
On Design of Memory Data Authentication For Embedded
Processor Systems

Author:
Liu, Tao

Publication Date:
2015

DOI:
https://doi.org/10.26190/unsworks/17299

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/54147 in https://
unsworks.unsw.edu.au on 2024-04-30

http://dx.doi.org/https://doi.org/10.26190/unsworks/17299
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/54147
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

On Design of Memory Data

Authentication For Embedded

Processor Systems

by

Tao Liu

School of Computer Science and Engineering

The University of New South Wales

Sydney, Australia

A THESIS SUBMITTED IN ACCORDANCE WITH THE

REQUIREMENTS

FOR THE DEGREE OF MASTER BY RESEARCH

February 2015

mailto:taol@cse.unsw.edu.au
http://www.cse.unsw.edu.au
http://www.unsw.edu.au

PLEASE TYPE
THE UNIVERSITY OF NEW SOUTH WALES

Thesis/Dissertation Sheet

Surname or Family name: LIU

First name: Tao

Abbreviation for degree as given in the University calendar: MSc

School: School of Computer Science and Engineering

Title: On Design of Memory Data Authentication For Embedded
Processor Systems

Other name/s:

Faculty: Faculty of Engineering

Abstract 350 words maximum: (PLEASE TYPE)

Many designs for memory data protection are based on the cryptographic primitives that have been systematically analysed and extensively
evaluated, and often provide a guaranteed level of security. However, such cryptographic primitives usually come with significant processing and
resource costs and may not be suitable to embedded systems.
This thesis studies an existing design for protecting the integrity of memory data in an embedded processor system, where tag is used for data
authentication. The design is highly cost efficient, consumes small on-chip resources and low off-chip memory, and offers flexibility for good trade­
off between the design security and its implementation cost.
However, the design assumes that the data to be protected are random and have the uniform distribution, and the security of the design is mainly
focused on the attacks with random data and tag values. Attacks with chosen values have merely been addressed. Nevertheless, the attack with
chosen values can exploit the design weakness, is much stronger than the random attack, and determines the true security level of a design.
We have identified three pitfalls in this design: 1) there are some correlations between data and tag, 2) for a given data, its tag value is not
distributed over the whole tag value space; the effective tag domain size for a given data is reduced and is less than the half the tag value space,
and 3) the effective tag domain size varies for different data. Those weaknesses lead to the low security of the design.
To patch the loopholes, we improve the design by implementing a series of random flip function and the non-linear Galois field multiplication on the
data block. We show, through the theoretical analysis and experimental demonstration, that with the design modifications the tag generated bears
no correlation to its data and the tag is uniformly random over the full tag value space. The improved design has the same capability to counter
attacks with chosen values as to counter attacks with the random data. Therefore, the design is much secure yet still carrying the cost effective
feature of the original design.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all
property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

--~-~ ~~-~-·
Witness

...... k .. it.~.
Signature

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional
circumstances and re uire the a roval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

COPYRIGHT STATEMENT

'I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed JrM l.~
Date t?.t .. ;· ... P..~ !.~./.f.

AUTHENTICITY STATEMENT

'I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.'

Signed ~0 it~ •... . . . -~ -~~-

Date C?'b / 0)-.. I "yt> I_;-.............

ORIGINALITY STATEMENT

'I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style , presentation and linguistic expression is acknowledged.'

Signed : . .1(li) 0..0
Date o. .. r. .. .;·O. .~ ... / .. ~.l-5~

Abstract

the boom of embedded systems and their wide applications, especially in the

area of e-business and -service, have raised increasing concerns about their se-

curity. one of the vulnerable components in most embedded systems is memory.

protecting memory data is essential to the embedded system.

many designs for memory data protection are based on the cryptographic primi-

tives that have been systematically analysed and extensively evaluated, and often

provide a guaranteed level of security. however, such cryptographic primitives

usually come with significant processing and resource costs and may not be suit-

able to embedded systems, where resources are extremely restricted.

this thesis studies an existing design for protecting the integrity of memory data

in an embedded processor system, where tag is used for data authentication. the

design is highly cost efficient, consumes small on-chip resources and low off-chip

memory, and offers flexibility for good trade-off between the design security and

its implementation cost.

however, the design assumes that the data to be protected are random and fit

the uniform distribution, and the security of the design is mainly focused on

the attacks with random data and tag values. attacks with chosen values have

merely been addressed. nevertheless, the chosen-value attacks can exploit the

design weakness, is much stronger than the random attack, and determines the

true security level of a design.

we have identified three pitfalls in this design: 1) there are some correlations

between data and the tag, 2) for a given data, its tag value is not distributed

over the whole tag value space; the effective tag space size for a given data is

reduced and is less than the half of the tag value space, and 3) the effective tag

space size varies for different data. those weaknesses lead to the low security of

the design.

to patch the loopholes, we improve the design by implementing a series of random

flip functions and non-linear galois field multiplication on the data blocks. we

show, through the theoretical analysis and experimental demonstration, that

with the design modifications the tag generated bears no correlation to its data

and the tag is uniformly random over the full tag value space. the improved

design has the same capability to counter attacks with chosen values as to counter

attacks with the random data. therefore, the design is much secure yet still

retaining the cost effective feature of the original design.

Acknowledgements

First of all, I would like to thank my supervisor Dr. Annie Hui Guo, for her

insightful and inspiring advice, kind guidance and consistent support. Without

her generous help, I would not have been able to finish the research project and

write this thesis.

I would like to thank my girlfriend, Miss. Mengti Sun, for her unconditional

love, her support in my life and sacrificing her time to help me quickly get

familiar with data processing technique. My thanks also go to Dr. Ihor Kuz and

Mr. Siwei Zhuang for their invaluable feedback and advice given on my Linux

programming study. These feedback and advice greatly promote my development

of the experiment platform and results analysis.

It has been a great experience for me to work with some of the great minds

during my candidature in CSE, UNSW. I would like to thank Mr. Mahanama

Wickramasinghe, for being such a good partner to work with and a good friend

of mine; Mr. Kai(Lukas) Li, for his kindly instructions on thesis preparation.

At last, I would like to thank my parents for their unconditional love and supports

in my life.

iv

Acronyms

CETD Cost-Effective Tag Design . 3

iCETD improved CETD design. .4

NIST National Institure of Standards and Technology 4

AE Authenticated Encryption . 7

MAC Message Authentication Code . 8

CBC-MAC Cipher Block Chaining MAC . 8

EMAC Encrypted CBC-MAC . 9

CMAC Cipher-based MAC . 9

XCBC Three-key XOR CBC-MAC . 11

TMAC Two-key CBC-MAC. .11

OMAC One-key CBC-MAC . 12

GCM Galois/Counter Mode . 13

IV Initialization Vector . 13

XECB-MAC eXtended Electronic Codebook MAC . 15

PMAC Parallel MAC . 16

OCB Offset Codebook . 16

AES Advanced Encryption Standard . 22

PRF Pseudorandom Function. .22

PRP Pseudorandom Permutation . 23

CAR Attack Copy-And-Replay Attack . 34

FT Attack Forged Tag Attack. .34

v

Acronyms vi

RT Attack Resused Tag Attack . 34

BFP Bit-frequency Parity . 35

GF Galois Field . 61

GFM Galois Field Multiplication . 61

RBF Random Block Bit Flip . 62

List of Publications

• Tao Liu, Hui Guo. Dynamic Encryption Key Design and Its Security Evalu-

ation for Memory Data Protection in Embedded Systems, in International

Conference on IT Convergence and Security , Page 1-4, Beijing, China,

2014

• Tao Liu, Hui Guo. On Cost Effective Tag Design for Processor Memory

Data Integrity in Embedded Systems , in University of New South Wales

Technical Report, Sydney, Australia, 2014

vii

Contents

Abstract ii

Acknowledgements iv

Acronyms v

List of Publications vii

Table of Contents viii

List of Figures x

List of Tables xii

1 Introduction 1

2 Background and Literature Review 5

2.1 Security and Security Design . 5

2.2 Data Integrity Protection and Security Evaluation 7

2.2.1 Message Authentication 8

2.2.2 Memory Data Authentication 19

2.2.3 Security Evaluation . 21

3 CETD: A Cost Effective Data Authentication Design 25

3.1 Design Overview . 26

3.2 Tag Generation . 28

3.3 Nonce Design . 29

4 Security Evaluation of the Tag Design in CETD 32

4.1 Analysis . 34

viii

Contents ix

4.2 Experiments and Results . 40

4.3 Summary . 43

5 Security Evaluation of the Nonce Design in CETD 45

5.1 Analysis . 46

5.2 Experiments and Results . 51

5.3 Summary . 57

6 Security Improvement on CETD 58

6.1 iCETD: An Improved Design . 58

6.2 Analysis . 64

6.3 Simulations and Discussions . 69

6.4 Conclusions . 77

7 Conclusions and Future Work 79

7.1 Conclusions . 79

7.2 Future Work . 81

Bibliography 83

List of Figures

1.1 Single-Processor and Memory System 2

2.1 CBC-MAC . 9

2.2 EMAC . 10

2.3 CMAC Class . 10

2.4 XCBC MAC Scheme: (a) last block without padding (b) last block
with padding . 11

2.5 TMAC Scheme: (a) last block without padding (b) last block with
padding . 12

2.6 OMAC Scheme: (a) last block without padding (b) last block with
padding. L is Ek(0) and u is a constant value 13

2.7 XOR-MAC Scheme: IV can be a counter or a random number . . 14

2.8 XECB-MAC Scheme: (a) XECB-MAC and (b) z0 and y0: IV can
be a counter or a random number 15

2.9 PMAC Scheme . 16

2.10 Tweakable Block Cipher Based PMAC Scheme 17

2.11 Tweakable Block Cipher in PMAC: (a) Tweakable Block Cipher
XE and XEX; (b) E2

k and E2
k3 . 18

3.1 System Overview . 25

3.2 (a) Encryption (b) Decryption . 27

3.3 Tag Generation Process (a) diagram (b) shuffle example (c) rota-
tion example . 29

3.4 Nonce Generation (a) structural overview (b) change of random
number (c) dedicated nonce values 30

4.1 Experiment Data: Number of Distinct Tag Values of Different Data 33

4.2 Reduced Effective Tag Space and Increased Tag Collision Probability 39

4.3 Experimental Setup . 41

4.4 Effective Tag Space Size for Individual Input Data(the 16-bit input
case): (a) first 100 values of 1000-round case (b) first 600 values
of 10000-round case . 42

4.5 Effective Tag Space Size for Individual Input Data: 32-bit data case 43

5.1 Nonce Generation in CETD . 47

x

List of Figures xi

5.2 Experiment Data: percentage nonce collisions over nonce sequence
length . 50

5.3 Success Probability of Two Attacks with Varying Memory Size . . 51

5.4 Software Experiment Platform . 52

5.5 Nonce Collisions (SA=118) . 53

5.6 Nonce Collisions (SA=115) . 55

5.7 Nonce Collisions (SA=113) . 56

6.1 Two Design Options with XOR (a) injecting random bits to the
CETD output (b) injecting random bits to the CETD input . . . 59

6.2 Final Design (iCETD) (a) overview (b) random block flip (c) non-
linear random injection . 62

6.3 Experimental Setup . 69

6.4 Number of Distinct Tag for Individual Input Data (a) CETD (b)
iCETD0 (c) iCETD1 . 71

6.5 Tag NIST Test Sequence Formation 76

List of Tables

4.1 Effective Tag Space Size: 16-bit data case 42

4.2 Effective Tag Space Size: 32-bit data case 43

5.1 Attack Success Probability of Two Existing Designs 55

6.1 Statistics of Effective Tag Space Size 72

6.2 Chosen NIST Tests . 73

6.3 NIST Tests Results . 74

6.4 NIST Tests with Large Data Set Requirements 75

6.5 NIST Serial Tests of Tags for Individual Data 77

xii

Chapter 1

Introduction

The last a few decades have seen great expansion of the embedded system market.

From personal smart devices to industrial control equipment, from government

services to military arms, the utilization of embedded systems can be found ev-

erywhere. The boom of embedded systems, especially their growing involvements

in storing and processing sensitive data, has also drawn attention of adversaries.

Each year, significant losses due to the system security issues have been reported,

which raises increasing concerns about the embedded systems security and the

importance of secure designs. Security joins performance, cost and power con-

sumption, and forms a new dimension in embedded system design[36].

Most embedded systems use processors for computing and memory for data stor-

age. With the increasing scale of the embedded system, the large off-chip memory

to store software and data becomes indispensable. However, the off-chip memory

and its link to the processor chip can be easily probed and the data stored in

the memory or transferred on the communication link can be tempered, which

leaves the system vulnerable to attacks.

1

Chapter 1 Introduction 2

This thesis targets an embedded system that has a single processor and memory,

as shown in Figure 1.1, where the processor and memory are not on the same chip.

The components on the processor chip are secure but the data on the off-chip

memory and its buses are accessible to adversaries. Therefore, the confidentiality

and integrity of the memory data should be protected.

 Trust Area: System-on-Chip

Processor Cache

Vulnerable Area:

Off-chip

Memory

Figure 1.1: Single-Processor and Memory System

Attacks on embedded systems can be software based and hardware based. Soft-

ware attacks mainly target on the operating system and application software;

while hardware attacks, by physical accessing the system components (hence

also known as physical attacks), can be more towards to the data stored and

processed in the system.

To protect the memory data, there have been many approaches. Most of them

are designed, based on the cryptographic primitives that have been systemat-

ically evaluated and their attributes and capabilities are well studied. In [53]

the authors pointed out that those primitives offer a strong level of security but

at a cost of significant resources or extremely degraded execution performance.

Therefore, designs primarily based on the cryptographic primitives are often not

suitable for embedded systems, where resources are stringent.

Chapter 1 Introduction 3

To reduce the resource cost and also meet the security and performance require-

ments, researchers have investigated customized designs. One of the related

works is a cost-effective tag generation design (we name it as Cost-Effective

Tag Design (CETD) for short in this thesis) recently proposed by Hong, Guo,

and Hu [30], for memory data integrity protection in the embedded processor

system. The CETD design is built upon the operations that can carry the ran-

domness of their input data and it uses nonce to dynamically control the tag

generation process. The tag generated changes with the memory data location

and access time. The design allows customizations for design efficiency: it is

customizable for different applications, and the on-chip cost can be minimized

for a given tag size.

However, compared to the extensive cost evaluation that has been performed, the

evaluation of the design security is very brief and insufficient, which motivates

the work of this thesis. In this thesis, we apply an innovative approach that is

based on the collisions of secret values in the system. The security of the CETD

design is closely related to the two secret values, nonce and tag. The designs for

the tag and nonce in CETD are therefore focused.

