwidth are fully utilised. However, the GPU, which clocks at 0.71 GHz, is

less powerful than a CPU, which clocks at 2.0 GHz. In addition, the GPU has

memory access latency of 400 – 800 cycles, making it less competitive than CPU

if its cores and memory bandwidth are underutilised, which is hard to avoid for

irregular, imbalanced workloads.

In the case of imbalanced workloads, the GPU’s computational resources can be

underutilised, as discussed in Section 4.1. For CPU, however, usually only dozens

of threads can be launched at the same time. The inter-thread imbalance is not as

severe, especially when the CPU’s memory access latency, which is lower than the

GPU, can be hidden by large caches.

When parallelising Andersen’s analysis on a CPU-GPU system, we exploit

the respective architectural advantages of CPU and GPU to accelerate its per-

formance.
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5.2 Method

A naive solution would be to dynamically assign portions of the constraint graph

of a program to the CPU and GPU and let them apply all graph-rewriting rules

applicable to their own portions. As evaluated later, this simplistic solution su↵ers

from poor performance, due to workload imbalance and communication overhead

incurred, because the modifications to the underlying graph can be unpredictable.

Algorithm 10 A CPU-GPU solution of Andersen’s analysis.

begin
1 G = (V, E) CreateGraph();
2 repeat
3 Reset W ;

4 FetchAndApply(W); FetchAndApply(W);
Transfer E

�GPU to CPU;
E

�

 E
�GPU [ E

�CPU ;
E  E [ E

�

;

5 Transfer E
�CPU to GPU;

6 E
�

 E
�CPU [ E

�GPU ;
7 E  E [ E

�

;

until fixed-point ;

CPU side GPU side

The basic idea behind our solution is sketched in Algorithm 10. Initially, Cre-

ateGraph used in Algorithm 1 is called to initialise the constraint graph identi-

cally on both the CPU and GPU. Then Andersen’s analysis is performed iteratively

on both the CPU and GPU until a fixed-point is reached. The final points-to in-

formation will be available on both the CPU and GPU. The key novelty lies in

prioritising, i.e., sorting di↵erent types of graph-rewriting rules in a shared work-

list W , so that each side of a CPU-GPU system can always obtain the work from

W that it is the most suitable to process.

At each iteration, both the CPU and GPU calls FetchAndApply(W) to fetch

the work from W and then apply appropriate rules to the work obtained until W
is empty. Then both sides exchange only the new points-to and copy edges, E

�GPU
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and E
�CPU , discovered, based on di↵erence propagation. After the constraint graph

at each side has been updated, the next iteration begins, if needed.

Section 5.2.1 describes our graph data representation. Section 5.2.2 focuses on

CPU-GPU communication. Section 5.2.3 explains how to perform parallel rule

applications on CPU and GPU, assisted by our dynamic workload distribution

scheme.

5.2.1 Graph Data Representation

Constraint graphs are sparse and their structures change dynamically during An-

dersen’s analysis. Therefore, selecting an appropriate data structure to store such

graphs can have a profound impact on the amount of computations performed on

both the CPU and GPU and the amount of data exchanged.

To represent edge sets compactly and support operations on them e�ciently,

sparse bit vectors and BDDs are popular. BDDs are complex and ill-suited for

GPU [28]. Sparse bit vectors are 2X faster than BDDs on CPU [14]. To minimise

CPU-GPU communication, we have opted to use sparse bit vectors (as introduced

in Section 2.1.2) uniformly on both CPU and GPU.

5.2.2 Managing Communication between CPU and GPU

In heterogeneous CPU-GPU computing, the communication between the two sides

can be a major cost. As constraint graphs are sparse and changing during the

analysis, it is challenging but important to reduce the communication cost.

In the sequential setting, di↵erence propagation [11, 36, 46] is used to reduce the

work of propagating points-to edges in a constraint graph. As shown in Table 2.2,

Andersen’s analysis may modify a constraint graph by adding new points-to and

copy edges, i.e., new P and C edges. We make use of di↵erence propagation (for
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the first time) to ensure that at the end of each iteration, the CPU and GPU only

need to exchange the new P and C edges introduced in that iteration.

Rule Semantics

R
copy

(x) x
C�! y ^ y

�P��! z ) x
�P�! z

R
load

(x) x
L�! y ^ y

�P��! z ) x
�C�! z

R
store

(x) x
�P�1���! y ^ y

S�! z ) x
�C�! z

R�copy(x) x
�C�! y ^ y

P�! z ) x
�P�! z

R
o↵set

(x) x
F�!
o

y ^ y
�P��! z ) x

�P�! z + o

Table 5.1: Constraint resolution: graph-rewriting rules.

To facilitate concurrent applications of graph-rewriting rules, double bu↵ering is

used. Table 5.1 gives the graph-rewriting rules modified from Table 2.2 to support

double bu↵ering. In each rule, �P (�C) in the premise signifies a new points-

to (copy) edge produced in the previous iteration and �P (�C) in the conclusion

signifies a new points-to (copy) edge produced in the current iteration. As before,

P , C, L, S or F , identifies an edge of that type available at the end of the previous

iteration.

