
Filtered polynomial approximation on the sphere

Author:
Wang, Yu Guang

Publication Date:
2015

DOI:
https://doi.org/10.26190/unsworks/18200

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/54485 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/18200
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/54485
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Filtered polynomial
approximation on the sphere

Yuguang Wang

A thesis in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Mathematics and Statistics

Faculty of Science

University of New South Wales

31 March 2015





PLEASE TYPE 

Surname or Family name: Wang 

First name: Yuguang 

THE UNIVERSITY OF NEW SOUTH WALES 
Thesis/Dissertation Sheet 

Other name/s: Yu Guang Wang 

Abbreviation for degree as given in the University calendar: PhD 

School: School of Mathematics and Statistics Faculty: Faculty of Science 

Title: Filtered polynomial approximation on the sphere. 

Abstract 350 words maximum: (PLEASE TYPE) 

Localised polynomial approximations on the sphere have a variety of applications in areas such as signal processing, geomathematics and 
cosmology. Filtering is a simple and effective way of constructing a localised polynomial approximation. In this thesis we investigate the localisation 
properties of filtered polynomial approximations on the sphere. Using filtered polynomial kernels and a special numerical integration (quadrature) 
rule we construct a fully discrete need let approximation. 

The localisation of the filtered approximation can be seen from the localisation properties of its convolution kernel. We investigate the localisation 
of the filtered Jacobi kernel, which includes the convolution kernel for filtered approximation on the sphere as a particular example. We prove the 
precise relation between the filter smoothness and the decay rate of the corresponding filte red Jacobi kernel over local and global regions. 

The difference in localisation properties between Fourier and filtered approximations can be illustrated by their Riemann localisation. We show that 
the Riemann localisation property holds for the Fourier-Laplace partial sum for sufficiently smooth functions on the two-dimensional sphere, but 
does not hold for spheres of higher dimensions. We then prove that the filtered approximation with sufficiently smooth filter has the Riemann 
localisation property for spheres of any dimensions. 

Filtered convolution kernels with a special filter become spherical need lets, which are highly localised zonal polynomials on the sphere with centres 
at the nodes of a suitable quadrature rule. The original semidiscrete spherical needlet approximation has coefficients defined by inner product 
integrals. We use an appropriate quadrature rule to construct a fully discrete version . We prove that the fully discrete spherical need let 
approximation is equivalent to filtered hyperinterpolation, that is to a filtered Fourier-Laplace partial sum with inner products replaced by 
appropriate quadrature sums. From this we establish error bounds for the fully discrete need let approximation of functions in Sobolev spaces on 
the sphere. The power of the need let approximation for local approximation is shown by numerical experiments that use low-level need lets 
globally together with high-level need lets in a local region. 

Declaration relating to disposition of project thesis/dissertation 

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in 
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all 
property rights , such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. 

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral 
theses only). 

... ....... .'10..~.~-~.e ....... ~.~-
Signature 

R. ,..g . ,;{:) o W"l.-eA s..e.([-
······· ···· · ·· · ··· ···· ···· · ··· ·· ··· ··· · ···· ·· · ... .. .. ... . . . 

Witness 
. ?.:. r~ 1 .o. . .5. .. !. ~?..u; 

Date 

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for 
restriction for a period of up to 2 years must be made in writing . Requests for a longer period of restriction may be considered in exceptional 
circumstances and require the approval of the Dean of Graduate Research . 

FOR OFFICE USE ONLY Date of completion of requirements for Award : 

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS 



Originality Statement 
' I hereby declare that this submission is my own work and to the best of my know­
ledge it contains no materials previously published or written by another person, 
or substantial proportions of material which have been accepted for the award of 
any other degree or diploma at UNSW or any other educational institution, except 
where due acknowledgement is made in the thesis. Any contribution made to the 
research by others , with whom I have worked at UNSW or elsewhere, is explicitly 
acknowledged in the thesis. I also declare that the intellectual content of this thesis 
is the product of my own work , except to the extent that assistance from others in 
the project's design and conception or in style, presentation and linguistic expression 
is acknowledged.' 

Signed Yuguang Wang 
Date 31 March 2015 



iii

Copyright Statement 
'I hereby grant the University of New South Wales or its agents the right to archive 
and to make available my thesis or dissertation in whole or part in the University 
libraries in all forms of media, now or here after known, subject to the provisions 
of the Copyright Act 1968. I retain all proprietary rights , such as patent rights. I 
also retain the right to use in future works (such as articles or books) all or part 
of this thesis or dissertation. I also authorise University Microfilms to use the 350 
word abstract of my thesis in Dissertation Abstract International (this is applicable 
to doctoral theses only). I have either used no substantial portions of copyright 
material in my thesis or I have obtained permission to use copyright material; where 
permission has not been granted I have applied/will apply for a partial restriction 
of the digital copy of my thesis or dissertation.' 

Signed Yuguang Wang 
Date 31 March 2015 

Authenticity Statement 
' I certify that the Library deposit digital copy is a direct equivalent of the final 
officially approved version of my thesis. No emendation of content has occurred and 
if there are any minor variations in formatting, they are the result of the conversion 
to digital format. ' 

Signed Yuguang Wang "(\A .e. \A~ lA?~ 
Date 31 March 2015 ./ 





Acknowledgements

I would like to thank and express my great appreciation to my supervisors Professors

Ian Sloan and Rob Womersley for their constant support and guidance.

I am indebted to my colleagues Johann Brauchart, Professor Josef Dick, Quoc

Thong Le Gia, Professor Edward Saff for their help and comments. I also wish

to thank Professor Leonardo Colzani during his visit to UNSW for his discussion

on Riemann localisation, Christian Gerhards for his discussion on applications of

Riemann localisation to geophysics, and Professors Fran Narcowich and Joe Ward

for their helpful discussion on needlets at conferences in Nashville and Vienna.

I would like to thank my family for their love and support and with deep

gratitude to my fiancee Houying Zhu for her immeasurable love.

I would like to acknowledge the support of University International Postgradu-

ate Award (UIPA) of UNSW Australia during my research program and the partial

support from Postgraduate Research Support Scheme (PRSS) of the Graduate Re-

search School of UNSW and from Erwin Schrödinger International Institute for

Mathematical Physics (ESI Vienna) during my visit to Vienna (11 October – 31

October 2014). I gratefully acknowledge Professor Ian Sloan and the Australian

Research Council (ARC) for supporting many of my conference trips.





Abstract

Localised polynomial approximations on the sphere have a variety of applications

in areas such as signal processing, geomathematics and cosmology. Filtering is a

simple and effective way of constructing a localised polynomial approximation. In

this thesis we investigate the localisation properties of filtered polynomial approx-

imations on the sphere. Using filtered polynomial kernels and a special numerical

integration (quadrature) rule we construct a fully discrete needlet approximation.

The localisation of the filtered approximation can be seen from the localisation

properties of its convolution kernel. We investigate the localisation of the filtered

Jacobi kernel, which includes the convolution kernel for filtered approximation on

the sphere as a particular example. We prove the precise relation between the filter

smoothness and the decay rate of the corresponding filtered Jacobi kernel over local

and global regions.

The difference in localisation properties between Fourier and filtered approxim-

ations can be illustrated by their Riemann localisation. We show that the Riemann

localisation property holds for the Fourier-Laplace partial sum for sufficiently smooth

functions on the two-dimensional sphere, but does not hold for spheres of higher di-

mensions. We then prove that the filtered approximation with sufficiently smooth

filter has the Riemann localisation property for spheres of any dimensions.

Filtered convolution kernels with a special filter become spherical needlets,

which are highly localised zonal polynomials on the sphere with centres at the nodes

of a suitable quadrature rule. The original semidiscrete spherical needlet approx-

imation has coefficients defined by inner product integrals. We use an appropriate

quadrature rule to construct a fully discrete version. We prove that the fully dis-

crete spherical needlet approximation is equivalent to filtered hyperinterpolation,

that is to a filtered Fourier-Laplace partial sum with inner products replaced by

appropriate quadrature sums. From this we establish error bounds for the fully

discrete needlet approximation of functions in Sobolev spaces on the sphere. The

power of the needlet approximation for local approximation is shown by numerical

experiments that use low-level needlets globally together with high-level needlets in

a local region.
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Chapter 1

Introduction

Approximation of functions on the sphere is an important topic in geoscience and

astronomy. Choosing an appropriate approximation method is critical to reducing

errors in geophysical models and thus to enhancing approximation accuracy and

efficiency.

A widely used method is approximation by Fourier-Laplace expansions — the

counterpart to the Fourier expansion in an Euclidean space, see [3, 19, 22, 33]. The

partial sum of a Fourier-Laplace series is globally supported on the sphere. This

lack of localisation is, however, sometimes a deficiency.

In this thesis we study how to improve the localisation of the Fourier-Laplace

expansion. We are then led to construct a filtered polynomial approximation.

A filtered polynomial approximation is a constructive approximation method

exploiting filters. Because of their excellent localisation properties and their poly-

nomial structure, the filtered spherical polynomials have wide applications in areas

such as signal processing [38], geography [22, 26, 65, 66] and cosmology [40, 58, 76].

Before we describe the filtered approximation we need some definitions. Let

Lp(Sd) be the Lp space on Sd with respect to the normalised Lebesgue measure

σd. When p = 2, L2(Sd) is a Hilbert space with inner product (f, g)L2(Sd) :=∫
Sd f(x)g(x) dσd(x) for f, g ∈ L2(Sd). Given ` ≥ 0 let Z(d, `) be the dimension

of the space H`(Sd) of all spherical harmonics of exact degree `. Let {Y`,m : ` =

0, 1, . . . , m = 1, . . . , Z(d, `)} be an orthonormal basis for L2(Sd), where the spher-

ical harmonics Y`,m ∈ H`(Sd). Given a function f ∈ L1(Sd) the Fourier-Laplace

partial sum (or the partial sum of the Fourier-Laplace series) of degree L ∈ N0 is

V d
L (f ; x) :=

L∑
`=0

Z(d,`)∑
m=1

f̂`mY`,m(x),

where f̂`m is the Fourier coefficient for f : f̂`m := (f, Y`,m)L2(Sd).
1



2 Chapter 1 Introduction

A typical filter function g is a continuous compactly supported function on

R+ := [0,+∞) satisfying g is constant on [0, a], i.e. it takes the form

g(t) =

c, t ∈ [0, a],

0, t ∈ [2,+∞)
(1.0.1)

for some constant c ≥ 0 and some a ∈ (0, 2). We note that c is allowed to be zero,

which case has an important application in Chapter 5.

Given a filter g, a filtered approximation for f uses the g to modify the Fourier

coefficients:

VL,g(f ; x) :=
∞∑
`=0

Z(d,`)∑
m=1

g

(
`

L

)
f̂`mY`,m(x), f ∈ L2(Sd), x ∈ Sd. (1.0.2)

In Chapters 3 and 4 we prove that this filtered approximation enhances the

localisation of the Fourier-Laplace partial sum.

Chapter 3 focuses on the localisation of the convolution kernel vL,g of the filtered

approximation VL,g. We prove asymptotic expansions and localised upper bounds

of the filtered Jacobi kernel, which takes the filtered convolution kernel vL,g on the

sphere as a specific example. These results show precise relationships between the

asymptotic order of L of vL,g and the smoothness of the filter g.

In Chapter 4 we study the localisation of the filtered approximation. The well

known Riemann-Lebesgue lemma (see, for example, [69, Theorem 1.4, p. 80]) states

that the Lth Fourier coefficient of an integrable function on the circle S1 approaches

zero as L approaches ∞. As a direct consequence (as explained in Chapter 4), the

Riemann localisation property holds, meaning that for an integrable 2π-periodic

function f that vanishes on an open interval, the Lth partial sum of the Fourier

series approaches zero as L approaches ∞ at every point of that open interval.

An equivalent statement is that the Fourier local convolution of an integrable 2π-

periodic function on the circle (where the local convolution at θ is the convolution of

the Lth Dirichlet kernel with the function modified by replacing by zero its values

in a neighbourhood of θ) approaches zero as the degree of the Dirichlet kernel

approaches ∞.

We extend the notion of Riemann localisation to the Fourier-Laplace partial

sum and to the filtered approximation on Sd for d ≥ 2. We prove that the Fourier-

Laplace partial sum V d
L has the Riemann localisation property only for sufficiently

smooth functions on S2 and does not have the Riemann localisation property for Sd

with d ≥ 3. We then prove the filtered approximation VL,g always has the Riemann

localisation property whenever the filter g is sufficiently smooth.
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In Chapter 5 we consider the localised polynomial frame on the sphere. Nar-

cowich et al. [51, 52] proved that when a filter h satisfies h(t) = 0 for t ∈
[0, 1/2] ∪ [2,+∞), (i.e. the filter g in (1.0.1) with a = 1/2 and c = 0) and

h(t)2 + h(2t)2 = 1 for t ∈ [1/2, 1], the filtered convolution kernels can form a

localised tight frame for L2(Sd) — the spherical needlets.

We exploit quadrature (numerical integration) rules to construct a fully discrete

approximation by spherical needlets. Using the localisation of the filtered kernels,

we prove the convergence order of the discrete needlet approximation.

1.1 Key new results

We state the main new results of the thesis as follows.

Asymptotic and local properties of filtered kernels

Given α, β > −1, let P
(α,β)
` (t) be the Jacobi polynomial of degree `. The filtered

Jacobi kernel is defined in terms of Jacobi polynomials by

v
(α,β)
L,g (s, t) :=

∞∑
`=0

g

(
`

L

)(
M

(α,β)
`

)−1

P
(α,β)
` (s)P

(α,β)
` (t), s, t ∈ [−1, 1],

where M
(α,β)
` is the normalisation constant.

In Chapter 3 we study the relationship between the localisation of a filtered

Jacobi kernel and the smoothness of its filter. We prove that for a filter g satisfying

(i) g(t) = c for t ∈ [0, 1] with c ≥ 0; g(t) = 0 for t ≥ 2;

(ii) g ∈ Cκ(R+); g|[1,2] ∈ Cκ+3([1, 2]),
(1.1.1)

the corresponding filtered Jacobi kernel v
(α,β)
L,g (1, cos θ) has the following asymptotic

expansion for θ ∈ [cL−1, π − cL−1]:

v
(α,β)
L,g (1, cos θ) = cα,β,κ(θ) L

−(κ−α+ 1
2

)
(
uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ)

+ uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ) + (sin θ)−1 Oα,β,g,κ
(
L−1

))
,

(1.1.2)

where cα,β,κ(θ), uκ,i(θ), i = 1, 2, 3, 4 and φL(θ), φL(θ) are explicitly given and the

big O notation aL = Oα (bL) means that there exists a constant c depending only

on α such that |aL| ≤ c |bL|. (See Theorem 3.2.11.)



4 1.1 Key new results

We also prove a localised upper bound of the filtered Jacobi kernel

v
(α,β)
L,g (cos θ, cosφ) for θ, φ ∈ [0, π]:

|v(α,β)
L,g (cos θ, cosφ)| ≤ c L−(κ−max{α,β}+ 1

2
)

(L−1 + |θ − φ|)max{α,β}+κ+ 5
2
(
L−1 + cos θ−φ

2

)min{α,β}+ 1
2

,

(1.1.3)

where the constant c depends only on α, β, g and κ. (See Theorem 3.3.3.)

This improves the bounds obtained by Petrushev and Xu [57, Eq. 2.2] and

Mhaskar [46, Theorem 3.1].

Let wα,β(t) := (1 − t)α(1 + t)β be the Jacobi weight for α, β > −1 and let

L1(wα,β) := L1([−1, 1], wα,β) be the L1 space on [−1, 1] with respect to the weight

wα,β, and let χA(·) be the indicator function on some set A.

Given a filter g satisfying (1.1.1), using the localised upper bound and the

asymptotic expansion of v
(α,β)
L,g (1, t), we prove that the L1(wα,β)-norm of

v
(α,β)
L,g (1, ·)χ[−1,a](·) is equivalent to a constant when a = 1 and has the asymptotic

order L−(κ−α+ 1
2

) when a < 1. (See Theorems 3.4.1 and 3.4.2 in Section 3.4.1.)

In Section 3.5 we give an explicit construction for the filter satisfying (1.1.1)

using piecewise polynomials with any given smoothness κ. Using these filters, we

verify by the numerical experiments in Section 3.6 the results of Section 3.4.1.

The convolution kernel of the filtered approximation on the sphere is a special

example of the filtered Jacobi kernel. The filtered convolution kernel on the sphere

thus inherits all the localisation properties from the latter.

Riemann localisation on the sphere

Given d ≥ 2, let P
(d+1)
` (t) := P

(
d−2

2
,
d−2

2
)

` (t)/P
(
d−2

2
,
d−2

2
)

` (1) be the normalised Jacobi

polynomial of degree `. Using the addtion theorem [50]

Z(d,`)∑
m=1

Y`,m(x)Y`,m(y) = Z(d, `)P
(d+1)
` (x · y),

(1.0.2) can be written as a convolution

VL,g(f ; x) :=

∫
Sd
vL,g(x · y)f(y) dσd(y)

with the filtered (convolution) kernel

vL,g(t) :=
∞∑
`=0

g

(
`

L

)
Z(d, `)P

(d+1)
` (t). (1.1.4)
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Given δ > 0 let C (x, δ) := {y ∈ Sd : x · y ≥ cos δ} be a spherical cap with

centre x and radius δ. The Riemann localisation of the Fourier-Laplace partial sum

V d
L can be characterised by a local convolution

V d,δ
L (f ; x) :=

∫
Sd\C(x,δ)

vdL(x · y)f(y) dσd(y).

The concept of local convolution also applies to the filtered approximation VL,g.

The local convolution for the filtered approximation VL,g is defined by

V d,δ
L,g (f ; x) :=

∫
Sd\C(x,δ)

vL,g(x · y)f(y) dσd(y), f ∈ L1(Sd), x ∈ Sd.

Let Ws
p(Sd) ⊂ Lp(Sd) be a Sobolev space with smoothness s > 0. We say the

Fourier-Laplace partial sum V d
L (or the filtered approximation VL,g) has the Riemann

localisation property if there exists a δ0 > 0 such that for each 0 < δ < δ0 the Lp-
norm of its local convolution V d,δ

L (f) (or V d,δ
L,g (f)) decays to zero for all f ∈Ws

p(Sd).
In Section 4.3 we prove that the local convolution for the Fourier-Laplace partial

sum V d
L has the following upper bound: for 1 ≤ p ≤ ∞ and s ≥ 2,∥∥V d,δ

L (f)
∥∥
Lp(Sd)

≤ c L
d−3
2 ‖f‖Ws

p(Sd), f ∈Ws
p(Sd), (1.1.5)

with the optimal order L
d−3
2 . (See Corollary 4.3.4 and Theorem 4.3.6.)

The upper bound (1.1.5) shows that the Fourier-Laplace partial sum V d
L has the

Riemann localisation property for the Sobolev space Ws
p(Sd) with d = 2 and s ≥ 2,

while, since the order L
d−3
2 is sharp, V d

L does not have the Riemann localisation

property when d ≥ 3.

In Section 4.4 we prove that, using the asymptotic expansion (1.1.2) obtained

in Chapter 3, the filtered approximation with a filter g satisfying (1.1.1) improves

the Riemann localisation for VL,g in that for 1 ≤ p ≤ ∞ and s ≥ 2,∥∥V d,δ
L,g (f)

∥∥
Lp(Sd)

≤ c L−(κ− d
2

+ 3
2

)‖f‖Ws
p(Sd), f ∈Ws

p(Sd).

Thus, when the filter g is sufficiently smooth the filtered approximation VL,g
has the Riemann localisation property for Ws

p(Sd) for spheres of all dimensions.

Fully discrete spherical needlet approximations

The classical continuous wavelets represent a complicated function by projecting

it onto different levels of a decomposition of the L2 function space on the sphere.

A projection, often called “a detail of the function”, becomes small rapidly as the

level increases. This multilevel decomposition proves very useful in solving many

problems.
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Narcowich et al. in recent work [51, 52] showed that the details of the spherical

wavelets may be further broken up into still finer details, which are highly localised

in space. This new decomposition of a spherical function is said to be a needlet

decomposition.

Given N ≥ 1, for k = 1, . . . , N , let xk be N nodes on Sd and let wk > 0 be the

corresponding weights. The set {(wk,xk) : k = 1, . . . , N} is a positive quadrature

(numerical integration) rule exact for polynomials of degree up to ν for some ν ≥ 0

if ∫
Sd
p(x) dσd(x) =

N∑
k=1

wk p(xk), for all p ∈ Pν(Sd),

where Pν(Sd) is the set of all spherical polynomials of degree ≤ ν.

Spherical needlets [51, 52] are filtered kernels with a filter h (satisfying h(t) = 0

for t ∈ [0, 1/2] ∪ [2,+∞) and h(t)2 + h(2t)2 = 1 for t ∈ [1/2, 1]) associated with a

quadrature rule. For j = 0, 1, . . . , we define the needlet quadrature

{(wjk,xjk) : k = 1, . . . , Nj}, wjk > 0, k = 1, . . . , Nj,

exact for polynomials of degree up to 2j+1 − 1.
(1.1.6)

Using (1.1.4) and letting vT,h := 1 for 0 < T ≤ 1, a needlet ψjk, k = 1, . . . , Nj

of order j with needlet filter h and needlet quadrature (1.1.6) is then defined by

ψjk(x) :=
√
wjk v2j−1,h(x · xjk). (1.1.7)

Narcowich et al. [51, 52] proved that {ψjk : k = 1, . . . , Nj, j = 0, 1, . . . } forms

a localised tight frame for L2(Sd), i.e.
∑∞

j=0

∑Nj
k=1 | (f, ψjk)L2(Sd) |

2 = ‖f‖2
L2(Sd)

for all

f ∈ L2(Sd) but ψjk, ψj′k′ for j 6= j′ or k 6= k′ are not necessarily orthogonal. Using

this frame, they then defined the semidiscrete needlet approximation

V need
L (f ; x) :=

∑
2j≤L

Nj∑
k=1

(f, ψjk)L2(Sd) ψjk(x), x ∈ Sd.

The semidiscrete needlet approximation V need
L (f) has an approximation order

L−s for f in Sobolev space Hs(Sd) ⊂ L2(Sd) with some s > 0:∥∥f − V need
L (f)

∥∥
L2(Sd)

≤ c L−s‖f‖Hs(Sd). (1.1.8)

Needlet approximation in its original form is however not suitable for direct

implementation as its needlet coefficients are integrals. In Chapter 5 we use an

additional quadrature rule QN := {(Wi,yi) : i = 1, . . . , N} with Wi > 0 to discretise

the needlet coefficient (f, ψjk)L2(Sd):

(f, ψjk)L2(Sd) =

∫
Sd
f(x)ψjk(x) dσd(x) ≈

N∑
i=1

Wi f(yi) g(yi) =: (f, g)QN .
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Let C(Sd) be the space of continuous functions on Sd. We then define the discrete

needlet approximation of degree L by

V need
L,N (f ; x) :=

∑
2j≤L

Nj∑
k=1

(f, ψjk)QN ψjk(x), f ∈ C(Sd), x ∈ Sd.

When s > d/2, Hs(Sd) is continuously embedded into C(Sd). Let QN be exact

for polynomials of degree up to 3L − 1. We prove that given 0 < ε < s − d/2 the

discrete needlet approximation V need
L,N (f) has an approximation order L−(s− d

2
−ε) for

f ∈ Hs(Sd), cf. (1.1.8):∥∥f − V need
L,N (f)

∥∥
L2(Sd)

≤ c L−(s− d
2
−ε) ‖f‖Hs(Sd), f ∈ Hs(Sd).

(See Theorems 5.3.3 and 5.3.5.)

The theory is illustrated numerically for the approximation of a function of

known smoothness, using symmetric spherical designs [80] (for both the needlet

quadrature and the inner product quadrature). The power of the needlet approxim-

ation for local approximation is shown by a numerical experiment that uses low-level

needlets globally together with high-level needlets in a local region. (See Section 5.4.)

Finally, we mention that work from or related to this thesis has been submitted

or is in preparation to be submitted:

• Y. G. Wang, I. H. Sloan and R. S. Womersley. Asymptotic and local prop-

erties of filtered polynomial kernels — the dependence on filter smoothness.

(Preprint) (I have 50% contribution in this paper, including writing the main

body of the paper, proving the main results and carrying on numerical exper-

iments.)

• Y. G. Wang, I. H. Sloan and R. S. Womersley. Riemann localisation on the

sphere. (Preprint) (I have 50% contribution in this paper, including writing

the main body of the paper, estimating the bounds for the Fourier and filtered

local convolutions.)

• Y. G. Wang, Q. T. Le Gia, I. H. Sloan and R. S. Womersley. Fully discrete

needlet approximation on the sphere. arXiv:1502.05806 [math.NA]. (Submit-

ted) (I have 50% contribution in this paper, including writing the main body

of the paper, proving the main results and doing numerical experiments in

Section 5.)

• J. S. Brauchart, J. Dick, E. B. Saff, I. H. Sloan, Y. G. Wang and R. S. Womers-

ley. Covering of spheres by spherical caps and worst-case error for equal weight



8 1.2 Notation

cubature in Sobolev spaces. arXiv:1407.8311 [math.NA]. (Submitted) (I help

to prove the main results of Sections 2, 4 and 6. I only use the filtered Bessel

kernel on the sphere defined in this paper for Chapter 5 in the thesis. Other

parts of the paper are not included in the thesis.)

All these papers can be downloaded from my website

http://web.maths.unsw.edu.au/~yuguangwang/

1.2 Notation

We use a := b (or a =: b) to mean that a is defined by b (or b is defined by a). Let E

be a Borel set in R or Rd+1 or Sd with d ≥ 1. Given a positive integer k, let Ck(E)

be the space of k times continuously differentiable functions on E. Let C(E) denote

the collection of all continuous functions on E. We let Ck(a, b) := Ck((a, b)) for an

open interval (a, b) for brevity. For f ∈ Ck([a, b]), k = 0, 1, . . . , we denote the left

and right limits by

f (k)(a+) := lim
t→a+

f (k)(t), f (k)(b−) := lim
t→b−

f (κ+1)(t),

where the use of the notation implies the existence of the limits. For a function g

from a set X to R, let supp g be the support of g, the closure of the set of points

where g is non-zero:

supp g := {x ∈ X : g(x) 6= 0}.

Let a(T ), b(T ) be two sequences (when T ∈ Z+) or functions (when T ∈ R+)

of T . We denote by a(T ) �α b(T ) if there is a real constant cα > 0 depending

only on α such that c−1
α b(T ) ≤ a(T ) ≤ cα b(T ) and by a(T ) � b(T ) if no confusion

arises. We denote by a(T ) ∼ b(T ) if limT→+∞ a(T )/b(T ) = 1. The big O notation

a(T ) = Oα (b(T )) means there exists a constant cα > 0 and T0 ∈ R+ depending only

on α such that |a(T )| ≤ cα|b(T )| for all T ≥ T0. The little-o notation a(T ) = o(b(T ))

means that limT→+∞ a(T )/b(T ) = 0.

The finite forward differences of a sequence u` are defined recursively by

−→
∆ `u` :=

−→
∆1
` u` := u` − u`+1,

−→
∆k
` u` :=

−→
∆ `(
−→
∆k−1
` u`), k = 2, 3, . . . .

We will use the asymptotic expansion of the Gamma function, as follows. Given

a, b ∈ R, see [54, Eq. 5.11.13, Eq. 5.11.15],

Γ(L+ a)

Γ(L+ b)
= La−b +Oa,b

(
La−b−1

)
. (1.2.1)

http://web.maths.unsw.edu.au/~yuguangwang/
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The ceiling function dxe is the smallest integer at least x and the floor function bxc
is the largest integer at most x. For integer k ≥ 0 and real a ≥ k, let(

a

k

)
:=

a(a− 1) · · · (a− k + 1)

k!
=

Γ(a+ 1)

Γ(a− k)Γ(k + 1)

be the extended binomial coefficient. We use “L” as a non-negative integer and “T”

as a positive real number. We define ̂̀ := ̂̀(α, β) := `+ α+β+1
2

as the shift of `, and

L̂ := L+ α+β+1
2

and L̃ := L+ α+β+2
2

as the shifts of L.





Chapter 2

Function spaces and filtered

operators

In this chapter we give the definitions of function spaces on spheres and for Jacobi

weights, and give the definitions of Fourier and filtered approximations on these

spaces and study the basic properties of these approximations and of their convolu-

tion kernels.

2.1 Spherical harmonics and zonal functions

For d ≥ 1, let Rd+1 be the real (d + 1)-dimensional Euclidean space with inner

product x · y for x,y ∈ Rd+1 and Euclidean norm |x| :=
√

x · x. Let Sd := {x ∈
Rd+1 : |x| = 1} denote the unit sphere of Rd+1. The sphere Sd forms a compact

metric space, with the metric being the geodesic distance

dist(x,y) := arccos(x · y), x,y ∈ Sd.

The area of Sd is

|Sd| = 2π
d+1
2

Γ(d+1
2

)
. (2.1.1)

Let σd be the normalised Lebesgue measure on Sd so that∫
Sd

dσd(x) = 1.

Let C (x, θ) := {y ∈ Sd : x · y ≥ cos θ} denote a spherical cap with centre x and

radius θ ∈ (0, π]. The area of the cap is

|C (x, θ) | := |Sd|
∫
C(x,θ)

dσd(x) = |Sd−1|
∫ θ

0

(sin θ)d−1 dθ �d θd. (2.1.2)

11
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A real-valued spherical harmonic of degree ` on Sd is the restriction to Sd of

a real-valued homogeneous and harmonic polynomial of total degree ` defined on

Rd+1. Let H`(Sd) denote the set of all spherical harmonics of exact degree ` on Sd.
The dimension of the linear space H`(Sd) is

Z(d, `) := (2`+ d− 1)
Γ(`+ d− 1)

Γ(d)Γ(`+ 1)
� (`+ 1)d−1, (2.1.3)

where the asymptotic estimate uses [54, Eq. 5.11.12]. Let ∆∗ be the Laplace-

Beltrami operator on Sd. Each member of H`(Sd) is an eigenfunction of the negative

Laplace-Beltrami operator −∆∗ on the sphere Sd, with eigenvalue

λ` = λ
(d)
` := `(`+ d− 1). (2.1.4)

A zonal function is a function K : Sd× Sd → R that depends only on the inner

product of the arguments, i.e. K(x,y) = g(x · y), x,y ∈ Sd, for some function

g : [−1, 1] → R. Let P
(α,β)
` (t), −1 ≤ t ≤ 1, be the Jacobi polynomial of degree `

for α, β > −1. We will use the value of P
(α,β)
` (1), see [70, Eq. 4.1.1, p. 58]: given

α, β > −1,

P
(α,β)
` (1) =

(
`+ α

`

)
. (2.1.5)

Given d ≥ 2, we denote the normalised Legendre (or Gegenbauer) for Sd ⊂ Rd+1

polynomial by

P
(d+1)
` (t) := P

( d−2
2
, d−2

2
)

` (t)/P
( d−2

2
, d−2

2
)

` (1). (2.1.6)

Note that P
(3)
` (t) is the Legendre polynomial P`(t). Then P

(d+1)
` (x · y) for fixed

y ∈ Sd is a zonal spherical harmonic of degree `. From [70, Theorem 7.32.1, p. 168],∣∣P (d+1)
` (x · y)

∣∣ ≤ 1. (2.1.7)

Let {Y`,1, . . . , Y`,Z(d,`)} be an orthonormal basis for H`(Sd) with ` ≥ 0. It

satisfies the addition theorem, see for example [50, p. 9–10],

Z(d,`)∑
m=1

Y`,m(x)Y`,m(y) = Z(d, `)P
(d+1)
` (x · y). (2.1.8)

2.2 Lp spaces on the sphere

All functions considered in this thesis are real-valued. For 1 ≤ p ≤ ∞ let Lp(Sd) =

Lp(Sd, σd) be the real Lp-function space on Sd with respect to σd on Sd, endowed



Chapter 2 Function spaces and filtered operators 13

with the Lp-norm

‖f‖Lp(Sd) :=

{∫
Sd
|f(x)|pdσd(x)

}1/p

, f ∈ Lp(Sd), 1 ≤ p <∞;

‖f‖L∞(Sd) := sup
x∈Sd
|f(x)|, f ∈ L∞(Sd) ∩ C(Sd).

For p = 2, L2(Sd) forms a Hilbert space with inner product

(f, g)L2(Sd) :=

∫
Sd
f(x)g(x) dσd(x), f, g ∈ L2(Sd).

The linear span of H`(Sd), ` = 0, 1, . . . , ν forms the space Pν(Sd) of spherical

polynomials of degree up to ν. Since each pair H`(Sd), H`′(Sd) for ` > `′ ≥ 0 is

L2-orthogonal, it follows that Pν(Sd) is the direct sum of H`(Sd), i.e. Pν(Sd) =⊕ν
`=0H`(Sd). The direct sum

⊕∞
`=0H`(Sd) is then dense in Lp(Sd) for 1 ≤ p ≤ ∞,

see e.g. [78, Ch.1].

By the addition theorem, see (2.1.8), and the orthogonality of Y`,m, the zonal

functions P
(d+1)
` and P

(d+1)
`′ satisfy(

Z(d, `)P
(d+1)
` (x · ·), Z(d, `′)P

(d+1)
`′ (y · ·)

)
L2(Sd)

=

{
Z(d, `)P

(d+1)
` (x · y), ` = `′,

0, ` 6= `′.

(2.2.1)

Let v(x · y) and g(x · y) be two zonal functions of the form

v(x · y) :=
∞∑
`=0

a` Z(d, `) P
(d+1)
` (x · y), g(x · y) :=

∞∑
`=0

b` Z(d, `) P
(d+1)
` (x · y).

Then (2.2.1) gives, for x, z ∈ Sd,

(
v(x · ·), g(z · ·)

)
L2(Sd)

=

∫
Sd
v(x · y) g(z · y) dσd(y) =

∞∑
`=0

a` b` Z(d, `) P
(d+1)
` (x · z).

(2.2.2)

2.3 Sobolev spaces on the sphere

Let s ∈ R+. We define

b
(s)
` := (1 + λ`)

s/2 � (1 + `)s, (2.3.1)

where λ` is given by (2.1.4). Note that b
(s)
` b

(s′)
` = b

(s+s′)
` . For ` ≥ 0, m =

1, . . . , Z(d, `), let

f̂`m := (f, Y`,m)L2(Sd) :=

∫
Sd
f(x)Y`,m(x) dσd(x)
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be the Fourier coefficients of f ∈ L1(Sd).
The generalised Sobolev space Ws

p(Sd) with s > 0 may be defined as the set of

all functions f ∈ Lp(Sd) satisfying
∑∞

`=0 b
(s)
`

∑Z(d,`)
m=1 f̂`mY`,m ∈ Lp(Sd). The Sobolev

space Ws
p(Sd) is a Banach space with norm

‖f‖Ws
p(Sd) :=

∥∥∥ ∞∑
`=0

b
(s)
`

Z(d,`)∑
m=1

f̂`mY`,m

∥∥∥
Lp(Sd)

. (2.3.2)

Given s > 0, an equivalent definition of the Sobolev space is, see e.g. [78, Defini-

tion 4.3.3, p. 172],

Ws
p(Sd) :=

{
g ∈ Lp(Sd) : (−∆∗)s/2g ∈ Lp(Sd)

}
(2.3.3)

with norm ‖f‖Ws
p(Sd) := ‖f‖Lp(Sd) + ‖(−∆∗)s/2f‖Lp(Sd).

We have the following two embedding lemmas for Ws
p(Sd), see [4, Section 2.7]

and [37] and also [31, Eq. 14, p. 420]. Given κ ∈ N0, let Cκ(Sd) denote the set of all

κ times continuously differentiable functions on Sd.

Lemma 2.3.1 (Continuous embedding into Cκ(Sd)). Let d ≥ 2, 1 ≤ p ≤ ∞ and

κ ∈ N0. The Sobolev space Ws
p(Sd) is continuously embedded into Cκ(Sd) if s >

κ+ d/p.

Lemma 2.3.2. Let d ≥ 2. For 0 < s ≤ s′ < ∞ and 1 ≤ p ≤ p′ < ∞, Ws′

p′(Sd) is

continuously embedded into Ws
p(Sd).

2.4 Reproducing kernel Hilbert spaces

When p = 2, the Sobolev space Ws
p(Sd) becomes a reproducing kernel Hilbert space.