We evaluate the nonce generation design based on the uniqueness of its input

and the randomness of its output. We found that the security of the design is

slightly lower than the security against the random attack. For tags, we evaluate

the tag generation design based on the tag collisions of individual data. And

we identify the weaknesses of the design that can be exploited by adversaries for

chosen value attacks. We propose an improved design to patch the loopholes in

the system. Experiments demonstrate the improved design is much securer than

the original design.

Chapter 1 Introduction 4

The rest of the thesis is organized as follows.

Chapter 2 lays the general background about the security and security designs,

and reviews the related work on data authentication design and evaluation.

Our evaluation target system, CETD, proposed in [30] is presented in Chapter 3,

where its designs on the nonce and tag generation are detailed.

Chapter 4 evaluates the tag generation in CETD. A few pitfalls in the system

are identified. Both analysis and experiment show that the CETD is not secure

against attacks with chosen values.

The security evaluation of the nonce design in CETD is given in Chapter 5, where

security of the nonce design is modeled with two types of attacks, random attack

and attack with used nonce. The security of the CETD against the attacks is

analyzed. It is shown that the security of the nonce design in CETD is similar

to other existing designs and is highly secure.

Chapter 6 discusses a few possible modifications to CETD, and proposes an

improved CETD design (iCETD). Analytical discussion and experiments based

on the National Institure of Standards and Technology (NIST) random tests,

demonstrate that with the improved design, the tags generated for individual

data are random and distributed over the full tag space, and the design is much

securer than the original CETD design.

Chapter 7 summarizes the contributions and limitations of the thesis work, and

points the possible research directions related to the memory data authentication

and design evaluation for embedded systems.

Chapter 2

Background and Literature

Review

This chapter provides the background and related work on design and evaluation

of data integrity protection systems. Section 2.1 gives an overview of the security

issues in computing systems. Section 2.2 presents research works on data integrity

protection design and security evaluation .

2.1 Security and Security Design

Broadly speaking, the security of a system is its ability to protect the information

and resources it possesses. For a computing system, attacks can be launched at

different design levels: circuit level, micro-architecture level, operating system

level, application level, network level, and information system level. Each level

has different issues and requirements, and the related security designs have dif-

ferent focuses.

5

Chapter 2 Background and Literature Review 6

At the circuit level, where circuits are integrated onto chips, protecting the chip

from environment damage and unlawful exploration is the main focus. The

physical security mechanisms include the use of strong enclosures and tamper

detection circuitry [38]. For example, a secure coprocessor [71] that is used to

protect the encryption key in the cryptographic module zeros the plain key when

the removable covers of the hardware module are opened. Such coprocessor can

also be used for nonce design protection.

At the operating system level, password and access control are typically imple-

mented. In [42], the authors presented an architectural design to isolate software

applications in the system to protect them from copying and tampering each

other. In the system, execution processes are restricted in separate internal

compartments, a process in one compartment cannot read data from another

compartment. All data that leaves the machine is encrypted.

At the networking level, many communication protocols (IPsec, TLS/SSL and

SSH) [2] are proposed to ensure the data transferred secret and genuine, and the

communication parties authentic.

At the micro-architecture level, attacks can target on the insecure components

and execution behavior. Non-random execution behaviors are exploited by the

side-channel attacks. To conceal the execution information, injecting redundant

or random operations has been considered [4]. In [48], Moore et al. presented a

design technique for constructing smart card functions to counter side channel

attacks. To protect data on the insecure system buses and memories, encryption

and authentication are utilized [21, 26, 31, 62, 67, 68].

Chapter 2 Background and Literature Review 7

In [9], Bellare and Namprempre introduced the concept of Authenticated En-

cryption (AE) system that combines the encryption and data authentication in

a single scheme to ensure both confidentiality and integrity of the data. Accord-

ing to the categorization from Bellare and Namprempre, there are three ways to

construct an AE scheme: Encrypt-and-Authenticate, Authenticate-then-Encrypt

and Encrypt-then-Authenticate. They claimed that Encrypt-then-Authenticate

has the strongest security among the three.

The review of the data integrity protection that is related to our research topic

is given in the next section.

2.2 Data Integrity Protection and Security Eval-

uation

Data integrity is about maintaining and assuring the accuracy and consistency of

data over their entire life-time. A common approach for data integrity protection

is authentication. Authentication can be applied to different components in a

system, for example, authenticating users, communication parties, messages, and

code executed. Here, we focus on data received by a processor from its memory,

hence message authentications, commonly applied at varied communication lev-

els, are relevant. We first survey the message authentication, then review typical

designs for memory data protection; the security evaluation will be discussed at

the end of this section.

Chapter 2 Background and Literature Review 8

2.2.1 Message Authentication

For the message authentication, the common approach is to use a Message Au-

thentication Code (MAC) to identify a message. MAC is also called “tag” in the

data authentication. The main issue of authentication is how to design MAC to

make the success of tampering data extremely difficult, which often requires the

secrecy in the MAC generation.

Existing MAC schemes can be stateless or stateful. The stateless MAC schemes

use a single and static key as secret information in the MAC generation; for a

given message, the MAC value is fixed; therefore, some works also refer to the

stateless MAC as the deterministic scheme. With the stateful MAC designs, on

the other hand, the secret key changes and carries information from the system

previous state; the MAC code of a message can, therefore, be different from time

to time.

Most MAC schemes divide messages into blocks and the MAC generation is

made of operations on blocks. Depending on how those operations are structured

between blocks, MAC schemes can be divided into the iterated MAC and the

parallel MAC.

In the iterated MAC design, the operations on blocks are performed in sequence.

The result of one block relies on the output of previous blocks.

The Cipher Block Chaining MAC (CBC-MAC) is a typical iterated MAC scheme,

where encryption with a fixed key is used and block encryptions are concatenated;

a block can be processed only after its previous blocks have finished. The concept

of CBC-MAC is expressed in Figure 2.1, where the message consists of i blocks,

with each block of a same size and the last block is padded. For each block,

Chapter 2 Background and Literature Review 9

its value is XORed with the encryption result from its preceding block (except

the first block which is directly encrypted). The encryption from the last block

makes the MAC for the whole message.

Mi | Pad

Ek

M3

Ek

M2

Ek

M1

Ek

T

...

Figure 2.1: CBC-MAC

An initial CBC-MAC design can be found in [66]. One known attack on this

design is that given a message (M) with a tag T , of a single block, a forged

message which is formed by two blocks (M and (M⊕T)) will have a same tag

(T) as the one-block message. Therefore, this CBC-MAC design is not secure

for messages with varied sizes.

To address this issue, Petrank and Rackof proposed Encrypted CBC-MAC (EMAC)

[11], which can handle messages with an arbitrary number of blocks. The design

applies CBC-MAC on message blocks with one encryption key and the resulting

value is then encrypted with a different key, as illustrated in Figure 2.2, where

two keys, K andn K2 are used in the encyption.

Cipher-based MAC (CMAC) [49], shown in Figure 2.3, is another type of MAC

designs for the arbitrary-length messages. Compared with EMAC, it has two

further improvements: 1) it saves one cipher operation with no extra encryption

Chapter 2 Background and Literature Review 10

Mi

Ek

M3

Ek

M2

Ek

M1

Ek

T

...

Ek2

Figure 2.2: EMAC

Mi | Pad

Ek

M3

Ek

M2

Ek

M1

Ek

Hash

T

...

Figure 2.3: CMAC Class

for the last block, and 2) messages in this design are allowed to have arbitrary

number of bits, not restricted to number of blocks. Therefore, a message handled

by CMAC consists of varied number of blocks and the last block can be incom-

plete with a shorter block size. If incomplete, the last block is then padded with

constant bits for a full block length required by the block operation.

Chapter 2 Background and Literature Review 11

(a)

Mi

Ek

M3

Ek

M2

Ek

M1

Ek

T

...

Key2

Mi | pad

Ek

M3

Ek

M2

Ek

M1

Ek

T

...

Key3

(b)

Figure 2.4: XCBC MAC Scheme: (a) last block without padding (b) last
block with padding

In [12], Black and Rogaway introduced a CMAC called Three-key XOR CBC-

MAC (XCBC) that uses three keys. One key is used by the block cipher. The last

block is processed by an XOR operation with the rest two keys for two different

cases: complete block and incomplete block, as shown in Figure 2.4 (a) and (b).

The authors analyzed the security of their design and provided an upper bound

of success probability for the random attack; the upper bound was later tightened

by Minematsu and Matsushima in [47].

Using three keys in XCBC is expensive due to key generation and storage re-

quired. Kurosawa and Iwata in [37] presented a Two-key CBC-MAC (TMAC)(Figure 2.5).

Chapter 2 Background and Literature Review 12

(a)

(b)

Mi

Ek

M3

Ek

M2

Ek

M1

Ek

T

...

Hk2(Cst1)

Mi | pad

Ek

M3

Ek

M2

Ek

M1

Ek

T

...

Hk2(Cst2)

Figure 2.5: TMAC Scheme: (a) last block without padding (b) last block
with padding

The two keys used in XCBC are replaced by two hashed values generated with

one key. They showed that TMAC had a same level of security as XCBC.

To further reduce keys, Iwata and Kurosawa proposed One-key CBC-MAC (OMAC)

[32] where only one key is used (by the block cipher) and the last block is marked

with a Galois Field [41] multiplication, which is easy to implement in hardware

and has performance benefit if implemented in software. The structure of OMAC

scheme is expressed in Figure 2.6.

The above MAC schemes are all stateless designs. McGrew and Viega in [45]

Chapter 2 Background and Literature Review 13

(a)

(b)

Mi

Ek

M3

Ek

M2

Ek

M1

Ek

T

...

L.u

Mi | pad

Ek

M3

Ek

M2

Ek

M1

Ek

T

...

L.u
2

Figure 2.6: OMAC Scheme: (a) last block without padding (b) last block
with padding. L is Ek(0) and u is a constant value

introduced a stateful MAC design in an authenticated-encryption scheme, called

Galois/Counter Mode (GCM) authenticated encryption. The MAC scheme of

GCM uses a nonce as a state. The nonce is generated with a block cipher that

takes a value (named as Initialization Vector (IV)) as input. In the design, the

Galois field multiplication is applied to process blocks; the counter value is used

for the system sequential operation state and the counter mode of operation

is incorporated into the MAC generation to identify messages of different time

periods. GCM is designed for both confidentiality and integrity of the message.

Its security requires that the encryption in GCM be secure and the collision

I I I I I I

.r 1'\ .f 1'\
\.. l..l \.. V

I I I I I I

J [\ J [\
'\. LJ "\. V'

Chapter 2 Background and Literature Review 14

probability of the ciphertext blocks be low. Iwata, Ohashi and Minematsu later

identified the weakness in the security evaluation given in the original paper and

presented an improved evaluation result in [33].

The iterated MAC designs incur long latency due to their sequential block oper-

ations. To reduce the delay, parallel MAC designs were proposed. In the parallel

MAC scheme, all blocks of a message are processed in parallel.

A simple parallel MAC scheme is XORing all the encrypted input data blocks to

form the tag. However, as pointed out in [5], this scheme will generate the same

result for different messages if they are made of a same set of data blocks.

EkEkEk

T

...

Ek

IV || T

i | Mi2 | M21 | M11 | IV

Figure 2.7: XOR-MAC Scheme: IV can be a counter or a random number

In [7], Bellare, Guerin and Rogaway presented a parallel MAC scheme named

XOR MAC, where each block is encrypted and all encrypted blocks are XORed

for the tag value, as shown in Figure 2.7. A parameter IV is used as the state in

XOR-MAC and IV can be a secret counter value or random number. To ensure

the order of individual blocks in the message, each block is associated with a

Chapter 2 Background and Literature Review 15

sequence number. The block data and its sequence number each take the half

size of the encryption function input; therefore, the number of blocks for the

message are doubled and more cipher operations are incurred.

IV + 1

Ek

z0

IV

Ek

y0

T

...

IV || T

Mi+i*y0M2+2*y0M1+1*y0z0

EkEkEkEk

(a)

(b)

Figure 2.8: XECB-MAC Scheme: (a) XECB-MAC and (b) z0 and y0: IV
can be a counter or a random number

To reduce the number of cipher operations, Gligor and Donescu introduced

eXtended Electronic Codebook MAC (XECB-MAC) (depicted in Figure 2.8)

[27], where a full block size of data are processed by each block cipher and the

order of each block Mi is marked by the operation Mi + i ∗ y0 (i is the input

block index and y0 the secret one-time value).

I I I I I I

L_ ~ L_ ~
\. ..) \.. ..)

Chapter 2 Background and Literature Review 16

Mi | Pad

Ek

M3

Ek

M2

Ek

M1

Ek

Gray

Code1

Gray

Code2

Gray

Code3

0 or GF(2
n
)

Operation

Ek

T

...

Figure 2.9: PMAC Scheme

In [13], Parallel MAC (PMAC) (as illustrated in Figure 2.9) was introduced.

Compared with the XOR MAC and XECB MAC, PMAC requires less block

cipher operations and accepts messages of varied lengths. In PMAC, each block

is XORed with a Gray code (for the block ordering). The padding of the last

message block is marked with a GF (Galois Field) function. The authors showed

that PMAC was secure if the block cipher used behaved like a pseudorandom

permutation; the probability that an adversary can distinguish the PMAC from

a pseudorandom function is the sum of the output collision probability of internal

block cipher operations and the probability of MAC collision.

The concept of tweakable block cipher was introduced by Liskov, Rivest, and

Wagner in [43]. Rogaway presented two efficient implementations of tweakable

block cipher (see Figure 2.11(a)) in [54] and applied this implementation to re-

place the block cipher used in the original PMAC and Offset Codebook (OCB)

authenticated encryption mode [56]. The advantages of constructing PMAC

Chapter 2 Background and Literature Review 17

(a)

(b)

MiM3

Ek
2

M2

Ek
2

M1

Ek
2

T

...

Ek
2
3

Mi | padM3

Ek
2

M2

Ek
2

M1

Ek
2

Ek
2
5 T

...

Figure 2.10: Tweakable Block Cipher Based PMAC Scheme

with tweakable block cipher include easier implementation and simpler security

analysis. In tweakable based PMAC, input blocks processing is packaged into a

tweakable block cipher E2
k to form the temperary output blocks. All the tem-

parary output blocks are XORed then encrypted with another tweakable block

E2
k3 for no-padding case and E2

k5 for padding case. The difference between E2
k

and E2
k3 is expressed in Figure 2.11(b). This packaged processing simplifies the

structure of the original PMAC where an input block is first XORed with ri·L

then encrypted. This simplification of structure also reduces the complexity of

computational based security analysis on PMAC.