In Algorithm 10, E
�CPU (E

�GPU) denotes the set of �P and �C edges produced

in the current iteration on CPU (GPU).

Below we introduce a reference CPU-GPU solution of Andersen’s analysis,

which has been useful in guiding the development and evaluation of our CPU-GPU

solution. Consider the CPU-only and GPU-only implementations of Andersen’s

analysis detailed in Section 5.4.1. At this stage, it su�ces to know that both pro-

ceed essentially by applying the double-bu↵ering-based rules given in Table 5.1

based on exactly the same algorithm. Let wi be the workload at the i-th itera-

tion. Let ti
CPU

and ti
GPU

be the analysis times elapsed at the i-th iteration on CPU
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and GPU, respectively. By assuming constant work rates for CPU and GPU and

zero communication and synchronisation overhead, a reference CPU-GPU solution

spends the following analysis time at the i-th iteration:

ti
REF

=
wi

wi

tiCPU
+ wi

tiGPU

=
ti
CPU

⇥ ti
GPU

ti
CPU

+ ti
GPU

(5.1)

The benefit at the i-th iteration from CPU-GPU computing is:

benefit(i) = min(ti
CPU

, ti
GPU

)� ti
REF

(5.2)

Let us analyse the potential performance gains achieved by performing CPU-

GPU communication via di↵erence propagation. Consider a CPU-GPU implemen-

tation that always produces the same amount of new points-to and copy edges at

both sides at each iteration. Let di
�P�C (di

PC) be the set of new (all) points-to

and copy edges produced at the i-th iteration, which is half of the same points-to

information produced by the CPU- or GPU-only implementation at the i-th itera-

tion. If Host-to-Device and Device-to-Host transfers are concurrent, then the costs,

costi
�P�C and costiPC, for exchanging di

�P�C and di
PC between the CPU and GPU

at the i-th iteration are:

cost
�P�C(i) =

di�P�C
B

+ S

costPC(i) =
diPC
B

+ S

(5.3)

where B and S are the host-to-device bandwidth and the startup cost, respectively,

on the CPU-GPU system considered.

Figure 5.1 plots the functions benefit, cost
�P�C and costPC for svn, a program

in our benchmark suite. In (5.3), B = 6GB/s and S = 10µs for the CPU-GPU

system used in this chapter. The startup cost, taken from [27], is negligible relative

to the data transfer times that are between two to three orders of magnitude longer.

During the iterations from 20 to 65, the cost of transferring P and C edges can be
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Figure 5.1: A cost-benefit analysis for the svn benchmark.

about 1/3 of the benefit while the cost of transferring �P and �C edges is moderate.

From iteration 65 onwards, the cost of transferring P and C edges is overwhelming.

Fortunately, the cost of transferring �P and �C edges is still no larger than the

benefit (even it is small). Therefore, transferring �P and �C between the CPU

and GPU is important to mitigate the negative impact of communication cost on

performance.

5.2.3 Partitioning Computation for CPU and GPU

The objective here is to maximise parallel rule applications on both CPU and GPU

at negligible synchronisation overhead. We first describe how to orchestrate the

concurrent execution of graph-rewriting rules on CPU and GPU. We then describe

how to distribute rule applications dynamically to CPU and GPU to ensure that

workload balance is maintained.

Parallel Rule Applications In our sparse representation of a constraint graph,

di↵erent types of outgoing edges of a node are stored in di↵erent sparse bit vectors.

Due to double bu↵ering used in the rules given in Table 5.1, di↵erent applications of
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the same rule can be executed concurrently without synchronisation. In addition,

applications of di↵erent rules can also be concurrent as long as these rules do not

write into the same sparse bit vector storing �P or �C.

At the GPU side, every rule application at a node x is executed by a warp as

in [28] in a warp-centric manner [19].

At the host side, every rule application is executed sequentially inside a CPU

thread. Instead of performing union operations on words, long words are used for

e�ciency.

The R
store

rule requires the �P�1 edges, i.e., new pointed-by edges to be stored,

which can be space-consuming. We avoid this by adopting the same two-phase

strategy as described in Section 2.1.2. As a result, all applications of the R
store

rule

can be executed in parallel without synchronisation.

Dynamic Workload Distribution To accelerate Andersen’s analysis on a

CPU-GPU system, it is critically important to minimise workload imbalance be-

tween the CPU and GPU. As shown in Algorithm 10, we use a work sharing scheme

so that both the CPU and GPU fetch the work to do from a mutex-protected shared

worklist, W , at each iteration.

A simple-minded scheme, referred to as Naive, for implementing

FetchAndApply(W) in Algorithm 10 is given in Algorithm 11. The worklist

W consists of all the N nodes in the constraint graph, as illustrated in Figure 5.2.

The CPU and GPU repeatedly fetch a set M of nodes from the beginning of W
and then apply all the rules to the nodes in M.