For brevity, we write Hs(Sd) := Ws
2(Sd). The inner product in Hs(Sd) is defined by

(f, g)Hs(Sd) :=
∞∑
`=0

Z(d,`)∑
m=1

b
(2s)
` f̂`m ĝ`m.

By (2.3.2) and L2-orthogonality of the Y`,m, the Sobolev norm on Hs(Sd) can be

written as

‖f‖Hs(Sd) =

 ∞∑
`=0

Z(d,`)∑
m=1

b
(2s)
`

∣∣f̂`m∣∣2
1/2

. (2.4.1)

For s > d/2, each Hs(Sd) has associated with it a unique kernel K(s)(x,y)

satisfying, see e.g. [12, Section 2.4], for x ∈ Sd and f ∈ Hs(Sd),

K(s)(x, ·) ∈ Hs(Sd),
(
f,K(s)(x, ·)

)
Hs(Sd)

= f(x). (2.4.2)
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From (2.4.2), we have(
K(s)(x, ·), K(s)(y, ·)

)
Hs(Sd)

= K(s)(x,y), x,y ∈ Sd. (2.4.3)

The kernel K(s)(x,y) is said to be the reproducing kernel. It is moreover a zonal

kernel, taking the explicit form

K(s)(x ·y) :=
∞∑
`=0

b
(−2s)
` Z(d, `)P

(d+1)
` (x ·y) =

∞∑
`=0

Z(d,`)∑
m=1

b
(−2s)
` Y`,m(x)Y`,m(y). (2.4.4)

2.5 Jacobi weighted spaces and filtered Jacobi ker-

nels

The Jacobi weight function wα,β(t) for α, β > −1 is

wα,β(t) := (1− t)α(1 + t)β, −1 ≤ t ≤ 1. (2.5.1)

Given 1 ≤ p ≤ ∞, let Lp(wα,β) = Lp([−1, 1], wα,β) be the Lp function space with

respect to the positive measure wα,β(t)dt. It forms a Banach space with the Lp-norm

‖f‖Lp(wα,β) :=

(∫ 1

−1

|f(t)|pwα,β(t) dt

)1/p

.

The space L2(wα,β) is a Hilbert space with inner product

(f, g)α,β = (f, g)L2(wα,β) :=

∫ 1

−1

f(t)g(t) wα,β(t) dt, f, g ∈ L2(wα,β).

The Jacobi polynomials P
(α,β)
` (t), ` = 0, 1, . . . form a complete orthogonal basis for

the space L2(wα,β). We adopt the normalisation of [70, Eq. 4.3.3, p. 68]:(
P

(α,β)
` , P

(α,β)
`′

)
α,β

=

∫ 1

−1

P
(α,β)
` (t)P

(α,β)
`′ (t) wα,β(t) dt = δ`,`′ M

(α,β)
` , (2.5.2)

where δ`,`′ is the Kronecker delta and

M
(α,β)
` :=

2α+β+1

2`+ α + β + 1

Γ(`+ α + 1)Γ(`+ β + 1)

Γ(`+ 1)Γ(`+ α + β + 1)
. (2.5.3)

The Lth partial sum of the Fourier series (or the Lth Fourier(-Jacobi) partial

sum) for f ∈ L1(wα,β) is given by

V(α,β)
L (f ; t) =

L∑
`=0

f̂(`)
(
M

(α,β)
`

)− 1
2
P

(α,β)
` (t),
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where f̂(`) is the `th Fourier coefficient given by

f̂(`) :=

(
f,
(
M

(α,β)
`

)− 1
2
P

(α,β)
`

)
α,β

.

Thus the Fourier partial sum can be written as

V(α,β)
L (f ; t) =

(
f(·), v(α,β)

L (t, ·)
)
α,β

, (2.5.4)

in which v
(α,β)
L (t, s) is the (generalised) Dirichlet kernel (the “Fourier” kernel)

v
(α,β)
L (t, s) :=

L∑
`=0

(
M

(α,β)
`

)−1

P
(α,β)
` (t)P

(α,β)
` (s). (2.5.5)

Definition 2.5.1. A continuous compactly supported function g : R+ → R+ is said

to be a filter with truncation constant b for b ∈ (0,+∞) if b is the largest member

of supp g.

Remark. In this thesis, we always let b = 2.

The filtered approximation with a filter g (with b = 2) for the Jacobi weight

wα,β is the polynomial of degree at most 2L− 1 defined by

V
(α,β)
L,g (f ; t) :=

∞∑
`=0

g

(
`

L

)
f̂(`)

(
M

(α,β)
`

)− 1
2
P

(α,β)
` (t)

=
2L−1∑
`=0

g

(
`

L

)
f̂(`)

(
M

(α,β)
`

)− 1
2
P

(α,β)
` (t)

=
(
f(·), v(α,β)

L,g (t, ·)
)
α,β

, (2.5.6)

where the filtered kernel v
(α,β)
L,g (t, s) takes the form [57, (1.2), p. 558]

v
(α,β)
L,g (t, s) =

2L−1∑
`=0

g

(
`

L

)(
M

(α,β)
`

)−1

P
(α,β)
` (t)P

(α,β)
` (s). (2.5.7)

2.6 Filtered approximations and kernels on the

sphere

The projection onto H`(Sd) for f ∈ L1(Sd) is

Y`(f ; x) := Yd
` (f ; x) :=

(
f(·), Z(d, `)P

(d)
` (x · ·)

)
L2(Sd)

=

∫
Sd
f(y)Z(d, `)P

(d)
` (x · y) dσd(y). (2.6.1)
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The Fourier convolution of order L for f ∈ L1(Sd), (or the Fourier-Laplace partial

sum of order L for f) can be written as the sum of the first L+ 1 projections Y`(f)

V d
L (f ; x) :=

L∑
`=0

Y`(f ; x), x ∈ Sd. (2.6.2)

By (2.6.1),

V d
L (f ; x) =

(
f(·), vdL(x · ·)

)
L2(Sd)

=

∫
Sd
vdL(x · y)f(y) dσd(y),

where the Fourier convolution kernel (or generalised Dirichlet kernel) vdL(x · y) is a

zonal kernel (i.e. it depends only on x · y) given by

vdL(x · y) :=
L∑
`=0

Z(d, `)P
(d)
` (x · y). (2.6.3)

The Fourier convolution kernel vdL(t), t ∈ [−1, 1], in (2.6.3) is a constant multiple of

v
(α,β)
L (1, t) with α = β = (d− 2)/2 in (2.5.5):

Lemma 2.6.1. Let d ≥ 2 and L ≥ 0. Then

vdL(t) =
√
π

Γ(d
2
)

Γ(d+1
2

)
v

( d−2
2
, d−2

2
)

L (1, t) =
|Sd|
|Sd−1|

v
( d−2

2
, d−2

2
)

L (1, t). (2.6.4)

Proof. Using (2.6.3) and (2.1.6) with (2.1.3) and P
( d−2

2
, d−2

2
)

` (1) =
(
`+ d−2

2
`

)
, see (2.1.5),

gives

vdL(t) =
L∑
`=0

Z(d, `)P
(d)
` (t)

=
Γ(d

2
)

Γ(d)

L∑
`=0

(2`+ d− 1)Γ(`+ d− 1)

Γ(`+ d
2
)

P
( d−2

2
, d−2

2
)

` (t).

Using (2.5.3) with P
( d−2

2
, d−2

2
)

` (1) =
(
`+ d−2

2
`

)
and (2.5.5) then gives

vdL(t) =
√
π

Γ(d
2
)

Γ(d+1
2

)

L∑
`=0

(
M

d−2
2
, d−2

2
`

)−1

P
( d−2

2
, d−2

2
)

` (1)P
( d−2

2
, d−2

2
)

` (t)

=
√
π

Γ(d
2
)

Γ(d+1
2

)
v

( d−2
2
, d−2

2
)

L (1, t).

This gives the first equality of (2.6.4). The second equality of (2.6.4) is by (2.1.1).
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Definition 2.6.2. A filtered kernel on Sd with filter g is, for T ∈ R+,

vT,g(x · y) := vdT,g(x · y) :=


1, 0 ≤ T < 1,
∞∑
`=0

g
( `
T

)
Z(d, `) P

(d+1)
` (x · y), T ≥ 1.

(2.6.5)

We may define a filtered approximation VT,g on L1(Sd), T ≥ 0 as an integral operator

with the filtered kernel vT,g(x · y).

Definition 2.6.3. A filtered (polynomial) approximation with filter g for f ∈ L1(Sd)
is

VT,g(f ; x) := V d
T,g(f ; x) :=

(
f, vT,g(x · ·)

)
L2(Sd)

=

∫
Sd
f(y) vT,g(x ·y) dσd(y). (2.6.6)

Note that for T < 1 this is just the integral of f .

Using projections, the filtered approximation can be written as, cf. (2.6.2),

VT,g(f ; x) =
∞∑
`=0

g

(
`

T

)
Y`(f ; x).

Using (2.6.5) and (2.1.6) with (2.1.5) gives

vT,g(t) =
∞∑
`=0

g

(
`

T

)
Z(d, `)P

(d)
` (t)

=
Γ(d

2
)

Γ(d)

∞∑
`=0

g

(
`

T

)
(2`+ d− 1)Γ(`+ d− 1)

Γ(`+ d
2
)

P
( d−2

2
, d−2

2
)

` (t).

It is a constant multiple of the filtered Jacobi kernel in (2.5.7), cf. Lemma 2.6.1.

Lemma 2.6.4. Let d ≥ 2 and L ∈ Z+. Then

vL,g(t) =
√
π

Γ(d
2
)

Γ(d+1
2

)
v

( d−2
2
, d−2

2
)

L,g (1, t) =
|Sd|
|Sd−1|

v
( d−2

2
, d−2

2
)

L,g (1, t). (2.6.7)

The proof of Lemma 2.6.4 is similar to that of Lemma 2.6.1.

For a filter g and s > 0, the filtered Bessel kernel [11, Eq. 5.1] is

v
(s)
T,g(x · y) :=


1, 0 ≤ T < 1,
∞∑
`=0

b
(−s)
` g

( `
T

)
Z(d, `) P

(d+1)
` (x · y), T ≥ 1,

(2.6.8a)

where b
(−s)
` is given by (2.3.1). And let

v
(0)
T,g(x · y) := vT,g(x · y). (2.6.8b)

Let K(s)(x·y) be the reproducing kernel for Hs(Sd) with s > 0, see (2.4.4). Applying

(2.2.2) to K(s)(x · y) and v
(s′)
T,g (x · y), s′ ≥ 0, gives the following lemma, which we

will use in the proof of Lemma 5.5.4
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Lemma 2.6.5. Let d ≥ 2, s > 0, s′ ≥ 0 and g be a filter. Then for T ∈ R+,∫
Sd
K(s)(x · y) v

(s′)
T,g (z · y) dσd(y) = v

(2s+s′)
T,g (x · z), x, z ∈ Sd.





Chapter 3

Asymptotic and local properties of

filtered Jacobi kernels

3.1 Introduction

In this chapter we study the “local decay” of filtered polynomial kernels, and in

particular study the dependence of the local decay on the smoothness of the filter.

Our results improve upon those of Petrushev and Xu [57], and are sharp in the sense

that for one special choice of the free variable in the kernel the upper bounds are

achieved by an exact asymptotic expression for the kernel.

We are interested in the “local” properties of this kernel, and of variants of

the kernel obtained by “filtering”. As in [57], by “local” behaviour we mean the

behaviour of the kernel v
(α,β)
L (s, t) when s 6= t and L → ∞. The Dirichlet kernel

(2.5.5) has poor local behaviour, in that, as we shall see in Lemma 3.7.1, for s 6= t

the kernel does not approach zero as L → ∞. It has even worse global behaviour,

in that∥∥V(α,β)
L

∥∥
C[−1,1]→C[−1,1]

= max
−1≤t≤1

∫ 1

−1

|v(α,β)
L (t, s)| wα,β(s) ds→∞ as L→∞

(see Lemma 3.7.2). As is well known, this implies that the partial sum V(α,β)
L (f, ·)

of the Fourier series is not uniformly convergent to f for all continuous functions f .

One way of improving both the local and global behaviour of the kernel is to

modify the Fourier partial sum by the inclusion of an appropriate filter. We use a

filter function g defined on R+ = [0,+∞) with the properties

g(t) =

{
1, 0 ≤ t ≤ 1,

0, t ≥ 2,
(3.1.1)

and with g not yet specified on the interval (1, 2).
21
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The Fourier kernel is a special extreme case of the filtered kernel: if g(t) is the

indicator function χ[0,1] then the filtered kernel in (2.5.7) reduces to the Lth Fourier

kernel. Usually, however, we prefer filters that have some smoothness, in the sense

of belonging to Cκ(R+) for some κ > 0.

The norm of the filtered approximation V
(α,β)
L,g (f ; t) as an integral operator on

C[−1, 1] is

∥∥V (α,β)
L,g

∥∥
C[−1,1]→C[−1,1]

= max
−1≤t≤1

∫ 1

−1

∣∣v(α,β)
L,g (t, s)

∣∣wα,β(s) ds.

Under appropriate conditions (a sufficient condition is that κ > α − 1
2
, see The-

orem 4.3) the operator norm of V
(α,β)
L,g is uniformly bounded. Since V

(α,β)
L,g reproduces

polynomials p(t) on [−1, 1] with degree up to L, i.e. V
(α,β)
L,g (p) = p, deg p ≤ L, we

see that the uniform error satisfies∥∥V (α,β)
L,g (f)− f

∥∥
C[−1,1]

=
∥∥V (α,β)

L,g (f − P )− (f − P )
∥∥
C[−1,1]

≤
(

1 +
∥∥V (α,β)

L,g

∥∥
C[−1,1]→C[−1,1]

)
‖f − P‖C[−1,1].

From this it follows that the error in V
(α,β)
L,g (f) is within a constant factor of the Lth

best polynomial approximation.

In this thesis, however, our interest is not in the global approximation proper-

ties but rather in the local (or off-diagonal) behaviour of the kernel. We know from

Lemma 3.7.1 that Fourier kernels v
(α,β)
L (t, s) on [−1, 1]× [−1, 1] have poor localised

performance and shall see in this chapter that the filtered kernel has a remarkable

localisation property. It is then natural to ask what features of the filter function de-

termine this local behaviour. The following result (a restatement of Theorems 3.2.7,

3.3.1 and 3.3.3) gives a localised upper bound for v
(α,β)
L,g (t, s) which shows that the

localisation improves when smoothness of the kernel increases.

Main theorem Given κ be a non-negative integer, let g be a filter function

with the following properties:

(i) g ∈ Cκ(R+);

(ii) g(t) = c for t ∈ [0, 1] with some c ≥ 0;

(iii) g|[1,2] ∈ Cκ+2([1, 2]);

(iv) g(t) = 0 for t > 2.

1) Let α, β > −1/2. For 0 ≤ θ, φ ≤ π, see Theorem 3.3.3,

∣∣v(α,β)
L,g (cosφ, cos θ)

∣∣ ≤ c L−(κ−max{α,β}+ 1
2

)

(L−1 + |φ− θ|)max{α,β}+κ+ 5
2
(
L−1 + cos φ−θ

2

)min{β,α}+ 1
2

;

(3.1.2)



Chapter 3 Asymptotic and local properties of filtered Jacobi kernels 23

2) Let α, β > −1. For the special case φ = 0, see Theorem 3.3.1,

∣∣v(α,β)
L,g (1, cos θ)

∣∣ ≤ c L−(κ−α+ 1
2

)(
L−1 + sin θ

2

)α+κ+ 5
2
(
L−1 + cos θ

2

)β+ 1
2

; (3.1.3)

3) Let α, β > −1/2. If g|[1,2] ∈ Cκ+3([1, 2]), we obtain the following asymptotic

expansion for v
(α,β)
L,g (1, cos θ), see Theorem 3.2.7,

v
(α,β)
L,g (1, cos θ) = L−(κ−α+ 1

2
)
C

(1)
α,β,κ+3(θ)

2κ+3(κ+ 1)!
(uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ)

+uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ) + o(1) + (sin θ)−1O
(
L−1

))
,

where the constants in 1), 2) and in the error terms in 3) depend only on α, β

and g, and φL(θ), φL(θ) and uκ,i(θ) (i = 1, . . . , 4) are known explicitly.

The case 3) of the main theorem provides an asymptotic estimate of the filtered

kernel in the special case φ = 0, which means the order L−(κ−α+ 1
2

) of the upper bound

in (3.1.3) is sharp.

Petrushev and Xu proved an upper bound for v
(α,β)
L,g (1, cos θ) [57, Eq. 2.2, p. 569]

and v
(α,β)
L,g (cosφ, cos θ) [57, Eq. 2.14, p. 565]. For positive integer κ, if g ∈ Cκ(R+),

∣∣v(α,β)
L,g (1, cos θ)

∣∣ ≤ cκ
L−(κ−α−β−2)

(L−1 + θ)α+κ−β , 0 ≤ θ ≤ π,

and for 0 ≤ φ, θ ≤ π∣∣v(α,β)
L,g (cosφ, cos θ)

∣∣ ≤ cκ L√
w̃α,β(L; cosφ)

√
w̃α,β(L; cos θ)(L−1 + θ)κ−2α−2β−3

, (3.1.4)

where w̃α,β(L; t) := (1− t+ L−2)α+1/2(1 + t+ L−2)β+1/2.

Mhaskar [46, Theorem 3.1, p. 249] provided a similar upper bound on v
(α,β)
L,g (t, s).

Given a filter g that is a κ times iterated integral of a function of bounded variation,

for every t0 ∈ [−1, 1] and η > 0, there exists a constant ct0,η such that for |t− t0| <
η/2, |s− t0| > η, ∣∣v(α,β)

L,g (t, s)
∣∣ ≤ ct0,η L

−(κ−α−β−2). (3.1.5)

For a simple comparison, we let α = β = 0. For 0 < ε < |θ − φ| < π − ε,

(3.1.4) and (3.1.5) give v
(0,0)
L,g (cos θ, cosφ) = Oε

(
L−(κ−4)

)
and v

(0,0)
L,g (cos θ, cosφ) =

Oε
(
L−(κ−2)

)
respectively, while 1) of the main theorem provides v

(0,0)
L,g (cos θ, cosφ) =

Oε
(
L−(κ+ 1

2
)
)

.

Let L1(wα,β) = L1([−1, 1], wα,β) be the L1 space with respect to the measure

wα,β(t) dt with L1-norm ‖ · ‖L1(wα,β). In Theorems 3.4.1 and 3.4.2, we prove that for

−1 ≤ a < b ≤ 1, ‖v(α,β)
L,g (1, ·)χ[a,b](·)‖L1(wα,β) is equivalent to a constant independent
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of L when b = 1 and is equivalent to L−(κ−α− 1
2) when b < 1. This in turn illustrates

the upper bound of (3.1.3) is optimal.

The reason why the operator core v
(α,β)
L,g (1, t) is of interest is two-fold. First, the

upper bound for the filtered kernel is readily obtained from the integral representa-

tion of v
(α,β)
L,g (s, t) by v

(α,β)
L,g (1, t) (see Theorem 3.3.3). Second, v

(α,β)
L,g (1, t) is a constant

multiple of the convolution kernel of the filtered operator on a class of two-point ho-

mogeneous spaces, see [13, 77]. As is well known, the filtered operator with adequate

smoothness has bounded uniform norm, see [64] for C∞ filters, [52, 67] for Cκ filters.

Theorem 3.4.2 shows that a sufficient condition on filter smoothness is κ > α− 1/2,

weaker than the requirements in the previous papers. Work, such as [13, 20, 36, 48],

dealing with approximation on the sphere, shed light on the localisation properties

of filtered kernels, and showed interesting connections and applications of the local-

isation result to the approximation on two-point homogeneous spaces [13] and the

decomposition of Triebel-Lizorkin spaces on the sphere [51]. These papers proved

the localised upper bounds for filtered kernels with the underlying assumption that

the filter is C∞. A more recent paper by Sloan and Womersley [68] constructed a

discrete filtered convolution on the sphere, which was proved the uniform bounded-

ness, and by numerical experiments illustrated localised approximation features of

the discrete filtered operator. Different from the technical methods in [13, 57, 56],

in this thesis, we make extensive use of the asymptotic properties of filtered kernels,

which were essential in achieving the sharp bounds on the filtered kernel.

The chapter is organised as follows. Our main theorem above is contained in

Section 3.2 and Section 3.3. Section 3.2 gives asymptotic expansions of the filtered

kernel v
(α,β)
L,g (1, t). The asymptotic result implies the sharp localised upper bound on

v
(α,β)
L,g (1, t) given in Section 3.3.1. This upper bound will help to prove a localised up-

per bound of the filtered kernel v
(α,β)
L,g (s, t) of Section 3.3.2. In Section 3.4.1, we apply

the results of Section 3.2 to prove tight upper and lower bounds of the L1(wα,α)-norm

of v
(α,β)
L,g (1, ·). Section 3.4.2 explores under what conditions the filtered operator is

bounded using the estimate of Section 3.4.1. In Section 3.5 filters with prescribed

smoothness are constructed using polynomial interpolation. In Section 3.6 numer-

ical examples for the L1(wα,β)-norm of v
(α,β)
L,g (1, ·)χ[a,b](·) are shown to support the

theory. Section 3.7 proves the estimate for the Fourier-Jacobi kernel v
(α,β)
L (t, s) for

t, s ∈ [−1, 1].
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3.2 Asymptotic expansions of filtered Jacobi ker-

nels

In this section we derive an asymptotic expansion for the filtered Jacobi kernel. We

need the following asymptotic expansion for Jacobi polynomials from [70, Eq. 8.21.18,

p. 197–198].

Lemma 3.2.1. Given α, β such that α > −1, β > −1, there exists a constant c > 0

such that for c `−1 < θ < π − c `−1, ` ≥ 1,

P
(α,β)
` (cos θ) = ̂̀− 1

2 mα,β(θ)
(

cosωα(̂̀θ) + (sin θ)−1Oα,β
(
`−1
))
, (3.2.1)

where

̂̀ := ̂̀(α, β) := `+ (α + β + 1)/2, (3.2.2a)

mα,β(θ) := π−
1
2

(
sin

θ

2

)−α− 1
2
(

cos
θ

2

)−β− 1
2

, (3.2.2b)

ωα(z) := z − απ

2
− π

4
. (3.2.2c)

For a sequence u`, let
−→
∆1
` u` :=

−→
∆1
`(u`) := u` − u`+1 denote the first order

forward difference of u` and for i ≥ 2, the ith order forward difference is defined

recursively by
−→
∆ i
`(u`) :=

−→
∆1
`

(−→
∆ i−1
` (u`)

)
. We also write

(−→
∆ ·g

( ·
L

))
(`) := g

(
`

L

)
− g

(
`+ 1

L

)
.

Let u`, ν` be two sequences. Then

−→
∆1
` (u` ν`) = (

−→
∆1
` u`) ν` + u`+1 (

−→
∆1
` ν`). (3.2.3)

Given a filter g and α, β > −1, let Ak(T, t) for T, t ≥ 0 be defined recursively

by

Ak(T, t) :=


g

(
t

T

)
− g

(
t+ 1

T

)
, k = 1,

Ak−1(T, t)

2t+ α + β + k
− Ak−1(T, t+ 1)

2(t+ 1) + α + β + k
, k = 2, 3, . . . .

(3.2.4)

Lemma 3.2.2. Given k ∈ Z+, for L− k ≤ ` ≤ 2L,

Ak(L, `) =
k∑
i=1

R
(k)
−(2k−1−i)(`)

−→
∆ i
` g
( `
L

)
, (3.2.5a)
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where R
(k)
−j (`), k−1 ≤ j ≤ 2k−2, is a rational function of ` with degree∗ degR

(k)
−j ≤

−j and

R
(k)
−j (`) = Ok

(
`−j
)
, R

(k)
−(k−1)(`) = 2−k`−(k−1) +Oα,β,k

(
`−k
)
. (3.2.5b)

Proof. By definition (3.2.4),

Ak(L, `) =

(
Ak−1(L, `)

2`+ 2r + k
− Ak−1(L, `)

2(`+ 1) + 2r + k

)
+

(
Ak−1(L, `)

2(`+ 1) + 2r + k
− Ak−1(L, `+ 1)

2(`+ 1) + 2r + k

)
=

1

2`+ 2r + k + 2

(
2

2`+ 2r + k
+
−→
∆1
`

)
Ak−1(L, `)

=: δk(`)
(
Ak−1(L, `)

)
, k ≥ 2.

In addition, let δ1(`) :=
−→
∆1
` . Then for k ≥ 1,

Ak(L, `) = δk(`) · · · δ1(`)

(
g
( `
L

))
. (3.2.6)

Using induction with (3.2.6) and (3.2.3) gives (3.2.5a).

For a filter g satisfying (3.1.1), the asymptotic expansion of the filtered kernel

vL,g depends on the following estimates of Ak(L, `).

Lemma 3.2.3. Let g be a filter satisfying the following properties: for some r ∈ Z+,

(i) g|(1,2) ∈ Cr(1, 2);

(ii) g(r) be bounded in (1, 2).

Then for 1 ≤ k ≤ r,

Ak(L, `) = O
(
L−(2k−1)

)
, L+ 1 ≤ ` ≤ 2L− k − 1, (3.2.7)

where the constant in the big O term depends only on k, g and r.

Proof. The proof is by combining Lemma 3.2.2 with the upper bound on
−→
∆ i
` g
(
`
L

)
.

For g ∈ Cκ(R+) and 0 ≤ i ≤ k ≤ κ, we have by induction the following integral

representation of the finite difference

−→
∆ i
` g
( `
L

)
=

∫ 1
L

0

du1 · · ·
∫ 1

L

0

g(i)

(
`

L
+ u1 + · · ·+ ui

)
dui.

Since g(i) is bounded in (1, 2), for L+ 1 ≤ ` ≤ 2L− k − 1,∣∣∣−→∆ i
` g
( `
L

)∣∣∣ ≤ ci,g L
−i.

This with (3.2.5) together gives (3.2.7).

∗Let R(t) be a rational polynomial taking the form R(t) = p(t)/q(t), where p(t) and q(t) are
polynomials with q 6= 0. The degree of R(t) is deg(R) := deg(p)− deg(q).
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For ` near L or 2L, Ak(L, `) has the following asymptotic expansions.

Lemma 3.2.4. Let g be a filter satisfying the following properties: g(t) = c for

t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|(1,2) ∈ Cκ+1(1, 2).

Then for L− k ≤ ` ≤ L,

Ak(L, `) = L−(κ+k)
(
1 + o(1)

)g(κ+1)(1+)

2k(κ+ 1)!
λκL−`,k +O

(
L−(κ+k+1)

)
, (3.2.8a)

and for 2L− k ≤ ` ≤ 2L− 1,

Ak(L, `) = L−(κ+k)
(
1 + o(1)

) g(κ+1)(2−)

22k−1(κ+ 1)!
λ
κ

2L−`−1,k +O
(
L−(κ+k+1)

)
, (3.2.8b)

where the constants in the big O terms depend only on k, κ and g, and

λκν,s :=
s∑

j=ν+1

(
s

j

)
(−1)j(j − ν)κ+1, λ

κ

ν,s :=
ν∑
j=0

(
s

j

)
(−1)j(j − ν − 1)κ+1. (3.2.9)

Proof. We apply the asymptotic estimates of
−→
∆ i
`g
(
`
L

)
at t = 1 and t = 2 to (3.2.5a)

of Lemma 3.2.2, as follows.

Since g ∈ Cκ(R+) and supp g(k) = [1, 2], g(k)(1) = g(k)(2) = 0 for 1 ≤ k ≤ κ.

Then Taylor’s formula gives the following expansion, see e.g. [63, Eq. 5.15, p. 110].

For positive integer k and ` = L + 1, . . . , L + k, letting r` := ` − L, there exists

0 < θ` <
r`
L
≤ k

L
such that

g

(
`

L

)
= g

(
1 +

r`
L

)
= g(1) + g(1)(1)

r`
L

+ · · ·+ g(κ)(1)

κ!

(r`
L

)κ
+
g(1+κ)(1 + θ`)

(κ+ 1)!

(r`
L

)κ+1

= g(1) +
g(κ+1)(1 + θ`)

(κ+ 1)!

(r`
L

)κ+1

. (3.2.10)

This gives that for ` ≤ L+ k,

−→
∆ `g

(
`

L

)
= g

(
`

L

)
− g

(
`+ 1

L

)
=: H`,κ L

−(κ+1), (3.2.11a)

where

H`,κ :=



0, ` ≤ L− 1,

−g
(κ+1)(1 + θL+1)

(κ+ 1)!
, ` = L,

g(κ+1)(1 + θ`) (r`)
κ+1 − g(κ+1)(1 + θ`+1) (r`+1)κ+1

(κ+ 1)!
, ` = L+ 1, . . . , L+ k.

(3.2.11b)
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For q ≥ 2, `+ q − 1 ≤ L+ k,

−→
∆q
` g

(
`

L

)
=
−→
∆q−1
`

(
−→
∆ `g

(
`

L

))
=

q−1∑
i=0

(
q − 1

i

)
(−1)i

−→
∆ `g

(
`+ i

L

)

=

q−1∑
i=ν

(
q − 1

i

)
(−1)i H`+i,κ L

−(κ+1), (3.2.11c)

where we used
−→
∆ `g

(
`+i
L

)
= 0 for `+ i ≤ L− 1.

For s ≥ 1, 0 ≤ ν ≤ s− 1, by (3.2.11), letting
(
s
j

)
:= 0 for s < j,

−→
∆s
· g
( ·
L

)
(L− ν) =

s−1∑
j=ν

(
s− 1

j

)
(−1)jHL−ν+jL

−(κ+1)

= L−(κ+1)

s−ν−1∑
j=1

(
s− 1

j + ν

)
(−1)j+ν

× g(κ+1)(1 + θL+j) (rL+j)
κ+1 − g(κ+1)(1 + θL+j+1) (rL+j+1)κ+1

(κ+ 1)!

+ L−(κ+1)

(
s− 1

ν

)
(−1)ν

−g(κ+1)(1 + θL+1)

(κ+ 1)!

=
L−(κ+1)

(κ+ 1)!

s−ν∑
j=1

[(
s− 1

j + ν

)
+

(
s− 1

j + ν − 1

)]
(−1)j+νg(κ+1)(1 + θL+j) (rL+j)

κ+1

=
L−(κ+1)

(κ+ 1)!

s∑
j=ν+1

(
s

j

)
(−1)j(j − ν)κ+1 g(κ+1)(1 + θL+j−ν), (3.2.12)

where 0 < θL+j−ν <
s−ν
L

and the second and last equations used the transform

j′ = j + ν. This with the assumption (ii) about g gives

−→
∆s
· g
( ·
L

)
(L− ν) = L−(κ+1)

(
1 + o(1)

) g(κ+1)(1+)

(κ+ 1)!
λκν,s, s ≥ 1, 0 ≤ ν ≤ s− 1,

(3.2.13)

where λκν,s :=
∑s

j=ν+1

(
s
j

)
(−1)j(j − ν)κ+1.

For ` ≤ 2L − 1, let r′` := ` − 2L. Similar to the derivation of (3.2.10), there

exists some θ′` ∈
( r′`
L
, 0
)

such that

g

(
`

L

)
=
g(κ+1)(2 + θ′`)

(κ+ 1)!

(
r′`
L

)κ+1

.

Then

−→
∆ `g

(
`

L

)
= L−(κ+1)×


(−1)κ+1 g

(κ+1)(2 + θ′2L−1)

(κ+ 1)!
, ` = 2L− 1,

g(κ+1)(2 + θ′`)(r
′
`)
κ+1 − g(κ+1)(2 + θ′`+1)(r′`+1)κ+1

(κ+ 1)!
, ` < 2L− 1.
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Thus for s ≥ 1, 0 ≤ ν ≤ s, noting that
−→
∆s
· g
( ·
L

)
(2L− 1− ν) = 0 for j ≥ ν+ 1,

−→
∆s
· g
( ·
L

)
(2L− 1− ν) =

s−1∑
i=0

(
s− 1

j

)
(−1)j

−→
∆ ·g

( ·
L

)
(2L− 1− ν)

= L−(κ+1)

(
ν−1∑
j=0

(
s− 1

j

)

×
g(κ+1)(2 + θ′2L−1−ν+j)(r

′
2L−1−ν+j)

(κ+1) − g(κ+1)(2 + θ′2L−ν+j)(r
′
2L−ν+j)

(κ+1)

(κ+ 1)!

+

(
s− 1

ν

)
(−1)ν(−1)κ+1 g

(κ+1)(2 + θ′2L−1)

(κ+ 1)!

)
=
L−(κ+1)

(κ+ 1)!

ν∑
j=0

[(
s− 1

j

)
+

(
s− 1

j − 1

)]
(−1)jg(κ+1)(2 + θ′2L−1−ν+j)(r

′
2L−1−ν+j)

κ+1

=
L−(κ+1)

(κ+ 1)!

ν∑
i=0

(
s

j

)
(−1)j(j − ν − 1)κ+1g(κ+1)(2 + θ′2L−1−ν+j), (3.2.14)

where −ν+1
L

< θ′2L−ν−1+j < 0. We thus get the asymptotic estimate of
−→
∆s
` g( `

L
) for

` near 2L, cf. (3.2.13):

−→
∆s
· g
( ·
L

)
(2L− 1− ν) = L−(κ+1)

(
1 + o(1)

) g(κ+1)(2−)

(κ+ 1)!
λ
κ

ν,s, s ≥ 1, 0 ≤ ν ≤ s,

(3.2.15)

where λ
κ

ν,s :=
∑ν

j=0

(
s
j

)
(−1)j(j − ν − 1)κ+1.

For L − k + 1 ≤ ` ≤ L − 1, by (3.2.13), the summand R
(k)
−(2k−1−i)(`)

−→
∆ i
` g
(
`
L

)
when i = k in (3.2.5a) has a lower order than other terms. We thus split the sum

in (3.2.5a) into two parts: the summand with i = k and the sum of the remaining

terms (with 1 ≤ i ≤ k − 1) and apply (3.2.11)–(3.2.13) to Lemma 3.2.2 to get

Ak(L, `) = R
(k)
−(k−1)(`)

−→
∆k
` g
( `
L

)
+

k−1∑
i=1

R
(k)
−(2k−1−i)(`)

−→
∆ i
` g
( `
L

)
= L−(κ+k)

(
1 + o(1)

)g(κ+1)(1+)

2k(κ+ 1)!
λκL−`,k +Ok,κ,g

(
L−(κ+k+1)

)
.

Similarly, for 2L− k + 1 ≤ ` ≤ 2L− 1, applying (3.2.15) to Lemma 3.2.2 gives

Ak(L, `) = R
(k)
−(k−1)(`)

−→
∆k
` g
( `
L

)
+

k−1∑
i=1

R
(k)
−(2k−1−i)(`)

−→
∆ i
` g
( `
L

)
= L−(κ+k)

(
1 + o(1)

) g(κ+1)(2−)

22k−1(κ+ 1)!
λ
κ

2L−`−1,k +Ok,κ,g
(
L−(κ+k+1)

)
,

thus completing the proof.
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If g(κ+1)|(1,2) is bounded on (1, 2) then
−→
∆s
· g
( ·
L

)
(L−ν) and

−→
∆s
· g
( ·
L

)
(2L−1−ν)

are both bounded by order L−(κ+1). This implies the following upper bound of

Ak(L, `) for ` near L or 2L.

Corollary 3.2.5. Let g be a filter satisfying the following properties: g(t) = c for

t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|(1,2) ∈ Cκ+1(1, 2);

(iii) g(κ+1)|(1,2) is bounded on (1, 2).

Then given k ∈ Z+ for ` ∈ [L− k, L] ∪ [2L− k, 2L− 1],

Ak(L, `) = O
(
L−(κ+k)

)
,

where the constant in the big O term depends only on k, κ and g.

When the filter g is smoother on [1, 2], the little “o”’s in the expansions of

Lemma 3.2.4 become big O’s.

Lemma 3.2.6. Let g be a filter satisfying the following properties: g(t) = c for

t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|[1,2] ∈ Cκ+1([1, 2]);

(iii) g|(1,2) ∈ Cκ+2(1, 2) and g(κ+2)|(1,2) is bounded on (1, 2).