Chapter 2 Background and Literature Review 18

Mi

Ci

Δ

Mi

Ci

Δ

Δ

Δ = 2
i-1

*N

N= Ek(IV)

(XE) (XEX)

Ek

Ek

Δ1 = 2
i-1

*N

Mi

Ci

Δ2

(Ek
2
3)

Mi

Ci

Δ1

(Ek
2
)

Δ2 = 3*2
i-1

*N

Ek Ek

(a)

(b)

Figure 2.11: Tweakable Block Cipher in PMAC: (a) Tweakable Block Cipher
XE and XEX; (b) E2

k and E2
k3

Chapter 2 Background and Literature Review 19

2.2.2 Memory Data Authentication

For the processor memory data authentication, the data is often of a fixed length

(determined by the processor cache line size). There are two typical authentica-

tion designs: cryptographic hash function based, and MAC scheme based.

The hash-based design is the stateless scheme, which cannot effectively counter

the replay attack. Therefore, memory protection systems that use hash function

as integrity protection component, such as [25, 40, 62, 63], usually need to include

additional components to defend replay attacks.

The MAC based scheme allows for stateful designs and tags in a large value range.

Therefore, the MAC based scheme is suitable for data memory protection.

In [67], Yan et al. proposed an AE design to protect the confidential and integrity

of memory data with Galois/Counter Mode (GCM) operations. A data block to

be protected is divided into blocks, each of the same size as the block cipher. Each

data is encrypted and the tag of the whole encrypted data block is generated with

a nonce that is based on the data address and its counter value. The counter for

a data block is the concatenation of two parts: a major counter (64 bits) and a

minor counter (no more than 8 bits). The major counter will be updated when

the minor counter is overflowed.

In [57] Rogers and Milenkovic proposed another AE design aiming to protect

both code and data in the memory. A PMAC scheme is used in the design for

memory data authentication. The tag for a memory data is associated with the

data address and the sequence number, and the sequence number is unique to

each tag generation for this memory location. It is an Encrypt-and-Authenticate

scheme, where both the tag and the ciphertext are generated on the plaintext

Chapter 2 Background and Literature Review 20

data. Bellare and Namprempre in [9] pointed out the Encrypt-and-Authenticate

design is not as secure as Encrypt-then-Authenticate design, where the data is

first encrypted and the encrypted data is then tagged.

The above memory data protections are built on the crypto-primitives and have

a fixed design complexity for tag generation; the design cost is high and the cost

stays same even with small-sized tags. However, for many embedded systems,

where resources are stringent, the cost-effectiveness is essential. In [30], the

authors proposed a tag generation design that is based on a sequence of random

bit-operations; the design aims for the low tag storage consumption and on-chip

area cost, and can be optimized for a given tag size. We will analyse this design

and improve it for a better memory data protection in this thesis.

There are also other protection designs that are not based on MAC or hash.

In [22], Elbaz et al. introduced a hardware design aiming to protect both the

read-only and read-write data. The structure adopted in this design is similar

to Authenticate-then-Encrypt. The tag for read-only data is the address of the

data, while the tag for read-write data is the address of data concatenated with

a random number. Data protected is concatenated with the tag and encrypted

with block cipher. The ciphertext block is sent to off-chip memory. According

to the analysis in [9] by Bellare and Namprempre, this design is less secure than

the design with an Encrypt-then-Authenticate scheme. Another weakness of the

design is the restrict tag size; the short tags of different data can easily collide,

especially for large amount of data, which increases the attack success probability.

In [64], Vaslin et al. designed a memory protection system using one-time pad

(OTP) for encryption and CRC checksum module for integrity checking. For

each data protected, a tuple (address, timestamp (TS), padding value (PV))

Chapter 2 Background and Literature Review 21

is encrypted to form an OTP. A checksum is computed with CRC (Cyclic Re-

dundancy Check) [52] on plaintext data. This checksum is stored on-chip. The

timestamp for each data is also saved on the chip. The OTP is XORed with plain-

text data to form the ciphertext. The ciphertext is stored on an off-chip memory.

When the ciphertext is retrieved, it is XORed with the OTP obtained with tu-

ple (address, timestamp (TS), PV). The output of XOR is used to compute a

checksum (CS2) with CRC and compared with the checksum (CS1) on-chip. The

weakness of this design is that CRC is less secure compared to the hash functions

such as MD5 or SHA-1, as pointed by the authors in this paper and by Elbaz

et al. in [23]. To address the weakness, Crenne et al. introduced a configurable

memory protection system in [16]. Instead of using OTP and CRC, the improved

design uses AES-GCM to protect the data integrity and confidentiality.

Most stateful authentication designs utilize an arbitrary number called nonce.

Nonce can be static or dynamic. Being constantly changing in value, dynamic

nonces provide a much stronger security protection than static nonce, and have

drawn increasing attention in memory protection systems [21, 26, 31, 62, 67, 68].

2.2.3 Security Evaluation

Compared with the security designs, which are abundant and have been studied

for decades, works on security evaluation are relative lacking. So far, the security

evaluations basically follow a two-step approach: setting up the threat/attack

model for a given design and investigating how the security measures imple-

mented in the design can fight against the modeled attacks.

Chapter 2 Background and Literature Review 22

The model can be an internationally-approved set of security standards such as

the Common Criteria (CC) [1], the NIST FIPS [3], or a theoretical model [19],

often used in a formal approach.

Formal methods are usually used in communication protocol analysis to guaran-

tee certain security properties even if a malicious party has access to the com-

munication channel [15]. Issues in formal methods for cryptographic protocol

analysis were discussed in [46].

The assessment of a design security against the modelled attacks can be theoret-

ical induction [51], or statistical experiments, for example, testing randomness

of a random generator [60]. In [59] and [61], NIST conducted randomness tests

on the Advanced Encryption Standard (AES) candidates with the randomness

examination tests introduced in [60].

The evaluation can also base on the feasibility of attacks. For example, proving

that a known attack scheme is infeasible in terms of its computational complexity.

If the attacking scheme is computationally intractable, the design is regarded as

secure. Another evaluation scheme that has been found in the cryptographic

area is the success probability of attacks. An attack is effective if it can succeed

with a non-negligible probability [9, 55].

In [28] Goldreich et al. modelled a security design as a Pseudorandom Function

(PRF) and used the distinguishability between the PRF and a random function

(RF) for evaluation of security against random attacks. If the value produced by

the PRF could not be distinguished from the result from the RF, the design is

deemed as secure.

Chapter 2 Background and Literature Review 23

Ludy and Rackoff in [44] treated block ciphers as a Pseudorandom Permutation

(PRP) and the design was evaluated based on the probability of output collisions

from the PRP.

The success probability has mostly adopted in the MAC design for random at-

tacks [8, 12, 47]. The distinshability metrics is also of some popularity [13].

Because the computation of success probability of a MAC design is usually ef-

fected by its design details, some researchers think that such evaluation mecha-

nism is “complex and error-prone” [14].

To relieve the difficulties and improve the evaluation effectiveness, some re-

searchers have attempted to abstract the computation of success probability in

such a way that it is not affected by the details of the evaluated systems.

One such an attempt is the “game-playing proof” first introduced by Goldwasser,

Micali [29] and Yao [69]. The approach was then adopted in the security analysis

of various encryption systems like [58] and authentication systems [6]. In [35],

Kilian and Rogaway improved the game-playing proof by modeling the evalu-

ated system with program code. This improvement approach, named as the

code-based game-plaing proof, motivated the development of automated security

evaluation of cryptographic systems [14]. In the area of data protection, Bellare

and Rogaway are the first to apply this code-based game-playing proof in the

security evaluation of CBC-MAC in [10]. The approach was later used in the

security evaluation of encryption and authentication systems [70].

One issue with the game-playing proof is that the evaluated system should be

constructed by operations whose behaviors have been systematically analyzed,

for example the cryptographic primitives, which prohibits the wide applications

Chapter 2 Background and Literature Review 24

of the evaluation approach.

In this thesis, we evaluate the memory data authentication design proposed in

[30]. Our evaluation is based on the collisions of the random values in the system,

which will be discussed in the following chapters.

Chapter 3

CETD: A Cost Effective Data

Authentication Design

The cost effective data authentication design was proposed by Hong et al. in [30].

The design aims to reduce the design implementation cost so that it is feasible

to memory data protection in embedded systems.

Secret-value
Geneation

Address

Enc/Dec

Data

[data]||tagCPU Cache

Secure on-chip

environment

Insecure

external

memory
Tag Generation/Data

Authentication Bus

nonce

dynamic
key

Figure 3.1: System Overview

25

Chapter 3 CETD: A Cost Effective Data Authentication Design 26

3.1 Design Overview

The design is based on a stateful scheme and targets a system that has a secure

processor chip and insecure off-chip memory, as shown in Figure 3.1.

The off-chip memory and its buses are accessible to attackers and the memory

data can be snooped and altered by the attacker. Therefore, the plaintext data

is encrypted and the encrypted data is tagged. The encrypted data and its tag

are stored in the memory. When a data is required, its encrypted value and the

related tag are fetched from the memory into the processor chip, then the tag

value of the fetched data is re-calculated and compared with the tag obtained

from the memory. If both values are the same, the data is authenticated and can

be further decrypted for use. Otherwise, the data should be discarded.

The data protection design consists of three components: 1) encryption/decryp-

tion unit, 2) secret value generation unit, and 3) tag generation/data authen-

tication unit. The block cipher is used in the encryption/decryption and tag

generation process.

The secret value is stateful and carries the information of memory access time

and access location. The value serves as the dynamic key to the data encryption

and decryption, and is also used as the nonce in the tag generation.

The encryption/decryption uses the symmetric block cipher with the Output

FeedBack (OFB) [24] mode operations and the indirect-memory encryption scheme

[65] is used, as shown in Figure 3.2. For encryption (see Figure 3.2(a)), each block

data is XORed with a random value and the XORs on all blocks are performed

in parallel (which is fast), but the generations of the random value for each block

Chapter 3 CETD: A Cost Effective Data Authentication Design 27

are chained. The decryption (Figure 3.2(b)) is similar to the encryption, the only

difference is that the result of XOR is the deciphered plaintext.

Ciphertext 1

Plaintext 1

Ciphertext 2

Plaintext 2

Ciphertext n

Plaintext n

Ek

Plaintext 1

Ciphertext 1

Plaintext 2

Cipertext 2

Plaintext n

Ciphertext n

EkDynamic Key
Ek

Ek Ek Ek

(b)

(a)

Dynamic Key

Figure 3.2: (a) Encryption (b) Decryption

In the enc/dec design, only one hardware encryption component is required, and

it is used sequentially for all data blocks, which therefore saves the hardware cost.

In addition, the design allows the overlap of the random value generation with

the memory access so that the impact of the decryption on the overall system

performance can be reduced.

The CETD design for the data authentication is composed by the nonce gener-

ation and tag generation. They are detailed in the following subsections.

--­,-----
:
!
:
:
!
!

:
:
!
:
:
!
:
!
l _________________________________ -- -- ---------------

Chapter 3 CETD: A Cost Effective Data Authentication Design 28

3.2 Tag Generation

The tag generation process is given in Figure 3.3(a), where the input encrypted

data is divided into blocks with the size same as that of the tag. The process

consists of three steps: 1) block segment shuffle 2) block bit rotation, and 3)

block XOR.

The block segment shuffle is randomly choosing a block pair and swapping bit-

segments between two blocks, as demonstrated in Figure 3.3(b), where 2-bit

segments in blocks Di and Dj are swapped. There can be many rounds of

swaps. For each round, the swap can be performed on a different block pair

and with a different segment size, and the segment position in the block can

also be different. The bit rotation in the second step is performed on individual

blocks. An example is given in Figure 3.3(c), where a block is left-rotate-shifted

3 bits. For each rotation, the shift distance can be varied. In the final XOR step,

blocks from the rotation are merged into one block as a tag value.

The design associates the tag generation complexity with the tag size. Big tag

means big block, hence the small number of blocks involved in the process, which

in turn, changes the design space of the tag generation. Hong et al., the authors

of the CETD design in [30], showed that for a given tag size there is an optimal

design with a minimal cost. Hong et al has also demonstrated that the tag value

generated is uniformly distributed over the tag value space if the encrypted data

is uniformly random.

Chapter 3 CETD: A Cost Effective Data Authentication Design 29

D1 D2 Dm

X1 X2 Xm

Block Shuffle

Y1 Y2 Ym

Block Rotation

tag

D

X

Y

nonce

(a)

(b) (c)

1 0 0 1 0 1 1 1before
shuffle:

0 1 0 1 0 1 1 0

Di Dj

0 1 1 1 0 1 1 1
after

shuffle: 0 1 0 1 0 0 0 0
after

rotation: 0 1 1 0 1 0 1 0

before
rotation: 0 1 0 0 1 1 0 1

Figure 3.3: Tag Generation Process (a) diagram (b) shuffle example (c)
rotation example

3.3 Nonce Design

The operations of both the block shuffle and block rotation steps in the tag

generation are controlled by a nonce value. The nonce is designed to change

I I _ __j

Chapter 3 CETD: A Cost Effective Data Authentication Design 30

with the memory data access time and location.

Access Seq.
(A1)

R1 C1

1
2
3

0x1287
0x1287
0x1287

0
1
2

i
i+1
i+2

0x1287
0xF469
0xF469

max
0
1

MemAddr nonce

A1
A2
A3

enc(A1, R1, C1)
enc(A2, R2, C2)
enc(A3, R3, C3)

A R C

enc
nonce

(b)

(a)

(c)

Figure 3.4: Nonce Generation (a) structural overview (b) change of random
number (c) dedicated nonce values

For each memory location, there are a dedicated counter and an associated ran-

dom number. The nonce is generated by a block cipher that takes the memory

address A, the associated random number R, and the counter value C as the

input, as shown in Figure 3.4(a). The counter value is incremented for each up-

date operation to the same location; when the counter reaches to its maximum, it

will wrap around and a new random number is used. The table in Figure 3.4(b)

demonstrates how the counter value and random number are changed for a se-

quence of memory update operations to the memory location A1. Therefore, the

nonce value varies with the memory location and its counter value, as specified

in Figure 3.4(c). The nonce stays unchanged for a given memory data and the

processor will use the nonce to authenticate the data each time it is fetched from

memory.

Hong et al. proposed an implementation for such nonce generation and manage-

ment on-chip. The design greatly reduces the on-chip cost, achieving up to 90%

savings that would be required by a state-of-the-art design.

_T ______ ___ T _________ T ____ -----n

L_ -- ---------------.--------------____ j

• • •
• • •

..
• • •

• • •
• • •

Chapter 3 CETD: A Cost Effective Data Authentication Design 31

This thesis focuses on the security of the CETD design, which is discussed in the

following two chapters (Chapter 4 and Chapter 5).