As evaluated later, Naive su↵ers from poor performance due to workload im-

balance, because it does not consider the suitability of CPU and GPU for processing

di↵erent types of rules. As discussed in Section 2.1.2, the GPU is more powerful

than the CPU for regular, balanced workloads, but performs more poorly on ir-
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regular, imbalanced workloads. In Andersen’s analysis, severe inter-warp workload

imbalance can occur when the warps are processing nodes with varying out-degrees

of theirs edges. Figure 5.3 plots the distributions of the sizes of the P edges and C
edges for svn, a program in our benchmark suite, in the lg-sqrt format, after Ander-

sen’s analysis is finished. These sizes vary greatly, starting from 0 and approaching

10000. However, the CPU is capable of handling such imbalanced workloads more

e�ciently.

Algorithm 11 A naive workload distribution scheme.
Procedure FetchAndApply(W)
begin

1 while W 6= ; do
2 M get work from W ;
3 Apply(C, �P , �P , M);
4 Apply(L, �P , �C, M);
5 Apply(�P�1, S, �C, M);
6 Apply(F , �P , �P , M);
7 Apply(�C, P , �P , M);

1 2 3 . . . N � 1 N

CPU & GPU getFromList

Figure 5.2: The shared worklist W used in Algorithm 11.

Di↵erent applications of the same rule at the same node may induce di↵erent

workloads at di↵erent iterations. However, it is di�cult to decide precisely where to

execute a rule (on the CPU or GPU) and when, since these workloads are changing

in an unpredictable manner during the analysis.

Our key observation is that di↵erent types of rules in Andersen’s analysis tend to

exhibit di↵erent workload characteristics. In general, some rules are more amenable
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Figure 5.3: Sizes of points-to and copy edges for svn.

to CPU execution while the others fare better on the GPU. It is thus possible to

prioritise di↵erent types of rules according to the suitability of CPU or GPU for

processing them.

Consider the four rules, R
copy

, R
load

, R
o↵set

and R�copy, given in Table 5.1. We

will deal with the R
store

rule di↵erently later. For each of these four rules applied

at a node x, three types of outgoing edges, indicated as t1, t2 and t3 in lines 7 –

13 in Algorithm 1, are accessed. In Table 5.1, t1 and t2 appear in the premise of a

rule and t3 in its conclusion.

For each rule R applied at node x in lines 7 – 13 in Algorithm 1, the amount

of work performed is dictated by |Et1(x)| ⇥ |Et2(y)|, where t1 and t2 indicate the

types of edges processed in the premise of the rule. We write DIR to represent

the degree of imbalance for the workloads performed by applying rule R at all the

possible nodes in the constraint graph, measured by how |Et1(x)|⇥ |Et2(y)| varies

across these nodes (using, for example, its standard derivation).

We propose to use the DIR of rule R to determine the suitability of the CPU or

GPU for applying the rule. The higher DIR is, the more (less) suitable the CPU
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(GPU) is for applying rule R. According to the workload characteristics of the four

rules, R
copy

, R
load

, R
o↵set

and R�copy, we have:

DI
R�copy

> DI
R

copy

> DI
R

load

> DI
R

o↵set

(5.4)

We observe that the larger maxv2V |ET (v)| is for a particular type of edges

in a constraint graph, the greater |ET (v)| varies across di↵erent nodes in V .

In general, |EF(v)| is much smaller than min(|E
�P(v)|, |E

�C(v)|) and |EC(v)|,
|EL(v)| and |EP(v)| are approximately an order of magnitude larger than

max(|E
�P(v)|, |E

�C(v)|). Therefore, DI
R

o↵set

is the smallest. While being close to

|EL(v)| when the constraint graph is initialised, |EP(v)| and |EC(v)| can increase

dramatically during the analysis. So DI
R

load

is the second smallest. In general,

|EP(v)| is much larger than |EC(v)|, as indicated in Figure 5.3. Therefore, we have

DI
R�copy

> DI
R

copy

.

As the �P�1 edges are not stored, we deal with the R
store

rule di↵erently.

As discussed before, a separate worklist, W
R

store

, is maintained from which the

set V
R

store

of nodes that require the R
store

rule to be applied are obtained. Let

DI
R

store

= max{|E
�P�1(x)| | x 2 V

R

store

} be used to approximate the degree of

imbalance for this rule. Of course, the �P�1 edges, which are not stored, are

deduced from the �P edges. At each iteration, we decide dynamically whether the

CPU or GPU is more suitable to apply the R
store

rule to the nodes in V
R

store

. Our

simple heuristic is to select the CPU if and only if DI
R

store

> ⌧ , which is set as 20

empirically.