Then given k ∈ Z+ for L− k ≤ ` ≤ L,

Ak(L, `) = L−(κ+k) g
(κ+1)(1+)

2k(κ+ 1)!
λκL−`,k +O

(
L−(κ+k+1)

)
,

and for 2L− k ≤ ` ≤ 2L− 1,

Ak(L, `) = L−(κ+k) g(κ+1)(2−)

22k−1(κ+ 1)!
λ
κ

2L−`−1,k +O
(
L−(κ+k+1)

)
,

where λκν,s, λ
κ

ν,s are given by (3.2.9) and the constants in the big O terms depend

only on k, κ and g.

Proof. Since g|[1,2] ∈ C(κ+1)([1, 2]) and g(κ+2)|(1,2) is bounded in (1, 2), letting r` :=

`− L,

g

(
`

L

)
= g

(
1 +

r`
L

)
= g(1) + · · ·+ g(κ)(1)

(κ+ 1)!

(r`
L

)κ
+
g(κ+1)(1+)

(κ+ 1)!

(r`
L

)κ+1

+Og,κ,r`
(
L−(κ+2)

)
= g(1) +

g(κ+1)(1+)

(κ+ 1)!

(r`
L

)κ+1

+Og,κ,r`
(
L−(κ+2)

)
.
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Let s ∈ Z+. Similar to the derivation of (3.2.13), the asymptotic expansion of
−→
∆s
` g( `

L
) for ` near L is

−→
∆s
· g
( ·
L

)
(L− ν) = L−(κ+1)

(
g(κ+1)(1+)

(κ+ 1)!
λκν,s +Og,κ,ν

(
L−1

))
, 0 ≤ ν ≤ s− 1,

(3.2.17a)

where λκν,s is given by (3.2.9). And for ` near 2L, cf. (3.2.15),

−→
∆s
· g
( ·
L

)
(2L− 1− ν) = L−(κ+1)

(
g(κ+1)(2−)

(κ+ 1)!
λ
κ

ν,s +Og,κ,s
(
L−1

))
, 0 ≤ ν ≤ s,

(3.2.17b)

where λ
κ

ν,s is given by (3.2.9). The rest of the proof is similar to that of Lemma 3.2.4.

Theorem 3.2.7. Let α, β > −1 and let g be a filter satisfying the following proper-

ties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|(1,2) ∈ Cκ+3(1, 2);

(iii) g(κ+3)|(1,2) is bounded on (1, 2).

Then for c L−1 ≤ θ ≤ π − c L−1 with some c > 0,

v
(α,β)
L,g (1, cos θ) = L−(κ−α+ 1

2) C
(1)
α,β,κ+3(θ)

2κ+3(κ+ 1)!

(
uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ)

+ uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ) + o(1) + (sin θ)−1 Oα,β,g,κ
(
L−1

))
,

where

C
(1)
α,β,k(θ) =

(
sin θ

2

)−α−k− 1
2
(
cos θ

2

)−β− 1
2

2α+β+1
√
π Γ(α + 1)

uκ,1(θ) = g(κ+1)(1+)
κ+2∑
i=1

λκi,κ+3 cos(iθ)

uκ,2(θ) = g(κ+1)(1+)
κ+2∑
i=1

λκi,κ+3 sin(iθ)

uκ,3(θ) = 2α+ 1
2 g(κ+1)(2−)

κ+2∑
i=0

λ
κ

i,κ+3 cos(iθ)

uκ,4(θ) = 2α+ 1
2 g(κ+1)(2−)

κ+2∑
i=0

λ
κ

i,κ+3 sin(iθ),

(3.2.18)

where λκi,κ+3 and λ
κ

i,κ+3 are given by (3.2.9), and uκ,1(θ) can be written as an al-

gebraic polynomial of cos θ of precise degree κ + 1 and its initial coefficient is

(−1)κg(κ+1)(1+), and

φL(θ) :=
(
L̃+ κ+2

2

)
θ − ξ1, φL(θ) :=

(
2̃L− 1 + κ+2

2

)
θ − ξ1,

where L̃ := L+ α+β+2
2

and 2̃L := 2L+ α+β+2
2

and ξ1 := α+κ+3
2

π + π
4
.
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Proof. From [70, Eq. 4.5.3, p. 71],

∑̀
j=0

(
M

(α,β)
`

)−1

P
(α,β)
` (1)P

(α,β)
` (t)

=
∑̀
j=0

2j + α + β + 1

2α+β+1

Γ(j + α + β + 1)

Γ(j + β + 1)Γ(α + 1)
P

(α,β)
j (t)

=
1

2α+β+1

Γ(`+ α + β + 2)

Γ(α + 1)Γ(`+ β + 1)
P

(α+1,β)
` (t). (3.2.19)

This and repeated use of summation by parts in (2.5.5) give

v
(α,β)
L,g (1, t) =

1

2α+β+1Γ(α + 1)

∞∑
`=0

g

(
`

L

)
(2`+ α + β + 1)Γ(`+ α + β + 1)

Γ(`+ β + 1)
P

(α,β)
` (t)

=
1

2α+β+1Γ(α + 1)

∞∑
`=0

Ak(L, `)
Γ(`+ α + k + β + 1)

Γ(`+ β + 1)
P

(α+k,β)
` (t),

(3.2.20)

where Ak(L, `) is defined recursively by [36, (4.11)–(4.12), p. 372–373],

Ak(L, t) :=


g

(
t

L

)
− g

(
t+ 1

L

)
, k = 1,

Ak−1(L, t)

2t+ α + k + β
− Ak−1(L, t+ 1)

2(t+ 1) + α + k + β
, k = 2, 3, . . . ,

and since g(t) = 1 for t ∈ [0, 1] and supp g = [0, 2], the support of Ak(L, t) is

[L− k + 1, 2L− 1]. By Lemma 3.2.1 and adopting its notation,

v
(α,β)
L,g (1, cos θ) =

1

2α+β+1Γ(α + 1)

∞∑
`=0

Ak(L, `)
Γ(`+ α + k + β + 1)

Γ(`+ β + 1)
P

(α+k,β)
` (cos θ)

=
1

2α+β+1Γ(α + 1)

∞∑
`=0

Ak(L, `)
Γ(`+ α + k + β + 1)

Γ(`+ β + 1)

× ̂̀− 1
2 π−

1
2

(
sin θ

2

)−(α+k)− 1
2
(
cos θ

2

)−β− 1
2

(
cosωα+k(̂̀θ) + (sin θ)−1Oα,β

(
`−1
))

=

(
sin θ

2

)−α−k− 1
2
(
cos θ

2

)−β− 1
2

2α+β+1
√
π Γ(α + 1)

×

(
2L−1∑

`=L−k+1

ak(L, `) cosωα+k(̂̀θ) + (sin θ)−1 Oα,β

(
2L−1∑

`=L−k+1

|ak(L, `)| ̂̀−1

))

=: C
(1)
α,β,k(θ)

(
Ik,1 + (sin θ)−1Ik,2

)
, (3.2.21)

where ̂̀ := ̂̀(α + k, β) := `+
α + k + β + 1

2
, (3.2.22a)
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and

ak(L, `) := Ak(L, `)
Γ(`+ α + k + β + 1)

Γ(`+ β + 1)
̂̀− 1

2 , (3.2.22b)

C
(1)
α,β,k(θ) :=

(
sin θ

2

)−α−k− 1
2
(
cos θ

2

)−β− 1
2

2α+β+1
√
π Γ(α + 1)

. (3.2.22c)

To estimate Ik,1 in (3.2.21), we apply Lemmas 3.2.3 and 3.2.4 with k = r = κ+3.

The asymptotic expansion of Ak(L, `) in Lemma 3.2.4 with (1.2.1) together gives

the estimate of aκ+3(L, `) for ` near L and 2L, as follows. For L− (κ+ 3) ≤ ` ≤ L,

aκ+3(L, `) = L−(κ−α+ 1
2

)
(
1 + o(1)

) g(κ+1)(1+)

2κ+3(κ+ 1)!
λκL−`,κ+3 +O

(
L−(κ−α+ 3

2
)
)
.

(3.2.23a)

For 2L− (κ+ 3) ≤ ` ≤ 2L− 1,

aκ+3(L, `) = L−(κ−α+ 1
2

)
(
1 + o(1)

) g(κ+1)(2−)

2κ−α+ 5
2 (κ+ 1)!

λ
κ

2L−`−1,κ+3 +O
(
L−(κ−α+ 3

2
)
)
.

(3.2.23b)

For L ≤ ` ≤ 2L− 1− (κ+ 3), by (3.2.7) of Lemma 3.2.3 with (1.2.1),

aκ+3(L, `) = O
(
L−(κ−α+ 5

2
)
)
, (3.2.23c)

where the constants in the big O’s in (3.2.23) depend only on α, β, g and κ.

With k = κ+ 3, (3.2.21)–(3.2.23) together give

Iκ+3,1 =

 L−1∑
`=L−(κ+2)

+

2L−1−(κ+3)∑
`=L

+
2L−1∑

`=2L−1−(κ+2)

 aκ+3(L, `) cosωα+κ+3(̂̀θ)
=

 L−1∑
`=L−(κ+2)

+
2L−1∑

`=2L−1−(κ+2)

 aκ+3(L, `) cosωα+κ+3(̂̀θ) +Oα,β,g,κ
(
L−(κ−α+ 3

2
)
)
.

(3.2.24a)

Similarly, for Iκ+3,2 in (3.2.21), using Lemma 3.2.3 and (1.2.1) again,

Iκ+3,2 = O

 2L−1∑
`=L−(κ+2)

|aκ+3(L, `) ̂̀−1|

 = Oα,β,g,κ
(
L−(κ−α+ 3

2
)
)
. (3.2.24b)

Applying (3.2.24) and (3.2.23) to (3.2.21), where k := κ+ 3, gives

v
(α,β)
L,g (1, cos θ) = L−(κ−α+ 1

2
)
(
1 + o(1)

)
C

(1)
α,β,κ+3(θ)

(
bκ + (sin θ)−1 Oα,β,g,κ

(
L−1

))
,

(3.2.25)
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where C
(1)
α,β,κ+3(θ) is given by (3.2.22c) and

bκ := g(κ+1)(1+)

2κ+3(κ+ 1)!

L−1∑
`=L−(κ+2)

λκL−`,κ+3 +
g(κ+1)(2−)

2κ−α+ 5
2 (κ+ 1)!

2L−1∑
`=2L−1−(κ+2)

λ
κ

2L−`−1,κ+3

 cosωα+κ+3(̂̀θ)
=

g(κ+1)(1+)

2κ+3(κ+ 1)!

κ+2∑
i=1

λκi,κ+3 cosωα+κ+3

(
(L̃+ κ+2

2
− i)θ

)
+

g(κ+1)(2−)

2κ−α+ 5
2 (κ+ 1)!

κ+2∑
i=0

λ
κ

i,κ+3 cosωα+κ+3

(
(2̃L− 1 + κ+2

2
− i)θ

)
, (3.2.26)

where the second equality uses the substitution ` = L− i and ̂(L− i)(α+κ+3, β) =

L̃ + κ+2
2
− i for the first sum where we used (3.2.22a) and uses the substitution

` = 2L− 1− i and ̂(2L− 1− i)(α+κ+ 3, β) = 2̃L− 1 + κ+2
2
− i for the second sum,

where L̃ := L+ α+β+2
2

and 2̃L := 2L+ α+β+2
2

.

Let ξ1 := α+κ+3
2

π + π
4

and let φL(θ) := ωα+κ+3((L̃ + κ+2
2

)θ) =
(
L̃ + κ+2

2

)
θ − ξ1

and φL(θ) := ωα+κ+3((2̃L−1+ κ+2
2

)θ) =
(
2̃L−1+ κ+2

2

)
θ−ξ1, where we used (3.2.2c).

Then

cosωα+κ+3

(
(L̃+ κ+2

2
− i)θ

)
= cos

(
iθ
)

cosφL(θ) + sin
(
iθ
)

sinφL(θ)

cosωα+κ+3

(
(2̃L− 1 + κ+2

2
− i)θ

)
= cos

(
iθ
)

cosφL(θ) + sin
(
iθ
)

sinφL(θ),

where we used (3.2.2c) again. Using this with (3.2.26), we may rewrite (3.2.25) as

v
(α,β)
L,g (1, cos θ)

= L−(κ−α+ 1
2

)
C

(1)
α,β,κ+3(θ)

2κ+3(κ+ 1)!

(
uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ) + uκ,3(θ) cosφL(θ)

+ uκ,4(θ) sinφL(θ) + o(1) + (sin θ)−1Oα,β,g,κ
(
L−1

))
,

where

uκ,1(θ) := g(κ+1)(1+)
κ+2∑
i=1

λκi,κ+3 cos(iθ)

uκ,2(θ) := g(κ+1)(1+)
κ+2∑
i=1

λκi,κ+3 sin(iθ)

uκ,3(θ) := 2α+ 1
2 g(κ+1)(2−)

κ+2∑
i=0

λ
κ

i,κ+3 cos(iθ)

uκ,4(θ) := 2α+ 1
2 g(κ+1)(2−)

κ+2∑
i=0

λ
κ

i,κ+3 sin(iθ).
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By the property of Chebyshev polynomial, i.e. cos(`θ) = T`(cos θ), uκ,1(θ) =

ũκ,1(cos θ) is an algebraic polynomial of cos θ of degree κ + 1. The degree κ + 1 of

uκ,1(θ) is precise as the initial coefficient of ũκ,1(·) is

g(κ+1)(1+)λκ1,κ+3 = −g(κ+1)(1+)λκκ+2,κ+3 = (−1)κ+4g(κ+1)(1+),

where we used (3.2.9) and the relationship λkν,s+λks−ν,s =
∑s

j=0

(
s
j

)
(−1)j(j−ν)k = 0

for integers s, ν, k satisfying 0 ≤ ν ≤ s− 1, 0 ≤ k+ 1 ≤ s− 1 and s+ k is odd, thus

completing the proof of the theorem.

We need the following lemma from [70, Eq. 4.1.3, p. 59].

Lemma 3.2.8. Let α, β > −1. For ` ≥ 0,

P
(α,β)
` (t) = (−1)`P

(β, α)
` (−t), −1 ≤ t ≤ 1.

The symmetric formula for Jacobi polynomials in Lemma 3.2.8 implies the

following symmetric formulas for filtered kernels and filtered operators.

Lemma 3.2.9. Let α, β > −1. For −1 ≤ t, s ≤ 1 and f ∈ Lp(wα,β),

v
(α,β)
L (t, s) = v

(β,α)
L (−t,−s). (3.2.27a)

v
(α,β)
L,g (t, s) = v

(β,α)
L,g (−t,−s). (3.2.27b)

V
(α,β)
L,g (f ; t) = V

(β,α)
L,g (f(−·);−t). (3.2.27c)

Proof. The formulas (3.2.27a) and (3.2.27b) for the Fourier and filtered kernels come

from their definitions (2.5.5) and (2.5.7) with Lemma 3.2.8 and M
(α,β)
` = M

(β,α)
` .

For (3.2.27c), the definition (2.5.6) and (3.2.27b) give

V
(α,β)
L,g (f ; t) =

∫ 1

−1

f(s)v
(α,β)
L,g (t, s)wα,β(s) ds

=

∫ 1

−1

f(s)v
(β,α)
L,g (−t,−s)wα,β(s) ds

=

∫ 1

−1

f(−s)v(β,α)
L,g (−t, s)wβ,α(s) ds = V

(β,α)
L,g (f(−·);−t),

where the third equality used integration by substitution and wα,β(−s) = wβ,α(s).

Lemma 3.2.9 with Theorem 3.2.7 gives the following asymptotic expansion of

v
(α,β)
L,g (−1, cos θ).
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Corollary 3.2.10. With the assumptions and notation of Theorem 3.2.7, for cL−1 ≤
θ ≤ π − c L−1 with some c > 0,

v
(α,β)
L,g (−1, cos θ) = L−(κ−β− 1

2) C
(1)
β,α,κ+3(θ)

2κ+3(κ+ 1)!

(
uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ)

+ uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ) + o(1) + (sin θ)−1O
(
L−1

))
,

where the constant in the big O depends only on α, β, g and κ.

We note that the little “o” in Theorem 3.2.7 can be replaced by O (L−1) if,

further, g(κ+3)(t) is right and left continuous at t = 1 and t = 2 respectively. We

state this case in the following theorem.

Theorem 3.2.11. Let α, β > −1 and let g be a filter satisfying the following prop-

erties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|[1,2] ∈ Cκ+3([1, 2]).

Then for c L−1 ≤ θ ≤ π − c L−1 with some c > 0,

v
(α,β)
L,g (1, cos θ) = L−(κ−α+ 1

2
)
C

(1)
α,β,κ+3(θ)

2κ+3(κ+ 1)!

(
uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ)

+ uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ) + (sin θ)−1 O
(
L−1

))
,

where the constant in the big O term depends only on α, β, g and κ.

Remark. The condition (ii) can be replaced by a weaker one: (ii)’ g|[1,2] ∈ Cκ+1([1, 2])

and g|(1,2) ∈ Cκ+3(1, 2), and g(κ+2)|(1,2) and g(κ+3)|(1,2) are bounded on (1, 2).

Proof. The proof is similar to that of Theorem 3.2.7. The difference lies in that we

use Lemma 3.2.6 instead of Lemma 3.2.4 to get, cf. (3.2.23): For L−(κ+3) ≤ ` ≤ L,

aκ+3(L, `) = L−(κ−α+ 1
2

) g
(κ+1)(1+)

2κ+3(κ+ 1)!
λκL−`,κ+3 +O

(
L−(κ−α+ 3

2
)
)
,

and for 2L− (κ+ 3) ≤ ` ≤ 2L− 1,

aκ+3(L, `) = L−(κ−α+ 1
2

) g(κ+1)(2−)

2κ−α+ 5
2 (κ+ 1)!

λ
κ

2L−`−1,κ+3 +O
(
L−(κ−α+ 3

2
)
)
,

where the constants in the big O terms depend only on α, β, k, g and κ.

3.3 Localised upper bounds

This section estimates a sharp upper bound of filtered Jacobi kernel v
(α,β)
L,g (1, cos θ).

This then implies a localised upper bound of the kernel v
(α,β)
L,g (cosφ, cos θ).
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3.3.1 Sharp upper bounds – special case

The following theorem shows a localised upper bound of the filtered kernel v
(α,β)
L,g (1, cos θ).

Theorem 3.3.1. Let α, β > −1 and let g be a filter satisfying the following proper-

ties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|(1,2) ∈ Cκ+2(1, 2);

(iii) g(κ+1)|(1,2) and g(κ+2)|(1,2) are bounded on (1, 2).

Let c be the constant in Lemma 3.2.1. Then, for c L−1 ≤ θ ≤ π − c L−1,

v
(α,β)
L,g (1, cos θ) ≤ c θ−α−(κ+2)− 1

2

(
cos θ

2

)−β− 1
2 L−(κ−α+ 1

2
)
(
1 + (sin θ)−1L−1

)
. (3.3.1)

And the following localised inequality holds for 0 ≤ θ ≤ π,

∣∣v(α,β)
L,g (1, cos θ)

∣∣ ≤ c(2) L−(κ−α+ 1
2

)(
L−1 + sin θ

2

)α+κ+ 5
2
(
L−1 + cos θ

2

)β+ 1
2

. (3.3.2)

Here the constants c in (3.3.1) and c(2) in (3.3.2) depend only on α, β, g and κ.

Remark. The upper bound of the filtered kernel v
(α,β)
L,g (1, cos θ) proved by Petrushev

and Xu [57, Eq. 2.2, p. 560] may be written as

v
(α,β)
L,g (1, cos θ) =

{
O (L2α+2) , 0 ≤ θ ≤ L−1,

O
(
L−(κ−α−β−2)

)
, 0 < ε ≤ θ ≤ π,

(3.3.3)

where α ≥ β > −1/2. Theorem 3.3.1 shows that for α > −1, β > −1/2,

v
(α,β)
L,g (1, cos θ) =


O (L2α+2) , 0 ≤ θ ≤ L−1,

O
(
L−(κ−α− 1

2
)
)
, 0 < ε ≤ θ ≤ π − ε,

O
(
L−(κ−α−β)

)
, π − ε ≤ θ ≤ π,

(3.3.4)

where the constants in the big O terms in (3.3.3) and (3.3.4) depend only on ε, α, β,

g and κ.

This shows that the order of our upper bound for v
(α,β)
L,g (1, cos θ) with θ > 0 is

strictly lower than (3.3.3). The asymptotic expansion in Theorem 3.2.7 implies that

the order of L in (3.3.2) is optimal.
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Proof of Theorem 3.3.1. We adopt the notation of (3.2.18). Using (3.2.21) with

k := κ+ 2 gives

v
(α,β)
L,g (1, cos θ)

=

(
sin θ

2

)−α−(κ+2)− 1
2
(
cos θ

2

)−β− 1
2

2α+β+1π
1
2 Γ(α + 1)

× 2L−1∑
`=L−(κ+1)

aκ+2(L, `) cosωα+κ+2(̂̀θ) + (sin θ)−1 Oα,β

 2L−1∑
`=L−(κ+1)

|aκ+2(L, `)| ̂̀−1


=: C

(1)
α,β,κ+2(θ)

(
Iκ+2,1 + (sin θ)−1Iκ+2,2

)
,

where C
(1)
α,β,k(θ) and ak(L, `) are given by (3.2.22). Applying Lemma 3.2.3 and

Corollary 3.2.5 to aκ+2(L, `) with (1.2.1) gives

aκ+2(L, `) =


Oα,β,g,κ

(
L−(κ−α+ 1

2
)
)
,

L− (κ+ 1) ≤ ` ≤ L− 1,

2L− 1− (κ+ 1) ≤ ` ≤ 2L− 1;

Oα,β,g,κ
(
L−(κ−α+ 3

2
)
)
, L ≤ ` ≤ 2L− 1− (κ+ 2).

This gives

Iκ+2,1 =
2L−1∑

`=L−(κ+1)

aκ+2(L, `) cosωα+κ+2(̂̀θ) = Oα,β,g,κ
(
L−(κ−α+ 1

2
)
)

and

Iκ+2,2 =
2L−1∑

`=L−(κ+1)

|aκ+2(L, `) ̂̀−1| = Oα,β,g,κ
(
L−(κ−α+ 3

2
)
)
.

Then (3.3.1) follows by

C
(1)
α,β,κ+2(θ) ≤ πα+κ+2

2α+β+1Γ(α + 1)
θ−α−(κ+2)− 1

2

(
cos θ

2

)−β− 1
2 .

For (3.3.2), when cL−1 ≤ θ ≤ π−cL−1 (3.3.2) follows from (3.3.1). We now need

to prove the upper bound of v
(α,β)
L,g (1, cos θ) for 0 ≤ θ ≤ cL−1 and π− cL−1 ≤ θ ≤ π.

For the first case 0 ≤ θ ≤ c L−1, from (3.2.20) with k = κ+ 2,

v
(α,β)
L,g (1, t) =

1

2α+β+1Γ(α + 1)

∞∑
`=0

Aκ+2(L, `)
Γ(`+ α + κ+ 2 + β + 1)

Γ(`+ β + 1)
P

(α+κ+2,β)
` (t).

(3.3.5)

Lemma 3.2.3 and Corollary 3.2.5 (with k = κ+ 2) give

Aκ+2(L, `) =


Oα,β,g,κ

(
L−(2κ+2)

)
,

L− (κ+ 1) ≤ ` ≤ L− 1,

2L− 1− (κ+ 1) ≤ ` ≤ 2L− 1;

Oα,β,g,κ
(
L−(2κ+3)

)
, L ≤ ` ≤ 2L− 1− (κ+ 2).

(3.3.6)
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Also, by [70, Eq. 7.32.5, p. 169], for r, β > −1,

P
(r,β)
` (cos θ) = Or,β (`r) , 0 ≤ θ ≤ c L−1.

We then have for 0 ≤ θ ≤ c L−1,

|v(α,β)
L,g (1, cos θ)|

≤ 1

2α+β+1Γ(α + 1)

2L−1∑
`=L−(κ+1)

|Aκ+2(L, `)|Γ(`+ α + κ+ 2 + β + 1)

Γ(`+ β + 1)
|P (α+κ+2,β)
` (cos θ)|

≤ cα,β,g,κ

 L−1∑
`=L−(κ+1)

+
2L−1∑

`=2L−1−(κ+1)

L−(2κ+2)`α+κ+2`α+κ+2

+

2L−1−(κ+2)∑
`=L

L−(2κ+3)`α+κ+2`α+κ+2


≤ cα,β,g,κ L

2α+2. (3.3.7)

For π − c L−1 ≤ θ ≤ π, applying Lemma 3.2.8 to P
(α+κ+2,β)
` (t) in (3.3.5) gives

v
(α,β)
L,g (1, cos θ)

=
1

2α+β+1Γ(α + 1)

∞∑
`=0

Aκ+2(L, `)
Γ(`+ α + κ+ 2 + β + 1)

Γ(`+ β + 1)
P

(α+κ+2,β)
` (cos θ)

=
1

2α+β+1Γ(α + 1)

∞∑
`=0

Aκ+2(L, `)
Γ(`+ α + κ+ 2 + β + 1)

Γ(`+ β + 1)
P

(β,α+κ+2)
` (cos(π − θ)).

(3.3.8)

Then (3.3.6) and (3.3.8) with (1.2.1) give for 0 ≤ π − θ ≤ c L−1,

|v(α,β)
L,g (1, cos θ)|

≤ 2−(α+β+1)

Γ(α + 1)

2L−1∑
`=L−(κ+1)

|Aκ+2(L, `)|Γ(`+ α + κ+ 2 + β + 1)

Γ(`+ β + 1)
|P (β,α+κ+2)
` (cos(π − θ))|

≤ cα,β,g,κ

 L−1∑
`=L−(κ+1)

+
2L−1∑

`=2L−1−(κ+1)

L−(2κ+2)`α+κ+2`β

+

2L−1−(κ+2)∑
`=L

L−(2κ+3)`α+κ+2`β


≤ cα,β,g,κ L

α+β−κ. (3.3.9)

Using

L−1 + sin
θ

2
�α,β

{
L−1, 0 ≤ θ ≤ c L−1,

sin θ
2
, c L−1 ≤ θ ≤ π,
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and (3.3.1), (3.3.7) and (3.3.9), we have for given 0 < ε < π,

|v(α,β)
L,g (1, cos θ)| ≤ c L−(κ−α+ 1

2
)(

L−1 + sin θ
2

)α+κ+ 5
2

, 0 ≤ θ ≤ π − ε,

and

|v(α,β)
L,g (1, cos θ)| ≤ c L−(κ−α+ 1

2
)(

L−1 + cos θ
2

)β+ 1
2

, ε ≤ θ ≤ π,

where the constants of the error terms depend only on ε, α, β, g and κ. Let ε := π/2,

then

|v(α,β)
L,g (1, cos θ)| ≤ cα,β,g,κ L

−(κ−α+ 1
2

)(
L−1 + sin θ

2

)α+κ+ 5
2
(
L−1 + cos θ

2

)β+ 1
2

, 0 ≤ θ ≤ π,

thus completing the proof.

Theorem 3.3.1 implies the following upper bound for v
(α,α)
L,g (1, cos θ) with α >

−1/2.

Corollary 3.3.2. Let α > −1/2 and let g be a filter satisfying the following prop-

erties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|(1,2) ∈ Cκ+2(1, 2);

(iii) g(κ+1)|(1,2) and g(κ+2)|(1,2) are bounded on (1, 2).

Then for θ ∈ [0, π], ∣∣v(α,α)
L,g (1, cos θ)

∣∣ ≤ c L2α+2

(1 + Lθ)κ+2
, (3.3.10)

where the constant depends only on α, g and κ.

Proof. By Theorem 3.3.1,

|v(α,α)
L,g (1, cos θ)| ≤ cα,g L

−(κ−α+ 1
2

)(
L−1 + sin θ

2

)κ+α+ 5
2
(
L−1 + cos θ

2

)α+ 1
2

≤ cα,g L
2α+2(

1 + L sin θ
2

)κ+2 (
1 + L sin θ

2

)α+ 1
2
(
L−1 + cos θ

2

)α+ 1
2

. (3.3.11)

Using sin θ
2

+ cos θ
2
≥ 1√

2
for θ ∈ [0, π] gives(

1 + L sin
θ

2

)α+ 1
2
(
L−1 + cos

θ

2

)α+ 1
2

=

[
L−1 +

(
sin

θ

2
+ cos

θ

2

)
+ L sin

θ

2
cos

θ

2

]α+ 1
2

≥
(

1√
2

)α+ 1
2

.

This with (3.3.11) together gives (3.3.10).
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3.3.2 Sharp upper bounds – general case

Theorem 3.3.1 with Koornwinder’s formula [39] gives the following upper bound for

the filtered kernel v
(α,β)
L,g (cos θ, cosφ).

Theorem 3.3.3. Let α, β > −1/2 and let g be a filter satisfying the following

properties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|(1,2) ∈ Cκ+2(1, 2);

(iii) g(κ+1)|(1,2) and g(κ+2)|(1,2) are bounded on (1, 2).

Then for 0 ≤ θ, φ ≤ π,

|v(α,β)
L,g (cos θ, cosφ)| ≤ c L−(κ−max{α,β}+ 1

2
)

(L−1 + |θ − φ|)max{α,β}+κ+ 5
2
(
L−1 + cos θ−φ

2

)min{α,β}+ 1
2

,

(3.3.12)

where the constant c depending on α, β, g and κ.

Remark. Let c(2) be the constant in (3.3.2). We may take the constant in (3.3.12)

as c := c
(3)
max{α,β},min{α,β}, where

c(3)
u,v :=

2 c(2)
√
π Γ(u+ 1)

Γ
(

1
2
v + 3

4

)
Γ
(
u− 1

2
v + 3

4

) , u ≥ v > −1/2.

The inequality (3.3.12) implies that for α, β > −1/2,

|v(α,β)
L,g (cos θ, cosφ)| ≤ cα,β,g,κ L

2 max{α,β}+2, 0 ≤ θ, φ ≤ π. (3.3.13)

Proof of Theorem 3.3.3. (i) We first consider the case when α > β > −1/2. From

[39, Eq. 3.1, Eq. 3.2, Eq. 3.7, p. 129–130]

P
(α,β)
` (t)P

(α,β)
` (s) = c

(4)
α,β

∫ π

0

∫ 1

0

P
(α,β)
` (1)P

(α,β)
` (Z(t, s; r, ψ)) dm(α,β)(r, ψ), (3.3.14)

where

Z(t, s; r, ψ) :=
1

2
(1 + t)(1 + s) +

1

2
(1− t)(1− s)r2 + r

√
1− t2

√
1− s2 cosψ − 1,

(3.3.15a)

dm(α,β)(r, ψ) :=
(
1− r2

)α−β−1
r2β+1(sinψ)2β dr dψ, (3.3.15b)

and

c
(4)
α,β :=

2 Γ(α + 1)√
π Γ(α− β)Γ(β + 1

2
)

(3.3.16)
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is the constant normalising the measure m(α,β)(r, ψ), i.e.

c
(4)
α,β

∫ π

0

∫ 1

0

dm(α,β)(r, ψ) = 1.

By the definition of (2.5.7), we thus have

v
(α,β)
L,g (t, s) = c

(4)
α,β

∫ π

0

∫ 1

0

v
(α,β)
L,g (1, Z(t, s; r, ψ)) dm(α,β)(r, ψ). (3.3.17)

Let cosu := Z(cos θ, cosφ; r, ψ) for 0 ≤ θ, φ ≤ π and 0 ≤ r ≤ 1, 0 ≤ ψ ≤ π. By

(3.3.15a),

1− cosu = 1−
[

1
2
(1 + cos θ)(1 + cosφ) + 1

2
(1− cos θ)(1− cosφ)r2

+r
√

1− cos2 θ
√

1− cos2 φ cosψ − 1
]

= 2
(
sin θ−φ

2

)2
+ 2
(
sin θ

2

)2(
sin φ

2

)2 (
1− r2

)
+ sin θ sinφ (1− r cosψ)

≥ 2
(
sin θ−φ

2

)2
,

therefore

u ≥ |θ − φ|. (3.3.18)

On the other hand,

(
cos u

2

)2
=

1 + cosu

2
= 1

2

[
1
2
(1 + cos θ)(1 + cosφ) + 1

2
(1− cos θ)(1− cosφ)r2

+r
√

1− cos2 θ
√

1− cos2 φ cosψ
]

=
(
cos θ

2
cos φ

2

)2
+ r2

(
sin θ

2
sin φ

2

)2
+ 2(r cosψ)

(
sin θ

2
cos θ

2

)(
cos φ

2
sin φ

2

)
.

Using this and

∣∣2(r cosψ)
(
sin θ

2
cos θ

2

)(
cos φ

2
sin φ

2

)∣∣ ≤ (r sin θ
2

sin φ
2

√
| cosψ|

)2
+
(
cos θ

2
cos φ

2

√
| cosψ|

)2
,

gives

(
cos u

2

)2 ≥ (1− | cosψ|)
(
cos θ

2
cos φ

2

)2
+ r2(1− | cosψ|)

(
sin θ

2
sin φ

2

)2

≥ 1
2
r2 (1− | cosψ|)

(
cos θ−φ

2

)2 ≥ 1
4

(
r sinψ cos θ−φ

2

)2
. (3.3.19)
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By (3.3.18), (3.3.19) and (3.3.2) of Theorem 3.3.1 with (3.3.15b) and (3.3.16),

|v(α,β)
L,g (cos θ, cosφ)|

≤ c
(4)
α,β

∫ π

0

∫ 1

0

|v(α,β)
L,g (1, cosu)| dm(α,β)(r, ψ)

≤ c
(4)
α,β

∫ π

0

∫ 1

0

c(2)L−(κ−α+ 1
2

)(
L−1 + sin u

2

)α+κ+ 5
2
(
L−1 + cos u

2

)β+ 1
2

dm(α,β)(r, ψ)

≤
2(β+ 1

2
)c(2)c

(4)
α,β L

−(κ−α+ 1
2

)

(L−1 + |θ − φ|)α+κ+ 5
2
(
L−1 + cos θ−φ

2

)β+ 1
2

∫ π

0

∫ 1

0

(1− r2)
α−β−1

r2β+1(sinψ)2β dr dψ

(r sinψ)β+ 1
2

=
c

(3)
α,β L

−(κ−α+ 1
2

)

(L−1 + |θ − φ|)α+κ+ 5
2
(
L−1 + cos θ−φ

2

)β+ 1
2

, (3.3.20)

where the constant c
(3)
α,β is

c
(3)
α,β = 2(β+ 1

2
)c(2)c

(4)
α,β

∫ π

0

∫ 1

0

(1− r2)α−β−1r2β+1(sinψ)2β dr dψ

(r sinψ)β+ 1
2

= 2(β+ 1
2

)c(2)c
(4)
α,β

∫ 1

0

(
1− r2

)α−β−1
rβ+ 1

2 dr

∫ π

0

(sinψ)β−
1
2 dψ

= 2(β+ 1
2

)c(2) 2 Γ(α + 1)√
π Γ(α− β)Γ(β + 1

2
)
× 1

2

Γ
(

1
2
β + 3

4

)
Γ
(
α− β

)
Γ
(
α− 1

2
β + 3

4

) Γ
(

1
2
β + 1

4

)
Γ
(

1
2

)
Γ
(

1
2
β + 3

4

)
=

2 c(2)
√
π Γ(α + 1)

Γ
(

1
2
β + 3

4

)
Γ
(
α− 1

2
β + 3

4

) ,
where c

(4)
α,β is given by (3.3.16) and B(·, ·) is the Beta function.

(ii) For −1/2 < α < β, applying (3.2.27b) of Lemma 3.2.9 to (3.3.20) of case

(i) gives ∣∣v(α,β)
L,g (cos θ, cosφ)

∣∣ =
∣∣v(β,α)
L,g (cos(π − θ), cos(π − φ))

∣∣
≤

c
(3)
β,α L

−(κ−β+ 1
2

)

(L−1 + |θ − φ|)β+κ+ 5
2
(
L−1 + cos θ−φ

2

)α+ 1
2

.

(iii) For −1/2 < α = β. By [54, Eq.18.7.1, Eq.18.17.5],

P
(α,α)
` (cos θ)P

(α,α)
` (cosφ)

= c(7)
α

∫ π

0

∫ 1

0

P
(α,α)
` (1)P

(α,α)
` (cos θ cosφ+ sin θ sinφ cosψ)(sinψ)2α dψ,

where c
(7)
α := Γ(α+1)√

πΓ(α+ 1
2

)
. This with (2.5.7) gives

v
(α,α)
L,g (cos θ, cosφ) = c(7)

α

∫ π

0

∫ 1

0

v
(α,α)
L,g (cos θ cosφ+ sin θ sinφ cosψ)(sinψ)2α dψ.