Chapter 4

Security Evaluation of the Tag

Design in CETD

In this chapter, we investigate the security of of the tag design in CETD. Attacks

on the tag design can be launched with random values or with chosen values.

It has been demonstrated in [30] that the big-size tag offers a high security to

counter the random attack. However, no work has been done on attacks with a

chosen value.

We tested the CETD design with some input data. Figure 4.1 gives the number

of distinct tag values collected in the experiment for each input. The number of

distinct tag values shows the size of effective tag space. From the experiment,

we can see that some data have smaller effective tag space sizes than the others.

This invariance of effective tag space sizes indicates that the system is not equally

secure for different data. For an attack with some judiciously-chosen data, a high

success probability exists. Therefore, we focus on the chosen-value attacks.

32

Chapter 4 Security Evaluation of the Tag Design in CETD 33

0

20

40

60

80

100

120

140

Data

Number of Distinct Tags

Figure 4.1: Experiment Data: Number of Distinct Tag Values of Different
Data

As a contribution, we identify three pitfalls in this design:

• There are some correlations between data and tag.

• For a given data, its tag is not distributed over the whole tag value space;

the effective tag space size for a given data is reduced.

• The effective tag space size varies from data and data.

We show that CETD design is not as secure against the chose-value attacks as

against the random attacks.

The chapter is organized as follows.

The security weakness of CETD is discussed in Section 4.1. Our experimental

verification is expressed in Section 4.2. The chapter is concluded in Section 4.3.

Chapter 4 Security Evaluation of the Tag Design in CETD 34

4.1 Analysis

In [22], Elbaz et al. proposed a data-tampering model that consists of three

types of attacks: replay, splicing and spoofing. With the replay attack, the

current data is replaced with an old valid data of the same memory location;

while in the splicing attack, a copy of valid data from other location is used; for

the spoofing attack, instead of using data obtained from the system, it fakes the

data with a new one. This model was also mentioned in [20, 21, 23] and adopted

in the security evaluation of data integrity protection systems in [30, 39, 57, 64].

Here we view attacks from the data authentication perspective and categorize

attacks into different three groups:

• Copy-And-Replay Attack (CAR Attack) , where the attacker replays a

copy of a valid data/tag pair from a different memory location or the same

memory location but of a previous time spot1;

• Forged Tag Attack (FT Attack) , where the data used by the attack may

not be an existing or old data and the related tag is forged;

• Resused Tag Attack (RT Attack) , where the data used by the attack

may not be an existing or old data and the tag of the current valid data is

reused.

The attacks can escape the integrity checking if 1) the true data in the memory

have a high tag collision rate for different nonce values (CAR and RT attacks);

and/or 2) the tag of the true data has a high collision with a tag from a fake

data for a same nonce (RT attack).

1Replaying previous data from the same location is commonly called replay attack, which
is part of CAR attack we defined here.

Chapter 4 Security Evaluation of the Tag Design in CETD 35

Therefore, we evaluate the security of the design against a chosen data attack

based on the tag collision rate of the data. Ideally, the design is highly secure if

the tag values for any given data are uniformly distributed over the whole tag

value space.

To facilitate the description, we define bits of value 1 as set-bits, bits of value 0

unset-bits, and the number of bits of a same bit value as bit frequency, Fset(D)

for set-bit frequency of data D and Funset(D) for unset-bit frequency.

The frequency is either odd or even, which is defined as the Bit-frequency

Parity (BFP).

Let us consider an m-block input data D; each block is of n bits (namely, the

tag size). If there are k set-bits in D, then the unset-bit frequency of D is

Funset(D) = mn− k.

The big weakness of the CETD design is that the block shuffle and shift op-

erations in the design cannot camouflage the bit frequency of the input data.

The block XOR operation in the design takes the value that has the same bit

frequency as the input data. That is

Fset(SR(D)) = Fset(D), (4.1)

where SR(.) represents the block shuffle and bit rotation operations in the CETD.

We use
⊕

() to denote the XOR of m blocks. The tag of CETD is

tag =
⊕

(SR(D)). (4.2)

Chapter 4 Security Evaluation of the Tag Design in CETD 36

For a D of k set-bits, its possible tag values can be derived as follows.

When k = 0, the effective tag space (τ0) of D only contains one value that

consists of all unset-bits, and the size of the effective tag space τ0 is

|τ0| = 1.

Here we use symbol τk for effective tag space and |τk| for its size; k is the number

of set bits in the input data D.

When k = 1, there is one set-bit in the tag. The size of the effective tag space is

|τ1| =
(
n

1

)
.

When k = 2, the two set-bits can be part of the tag, or they can be canceled

after block shuffle, bit rotation and XOR operations, resulting in zero set-bits in

the tag, which is τ0. Therefore, the size of the effective tag space is

|τ2| =
(
n

2

)
+ |τ0|.

Similarly, when k = 3, the three set-bits can be part of the tag, or two of the

set-bits are canceled and only one set-bit is left in the tag (equivalent to the case

of one set-bit tag). The size of the effective tag space is

|τ3| =
(
n

3

)
+ |τ1|.

Chapter 4 Security Evaluation of the Tag Design in CETD 37

In the same way, we can obtain the effective tag space size for k ≤ n:

|τk| =
bk/2c∑
i=0

(
n

k − 2 ∗ i

)
, k ≤ n (4.3)

|τk| increases with k.

When k = n− 1,

|τn−1| =
(

n

n− 1

)
+ |τn−3|+ · · ·+ |τ1| = 2n−1, (4.4)

and when k = n,

|τn| =
(
n

n

)
+ |τn−2|+ · · ·+ |τ0| = 2n−1. (4.5)

When k = n + 1, some set-bits in the m-blocks to the XOR operation will have

a same bit position, and they will be cancelled by XOR operation and the tag

will have n− 1 set-bits; therefore, the effective tag space size is

|τn+1| = |τn−1| = 2n−1.

When k = n+ 2, two set-bits should be cancelled, and

|τn+2| = |τn| = 2n−1.

Following the same trend, we have the effective tag space size for n ≤ k ≤

n(m− 1):

|τk| = 2n−1, n ≤ k ≤ n(m− 1). (4.6)

Chapter 4 Security Evaluation of the Tag Design in CETD 38

But when k > n(m− 1), there are mn− k unset-bits, which is equivalent to the

case n− (mn− k) set-bit cases and can be written

|τk| = |τk−n(m−1)|.

Putting together, we have the effective tag space size for a data D with k:

|τk| =


∑bk/2c

i=0

(
n

k−2∗i

)
, if 0 ≤ k ≤ n;

2n−1 if n ≤ k ≤ (m− 1)n;∑b(mn−k)/2c
i=0

(
n

n−2∗i

)
if (m− 1)n ≤ k ≤ mn.

(4.7)

From the above analysis, we can observe the following weaknesses of the CETD

design:

Observation 1: The effective tag value space for a given data input is smaller

than the full tag value domain and the effective tag space varies with different

input data. The maximal effective tag space size is just half of the full tag value

space.

When set-bits or unset-bits are especially dominant in the data, the related

number of distinct tags is even much lower than the half of the full tag value space,

hence the related tag collision probability is high, as illustrated in Figure 4.2 for

the 16-bit data and 8-bit tag. In the extreme case, when the data is of all 0’s or

all 1’s, the effective tag space is reduced to only one value and there is a 100%

success if attacking with such a known value/tag pair.

Based on Observation 1, one can launch a CAR attack (Copy-And-Replay at-

tack) by choosing an existing data-tag pair or instrument an attack with a new

Chapter 4 Security Evaluation of the Tag Design in CETD 39

data (RT attack) that has a small effective tag space for a high attack success

probability.

It must be pointed out that some data, such as all-set-bit (or all-unset-bit) value,

though offering high success probabilities, may not be the choice of the attacker.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0/16 1/15 2/14 3/13 4/12 5/11 6/10 7/9 8/8 9/7 10/6 11/5 12/4 13/3 14/2 15/1 16/0

Tag Space and Collision Probability

rel.tag.domain

tag collision Prob.

Figure 4.2: Reduced Effective Tag Space and Increased Tag Collision Prob-
ability

Observation 2: For CETD, a data and its tag have a same bit frequency parity.

If we divide the input data set into two groups: one group, Dodd, with an odd

bit-frequency and another group, Deven, with an even bit-frequency, the tag set,

τodd, for Dodd will never collide with the tag set, τeven, for Deven, which can be

expressed as

Dodd ∪Deven = 1 Dodd ∩Deven = Φ

τodd ∪ τeven = 1 τodd ∩ τeven = Φ.

Chapter 4 Security Evaluation of the Tag Design in CETD 40

We use the 16-bit data and 4-bit tag to demonstrate. DataD1 = 0000100100001000

will have a tag that consists of an odd number of set-bits since D has 3 (odd

number) 1’s, and data D2 = 1000100100001000 will have a tag of even number of

1’s. Both tags of D1 and D2 will be certainly different. The Observation 2 shows

that when forging a tag for a given data, the attacker only needs to consider half

of the full tag domain value and this half tag domain consists of values that have

the same BFP (bit frequency parity) as the data. By choosing a value from the

space, the attack success probability is doubled as compared with the random

attack.

As can be seen, the CETD design leaves some pitfalls for chosen-value attacks.

4.2 Experiments and Results

We have built a simulator to simulate the replay and splicing attacks on CETD.

The simulator is written in C. Simulations are conducted on UNIX x64 plat-

forms. Due to the resource restriction, the experiments are only performed for

two limited input data sets: full 16-bit data set that covers all 16-bit values, and

partial 32-bit data set that only includes values ranging from 0 to 65535 in the

32-bit data space. The tag length for both two input sets is also set to a small

8 bits. We use 128-bits key to generate the 128-bits nonce. The block cipher

we choose is the Rijndael AES implemented in PolarSSL. Figure 4.3 shows the

experimental setup.

We first examine the number of distinct tags (namely the effective tag space size)

of a data in the 16-bit input data set for the replay and splicing attacks. For

demonstration, Figure 4.4 shows the effective tag space size of the first 100 input

Chapter 4 Security Evaluation of the Tag Design in CETD 41

test round
<10000?

new nonce
generation

tag
generation

Tag
sequence

Distinct
tag count

next test
round

no

yes

input data

Figure 4.3: Experimental Setup

values in 1000-round tests, as shown in Figure 4.4 (a) and the first 600 input

values in 10000-round tests (Figure 4.4 (b)). In the figure, the x-axis represents

the input data in the form of decimal value and the y-axis is the effective tag space

size. As can be seen from Figure 4.4(a), the effective tag space size varies for

different input data, and this situation is not changed with different test rounds

(as demonstrated in Figure 4.4(b)), which demonstrates a convergent result.

Table 4.1 shows the statistic information of the effective tag space size on all

data values with the test rounds of 1000 and 10000. The maximum, minimum,

variance and the average effective tag space size are, respectively, given in the

last four columns.

~------

1 ~--------~
I
I
I
I
I
I
I I L _______________________________________ l

Chapter 4 Security Evaluation of the Tag Design in CETD 42

Figure 4.4: Effective Tag Space Size for Individual Input Data(the 16-bit
input case): (a) first 100 values of 1000-round case (b) first 600 values of

10000-round case

Table 4.1: Effective Tag Space Size: 16-bit data case

test rounds maximum minimum variance average

1000 128 1 148.91 123.2
10000 128 1 149.22 123.56

From Figure 4.4 and Table 4.1 we can see that

• the effective tag space size of an input data is effected by the data value to

be tagged;

• the tag of an input data is not distributed uniformly (variance is as big as

148.19 in 1000-round case and 149.22 in 10000-round case), and

• the maximum tag space size among all input data is no more than half of

the full tag domain size (256).

To see the observations are still true for different data size, we also simulate replay

and splicing attacks on 32-bit input data set. Figure 4.5 shows the effective tag

space size of first 600 input values in 1000-round tests. The statistic information

Chapter 4 Security Evaluation of the Tag Design in CETD 43

Figure 4.5: Effective Tag Space Size for Individual Input Data: 32-bit data
case

of the effective tag space size of all input data in the 32-bit input set is given in

Table 4.2. From Figure 4.5 and Table 4.2 we can see that the results of 32-bit

data is same as the results of 16-bit data.

Table 4.2: Effective Tag Space Size: 32-bit data case

test rounds max min var aver

1000 128 1 148.48 123.2

The experiment verifies the security weakness of the CETD design that we ana-

lyzed in Section 3.

4.3 Summary

In this chapter, we studied the tag generation design for memory data integrity

protection in the embedded systems. We evaluated the CETD design that is

cost effective and can be used for cost-restrained embedded systems. Both our

analysis and experiments showed that for CETD the effective tag space size for

Chapter 4 Security Evaluation of the Tag Design in CETD 44

each data is no more than half of the full tag domain size and this size is effected

by the data value. Therefore, the design has high tag collision rates for some

data values and exposes a great risk if such data were used in the attacks.

Chapter 5

Security Evaluation of the Nonce

Design in CETD

For the whole system secure, it is required the nonce used in the system secure.

In this chapter, we evaluate the nonce design in CETD and compare it with a

state-of-the-art design.

Our main contributions are:

• we presented a novel quantitative security evaluation approach that is based

on both the randomness and the uniqueness of nonce values, and

• we evaluated the security of the nonce design in CETD [30] and compare

its security with a design adopted in [67]; we found that the design by

[67] is more secure than that by CETD for a limit number of nonces to be

used; but when the number of nonces used exceeds this limit, the design in

CETD becomes better.

45

Chapter 5 Security Evaluation of the Nonce Design in CETD 46

The rest of the chapter is arranged as follows.

The security of the nonce design in CETD is evaluated in Section 5.1. The

experimental verification is given in Section 5.2. The chapter is concluded in

Section 5.3.

5.1 Analysis

Nonce is used as the state in the tag generation in CETD. The nonce is secure

if it is random and unique.

Attacks on the nonce design can be basically divided into two types: 1) random

attacks, where for a forged data, the attacker randomly chooses a nonce value

to generate its tag and try to pass the data authentication; and 2) used-nonce

attacks, where the attacker has cracked a nonce based on previously observed

tag generation with some techniques, such as side-channel analysis of system

internal operations, and uses the nonce as the current nonce for a data block.

For the random attack, the design security is determined by the randomness of

the nonce. We use the maximum probability of all nonce values for its random-

ness. If the nonce is purely random, its values should be uniformly distributed

and all values have a same probability.

Here we assume a typical block cipher, e.g. AES [17], is used in the design.