In our CPU-GPU solution of Andersen’s analysis, FetchAndApply(W) in

Algorithm 10 is given in Algorithm 12. A so-called DI-based dynamic workload

distribution scheme, referred to as IDD, is therefore adopted. At an iteration,

either the CPU or GPU applies the R
store

rule to all the nodes in V
R

store

depending

on whether DI
R

store

> ⌧ holds or not. As for the other four rules, R
copy

, R
load

, R
o↵set
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and R�copy, the shared worklist W , which is described below, maintains all rule

applications to be executed at any iteration. The CPU and GPU repeatedly fetch

a set M of nodes from the worklist W and apply appropriate rules to the nodes in

M.

Algorithm 12 A DI-based dynamic workload distribution.
Procedure FetchAndApply(W)
begin

1 Apply(�P�1, S, �C, W
R

store

); // R
store

2 while W 6= ; do
3 (M, r) get work from W ;
4 if r = R

copy

then Apply(C, �P , �P , M);
5 if r = R

load

then Apply(L, �P , �C, M);
6 if r = R

o↵set

then Apply(F , �P , �P , M);
7 if r = R�copy then Apply(�C, P , �P , M);

1 2 3 . . . N � 1 N

W
�C WC WL WF

CPU getFromHead GPU getFromTail

Figure 5.4: The shared worklist W used in Algorithm 12.

Based on (5.4), our shared worklist, W , illustrated in Figure 5.4, consists of

four sub-worklists for rules R�copy, Rcopy

, R
load

and R
o↵set

, sorted in decreasing order

of their degrees of imbalance. Each sub-worklist consists of all the nodes in the

constraint graph as in Naive, shown in Figure 5.2. The CPU and GPU will fetch

the work from the two opposite sides. This ensures that each side of the system

will always apply rules in decreasing order of its suitability for processing these
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rules. As a result, IDD achieves better load balance than Naive.

While concurrent applications of the same rule in Table 5.1 can be

synchronisation-free, concurrent applications of di↵erent rules may require syn-

chronisation when they may have write-write races (e.g., between R
copy

and R�copy).

To avoid such synchronisation altogether on CPU or GPU, we have introduced two

barriers, one between W
�C and WC and one between WL and WF . For this reason,

a call to FetchAndApply(W) in Algorithm 12 always returns a set M of nodes

associated with the same rule type, r.

5.3 Optimisations

We describe several optimisations to further improve the performance of our CPU-

GPU solution of Andersen’s analysis.

5.3.1 Optimisation I: On Hiding Communication Overhead

In Algorithm 10, E
�CPU is the union of E�P

�CPU
and E�C

�CPU
, which are the sets of

�P and �C edges produced on CPU, respectively. E
�GPU is similarly decomposed

into E�P
�GPU

and E�C
�GPU

on GPU. Concurrent Host-to-Device and Device-to-Host

transfers are used to maximise their overlap. To further reduce communication cost,

computation-communication overlap is employed at each iteration. As |E�P
�CPU

| >

|E�C
�CPU

| and |E�P
�GPU

| > |E�C
�GPU

| usually, the �C edges are exchanged before the

�P edges between the CPU and GPU. As soon as one side has received the �C
edges from the other, the operations indicated in lines 6 – 7 are performed on �C,

by overlapping with the transfer of the �P edges.
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5.3.2 Optimisation II: On �P -Equivalence and R
store

�P-equivalent variables have the same set of outgoing �P edges in the current

iteration [28]. For example, if E
�P(x) = E

�P(y), then applying R
copy

(z), where

EC(z) = {x, y}, yields the same result for z if either E
�P(x) or E

�P(y) is used.

Work on identifying (1) �P-equivalent variables [28] and (2) the set V
R

store

of

variables where the R
store

rule is applied (the first phase of this rule application

as discussed in Section 5.2.3) is expensive on CPU, costing over 3X more than on

GPU. Therefore, such computations are performed on the GPU, with the results

transferred to the CPU.

5.3.3 Optimisation III: On Adaptive Heterogeneity

As illustrated in Figure 5.1, the performance benefit of a CPU-GPU solution of

Andersen’s analysis is more than o↵set by the CPU-GPU communication cost in-

curred during the first and last few iterations. Therefore, an adaptive scheme is

used. When the cost exceeds the benefit, the faster of the two, CPU and GPU, will

perform the iteration alone. For the first and last few iterations, the workloads of

rule applications are small with negligible imbalance. The GPU is more suitable

and thus preferred. Therefore, our CPU-GPU solution begins in the GPU-alone

mode, switches to the heterogeneous mode when ttran 6 tcomp ⇤ ↵, and returns to

the GPU-alone mode again when ttran > tcomp ⇤ ↵. Empirically, ↵ = 0.2 is used.

5.4 Evaluation

We show that our parallel solution of Andersen’s analysis on a CPU-GPU system

achieves better average speedups than CPU-only and GPU-only solutions for a

set of seven C benchmarks considered. Even if the better of the speedups from
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CPU-only and GPU-only solutions is selected for each benchmark, our CPU-GPU

solution remains faster on average.