44 3.4 Norms of filtered kernels and operators

Let cosu := cos θ cosφ + sin θ sinφ cosψ. Similar to (3.3.18) and (3.3.19) we

can prove u ≥ |θ − φ|, and(
cos u

2

)2
=
(
cos θ

2
cos φ

2

)2
+
(
sin θ

2
sin φ

2

)2
+ 2 cosψ

(
sin θ

2
cos θ

2

)(
cos φ

2
sin φ

2

)
≥ 1

2

(
1− | cosψ|

)(
cos θ−φ

2

)2 ≥ 1
4

(
sinψ cos θ−φ

2

)2
.

Then, using (3.3.2) again,

|v(α,α)
L,g (cos θ, cosφ)| ≤ c(7)

α

∫ π

0

|v(α,α)
L,g (1, cos θ cosφ+ sin θ sinφ cosψ)|(sinψ)2αdψ

≤ c
(7)
α c(2) L−(κ−α+ 1

2
)

(L−1 + |θ − φ|)α+κ+ 5
2

∫ π

0

(sinψ)2α(
L−1 + 1√

2
sinψ cos θ−φ

2

)α+ 1
2

dψ

≤ 2α+ 1
2 c

(7)
α c(2) L−(κ−α+ 1

2
)

(L−1 + |θ − φ|)α+κ+ 5
2
(
L−1 + cos θ−φ

2

)α+ 1
2

∫ π

0

(sinψ)α−
1
2dψ

≤ c
(5)
α L−(κ−α+ 1

2
)

(L−1 + |θ − φ|)α+κ+ 5
2
(
L−1 + cos θ−φ

2

)α+ 1
2

where

c(5)
α :=

2 c(2)
√
π Γ (α + 1)(

Γ
(

1
2
α + 3

4

))2 = c(3)
α,α,

thus completing the proof.

3.4 Norms of filtered kernels and operators

This section estimates the L1(wα,β)-norms of the filtered kernel and the filtered

operator using the localised upper bounds obtained in Sections 3.2 and 3.3.

We will prove the following estimates for the filtered kernel in Theorems 3.4.1

and 3.4.2 below. Let α, β > −1 and let g be a filter satisfying the following proper-

ties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|[1,2] ∈ Cκ+3([1, 2]);

(iii) g(κ+1)(1+) 6= 0.

Then

∥∥v(α,β)
L,g (1, ·)χ[a,b](·)

∥∥
L1(wα,β)

�

{
1, −1 ≤ a < b = 1, κ > α− 1

2
,

L−(κ−α+ 1
2

), −1 ≤ a < b < 1.
(3.4.1)

Substituting the condition (ii) by (ii ′): g|[1,2] ∈ Cκ+2([1, 2]), we will still have

for −1 ≤ a < b = 1 and κ > α− 1
2
,
∥∥v(α,β)

L,g (1, ·)χ[a,b](·)
∥∥
L1(wα,β)

� 1.
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Under the condition of (ii ′) in place of (ii), the asymptotical equivalence of

(3.4.1) for b < 1 however is not proved. The conditions (i) and (iii) guarantee that

the filter g has up to κth derivative on R+ while the condition (ii) ensures that the

(κ+ 3)th difference of g(`/L) with respect to ` is bounded by c/Lκ+3.

The estimate (3.4.1) for b = 1 implies the boundedness of the corresponding

filtered operator: ∥∥V (α,β)
L,g

∥∥
Lp→Lp

≤ cα,β,g,κ,

which is stated and proved in Theorem 3.4.3.

3.4.1 Weighted L1-norms of filtered kernels

Theorem 3.4.1. Let α, β > −1 and let g be a filter satisfying the following proper-

ties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|[1,2] ∈ Cκ+3([1, 2]);

(iii) g(κ+1)(1+) 6= 0.

Then for −1 ≤ a < b < 1,∥∥v(α,β)
L,g (1, ·)χ[a,b](·)

∥∥
L1(wα,β)

� L−(κ−α+ 1
2

), (3.4.2)

where the constants depend only on a, b, α, β, g and κ.

Proof. Let φ1 := arccos(b) and φ2 := arccos(a). We use Theorem 3.3.1 to estimate

the upper bound of (3.4.2). Let c be the constant given in Lemma 3.2.1. Then there

exists a positive integer L1 such that 0 < cL−1 < φ1 < θ < π− cL−1 for all L ≥ L1.

By (3.3.1) of Theorem 3.3.1, adopting its notation,∫ π−cL−1

φ1

|v(α,β)
L,g (cos θ)|wα,β(1, cos θ) sin θ dθ

≤ c

∫ π−cL−1

φ1

θ−α−(κ+2)− 1
2

(
cos θ

2

)−β− 1
2L−(κ−α+ 1

2
)
(
1 + (sin θ)−1L−1

)
× 2α+β+1

(
sin θ

2

)2α+1(
cos θ

2

)2β+1
dθ

≤ c L−(κ−α+ 1
2

)

[∫ π−cL−1

φ1

θα−κ−
3
2
(
cos θ

2

)β+
1
2 dθ

+L−1

∫ π−cL−1

φ1

θα−κ−
5
2

(
cos θ

2

)β− 1
2 dθ

]
≤ c L−(κ−α+ 1

2
), (3.4.3)
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where the constant c depends only on α, β, g, κ and b, and when −1 < β < −1/2

the third inequality uses∫ π−cL−1

φ1

(
cos θ

2

)β−1
2 dθ ≤

∫ π−φ1

cL−1

(
θ
π

)β− 1
2dθ ≤ c L−(β+ 1

2
) ≤ c L

1
2 .

For π − c L−1 ≤ θ ≤ π, by (3.3.2),∫ π

π−cL−1

|v(α,β)
L,g (1, cos θ)|wα,β(cos θ) sin θ dθ ≤ c Lα−κ+β

∫ cL−1

0

(
sin θ

2

)2β+1
dθ

≤ c Lα−κ−(β+2) ≤ cα,β,g,κ L
−(κ−α+ 1

2
).

(3.4.4)

This and (3.4.3) proves the upper bound in (3.4.2).

We use Theorem 3.2.7 to prove the lower bound. Let φ0 := (φ1 + φ2)/2, then

there exists a positive integer L2 such that for L ≥ L2, cL−1 < φ1 < φ0 < π− cL−1,

where c is the same constant of Lemma 3.2.1. By Theorem 3.2.7 for c L−1 < φ1 ≤
θ ≤ φ0 < π − c L−1,

v
(α,β)
L,g (1, cos θ) = L−(κ−α+ 1

2
)
C

(1)
α,β,κ+3(θ)

2κ+3(κ+ 1)!

(
uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ)

+ uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ) + o(1) + (sin θ)−1O
(
L−1

))
.

Then,

∥∥v(α,β)
L,g (1, ·)χ[a,b](·)

∥∥
L1(wα,β)

≥
∫ φ0

φ1

|v(α,β)
L,g (1, cos θ)|wα,β(cos θ) sin θ dθ

=

∫ φ0

φ1

L−(κ−α+ 1
2

)
C

(1)
α,β,κ+3(θ)

2κ+3(κ+ 1)!

∣∣uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ) + uκ,3(θ) cosφL(θ)

+uκ,4(θ) sinφL(θ) + o(1) + (sin θ)−1O
(
L−1

)∣∣ 2α+β+1
(
sin θ

2

)2α+1(
cos θ

2

)2β+1
dθ

=
Lα−κ−

1
2

2κ+3
√
π Γ(α + 1)(κ+ 1)!

∫ φ0

φ1

(
sin θ

2

)α−κ− 5
2
(
cos θ

2

)β+ 1
2 |uκ,1(θ) cosφL(θ)

+ uκ,2(θ) sinφL(θ) + uκ,3(θ) cosφL(θ) +uκ,4(θ) sinφL(θ) + o(1) + (sin θ)−1O
(
L−1

)∣∣dθ
=:

Lα−κ−
1
2

2κ+3
√
π Γ(α + 1)(κ+ 1)!

(
I + o(1) +O

(
L−1

))
, (3.4.5)

where the constant in the big O depends only on a, b, α, β, g and κ, and uκ,i(θ) are

given by (3.2.18).

In the following, we prove I is not less than a positive constant independent of

L. There exists some positive constant c1 depending only on a, b, α, β, g and κ such
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that

I ≥ c1

∫ φ0

φ1

|uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ)

+uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ)
∣∣ dθ. (3.4.6)

Since uκ,i(θ), i = 1, 2, 3, 4 are bounded, there exists a constant c2 depending

only on g and κ such that for φ1 ≤ θ ≤ φ2,∣∣uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ) + uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ)
∣∣ ≤ c2,

This with (3.4.6) gives

I ≥ c1

c2

∫ φ0

φ1

|uκ,1(θ) cosφL(θ) + uκ,2(θ) sinφL(θ)

+uκ,3(θ) cosφL(θ) + uκ,4(θ) sinφL(θ)
∣∣2 dθ

=:
c1

c2

(I1 + I2), (3.4.7)

where

I1 :=
1

2

4∑
i=1

∫ φ0

φ1

(
uκ,i(θ)

)2
dθ ≥ 1

2

∫ φ0

φ1

(
uκ,1(θ)

)2
dθ > 0, (3.4.8)

where the last inequality in (3.4.8) is due to that uκ,1(θ) is an algebraic polynomial

of cos θ with non-zero initial coefficient (−1)κg(κ+1)(1+), and

I2 :=

∫ φ0

φ1

[
(uκ,1(θ))2 − (uκ,2(θ))2

2
cos (2φL(θ)) +

(uκ,3(θ))2 − (uκ,4(θ))2

2
cos
(
2φL(θ)

)
+ uκ,1(θ)uκ,2(θ) sin (2φL(θ)) + uκ,3(θ)uκ,4(θ) sin

(
2φL(θ)

)
+ (uκ,1(θ)uκ,3(θ) + uκ,2(θ)uκ,4(θ)) cos

(
φL(θ)− φL(θ)

)
+ (uκ,1(θ)uκ,3(θ)− uκ,2(θ)uκ,4(θ)) cos

(
φL(θ) + φL(θ)

)
+ (uκ,1(θ)uκ,4(θ) + uκ,2(θ)uκ,3(θ)) sin

(
φL(θ) + φL(θ)

)
+ (uκ,1(θ)uκ,4(θ)− uκ,2(θ)uκ,3(θ)) sin

(
φL(θ)− φL(θ)

)]
dθ.

By Riemann-Lesbegue lemma and taking accounting of φL(θ) ± φL(θ) � Lθ

and 2φL(θ), 2φL(θ) � Lθ, we have I2 → 0 as L → +∞. This with (3.4.8), (3.4.7)

and (3.4.5) together gives∥∥v(α,β)
L,g (1, ·)χ[a,b](·)

∥∥
L1(wα,β)

≥ c L−(κ−α+ 1
2

),

where the constant c depends only on a, b, α, β, g and κ, thus completing the proof.
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Remark. From the proof, we see that g(κ+1)(1+) 6= 0 is an indispensable condition

for the lower bound in Theorem 3.4.1. We also require g|[1,2] ∈ Cκ+3([1, 2]) in the

theorem to achieve the lower bound. This condition may be weakened to g|[1,2] ∈
Cκ+2([1, 2]) as we will see in Theorem 3.4.2 below.

Theorem 3.4.2. Let α, β > −1 and let g be a filter satisfying the following proper-

ties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|[1,2] ∈ Cκ+2([1, 2]);

(iii) κ > α− 1
2
.

Then for −1 ≤ a < 1, ∥∥v(α,β)
L,g (1, ·)χ[a,1](·)

∥∥
L1(wα,β)

� 1, (3.4.9)

where the constants in the equalities depend only on a, α, β, g and κ.

Remark. The condition (ii) can be substituted by an alternative one: (ii ′) g|(1,2) ∈
Cκ+2(1, 2) and g(κ+1)|(1,2) and g(κ+2)|(1,2) are bounded on (1, 2).

Proof. We only prove the upper bound for a = −1. We split the integral into three

parts, as follows.∥∥v(α,β)
L,g (1, ·)

∥∥
L1(wα,β)

=

(∫ cL−1

0

+

∫ π−cL−1

cL−1

+

∫ π

π−cL−1

)∣∣v(α,β)
L,g (1, cos θ)

∣∣wα,β(cos θ) sin θ dθ

=: I1 + I2 + I3

For the first term I1, (3.3.2) in Theorem 3.3.1 gives

I1 =

∫ cL−1

0

∣∣v(α,β)
L,g (1, cos θ)

∣∣wα,β(cos θ) sin θdθ ≤ cL2α+2

∫ cL−1

0

(
sin θ

2

)2α+1
dθ ≤ cα,β,g,κ.

We use (3.3.1) in Theorem 3.3.1 to prove the upper bound of I2.

I2 =

∫ π−cL−1

cL−1

∣∣v(α,β)
L,g (1, cos θ)

∣∣wα,β(cos θ) sin θ dθ

≤ c

(∫ π
2

cL−1

+

∫ π−cL−1

π
2

)
θ−α−(κ+2)− 1

2

(
cos θ

2

)−β− 1
2 L−(κ−α+ 1

2
)×(

1 + (sin θ)−1L−1
)
wα,β(cos θ) sin θ dθ,

where the first integral is bounded by

c L−(κ−α+ 1
2

)

(∫ π
2

cL−1

θα−κ−
3
2 dθ + L−1

∫ π
2

cL−1

θα−κ−
5
2 dθ

)
≤ cα,β,g,κ,
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and the second integral is bounded by

c L−(κ−α+ 1
2

)

(∫ π−cL−1

π
2

(
cos θ

2

)β+ 1
2 dθ + L−1

∫ π−cL−1

π
2

(
cos θ

2

)β− 1
2 dθ

)

≤ c L−(κ−α+ 1
2

). (3.4.10)

Then I2 ≤ c L−(κ−α+ 1
2

), where the constant c depends only on α, β, g and κ.

By (3.4.4), I3 ≤ c L−(κ−α+ 1
2

). This with estimates of I1 and I2 and κ > α − 1
2

gives the upper bound in (3.4.9).

The lower bound of (3.4.9) when a = −1 follows from the orthogonality of

Jacobi polynomials: By the definition of (2.5.7) and (2.5.2),

∥∥v(α,β)
L,g (1, ·)

∥∥
L1(wα,β)

≥
∣∣∣∣∫ 1

−1

v
(α,β)
L,g (1, t)wα,β(t) dt

∣∣∣∣ = 1. (3.4.11)

This implies the lower bound of (3.4.9) when −1 < a < 1, as follows. Let

φ2 := arccos(a).

∥∥v(α,β)
L,g (1, ·)χ[a,1](·)

∥∥
L1(wα,β)

=

∫ φ2

0

∣∣v(α,β)
L,g (1, cos θ)

∣∣wα,β(cos θ) sin θ dθ

=

(∫ π

0

−

(∫ π−cL−1

φ2

+

∫ π

π−cL−1

))∣∣v(α,β)
L,g (1, cos θ)

∣∣wα,β(cos θ) sin θ dθ

=: I3 + I4 + I5.

By (3.4.11), I3 ≥ 1. Similar to the derivation of the upper bound of the second

integral of I2, see (3.4.10), I4 ≤ c L−(κ−α+ 1
2

), and by (3.3.2), I5 ≤ c L−(κ−α+ 1
2

)−(β+ 3
2

),

where the constants c depend only on a, b, α, β, g and κ. Both of I4 and I5 tend to

zero as L→ +∞. Thus,∥∥v(α,β)
L,g (1, ·)χ[a,1](·)

∥∥
L1(wα,β)

≥ 1/2, L→ +∞.

3.4.2 Lp-norms of filtered operators

In this section, we give a sufficient condition that guarantees the boundedness of

the filtered operator V
(α,β)
L,g in (2.5.6), using the estimates of Theorem 3.4.2 in Sec-

tion 3.4.1.

Let α, β > −1 and 1 ≤ p ≤ ∞. We denote by Lp(wα,β) = Lp([−1, 1], wα,β) the

Lp space with respect to positive measure wα,β(t) dt. It forms a Banach space with

the Lp-norm ‖f‖Lp(wα,β) :=
(∫ 1

−1
|f(t)|pwα,β(t) dt

)1/p

.
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The following theorem shows that V
(α,β)
L,g is a strong (p, p)-type operator when

the filter g is sufficiently smooth.

Theorem 3.4.3. Let α ≥ β > −1/2 and 1 ≤ p ≤ ∞, and let g be a filter satisfying

the following properties: g(t) = c for t ∈ [0, 1] with c ≥ 0, supp g ⊂ [0, 2] and for

some κ ∈ Z+,

(i) g ∈ Cκ(R+);

(ii) g|[1,2] ∈ Cκ+2([1, 2]);

(iii) κ > α− 1
2
.

Then for f ∈ Lp(wα,β), ∥∥V (α,β)
L,g (f)

∥∥
Lp(wα,β)

≤ c ‖f‖Lp(wα,β), (3.4.12)

where the constant c depends only on α, β, filter g and κ.

Remark. The condition (ii) can be substituted by an alternative one: (ii ′) g|(1,2) ∈
Cκ+2(1, 2) and g(κ+1)|(1,2) and g(κ+2)|(1,2) are bounded on (1, 2).

To prove the boundedness of V
(α,β)
L,g , we need the representation for its filtered

kernel using the translation operator. Gasper [29, 28] shows that for α ≥ β > −1

and α + β ≥ −1, there exists a unique Borel measure µ
(α,β)
t,s (z) on [−1, 1] such that

for ` ≥ 0,

P
(α,β)
` (t)P

(α,β)
` (s) =

∫ 1

−1

P
(α,β)
` (1)P

(α,β)
` (z) dµ

(α,β)
t,s (z). (3.4.13)

Let 1 ≤ p ≤ ∞. Gasper [28] defined the translation operator by

T (α,β)
s (f ; t) :=

∫ 1

−1

f(z) dµ
(α,β)
t,s (z), f ∈ Lp(wα,β).

It satisfies the following properties, see [28, 21]:

• Commutativity.(
T (α,β)
s (f), g

)
α,β

=
(
f, T (α,β)

s (g)
)
α,β

. (3.4.14)

• Strong (p, p)-type. For −1 ≤ s ≤ 1 and f ∈ Lp(wα,β),∥∥T (α,β)
s (f)

∥∥
Lp(wα,β)

≤ cα,β ‖f‖Lp(wα,β).

The convolution is defined by, see [28],

(f ∗ g)(s) := (f ∗α,β g)(s) :=
(
T (α,β)
s (f), g

)
α,β

, f, g ∈ Lp(wα,β). (3.4.15)

It satisfies the Young’s inequality for α ≥ β ≥ −1/2:

‖f ∗ g‖Lp(wα,β) ≤ ‖f‖Lp(wα,β)‖g‖L1(wα,β). (3.4.16)
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Lemma 3.4.4. Let α ≥ β > −1 and α + β ≥ −1 and let g be a filter. Then for

f ∈ Lp(wα,β) and s ∈ [−1, 1],

V
(α,β)
L,g (f ; s) =

(
f ∗ v(α,β)

L,g (1, ·)
)

(s). (3.4.17)

Proof. By (3.4.13) and (2.5.5),

v
(α,β)
L,g (t, s) =

∫ 1

−1

v
(α,β)
L,g (1, z) dµ

(α,β)
t,s (z) = T (α,β)

s

(
v

(α,β)
L,g (1, ·); t

)
. (3.4.18)

Then the corresponding filtered operator has the following convolution representa-

tion. For f ∈ Lp(wα,β),

V
(α,β)
L,g (f ; s) =

∫ 1

−1

f(t) v
(α,β)
L,g (t, s) wα,β(t) dt

=

∫ 1

−1

f(t) T (α,β)
s

(
v

(α,β)
L,g (1, ·); t

)
wα,β(t) dt

=

∫ 1

−1

T (α,β)
s (f ; t) v

(α,β)
L,g (1, t) wα,β(t) dt

=
(
f ∗ v(α,β)

L,g (1, ·)
)

(s),

where the second equality uses (3.4.18), the third equality uses (3.4.14) and the last

equality uses (3.4.15).

Theorem 3.4.5. Let α ≥ β > −1 and α + β ≥ −1, and let g be a filter. Then for

f ∈ Lp(wα,β), ∥∥V (α,β)
L,g (f)

∥∥
Lp(wα,β)

≤ ‖f‖Lp(wα,β)

∥∥v(α,β)
L,g (1, ·)

∥∥
L1(wα,β)

. (3.4.19)

Proof. Applying Young’s inequality (3.4.16) to (3.4.17) in Lemma 3.4.4 gives (3.4.19).

Proof of Theorem 3.4.3. For α ≥ β ≥ −1/2, the inequality (3.4.12) follows by The-

orems 3.4.5 and 3.4.2.

3.5 Construction of filters

In this section, we construct filters with given smoothness using piecewise polyno-

mials.

Suppose we want to construct a filter g satisfying g ∈ Cκ(R+) for some κ ≥ 0

and χ[0,1] ≤ g ≤ χ[0,2]. Let p(t) be a polynomial of t. We define g(t) as

g(t) :=


1, 0 ≤ t ≤ 1,

p(t), 1 < t < 2,

0, t ≥ 2.

(3.5.1)
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To guarantee the smoothness of g, we only need to make sure that g is κ times

continuously differentiable at the transition points t = 1 and t = 2. Taking account

of the smoothness constraint of p(t) at t = 1, we can write

p(t) = 1 +
2κ+1∑
i=κ+1

ai(t− 1)i, (3.5.2)

where the coefficients ai, i = κ + 1, . . . , 2κ + 1 are determined by the smoothness

constraint at t = 2, i.e. g(i)(2) = 0 for i = 0, 1, . . . , κ. This gives the linear system

of ai :

Ma = b, (3.5.3)

where

M = M(κ+1)×(κ+1) = (mij), mij =

(
κ+ j

κ+ j − (i− 1)

)
,

a = (aκ+1, . . . , a2κ+1)T , b = (−1, 0, . . . , 0)T .

The coefficient matrix M is

1 1 · · · 1(
κ+1
κ

) (
κ+2
κ+1

)
· · ·

(
2κ+1

2κ

)(
κ+1
κ−1

) (
κ+2
κ

)
· · ·

(
2κ+1

2κ

)
...

...
...(

κ+1
1

) (
κ+1

2

)
· · ·

(
2κ+1
κ+1

)


.

Let {qi(j) : i, j = 1, 2, . . . , κ+ 1} be a set of (κ+ 1)2 integers defined byq1(j) = 1, j = 1, . . . , κ+ 1,

qi(j) =
∑j

k=1 qi−1(k), i = 2, . . . , κ+ 1, j = 1, . . . , κ+ 1.

Solving the linear system (3.5.3) we obtain the coefficients ai for (3.5.2) given re-

cursively by {
a2κ+1 = (−1)κ+1qκ+1(κ+ 1),

aκ+i = (−1)iqi(κ+ 1), i = κ, κ− 1, . . . , 1.

We list in Table 3.1 and show in Figure 3.1 the explicit formula and pictures

for piecewise polynomial filters g2κ+1 ∈ Cκ(R+) satisfying (3.5.1) with smoothness

κ = 1, . . . , 6. The cubic filter g3 was constructed earlier in [24]. There exist other

constructions of filters, such as piecewise quadratic polynomial filter g2 ∈ C1(R+)

[67, Section 5.2, p. 550], sine filter gsin ∈ C1(R+) [1, Eq. 2.21, p. 1519] and C∞-

exponential filter [20, p. 269]. The first two which will be used in numerical tests
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κ degree g|[1,2](t)

1 3 1 + [−3 + 2(t− 1)](t− 1)2

2 5 1 +
[
−10 + 15(t− 1)− 6(t− 1)2

]
(t− 1)3

3 7 1 +
[
−35 + 84(t− 1)− 70(t− 1)2 + 20(t− 1)3

]
(t− 1)4

4 9
1 +

[
−126 + 420(t− 1)− 540(t− 1)2 + 315(t− 1)3 −

70(t− 1)4
]

(t− 1)5

5 11
1 +

[
−462 + 1980(t− 1)− 3465(t− 1)2 + 3080(t− 1)3−

1386(t− 1)4 + 252(t− 1)5
]

(t− 1)6

6 13
1 +

[
−1716 + 9009(t− 1)− 20020(t− 1)2 + 24024(t− 1)3−

16380(t− 1)4 + 6006(t− 1)5 − 924(t− 1)6 + 3432(t− 1)7
]

(t− 1)7

Table 3.1: Piecewise polynomial filters g2κ+1, κ = 1, . . . , 6

below are given by

g2(t) :=


1, 0 ≤ t ≤ 1,

1− 2(t− 1)2, 1 < t ≤ 3/2,

2(2− t)2, 3/2 < t < 2,

0, t ≥ 2

gsin(t) :=


1, 0 ≤ t ≤ 1,(
sin
(
π
2
t
))2

, 1 < t < 2,

0, t ≥ 2.

3.6 Numerical examples

This section gives the numerical results for the L1(wα,β)-norm of the filtered kernel

v
(α,β)
L,g (1, t)χ[−1,a](t) for three pairs of α, β: α = β = 0; α = 1, β = 0; α = 3,
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(a) Cubic filter, g3
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(b) Quintic filter, g5
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(c) Degree 7 filter, g7
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(d) Degree 9 filter, g9
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(e) Degree 11 filter, g11
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1

(f) Degree 13 filter, g13

Figure 3.1: Filters g2κ+1, κ = 1, . . . , 6, using piecewise polynomials

β = 1. For each pair, the corresponding kernel v
(α,β)
L,g (1, t) is equivalent to a filtered

convolution kernel for a two-point homogeneous space, see [13] for details:

Example (i) α = β = d−2
2

, corresponding to the unit sphere Sd in Rd+1, d ≥ 2;

Example (ii) α = 1, β = 0, corresponding to the complex projective space

P 4(C);

Example (iii) α = 3, β = 1, corresponding to the quaternion projective space

P 8(H).

We choose the following filters for the above examples.

Example (i): Piecewise polynomial filters g3, g5, g7 with κ = 1, 2, 3 and sine

filter gsin with κ = 1;

Example (ii): Piecewise polynomial filters g2, g3, g5, g7 with κ = 1, 1, 2, 3

respectively, de la Vallée Poussin filter g0 with κ = 0 and sine filter gsin with

κ = 1;

Example (iii): Piecewise polynomial filters g5, g7, g9, g11, g13 with κ =

2, 3, 4, 5, 6.

\ 
\ 

\ 
, ... . . . ,\ . 
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We use the trapezoidal rule with 106 nodes to approximate the L1(wα,β)-norm

of the filtered kernel:∥∥v(α,β)
L,g (1, ·)χ[−1,a](·)

∥∥
L1(wα,β)

=

∫ a

−1

∣∣v(α,β)
L,g (1, s)

∣∣wα,β(s) ds. (3.6.1)

Figure 3.2 shows the L1(wα,β)-norm of v
(α,β)
L,g (1, ·)χ[−1,a](·) with a = 1 and a =

0.8 for examples (i)–(iii), where the degree of the filtered kernel is taken as high

as 100. We fit the second half of data for each filtered kernel to illustrate the

convergence order.

The first column of Figure 3.2 shows that the L1(wα,β)-norm with a = 1 is

equivalent to a constant when κ ≥ α − 1/2 and diverges when κ < α − 1/2. The

second column of Figure 3.2 shows that the L1(wα,β)-norm with a = 0.8 increases

or decreases at order close to κ− α+ 1/2, which is consistent with Theorems 3.4.1

and 3.4.2. It thus illustrates that κ ≥ α − 1/2 may be an optimal condition for

Theorem 3.4.2.

3.7 Fourier-Jacobi kernels and operators

Lemma 3.7.1 below shows how the filtered kernel v
(α,β)
L (t, s) behaves as L→∞ for

a given pair of t, s ∈ [−1, 1].

Lemma 3.7.1. Let α, β > −1/2 and L̃ := L+ α+β+2
2

. Using mα,β(θ) and ωα(z) as

defined in (3.2.2b) and (3.2.2c) respectively, the following estimates for v
(α,β)
L (cosφ, cos θ)

hold:

(i) For φ = 0,

v
(α,β)
L (1, cos θ) =

2−(α+β+1)

Γ(α + 1)
×

L2α+2 1
Γ(α+2)

(1 +O (L−1)) , θ = 0,

Lα+ 1
2 mα+1,β(θ)

(
cosωα+1(L̃θ) + (sin θ)−1O (L−1)

)
, cL−1 < θ < π − cL−1,

Lα+β+1 1
Γ(β+1)

(−1)L (1 +O (L−1)) , θ = π.

(3.7.1)

(ii) For cL−1 < θ 6= φ < π − cL−1, letting ξ := απ + π/2,

v
(α,β)
L (cosφ, cos θ)

=
mα,β(θ)mα,β(φ)

2α+β+1(cosφ− cos θ)

(
sin θ+φ

2
sin
(
L̃(θ − φ)

)
+ sin θ−φ

2
sin
(
L̃(θ + φ)− ξ

)
+
(
(sin θ)−1 + (sinφ)−1

)
Oα,β

(
L−1

))
. (3.7.2)
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10 20 30 40 50 60 70 80 90 100
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g

sin

2.279 L−0.001

g
3

2.256 L−0.001

g
5
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g
7

2.654 L−0.002

Example (i) with α = 0, a = 1
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g
sin

3.966 L−1.500

g
3
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g
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g
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Example (i) with α = 0, a = 0.8
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Example (ii) with α = 1, a = 1
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Example (ii) with α = 1, a = 0.8
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Example (iii) with α = 3, a = 1
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g
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g
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g
11

46427.283 L−2.562

g
13

1419877.103 L−3.556

Example (iii) with α = 3, a = 0.8

Figure 3.2: L1(wα,β)-norms of filtered kernels in (3.6.1) for Examples (i), (ii), (iii)
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(iii) For cL−1 < θ = φ < π − cL−1,

v
(α,β)
L (cos θ, cos θ) = L

mα+1,β+1(θ)mα,β(θ)

2α+β+1

(
sin θ + (sin θ)−1O

(
L−1

))
.

(iv) For θ = φ = π,

v
(α,β)
L (−1,−1) = L2β+2 2−(α+β+1)

Γ(β + 1)Γ(β + 2)

(
1 +O

(
L−1

))
.

Here the constants in the big O’s depend only on α, β.

Proof. For θ, φ ∈ [0, π], let s := cos θ and t := cosφ.

(i) By (3.2.19),

v
(α,β)
L (1, s) =

L∑
`=0

(
M

(α,β)
`

)−1

P
(α,β)
` (1)P

(α,β)
` (s)

=
1

2α+β+1

Γ(L+ α + β + 2)

Γ(α + 1)Γ(L+ β + 1)
P

(α+1,β)
L (s). (3.7.3)

For s = −1, i.e. θ = π, by Lemma 3.2.8 and [70, Eq. 4.1.1, p. 58], P
(α+1,β)
L (−1) =

(−1)LP
(β,α+1)
L (1) = (−1)L

(
L+β
L

)
. This with (1.2.1) and (3.7.3) gives

v
(α,β)
L (1,−1) =

2−(α+β+1)

Γ(α + 1)Γ(β + 1)
(−1)LLα+β+1

(
1 +O

(
L−1

))
.

For cL−1 < θ < π − cL−1 (s = cos θ), applying Lemma 3.2.1 (adopting its

notation) to P
(α+1,β)
L (s) in (3.7.3) gives, letting L̃ := L+ α+β+2

2
,

v
(α,β)
L (1, cos θ) =

2−(α+β+1)

Γ(α + 1)
Lα+ 1

2mα+1,β(θ)
(
cosωα+1(L̃θ) + (sin θ)−1O

(
L−1

))
,

where the constant in the big O term depends only on α and β.

(ii) From [70, Eq. 4.5.2, p. 71],

v
(α,β)
L (t, s) =

2−(α+β)

2L+ α + β + 2

Γ(L+ 2)Γ(L+ α + β + 2)

Γ(L+ α + 1)Γ(L+ β + 1)

×
P

(α,β)
L+1 (t)P

(α,β)
L (s)− P (α,β)

L (t)P
(α,β)
L+1 (s)

t− s

:=
2−(α+β)

2L+ α + β + 2

Γ(L+ 2)Γ(L+ α + β + 2)

Γ(L+ α + 1)Γ(L+ β + 1)

I1

t− s
. (3.7.4)

Applying Lemma 3.2.1 to the Jacobi polynomials of I in (3.7.4) gives, letting

L̂ := L+ α+β+1
2

, (3.7.5)
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I1 =
(
L̂(L̂+ 1)

)−1/2
mα,β(φ)mα,β(θ)

×
(

cosωα
(
(L̂+ 1)φ

)
cosωα(L̂θ)− cosωα(L̂φ) cosωα

(
(L̂+ 1)θ

)
+
(
(sinφ)−1 + (sin θ)−1

)
O
(
L−1

))
=:
(
L̂(L̂+ 1)

)−1/2
mα,β(φ)mα,β(θ)

(
I1,1 +

(
(sinφ)−1 + (sin θ)−1

)
O
(
L−1

))
, (3.7.6)

where we used (sin θ)−1L−1 ≤ cα,β.

We use trigonometric identities to rewrite I1,1 in (3.7.6) as

I1,1 = 1
2

[
cos
(
ωα(L̂φ+ φ)− ωα(L̂θ)

)
+ cos

(
ωα(L̂φ+ φ) + ωα(L̂θ)

)]
− 1

2

[
cos
(
ωα(L̂φ)− ωα(L̂θ + θ)

)
+ cos

(
ωα(L̂φ) + ωα(L̂θ + θ)

)]
.

Rearranging this equation and using trigonometric identities again gives

I1,1 = 1
2

[
cos
(
ωα(L̂φ+ φ)− ωα(L̂θ)

)
− cos

(
ωα(L̂φ)− ωα(L̂θ + θ)

)]
+ 1

2

[
cos
(
ωα(L̂φ+ φ) + ωα(L̂θ)

)
− cos

(
ωα(L̂φ) + ωα(L̂θ + θ)

)]
.

= sin θ+φ
2

sin
(
(L̂+ 1

2
)(θ − φ)

)
+ sin θ−φ

2
sin
(
(L̂+ 1

2
)(θ + φ)− ξ

)
,

where ξ := απ + π/2 and we used (3.2.2). This with (3.7.6) and (3.7.4) together

gives (3.7.2), on noting L̃ = L̂+ 1/2.

(iii) For cL−1 < θ 6= φ < π − cL−1 (t = cosφ, s = cos θ), we rewrite (3.7.4) as

v
(α,β)
L (t, s) =

2−(α+β)

2L+ α + β + 2

Γ(L+ 2)Γ(L+ α + β + 2)

Γ(L+ α + 1)Γ(L+ β + 1)

×

(
P

(α,β)
L+1 (t)− P (α,β)

L+1 (s)

t− s
P

(α,β)
L (s)− P (α,β)

L+1 (s)
P

(α,β)
L (t)− P (α,β)

L (s)

t− s

)
.

Taking its limit as t→ s and using [70, Eq. 4.21.7, p. 63] give

v
(α,β)
L (s, s) =

2−(α+β)

2L+ α + β + 2

Γ(L+ 2)Γ(L+ α + β + 2)

Γ(L+ α + 1)Γ(L+ β + 1)

×
[

1
2
(L+ α + β + 2)P

(α+1,β+1)
L (s)P

(α,β)
L (s)− 1

2
(L+ α + β + 1)P

(α,β)
L+1 (s)P

(α+1,β+1)
L−1 (s)

]
.

(3.7.7)

We denote the terms in the square brackets in (3.7.7) by I2. Applying Lemma 3.2.1
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to I2 gives, cf. (3.7.6),

I2 = 1
2
L
(
1 +O

(
L−1

)) (
L̂(L̂+ 1)

)−1/2
mα+1,β+1(θ)mα,β(θ)

×
((

sinωα(L̂θ + θ) + (sin θ)−1O
(
L−1

))(
cosωα(L̂θ) + (sin θ)−1O

(
L−1

))
−
(
cosωα(L̂θ + θ) + (sin θ)−1O

(
L−1

))(
sinωα(L̂θ) + (sin θ)−1O

(
L−1

)))
= 1

2
mα+1,β+1(θ)mα,β(θ)

×
(

sinωα(L̂θ + θ) cosωα(L̂θ)− cosωα(L̂θ + θ) sinωα(L̂θ) + (sin θ)−1O
(
L−1

))
= 1

2
mα+1,β+1(θ)mα,β(θ)

(
sin θ + (sin θ)−1O

(
L−1

))
,

where L̂ is given by (3.7.5) and we used (3.2.2c). This with (3.7.7) and (1.2.1) gives

v
(α,β)
L (cos θ, cos θ) =

L

2α+β+2
mα+1,β+1(θ)mα,β(θ)

(
sin θ + (sin θ)−1O

(
L−1

))
.