A block cipher is a deterministic algorithm that takes a fixed-length input (i.e.,

the plaintext data) and generates, with a secret key, an output (ciphertext data)

of the size same as that of the input. The size of the cipher input and output is

also regarded as the block cipher size.

Chapter 5 Security Evaluation of the Nonce Design in CETD 47

The block cipher (here generally denoted as Ek()) has two main features: bijec-

tive transformation and output uniformly random. With the bijective transfor-

mation, each input of the cipher maps uniquely to one output; namely, Ek(a) 6=

Ek(b), if a 6= b; if Ek(a)=Ek(b), a and b must be the same. The output uniform

randomness means all values in the output domain have an equal chance to be

the cipher result.

When the block cipher is used in the nonce generation, the nonce size is the

block cipher size, as shown in Figure 5.1, where K is the block cipher size, and

A, RN and C are the address, random number and the counter value associated

with a memory data. In CETD, the counter size and random number size can be

customized (one of the main features in the CETD design), but the total input

size is fixed, namely

K = SA + SRN + SC ,

where SA, SRN , and SC are, respectively, the size of A, RN , and C.

A RN

Block Cipher

C

nonce

K

K

Figure 5.1: Nonce Generation in CETD

With the uniform distribution of the cipher output, the probability of a randomly-

picked value that happens to be the nonce of the targeted cipher-data, P(r−attack),

Chapter 5 Security Evaluation of the Nonce Design in CETD 48

is

P(r−attack) =
1

2K
, (5.1)

where K is the nonce size. As can be seen, the larger the nonce size, the lower

the success probability of the random attack.

For the used-nonce attack, the success of the attack is relying on whether the

current nonce is same as the used nonce, which is not only determined by the

randomness of the cipher output but also decided by the output uniqueness. Since

the output of the block cipher is unique if its input is unique, the uniqueness of

nonce is related to the uniqueness of the cipher input. The success of a used-nonce

attack is only possible when the input is not unique. Therefore, we evaluate

the security of the nonce design against the used-nonce attack based

on two factors: the input uniqueness and the output randomness of

the block cipher.

We use the probability of input collision, P(i−colli), to measure the uniqueness of

inputs. Lower P(i−colli) means higher uniqueness. According to the Pigeonhole

principle [34], when the length of input sequence exceeds the size of the input

value space, there will always exist collisions and P(i−colli) = 1.

For the randomness of cipher output, we similarly use the maximum probability,

P(o−rand), of all possible values. The success likelihood of a used-nonce attack

can be defined as

P(u−attack) = P(i−colli) ∗ P(o−rand), (5.2)

where P(i−colli) serves as a “gating function” to relate the success possibility of the

used-nonce attack to the nonce randomness. If P(i−colli) = 0 (namely, no input

Chapter 5 Security Evaluation of the Nonce Design in CETD 49

collisions), there are zero chances of attack success even though the outputs are

random.

There are three input components, address A, random number RN , and counter

value C to the block cipher; the input values are unique if any one of the three

is unique. In our target system (as shown in Figure 3.1), the memory address

is observable to the attacker. Therefore, we assume the attacker will apply

the used-nonce attack only on a same memory location since nonces

for different locations are always different and attacks with a nonce of different

memory location will never succeed. For a fixed memory location, we derive

P(o−rand) in Formula (5.3) and (5.4) as below.

Given the output uniform distribution of the block cipher, we have

P(o−rand) = 1/ψ, (5.3)

where ψ is the total number of possible nonce values that can be used for the

used-nonce attack. For a given memory location, the number of unique inputs is

2(K−SA) (K is the block cipher size, also the nonce size, and SA the size of memory

address); hence, there are 2(K−SA) possible unique nonce values the attacker can

use. Therefore,

P(o−rand) = 1/2(K−SA). (5.4)

With a fixed A, for two cipher inputs, if the related random numbers are identical

and the counter values are the same, the inputs will collide. Therefore, the input

collisions are closely related to whether there are random number collisions and

counter value collisions, which are in turn related to the length of nonce sequence

generated, hence the sequence of random numbers and the sequence of counter

Chapter 5 Security Evaluation of the Nonce Design in CETD 50

values used. Figure 5.2 shows simulation results on a design of 128-bit nonce

and 218-nonce space. The two plots in Figure 5.2 show the percentage of nonce

collisions over the nonce sequence length for two cases: with and without random

number in the cipher input. In the case of without random number (denoted by

“w.o. RN” in the figure), when the nonce sequence length is smaller than the

maximum counter value 218, there are no collisions. However, when the random

number comes into play (labelled as “with RN”), nonce collide and the percentage

of nonce collision exceeds 50% even for a relatively short sequence of nonce.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

5
0
0
0

2
0
0
0
0

3
5
0
0
0

5
0
0
0
0

6
5
0
0
0

8
0
0
0
0

9
5
0
0
0

1
1
0
0
0
0

1
2
5
0
0
0

1
4
0
0
0
0

1
5
5
0
0
0

1
7
0
0
0
0

1
8
5
0
0
0

2
0
0
0
0
0

2
1
5
0
0
0

2
3
0
0
0
0

2
4
5
0
0
0

2
6
0
0
0
0

2
7
5
0
0
0

2
9
0
0
0
0

3
0
5
0
0
0

3
2
0
0
0
0

3
3
5
0
0
0

3
5
0
0
0
0

3
6
5
0
0
0

Nonce Sequence Length

Percentage of Nonce Collisions

with RN

w.o. RN

Figure 5.2: Experiment Data: percentage nonce collisions over nonce se-
quence length

Therefore, Formula (5.2) can be written as

Pu−attack =

 0 Srn = 0, L ≤ 2Sct

P(i−colli) ∗ 1/2(K−SA) otherwise,
(5.5)

where 0 < P(i−colli) ≤ 1 and L the length of nonce sequence.

Formula (5.5) shows that without the random number, there are no input colli-

sions if the nonce sequence length is less than 2Sct (the counter value space). In

Chapter 5 Security Evaluation of the Nonce Design in CETD 51

this case, the success probability of the used-nonce attack is 0.

It is worthy to note that, with the presence of input random number, in contrast

to the random attack, the success probability of the used-nonce attack changes

with the memory space size, as is plotted in Figure (5.3). On most of cases, it

is higher than the probability of the random attack, and the bigger the memory

address space, the higher the success probability of the used-nonce attack.

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

� �� �� �� �� �� �� �� 	� �� ��
�

lo
g
(1
0
,
P
r)

Memory Address Size N (bits)

Success Probability of Attacks

random attack instrumented attack

Figure 5.3: Success Probability of Two Attacks with Varying Memory Size

5.2 Experiments and Results

For the security evaluation, we built a software platform, where AES is used

to generate nonce and the design can be easily changed for different configura-

tions (namely, different combination of the address size, random number size and

counter size).

We test nonce sequences with varied memory address spaces; for a given memory

location, we generate a set of nonce sequences of different lengths. Each sequence

Chapter 5 Security Evaluation of the Nonce Design in CETD 52

is generated for a fixed counter size (hence a fixed random number size), as shown

in the shaded blocks in Figure 5.4. An in-house tool, written in Perl, is used to

analyse each nonce sequence and extract the related nonce collision information.

Set mem space
Init Cnt size

Init sequence
length, L

Generate L keys
with AES

Key unique?

Increase L

Increase
Cnt size

Save L

yes

no

Figure 5.4: Software Experiment Platform

We first examined how the random number size (hence the counter size) affects

the nonce collisions and whether the AES block cipher generates a unique nonce

for a different input.

Given the limited host machine resources, we generated nonce sequences each

with a length below 800000. Therefore, we set the memory address size in the

range between 110 to 118 bits so that obtained sample data are sufficient for the

nonce collision investigation.

With a fixed memory address, for each given random number size (SRN), we

generate a set of nonce sequences of varying lengths. Figure 5.5(a) shows the

number of unique nonces in each sequence when the address size is set to 118

bits (namely, SA = 118). For the case of SRN = 0, there are no random numbers

Chapter 5 Security Evaluation of the Nonce Design in CETD 53

0

200

400

600

800

1000

1200

1
5

0

4
5

0

7
5

0

1
0

5
0

1
3

5
0

1
6

5
0

1
9

5
0

2
2

5
0

2
5

5
0

2
8

5
0

3
1

5
0

3
4

5
0

3
7

5
0

4
0

5
0

4
3

5
0

4
6

5
0

4
9

5
0

5
2

5
0

5
5

5
0

5
8

5
0

6
1

5
0

6
4

5
0

6
7

5
0

7
0

5
0

7
3

5
0

7
6

5
0

7
9

5
0

Nonce Sequence Length

Number of Unique Nonce
SA=118

Srn=6

Srn=4

Srn=0

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1
5

0

5
0

0

8
5

0

1
2

0
0

1
5

5
0

1
9

0
0

2
2

5
0

2
6

0
0

2
9

5
0

3
3

0
0

3
6

5
0

4
0

0
0

4
3

5
0

4
7

0
0

5
0

5
0

5
4

0
0

5
7

5
0

6
1

0
0

6
4

5
0

6
8

0
0

7
1

5
0

7
5

0
0

7
8

5
0

Nonce Sequence Length

Percentage of Collisions
SA = 118

Srn=6

Srn=4

Srn=0

(b)

(a)

Figure 5.5: Nonce Collisions (SA=118)

in the input and the counter size is 10 bits, the first 210 nonces are always unique,

hence the number of unique nonces linearly increases with the nonce sequence

length; but further increases of the sequence length lead to the collision for each

new nonce, therefore the number of unique nonce linearly decreases as the nonce

sequence grows; after 2 ∗ 210 nonces, all nonces are re-used and the number of

unique nonce is reduced to 0.

However with the existence of input random number (SRN > 0), the collision

Chapter 5 Security Evaluation of the Nonce Design in CETD 54

can be observed within a short nonce sequence; the collision frequency increases

with the nonce sequence length and approaches to saturation, as shown in Fig-

ure 5.5(b), where the collision percentage is calculated by (L − U)/L (L is the

nonce sequence length and U the number of unique nonces in the sequence).

The similar feature can also be observed for smaller memories, as presented in

Figure 5.6 and Figure 5.7 for SA = 115 and 113. Also from the figure (b) of

Figure 5.5,5.6, and 5.7, we can see that the large random number size helps re-

ducing nonce collisions. The percentage nonce collision is over 10% when about

5% nonce in the nonce space is used.

With the given security evaluation Formulas (5.1) and (5.5), we evaluate the

security of design proposed in [67] and the design in CETD. Both designs use

AES as the block cipher, and the block cipher size is set to 128 bits.

Attack success probabilities of the two designs against the random and used-

nonce attacks are summarized in Table 5.1. For a general view, Row 2 gives

the nonce generation function of each design; with the CETD design, address

A, random number RN , and counter C are used as the AES input, while in the

Yan’s design only the address and counter value C ′ are considered. The size

of C ′ in Yan’s design is the sum of sizes of RN and C in CETD. The success

probability of the random attack is given in Row 3 and the probabilities of the

used-nonce attack under two cases (L <= 2(128−SA), and L > 2(128−SA)) are given

in the last two rows, where the value is approximated with the input collision

probability as 1.

As can be seen from Table 5.1, both designs have the equal security against the

random attack. For the used-nonce attack, CETD has a same or higher attack

success probability than the Yan’s design. But it is still limited by 1/2(128−SA).

Chapter 5 Security Evaluation of the Nonce Design in CETD 55

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1
0

0
9
0

0
1
7

0
0

2
5

0
0

3
3

0
0

4
1

0
0

4
9

0
0

5
7

0
0

6
5

0
0

7
3

0
0

8
1

0
0

8
9

0
0

9
7

0
0

1
0

5
0
0

1
1

3
0
0

1
2

1
0
0

1
2

9
0
0

1
3

7
0
0

1
4

5
0
0

1
5

3
0
0

1
6

1
0
0

1
6

9
0
0

1
7

7
0
0

1
8

5
0
0

1
9

3
0
0

Nonce Sequence Length

Number of Unique Nonce
SA=115

Srn=7

Srn=4

Srn=0

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1
0

0
9
0

0
1
7

0
0

2
5

0
0

3
3

0
0

4
1

0
0

4
9

0
0

5
7

0
0

6
5

0
0

7
3

0
0

8
1

0
0

8
9

0
0

9
7

0
0

1
0

5
0
0

1
1

3
0
0

1
2

1
0
0

1
2

9
0
0

1
3

7
0
0

1
4

5
0
0

1
5

3
0
0

1
6

1
0
0

1
6

9
0
0

1
7

7
0
0

1
8

5
0
0

1
9

3
0
0

Nonce Sequence Length

Percentage of Collisions
SA=115

Srn=7

Srn=4

Srn=0

(a)

(b)

Figure 5.6: Nonce Collisions (SA=115)

Table 5.1: Attack Success Probability of Two Existing Designs

CETD [30] Yan’s Design [67]

nonce generation formula AES(A,RN,C) AES(A,C’)
random attack 1/2128 1/2128

used-nonce attack
L <= 2(128−SA) ∼ 1/2128−SA 0
L > 2(128−SA) 1/2128−SA 1/2128−SA

,, - 0 ,
'

-
-,

' - -,
' ~ " - - -

~ ...
""' - 0

- ..: ~

1

• ,
~ - 0

~

I 0

I

11

Chapter 5 Security Evaluation of the Nonce Design in CETD 56

0

5000

10000

15000

20000

25000

30000

35000

5
0

0
3
5

0
0

6
5

0
0

9
5

0
0

1
2

5
0
0

1
5

5
0
0

1
8

5
0
0

2
1

5
0
0

2
4

5
0
0

2
7

5
0
0

3
0

5
0
0

3
3

5
0
0

3
6

5
0
0

3
9

5
0
0

4
2

5
0
0

4
5

5
0
0

4
8

5
0
0

5
1

5
0
0

5
4

5
0
0

5
7

5
0
0

6
0

5
0
0

6
3

5
0
0

6
6

5
0
0

6
9

5
0
0

7
2

5
0
0

7
5

5
0
0

7
8

5
0
0

Nonce Sequence Length

Number of Unique Nonce
SA=113

Srn=10

Srn=5

Srn=0

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

5
0

0

4
0

0
0

7
5

0
0

1
1

0
0
0

1
4

5
0
0

1
8

0
0
0

2
1

5
0
0

2
5

0
0
0

2
8

5
0
0

3
2

0
0
0

3
5

5
0
0

3
9

0
0
0

4
2

5
0
0

4
6

0
0
0

4
9

5
0
0

5
3

0
0
0

5
6

5
0
0

6
0

0
0
0

6
3

5
0
0

6
7

0
0
0

7
0

5
0
0

7
4

0
0
0

7
7

5
0
0

Nonce Sequence Length

Percentage of Collisions
SA=113

Srn=10

Srn=5

Srn=0

(a)

(b)

Figure 5.7: Nonce Collisions (SA=113)

With a common 32-bit memory address space system and the memory block

size of 27 bytes, the probability is 1/2128−32+7 = 1/2103, which is equivalent

to resisting brutal-force attack on 103-bit nonce; but this brutal-force attack is

under the restriction of the much short nonce life as compared with the normal

static nonce.