For the CPU-GPU system used in our experiments, the host (running 64-bit

Ubuntu 12.04) is equipped with two eight-core 2.00GHz Intel Xeon E5-2650 CPUs

with 62GB of RAM. Each core has a 64KB L1 cache and a 256KB L2 cache. Each

CPU has a 20MB L3 unified cache shared by its eight cores. The code for the host

is written in C++ using POSIX threads and compiled under “GCC -O3”. The

GPU used is a 0.71GHz NVIDIA Tesla K20c GPU with 13 SMXs, each containing

192 cores. Each SMX has a 64KB of on-chip memory configured as 48 KB of shared

memory and 16 KB of L1 cache. All SMXs share a 1280KB L2 cache. The CUDA

code is compiled under “nvcc -arch=sm 30” (v5.0).

Table 5.2 lists the seven C benchmarks used, with the number of variables

ranging from 53K to 559K and the number of statements ranging from 55K to

560K. Note that every SCC formed by copy edges is collapsed as its variables have

the same points-to edges.

Benchmark #Variables #Statements

perl 53,362 55,977

python 92,599 92,827

svn 107,708 122,558

gcc 120,870 127,171

gdb 232,814 198,933

vim 246,944 89,226

gimp 558,867 565,655

Table 5.2: Benchmark suite: sizes of initial constraint graphs.

5.4.1 Implementations

Our CPU-GPU solution is implemented as follows:
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• For GPU kernels, we use 13 thread blocks (for 13 SMXs), 864 threads per

block for R
copy

, R
load

, R
store

and R�copy, and 1024 threads for R
o↵set

. This rep-

resents the same configuration as in [28], limited by available shared memory

(48KB per block) and maximum number of threads per block (1024).

• As for the host, there are 16 compute threads, one per core, and two control

threads. The GPU-control thread is responsible for fetching the work from a

shared worklist for the GPU to do, launching kernel execution and exchanging

�P and �C between the CPU and GPU. The CPU-control thread oversees

and coordinates the execution of the 16 compute threads.

The 16 CPU compute threads and the GPU-control thread will fetch the work

from a mutex-protected shared worklist, illustrated in Figure 5.4. The granularity

of each fetch is determined empirically. For a CPU thread, a chunk of 128 nodes

appears to be a good choice. As for the GPU, any value in the range 1K – 8K

is adequate, even when the GPU happens to get the last chunk from the shared

worklist. So 8K is used.

The CPU-only (GPU-only) solution is derived from our CPU-GPU solution, by

ignoring the GPU-control (CPU-control) thread, so that the entire analysis is now

performed on the CPU (GPU) alone, without online cycle elimination. The GPU-

only solution is similar to the state-of-the-art GPU implementation introduced

in [28].

The CPU-only solution is faster than the CPU implementation introduced

in [29] (both without online cycle elimination), based on the experimental results

given in [28], since our CPU-only solution is able to apply graph-rewriting rules in

parallel without synchronisation.

The CPU-only implementation is faster than the GPU-only implementation,

although the latter is highly optimised. This GPU-only implementation is almost
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the same as the implementation from [28] where sophisticated optimisations, e.g.,

using shared memory, have been performed. The only di↵erence is that online

cycle elimination is not performed for the GPU-only and CPU-only implementa-

tions, which are the baseline for evaluation here. With less cycles eliminated, some

particularly long-running tasks are more likely to occur, and consequently the load

imbalance issue for GPU becomes more severe.

5.4.2 Speedups

Figure 5.5 compares the speedups of our CPU-GPU solution of Andersen’s analysis

against the CPU-only and GPU-only solutions (normalised to GPU-only). For each

benchmark, the left bar is for CPU-only, the middle bar for GPU-only and the

right bar for our solution. Each of our speedup bars is shown as a breakdown of

five components, contributed by (1) Naive (the naive workload distribution given

in Algorithm 11), (2) IDD (our dynamic workload distribution scheme given in

Algorithm 12), (3) Opt I, (4) Opts I + II, and (5) Opts I + II + III, where the

three optimisations are described in Section 5.3.

We observe that the performance ratios of CPU-only over GPU-only vary wildly

across these benchmarks. It is therefore not easy to decide which of the two analyses

to use for a given program. However, our CPU-GPU solution outperforms (1)

CPU-only by 50.6%, (2) GPU-only by 78.5%, and (3) an oracle that behaves as

the faster of (1) and (2) for each benchmark by 34.6% on average. In addition, our

solution is faster than the oracle for six benchmarks. The only exception is gcc, for

which our solution is slightly better than CPU-only but a lot worse than GPU-only.

There are two main reasons behind. First, gcc induces fewer new points-to edges

than the other benchmarks during the analysis. The overhead incurred in CPU-

GPU communication and workload distribution is relatively high. Second, the
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performance gap between GPU-only and CPU-only, 2.3X, is the highest among all

the benchmarks (with vim coming as the second highest). Thus, workload balance

is relatively hard to achieve.

5.4.3 Dynamic Workload Balancing

Our dynamic workload distribution scheme, IDD, has succeeded in accelerating

Andersen’s analysis further on top of Naive for all benchmarks. The performance

improvements are substantial in python, svn, gdb and gimp.