(iv) Using (3.2.27a) and (3.7.1) when θ = 0 gives

v
(α,β)
L (−1,−1) = v

(β,α)
L (1, 1) =

2−(α+β+1)

Γ(β + 1)Γ(β + 2)
L2β+2

(
1 +O

(
L−1

))
,

thus completing the proof.

The following lemma shows the unboundedness of the Fourier convolution V(α,β)
L

for the space of continuous functions on [−1, 1].

Lemma 3.7.2. Given α > −1/2 and β > −1, V(α,β)
L is unbounded on C[−1, 1].

Proof. By (3.7.3),

∥∥V(α,β)
L

∥∥
C[−1,1]→C[−1,1]

= max
−1≤t≤1

∫ 1

−1

∣∣v(α,β)
L (t, s)

∣∣wα,β(s) ds

≥
∫ 1

−1

∣∣v(α,β)
L (1, s)

∣∣wα,β(s) ds

=

∫ 1

−1

Γ(L+ α + β + 2)

2α+β+1Γ(α + 1)Γ(L+ β + 1)
|P (α+1,β)
L (s)|wα,β(s) ds

≥ cα,β L
α+1

∫ 1

−1

|P (α+1,β)
L (s)|(1− s)α ds

≥ cα,β L
α+ 1

2 → +∞,

where the penultimate inequality uses [70, Eq. 7.34.1, p. 172–173].





Chapter 4

Riemann localisation on the

sphere

4.1 Introduction

This chapter studies Riemann localisation for Fourier-Laplace partial sums and

filtered approximations on Sd. We define the Fourier local convolution on Sd and

obtain tight upper and lower bounds for the Lp-norm of the Fourier local convolu-

tion for functions in Sobolev spaces. This shows that Riemann localisation holds

for the Fourier-Laplace partial sum for sufficiently smooth functions on S2, but does

not hold for spheres Sd with d > 2. We then define the local convolution for a

filtered approximation on Sd and obtain an upper bound for the Lp-norm of the

filtered local convolution for functions in Sobolev spaces. This implies that the

filtered approximation with a sufficiently smooth filter removes the restriction on

dimensions.

In more detail, for the circle S1, the partial sum of the Fourier series (or the

Fourier partial sum) of order L ≥ 1 for f ∈ L1(S1) may be written as

VL(f ; θ) := V 1
L (f ; θ) :=

1

2π

∫ π

−π
vL(θ − φ)f(φ) dφ =

1

2π

∫ π

−π
vL(φ)f(θ − φ) dφ,

where

vL(φ) := v1
L(φ) :=

sin((L+ 1/2)φ)

sin(φ/2)

is the Dirichlet kernel of order L, and θ ∈ (−π, π].

For 0 < δ < π, let U(θ; δ) := {φ ∈ (−π, π] : cos(φ − θ) > cos δ} be a

neighbourhood of θ with angular radius δ > 0. Let

vδL(φ) := v1,δ
L (φ) := vL(φ)

(
1− χU(0;δ)(φ)

)
,

61
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where χA is the indicator function for the set A. The Lth local convolution of

f ∈ L1(S1) is

V δ
L (f ; θ) := V 1,δ

L (f ; θ) :=
1

2π

∫
[−π,π]\U(θ;δ)

vL(θ − φ)f(φ) dφ

=
1

2π

∫ π

−π
vδL(φ)f(θ − φ) dφ. (4.1.1)

Thus the Lth local convolution of f at θ is precisely the partial sum at θ of the

Fourier series of the modified function obtained by replacing the value of f by zero

in the open set U(θ; δ). The Riemann localisation principle on the circle can then be

restated as an assertion that the local convolution of an integrable function decays

to zero as L→∞,

lim
L→∞

V δ
L (f ; θ) = 0 ∀θ ∈ (−π, π]. (4.1.2)

The convergence to zero of (4.1.2) is a simple consequence of the Riemann-

Lebesgue lemma. This can be seen by writing

V δ
L (f ; θ) =

1

2π

∫ π

−π
(Aδ,θ(φ) cos(Lφ) +Bδ,θ(φ) sin(Lφ)) dφ, (4.1.3)

where
Aδ,θ(φ) := f(θ − φ)χ[−π,π]\U(0;δ)(φ),

Bδ,θ(φ) := f(θ − φ) cot(φ/2)χ[−π,π]\U(0;δ)(φ).

Both terms in (4.1.3) approach zero as L→∞ since Aδ,θ, Bδ,θ are in L1(S1).

A more precise estimate than (4.1.2) was proved by Telyakovskĭı [74, Theorem 1,

p. 184], as follows.

Lemma 4.1.1. For f ∈ L1(S1), let a0 := 1
π

∫ π
−π f(φ) dφ. Then, for 0 < δ < π,

|V δ
L (f ; θ)| ≤ c

δ

(
|a0|
L

+ ω
(
f, L−1

)
L1(S1)

)
, for all θ ∈ (−π, π], (4.1.4)

where c is an absolute constant and

ω (f, η)L1(S1) := sup
|φ|≤η

∫ π

−π
|f(z + φ)− f(z)| dz

is the L1 modulus of continuity of f .

For f ∈ Lp(S1) with 1 ≤ p ≤ ∞, this gives∥∥V δ
L (f)

∥∥
Lp(S1)

≤ c

δ

(‖f‖Lp(S1)

L
+ ω

(
f, L−1

)
L1(S1)

)
. (4.1.5)

Since the modulus of continuity ω(f, L−1)L1(S1) converges to zero as L → ∞, the

right-hand side of (4.1.5) converges to zero. As limL→∞ ‖V δ
L (f)‖Lp(S1) = 0 holds for
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each f ∈ Lp(S1), we say that the Fourier convolution (Fourier partial sum) V δ
L has

the Riemann localisation property for Lp(S1).

Lemma 4.1.1 was stated earlier by Hille and Klein [34], but with a proof that

was unfortunately incorrect.

4.1.1 Fourier case

By analogy to the case of the circle, we define the Fourier local convolution of order

L for f ∈ L1(Sd) by

V d,δ
L (f ; x) :=

∫
Sd\C(x,δ)

vdL(x · y)f(y) dσd(y), x ∈ Sd. (4.1.6)

In particular, when δ = 0, V d,δ
L reduces to the Fourier convolution V d

L , discussed in

Section 2.6.

For 1 ≤ p ≤ ∞, we say the Fourier convolution V d
L has the Riemann localisation

property for a subset X of Lp if there exists a δ0 > 0 such that for each 0 < δ < δ0

the Lp-norm of its local convolution V d,δ
L (f) decays to zero for all f ∈ X, i.e. if

lim
L→∞

‖V d,δ
L (f)‖Lp(Sd) = 0, f ∈ X.

The approximation behaviour of the Fourier local convolution is characterised by

the following theorems, which are proved as Theorem 4.3.3, Corollary 4.3.4 and

Theorem 4.3.6 respectively.

Theorem (Lp upper bound for Sd). Let d be an integer and p, δ be real numbers

satisfying d ≥ 2, 1 ≤ p ≤ ∞ and 0 < δ < π. For∗ f ∈ Lp(Sd) and positive integer

L, there exists a constant c depending only on d, p and δ such that∥∥V d,δ
L (f)

∥∥
Lp(Sd)

≤ c L
d−1
2

(
L−1‖f‖Lp(Sd) + ω

(
f, L−

1
2

)
Lp(Sd)

)
, (4.1.7)

where ω (f, ·)Lp(Sd) is the Lp(Sd)-modulus of continuity of f , see (4.3.3) below.

We have the following upper bound for a sufficiently smooth function f .

Corollary (Upper bound for sufficiently smooth f). Let d ≥ 2, 1 ≤ p ≤ ∞,

0 < δ < π and s ≥ 2. Then, for f ∈Ws
p(Sd) and L ≥ 1,∥∥V d,δ

L (f)
∥∥
Lp(Sd)

≤ c L
d−3
2 ‖f‖Ws

p(Sd), (4.1.8)

where the constant c depends only on d, p, s and δ.

∗For p =∞, f ∈ L∞(Sd) ∩ C (Sd).
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For d = 2, the upper bound (4.1.8) implies that the Fourier convolution V 2
L has

the Riemann localisation property for Ws
p(S2) with s ≥ 2. However, (4.1.8) gives

no such assurance for Ws
p(Sd) for d ≥ 3. The following lower bound tells us that in

general the Riemann localisation property does not hold for the Fourier convolution

when d ≥ 3. Let 1 be the constant function on Sd satisfying 1(x) = 1, x ∈ Sd.

Theorem (A lower bound for Sd). Let d ≥ 2, 1 ≤ p ≤ ∞ and 0 < δ < π/2. Then

there exists a subsequence V d,δ
L`

such that for ` ≥ 1,∥∥∥V d,δ
L`

(1)
∥∥∥
Lp(Sd)

≥ c L
d−3
2

` , (4.1.9)

where the constant c depends only on d and δ.

Since the constant function 1 is in any Ws
p(Sd), d ≥ 2, 1 ≤ p ≤ ∞ and s > 0,

the lower bound in (4.1.9) shows that the Fourier convolution does not have the

Riemann localisation property for Ws
p(Sd) when d ≥ 3. Moreover, this lower bound

implies that the upper bound of (4.1.8) cannot be improved for Ws
p(Sd) with s ≥ 2.

We also give the following upper bound on the Sobolev norm of the Fourier

local convolution, see Theorem 4.3.5.

Theorem (Upper bounds for Sobolev norm). Let d ≥ 2, 1 ≤ p ≤ ∞ and 0 < δ < π.

Then, for f ∈Ws
p(Sd),∥∥V d,δ

L (f)
∥∥
Ws
p(Sd)
≤ c L

d−1
2

(
L−1‖f‖Ws

p(Sd) + ω
(
f, L−

1
2

)
Ws
p(Sd)

)
,

and for f ∈Ws+2
p (Sd),∥∥V d,δ

L (f)
∥∥
Ws
p(Sd)
≤ c L

d−3
2

(
‖f‖Ws

p(Sd) + ‖∆∗f‖Ws
p(Sd)

)
,

where the constants c depend only on d, p, s and δ.

The upper bound (4.1.8) with d = 2 and p =∞ shows that for f ∈Ws
∞(Sd) with

s ≥ 2, the Fourier partial sum V 2
L (f) converges pointwise to zero almost everywhere

in any open subset on which f vanishes. Many authors have studied the localisation

principle in a pointwise sense. For Euclidean spaces and other manifolds, including

spheres, hyperbolic spaces and flat tori, see [9, 14, 15, 16, 59, 60, 61, 72, 71, 73].

In this thesis, we provide precise estimates for the Fourier local convolution on Sd.
This implies that the localisation principle for Fourier partial sums holds for S2 but

not for higher dimensional spheres, as pointed out by Brandolini and Colzani, see

[9, p. 441–442].

Localisation properties are critical in multiresolution analysis on the sphere.

Many authors have investigated localisation from a variety of aspects, see e.g. [2,
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5, 23, 25, 52, 65]. The Riemann localisation property of the Fourier-Laplace partial

sum for Ws
p(S2) implies that the multiscale approximation converges to the solution

of the local downward continuation problem, see [23, 30]. The estimation of the

Fourier local convolution also plays a role in the “missing observation” problem, see

[44, Section 10.5] and [6].

An easier question, which we discuss in Section 4.6, is estimating the operator

norm of the Fourier local convolution. Let wα,α(t) := (1− t2)α with α := (d− 2)/2.

We denote by L1(wα,α) the L1 space of all integrable functions with respect to the

measure wα,α(t)dt on [−1, 1]. As an operator on Lp(Sd), the Fourier local convolution

has its operator norm upper bounded by the L1(wα,α)-norm of its Dirichlet kernel,

and so does not rely on any cancellation effect. Given d ≥ 2 and 1 ≤ p ≤ ∞, we

show in Lemma 4.6.1 that the operator norm of V d,δ
L on Lp(Sd) is

∥∥V d,δ
L

∥∥
Lp→Lp

≤ cd ‖vdL χ[−1,cos δ]‖L1(wα,α), (4.1.10)

where ‖ · ‖L1(wα,α) is the norm of L1(wα,α). The L1(wα,α)-norm of the kernel has the

following exact order, see Lemma 4.6.2,

‖vdL χ[a,b]‖L1(wα,α) � L
d−1
2 , −1 ≤ a < b ≤ 1. (4.1.11)

This contrasts with the result on the circle, for which, see e.g. [82, Eq. 12.3, p. 67],

‖vL χ[θ,θ′]‖L1(S1) �

{
log(L), 0 = θ < θ′ ≤ π,

1, 0 < θ < θ′ ≤ π.

Note that the operator norm result in (4.1.10) and (4.1.11) gives merely

∥∥V d,δ
L (f)

∥∥
Lp(Sd)

≤ cd L
d−1
2 ‖f‖Lp(Sd),

which is larger than the right hand side of (4.1.8) by a factor of L. This difference

comes from the fact that the operator norm does not benefit from a cancellation

effect. This effect, established in Lemma 4.2.5, is one of the vital factors in the

proof of the Riemann localisation property. It is interesting to note that the result

for the operator norm is not strong enough for application to the local downward

continuation problem [30] with d = 2.

The proof of the Riemann localisation property for the Fourier convolution in

Section 4.3 relies on two key elements. One is an asymptotic estimate of the Dirichlet

kernel vdL(t) in Section 4.2.2. The other is the effect of cancellation in the Fourier

local convolution, discussed in Section 4.2.3.



66 4.1 Introduction

4.1.2 Filtered case

Let g be a filter function satisfying that g(t) is a constant for t ∈ [0, 1] and supp g ⊂
[0, 2] and let VL,g be the filtered approximation defined by Definition 2.6.3. The

filtered local convolution V d,δ
L,g for the filtered approximation VL,g is given by

V d,δ
L,g (f ; x) :=

∫
Sd\C(x,δ)

vL,g(x · y)f(y) dσd(y), x ∈ Sd.

Theorem (Lp upper bound for Sd). Let d ≥ 2, 1 ≤ p ≤ ∞ and 0 < δ < π, and let

g be a filter satisfying the following properties for some κ ∈ Z+.

(i) g ∈ Cκ(R+);

(ii) g|[1,2] ∈ Cκ+3([1, 2]).

Then, for f ∈ Lp(Sd) and positive integer L,∥∥V d,δ
L,g (f)

∥∥
Lp(Sd)

≤ c L−(κ− d
2

+ 3
2

)
(
L−1‖f‖Lp(Sd) + ω

(
f, L−

1
2

)
Lp(Sd)

)
,

where the constant c depends only on d, p, δ and g.

We have a better upper bound for smoother functions.

Corollary (Upper bound for sufficiently smooth f). Let d ≥ 2, 1 ≤ p ≤ ∞ and

0 < δ < π, and let g be a filter satisfying the following properties for some κ ∈ Z+.

(i) g ∈ Cκ(R+);

(ii) g|[1,2] ∈ Cκ+3([1, 2]).

Then, for f ∈Ws
p(Sd) with s ≥ 2,∥∥V d,δ

L,g (f)
∥∥
Lp(Sd)

≤ c L−(κ− d
2

+ 5
2

)‖f‖Ws
p(Sd),

where the constant c depends only on d, p, s, δ and g.

We see from this corollary that for an arbitrary dimensional sphere, the filtered

local convolution would converge to zero if its filter function is sufficiently smooth.

This improves the upper bound of the Fourier local convolution and thus improves

the Riemann localisation of the Fourier convolution (the Fourier-Laplace partial

sum).

This chapter is organised as follows. Section 4.2 contains the estimates of the

generalised Dirichlet kernels for Jacobi weights, and the cancellation lemma. In

Section 4.3 we use the results of Section 4.2 to prove the upper and lower bounds

for the Fourier local convolution for functions in Lp spaces and Sobolev spaces on

Sd. In Section 4.4 we prove an upper bound of the filtered local convolution for

functions in Lp spaces and Sobolev spaces on Sd. Section 4.5 gives the proofs of

the results in Section 4.2. An estimate of the operator norm of the Fourier local

convolution is given in Section 4.6.
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4.2 Dirichlet kernels for Jacobi weights

The characterisation of the Riemann localisation property on the sphere relies on

two key elements. One is the asymptotic estimates of the Dirichlet kernel vdL(t) and

of the filtered kernel vL,g(t). The other is the effect of cancellation on the local

convolution, discussed in Section 4.2.3.

4.2.1 Asymptotic expansions for Jacobi polynomials

We shall need the estimates of the (generalised) Dirichlet kernel expanded in terms

of Jacobi polynomials.

Our estimate is based on the following asymptotic expansion for Jacobi poly-

nomials.

Lemma 4.2.1. Let α, β > −1/2, α − β > −4 and c `−1 ≤ θ ≤ π − ε with ε > 0

and some constant c > 0 and let ̂̀, mα,β(θ) and ωα(z) be given by (3.2.2). Then for

` ≥ 1,

P
(α,β)
` (cos θ) = ̂̀− 1

2 mα,β(θ) (4.2.1)

×
[
cosωα(̂̀θ) + ̂̀−1 F

(1)
α,β(̂̀, θ) +Oε,α,β

(
` û(α)θν̂(α)

)
+Oα,β

(
`−2θ−2

)]
,

where

F
(1)
α,β(̂̀, θ) := F

(2)
α,β(θ) cosωα+1(̂̀θ)− αβ

2
cosωα(̂̀θ), (4.2.2a)

F
(2)
α,β(θ) :=

β2 − α2

4
tan

θ

2
− 4α2 − 1

8
cot θ, (4.2.2b)

û(α) := −2 +
〈
α + 1

2

〉
, ν̂(α) :=

{
α + 5

2
, α < 1

2
,

α + 1
2
, α ≥ 1

2
,

(4.2.2c)

where 〈x〉 := x− bxc denotes the fractional part of a real number x.

Remark. For α ≥ 1/2, the condition “α− β > −4” may be weakened to “α− β >
−4 − 2

⌊
1
2

+ α
⌋
”, see the proof of Lemma 4.2.1. Also, we observe that û(α) < −1

and ν̂(α) ≥ 1.

Lemma 4.2.1 is a corollary of Frenzen and Wong’s expansion of the Jacobi

polynomial in terms of the Bessel functions, see [27, Main Theorem, p. 980]. The

jump of ν̂(α) at α = 1/2 in (4.2.2c) is due to the jump of the power of θ in the

remainder of the expansion. See the proof of Lemma 4.2.1 in Section 4.5.1 for details.
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4.2.2 Asymptotic expansions for Dirichlet kernels

With the help of Lemma 4.2.1, we may prove Lemmas 4.2.2 and 4.2.3 below, which

show how the generalised Dirichlet kernel v
(α,β)
L (1, s) behaves as L→ +∞. We prove

both one-term and two-term asymptotic expansions of the generalised Dirichlet

kernel v
(α,β)
L (1, s). The one-term expansions are utilised to prove the upper bounds

on the Fourier local convolution, while the two-term expansion plays an important

role in the estimate of the lower bound. Adopting the notation of (3.2.2) and (4.2.2),

we have

Lemma 4.2.2. Let α > −1/2, β > −1/2 and 0 < θ < π. For L ∈ Z+, we denote

by

L̃ := L+ (α + β + 2)/2. (4.2.3)

Then there exists a constant c(1) depending only on α, β such that:

i) For c(1)L−1 ≤ θ ≤ π/2,

v
(α,β)
L (1, cos θ) =

2−(α+β+1)

Γ(α + 1)
L̃α+ 1

2 mα+1,β(θ)
(

cosωα+1(L̃ θ) + (sin θ)−1Oα,β
(
L−1

))
.

(4.2.4a)

ii) For π/2 < θ ≤ π − c(1)L−1, letting θ′ := π − θ,

v
(α,β)
L (1, cos θ) =

2−(α+β+1)

Γ(α + 1)
L̃α+ 1

2 (−1)Lmβ,α+1(θ′)
(

cosωβ(L̃ θ′) + (sin θ′)−1Oα,β
(
L−1

))
,

(4.2.4b)

where the constants in the error terms of (4.2.4a) and (4.2.4b) depend only on α, β.

Lemma 4.2.3. i) Let α, β > −1/2 satisfying α− β > −5, and 0 < ε < π/2. Then,

for c(1)L−1 ≤ θ ≤ π − ε,

v
(α,β)
L (1, cos θ) =

2−(α+β+1)

Γ(α + 1)
L̃α+ 1

2 mα+1,β(θ)

×
[
cosωα+1(L̃ θ) + L̃−1F

(3)
α,β(L̃, θ) +Oε,α,β

(
Lû(α+1)θν̂(α+1)

)
+Oα,β

(
L−2θ−2

)]
,

where

F
(3)
α,β(L̃, θ) := F

(2)
α+1,β(θ) cosωα+2(L̃θ),

where F
(2)
α+1,β(θ) is given by (4.2.2b).

ii) Let α, β > −1/2 satisfying β − α > −3 and let ε ≤ θ < π − c(1)L−1 with

0 < ε < π/2, and θ′ := π − θ. Then

v
(α,β)
L (1, cos θ) =

(−1)L2−(α+β+1)

Γ(α + 1)
L̃α+ 1

2 mβ,α+1(θ′) (4.2.5)

×
[
cosωβ(L̃ θ′) + L̃−1F

(4)
α,β(L̃, θ′) +Oε,α,β

(
Lû(β)θ′ν̂(β)

)
+Oα,β

(
L−2θ′−2

)]
,
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where

F
(4)
α,β(L̃, θ′) := F

(2)
β,α+1(θ′) cosωβ+1(L̃θ′). (4.2.6)

The proofs of Lemmas 4.2.2 and 4.2.3 are given in Section 4.5.2.

Note that Lemmas 4.2.2 and 4.2.3 do not describe the approximation behaviour

of v
(α,β)
L (1, cos θ) near the two ends of the interval [0, π]. This is given by the following

lemma. The proof is again given in Section 4.5.2.

Lemma 4.2.4. For α, β > −1/2, adopting the notation of Lemma 4.2.2,

i) for 0 ≤ θ ≤ c(1)L−1,

v
(α,β)
L (1, cos θ) = Oα,β(L2α+2), (4.2.7a)

ii) for π − c(1)L−1 ≤ θ ≤ π,

v
(α,β)
L (1, cos θ) = Oα,β(Lα+β+1). (4.2.7b)

Using Lemma 2.6.1, we can obtain the estimates for vdL(t) corresponding to

Lemmas 4.2.2–4.2.4.

4.2.3 Cancellation effect

Guided by the proof of the lemma in [34], we will obtain the following key lemma

which leads to the cancellation effect of the local convolution. For a sequence {a` :

` = 0, 1, . . . }, let
−→
∆ `a` := a`−a`+1 be the forward difference of a`. We will frequently

use the method of summation by parts : for sequences a`, b`, ` ≥ 0, let B` :=
∑`

j=0 bj,

then,
L∑
`=0

a`b` =
L−1∑
`=0

(
−→
∆ `a`)B` + aLBL.

We state the cancellation lemma as follows. A proof is given in Section 4.5.3.

Lemma 4.2.5. Let f ∈ C[0, π] and m be a continuously differentiable function on

(0, π] and AL(θ) := A(θ;L, c1, c2, c3) := (c1L+ c2)θ + c3, c1 > 0. Assume that there

exists a sequence of subintervals [aL, b] ⊂ [0, π], with aL ∈ (0, b) and supL∈Z+
aL < b,

such that for some γ ∈ R,

m(θ) ≥ 0 and
∣∣∣ d

dθ
m(θ)

∣∣∣ ≤ c max {θγ, 1} for all θ ∈ [aL, b]

with c and γ independent of L. Then there exists a partition of [aL, b]: aL < φ′0 <

φ′1 < · · · < φ′L1
< b where L1 � L and

−→
∆ iφ

′
i � L−1, i = 0, 1, . . . , L1 such that∣∣∣∣∫ b

aL

f(θ)m(θ) sin(AL(θ)) dθ

∣∣∣∣ (4.2.8)

≤ c′ L−1

[
L1−2∑
k=1

|
−→
∆kf(φ′k)|+ |f(φ′0)|+ |f(φ′L1−1)|+ |f(φ′L1

)|

]
,
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where c′ is a constant independent of L.

4.3 Fourier local convolutions on the sphere

We focus in this section on the proofs of the main theorems for the Fourier case.

The upper bound (4.1.7) and the lower bound (4.1.9) are proved in Theorem 4.3.3

and in Theorem 4.3.6 respectively. The upper bound of the theorem comes from the

combined effects of the cancellation in the Fourier local convolution (Lemma 4.2.5)

and the asymptotic behaviour of the generalised Dirichlet kernel (the one-term ex-

pansions, see Lemma 4.2.2).

We shall make repeated use of Tθ(f ; x), the translation operator for f ∈ L1(Sd),
given by, see e.g. [78, Section 2.4, p. 57],

Tθ(f ; x) := T
(d)
θ (f ; x) :=

1

|Sd−1|(sin θ)d−1

∫
x·y=cos θ

f(y) dσ̃x(y), 0 < θ ≤ π,

(4.3.1)

where the σ̃x is the measure on {y : x · y = cos θ}. And we denote by T0(f ; x) :=

T
(d)
0 (f ; x) := f(x). Thus the translation of x is just the average of f over lines

of constant latitude with respect to x as a pole. Note that for any zonal kernel

v ∈ L1

(
[−1, 1], w d−2

2
, d−2

2

)
we can write∫

Sd
v(x · y)f(y) dσd(y) =

|Sd−1|
|Sd|

∫ π

0

v(cos θ) Tθ(f ; x) (sin θ)d−1 dθ. (4.3.2)

4.3.1 Preliminaries

Let B be a Banach space embedded in L1(Sd). The modulus of continuity of f ∈ B
is defined by

ω (f ;u)B := sup
0<θ≤u

∥∥f − Tθ(f)
∥∥
B
, 0 < u ≤ π. (4.3.3)

Since
∥∥f − Tθ(f)

∥∥
Lp(Sd)

→ 0 as θ → 0+ for 1 ≤ p ≤ ∞, see e.g. [8, p. 227,

Lemma 4.2.2],

ω (f ;u)Lp(Sd) → 0, u→ 0+. (4.3.4)

Let ∆∗ denote the Laplace-Beltrami operator on Sd. The K-functional of order

2 on Sd is defined by

K (f, t)Lp(Sd) := inf
{
‖f − ϕ‖Lp(Sd) + t‖∆∗ϕ‖Lp(Sd) : ϕ ∈W2

p(Sd)
}
. (4.3.5)

The K-functional and the modulus of continuity for Lp(Sd) are equivalent, see

e.g. [78, Theorem 5.1.2, p. 194], [7, Eq. 5.2, p. 95]:

K
(
f, θ2

)
Lp(Sd)

� ω (f, θ)Lp(Sd) , 0 < θ ≤ π, (4.3.6)
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for f ∈ Lp(Sd), 1 ≤ p ≤ ∞, where the constants in the inequalities depend only on

d and p.

Another key factor in the proof is an estimate for the translation operator. The

translation T
(d)
θ is a strong (p, p)-type operator with operator norm 1, see e.g. [78,

Theorem 2.4.1, p. 57], [8, Eq. 2.4.11, p. 237], i.e. for 1 ≤ p ≤ ∞,∥∥T (d)
θ

∥∥
Lp→Lp

= 1, 0 < θ < π. (4.3.7)

We need the following upper bound for the difference between two translation op-

erators.

Lemma 4.3.1. Let d ≥ 2 and 1 ≤ p ≤ ∞. For any f ∈ Lp(Sd), there exists a

constant c such that for θ, φ > 0 and θ + φ < π/2,∥∥T (d)
θ+φ(f)− T (d)

θ (f)
∥∥
Lp(Sd)

≤ c ω
(
f,
√
φ(2θ + φ)

)
Lp(Sd)

,

where the constant c depends only on d and p.

Remark. This upper bound is a generalisation of Theorem 5.1 of [7], where the

result is proved for the case when θ = 0.

Proof of Lemma 4.3.1. From (4.3.6), we only need to prove

‖Tθ+φ(f)− Tθ(f)‖Lp(Sd) ≤ cd,p K (f, φ(2θ + φ))Lp(Sd) .

For a spherical cap C (x, u) ⊂ Sd, let Bu be the spherical cap average

Bu (f ; x) :=
1

|C (x, u) |

∫
C(x,u)

f(y) dσd(y),

where |C (x, u) | is the measure of the cap C (x, u).

By the relation between the spherical cap average and the translation operator

on the sphere, see [8, Eq. 4.2.14, p. 238],

Tθ(ϕ; x)− ϕ(x) =
1

|Sd−1|

∫ θ

0

|C (x, u) |
(sinu)d−1

Bu (∆∗ϕ; x) du, ϕ ∈W2
1(Sd),

we have for each x ∈ Sd and ϕ ∈W2
1(Sd),

Tθ+φ(ϕ; x)− Tθ(ϕ; x) =
1

|Sd−1|

∫ θ+φ

θ

|C (x, u) |
(sinu)d−1

Bu (∆∗ϕ; x) du.

From (2.1.2) and ‖Bu‖Lp→Lp = 1, see e.g. [78, Theorem 2.4.2, p. 59], [8, Eq. 4.2.4,

p. 236], for 1 ≤ p ≤ ∞ we have

‖Tθ+φ(ϕ)− Tθ(ϕ)‖Lp(Sd) ≤
1

|Sd−1|

∫ θ+φ

θ

|C (x, u) |
(sinu)d−1

∥∥Bu (∆∗ϕ)
∥∥
Lp(Sd)

du

≤ cd
∥∥∆∗ϕ

∥∥
Lp(Sd)

∫ θ+φ

θ

u du

≤ c′d (2θ + φ)φ
∥∥∆∗ϕ

∥∥
Lp(Sd)

. (4.3.8)
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By (4.3.7) we obtain for f ∈ Lp(Sd) and any ϕ ∈W2
p(Sd),

‖Tθ+φ(f)− Tθ(f)‖Lp(Sd) = ‖Tθ+φ(f − ϕ)− Tθ(f − ϕ) + Tθ+φ(ϕ)− Tθ(ϕ)‖Lp(Sd)

≤ 2‖f − ϕ‖Lp(Sd) + c′d (2θ + φ)φ
∥∥∆∗ϕ

∥∥
Lp(Sd)

which with an optimal choice of ϕ gives, with new constants cd and cd,p,

‖Tθ+φ(f)− Tθ(f)‖Lp(Sd) ≤ cd K (f, φ(2θ + φ))Lp(Sd)

≤ cd,p ω
(
f,
√
φ(2θ + φ)

)
Lp(Sd)

.

This completes the proof.

From Lemma 4.3.1, we may prove that Tθ(f ; x) is a continuous function of θ

given f ∈ C(Sd) and x ∈ Sd.

Lemma 4.3.2. Let f ∈ C(Sd) and x ∈ Sd with d ≥ 2. Then Tθ(f ; x) is a continuous

function of θ on [0, π].

Proof. Given θ ∈ [0, π], let φ ∈ [0, π] satisfying θ+φ ∈ [0, π]. Lemma 4.3.1 gives for

f ∈ C(Sd) ∥∥Tθ+φ(f)− Tθ(f)
∥∥
C (Sd)

≤ c ω
(
f,
√
φ(2θ + φ)

)
C (Sd)

.

By (4.3.4), the right-hand side of the above inequality converges to zero as φ→ 0+.

Thus, when φ→ 0+

∣∣Tθ+φ(f ; x)− Tθ(f ; x)
∣∣ ≤ ∥∥Tθ+φ(f)− Tθ(f)

∥∥
C (Sd)

→ 0.

Hence Tθ(f ; x) is continuous at θ.

4.3.2 Upper bounds

Theorem 4.3.3. Let d be an integer and p, δ be real numbers satisfying d ≥ 2,

1 ≤ p ≤ ∞ and 0 < δ < π. For f ∈ Lp(Sd),∥∥V d,δ
L (f)

∥∥
Lp(Sd)

≤ c L
d−1
2

(
L−1‖f‖Lp(Sd) + ω

(
f, L−

1
2

)
Lp(Sd)

)
, (4.3.9)

where the constant c depends only on d, p and δ.

The proof of Theorem 4.3.3 is given later in this section.

Remark. From Theorem 4.3.3, if f is a Lipschitz function, then

‖V d,δ
L (f)‖Lp(Sd) ≤ cd,p,δ L

d−2
2

(
L−

1
2‖f‖Lp(Sd) + cf

)
, d ≥ 2. (4.3.10)
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If f ∈W2
p(Sd), then

ω
(
f, L−

1
2

)
Lp(Sd)

� K
(
f, L−1

)
Lp(Sd)

� ‖T
1/
√
L
(f)− f‖Lp(Sd) ≤ cd,p L

−1‖∆∗f‖Lp(Sd),

where the first equivalence is from (4.3.6), the second is by [7, Theorem 5.1, p. 94]

and the last inequality is by (4.3.8) with θ = 0 and φ = L−
1
2 . Hence,∥∥V d,δ

L (f)
∥∥
Lp(Sd)

≤ cd,p,δ L
d−3
2

(
‖f‖Lp(Sd) + ‖∆∗f‖Lp(Sd)

)
, d ≥ 2. (4.3.11)

Since Wr
p(Sd) ⊂ Ws

p(Sd) for 0 ≤ s ≤ r < ∞ and by (4.3.11), we have the

following upper bound for the Fourier local convolutions with sufficiently smooth

functions.

Corollary 4.3.4. Let s ≥ 2. Under the same conditions as Theorem 4.3.3, for

f ∈Ws
p(Sd), ∥∥V d,δ

L (f)
∥∥
Lp(Sd)

≤ c L
d−3
2 ‖f‖Ws

p(Sd), (4.3.12)

where the constant c depends only on d, p, s and δ.

Remark. The corollary implies that the Fourier convolution has the Riemann loc-

alisation property for Ws
p(S2) and s ≥ 2. For higher dimensional spheres Sd with

d ≥ 3, however, the Fourier convolution does not have the Riemann localisation

property in general, as will be shown in Theorem 4.3.6.

That the translation operator commutes with the Laplace-Beltrami operator

enables us to replace the Lp-norms in inequalities (4.3.9) and (4.3.11) by Sobolev

norms.

Theorem 4.3.5. Under the same conditions as Theorem 4.3.3, for f ∈Ws
p(Sd),

∥∥V d,δ
L (f)

∥∥
Ws
p(Sd)
≤ c L

d−1
2

(
L−1‖f‖Ws

p(Sd) + ω
(
f, L−

1
2

)
Ws
p(Sd)

)
.

For f ∈Ws+2
p (Sd),

∥∥V d,δ
L (f)

∥∥
Ws
p(Sd)
≤ c L

d−3
2

(
‖f‖Ws

p(Sd) + ‖∆∗f‖Ws
p(Sd)

)
.

Here, the constants c depend only on d, p, s and δ.

We only give the proof of Theorem 4.3.3. The proof of the first part of The-

orem 4.3.5 is similar.
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Proof of Theorem 4.3.3. Let x ∈ Sd. Then by (4.3.2) we have

V d,δ
L (f ; x) =

∫
Sd\C(x,δ)

vdL(x · y)f(y) dσd(y)

=
|Sd−1|
|Sd|

∫ π

δ

vdL(cos θ) T
(d)
θ (f ; x)(sin θ)d−1 dθ.