Chapter 5 Security Evaluation of the Nonce Design in CETD 57

5.3 Summary

We evaluated the security of the nonce design in CETD and compared its security

with another existing nonce design. In these designs, a nonce is generated with a

block cipher, and the nonce changes with different memory block and access time.

Two types of attacks have been identified: the random attack with arbitrarily

chosen nonce values, and the use-nonce attack with uncovered old nonce values.

The success probabilities of the both attacks were analyzed.

It was found that the random attack basically has a lower success probability

than the used-nonce attack. For the used-nonce attack, the security of the CETD

design is degraded due to the possible input random collisions as compared with

the design without the random number in the block cipher input. The success

probability of the used-nonce attack is exponentially limited by the difference

of (nonce size and memory address size). For a typical 128-bits nonce, 32-bit

memory address, and 27-byte data block, this success probability is 1/2103, which

is equivalent to resisting brutal-force attack on 103-bit nonce; but this brutal-

force attack is under the restriction of the much short nonce life as compared

with the normal static nonce. Therefore, we regard that the nonce design in the

CETD is sufficient secure.

In the next chapter, we will focus on the security improvement of the tag design.

Chapter 6

Security Improvement on CETD

We have known the design weaknesses for the tag generation in the CETD. In

this chapter, we investigate the possible solutions to improve the security of the

CETD design, which are discussed in Sections 6.1. The analysis of final improved

CETD, the iCETD, is given in Section 6.2. The experimental verification of

our improved design is presented in Section 6.3. The chapter is concluded in

Section 6.4.

6.1 iCETD: An Improved Design

We want to improve the security of CETD at low overhead while keeping the

trade off feature (cost vs tag size) of the original design. A straightforward idea

is applying randomization functions to its input or output. Figure 6.1 shows two

examples of the designs we initially considered with the low cost XOR operation.

58

Chapter 6 Security Improvement on CETD 59

(a)

Tag

nonce

Block Segment Shuffle

Block Bit Rotation

B1 B2 Bm

Data (D)

nonce

(b)

Tag

Block Segment Shuffle

Block Bit Rotation

B1 B2 Bm

Data (D)

Figure 6.1: Two Design Options with XOR (a) injecting random bits to the
CETD output (b) injecting random bits to the CETD input

In the design of Figure 6.1(a), the random value from the nonce is injected to

the output of the CETD. The tag generated from the design can be written as

tag = r ⊕ (
⊕

(SR(D))), (6.1)

where SR(.) represents the combined shuffle and rotation operations in CETD

and
⊕

the operation that XORs all blocks and the random value r is a segment

of the nonce used in the shuffle and rotation operations.

If the design is targeted by a spoofing attack, where the nonce will be unchanged,

the r in Formula (6.1) for the forged data is the same as the r used for the true

data.

Assume the current valid data D1 with tag T1 was updated at time t1 and the

spoofing attack was lunched with a forged data D2 at time t2 (t2 > t1) during a

memory read operation. In order for the forged data to pass the authentication,

Chapter 6 Security Improvement on CETD 60

the tag value, T2, calculated for D2 should be the same as T1. The probability

of the two tags to be identical can be written as:

Pr[T1 = T2] = Pr[(r ⊕ (
⊕

(SR(D1))))⊕ (r ⊕ (
⊕

(SR(D2)))) = 0]

= Pr[(
⊕

(SR(D1)))⊕ (
⊕

(SR(D2))) = 0]. (6.2)

Formula (6.2) indicates that the tag collision probability of the design shown in

Figure 6.1(a) is the same as that of the CETD design for the spoofing (with

reused nonce) attacks. If the attacker modifies the memory data by taking ad-

vantages of the CETD weaknesses, the attack will have at least a double success

probability as compared to the random attack.

For the design shown in Figure 6.1 (b), where both the input data and tag are

randomized with the nonce value, the tag is calculated by

tag = r ⊕ (
⊕

(SR(D ⊕ nonce))). (6.3)

In the similar way, we can find that randomization of the input D with (SR(D⊕

nounce)) will still result in the same bit frequency parity for two different data

values if they have an identical bit frequency parity. For example, if D has an

odd number of 1s, any data with odd number of 1s when XORed with the same

nonce value, the resulting in parity is same; therefore, the parity of the related

tag values are the same, which effectively reduces the data space, as well as the

tag space, by half.

As we can see, the above designs with XORing random value from nonce still

Chapter 6 Security Improvement on CETD 61

carry some correlations between their input and output, which can be exploited

by the attacker. To break the input/output correlation, in our final design, we

include a non-linear random bit injection operation. For non-linear random bit

injections, the multiplication on the Galois Field [41] is a common technique.

Galois Field (Galois Field (GF)) , also called Finite Field, is a set that contains

finite number of elements. The results of arithmetics on a GF should also be

in the same GF. In [50] Nyberg proved the non-linear property of Galois Field

Multiplication (Galois Field Multiplication (GFM)). Daemen and Rijmen later

in [17] indicated that GFM and its inverse operation can be used in crypto-

graphic systems. GFM has been used in block cipher construction ([18]) and

data protection systems (GCM [45]).

With GFM, the multiplicand and multiplier have the same length. They are

expressed as polynomials. To ensure that the result of GFM is still in the same

Galois field, the product polynomial of GFM is divided by an irreducible poly-

nomial. A polynomial is irreducible if it has no divisors other than 1 and itself.

We show the procedure of GFM by using 0x57 and 0x83 as multiplicand and

multiplier. The computation is given below:

0x57 · 0x83 = 01010111 · 10000011

= (x6 + x4 + x2 + x+ 1) · (x7 + x+ 1) mod (x8 + x4 + x3 + x+ 1)

= x7 + x6 + 1

= 0xC1, (6.4)

where (x8 + x4 + x3 + x + 1) is the irreducible polynomial.

Chapter 6 Security Improvement on CETD 62

One issue with GFM is that it cannot effectively inject randomness to the data

of all 0’s. To deal with this problem, we add the random block bit flip (Random

Block Bit Flip (RBF)) operation to disturb the input data. It must pointed out

that the block flip is a linear operation, using it without GFM will not break the

correlation the design input and output.

Non-linear random injection (GFM)

Tag

Block Shuffle

Bit Rotation

B1 B2 Bm

Data (D)

0

1

11...1

Bi

(a)

(b)

Random Block Flip

00...0

GM

Ci
C1 C2 Cm

Br R

(c)

nonce

Figure 6.2: Final Design (iCETD) (a) overview (b) random block flip (c)
non-linear random injection

The whole structure of the improved design (here we name it as iCETD) is

shown in Figure 6.2(a), where the random block flip operation and block GFM

are built on top of the original CETD design. A block can be randomly flipped

based on the control of the nonce value bits; the design for block flip is shown

in Figure 6.2(b), where a 2-to-1 multiplexor is used to select all 0’s or all 1’s for

XORing with the related block; if the control bit is 1, the block is XORed with

Chapter 6 Security Improvement on CETD 63

all 1’s and it is flipped; otherwise, the block is copied through. The block flip op-

eration camouflages the input value of straight 1 bits or 0 bits. The function can

be implemented by bit-wise XORing each block with its corresponding control

bit.

The input data is further confused by the non-linear random bit injection, which

is realized by GFM a random value with a randomly picked block. The confusion

injected by the block flip and GFM operation is then diffused over all blocks

through the block shuffle and bit rotate operations existing in the original design.

It must be pointed out that the CETD design is a parallel MAC scheme. For a

parallel MAC, block ordering should be maintained. Rather than ordering blocks

by a fixed index as found in other parallel MAC designs [7, 13, 27, 54], we use

the randomized block flip, GFM, segment shuffle and bit rotation operation to

enforce the block order. In case some blocks swapped by a forgery, the change

of the block order will be reflected through these random block operations.

In summary, the iCETD design proposed here has the following features:

• injection of confusion with non-linear random operations is included;

• the number of input blocks participating GFM operation is adjustable;

• the confusion is spread by the random block shuffle and random bit rotate

operation;

• the data block ordering is better maintained; as a result,

• the tag value generated from the design is sensitive to a change to the input

data and sensitive to a change to nonce, and

Chapter 6 Security Improvement on CETD 64

• the tag value is random over the full tag value domain.

Playing data from different memory locations or different times will face a differ-

ent nonce, resulting in different tag generation process, hence different tag value;

the same is true for the attack with a forged tag. In the case of the used tag at-

tack, the nonce is unchanged, hence the same tag generation process will applied

to both the original and the forged data; however, since the design is sensitive to

the change of the input data, the tag values generated from the two different data

inputs will be random and has a collision probability same as random numbers.

The security analysis of the iCETD design is elaborated in the next section.

6.2 Analysis

In 4.1 we categorized the attacks from the data authentication perspective into

three groups:

• CAR Attack, where the attacker replays a copy of a valid data/tag pair

from a different memory location or the same memory location but of a

previous time spot;

• FT Attack, where the data used by the attack may not be an existing or

old data and the related tag is forged;

• RT Attack, where the data used by the attack may not be an existing or

old data and the tag of the current valid data is reused.

Chapter 6 Security Improvement on CETD 65

We evaluated the security of CETD against a chosen data attack based on the tag

collision rate of the data. We found that the CETD design leaves some pitfalls

for chosen-value attacks:

• The effective tag value space for a given data input is smaller than the

full tag value domain and the effective tag space varies with different input

data. The maximal effective tag space size is just half of the full tag value

space;

• For CETD, a data and its tag have a same bit frequency parity.

To break the input/output correlation as shown in CETD, in iCETD we process

the input data with Random Block Flip(RBF) and selected Galois Field Multi-

plication(GFM) operation before the Block Shuffle and Bit Rotation stages.

Assume there are two distinct values A and C doing GFM with non-zero value

B. Further more A, B and C come from the same Galois field. If the products

are identical, the following equation should be met:

B · A = B · C, (6.5)

where · represents GFM operation. According to the basic properties of Galois

field multiplication, if B is not zero then there is an another value B−1 that

makes the following equation valid:

B−1 ·B = 1.

This means Equation 6.5 can be converted to the following format:

Chapter 6 Security Improvement on CETD 66

B−1 ·B · A = B−1 ·B · C (6.6)

1 · A = 1 · C. (6.7)

It is a basic property in Galois field that any value A in the field doing GFM

with will get A. This fact means

A = C. (6.8)

From Equation 6.8 we can see that given a non-zero value B, for any distinct

values A and C, the related two products are distinct. This fact means given

a non-zero block value B, the nonce piece r and the output value of GFM G is

bijective. Further more, it is also a basic property in the Galois field that if two

operators of multiplication come from same field, their product will also be in

the same field.

For summary we can see when doing single block GFM on a data D, if the block

selected by GFM is not all-zero and the nonce is random, then the output block

of GFM is also random and uniformly distributed in the block domain.

Because any data block doing GFM with all-zero block will lead to all-zero out-

put, any data containing all-zero blocks has possibility to be unchanged after

GFM. If all bits in the data is 0, then the data will not be changed by GFM. To

address this issue, we add Random Block Flip(RBF) before GFM to randomly

flip the bits in some blocks in the data.

Chapter 6 Security Improvement on CETD 67

Assume there are K set-bits in data D and there are i blocks flipped containing

totally k1 set-bits. The output of RBF stage is marked as DRBF . The set-bits

in DRBF , marked as K2, is K − k1 + i ∗ n − k1. The difference between K1

and K2 is i ∗ n − 2 ∗ k1, which is a even number. This means RBF can inject

set-bits to all-zero blocks, but cannot change the parity of the number of set-bits.

Further more, if the data D containing all-zero or all-one blocks then the output

data of GFM, marked as DGFM , still has possibility to have same bit frequency

parity(BFP) as D. This is because during RBF stage, all-zero can be unchanged

and all-one block can be flipped to all-zero block. If GFM processes such an

all-zero block in DRBF , then the GFM has no effect on DRBF and DGFM will be

same as DRBF .

Assume there are i all-zero blocks and j all-one blocks in the data D sent to RBF.

The sum of i and j is marked as X. The probability that there are k all-zero

blocks is expressed as: (
X

k

)
∗ 1 ∗ 1/2m. (6.9)

First we discuss the single block GFM case. The probability that GFM selected

an all-zero block in DRBF is:

k/m. (6.10)

The probability that D and DGFM have same BFP is:

X∑
k=1

(

(
X

k

)
∗ k/m ∗ 2m). (6.11)

Simplifying Equation 6.11 the probability can be expressed as:

X/m ∗ 2(m−X+1). (6.12)

Chapter 6 Security Improvement on CETD 68

Because X∈[0,m], Equation 6.12 gets maximum value when X is m. The maxi-

mum probability is 1/2.

If there are i blocks in DRBF doing GFM, the probability that these i blocks are

both all-zero, denoted as Pr[i], is:

(
k

i

)
/

(
m

i

)
. (6.13)

Comparing Pr[i] and Pr[i+1] we can get the following equation:

Pr[i]/Pr[i+ 1] = m− i/k − i. (6.14)

Because m≥k, then Pr[i] ≥ Pr[i+1]. This means if we increase the number of

blocks doing GFM, then the probability that all blocks selected by GFM is all-

zero blocks will be reduced.

On the other hand, the probability that D and DGFM have same BFP if i blocks

do GFM is:
X∑
k=i

(

(
X

k

)
∗
(
k

i

)
/(2m ∗

(
m

i

)
)). (6.15)

We can see that if i is increased, then the number of addends in Equation 6.15 is

reduced. On the other hand when i is bigger than X, GFM will process at least

one block in DRBF , which means Equation 6.15 will be zero.

Assume the input data D of iCETD contains some all-zero or all-one blocks. We

denote the GFM on i blocks as GFMi. Based on the above analysis we can see

that if we increase i then the result of Equation 6.15 will be decreased. This

means the probability that GFM gets invalidated is decreased. If doing GFM

on all blocks then no data except the one formed with only all-zero or all-one

Chapter 6 Security Improvement on CETD 69

blocks can invalidate GFM stage. The value X of data that has probability to

invalidate GFMm is m.

We will show through the experiments that the tag values generated from iCETD

for a given input are random and uniformly distributed over the whole tag value

space, which is given in the next section.