Benchmark
IDD workload distribution

R
R

o↵set

R
R

load

R
R

copy

R
R

copy

SGPU (%) R
R

store

perl 0.07 0.17 0.53 1.62 31.0 7.18

python 0.04 0.15 0.70 3.63 37.1 4.52

svn 0.04 0.13 0.61 2.41 34.2 7.29

gcc 0.09 0.40 0.57 0.61 81.6 1.21

gdb 0.04 0.28 0.90 3.31 13.7 5.35

vim 0.08 0.50 0.64 5.59 100.0 0.19

gimp 0.07 0.56 0.64 3.58 77.6 0.87

Table 5.3: Analysis of our CPU-GPU solution (including its key method employed).

To understand why IDD is e↵ective, some statistics are given in Table 5.3.

Rx, where x is one of the five rules given in Table 5.1, represents the ratio of the

time spent by GPU-only over CPU-only on applying Rule x (accumulated in all

iterations). R
R

o↵set

< R
R

load

< R
R

copy

< R
R�copy

holds across the seven benchmarks.

This justifies the priorities assigned to the four rules in (5.4) on CPU and GPU.

Let us analyse gcc and vim to see why performing Andersen’s analysis on both

CPU and GPU is the least beneficial among the seven benchmarks. For gcc,

R
R

o↵set

, R
R

load

, R
R

copy

and R
R�copy

are smaller than 1, indicating that the GPU is more

suitable than the CPU for applying these rules. For vim, speedup is limited for
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a di↵erent reason. The R�copy rule is particularly expensive to apply, consuming

30.3% (83.0%) of the analysis time of CPU-only (GPU-only). As a result, the

GPU is rather ine�cient for the entire analysis. As discussed in Section 5.4.1, the

granularities of workloads fetched from the shared worklist by a CPU thread and

a GPU kernel are 128 and and 8K nodes, respectively. The GPU stalls for 8.5%

of its analysis time, waiting for the CPU to finish. The ratio can be lowered if the

granularities are reduced. However, the overall performance even worsens due to

less e�cient GPU kernel execution and more synchronisation overhead incurred.

Let us look at the e↵ectiveness of the heuristic DI
R

store

> ⌧ used in determin-

ing where to execute the R
store

rule, on CPU or GPU, in line 1 of Algorithm 12.

In Table 5.3, SGPU stands for the percentage of iterations that the R
store

rule is

executed on the GPU. The larger R
R

store

is (i.e., the slower the GPU is than the

CPU in applying the rule), the smaller SGPU is (the fewer iterations that the GPU

will be asked to execute the rule). For vim, where SGPU = 100%, the R
store

rule

is always applied on the GPU, which is much more e�cient than the CPU (with

R
R

store

= 0.19). As the number of stores in a program is small, the benefit of adap-

tively determining where to execute the R
store

rule is small. Nevertheless, setting ⌧

to 20 still delivers a speedup of 3.3% (2.9%) compared to when the rule is applied

on CPU (GPU) exclusively.

5.4.4 Optimisations

For the three optimisations described in Section 5.3, their e↵ects on performance

are shown in Figure 5.5. We analyse them using the statistics given in Table 5.4.

Opt I, which overlaps communication with computation, is the most beneficial

for gcc and perl but the least for gdb and gimp. Its e↵ectiveness depends on the

degree of overlap between (1) the process of exchanging their respective �P sets
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Benchmark
Opt I Opt II Opt III

S
REF

O
�P (%) O

�C (%) OH (%) OI (%)

perl 8.1 10.6 9.3 21.1 1.31

python 13.2 9.4 3.9 36.2 1.40

svn 10.5 7.4 5.5 13.6 1.20

gcc 15.2 16.5 14.6 21.8 0.48

gdb 12.3 5.0 5.2 15.0 1.10

vim 15.5 9.7 6.7 34.9 1.18

gimp 11.3 5.3 8.8 27.6 1.03

Table 5.4: Analysis of our CPU-GPU solution (including its key method and opti-
misations employed).

between the CPU and GPU and (2) the computations performed on the local and

remote �C sets on both the CPU and GPU. In Table 5.4, O
�P and O

�C represent

the times elapsed on performing (1) and (2) in percentage, respectively, over the

total analysis time for a benchmark. The transfer times for �P are completely

hidden for gcc and perl since O
�P < O

�C for each benchmark, but only hidden

by less than 50% for gdb and gimp since O
�P > 2⇥O

�C for each benchmark. The

(unhidden) communication cost is 8.4% on average, with gcc reaching 16.9%, since

it induces fewer edges than the other benchmarks during Andersen’s analysis.

Opt II, which relies on the GPU to identify �P-equivalent variables and the

variables for which the R
store

rule should be applied, is generally more e↵ective

than Opt I. In Table 5.4, OH represents the time spent (in percentage) on these

computations over the total analysis time for a benchmark. Opt II is the least

e↵ective for python, svn and gdb because the values of OH for these benchmarks,

3.9%, 5.5% and 5.2%, are small.