Splitting the integral, we have

|Sd|
|Sd−1|

V d,δ
L (f ; x) =

∫ π

δ

Tθ(f ; x) vdL(cos θ) (sin θ)d−1 dθ

=

(∫ π
2

δ

+

∫ π

π
2

)
Tθ(f ; x) vdL(cos θ) (sin θ)d−1 dθ

=: I1(f ; x) + I2(f ; x). (4.3.13)

For I1(f ; x), applying (4.2.4a) of Lemma 4.2.2 with α = β = d−2
2

and hence L̃ =

L+ d
2
, and by Lemma 2.6.1, we have

I1(f ; x) =

∫ π
2

δ

Tθ(f ; x)
2−(d−1)

Γ(d+1
2

)
L̃
d−1
2

[(
sin θ

2

)− d+1
2
(
cos θ

2

)− d−1
2 sin(ũ (θ, L)) +Od,δ

(
L−1

)]
× (sin θ)d−1 dθ

=
L̃
d−1
2

Γ(d+1
2

)

[∫ π
2

δ

Tθ(f ; x)
(
sin θ

2

) d−3
2
(
cos θ

2

) d−1
2 sin(ũ (θ, L)) dθ + ‖f‖L1(Sd) Od,δ

(
L−1

)]

=:
L̃
d−1
2

Γ(d+1
2

)

[
I1,1(f ; x) + ‖f‖L1(Sd) Od,δ

(
L−1

)]
, (4.3.14)

where

ũ (θ, L) := ũ (θ, L; d) :=
(
L+ d

2

)
θ − d−1

4
π (4.3.15)

and we used∣∣∣∣∫ π
2

δ

Tθ(f ; x) (sin θ)d−1 dθ

∣∣∣∣ ≤ ∫ π

0

Tθ(|f |; x) (sin θ)d−1 dθ = ‖f‖L1(Sd). (4.3.16)

Next, we make use of Lemma 4.2.5 to estimate the Lp-norm of I1,1(f). Since

Lemma 4.2.5 is valid only for a continuous function, we need to use the density of

the continuous space in Lp space. For ε > 0, there exists f̃ ∈ C(Sd) such that

‖f̃ − f‖Lp(Sd) < ε. (4.3.17)

By Lemma 4.3.2, Tθ(f̃ ; x) is a continuous function of θ on [0, π] given x ∈ Sd.
Since m1(θ) :=

(
sin θ

2

) d−3
2
(
cos θ

2

) d−1
2 and its derivative are bounded over [δ, π/2],

by Lemma 4.2.5 with f(θ) = Tθ(f̃ ; x), m(θ) = m1(θ), A(θ) = ũ (θ, L), aL = δ and
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b = π/2, there exists a constant cd,δ and a partition of [δ, π/2]: δ < φ′0 < φ′1 < · · · <
φ′L1

< π/2 where L1 � L and
−→
∆ iφ

′
i � L−1, i = 0, 1, . . . , L1 − 1 such that

|I1,1(f̃ ; x)| =
∣∣∣∫ π

2

δ

Tθ(f̃ ; x)m1(θ) sin(ũ (θ, L)) dθ
∣∣∣ (4.3.18)

≤ cd,δ L
−1

(
L1−2∑
k=1

|
−→
∆kTφ′k(f̃ ; x)|+ |Tφ′0(f̃ ; x)|+ |Tφ′L1−1

(f̃ ; x)|+ |Tφ′L1

(f̃ ; x)|

)
.

Since Tθ in Lp(Sd) is bounded with norm 1, see (4.3.7),

‖Tθ(f̃)− Tθ(f)‖Lp(Sd) = ‖Tθ(f̃ − f)‖Lp(Sd) ≤ ‖f̃ − f‖Lp(Sd) < ε (4.3.19a)

and ∥∥−→∆kTφ′k(f̃)−
−→
∆kTφ′k(f)

∥∥
Lp(Sd)

= ‖Tφ′k(f̃ − f)− Tφ′k+1
(f̃ − f)‖Lp(Sd)

≤ 2 ‖f̃ − f‖Lp(Sd) < 2ε. (4.3.19b)

Also, by (4.3.19a),

‖I1,1(f̃)− I1,1(f)‖Lp(Sd)

≤
∫ π

2

δ

‖Tθ(f̃)− Tθ(f)‖Lp(Sd)

(
sin θ

2

) d−3
2
(
cos θ

2

) d−1
2 | sin(ũ (θ, L))| dθ

≤ cd ε. (4.3.19c)

By (4.3.19) and (4.3.18), we have

‖I1,1(f)‖Lp(Sd) ≤ ‖I1,1(f̃)‖Lp(Sd) + cd ε

≤ cd,δ L
−1

(
L1−2∑
k=1

‖
−→
∆kTφ′k(f̃)‖Lp(Sd) + ‖Tφ′0(f̃)‖Lp(Sd) + ‖Tφ′L1−1

(f̃)‖Lp(Sd) + ‖Tφ′L1

(f̃)‖Lp(Sd)

)
+ cd ε

≤ cd,δ L
−1

(
L1−2∑
k=1

‖
−→
∆kTφ′k(f)‖Lp(Sd) + ‖Tφ′0(f)‖Lp(Sd) + ‖Tφ′L1−1

(f)‖Lp(Sd) + ‖Tφ′L1

(f)‖Lp(Sd)

)
+ cd,δ L

−1(2L1 − 1) ε+ cd ε.

Taking account of L � L1, cd,δ L
−1(2L1 − 1) ε ≤ cd,δ ε. We then force ε → 0+ to

obtain

‖I1,1(f)‖Lp(Sd) (4.3.20)

≤ cd,δ L
−1

(
L1−2∑
k=1

‖
−→
∆kTφ′k(f)‖Lp(Sd) + ‖Tφ′0(f)‖Lp(Sd) + ‖Tφ′L1−1

(f)‖Lp(Sd) + ‖Tφ′L1

(f)‖Lp(Sd)

)
.
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Applying Lemma 4.3.1 to ‖
−→
∆kTφ′k

(f)‖Lp(Sd) of the above and with
−→
∆ iφ

′
i � L−1,

i = 0, 1, . . . , L1 − 1, we have

‖I1,1(f)‖Lp(Sd) ≤ cd,δ L
−1

(
L1−2∑
k=1

ω
(
f,
√

(φ′k+1 + φ′k)(φ
′
k+1 − φ′k)

)
Lp(Sd)

+ 3‖f‖Lp(Sd)

)
≤ cd,p,δ

(
L−1‖f‖Lp(Sd) + ω

(
f, L−

1
2

)
Lp(Sd)

)
,

which with (4.3.14) gives

‖I1(f)‖Lp(Sd) ≤ cd,p,δ L
d−1
2

(
L−1‖f‖Lp(Sd) + ω

(
f, L−

1
2

)
Lp(Sd)

)
. (4.3.21)

This finishes the estimate of I1.

We have an analogous proof for I2. Let k0 be a positive integer (independent of

L) such that ξ0 := ξ0(L) := (k0π + d−1
4
π)/(L+ d

2
) > c(1)L−1 for all positive integers

L, where c(1) is the constant in Lemmas 4.2.2 and 4.2.4 with α = β = d−2
2

. Then,

I2(f ; x) =

∫ π

π
2

Tθ(f ; x) vdL(cos θ) (sin θ)d−1 dθ

=

(∫ π−ξ0

π
2

+

∫ π

π−ξ0

)
Tθ(f ; x) vdL(cos θ) (sin θ)d−1 dθ

=: I2,1(f ; x) + I2,2(f ; x). (4.3.22)

For I2,1(f ; x), applying (4.2.4b) of Lemma 4.2.2 with the substitution θ′ = π − θ

and by Lemma 2.6.1, cf. (4.3.14),

I2,1(f ; x) =

∫ π−ξ0

π
2

Tθ(f ; x)vdL(cos θ)(sin θ)d−1 dθ

=
(−1)L L̃

d−1
2

Γ(d+1
2

)

[∫ π
2

ξ0

Tθ(f ;−x)
(
sin θ

2

) d−1
2
(
cos θ

2

) d−3
2 sin(ũ (θ, L) + π

2
) dθ

+Od
(
L−1

) ∫ π
2

ξ0

|Tθ(f ;−x)|
(
sin θ

2

) d−3
2 dθ

]
, (4.3.23)

where ũ (θ, L) is given by (4.3.15). The first integral in (4.3.23) may be estimated

in a similar way to I1,1, but with the difference that the end point ξ0 depends on L,

as follows. Let m2(θ) :=
(
sin θ

2

) d−1
2
(
cos θ

2

) d−3
2 then∣∣∣ d

dθ
m2(θ)

∣∣∣ ≤ cmax
{
θ
d−3
2 , 1

}
, 0 < θ ≤ π/2. (4.3.24)

Let f̃(x) be given by (4.3.17). We may apply Lemma 4.2.5 with f(θ) = Tθ(f̃ ;−x),

m(θ) = m2(θ), A(θ) = ũ (θ, L) + π
2
, [aL, b] = [ξ0, π/2] and γ = d−3

2
, to the first

integral of (4.3.23). Then there exists a constant cd and a partition of [ξ0, π/2]:
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ξ0 < ξ′0 < ξ′1 < · · · < ξ′L2
< π/2 where L2 � L and

−→
∆ iξ

′
i � L−1, i = 0, 1, . . . , L2 − 1

such that∣∣∣ ∫ π
2

ξ0

Tθ(f̃ ;−x)
(
sin θ

2

) d−1
2
(
cos θ

2

) d−3
2 sin(ũ (θ, L) + π

2
) dθ

∣∣∣
≤ cd L

−1

(
L2−2∑
k=1

|
−→
∆kTξ′k(f̃ ;−x)|+ |Tξ′0(f̃ ;−x)|+ |Tξ′L2−1

(f̃ ;−x)|+ |Tξ′L2

(f̃ ;−x)|

)
,

Using the argument of the estimate for ‖I1,1(f)‖Lp(Sd), we can prove, cf. (4.3.20),∥∥∥∫ π
2

ξ0

Tθ(f ;−·)
(
sin θ

2

) d−1
2
(
cos θ

2

) d−3
2 sin(ũ (θ, L) + π

2
) dθ

∥∥∥
Lp(Sd)

≤ cd L
−1

(
L2−2∑
k=1

‖
−→
∆kTξ′k(f)‖Lp(Sd) + ‖Tξ′0(f)‖Lp(Sd) + ‖Tξ′L2−1

(f)‖Lp(Sd) + ‖Tξ′L2

(f)‖Lp(Sd)

)
which with Lemma 4.3.1 gives∥∥∥∫ π

2

ξ0

Tθ(f ;−·)
(
sin θ

2

) d−1
2
(
cos θ

2

) d−3
2 sin(ũ (θ, L) + π

2
) dθ

∥∥∥
Lp(Sd)

≤ cd L
−1

(
L2−2∑
k=1

ω
(
f,
√

(ξ′k+1 + ξ′k)(ξ
′
k+1 − ξ′k)

)
Lp(Sd)

+ 3‖f‖Lp(Sd)

)
≤ cd,p

(
L−1‖f‖Lp(Sd) + ω

(
f, L−

1
2

)
Lp(Sd)

)
. (4.3.25)

By (4.3.7), the second integral of (4.3.23) is bounded by∥∥∥∫ π
2

ξ0

|Tθ(f ;−·)|
(
sin θ

2

) d−3
2 dθ

∥∥∥
Lp(Sd)

≤ cd ‖f‖Lp(Sd).

This, (4.3.25) and (4.3.23) together give

‖I2,1(f)‖Lp(Sd) ≤ cd,p L
d−1
2

(
L−1‖f‖Lp(Sd) + ω

(
f, L−

1
2

)
Lp(Sd)

)
. (4.3.26)

For I2,2(f), using (4.2.7b) of Lemma 4.2.4 with α = β = d−2
2

, we have

‖I2,2(f)‖Lp(Sd) ≤ cd,p

∫ π

π−c(1)L−1

‖Tθ(f ; ·)‖Lp(Sd)L
d−1(sin θ)d−1 dθ

≤ cd,p L
−1‖f‖Lp(Sd). (4.3.27)

The synthesis of (4.3.27), (4.3.26), (4.3.22), (4.3.21) and (4.3.13) gives (4.3.9).

4.3.3 Lower bounds

In this section, we show a lower bound of the Lp-norm of the Fourier local convolution

for a constant function on the sphere Sd, d ≥ 2. This lower bound matches the

upper bound of the Fourier local convolution for Sobolev space Ws
p(Sd) with s ≥ 2,

see Corollary 4.3.4. It thus establishes that the upper bound for the Fourier local

convolution for these Sobolev spaces is optimal.
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Theorem 4.3.6. Let d ≥ 2, 1 ≤ p ≤ ∞ and 0 < δ < π/2. Then there exists a

subsequence V d,δ
L`

such that for ` ≥ 1,∥∥∥V d,δ
L`

(1)
∥∥∥
Lp(Sd)

≥ c L
d−3
2

` , (4.3.28)

where the constant c depends only on d and δ.

Proof. Let x ∈ Sd. Then

V d,δ
L (1; x) =

∫
Sd\C(x,δ)

1(y)vdL(x · y) dσd(y)

=
|Sd−1|
|Sd|

∫ π

δ

vdL(cos θ)(sin θ)d−1 dθ

=
|Sd−1|
|Sd|

(∫ π−c(1)L−1

δ

+

∫ π

π−c(1)L−1

)
vdL(cos θ)(sin θ)d−1 dθ

=
|Sd−1|
|Sd|

∫ π−c(1)L−1

δ

vdL(cos θ)(sin θ)d−1 dθ +Od
(
L−1

)
,

where c(1) is the constant from Lemmas 4.2.3 and 4.2.4, and the last line uses

Lemma 2.6.1 and (4.2.7b) of Lemma 4.2.4. Using Lemma 2.6.1 again gives

V d,δ
L (1; x) =

∫ π−c(1)L−1

δ

v
( d−2

2
, d−2

2
)

L (1, cos θ) (sin θ)d−1 dθ +Od
(
L−1

)
.

We now apply (4.2.5) of Lemma 4.2.3 ii) with α = β = d−2
2

and hence L̃ = L + d
2

and then take the substitution θ′ = π − θ. Then

V d,δ
L (1; x) =

(−1)L

2d−1Γ(d
2
)
L̃
d−1
2

∫ π−δ

c(1)L−1

m d−2
2
, d
2
(θ)
[
cosω d−2

2
(L̃θ)

+ L̃−1F
(4)
d−2
2
, d−2

2

(L̃, θ) +Od,δ
(
Lû( d−2

2
)θν̂( d−2

2
)
)

+Od
(
L−2θ−2

)]
(sin θ)d−1 dθ +Od

(
L−1

)
=

(−1)L
√
π Γ(d

2
)
L̃
d−1
2

[∫ π−δ

c(1)L−1

(sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 cos

(
(L+ d

2
)θ − d−1

4
π
)

dθ

+ L̃−1

∫ π−δ

c(1)L−1

(sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 F

(4)
d−2
2
, d−2

2

(L̃, θ) dθ +Od,δ
(
Lû( d−2

2
)
)

+Od
(
L−2

) ∫ π−δ

c(1)L−1

θ−2(sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 dθ

]
+Od

(
L−1

)
, (4.3.29)

where û(d−2
2

) < −1.

Since
∫ π−δ
c(1)L−1 θ

−2(sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 dθ = Od

(√
L
)

for d ≥ 2, (4.3.29) becomes

V d,δ
L (1; x) =

(−1)L
√
π Γ(d

2
)
L̃
d−1
2

[
I1 + L̃−1I2 +Od,δ

(
Lû( d−2

2
)
)

+Od
(
L−

3
2

)]
+Od

(
L−1

)
=

(−1)L
√
π Γ(d

2
)
L̃
d−1
2

[
I1 + L̃−1I2 +Od,δ

(
Lû( d−2

2
)
)

+Od
(
L−

3
2

)]
, (4.3.30)
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where

I1 :=

∫ π−δ

c(1)L−1

(sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 cos

(
(L+ d

2
)θ − d−1

4
π
)

dθ,

I2 :=

∫ π−δ

c(1)L−1

(sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 F

(4)
d−2
2
, d−2

2

(L̃, θ) dθ.

We will prove in the remaining part that |I1| is lower bounded by cd,δ L
−1
` for a

subsequence L` of L and that I2 = o(1) (so L̃−1I2 is a higher order term than I1),

while the two big O terms have smaller asymptotic orders. Thus, I1 is the dominant

term. By (4.2.6) of Lemma 4.2.3,

I2 =

∫ π−δ

c(1)L−1

(sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 F

(2)
d−2
2
, d
2

(θ) sin
(
(L+ d

2
)θ − d−1

4
π
)

dθ.

Since the function (sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 F

(2)
d−2
2
, d
2

(θ) is in L1(0, π− δ) for d ≥ 2, we may

apply the Riemann-Lebesgue lemma to I2. Thus

I2 → 0 as L→∞. (4.3.31)

For I1 of (4.3.30), let B1(θ) := (sin θ
2
)
d−1
2 (cos θ

2
)
d−3
2 . Using integration by parts,

I1 =

∫ π−δ

c(1)L−1

B1(θ) cos
(
(L+ d

2
)θ − d−1

4
π
)

dθ

=
1

L+ d
2

[
B1(π − δ) sin

(
(L+ d

2
)(π − δ)− d−1

4
π
)

−B1(c(1)L−1) sin
(
(L+ d

2
)c(1)L−1 − d−1

4
π
)

+

∫ π−δ

c(1)L−1

B′1(θ) sin
(
(L+ d

2
)θ − d−1

4
π
)

dθ

]
=:

1

L+ d
2

[
I1,1 −Od

(
L−

1
2

)
− I1,2

]
. (4.3.32)

Since B′1(θ) is in L1(0, π − δ), the Riemann-Lebesgue lemma gives

I1,2 → 0 as L→∞. (4.3.33)

For I1,1 of (4.3.32),

I1,1 = B1(π − δ) sin
(
(L+ d

2
)(π − δ)− d−1

4
π
)

= (−1)L+1(sin δ
2
)
d−3
2 (cos δ

2
)
d−1
2 sin

(
(L+ d

2
)δ − d+1

4
π
)
.

Hence,

|I1,1| = (sin δ
2
)
d−3
2 (cos δ

2
)
d−1
2

∣∣∣sin ((L+ d
2
)δ − d+1

4
π
)∣∣∣. (4.3.34)
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Let ξ be a positive real number in (0, π/4) and let cξ := sin ξ > 0. We want∣∣∣sin((L+ d
2
)δ − d+1

4
π
)∣∣∣ > cξ.

This is equivalent to that (L+ d
2
)δ− d+1

4
π must be in the interval (kπ+ξ, kπ+π−ξ)

for some integer k. That is, L must fall into the interval Ik := (ak + ξ
δ
, ak + π−ξ

δ
)

with ak :=
kπ+ d+1

4
π

δ
− d

2
. Since the length of Ik is π−2ξ

δ
> 1, there exists at least one

positive integer in Ik for k being sufficiently large. Taking account of (4.3.34), we

have that there exists a subsequence L` of Z+ such that

|I1,1| = (sin δ
2
)
d−3
2 (cos δ

2
)
d−1
2

∣∣∣sin ((L` + d
2
)δ − d+1

4
π
)∣∣∣ > cd,δ,ξ > 0, ` ≥ 1.

This together with (4.3.33), (4.3.32), (4.3.31) and (4.3.30) gives∣∣∣V d,δ
L`

(1; x)
∣∣∣ ≥ cd,δ L

d−3
2

` .

That is, for ` ≥ 1, ∥∥V d,δ
L`

(1)
∥∥
Lp(Sd)

≥ cd,δ L
d−3
2

` .

4.4 Filtered local convolutions on the sphere

This section proves the upper bound of the filtered local convolution on the sphere.

The proof relies on the cancellation lemma and the asymptotic expansion of the

filtered kernel of Section 4.2. Recall that the filtered approximation VL,g on Sd is a

convolution with a filtered kernel vL,g(x · y), see Definitions 2.6.2 and 2.6.3,

VL,g(f ; x) :=

∫
Sd
vL,g(x · y)f(y) dσd(y), f ∈ Lp(Sd), x ∈ Sd.

Since the filtered convolution kernel vL,g(t), −1 ≤ t ≤ 1, is a constant multiple

of the filtered Jacobi kernel v
( d−2

2
, d−2

2
)

L,g (1, t), see Lemma 2.6.4, we are able to use the

asymptotic expansion of the latter to prove the upper bound of V d,δ
L,g (f).

Theorem 4.4.1. Let d ≥ 2, 0 < δ < π and 1 ≤ p ≤ ∞ and let g be a filter satisfying

the following properties for some κ ∈ Z+.

(i) g ∈ Cκ(R+);

(ii) g
∣∣
[1,2]
∈ Cκ+3([1, 2]).

Then, for f ∈ Lp(Sd),∥∥V d,δ
L,g (f)

∥∥
Lp(Sd)

≤ c L−(κ− d
2

+ 3
2

)
(
L−1‖f‖Lp(Sd) + ω

(
f, L−

1
2

)
Lp(Sd)

)
, (4.4.1)

where the constant c depends only on d, g, κ, δ and p.



Chapter 4 Riemann localisation on the sphere 81

Using similar argument to the remark of Theorem 4.3.3 and Corollary 4.3.4

gives the following upper bound of V d,δ
L,g (f) for a smoother function f on Sd.

Corollary 4.4.2. Let d ≥ 2, 0 < δ < π, 1 ≤ p ≤ ∞ and s ≥ 2 and let g be a filter

satisfying the following properties for some κ ∈ Z+.

(i) g ∈ Cκ(R+);

(ii) g
∣∣
[1,2]
∈ Cκ+3([1, 2]).

Then f ∈Ws
p(Sd), ∥∥V d,δ

L,g (f)
∥∥
Lp(Sd)

≤ c L−(κ− d
2

+ 5
2

)‖f‖Ws
p(Sd),

where the constant c depends only on d, g, κ, δ, p and s.

Remark. Compared to Theorem 4.3.3 and Corollary 4.3.4, Theorem 4.4.1 and Co-

rollary 4.4.2 show that the (Riemann) localisation of the Fourier convolution is

improved by filtering the Fourier coefficients and that the convergence rate of the

filtered local convolution depends on the smoothness of the filter function.

The commutativity between the translation and Laplace-Beltrami operator im-

plies the upper bound of the Sobolev norm of the filtered local convolution, as

follows.

Theorem 4.4.3. Let d ≥ 2, 0 < δ < π, 1 ≤ p ≤ ∞ and s ≥ 0 and let g be a filter

satisfying the following properties for some κ ∈ Z+.

(i) g ∈ Cκ(R+);

(ii) g
∣∣
[1,2]
∈ Cκ+3([1, 2]).

Then for f ∈Ws
p(Sd),∥∥V d,δ

L,g (f)
∥∥
Ws
p(Sd)
≤ c L−(κ− d

2
+ 3

2
)
(
L−1‖f‖Ws

p(Sd) + ω
(
f, L−

1
2

)
Ws
p(Sd)

)
,

and for f ∈Ws+2
p (Sd), s ≥ 0,∥∥V d,δ

L,g (f)
∥∥
Ws
p(Sd)
≤ c L−(κ− d

2
+ 5

2
)
(
L−1‖f‖Ws

p(Sd) + L−1‖∆∗f‖Ws
p(Sd)

)
,

where the constants c depend only on d, g, κ, δ, p and s.

We only prove Theorem 4.4.1. The proof of Theorem 4.4.3 is similar to those

of Theorem 4.4.1 and Corollary 4.4.2.

Proof of Theorem 4.4.1. For x ∈ Sd, by (4.3.2),

V d,δ
L,g (f ; x) =

∫
Sd\C(x,δ)

vL,g(x · y)f(y) dσd(y)

=
|Sd−1|
|Sd|

∫ π

δ

vL,g(cos θ) T
(d)
θ (f ; x)(sin θ)d−1dθ.



82 4.4 Filtered local convolutions on the sphere

We split the integral, using Lemma 2.6.4,

V d,δ
L,g (f ; x) =

(∫ π
2

δ

+

∫ π

π
2

)
Tθ(f ; x) v

( d−2
2
, d−2

2
)

L,g (1, cos θ) (sin θ)d−1 dθ

=:
(
I1(f ; x) + I2(f ; x)

)
. (4.4.2)

We let

m̃i(θ) := C
(1)
d−2
2
, d−2

2
,κ+3

(θ) uκ,i(θ) (sin θ)d−1, i = 1, 2, 3, 4, (4.4.3)

where C
(1)
d−2
2
, d−2

2
,κ+3

(θ) and uκ,i(θ) are given by (3.2.18). By Theorem 3.2.11 with

α = β := (d− 2)/2 and adopting its notation, we have

I1(f ; x) =

∫ π
2

δ

Tθ(f ; x) v
( d−2

2
, d−2

2
)

L,g (1, cos θ) (sin θ)d−1 dθ

=

∫ π
2

δ

Tθ(f ; x)
L−(κ− d

2
+ 3

2
)

2κ+3(κ+ 1)!

(
m̃1(θ) cosφL(θ) + m̃2(θ) sinφL(θ) + m̃3(θ) cosφL(θ)

+ m̃4(θ) sinφL(θ) + (sin θ)−1 Od,g,κ
(
L−1

))
dθ

=
L−(κ− d

2
+ 3

2
)

2κ+3(κ+ 1)!

[∫ π
2

δ

(
Tθ(f ; x) m̃1(θ) cosφL(θ) + Tθ(f ; x) m̃2(θ) sinφL(θ)

+ Tθ(f ; x) m̃3(θ) cosφL(θ) + Tθ(f ; x) m̃4(θ) sinφL(θ)
)

dθ

+ ‖f‖L1(Sd) Od,g,κ,δ
(
L−1

)]
=:

L−(κ− d
2

+ 3
2

)

2κ+3(κ+ 1)!

(
I1,1(f ; x) + I1,2(f ; x) + I1,3(f ; x) + I1,4(f ; x)

+ ‖f‖L1(Sd) Od,g,κ,δ
(
L−1

))
, (4.4.4)

where we used (4.3.16).

Similar to the proof of (4.3.21), using Lemma 4.2.5 and the density of the

continuous space into Lp space on the sphere would give for i = 1, 2, 3, 4,

‖I1,i(f)‖Lp(Sd) ≤ cd,g,κ,δ,p

(
L−1‖f‖Lp(Sd) + ω

(
f, L−1

)
Lp(Sd)

)
. (4.4.5)

This with (4.4.4) gives

‖I1(f)‖Lp(Sd) ≤ c L−(κ− d
2

+ 3
2

)
(
L−1‖f‖Lp(Sd) + ω

(
f, L−1

)
Lp(Sd)

)
, (4.4.6)

where the constant c depends only on d, g, κ, δ and p.

Let c be the constant of Theorem 3.2.11 where α = β := (d − 2)/2. We split

the integral of I2(f ; x) into two parts, as follows.

I2(f ; x) =

(∫ π−cL−1

π
2

+

∫ π

π−cL−1

)
Tθ(f ; x) v

( d−2
2
, d−2

2
)

L,g (1, cos θ) (sin θ)d−1 dθ

=: I2,1(f ; x) + I2,2(f ; x). (4.4.7)
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For I2,2(f ; x), using Corollary 3.3.2 with α := (d− 2)/2 gives

‖I2,2(f)‖Lp(Sd) ≤ cd,p

∫ π

π−cL−1

‖Tθ(f)‖Lp(Sd) L
−κ+d−2(sin θ)d−1 dθ

≤ cd,p L
−(κ+2) ‖f‖Lp(Sd). (4.4.8)

For I2,1(f ; x), using Theorem 3.2.11 again, cf. (4.4.4),

I2,1(f ; x)

=

∫ π−cL−1

π
2

Tθ(f ; x) v
( d−2

2
, d−2

2
)

L,g (1, cos θ) (sin θ)d−1 dθ

=
L−(κ− d

2
+ 3

2
)

2κ+3(κ+ 1)!

[∫ π−cL−1

π
2

(
Tθ(f ; x) m̃1(θ) cosφL(θ) + Tθ(f ; x) m̃2(θ) sinφL(θ)

+ Tθ(f ; x) m̃3(θ) cosφL(θ) + Tθ(f ; x) m̃4(θ) sinφL(θ)
)

dθ

+ ‖f‖L1(Sd) Od,g,κ
(
L−1

)]
=:

L−(κ− d
2

+ 3
2

)

2κ+3(κ+ 1)!

(
I2,1,1(f ; x) + I2,1,2(f ; x) + I2,1,3(f ; x) + I2,1,4(f ; x)

+ ‖f‖L1(Sd) Od,g,κ
(
L−1

))
, (4.4.9)

where m̃i(θ), i = 1, 2, 3, 4, are given by (4.4.3) and we used (4.3.16).

Similar to the estimate for the integrals of (4.3.23),

‖I2,1,i(f)‖Lp(Sd) ≤ cd,g,κ

(
L−1‖f‖Lp(Sd) + ω

(
f, L−1

)
Lp(Sd)

)
, i = 1, 2, 3, 4.

This with (4.4.9) gives

‖I2,1(f)‖Lp(Sd) ≤ cd,g,κ,p L
−(κ− d

2
+ 3

2
)
(
L−1‖f‖Lp(Sd) + ω

(
f, L−1

)
Lp(Sd)

)
,

thus completing the proof.

4.5 Proofs

This section proves the lemmas in Section 4.2.

4.5.1 Proofs for Section 4.2.1

Proof of Lemma 4.2.1. Recall ̂̀ := ` + (α + β + 1)/2. For the proof of (4.2.1), we

make use of the expansion of the Jacobi polynomial in terms of Bessel functions,
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see [27, Main Theorem, p. 980]: Given a positive integer n, and given α ≥ −1/2,

α− β > −2n and α + β ≥ −1, for 0 < θ ≤ π − ε,

P
(α,β)
` (cos θ) =

Γ(`+ α + 1)

Γ(`+ 1)

(
θ

sin θ

)1/2 (
sin θ

2

)−α (
cos θ

2

)−β
×

(
n−1∑
k=0

Ak(θ)
Jα+k(̂̀θ)̂̀α+k

+ θα1Oε
(̂̀−n)) , (4.5.1)

with arbitrary given 0 < ε < π, where

α1 :=

{
α + 2, n = 2,

α, n 6= 2,

and the coefficient Ak(θ) satisfies Ak(θ) ∈ C∞[0, π) for 1 ≤ k ≤ n− 1 and, see [27,

Corollary 1, p. 980],

A0(θ) := 1, A1(θ) :=

(
α2 − 1

4

)
1− θ cot θ

2θ
− α2 − β2

4
tan

θ

2
. (4.5.2)

The following asymptotic expansion of the Bessel function with a fixed real ν holds

as z → +∞, see [54, Eq. 10.17.1–10.17.3]:

Jν(z) ∼
(

2

πz

) 1
2

(
cosων(z)

∞∑
j=0

(−1)j
a2j(ν)

z2j
− sinων(z)

∞∑
j=0

(−1)j
a2j+1(ν)

z2j+1

)
,

(4.5.3)

where

a0(ν) := 1, aj(ν) :=
(4ν2 − 12) (4ν2 − 32) · · · (4ν2 − (2j − 1)2)

j! 8j
, j ≥ 1.

Let c0 > 0 be a fixed constant. Taking account of the upper bound of the Bessel

functions [54, Eq. 10.41.1, Eq. 10.41.4], i.e.

Jν(z) = Oν (1) , ν ≥ −1/2, z ≥ c0, (4.5.4)

we then have by (4.5.3) that for all z ≥ c0,

Jν(z) = O
(
z−

1
2

)
, (4.5.5a)

Jν(z) =

√
2

π

(
z−

1
2 cosων(z) +O

(
z−

3
2

))
, (4.5.5b)

Jν(z) =

√
2

π

(
z−

1
2 cosων(z)− z−

3
2a1(ν) sinων(z) +O

(
z−

5
2

))
, (4.5.5c)

where the constants in the three big O terms depend only on ν and c0.
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When α < 1/2, we take n = 2 in (4.5.1). For the Bessel functions Jα+k(̂̀θ),
k = 0, 1, we apply (4.5.5c) when k = 0 and (4.5.5b) when k = 1, then for c `−1 ≤
θ ≤ π − ε (thus ̂̀θ ≥ c),

P
(α,β)
` (cos θ)

=
Γ(`+ α + 1)

Γ(`+ 1)

(
θ

sin θ

)1/2 (
sin θ

2

)−α (
cos θ

2

)−β
×
[
A0(θ)

√
2

π

1̂̀α ((̂̀θ)− 1
2 cosωα(̂̀θ)− (̂̀θ)− 3

2a1(α) sinωα(̂̀θ) +Oα
(

(̂̀θ)− 5
2

))
+ A1(θ)

√
2

π

1̂̀α+1

(
(̂̀θ)− 1

2 cosωα+1(̂̀θ) +Oα
(

(̂̀θ)− 3
2

))
+ θα+2Oε

(̂̀−2
)]

=
Γ(`+ α + 1)

Γ(`+ 1)
π−

1
2

(
sin θ

2

)−α− 1
2
(
cos θ

2

)−β− 1
2 ̂̀− 1

2
−α

×
[
cosωα(̂̀θ) + ̂̀−1F

(2)
α,β(θ) cosωα+1(̂̀θ) +Oα,β

(̂̀−2θ−2
)

+Oε
(̂̀−2+( 1

2
+α)θα+ 5

2

)]
,

(4.5.6)

where by (4.5.2), F
(2)
α,β(θ) is given by

F
(2)
α,β(θ) cosωα+1(̂̀θ) := −A0(θ)a1(α)

θ
sinωα(̂̀θ) + A1(θ) cosωα+1(̂̀θ)

=

(
β2 − α2

4
tan

θ

2
− 4α2 − 1

8
cot θ

)
cosωα+1(̂̀θ), (4.5.7)

and (4.5.1) and (4.5.4) require α ≥ −1/2, α + β ≥ −1 and α− β > −4. Using [54,

Eq. 5.11.13, Eq. 5.11.15], i.e.

Γ(`+ u+ 1)

Γ(`+ v + 1)
= `u−v

[
1 +

(u− v)(u+ v + 1)

2
`−1 +Ou,v

(
`−2
)]
, (4.5.8)

we have

Γ(`+ α + 1)

Γ(`+ 1)
=

Γ(̂̀+ α−β−1
2

+ 1)

Γ(̂̀+ −α−β−1
2

+ 1)
= ̂̀α [1− αβ

2
̂̀−1 +Oα,β

(̂̀−2
)]

. (4.5.9)

This with (4.5.6) gives

P
(α,β)
` (cos θ) = π−

1
2

(
sin θ

2

)−α− 1
2
(
cos θ

2

)−β− 1
2 ̂̀− 1

2 (4.5.10)

×
[
cosωα(̂̀θ) + ̂̀−1F

(1)
α,β(̂̀, θ) +Oα,β

(
`−2θ−2

)
+Oε,α,β

(
`−2+( 1

2
+α)θα+ 5

2

)]
,

where

F
(1)
α,β(̂̀, θ) := F

(2)
α,β(θ) cosωα+1(̂̀θ)− αβ

2
cosωα(̂̀θ). (4.5.11)

When α ≥ 1/2, we take n = nα :=
⌊

1
2

+ α
⌋

+ 2 ≥ 3 in (4.5.1). For the Bessel

functions Jα+k(̂̀θ), 0 ≤ k ≤ n − 1, we apply (4.5.5c) when k = 0 and (4.5.5b)
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when k = 1, and use the upper bound (4.5.5a) when 2 ≤ k ≤ n − 1. Then for

c `−1 ≤ θ ≤ π − ε,

P
(α,β)
` (cos θ)

=
Γ(̂̀+ α−β−1

2
+ 1)

Γ(̂̀+ −α−β−1
2

+ 1)

(
θ

sin θ

)1/2 (
sin θ

2

)−α (
cos θ

2

)−β
×
[
A0(θ)

√
2

π

1̂̀α ((̂̀θ)− 1
2 cosωα(̂̀θ)− (̂̀θ)− 3

2a1(α) sinωα(̂̀θ) +Oα
(

(̂̀θ)− 5
2

))
+ A1(θ)

√
2

π

1̂̀α+1

(
(̂̀θ)− 1

2 cosωα+1(̂̀θ) +Oα
(

(̂̀θ)− 3
2

))
+

n−1∑
k=2

Ak(θ)
Oα
(

(̂̀θ)− 1
2

)
̂̀α+k

+ θαOε
(̂̀−n)].