6.3 Simulations and Discussions

A simulation system written in C has been built to test the randomness of tag

values. Figure 6.3 shows the experimental setup.

test round
<1000?

new nonce
generation

tag
generation

Tag
sequence

Distinct
tag count

next test

round

no

yes

input data

Figure 6.3: Experimental Setup

Chapter 6 Security Improvement on CETD 70

For a given input, we simulate copy-and-replay attack by generating tags with

randomly generated nonce values (1000 random nonce values used for each input),

as given in Figure 6.3. All the experiments are based on the 32-bit data and 8-bit

tag settings.

To check the effectiveness of the Galois Field Multiplication (GFM) operations,

we applied GFM to variable k data blocks in iCETD and the related design is

denoted by iCETDk. In our experiment, k is in the range of 0 to 4; k=0 means

no GFM operation in the design, while k=4 means all data blocks participate

the GFM operations.

Figure 6.4 depicts the number of distinct tags for individual input data in the

small range from 0 to 300 (for visibility) in the decimal format for three different

designs (a) CETD, (b)iCETD without GFM (iCETD0), and (c) iCETD with

GFM applied to a random one block (iCETD1). From Figure 6.4, we can see

that the effective tag space size from the CETD design varies greatly for different

input data, the minimum size is 1 (that is associated with the data of all 0’s)

and the maximal effective tag space size is about 125 – half of the full tag value

domain. With the use of the block flip operation (the design of iCETD0), the

value distribution becomes more uniform but still on the half of the full tag value

domain. By adding the GFM operation (ref. iCETD1), the tag distribution is

not only uniform but also towards over the full tag value space.

The maximum, minimum, average and the standard variance of the effective tag

space size of all input data for the two designs are given in the last four rows

in Table 6.1. For iCETD designs, all different GFM operation cases (namely,

k = [0, · · · , 4]) are examined.

Chapter 6 Security Improvement on CETD 71

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Input Data (in decimal)

CETD iCETD0 iCETD1

Figure 6.4: Number of Distinct Tag for Individual Input Data (a) CETD
(b) iCETD0 (c) iCETD1

Table 6.1 shows that iCETD designs with GFM operations (last four columns in

the table) have about the same effective tag space size (with a small standard

variance, ranging from 4.6 to 7.6), for all individual data, and the tag values are

distributed almost all over the full tag domain (256). But for the CETD design

(Column 2), the maximum effective tag space size (namely, 128) is the half of

the full tag domain and the effective tag space sizes are distributed over the large

range from 0 to 128 with a significant deviation (the standard variance equals to

148.91).

From the Column 3 of Table 6.1, we can also see that the block flip operation in

iCETD0 only partially improves the design in that all the input data have about

the same effective tag space size (close to 128) and the tag values are uniformly

distributed (with a small standard variance, 0.133), but the effective tag space

size still remains below the half of the full tag domain.

• • ..

"" _.._ _ _.._ -• .o...L
~ - .&" .,..- ~ A - .A. - -.A.

• _ ·~ ~- ·--~~
. ._ .

,. '- ~ ~-.., .., ""'- ..,. • .. ~ ... -· -· • • • • + • • + •

Chapter 6 Security Improvement on CETD 72

Therefore, the experiment results demonstrate that the tags from both the CETD

and the iCETD0 designs are not uniformly random over the full tag value domain

for individual data.

Table 6.1: Statistics of Effective Tag Space Size

Design CETD
iCETD

(0) (1) (2) (3) (4)

max 128 128 256 256 256 256
min 1 106 197 232 230 239
var 148.91 0.13317 7.6289 4.7062 4.6309 4.593
avg 123.2 127.9 250.36 250.87 250.87 250.89

To verify whether the iCETD design is random and sensitive to the input data

and nonce, we run NIST tests on the tag sequences collected from the experi-

ments. For each input data, D, we concatenated its 1000 8-bits tags to form

a 8000-bit sequence, as shown in an example in Figure 6.5 where three tags

(01101101, 11001011, 00110001) form a 24-bit sequence 011011011100101100110001.

For the data size of 16 bits, there are 216 different data values, therefore, a total

of 216 sequences, each of 8000 bits, were formed.

Chapter 6 Security Improvement on CETD 73

T
a
b
l
e
6
.2
:

C
h

osen
N

IS
T

T
ests

T
est

N
am

e(T
est

N
o.)

P
aram

eter
D

escrip
tion

M
in

L
en

(n
)

A
p
p
rox

im
ate

E
n
trop

y
(1)

m
=

3
com

p
are

freq
of

m
an

d
m

+
1

b
its

p
attern

100
B

lo
ck

F
req

u
en

cy
(1)

M
=

128
P

rop
ortion

of
1

in
M

-b
its

b
lk

100
C

u
m

-su
m

(2)
N

aN
u
n
b
alan

ced
valu

e
of

cu
m

su
m

of
th

e
su

b
-seq

100
F

req
u
en

cy
(1)

N
aN

P
rop

ortion
of

0
an

d
1

in
seq

100
L

on
g

R
u
n

of
O

n
es(1)

N
aN

L
on

gest
ru

n
s

of
1

in
th

e
seq

128
R

u
n
s(1)

N
aN

total
n
u
m

b
er

of
u
n
in

terru
p
ted

id
en

tical
su

b
-seq

in
a

seq
100

S
erial(2)

m
=

8
freq

u
en

ce
of

all
m

-b
it

p
attern

in
th

e
seq

100
S
p

ectral
D

F
T

(1)
N

aN
p

eak
h
eigh

ts
in

th
e

D
F

T
of

th
e

seq
1000

Chapter 6 Security Improvement on CETD 74

T
a
b
l
e
6
.3
:

N
IS

T
T

ests
R

esu
lts

N
IS

T
T

est
N

am
e

C
E

T
D

iC
E

T
D

(0)
(1)

(2)
(3)

(4)

A
p
p
rox

im
ate

E
n
trop

y
0.52594

0.896988
0.974777

0.985641
0.988739

0.989304
B

lo
ck

F
req

u
en

cy
0.678101

0.973984
0.98671

0.988815
0.989609

0.989899
C

u
m

u
lative

S
u
m

s:
R

everse
0.5009

0.949203
0.978027

0.985748
0.988861

0.989182
C

u
m

u
lative

S
u
m

s:F
orw

ard
0.50058

0.949997
0.978409

0.985184
0.988846

0.989075
D

iscrete
F

ou
rier

T
ran

sform
0.945313

0.988342
0.988754

0.988953
0.989258

0.989319
F

req
u
en

cy
0.494202

0.946671
0.97728

0.985397
0.988693

0.988861
L

on
gest

R
u
n

0.694946
0.956848

0.988419
0.989197

0.989365
0.989532

R
u
n
s

0.547684
0.886246

0.974625
0.985703

0.988693
0.989624

S
e
ria

l
1

6.10E
-05

0.000153
0.972397

0.987961
0.988159

0.989502
S
e
ria

l
2

0
0

0.978058
0.989319

0.989746
0.990143

A
V

G
0.444339

0.686221
0.980445

0.98723
0.988839

0.989317

Chapter 6 Security Improvement on CETD 75

Table 6.4: NIST Tests with Large Data Set Requirements

Test Name(Test No.) Parameter Min Len(n)

Universal Statistical(1) NaN 387840
Linear Complexity(1) m 1000000
Non-Overlapping(148) m 1000000
Overlapping(1) m 1000000
Random Excursions(8) NaN 1000000
Random Excursions Variant(18) NaN 1000000
Rank(1) M=Q=32(default) 38912

The NIST suite offers fifteen tests. Some tests, as listed in Table 6.4, require

large input data sets, with the minimum data size of at least 38912 bits (see the

last column in the table) that is much larger than the 8000-bit tag sequences.

Due to the limited resources (especially storage capacities) we currently have,

those tests are not fulfilled and only eight types of tests, as given in Table 6.2 are

performed in our experiment. The description of each test is given in the third

column and the minimum data size required is presented in the last column.

Each test has several sub-tests. The Test No. following the test name in the

first column is the number of sub-tests given by NIST. Some of these tests have

parameters; we apply the tag size (8 bits) as the pattern length for the Serial

test to examine whether the tag value is randomly distributed over the whole

tag value space; other parameters were set based on the data sequence length as

required by the NIST. We run NIST tests on each bit sequence and the statistic

pass rate of each NIST test is obtained based on all 216 tag sequences.

Table 6.3 shows the pass rate of the chosen eight NIST tests for the tag sequences

generated by the CETD and the iCETD designs with different number of GFM

block operations (shown in the second row for iCETD). For each design, the

average pass rate is given in the last row.

Chapter 6 Security Improvement on CETD 76

0110 1101

1100 1011

0011 0001

T1

T2

T3

Figure 6.5: Tag NIST Test Sequence Formation

From Table 6.3, we can see that the pass rate of the CETD tags is low, especially

for the Serial test which are closely relevant to the tag value distribution over a 8-

bit value space; hence the CETD tag is not random for individual input data. On

the other hand, the iCETD designs with the GFM operation (last four columns

in the table) have straight high pass rates across all tests, which demonstrates

that the GFM operation greatly improves the random distribution; without the

GFM operations, the randomness of the tag is considerable degraded (see column

3).

To see how GFM affects the tag distribution over the tag domain, we further ran

two Serial tests (Serial 1 and Serial 2) for a number of typical input data. The

results are shown in Table 6.5, where the first column lists the individual data

in hexadecimal format and the pass rate of their tag sequence for four designs

(with 0-block-GFM operation to 4-block-GFM operation) are given in the last 5

columns.

As can be seen from the table, the pass rate increases as the number of blocks

applied by GFM operation increases.

Chapter 6 Security Improvement on CETD 77

Table 6.5: NIST Serial Tests of Tags for Individual Data

Data
NIST Random iCETD

Distribution Test (0) (1) (2) (3) (4)

0x00,0x00,0x00,0x00
Serial 1 0 0 0 0.269 0.934
Serial 2 0 0 0.331 0.926 0.994

0x00, 0x00, 0x00, 0xff
Serial 1 0 0 0 0.264 0.917
Serial 2 0 0 0.317 0.925 0.987

0xFF,0x00,0xFF,0x00
Serial 1 0 0 0 0.271 0.921
Serial 2 0 0 0.309 0.921 0.99

0xFF,0xFF,0xFF,0xFF Serial 1 0 0 0 0.286 0.931
Serial 2 0 0.149 0.587 0.987 0.995

0x00, 0x00, 0x00, 0x5A
Serial 1 0 0 0.234 0.913 0.918
Serial 2 0 0.122 0.925 0.987 0.985

0x00,0xFF,0x00, 0x5C
Serial 1 0 0 0.287 0.884 0.931
Serial 2 0 0.205 0.928 0.986 0.99

0x00, 0xff, 0x34, 0xCF
Serial 1 0 0.962 0.987 0.986 0.993
Serial 2 0 0.952 0.986 0.989 0.993

0x00, 0x12, 0x34, 0x56
Serial 1 0 0.982 0.989 0.989 0.99
Serial 2 0 0.986 0.987 0.988 0.995

0x12,0x34,0xAB,0xCD
Serial 1 0 0.983 0.995 0.989 0.993
Serial 2 0 0.986 0.991 0.989 0.991

0x56, 0x78, 0x9A, 0xBC
Serial 1 0 0.988 0.997 0.99 0.99
Serial 2 0 0.987 0.996 0.992 0.995

The experiment results verify the randomness of the iCETD tag, hence shows

the security improvement on the original CETD design.

6.4 Conclusions

In this chapter, we investigated a few possible solutions to improve the security of

CETD design. It is found that further randomizing CETD with XOR operation

is not effective. We presented an improved design that includes the random block

flip operation and the non-linear Galois Field multiplication. Our analysis and

experiments show that the tag of any individual data from the design is random

Chapter 6 Security Improvement on CETD 78

and distributed over the full tag domain. Therefore, the improved design has

same security against the chosen-value attack as against the random attack.

Chapter 7

Conclusions and Future Work

Security has becomes an critical issue in embedded systems. To effectively pro-

tect data, that are stored and processed in the embedded system, is important.

The thesis has investigated an existing data authentication design (CETD) for

protecting the integrity of memory data in the embedded processor system. As a

summary, this chapter highlights the contributions of the thesis work and discuss-

es the possible research directions on the memory data protection and security

design evaluation for embedded systems.

7.1 Conclusions

In this thesis, we target the data protection design for the system that has a

secure processor chip and insecure off-chip memory and the system is embedded

in a bigger system to perform a dedicated or a set of dedicated functions.

79

Chapter 7 Conclusion and Future Works 80

The CETD design is designed for the embedded system. It utilizes the cus-

tomization techniques to reduce the resource overhead, which has been exten-

sively studied in the original work. In this thesis, we have focused on the security

of the design.

Existing security designs are mainly based on the standard cryptographic primi-

tives and the evaluation approaches used for those designs are not suitable to the

security evaluation of CETD which is mainly constructed on a group of special

operations (They can carry the randomness of the data). Therefore, we have

applied a different evaluation strategy.

We model the security of the memory data protection design as the security of

the secret values in the design: nonce and tags, and we evaluate the security of

the design related to each secret value based on the its collision probability. The

higher collision probability means the lower security of the design.

In CETD, the nonce is generated with a block cipher that takes the input the

random number, address, and counter value associated with a memory location.

Use of the random number is cost-effective; but with our study, the random

number in the input of the block cipher will slightly degrade the design security

against the used-nonce attack. However, the degradation can be acceptable due

to the dynamic nature of the nonce used in the CETD design.

For the tag generation design, we have identified three loopholes:

• There are some correlations between data and its tag. The tag generated

by CETD has the same parity of 1s as its data (namely, either odd or even

number of 1s).

Chapter 7 Conclusion and Future Works 81

• For a given data, its tag value is not distributed over the whole tag value

space; the effective tag space size for a given data is reduced and is less

than the half the full tag value space.

• The effective tag space size varies for different data.

Those loopholes lead to the low security of the design against the chosen-value

attack on the data integrity.

To improve the security of the design, we proposed a design modification that

includes the random block flip function to the input data and random Galois

field multiplication on the data block. The Galois field multiplication is a finite-

field operation that is non-linear. Those operations added to the original CETD

design break the correlation of the data and tag and ensure that the tag generated

is random and uniformly distributed on the full tag value space.

7.2 Future Work

The research work focuses on the memory data protection and design evaluation

for embedded systems. The work is yet fully completed and some extensions are

possible, which are given below.

In the nonce design evaluation, for the used-nonce attack, our work does not

consider the time the attack is applied, which may have different security impli-

cations on the designs with and without the random number. With the use of the

random number in the nonce generation, the security can be increased as com-

pared to the design without the random number, which can be further studied.