Opt III, which decides adaptively whether to perform an iteration of Andersen’s

analysis on CPU or GPU or both, is profitable for all the benchmarks except gdb.

In Table 5.4, OI represents the percentage of iterations executed on the GPU alone.
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For gdb, OI = 15%. By o✏oading this much of the total analysis to the GPU, the

potential performance benefit obtained may not outweigh the cost incurred. A

similar problem exists for svn, where OI = 13.6%.

5.4.5 Overall E↵ectiveness

We discuss the e↵ectiveness of our CPU-GPU solution with respect to the reference

CPU-GPU solution with its analysis time (5.1) derivable from those of CPU-only

and GPU-only solutions. In Table 5.4, S
REF

represents the speedup of our solution

over this reference. Our solution outperforms the reference in six benchmarks with

an average speedup of 1.1X. The exception is gcc again, for the reasons discussed

above.

These results demonstrate the e↵ectiveness of our solution. By dispatching

graph-rewriting rules to the “better side” of a CPU-GPU system to apply, our

solution performs better than the reference, for which even zero communication

and synchronisation overhead has been assumed.

5.5 Related Work

While there are no heterogeneous CPU-GPU solutions to pointer analysis, a lot of

e↵orts have been made on parallelising graph algorithms on CPU-GPU systems,

where the structure of the underlying graph is not modified. In [20], the best from

a few implementations of BFS is selected dynamically for each level of the BFS

algorithm. Later, workload-aware and fixed-partitioned-space strategies [30] are

considered for BFS. In [12], a graph programming model, Totem, is presented and

applied to two applications, BFS and PageRank. In [13], workload distribution

is studied in the Totem framework, by distinguishing workloads in terms of node
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degrees, so that the suitability of CPU or GPU for the workloads can be estimated.

However, these techniques cannot be directly applied to Andersen’s analysis

since the graph changes dynamically in an unpredictable manner during the analy-

sis. Our focus in this chapter is to introduce a new dynamic workload distribution

scheme for Andersen’s analysis to prioritise workloads to CPU or GPU that is

better suited for processing them.

5.6 Chapter Summary

This chapter describes the first parallel implementation of Andersen’s analysis on

a CPU-GPU system. The presence of dynamic and unpredictable modifications

to a constraint graph makes it di�cult to balance workloads between CPU and

GPU. The sparsity of a constraint graph posts obstacles in engineering e�cient

CPU-GPU communication. To overcome these two challenges, we distribute graph-

rewriting rules to the CPU or GPU that is better suited for processing the rules and

adopt di↵erence propagation of points-to information between the CPU and GPU

to reduce the communication cost. On a set of seven C programs evaluated, our

CPU-GPU solution outperforms on average the variants of state-of-the-art CPU-

only and GPU-only implementations.



Chapter 6

Conclusions and Future Work

This chapter firstly concludes the three solutions that explore di↵erent parallel

platforms for accelerating pointer analysis, and then discusses future work.

6.1 Conclusions

Making the highly important pointer analysis more e�cient and scalable especially

for large program has been a challenging task. Over the years, great e↵orts have

been made in the sequential setting on accelerating both the whole-program anal-

ysis and demand-driven analysis. However, it is still di�cult to perform precise

analysis in an e�cient manner. In recent years, with the ubiquity of parallel plat-

forms, including multicore CPUs and GPUs, boosting the performance of pointer

analysis by exploring parallelisation techniques has become increasingly popular.

There have been a number of attempts on parallelising pointer analysis algo-

rithms for analysing C or Java programs on multi-core CPUs and/or GPUs [8, 28,

29, 31, 32, 40]. As compared in Table 6.1, all these parallel solutions are di↵er-

ent forms of Andersen’s whole-program pointer analysis [2] with varying precision

considerations in terms of context-, flow- and field-sensitivity.

102
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In this thesis, we have proposed three solutions to accelerate pointer analysis

on three di↵erent parallel platforms: multicore CPUs, GPU and heterogeneous

CPU-GPU systems.

Chapter 3 has presented the first parallel implementation of pointer analysis

with CFL reachability, a basis for supporting demand queries in compiler optimi-

sation and software engineering. Formulated as a graph traversal problem (often

with context- and field-sensitivity for desired precision) and driven by queries (is-

sued often in batch mode), this analysis is non-trivial to parallelise. We introduced

a parallel solution to the CFL-reachability-based pointer analysis, with context-

and field-sensitivity. We exploited its inherent parallelism by avoiding redundant

graph traversals with two novel techniques, data sharing and query scheduling.

With data sharing, paths discovered in answering a query are recorded as short-

cuts so that subsequent queries will take the shortcuts instead of re-traversing its

associated paths. With query scheduling, queries are prioritised according to their

statically estimated dependences so that more redundant traversals can be further

avoided. Evaluated using a set of 20 Java programs, our parallel implementation

of CFL-reachability-based pointer analysis achieves an average speedup of 16.2X

over a state-of-the-art sequential implementation on 16 CPU cores.