Applying (4.5.9) and rearranging the terms in the square brackets give, cf. (4.5.6),

(4.5.10),

P
(α,β)
` (cos θ)

= ̂̀α [1− αβ

2
̂̀−1 +Oα,β

(̂̀−2
)]
× π−

1
2

(
sin θ

2

)−α− 1
2
(
cos θ

2

)−β− 1
2 θ

1
2

×
[̂̀− 1

2
−αθ−

1
2 cosωα(̂̀θ) + ̂̀− 3

2
−αθ−

1
2F

(2)
α,β(θ) cosωα+1(̂̀θ) +Oα,β

(̂̀− 5
2
−αθ−

5
2

)
+Oα,β

(̂̀− 5
2
−αθ−

1
2

)
+ θαOε

(̂̀−n)]
= π−

1
2

(
sin θ

2

)−α− 1
2
(
cos θ

2

)−β− 1
2 ̂̀− 1

2

×
[
cosωα(̂̀θ) + ̂̀−1F

(1)
α,β(̂̀, θ) +Oα,β

(
`−2θ−2

)
+Oε,α,β

(
`−2+〈α+ 1

2〉θα+ 1
2

)]
,

where F
(2)
α,β(θ) and F

(1)
α,β(̂̀, θ) are given by (4.5.7) and (4.5.11) respectively, and in this

case (4.5.1) and (4.5.4) require α ≥ −1/2, α+β ≥ −1 and α−β > −2
⌊

1
2

+ α
⌋
− 4.

This completes the proof.

4.5.2 Proofs for Section 4.2.2

Proof of Lemma 4.2.2. By (2.5.5) and [70, Eq. 4.5.3, p. 71], for −1 ≤ s ≤ 1,

v
(α,β)
L (1, s) =

L∑
`=0

(
c

(α,β)
`

)−1

P
(α,β)
` (1)P

(α,β)
` (s)

=
1

2α+β+1

Γ(L+ α + β + 2)

Γ(α + 1)Γ(L+ β + 1)
P

(α+1,β)
L (s). (4.5.12)
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Then, the estimate in (4.2.4a) of v
(α,β)
L (1, cos θ) for c(1)L−1 ≤ θ ≤ π/2 follows from

Lemma 3.2.1. For π/2 < θ ≤ π − c(1)L−1, using [70, Eq. 4.1.3, p. 59]

P
(γ,η)
L (−z) = (−1)LP

(η,γ)
L (z), −1 ≤ z ≤ 1, γ, η > −1 (4.5.13)

with (4.5.12) gives

v
(α,β)
L (1, cos θ) =

1

2α+β+1

Γ(L+ α + β + 2)

Γ(α + 1)Γ(L+ β + 1)
(−1)LP

(β,α+1)
L (cos θ′), (4.5.14)

where θ′ := π − θ. By (4.5.8) with ` = L̃ = L+ α+β+2
2

, u = α+β
2

and v = −α+β−2
2

,

Γ(L+ α + β + 2)

Γ(L+ β + 1)
= L̃α+1

[
1− (α + 1)β

2
L̃−1 +Oα,β

(
L−2

)]
= L̃α+1

[
1 +Oα,β

(
L−1

)]
.

(4.5.15)

Applying Lemma 3.2.1 to P
(β,α+1)
L (cos θ′) of (4.5.14) and by (4.5.15), we have

v
(α,β)
L (1, cos θ)

=
2−(α+β+1)

Γ(α + 1)
L̃α+ 1

2

(
1 +Oα,β

(
L−1

))
mβ,α+1(θ′)

(
cosωβ(L̃θ′) + (sin θ′)−1Oα,β

(
L−1

))
=

2−(α+β+1)

Γ(α + 1)
L̃α+ 1

2 mβ,α+1(θ′)
(

cosωβ(L̃θ′) + (sin θ′)−1Oα,β
(
L−1

))
.

This completes the proof.

Proof of Lemma 4.2.3. i) Let α, β > −1/2 and α− β > −5, i.e. (α + 1)− β > −4.

To estimate v
(α,β)
L (1, cos θ), we use (4.5.12) and then apply (4.2.1) of Lemma 4.2.1

to P
(α+1,β)
` (cos θ). Then for c(1)`−1 ≤ θ ≤ π − ε, also using (4.5.15) ,

v
(α,β)
L (1, cos θ) =

2−(α+β+1)

Γ(α + 1)
L̃α+1

[
1 +

(α + 1)β

2
L̃−1 +Oα,β

(
L̃−2

)]
× L̃−

1
2 mα+1,β(θ)

×
[

cosωα+1(L̃θ) + L̃−1F
(1)
α+1,β(L̃, θ) +Oε,α,β

(
Lû(α+1)θν̂(α+1)

)
+Oα,β

(
L−2θ−2

)]
=

2−(α+β+1)

Γ(α + 1)
mα+1,β(θ) L̃α+ 1

2

×
[
cosωα+1(L̃θ) + L̃−1F

(3)
α,β(L̃, θ) +Oε,α,β

(
Lû(α+1)θν̂(α+1)

)
+Oα,β

(
L−2θ−2

)]
,

where û(α + 1) < −1 and ν̂(α + 1) ≥ 1, and by (4.2.2),

F
(3)
α,β(L̃, θ) =

(α + 1)β

2
cosωα+1(L̃θ) + F

(1)
α+1,β(L̃, θ)

= F
(2)
α+1,β(θ) cosωα+2(L̃θ).

ii) Let β > −1/2 and β − (α + 1) > −4 (i.e. β − α > −3) and θ′ := π − θ ∈
(c(1)L−1, π − ε). In this case, we make use of (4.5.14) and then apply (4.2.1) of

Lemma 4.2.1 to P
(β,α+1)
L (cos θ′).
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Also by (4.5.15), we have

v
(α,β)
L (1, cos θ)

=
(−1)L2−(α+β+1)

Γ(α + 1)
L̃α+1

[
1 +

(α + 1)β

2
L̃−1 +Oα,β

(
L−2

)]
× L̃−

1
2 mβ,α+1(θ′)

×
[
cosωβ(L̃θ′) + L̃−1F

(1)
β,α+1(L̃, θ′) +Oε,α,β

(
Lû(β)θ′

ν̂(β)
)

+Oα,β
(
L−2θ′

−2
)]

=
(−1)L2−(α+β+1)

Γ(α + 1)
L̃α+ 1

2 mβ,α+1(θ′)

×
[
cosωβ(L̃θ′) + L̃−1F

(4)
α,β(L̃, θ′) +Oε,α,β

(
Lû(β)θ′

ν̂(β)
)

+Oα,β
(
L−2θ′

−2
)]
,

where by (4.2.2),

F
(4)
α,β(L̃, θ′) = F

(1)
β,α+1(L̃, θ′) +

(α + 1)β

2
cosωβ(L̃θ′)

= F
(2)
β,α+1(θ′) cosωβ+1(L̃θ′).

This completes the proof.

Proof of Lemma 4.2.4. For arbitrary real γ, η, Szegő [70, Theorem 7.32.2, p. 169]

shows

P
(γ,η)
L (cos θ) = O (Lγ) , 0 ≤ θ ≤ cL−1, (4.5.16)

where the constant depends only on γ and η. The upper bound of (4.2.7a) follows

from (4.5.12) and (4.5.16), and (4.2.7b) is proved by (4.5.14) and (4.5.16).

4.5.3 Proof for Section 4.2.3

Proof of Lemma 4.2.5. We may construct the partition as follows. Let

φ0 := aL, φ1 := k0π−c3
c1L+c2

, k0 :=
⌊

1
π

(
aL(c1L+ c2) + c3

)⌋
+ 1,

φk := φ1 + (k − 1)tL, k = 2, . . . , L1, φL1+1 := b,

tL := π
c1L+c2

, L1 :=
⌊
b(c1L+c2)+c3

π
− k0 + 1

⌋
.

Then AL(φk) = (k + k0 − 1)π for 1 ≤ k ≤ L1 − 1 and AL(φ1)−AL(φ0) ∈ (0, π] and

AL(φL1+1) − AL(φL1) ∈ [0, π). Thus aL = φ0 < φ1 < · · · < φL1 < φL1+1 = b is a

partition of [aL, b] such that sin(AL(θ)) in each subinterval [φk, φk+1], k = 0, 1, . . . , L1

has the constant sign and has different signs in every pair of adjacent subintervals.

The assumption that supL∈Z+
aL < b implies that L1 � L and

−→
∆kφk � L−1 for each

k = 0, 1, . . . , L1.
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For each subinterval [φk, φk+1], k = 0, 1, . . . , L1, applying the first integral mean

value theorem, we have that there exists φ′k ∈ (φk, φk+1) such that∫ b

aL

f(θ)m(θ) sin(AL(θ)) dθ

=

L1∑
k=0

∫ φk+1

φk

f(θ)m(θ) sin(AL(θ)) dθ =

L1∑
k=0

f(φ′k)

∫ φk+1

φk

m(θ) sin(AL(θ)) dθ

=

L1−1∑
k=1

f(φ′k)

∫ φk+1

φk

m(θ) sin(AL(θ)) dθ

+ f(φ′0)

∫ φ1

φ0

m(θ) sin(AL(θ)) dθ + f(φ′L1
)

∫ φL1+1

φL1

m(θ) sin(AL(θ)) dθ

=

L1−2∑
k=1

−→
∆kf(φ′k)

k∑
j=1

∫ φj+1

φj

m(θ) sin(AL(θ)) dθ

+ f(φ′L1−1)

L1−1∑
j=1

∫ φj+1

φj

m(θ) sin(AL(θ)) dθ

+ f(φ′0)

∫ φ1

φ0

m(θ) sin(AL(θ)) dθ + f(φ′L1
)

∫ φL1+1

φL1

m(θ) sin(AL(θ)) dθ, (4.5.17)

where the last equality used summation by parts. Let ψk(θ) := θ + (k − 1)tL,

1 ≤ k ≤ L1. Then ψk(φ1) = φk. Grouping (4.5.17) by pairs, keeping in mind that

sin(AL(θ)) has the opposite sign in [φ2j−1, φ2j] to in [φ2j, φ2j+1] for j = 1, . . . ,
⌊
k−1

2

⌋
,

then∫ b

aL

f(θ)m(θ) sin(AL(θ)) dθ

=

L1−2∑
k=1

−→
∆kf(φ′k)

[b k2c∑
j=1

∫ φ2

φ1

(
m(ψ2j−1(θ))−m(ψ2j(θ))

)
sin(AL(θ)) dθ

+ ν1(k)

∫ φ2

φ1

m(ψk(θ)) sin(AL(θ)) dθ

]

+ f(φ′L1−1)

[bL1−1
2 c∑
j=1

∫ φ2

φ1

(
m(ψ2j−1(θ))−m(ψ2j(θ))

)
sin(AL(θ)) dθ

+ ν1(L1 − 1)

∫ φ2

φ1

m(ψL1−1(θ)) sin(AL(θ)) dθ

]
+ f(φ′0)

∫ φ1

φ0

m(θ) sin(AL(θ)) dθ + f(φ′L1
)

∫ φL1+1

φL1

m(θ) sin(AL(θ)) dθ,

where

ν1(k) :=

{
1, if k is odd,

0, if k is even.
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When φ1 < θ < φ2, for j = 1, . . . ,
⌊
L1−1

2

⌋
,

|m(ψ2j−1(θ))−m(ψ2j(θ))|

≤
[

max
φ1<φ<φ2+tL

|m′
(
φ+ 2(j − 1)tL

)
|
] ∣∣ψ2j(θ)− ψ2j−1(θ)

∣∣
≤ c max

φ1<φ<φ2+tL

{
max

{(
φ+ 2(j − 1)tL

)γ
, 1
}}

tL ≤ c L−1 max

{(
j

L

)γ
, 1

}
.

For γ < 0,∣∣∣∫ b

aL

f(θ)m(θ) sin(A(θ)) dθ
∣∣∣

≤ c

[
L1−2∑
k=1

|
−→
∆kf(φ′k)|

(b k2c∑
j=1

L−1

(
j

L

)γ
tL + tL

)

+|f(φ′L1−1)|
(bL1−1

2 c∑
j=1

L−1

(
j

L

)γ
tL + tL

)
+ tL|f(φ′0)|+ tL|f(φ′L1

)|

]

≤ c L−1

[
L1−2∑
k=1

|
−→
∆kf(φ′k)|+ |f(φ′L1−1)|+ |f(φ′0)|+ |f(φ′L1

)|

]
. (4.5.18)

For γ ≥ 0,∣∣∣∫ b

aL

f(θ)m(θ) sin(A(θ)) dθ
∣∣∣

≤ c

[
L1−2∑
k=1

|
−→
∆kf(φ′k)|

(b k2c∑
j=1

L−1tL + tL

)

+ |f(φ′L1−1)|
(bL1−1

2 c∑
j=1

L−1tL + tL

)
+ tL|f(φ′0)|+ tL|f(φ′L1

)|

]

≤ c L−1

[
L1−2∑
k=1

|
−→
∆kf(φ′k)|+ |f(φ′L1−1)|+ |f(φ′0)|+ |f(φ′L1

)|

]
. (4.5.19)

The constants c in (4.5.18) and (4.5.19) are independent of L, thus completing the

proof of (4.2.8).

4.6 Norms of Fourier local convolutions and their

kernels

This section establishes the estimate of the operator norm for the Fourier local

convolution as noted in the introduction. As a convolution operator V d,δ
L , defined
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by (4.1.6), has the following upper bound on its operator norm: Given 1 ≤ p ≤ ∞
and f ∈ Lp(Sd), ∥∥V d,δ

L (f)
∥∥
Lp(Sd)

≤ cd L
d−1
2 ‖f‖Lp(Sd). (4.6.1)

The bound (4.6.1) is a consequence of the following lemmas.

Lemma 4.6.1. Let d ≥ 2 be an integer, δ ∈ R, 0 < δ < π/2 and let α := (d− 2)/2.

The operator norm of V d,δ
L on Lp(Sd) is upper bounded by

∥∥V d,δ
L

∥∥
Lp→Lp

≤ cd
∥∥vdL χ[−1,cos δ]

∥∥
L1(wα,α)

. (4.6.2)

Proof. By (4.3.2) and (4.3.7),

∥∥V d,δ
L (f)

∥∥
Lp(Sd)

=
|Sd−1|
|Sd|

∥∥∥∫ π

δ

Tθ(f ; ·)vdL(cos θ)(sin θ)
d−1
2 dθ

∥∥∥
Lp(Sd)

≤ cd
∥∥Tθ(f)

∥∥
Lp(Sd)

∫ π

δ

|vdL(cos θ)|(sin θ)
d−1
2 dθ

≤ cd ‖f‖Lp(Sd) ‖vdL χ[−1,cos δ]‖L1(wα,α).

This completes the proof.

The essential order of the right-hand side of (4.6.2) is L
d−1
2 , proved below.

Lemma 4.6.2. Let d ≥ 2 and α := (d− 2)/2 and −1 ≤ a < b ≤ 1. Then,

‖vdL χ[a,b]‖L1(wα,α) � L
d−1
2 ,

where the constants in the inequalities depend only on a, b and d.

Proof. The proof of the upper bound comes from Lemmas 4.2.2 and 4.2.4. We give

only the proof of the lower bound. Let a := cos θ2, b := cos θ1 with 0 ≤ θ1 < θ2 ≤ π.

For 0 ≤ θ1 < θ2 ≤ π/2, (θ1 + θ2)/2 > c(1)L−1 when L is sufficiently large. Then by

Lemma 2.6.1 and (4.2.4a),
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‖vdL χ[a,b]‖L1(wα,α) =
|Sd|
|Sd−1|

∫ θ2

θ1

|v(α,α)
L (1, cos θ)| (sin θ)d−1 dθ

≥ c1 L
d−1
2

∫ θ2

(θ1+θ2)/2

θ−
1
2
− d

2

∣∣cos
((
L+ d

2

)
θ − d+1

4
π
)∣∣ (sin θ)d−1 dθ

− c2 L
d−3
2

∫ θ2

(θ1+θ2)/2

θ−
3
2
− d

2 (sin θ)d−1 dθ

≥ c3 L
d−1
2

∫ θ2

(θ1+θ2)/2

∣∣cos
((
L+ d

2

)
θ − d+1

4
π
)∣∣ dθ − c4 L

d−3
2

≥ c3 L
d−1
2

∫ θ2

(θ1+θ2)/2

1 + cos
(
(2L+ d)θ − d+1

2
π
)

2
dθ − c4 L

d−3
2

≥ c3 L
d−1
2

(
θ2 − θ1

4
− 1

2L+ d

)
− c4 L

d−3
2

≥ c L
d−1
2 (4.6.3)

for L large enough.

For π/2 ≤ θ1 < θ2 ≤ π, π − (θ1 + θ2)/2 > c(1)L−1 when L is sufficiently large.

Then by (4.2.4b) as L→ +∞, cf. (4.6.3),

‖vdL χ[a,b]‖L1(wα,α) =
|Sd|
|Sd−1|

∫ θ2

θ1

|v(α,α)
L (1, cos θ)| (sin θ)d−1 dθ

≥ c5 L
d−1
2

∫ π−θ1

π−(θ1+θ2)/2

θ−
1
2
− d−2

2

∣∣cos
((
L+ d

2

)
θ − d+1

4
π
)∣∣

× (sin θ)d−1 dθ − c6 L
d−3
2

∫ π−θ1

π−(θ1+θ2)/2

θ−
3
2
− d−2

2 (sin θ)d−1 dθ

≥ c L
d−1
2 .

For 0 ≤ θ1 < π/2 < θ2 ≤ π, we can obtain the same lower bound by splitting the

integral (over [θ1, θ2]) into two parts. Hence for −1 ≤ a < b ≤ 1,

‖vdL χ[a,b]‖L1(wα,α) ≥ c L
d−1
2 ,

where c depends only on a, b and d. This completes the proof of the lower bound.



Chapter 5

Fully discrete needlet

approximations on the sphere

5.1 Introduction

In this chapter, we introduce a discrete spherical needlet approximation scheme by

using spherical quadrature rules to approximate the inner product integrals and

establish its approximation error for functions in Sobolev spaces on the sphere.

Numerical experiments are carried out for this fully discrete version of the spherical

needlet approximation.

Given N ≥ 1, for k = 1, . . . , N , let xk be N nodes on Sd and let wk > 0 be

corresponding weights. The set {(wk,xk) : k = 1, . . . , N} is a positive quadrature

(numerical integration) rule exact for polynomials of degree up to ν for some ν ≥ 0

if ∫
Sd
p(x) dσd(x) =

N∑
k=1

wk p(xk), for all p ∈ Pν(Sd).

Spherical needlets [51, 52] are a type of localised polynomial on the sphere

associated with a quadrature rule and a filter. Let R+ := [0,+∞).

We now define a needlet, following [51] who used a C∞(R+) filter and [52]. Let

the needlet filter h be a filter with truncation constant 2 and specified smoothness

κ ≥ 1 (see Figure 5.1 in Section 5.4 for an example with κ = 5) satisfying

h ∈ Cκ(R+), supp h = [1/2, 2]; (5.1.1a)

h(t)2 + h(2t)2 = 1 if t ∈ [1/2, 1]. (5.1.1b)

Condition (5.1.1b) is equivalent, given (5.1.1a), to the following partition of unity
93
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property for h2,
∞∑
j=0

h
( t

2j

)2

= 1, t ≥ 1.

For j = 0, 1, . . . , we define the (spherical) needlet quadrature

{(wjk,xjk) : k = 1, . . . , Nj}, wjk > 0, k = 1, . . . , Nj, (5.1.2a)

exact for polynomials of degree up to 2j+1 − 1. (5.1.2b)

A (spherical) needlet ψjk, k = 1, . . . , Nj of order j with needlet filter h and needlet

quadrature (5.1.2) is then defined by

ψjk(x) :=
√
wjk v2j−1,h(x · xjk), (5.1.3a)

or equivalently, ψ0k(x) :=
√
w0k,

ψjk(x) :=
√
wjk

∞∑
`=0

h
( `

2j−1

)
Z(d, `) P

(d+1)
` (x · xjk), if j ≥ 1. (5.1.3b)

From (5.1.1a) we see that ψjk is a polynomial of degree 2j − 1. It is a band-limited

polynomial, so that ψjk is L2-orthogonal to all polynomials of degree ≤ 2j−2.

For f ∈ L2(Sd), the original (spherical) needlet approximation with filter h and

needlet quadrature (5.1.2) is defined (see [51]) by

V need
L (f ; x) :=

∑
2j≤L

Nj∑
k=1

(f, ψjk)L2(Sd) ψjk(x), x ∈ Sd. (5.1.4)

Note that V need
L (f ; x) is a polynomial of degree at most L−1 since ψjk is a polynomial

of degree 2j − 1, and that V need
L (f ; x) is constant for L between consecutive powers

of 2. We shall call (f, ψjk)L2(Sd) the semidiscrete (spherical) needlet coefficient and

V need
L (f ; ·) the semidiscrete (spherical) needlet approximation to distinguish them

from their fully discrete equivalents which we shall now introduce.

The discrete (spherical) needlet approximation is defined by discretising the

inner-product integral

(f, ψjk)L2(Sd) =

∫
Sd
f(y) ψjk(y) dσd(y)

with another quadrature rule. For ν ≥ 0 and N ≥ 1, the discretisation quadrature

rule is

QN := Q(ν,N) := {(Wi,yi) : i = 1, . . . , N}, Wi > 0, i = 1, . . . , N, (5.1.5a)

exact for polynomials of degree up to ν. (5.1.5b)
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Let C(Sd) be the space of continuous functions on Sd. For f, g ∈ C(Sd), given QN
we define the discrete inner product by

(f, g)QN :=
N∑
i=1

Wi f(yi) g(yi).

The discrete (spherical) needlet coefficient of f for QN and ψjk is (f, ψjk)QN .

We then define the discrete needlet approximation of degree L by

V need
L,N (f ; x) :=

∑
2j≤L

Nj∑
k=1

(f, ψjk)QN ψjk(x), x ∈ Sd. (5.1.6)

Let h be a needlet filter with κ ≥ d + 1 and let Hs(Sd) ⊂ L2(Sd) with s ≥ 0

be a Sobolev space on Sd. In Theorem 5.3.5, we prove as a special case that for

ν = 3L− 1, i.e. QN = Q(N, 3L− 1), the L2 error using the approximation (5.1.6)

for f ∈ Hs(Sd) and s > d/2 has the convergence order L−(s− d
2
−ε) for any fixed

0 < ε < s− d/2, i.e.∥∥f − V need
L,N (f)

∥∥
L2(Sd)

≤ c L−(s− d
2
−ε) ‖f‖Hs(Sd), f ∈ Hs(Sd),

where the constant c depends only on d, s, ε, h and κ. This contrasts with the corres-

ponding result for semidiscrete needlet approximation, see [51] and Theorem 5.2.12:∥∥f − V need
L (f)

∥∥
L2(Sd)

≤ c L−s‖f‖Hs(Sd).

Thus discretisation of the needlet approximation causes a loss of order of approx-

imation for f in a Sobolev space. The loss of order in the fully discrete case seems

inevitable, given that the approximation (5.1.6) needs point values of f , and hence

needs f ∈ Hs(Sd) with s satisfying the embedding condition s > d/2 to ensure the

continuity of f . The semidiscrete approximation, in contrast, does not require the

continuity of f , and does not need s > d/2.

In Sections 5.2 and 5.3 we establish the connection to wavelets, and prove that

the needlet approximation is equivalent to a filtered approximation and that the

discrete needlet approximation is equivalent to filtered hyperinterpolation [68] — a

fully discrete version of the filtered approximation. These connections draw atten-

tion to the fact that the discrete needlet approximation considered in the present

thesis is not of itself new: what we have done is to express the filtered hyperinter-

polation approximation in terms of a frame {ψjk} of the polynomial space where

the frame has strong localisation properties. The benefit will become apparent,

however, if we take advantage of the local nature of the approximation to carry out

local refinement. We make a preliminary study of local refinement of this kind in
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a numerical experiment in Section 5.4, though in this thesis we do not develop the

local theory. Rather, our main emphasis in this chapter is on establishing the neces-

sary theoretical tools for the discrete needlet approximation, on demonstrating the

precise relationship between the various approximations, and on obtaining a global

error analysis for f in Sobolev spaces.

We note that Mhaskar [45, 47] proposed a full-discrete filtered polynomial ap-

proximation which is equivalent to filtered hyperinterpolation. A central assumption

in [45, 47], in addition to polynomial exactness, is that a Marcinkiewicz-Zygmund

(M-Z) inequality is satisfied. Quadrature rules with positive weights and polyno-

mial exactness automatically satisfy an M-Z inequality (see Dai [18, Theorem 2.1]

and Mhaskar [47, Theorem 3.3]). However, neither decomposition of wavelets into

needlets nor numerical implementation were studied in [45, 47].

The chapter is organised as follows. Section 5.2 studies the semidiscrete needlet

approximation and its Lp approximation errors for f in Sobolev spaces on Sd, and its

connection with the filtered approximation and continuous wavelets. In Section 5.3,

we discuss the fully discrete needlet approximation and prove its approximation

error for f ∈ Hs(Sd) and exploit its relation to the filtered hyperinterpolation ap-

proximation and discrete wavelets. In Section 5.4, we give numerical examples of

needlets and then some numerical experiments. Sections 5.5.1 and 5.5.2 give the

proofs for the results in Sections 5.2 and 5.3 respectively.

5.2 Filtered operators, needlets and wavelets

In this section, we study the properties of the filtered kernel, needlets and wavelets,

and their relationships.

5.2.1 Semidiscrete needlets and continuous wavelets

We now point out the relation between spherical needlets and spherical wavelet de-

compositions. Let h be a needlet filter satisfying (5.1.1). Obviously the semidiscrete

needlet approximation (5.1.4) can be written, for f ∈ L1(Sd) and x ∈ Sd, as

V need
L (f ; x) =

∑
2j≤L

Uj(f ; x),

where Uj(f) is the contribution to the semidiscrete needlet approximation for level

j:

Uj(f ; x) :=

Nj∑
k=1

(f, ψjk)L2(Sd) ψjk(x). (5.2.1)
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In the language of wavelets, we may consider Uj(f ; x) to be the level-j “detail” of

the approximation V need
L (f).

Needlets have a close relation to filtered polynomial approximations. At the

heart of this relationship is the following expression, due to [51], and stated formally

in Theorem 5.2.9 below: if ψjk denotes the needlets of order j ≥ 0 with needlet filter

h and needlet quadrature (5.1.2), then

Nj∑
k=1

ψjk(x) ψjk(y) = v2j−1,h2(x · y), (5.2.2)

in which the filter on the right-hand side, it should be noted, is h2, the square of the

needlet filter. This means that the level-j contribution to the semidiscrete needlet

approximation can be written, using (5.2.1), as

Uj(f ; x) :=

∫
Sd
f(x) v2j−1,h2(x · y) dσd(y).

To obtain the full semidiscrete needlet approximation we need to sum over j.

For this purpose we introduce a new filter H related to the needlet filter h:

H(t) :=

{
1, 0 ≤ t < 1,

h(t)2, t ≥ 1,
(5.2.3)

and use the property

H
( t

2J

)
=

J∑
j=0

h
( t

2j

)2

, t ≥ 1, J ∈ Z+, (5.2.4)

which is an easy consequence of (5.1.1). We note that this implies H ∈ Cκ(R+) given

h ∈ Cκ(R+). It then follows that
∑J

j=0 v2j−1,h2(x · y) = v2J−1,H(x · y), J = 0, 1, . . . ,

and as a result the semidiscrete needlet approximation can be expressed as

V need
L (f ; x) =

∫
Sd
f(x) v2J−1,H(x · y) dσd(y)

with J := blog2(L)c.

5.2.2 Filtered operators and their kernels

Recall the definition (2.6.5) of a filtered kernel. The convolution of two filtered

kernels is also a filtered kernel. In particular, we have

Proposition 5.2.1. Let d ≥ 2 and let g be a filter. Then for T ≥ 0 and x, z ∈ Sd,(
vT,g(x · ·), vT,g(z · ·)

)
L2(Sd)

:=

∫
Sd
vT,g(x · y) vT,g(z · y)dσd(y) = vT,g2(x·z). (5.2.5)
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Proof. For 0 ≤ T < 1, by (2.6.5), both sides of (5.2.5) equal 1. We now prove

(5.2.5) for T ≥ 1. By (2.6.5) and (2.2.2),(
vT,g(x · ·), vT,g(z · ·)

)
L2(Sd)

=

(
∞∑
`=0

g
( `
T

)
Z(d, `) P

(d+1)
` (x · ·),

∞∑
`′=0

g
( `′
T

)
Z(d, `′) P

(d+1)
`′ (z · ·)

)
L2(Sd)

=
∞∑
`=0

g
( `
T

)2

Z(d, `) P
(d+1)
` (x · z) = vT,g2(x · z),

thus completing the proof.

When the filter is sufficiently smooth, the filtered kernel is strongly localised.

This is shown in the following theorem proved by Narcowich et al. [52, Theorem 3.5,

p. 584]. For integer κ ≥ 0, let Cκ(R+) be the set of all κ times continuously

differentiable functions on R+.

Theorem 5.2.2 ([52]). Let g be a filter in Cκ(R+) with 1 ≤ κ <∞ such that g(t)

is a constant in [0, a] for some a > 0. Then∣∣vT,g(cos θ)
∣∣ ≤ c T d

(1 + Tθ)κ
, T ≥ 1, (5.2.6)

where the constant c depends only on d, g and κ.

We give an alternative proof of Theorem 5.2.2 in Section 5.5.1, using different

techniques.

Remark. Dai and Xu [19, Lemma 2.6.7, p. 48] proved (5.2.6) for g ∈ C3κ+1(R+).

Brown and Dai [13, Eq. 3.5, p. 409] and Narcowich et al. [51, Theorem 2.2, p. 533]

proved that for g ∈ C∞(R+), (5.2.6) holds for all positive integers κ.

From Theorem 5.2.2, we may prove the boundedness of the L1-norm of the

filtered kernel, see [52, Corollary 3.6, p. 584]:

Theorem 5.2.3 ([52]). Let g be a filter in Cκ(R+) with κ ≥ d+ 1 such that g(t) is

a constant in [0, a] for some a > 0. Then∥∥vT,g(x · ·)∥∥L1(Sd)
≤ cd,g,κ, x ∈ Sd, T ≥ 0.

For completeness, we give the proof of Theorem 5.2.3 in Section 5.5.1.

Applying the convolution inequality of [8, Eq. 1.14, p. 207–208] to (2.6.6) gives∥∥VT,g(f)
∥∥
Lp(Sd)

≤
∥∥vT,g(x · ·)∥∥L1(Sd)

‖f‖Lp(Sd).

Thus by Theorem 5.2.3, the operator norm of the filtered approximation VT,g on

Lp(Sd) is bounded for g satisfying the condition of Theorem 5.2.2:
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Corollary 5.2.4. Let g satisfy the condition of Theorem 5.2.2 and let 1 ≤ p ≤ ∞.

Then the filtered approximation VT,g on Lp(Sd) is an operator of strong type (p, p),

i.e. ∥∥VT,g∥∥Lp→Lp
≤ cd,g,κ, T ≥ 0.

For L ∈ Z+, the Lp error of best approximation of order L for f ∈ Lp(Sd) is

defined by EL(f)p := EL(f)Lp(Sd) := infp∈PL(Sd) ‖f − p‖Lp(Sd).

For given f ∈ L1(Sd) and p ∈ [1,∞], EL(f)p is a non-increasing sequence. Since⋃∞
`=0 P`(Sd) is dense in Lp(Sd), the error of best approximation converges to zero as

L→∞, i.e. limL→∞EL(f)p = 0, for f ∈ Lp(Sd).
The error of best approximation for functions in a Sobolev space has the fol-

lowing upper bound, see [37] and also [49, p. 1662].

Lemma 5.2.5 ([37, 49]). Let d ≥ 2, s > 0 and 1 ≤ p ≤ ∞. For L ≥ 1 and

f ∈Ws
p(Sd),

EL(f)p ≤ c L−s ‖f‖Ws
p(Sd),

where the constant c depends only on d, p and s.

The filtered approximation VL,H has a near-best approximation error for suffi-

ciently smooth H in the sense of being within a constant factor of a best approxim-

ation error, as shown by the following lemma.

Theorem 5.2.6. Let d ≥ 2 and 1 ≤ p ≤ ∞ and let H be the filter given by (5.2.3)

with h ∈ Cκ(R+) and κ ≥ d+ 1. Then for f ∈ Lp(Sd) and L ≥ 1,∥∥f − VL,H(f)
∥∥
Lp(Sd)

≤ c EL(f)p, (5.2.7)

where the constant c depends only on d, H and κ.

The proof of Theorem 5.2.6 is given in Section 5.5.1.

Remark. The estimate (5.2.7) is a generalisation of the results of Rustamov [64,

Lemma 3.1, p. 316] and Sloan [67]. Rustamov proved (5.2.7) for H ∈ C∞(R+) and

1 ≤ p ≤ ∞ while Sloan showed (5.2.7) for p = ∞, f ∈ C(Sd) and H ∈ Cd+1(R+),

and even for certain piecewise polynomial filters H belonging to Cd−1(R+).

Lemma 5.2.5 and Theorem 5.2.6 give the error of the filtered approximation for

Sobolev spaces:

Corollary 5.2.7. With the assumptions of Theorem 5.2.6, for f ∈ Ws
p(Sd) with

s > 0 and L ≥ 1, ∥∥f − VL,H(f)
∥∥
Lp(Sd)

≤ c L−s ‖f‖Ws
p(Sd),

where the constant c depends only on d, p, s, H and κ.
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5.2.3 Semidiscrete needlet approximations

The smoothness of the filter makes the needlet ψjk localised. This can be seen from

the following corollary of Theorem 5.2.2, first proved by Narcowich et al. in [52,

Corollary 5.3, p. 592].

Corollary 5.2.8 ([52]). Let h be a needlet filter, satisfying (5.1.1). If h ∈ Cκ(R+)

with κ ≥ 1, then

|ψjk(x)| ≤ c 2jd

(1 + 2j dist(x,xjk))
κ , x ∈ Sd, j ≥ 0, k = 1, . . . , Nj,

where the constant c depends only on d, h and κ.

The following theorem shows, as foreshadowed in (5.2.2), that an appropriate

sum of products of needlets is exactly a filtered kernel. It is implicit in [51].

Theorem 5.2.9 (Needlets and filtered kernel). Let h be a needlet filter, see (5.1.1),

and let H be given by (5.2.3). For j ≥ 0 and 1 ≤ k ≤ Nj, let ψjk be needlets with

filter h and needlet quadrature (5.1.2). Then,

Nj∑
k=1

ψjk(x) ψjk(y) = v2j−1,h2(x · y), j ≥ 0, (5.2.8a)

J∑
j=0

Nj∑
k=1

ψjk(x) ψjk(y) = v2J−1,H(x · y), J ≥ 0. (5.2.8b)

For completeness we give a proof.

Proof. For j = 0, by (5.1.3a) and (2.6.5),

N0∑
k=1

ψ0k(x) ψ0k(y) =

N0∑
k=1

w0k =

∫
Sd

dσd(z) = 1 = v2−1,h2(x · y).

For j ≥ 1, using (5.1.3b) and the fact that the filter h has support [1/2, 2], we have

(noting h(2) = 0)

Nj∑
k=1

ψjk(x) ψjk(y) =
2j−1∑
`=0

2j−1∑
`′=0

h
( `

2j−1

)
h
( `′

2j−1

)
×

Nj∑
k=1

wjk Z(d, `)P
(d+1)
` (x · xjk) Z(d, `′)P

(d+1)
`′ (y · xjk).

(5.2.9)

Since {(wjk,xjk) : k = 1, . . . , Nj} is exact for polynomials of degree 2j+1 − 1, the

sum
∑Nj

k=1 over quadrature points in (5.2.9) is equal to the integral over Sd. Then
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by (2.2.1) and the definition of the filtered kernel, see (2.6.5), the equation (5.2.9)

gives

Nj∑
k=1

ψjk(x) ψjk(y) =
∞∑
`=0

h
( `

2j−1

)2

Z(d, `) P
(d+1)
` (x · y) = v2j−1,h2(x · y). (5.2.10)

This proves (5.2.8a).

For J ≥ 0, by (5.2.10) and (5.2.4), we now have, using h(0) = 0,

J∑
j=0

Nj∑
k=1

ψjk(x) ψjk(y) = 1 +
J∑
j=1

∞∑
`=1

h
( `

2j−1

)2

Z(d, `)P
(d+1)
` (x · y)

= 1 +
∞∑
`=1

(
J−1∑
j=0

h
( `

2j

)2
)
Z(d, `)P

(d+1)
` (x · y)

=
∞∑
`=0

H
( `

2J−1

)
Z(d, `)P

(d+1)
` (x · y).

This completes the proof.

Theorem 5.2.9 with (2.6.6) leads to the following equivalence of the filtered

approximation with filter H and the semidiscrete needlet approximation (5.1.4).