Chapter 7 Conclusion and Future Works 82

Due to the time limit, we only focused on the security of CETD and its improve-

ment. The random block flip (RBF) and Galois Field Multiplication (GFM)

stages introduced in iCETD should incur some overheads. Both RBF and GFM

can be implemented in hardware and/or software. Their implementation costs

and performance overheads need to be studied.

In terms of security design evaluation, though many approaches have been pro-

posed, a systematically approach is still lacking. A contribution to this area is

ultimately important. The same is for design. A systematical design approach

for memory data protection is also a much worth topic for future work.

Bibliography

[1] Common criteria. https://www.commoncriteriaportal.org.

[2] Network security protocols. http://www.k2esec.com/secure-

communications/network-security-protocols-ipsec-vs-tlsssl-vs-ssh-part-ii,

Retrieved on Jan 10, 2014.

[3] Nist computer security. http://csrc.nist.gov, Visited on May 10, 2014.

[4] J. A. Ambrose, R Ragel, and S. Parameswaran. Rijid: Random code injec-

tion to mask power analysis based side channel attacks. In Design Automa-

tion Conference (DAC ’07), page 6pp, San Diego, Ca, USA, 2007.

[5] M. Bellare. Introduction to modern cryptography: Message authentication.

https://cseweb.ucsd.edu/ mihir/cse207/w-mac.pdf.

[6] M. Bellare and S. Goldwasser. New paradigms for digital signatures and

message authentication based on non-interactive zero knowledge proofs. In

Advances in CryptologyCRYPTO89 Proceedings, pages 194–211. Springer,

1990.

[7] M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New methods for

message authentication using finite pseudorandom functions. In Advances

in Cryptology - CRYPTO ’95. 15th Annual International Cryptology Con-

ference. Proceedings, pages 15–28, Berlin, Germany, 1995.

[8] M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining.

In Yvo Desmedt, editor, Advances in Cryptology Crypto 94, volume 839 of

83

Bibliography 84

Lecture Notes in Computer Science, pages 341–358. International Associa-

tion for Cryptologic Research, Springer-Verlag, 1994.

[9] M. Bellare and C. Namprempre. Authenticated encryption: relations among

notions and analysis of the generic composition paradigm. In Advances in

Cryptology - ASIACRYPT 2000. 6th International Conference on the The-

ory and Application of Cryptology and Information Security. Proceedings

(Lecture Notes in Computer Science Vol.1976), pages 531 – 45, Berlin, Ger-

many, 2000.

[10] M. Bellare and P. Rogaway. Code-Based Game-Playing Proofs and the

Security of Triple Encryption. Cryptology ePrint Archive, Report 2004/331,

2004.

[11] A. Berendschot, J-P. Boly, A. Bosselaers, J. Brandt, D. Chaum, I. Damg̊ard,

P. de Rooij, M. Dichtl, W. Fumy, C. Jansen, et al. Integrity primitives for se-

cure information systems. final report of race integrity primitives evaluation

(ripe-race 1040). Lecture Notes in Computer Science, 1007, 1995.

[12] J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: the

three-key constructions. In Advances in Cryptology - CRYPTO 2000. 20th

Annual International Cryptology Conference. Proceedings (Lecture Notes in

Computer Science Vol.1880), pages 197–215, Berlin, Germany, 2000.

[13] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable

message authentication. In Advances in Cryptology - EUROCRYPT 2002.

International Conference on the Theory and Applications of Cryptographic

Techniques. Proceedings (Lecture Notes in Computer Science Vol.2332),

pages 384 —- 97, 2002.

[14] B. Blanchet and D. Pointcheval. Automated security proofs with se-

quences of games. In Advances in Cryptology-CRYPTO 2006, pages 537–554.

Springer, 2006.

[15] H. Comon and V. Shmatikov. Is it possible to decide whether a crypto-

graphic protocol is secure or not?, 2001.

Bibliography 85

[16] J. Crenne, R. Vaslin, G. Gogniat, J-P. Diguet, R. Tessier, and D. Unnikr-

ishnan. Configurable Memory Security in Embedded Systems. ACM Trans.

Embed. Comput. Syst., 12(3):71:1—-71:23, April 2013.

[17] J. Daemen and V. Rijmen. AES proposal: Rijndael. 1999.

[18] J. Daemen and V. Rijmen. The block cipher rijndael. In Smart Card Re-

search and Applications, pages 277–284. Springer, 2000.

[19] D. Dolev and A. C. Yao. On the security of public key protocols. In 22nd

Annual Symposium on Foundations of Computer Science, pages 350 – 7,

1981.

[20] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and L. Tor-

res. Hardware mechanisms for memory authentication: A survey of existing

techniques and engines. In Transactions on Computational Science IV: Spe-

cial Issue on Security in Computing, volume 5430 LNCS, pages 1–22, 2009.

[21] R. Elbaz, D. Champagne, R.B. Lee, and L. Torres. Tec-tree: a low-cost,

parallelizable tree for efficient defense against memory replay attacks. In 9th

International Workshop, Cryptographic Hardware and Embedded Systems,

2007.

[22] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet, and A. Mar-

tinez. A parallelized way to provide data encryption and integrity checking

on a processor-memory bus. In Proceedings - Design Automation Confer-

ence, pages 506–509, 2006.

[23] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet, and A. Mar-

tinez. Block-Level Added Redundancy Explicit Authentication for Par-

allelized Encryption and Integrity Checking of processor-memory transac-

tions. Transactions on Computational Science X. Special Issue on Security

in Computing, Part I, 6340(PART 1):231–260, 2010.

[24] PUB FIPS. 81: Des modes of operation. Issued December, 2:63, 1980.

Bibliography 86

[25] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas. Caches and

hash trees for efficient memory integrity verification. In High-Performance

Computer Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth Inter-

national Symposium on, pages 295–306. IEEE, 2003.

[26] O. Gelbart, E. Leontie, B. Narahari, and R. Simha. A compiler-hardware

approach to software protection for embedded systems. Computers and

Electrical Engineering, pages 315–328, 2009.

[27] V. D. Gligor and P. Donescu. Fast encryption and authentication: Xcbc

encryption and xecb authentication modes. In Fast Software Encryption,

pages 92–108. Springer, 2002.

[28] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-

tions. Journal of the ACM, 33(4):792–807, 1986.

[29] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer

and system sciences, 28(2):270–299, 1984.

[30] M. Hong, H. Guo, and S. X. Hu. A cost-effective tag design for memory data

authentication in embedded systems. In Proceedings of the 2012 Interna-

tional Conference on Compilers, Architectures and Synthesis for Embedded

Systems (CASES 2012), pages 17–26, 2012.

[31] M. Hong, H. Guo, and S. Parameswaran. Dynamic encryption key design

and management for memory data encryption in embedded systems. In

Proceedings. IEEE Annual Symposium on VLSI, pages 70–75, 2013.

[32] T. Iwata and K. Kurosawa. OMAC: one-key CBC MAC. In Fast Soft-

ware Encryption. 10th International Workshop, FSE 2003. Revised Papers

(Lecture Notes in Comput. Sci. Vol.2887), pages 129 —- 53, 2003.

[33] T. Iwata, K. Ohashi, and K. Minematsu. Breaking and Repairing GCM

Security Proofs. In 32nd Annual Cryptology Conference. Advances in Cryp-

tology - CRYPTO 2012, pages 31–49, Berlin, Germany, 2012.

[34] M. Jeff, F. Peter, B. Gunnar, and G. C. Julio. Earliest known uses of some

of the words of mathematics, Retrieved on March 28, 2014.

Bibliography 87

[35] J. Kilian and P. Rogaway. How to protect des against exhaustive key search.

In Advances in CryptologyCRYPTO96, pages 252–267. Springer, 1996.

[36] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi. Security

as a new dimension in embedded system design. In Proceedings - Design

Automation Conference, pages 753–760, 2004.

[37] K. Kurosawa and T. Iwata. TMAC: two-key CBC MAC. In Topics in

Cryptology - CT-RSA 2003. Cryptoghraphers’ Track at the RSA Conference

2003. Proceedings (Lecture Notes in Computer Science Vol.2612), pages 33–

49, Berlin, Germany, 2003.

[38] O. Kmmerling and M. G. Kuhn. Design principles for tamper-resistant

smartcard processors. 1999.

[39] M. Lee, M. Ahn, and E. J. Kim. Fast Secure Communications in Shared

Memory Multiprocessor Systems. IEEE Trans. Parallel Distrib. Syst.

(USA), 22(10):1714 —- 21, 2011.

[40] R. B. Lee, P. CS. Kwan, J. P McGregor, J. Dwoskin, and Z. Wang. Ar-

chitecture for protecting critical secrets in microprocessors. In Computer

Architecture, 2005. ISCA’05. Proceedings. 32nd International Symposium

on, pages 2–13. IEEE, 2005.

[41] R. Lidl. Introduction to finite fields and their applications. Cambridge uni-

versity press, 1994.

[42] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and

M. Horowitz. Architectural support for copy and tamper resistant software.

ACM SIGPLAN Notices, 35(11):168–177, 2000.

[43] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In

Advances in CryptologyCRYPTO 2002, pages 31–46. Springer, 2002.

[44] M. Luby and C. Racko. How to construct pseudorandom permutations from

pseudorandom functions. Journal of Computing, 17(2):373–386, 1988.

Bibliography 88

[45] D. A. McGrew and J. Viega. The security and performance of the Ga-

lois/counter mode (GCM) of operation. In Progress in Cryptology - IN-

DOCRYPT 2004. 5th International Conference on Cryptology in India. Pro-

ceedings (Lecture Notes in Computer Science Vol.3348), pages 343 – 55,

Berlin, Germany, 2004.

[46] C. Meadows. Open issues in formal methods for cryptographic protocol anal-

ysis. In In Proceedings of DISCEX 2000, pages 237–250. IEEE Computer

Society Press, 2000.

[47] K. Minematsu and T. Matsushima. New bounds for PMAC, TMAC, and

XCBC. In Fast Software Encryption. 14th International Workshop, FSE

2007. Revised Selected Papers. (Lecture Notes in Computer Science vol.

4593), pages 434 —- 51, 2007.

[48] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Im-

proving smart card security using self-timed circuits. In Technology, Fourth

AciD-WG Workshop, Grenoble, ISBN, pages 211–218, 2002.

[49] NIST. Recommendation for block cipher modes of operation: The cmac

mode for authentication. http://csrc.nist.gov/publications/nistpubs/800-

38B/SP 800-38B.pdf.

[50] K. Nyberg. Differentially uniform mappings for cryptography. In Advances

in cryptologyEurocrypt93, pages 55–64. Springer, 1994.

[51] L. C. Paulson. The inductive approach to verifying cryptographic protocols.

Journal of Computer Security, 1998.

[52] W. W. Peterson and D. T. Brown. Cyclic codes for error detection. Pro-

ceedings of the IRE, 49(1):228–235, 1961.

[53] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Security in Em-

bedded Systems: Design Challenges. ACM Trans. Embed. Comput. Syst.,

3(3):461–491, August 2004.

Bibliography 89

[54] P. Rogaway. Efficient instantiations of tweakable blockciphers and refine-

ments to modes OCB and PMAC. In Advances in Cryptology-ASIACRYPT

2004. 10th International Conference on the Theory and Application of Cryp-

tology and Information Security. Proceedings (Lecture Notes in Computer

Science Vol.3329), pages 16–31, Berlin, Germany, 2004.

[55] P. Rogaway. Evaluation of some blockcipher modes of operation. 2011.

[56] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode

of operation for efficient authenticated encryption. In ACM conference on

Computer and communications Security, 2001.

[57] A. Rogers and A. Milenkovic. Security extensions for integrity and confi-

dentiality in embedded processors. Microprocess. Microsyst. (Netherlands),

33(5-6):398–414, 2009.

[58] V. Shoup. Using hash functions as a hedge against chosen ciphertext attack.

In Advances in CryptologyEUROCRYPT 2000, pages 275–288. Springer,

2000.

[59] J. Soto. Randomness Testing of the Randomness Testing of the Advanced

Encryption Standard Candidate Algorithms. pages 0–9, 1999.

[60] J. Soto. Statistical testing of random number generators.

http://csrc.nist.gov/groups/st/toolkit/rng/documents/nissc-paper.pdf,

Retrieved on May 30, 2014.

[61] J. Soto and L. Bassham. Randomness Testing of the Advanced Encryp-

tion Standard Finalist Candidates Randomness Testing of the Advanced

Encryption. 2000.

[62] G. E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. Devadas. Efficient

memory integrity verification and encryption for secure processor. In 36th

International Symposium on Microarchitecture, 2003.

Bibliography 90

[63] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas. Aegis: ar-

chitecture for tamper-evident and tamper-resistant processing. In Proceed-

ings of the 17th annual international conference on Supercomputing, pages

160–171. ACM, 2003.

[64] R. Vaslin, G. Gogniat, J-P. Diguet, E. Wanderley, R. Tessier, and

W. Burleson. A security approach for off-chip memory in embedded mi-

croprocessor systems. Microprocess. Microsyst. (Netherlands), 33(1):37–45,

2009.

[65] S. William and W. G. Stallings. Cryptography and Network Security, 4th

Edition. Pearson Education India, 2006.

[66] ANSI X9.9. American national standard for financial institution message

authentication. 1981.

[67] C. Yan, B. Rogers, D. Englender, D. Solihin, and M. Prvulovic. Improving

cost, performance, and security of memory encryption and authentication.

In 33rd International Symposium on Computer Architecture, 2006.

[68] J. Yang, L. Gao, and Y. Zhang. Improving memory encryption performance

in secure processors. IEEE Transactions on Computers, 54(5):630–640, 2005.

[69] A. C. Yao. Theory and application of trapdoor functions. In Foundations

of Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pages

80–91. IEEE, 1982.

[70] K. Yasuda. A new variant of pmac: beyond the birthday bound. In Advances

in Cryptology–CRYPTO 2011, pages 596–609. Springer, 2011.

[71] B. Yee and J. D. Tygar. Secure coprocessors in electronic commerce appli-

cations. In In Proceedings of The First USENIX Workshop on Electronic

Commerce, pages 155–170, 1995.

	Title page: On Design of Memory Data Authentication For Embedded Processor Systems
	Abstract
	Acknowledgements
	Acronyms
	List of Publications
	Contents
	List of Figures
	List of Tables

	Chapter 1: Introduction
	Chapter 2: Background and Literature Review
	Chapter 3: CETD: A Cost Effective Data Authentication Design
	Chapter 4: Security Evaluation of the Tag Design in CETD
	Chapter 5: Security Evaluation of the Nonce Design in CETD
	Chapter 6: Security Improvement on CETD
	Chapter 7: Conclusions and Future Work
	Bibliography