Chapter 4 has proposed an e�cient GPU implementation of Andersen’s whole-

program inclusion-based pointer analysis, a fundamental analysis on which many

others are based, including optimising compilers, bug detection and security anal-

yses. Andersen’s algorithm makes extensive modifications to the graph that rep-

resents the pointer-manipulating statements in a program. These modifications

are highly irregular, input-dependent and statically unpredictable, making it much

more challenging to balance such graph workloads across a multitude of GPU cores

than those dealt with by traditional graph algorithms such as DFS and BFS. To
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parallelise Andersen’s analysis e�ciently on GPUs, we introduced an imbalance-

aware workload partitioning scheme that divides its workload dynamically among

the concurrent warps, initially in a warp-centric manner (during the coarse-grain

stage) but later switches to a task-pool-based model when a workload imbalance

is detected (during the fine-grain stage). We have improved further its perfor-

mance by using an adaptive group propagation scheme to reduce some redundant

traversals. For a set of 14 C benchmarks evaluated, our parallel implementation

of Andersen’s analysis achieves a significant speedup of 46% on average over the

state-of-the art on an NVIDIA Tesla K20c GPU.

Chapter 5 has described the first implementation of Andersen’s inclusion-based

pointer analysis for C programs on a heterogeneous CPU-GPU system, where both

its CPU and GPU cores are used. Existing parallel solutions to Andersen’s analysis

run on either the CPU or GPU but not both, rendering the underlying computa-

tional resources underutilised and the ratios of CPU-only over GPU-only speedups

for certain programs (i.e., graphs) unpredictable. We observed that a naive parallel

solution of Andersen’s analysis on a CPU-GPU system su↵ers from poor perfor-

mance due to workload imbalance. We have introduced a solution that is centered

around a new dynamic workload distribution scheme. The novelty lies in priori-

tising the distribution of di↵erent types of workloads, i.e., graph-rewriting rules

in Andersen’s analysis to CPU or GPU according to the degrees of the processing

unit’s suitability for processing them. This scheme is e↵ective when combined with

synchronisation-free execution of tasks (i.e., graph-rewriting rules) and di↵erence

propagation of points-to information between the CPU and GPU. For a set of

seven C benchmarks evaluated, our CPU-GPU solution outperforms (on average)

(1) the CPU-only solution by 50.6%, (2) the GPU-only solution by 78.5%, and (3)

an oracle solution that behaves as the faster of (1) and (2) on every benchmark by
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34.6%. Note that the performace of the GPU-only implementation is worse than

that of the CPU-only implementation. This is mainly because online cycle elim-

ination is not adopted (for both the CPU-only and GPU-only implementations),

and the load imbalance issue for GPU is more severe, as explained in Section 5.4.1.

Chapter 4 mainly targets the load imbalance issue for GPU, and has achieved an

average speedup of 46% over the state-of-the-art GPU implementation [28], where

online cycle elimination has been performed.

6.2 Future Work

The parallel solution in Chapter 3 explores the abundant inter-query parallelism.

It has achieved significant performance speedups over a state-of-the-art sequential

implementation for the CFL-reachability-based analysis. Some queries, however,

can be extremely time consuming, still resulting in load imbalance among concur-

rent threads. Exploiting intra-query parallelism can be an e↵ective way to alleviate

such an issue. However, it is a challenge to minimise the cost for such fine grained

parallelism.

The GPU implementation in Chapter 4 has demonstrated considerable speedups

over the state-of-the-art parallel solutions (on both CPUs [29] and GPUs [28]) for

Andersen’s inclusion-based analysis. The heterogeneous CPU-GPU implementa-

tion in Chapter 5, however, does not adopt online cycle elimination due to obstacles

in collapsing cycles on the fly on di↵erent memory spaces. It would be promising to

perform parallel online cycle elimination. Another challenge of performing parallel

pointer analysis on di↵erent memory spaces is to minimise communications. With

these two problems solved, it would be feasible to accelerate pointer analysis on

multi-GPUs and heterogeneous CPU-GPU systems in a scalable manner.
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Unsound pointer analysis, which deliberately makes no attempt to consider all

possible data flow in a program, is practical for some particular clients. Some con-

structs in the program are ignored, not because they are unimportant, but simply

because they are too hard. However, unsound pointer analysis can be utilised by a

range of clients that support IDE services [22]. It is interesting and promising to

parallelise unsound pointer analysis, where a trade-o↵ between unsoundness and

parallelism could be made.

Our parallel solutions can be applied to many important analyses in software

engineering that rely on these two styles of fundamental pointer analyses. For ex-

ample, program slicing [47], interprocedural SSA analysis [5], more precise pointer

analysis [15, 32, 55, 67], bug detection [53, 54, 66], and program behaviour pre-

diction [69] all utilise Andersen’s analysis as their pre-analysis. Their performance

would directly benefit from the techniques proposed in this thesis, with our tech-

niques appropriated extended in future.
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