Theorem 5.2.10. Under the assumption of Theorem 5.2.9, for f ∈ L1(Sd) and

J ≥ 0,

V2J−1,H(f) =
J∑
j=0

Nj∑
k=1

(f, ψjk)L2(Sd) ψjk = V need
2J (f). (5.2.11)

Theorems 5.2.6 and 5.2.10 imply that the semidiscrete needlet approximation

has a near-best approximation error.

Theorem 5.2.11. For L ≥ 1, let V need
L (f), see (5.1.4), be the semidiscrete needlet

approximation with needlets ψjk, see (5.1.3), for filter smoothness κ ≥ d+ 1. Then

for f ∈ Lp(Sd) and L ≥ 1,∥∥f − V need
L (f)

∥∥
Lp(Sd)

≤ c EdL
2
e(f)p,

where the constant c depends only on d, the filter h and κ.

Proof. For L ≥ 1, let J := blog2(L)c, from which follows L/2 < 2J ≤ L, and hence

V need
L (f) = V need

2J (f). By Theorem 5.2.10, the approximation by the semidiscrete

needlets V need
2J (f) is equivalent to that by filtered approximation V2J−1,H(f). Then

the definition (5.1.4) of V need
L (f) and (5.2.7) of Theorem 5.2.6 together with The-

orem 5.2.10 and the non-increasing monotonicity of the sequence EL(f)p give∥∥f − V need
L (f)

∥∥
Lp(Sd)

=
∥∥f − V2J−1,H(f)

∥∥
Lp(Sd)

≤ cd,H,κ E2J−1(f)p ≤ cd,h,κ EdL
2
e(f)p.
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Theorem 5.2.11 and Lemma 5.2.5 imply a rate of convergence of the approxim-

ation error of V need
L (f) for f in a Sobolev space, as follows.

Theorem 5.2.12. Under the assumption of Theorem 5.2.11, we have for f ∈
Ws

p(Sd) with s > 0 and L ≥ 1,∥∥f − V need
L (f)

∥∥
Lp(Sd)

≤ c L−s ‖f‖Ws
p(Sd) ,

where the constant c depends only on d, p, s, h and κ.

5.3 Discrete needlet approximations

To implement the needlet approximation in a numerical computation, we need to

discretise the continuous inner product (f, ψjk)L2(Sd) in (5.1.4). We make use of

the quadrature rule in (5.1.5) to replace the continuous inner product by a discrete

version. In this section, we estimate the error by the discrete needlet approximation

for the Sobolev space Ws
p(Sd), 2 ≤ p ≤ ∞.

5.3.1 Discrete needlets and filtered hyperinterpolation

Let ψjk be needlets satisfying (5.1.3), and let QN := Q(N, `) := {(Wi,yi) : i =

1, . . . , N} be a discretisation quadrature rule that is exact for polynomials of degree

up to some `, yet to be fixed. Applying the quadrature rule QN to the needlet coeffi-

cient (f, ψjk)L2(Sd) =
∫
Sd f(y)ψjk(y)dσd(y), we obtain the discrete needlet coefficient

(f, ψjk)QN =
N∑
i=1

Wi f(yi) ψjk(yi). (5.3.1)

This turns the semidiscrete needlet approximation (5.1.4) into the (fully) discrete

needlet approximation:

V need
L,N (f) =

∑
2j≤L

Nj∑
k=1

(f, ψjk)QN ψjk (5.3.2)

In a similar way to the semidiscrete case, cf. (5.2.11) of Theorem 5.2.10, the

discrete needlet approximation (5.3.2) is equivalent to filtered hyperinterpolation,

which we now introduce.

The filtered hyperinterpolation approximation with a filtered kernel vT,g in (2.6.5)

and discretisation quadrature QN in (5.1.5) is

V d
T,g,N(f ; x) := V d

T,g,N(f ; x) :=
(
f, vT,g(· · x)

)
QN

:=
N∑
i=1

Wi f(yi) vT,g(yi · x), T ∈ R+,

(5.3.3)
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as named by Sloan and Womersley [68]; see also [41] and [35].

Theorem 5.3.1. Let h be a needlet filter given by (5.1.1) and let the filter H be

given by (5.2.3). For f ∈ C(Sd) and J ≥ 0,

V d
2J−1,H,N(f) =

J∑
j=0

Nj∑
k=1

(f, ψjk)QN ψjk = V need
2J ,N (f). (5.3.4)

Remark. Note that in Theorem 5.3.1 we do not yet require the number N of nodes

of the discretisation quadrature to depend on the degree 2J of the discrete needlet

approximation.

Proof. Applying (5.2.8b) of Theorem 5.2.9 to v2J−1,H(yi · x), cf. (5.3.3), and using

(5.3.1), we have

V d
2J−1,H,N(f ; x) =

N∑
i=1

Wi f(yi)
J∑
j=0

Nj∑
k=1

ψjk(yi)ψjk(x)

=
J∑
j=0

Nj∑
k=1

(
N∑
i=1

Wi f(yi) ψjk(yi)

)
ψjk(x) =

J∑
j=0

Nj∑
k=1

(f, ψjk)QN ψjk(x),

which gives (5.3.4).

5.3.2 Error for filtered hyperinterpolation

By Theorem 5.3.1, the discrete needlet approximation, if regarded as a function over

the entire sphere, reduces to the filtered hyperinterpolation approximation. In this

section, we estimate the approximation error of the filtered hyperinterpolation or

discrete needlet approximation for f in Sobolev spaces Ws
p(Sd) with 2 ≤ p ≤ ∞ and

s > d/p.

By Corollary 5.2.7, the filtered approximation VL,H(f) has the following ap-

proximation error for f ∈Ws
p(Sd) with 1 ≤ p ≤ ∞ and s > 0:

‖f − VL,H(f)‖Lp(Sd) ≤ c L−s ‖f‖Ws
p(Sd), f ∈Ws

p(Sd), (5.3.5)

where the constant c depends only on d, s, filter H and κ. We now want error

bounds for V d
L,H,N .

For that discrete version of the filtered approximation, Le Gia and Mhaskar [41],

and Sloan and Womersley [68] obtained the truncation error (5.3.5) for f ∈Ws
∞(Sd)

with s > 0, as stated in Theorem 5.3.2 below. Given L ∈ Z+, let

QN := Q(N, 3L− 1) := {(Wi,yi) : i = 1, 2, . . . , N} (5.3.6)

be a discretisation quadrature exact for polynomials of degree up to 3L− 1.
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Theorem 5.3.2 ([41, 68]). Given a needlet filter h, let V d
L,H,N be the filtered hyper-

interpolation in (5.3.3) with QN given by (5.3.6) and filter H given by (5.2.3) and

satisfying H ∈ Cκ(R+) for κ ≥ d+ 1. Then, for f ∈Ws
∞(Sd) with s ≥ 0,∥∥f − V d

L,H,N(f)
∥∥
L∞(Sd)

≤ c L−s ‖f‖Ws
∞(Sd),

where the constant c depends only on d, s, H and κ.

The proof of Theorem 5.3.2 uses the same argument as the proof of (5.3.5),

that is, it uses the fact that V d
L,H,N is bounded on C(Sd) and is thus a near-best

approximation operator for f ∈ C(Sd), and that the upper bound of the error of best

approximation for f ∈ Ws
∞(Sd) has convergence order L−s, see Lemma 5.2.5. This

strategy, however, is less effective for p <∞ since we do not have the boundedness

of V d
L,H,N in Lp(Sd), because point evaluation is not a bounded linear functional in

Lp(Sd).
In the following theorem, we make use of the localisation of the filtered hyperint-

erpolation approximation to prove that the truncation error of V d
L,H,N for f ∈ Hs(Sd)

with s > d/2 is O
(
L−(s− d

2
−ε)
)

for any given 0 < ε < s− d/2.

Theorem 5.3.3. Given a needlet filter h, let V d
L,H,N be the filtered hyperinterpolation

approximation in (5.3.3) with QN given by (5.3.6) and filter H given by (5.2.3) and

satisfying H ∈ Cκ(R+) for κ ≥ d+ 1, and let s > d/2. Then, given 0 < ε < s−d/2,

for f ∈ Hs(Sd), ∥∥f − V d
L,H,N(f)

∥∥
L2(Sd)

≤ c L−(s− d
2
−ε) ‖f‖Hs(Sd),

where the constant c depends only on d, s, ε, H and κ.

Theorem 5.3.3 will be proved in Section 5.5.2.

Remark. We note that [47, Theorems 3.1 and 3.3] will imply a result of similar

nature to Theorem 5.3.3 but here we offer a more direct proof.

An interpolation argument, see e.g. [75, Chapter 1], with Theorems 5.3.2 and

5.3.3 taken together, then gives the following approximation error of V d
L,H,N(f) for

f ∈Ws
p(Sd) with p ∈ [2,∞] and s > d/p.

Corollary 5.3.4. Let d ≥ 2, 2 ≤ p ≤ ∞ and s > d/p, and let V d
L,H,N be the

filtered hyperinterpolation approximation in (5.3.3) with QN given by (5.3.6) and

filter H given by (5.2.3) and satisfying H ∈ Cκ(R+) for κ ≥ d + 1. Then, given

0 < ε < s− d/p, for f ∈Ws
p(Sd) and L ≥ 1,∥∥f − V d

L,H,N(f)
∥∥
Lp(Sd)

≤ c L−(s− d
p
−ε) ‖f‖Ws

p(Sd),

where the constant c depends only on d, p, s, ε, H and κ.
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Corollary 5.3.4 with Theorem 5.3.1 gives the errors for the discrete needlet

approximation of f ∈Ws
p(Sd), 2 ≤ p ≤ ∞, as follows.

Theorem 5.3.5 (Error by discrete needlets for Ws
p(Sd)). Let d ≥ 2, 2 ≤ p ≤ ∞

and s > d/p, and let V need
L,N be the discrete needlet approximation given by (5.1.6)

with needlet filter h ∈ Cκ(R+) and κ ≥ d+ 1 and with discretisation quadrature QN
in (5.3.6). Then, given 0 < ε < s− d/p, for f ∈Ws

p(Sd) and L ≥ 1,∥∥f − V need
L,N (f)

∥∥
Lp(Sd)

≤ c L−(s− d
p
−ε) ‖f‖Ws

p(Sd),

where the constant c depends only on d, p, s, ε, h and κ.

5.3.3 Discrete needlets and discrete wavelets

Let QN be a discretisation quadrature rule given by (5.1.5). The discrete needlet

approximation V need
L,N in (5.1.6) can be written, for f ∈ C(Sd) and x ∈ Sd, as

V need
L,N (f ; x) =

∑
2j≤L

UjN(f ; x), (5.3.7)

where UjN is the level-j contribution of the discrete needlet approximation defined

by

UjN(f ; x) :=

Nj∑
k=1

(f, ψjk)QN ψjk(x), f ∈ C(Sd),x ∈ Sd. (5.3.8)

Using (5.2.8a) then gives

UjN(f ; x) =
(
f,

Nj∑
k=1

ψjk(·)ψjk(x)
)
QN

=
(
f, v2j−1,h2(x · ·)

)
QN

= V d
2j−1,h2,N(f ; x),

(5.3.9)

where the filtered kernel v2j−1,h2(x · y) is given by (2.6.5).

Using (5.2.8b) and (5.3.9) with (2.6.6) gives the following representation of

filtered hyperinterpolation in terms of UjN .

Theorem 5.3.6. Let d ≥ 2 and let UjN(f) be the level-j contribution of the discrete

needlet approximation in (5.3.7) and let H be the filter given by (5.2.3). Then for

f ∈ C(Sd) and J ≥ 0,

V d
2J−1,H,N(f) =

J∑
j=0

UjN(f).

Theorems 5.3.1 and 5.3.6 with (5.3.3) and (5.3.9) imply the following repres-

entation for V need
L,N .
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Corollary 5.3.7. Let h be a needlet filter given by (5.1.1) and let the filter H be

given by (5.2.3). For f ∈ C(Sd) and L ≥ 1,

V need
L,N (f ; x) =

∑
2j≤L

Nj∑
i=1

Wi f(yi) v2j−1,h2(yi · x) =
(
f, v2J−1,H(· · x)

)
QN
, (5.3.10)

where J := blog2(L)c.

The theorem below shows that the Lp-norm of UjN(f) decays to zero expo-

nentially with respect to order j. This means that the different levels of a discrete

needlet approximation have different contributions and UjN(f) thus forms a multi-

level decomposition. We can hence regard UjN(f) as a discrete wavelet transform.

Theorem 5.3.8. Let d ≥ 2 and let UjN be the level-j contribution of the discrete

needlet approximation in (5.3.7) and let the needlet filter h satisfy h ∈ Cκ(R+) and

κ ≥ d+ 1, and let 2 ≤ p ≤ ∞ and s > d/p. Then for 0 < ε < s− d/p, f ∈Ws
p(Sd)

and j ≥ 1, ∥∥UjN(f)
∥∥
Lp(Sd)

≤ c 2−j(s−
d
p
−ε) ‖f‖Ws

p(Sd),

where the constant c depends only on d, p, s, ε, h and κ.

Remark. When p =∞, ε can be replaced by zero.

Proof of Theorem 5.3.8. Theorem 5.3.6 shows that UjN(f) is the difference of two

filtered hyperinterpolation approximations: for j ≥ 1,

UjN(f) = V d
2j−1,H,N(f)− V d

2j−2,H,N(f).

This with Corollary 5.3.4 gives∥∥UjN(f)
∥∥
Lp(Sd)

≤
∥∥V d

2j−1,H,N(f)− f
∥∥
Lp(Sd)

+
∥∥f − V d

2j−2,H,N(f)
∥∥
Lp(Sd)

≤ c 2−j(s−
d
p
−ε) ‖f‖Ws

p(Sd),

where the constant c depends only on d, p, s, ε, h and κ.

5.4 Numerical examples

In this section we give a computational strategy for discrete needlet approximation

and show the results of some numerical experiments. For the semidiscrete needlet

case the approximation is not computable, but we are able to infer the error in-

directly by using the Fourier-Laplace series of the test function to evaluate the L2

error. The last part gives an example of a localised discrete needlet approximation

with high accuracy over a local region.
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5.4.1 Algorithm

Algorithm 5.4.1. Consider computing the discrete needlet approximation V need
L,N (f ; x′i)

of order J := blog2(L)c with needlet filter h at a set of points {x′i : i = 1, . . . ,M}.
The needlet quadrature rules {(wjk,xjk) : k = 1, . . . , Nj} are exact for polynomials

of degree 2j+1 − 1. The major steps are analysis and synthesis.

1. Analysis: Compute the discrete needlet coefficients (f, ψjk)QN , k = 1, . . . , Nj, j =

0, . . . , J using a discretisation quadrature rule QN = Q(N, 3L− 1) = {(Wi,yi) : i =

1, . . . , N}.
2. Synthesis: Compute the discrete needlet approximation

∑J
j=0

∑Nj
k=1(f, ψjk)QN ψjk(x

′
i),

i = 1, . . . ,M .

Needlet filters. Here ψjk(x
′
i) is computed by (5.1.3b) where the normalised Le-

gendre polynomial P
(d+1)
` (t) is computed by the three-term recurrence formula, see

[54, § 18.9(i)] and the needlet filter may be computed as follows. For construction

of other needlet filters, see e.g. [43, 51].

Given κ ≥ 1, let p(t) be a polynomial of degree 2κ+ 2 of the form

p(t) :=
2κ+2∑
k=κ+1

ak(1− t)k, t ∈ [0, 1], (5.4.1)

where the coefficients ak are uniquely determined real numbers satisfying p(0) = 1

and the ith derivatives of p(t) at t = 0 for 1 ≤ i ≤ κ+ 1 are zero. Clearly, p(1) = 0

and all the jth derivatives of p(t), 1 ≤ j ≤ κ, at t = 1 are zero. Then it can be

shown that

h(t) :=


p(t− 1), 1 ≤ t ≤ 2,√

1− [p(2t− 1)]2, 1/2 ≤ t ≤ 1,

0, elsewhere

is a filter h satisfying (5.1.1). This section uses κ = 5, where the coefficients in (5.4.1)

are: a6 = 924, a7 = −4752, a8 = 10395, a9 = −12320, a10 = 8316, a11 = −3024,

a12 = 462, giving the filter h illustrated in Figure 5.1.

Figure 5.2 shows an order-6 needlet with the filter given in Figure 5.1. We see

that it is very localised.

Quadrature rules. We use symmetric spherical designs for integration on S2, as

recently developed by Womersley [80, 81], for both the needlet quadrature rule and

the discretisation quadrature rule. Let t be a non-negative integer. A symmetric

(if xi is a node so is −xi) spherical t-design is a quadrature rule with equal weights

and exact for all polynomials of degree at most t. In these experiments the rules

have 2
⌊
t2+t+4

4

⌋
≈ t2/2 nodes.
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0.8

1

Figure 5.1: Needlet filter h ∈ C5(R+) Figure 5.2: An order-6 needlet with a C5-
needlet filter

Cost of algorithm. Using a symmetric spherical t-design, a needlet quadrature

rule for level j has Nj ≈ 22j+1 nodes, giving a total of
∑J

j=0 Nj ≈ 8
3
× 22J nodes

for all J levels as the symmetric spherical t-designs are not nested. Similarly, a

discretisation quadrature rule exact up to degree 3 × 2J − 1 has N ≈ 9
2
× 22J

nodes. Thus the analysis step to evaluate the needlet coefficients requires 8
3
× 22JN

evaluations of f . The synthesis step only involves a weighted sum of the needlets

evaluated at M (possibly very large) points. At high levels the number of needlets

is large, for example when J = 6, L = 64, NJ = 8130 and N = 18338.

5.4.2 Needlet approximations for the entire sphere

This section illustrates the discrete needlet approximation of a function f that is a

linear combination of scaled Wendland radial basis functions on S2, see [79]. The

advantage of this choice is that the Wendland functions have varying smoothness,

and belong to known Sobolev spaces.

Let (r)+ := max{r, 0} for r ∈ R. The original Wendland functions are [79]

φ̃k(r) :=



(1− r)2
+, k = 0,

(1− r)4
+(4r + 1), k = 1,

(1− r)6
+(35r2 + 18r + 3)/3, k = 2,

(1− r)8
+(32r3 + 25r2 + 8r + 1), k = 3,

(1− r)10
+ (429r4 + 450r3 + 210r2 + 50r + 5)/5, k = 4.
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Figure 5.3: The test function f2

The normalised (equal area) Wendland functions as defined in [17] are

φk(r) := φ̃k

( r
δk

)
, δk :=

(3k + 3)Γ(k + 1
2
)

2 Γ(k + 1)
, k ≥ 0.

The Wendland functions scaled this way have the property of converging pointwise

to a Gaussian as k → ∞, see Chernih et al. [17]. Thus as k increases the main

change is to the smoothness of f . We write φ(r) := φk(r) for brevity if no confusion

arises.

Let z1 := (1, 0, 0), z2 := (−1, 0, 0), z3 := (0, 1, 0), z4 := (0,−1, 0), z5 := (0, 0, 1),

z6 := (0, 0,−1) be six points on S2 and define [42]

f(x) := fk(x) :=
6∑
i=1

φk(|zi − x|), k ≥ 0, (5.4.2)

where | · | is the Euclidean distance.

Narcowich and Ward [53] and Le Gia, Sloan and Wendland [42] proved that

fk ∈ Hk+ 3
2 (S2). Figure 5.3 shows the picture of f2, which belongs to H 7

2 (S2). The

function fk has limited smoothness at the centres zi and at the boundary of each

cap with centre zi. These features make fk relatively difficult to approximate in

these regions, especially for small k.

L2 approximation error. We show the L2 errors when using V need
L and by V need

L,N .

For V need
L,N (f) we compute its L2 error by discretising the squared L2-norm by a

quadrature rule. We cannot compute the L2 error for V need
L (f) in this way as we

do not have access to exact integrals for the inner products. As the test function in

(5.4.2) is a linear combination of Wendland functions, we are able to approximate

the L2 error of V need
L (f) by truncating the Fourier-Laplace expansion and using the

known Fourier coefficients of Wendland functions.



110 5.4 Numerical examples

We make use of the Fourier-Laplace coefficients of f to compute the L2-error

of the semidiscrete needlet approximation over the entire sphere, as follows. By

Theorem 5.2.10 and the definition of the filtered approximation, see (2.6.5) and

(2.6.6), and the addition theorem, see (2.1.8), the Fourier coefficients of V need
L (f)

are H(`/L) f̂`m. Then the Parseval’s identity gives

∥∥f − V need
L (f)

∥∥2

L2(S2)
=

∞∑
`=L+1

2`+1∑
m=1

(
1−H

(
`
L

))2 |f̂`m|2. (5.4.3)

We expand φ(
√

2− 2t) in terms of P`(t):

φ(
√

2− 2t) =
∞∑
`=0

φ̂` (2`+ 1)P`(t),

where P`(t) is the Legendre polynomial of degree ` and

φ̂` :=
1

2

∫ 1

−1

φ(
√

2− 2t)P`(t) dt, ` ≥ 0. (5.4.4)

Using the addition theorem again,

φ(|zi − x|) = φ
(√

2− 2 zi · x
)

=
∞∑
`=0

φ̂` (2`+ 1)P`(zi · x)

=
∞∑
`=0

2`+1∑
m=1

φ̂` Y`,m(zi)Y`,m(x),

which with (5.4.2) gives

f̂`m = (f, Y`,m)L2(Sd) = φ̂`

6∑
i=1

Y`,m(zi).

This with (5.4.3) and the addition theorem together gives

∥∥f − V need
L (f)

∥∥2

L2(Sd)
=

∞∑
`=L+1

2`+1∑
m=1

(
1−H

(
`
L

))2 ∣∣φ̂`∣∣2
(

6∑
i=1

Y`,m(zi)

)2

=
∞∑

`=L+1

(
1−H

(
`
L

))2 ∣∣φ̂`∣∣2 6∑
i=1

6∑
i=1

(2`+ 1)P`(zi · zj), (5.4.5)

where we use the Gauss-Legendre rule to compute the one-dimensional integral

(5.4.4) for φ̂` to the desired accuracy.

Figure 5.4a shows the L2-error of the semidiscrete needlet approximation V need
L (fk)

for k = 0, 1, 2, 3, 4, where we used the filter h of Figure 5.1, with H then given by

(5.2.4), and the degree of semidiscrete needlet approximation is L = 2J , J = 1, . . . , 6,
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Degree L

2 4 8 16 32 64

L
2
 n

o
rm

 e
rr

o
rs

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

k = 0, s = 1.5

2.3e-01 L
-1.9

k = 1, s = 2.5

6.8e-01 L
-3.9

k = 2, s = 3.5

2.7e+00 L
-5.8

k = 3, s = 4.5

1.4e+01 L
-7.6

k = 4, s = 5.5

2.8e+01 L
-8.8

(a) Semidiscrete
Degree L

2 4 8 16 32 64
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

k = 0, s = 1.5

8.7e-01 L
-1.9

k = 1, s = 2.5

9.1e+00 L
-3.8

k = 2, s = 3.5

1.2e+02 L
-5.7

k = 3, s = 4.5

2.0e+03 L
-7.5

k = 4, s = 5.5

3.5e+04 L
-9.3

(b) Fully discrete

Figure 5.4: L2-errors for needlet approximations of test functions fk using Wendland
functions of different smoothness k

and the truncation degree ` in (5.4.5) is taken as high as 500. The slight fluctuation

of the L2-errors of the semidiscrete needlet approximation for f4 is partly due to the

truncation error for the Fourier coefficients of φ4.

Either (5.3.10) and (2.6.5), or the needlet decomposition (5.1.6) can be used

to compute the fully discrete needlet approximation V need
L,N (f). Some discussion of

efficient implementation can be found in [35]. We then approximate the L2 error by

a quadrature rule
{

(w̃i,xi) : i = 1, . . . , Ñ
}

, as follows.

∥∥V need
L,N (f)− f

∥∥2

L2(S2)
=

∫
S2

∣∣V need
L,N (f ; x)− f(x)

∣∣2 dσd(x)

≈
Ñ∑
i=1

w̃i
(
V need
L,N (f ; xi)− f(xi)

)2
. (5.4.6)

Figure 5.4b shows the corresponding L2-error for the discrete needlet approxim-

ation V need
L,N (fk), where we used the same needlet filter, and used symmetric spherical

designs for both needlets and discretisation, and the degree of discrete needlet ap-

proximation is L = 2J , J = 1, . . . , 6. We used a symmetric spherical 275-design

(with Ñ = 37952 nodes and equal weights w̃i = 1/Ñ) to approximate the integral

in (5.4.6).

For each k, the L2-errors of the semidiscrete and fully discrete needlet ap-

proximations converge at almost the same order (with respect to degree L). This

suggests that the theoretical result for the discrete needlet approximation may be

improved. The figure also shows that the convergence order becomes higher as the

smoothness of f increases, which is consistent with the theory.

v 

* 
* 
II' 

0 
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Figure 5.5: Centres of needlets at
level 4 (larger points) and level 6
(smaller points) for a localised discrete
needlet approximation

Figure 5.6: Absolute errors of a loc-
alised discrete needlet approximation
for f2 with all needlets at levels ≤ 4
and localised needlets at levels 5, 6

5.4.3 Local approximations by discrete needlets

In the following example, we show the approximation error using discrete needlets

for f2 given by (5.4.2), using all needlets at low levels and needlets with centres in

a small region at high levels.

In general, let X be a compact set of Sd. We define the localised discrete needlet

approximation for f ∈ C(Sd) by

Ṽ need
J0,J,N

(X; f ; x) :=



J0∑
j=0

UjN(f ; x), x ∈ Sd\X,

J0∑
j=0

UjN(f ; x) +
∑

xjk∈X
J0+1≤j≤J

(f, ψjk)QN ψjk(x), x ∈ X,

where UjN(f ; x), given by (5.3.8), is the level-j contribution of the discrete needlet

approximation. The idea is that on the compact set X we seek a more refined

needlet approximation — that is, we “zoom-in” on the set X.

Let X := C (z3, r), the spherical cap with centre z3 := (0, 1, 0) and radius r.

Figure 5.6 shows the pointwise absolute error of the localised discrete needlet

approximation

Ṽ need
4,6,N(C (z3, π/6) ; f2; x). In the exterior of the cap C (z3, π/6), the approximation

used needlets up to level 4, with the largest absolute error, about 1.2× 10−4, at the

centres zi, i 6= 3. In the cap, the approximation is a combination of needlets at the

low levels 0 to 4 with those at high levels 5 and 6.
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We observe that the localised discrete needlet approximation has good approx-

imation near the centre of the local region but with less computational cost since

the levels 5 and 6 used only a fraction of the full set of needlets, approximately

|C (z3, r) |/|S2| = (1− cos(r))/2 (about 6.7% when r = π/6). This localisation is an

efficient way of constructing a discrete needlet approximation for a specific region.

Figure 5.5 shows the centres of the needlets for level 4 (larger points) and

those in the cap C (z3, π/6) for level 6 (smaller points) of the localised discrete

needlet approximation Ṽ need
4,6,N(C (z3, π/6) ; f2; x). The smaller points illustrate where

the high levels of the localised discrete needlet approximation focused. At level 6,

the needlet quadrature used the symmetric spherical 63-design, which has totally

8130 nodes over the sphere and 544 nodes in the cap. The localised discrete needlet

approximation at this level used only needlets with centres at these 544 nodes for

the local region.

5.5 Proofs

In this section we give the proofs for Sections 5.2 and 5.3.

5.5.1 Proofs for Section 5.2

In the proof of Theorem 5.2.2 we use the following lemma to bound Ak(T, `), where

Ak(T, `) :=


g
( `
T

)
− g
(`+ 1

T

)
, k = 1,

Ak−1(T, `)

2`+ 2r + k
− Ak−1(T, `+ 1)

2(`+ 1) + 2r + k
, k = 2, 3, . . .

(5.5.1)

Note that Ak(T, `) vanishes for ` ≤ daT e − k, because of the assumed constancy of

g on [0, a]. This is a crucial property for establishing the following lemma.

Lemma 5.5.1. Let g satisfy the condition of Theorem 5.2.2 with T1 = daT e and

T2 = bbT c, where b is the largest member of supp g, and with T sufficiently large

that 0 ≤ T1 − κ ≤ T2. Let Ak(T, `) be defined by (5.5.1). Then for an arbitrary

positive integer k ≤ κ,

Ak(T, `) = O
(
T−(2k−1)

)
, T1 − k ≤ ` ≤ T2, (5.5.2)

where the constant in the big O depends only on d, k, g and κ.

Proof. For a sequence u`, let
−→
∆1
` u` :=

−→
∆1
`(u`) := u` − u`+1 denote the first order

forward difference of u`, and for i ≥ 2, let the ith order forward difference be
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defined recursively by
−→
∆ i
`(u`) :=

−→
∆1
`

(−→
∆ i−1
` (u`)

)
. We now prove the estimate in

(5.5.2), making use of the obvious identity

−→
∆1
` (u` ν`) = (

−→
∆1
` u`) ν` + u`+1 (

−→
∆1
` ν`). (5.5.3)

By (5.5.1), for k ≥ 2

Ak(T, `) =

(
Ak−1(T, `)

2`+ 2r + k
− Ak−1(T, `)

2(`+ 1) + 2r + k

)
+

(
Ak−1(T, `)

2(`+ 1) + 2r + k
− Ak−1(T, `+ 1)

2(`+ 1) + 2r + k

)
=

1

2`+ 2r + k + 2

(
2

2`+ 2r + k
+
−→
∆1
`

)
Ak−1(T, `) =: δk(`)

(
Ak−1(T, `)

)
.

In addition, let δ1(`) :=
−→
∆1
` . Then for k ≥ 1,

Ak(T, `) = δk(`) · · · δ1(`)

(
g
( `
T

))
. (5.5.4)

By induction using (5.5.3) and (5.5.4), Ak with k ≥ 1 can be written as

Ak(T, `) =
k∑
i=1

R−(2k−1−i)(`)
−→
∆ i
` g
( `
T

)
, (5.5.5)

where R−j(`), k−1 ≤ j ≤ 2k−2, is a rational function of ` with degree∗ deg(R−j) ≤
−j and hence

R−j(`) = Od,k
(
`−j
)
. (5.5.6)

For g ∈ Cκ(R+) and 0 ≤ i ≤ k ≤ κ, we have by induction the following integral

representation of the finite difference
−→
∆ i
` g( `

T
):

−→
∆ i
` g
( `
T

)
=

∫ 1
T

0

du1 · · ·
∫ 1

T

0

g(i)

(
`

T
+ u1 + · · ·+ ui

)
dui.

Since g(i) is bounded, for T1−κ ≤ ` ≤ T2,
∣∣∣−→∆ i

` g
(
`
T

)∣∣∣ ≤ ci,g T
−i. This together with

(5.5.5) and (5.5.6) gives (5.5.2), on noting that ` � T in (5.5.2).

Proof of Theorem 5.2.2. In this proof, let r := (d−2)/2, T1 := daT e and T2 := bbT c.
We only need to consider T sufficiently large to ensure that 0 ≤ T1 − κ ≤ T2. Let

∗Let R(t) be a rational polynomial taking the form R(t) = p(t)/q(t), where p(t) and q(t) are
polynomials with q 6= 0. The degree of R(t) is deg(R) := deg(p)− deg(q).
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P
(α,β)
` (t), t ∈ [−1, 1], be the Jacobi polynomial of degree ` for α, β > −1. From [70,

Eq. 4.5.3, p. 71],

∑̀
j=0

(2j + α + β + 1) Γ(j + α + β + 1)

Γ(j + β + 1)
P

(α,β)
j (t) =

Γ(`+ α + β + 2)

Γ(`+ β + 1)
P

(α+1,β)
` (t),

(5.5.7)

and by [70, Eq. 4.1.1, p. 58], P
(α,β)
` (1) =

(
`+α
`

)
. Then we find using (2.1.3) and

(2.1.6) that

vT,g(cos θ) =
∞∑
`=0

g
( `
T

)
Z(d, `) P

(d+1)
` (cos θ)

=
Γ(d

2
)

Γ(d)

∞∑
`=0

g
( `
T

) (2`+ 2r + 1)Γ(`+ 2r + 1)

Γ(`+ r + 1)
P

(r,r)
` (cos θ)

=
Γ(d

2
)

Γ(d)

T2∑
`=T1−κ

Aκ(T, `)
Γ(`+ 2r + κ+ 1)

Γ(`+ r + 1)
P

(r+κ,r)
` (cos θ), (5.5.8)

where the last equality uses (5.5.7) and summation by parts κ times, and Aκ(T, `)

is given by (5.5.1).

From [70, Eq. 7.32.5, Eq. 4.1.3] or [19, Eq. B.1.7, p. 416], for arbitrary α, β >

−1, ∣∣P (α,β)
` (cos θ)

∣∣ ≤ cα,β `
− 1

2

(`−1 + θ)α+ 1
2 (`−1 + π − θ)β+ 1

2

, 0 ≤ θ ≤ π. (5.5.9)

Applying Lemma 5.5.1 with (5.5.8) and (5.5.9) gives (bearing in mind that

r = (d− 2)/2)

|vT,g(cos θ)| ≤ cd,κ

T2∑
`=T1−κ

|Aκ(T, `)| `r+κ ×
`−

1
2

(`−1 + θ)r+κ+ 1
2 (`−1 + π − θ)r+ 1

2

≤ cd,g,κ

T2∑
`=T1−κ

T−(2κ−1) `
d
2

+κ− 3
2

(`−1 + θ)κ+ d−1
2 (`−1 + π − θ) d−1

2

.

From this and T1 � T � T2 together with T2 − T1 � T , for θ ∈ [0, π/2] we have

|vT,g(cos θ)| ≤ cd,g,κ

T2∑
`=T1−κ

T−(2κ−1) T
d
2

+κ− 3
2

(T−1 + θ)κ+ d−1
2

≤ cd,g,κ
T d

(1 + Tθ)κ+ d−1
2

;

while for θ ∈ [π/2, π],

|vT,g(cos θ)| ≤ cd,g,κ

T2∑
`=T1−κ

T−(2κ−1)T d+κ−2 ≤ cd,g,κ T
d−κ ≤ cd,g,κ

T d

(1 + Tθ)κ
.

The estimates for the above two cases imply (5.2.6), thus completing the proof.



116 5.5 Proofs

Proof of Theorem 5.2.3. We only need to prove the result for T ≥ 1. Using the

property of a zonal kernel, for x ∈ Sd,∥∥vT,g(x · ·)∥∥L1(Sd)
=

∫
Sd

∣∣vT,g(x · y)
∣∣ dσd(y) =

|Sd−1|
|Sd|

∫ π

0

∣∣vT,g(cos θ)
∣∣(sin θ)d−1 dθ

=
|Sd−1|
|Sd|

(∫ 1/T

0

+

∫ π

1/T

)∣∣vT,g(cos θ)
∣∣(sin θ)d−1 dθ. (5.5.10)

By (5.2.6), ∣∣vT,g(cos θ)
∣∣ ≤ { c T d, 0 ≤ θ < 1/T,

c T d−κ θ−κ 1/T ≤ θ ≤ π.

where the constants depend only on d, g and κ. This estimate with (5.5.10) gives

∥∥vT,g(x · ·)∥∥L1(Sd)
≤ cd,g,κ

(∫ 1/T

0

T d θd−1 dθ +

∫ π

1/T

T d−κ θd−κ−1 dθ

)
,

where since κ ≥ d + 1, both integrals are bounded independently of T , thus com-

pleting the proof.

Proof of Theorem 5.2.6. The strategy for proving (5.2.7) of Theorem 5.2.6 is similar

to that in [64]. Since H(t) = 1 for t ∈ [0, 1], we have

VL,H(p; x) =
(
p, vL,H(x · ·)

)
L2(Sd)

= p(x),

and hence, from Corollary 5.2.4,∥∥f − VL,H(f)
∥∥
Lp(Sd)

= ‖f − p− VL,H(f − p)‖Lp(Sd)

≤
(
1 +

∥∥VL,H∥∥Lp→Lp

)
‖f − p‖Lp(Sd)

≤ cd,H ‖f − p‖Lp(Sd),

which holds for all p ∈ PL(Sd), thus completing the proof.

5.5.2 Proofs for Section 5.3

The following lemma, from [62, Lemma 1], [32, Lemma 2] and [10, Lemma 3.2],

states that if a positive quadrature rule on Sd is exact for polynomials of degree up

to 2L then the sum of the weights corresponding to quadrature points in a cap of

radius at least π/(20L) is bounded by a constant multiple of the area of the cap.

Lemma 5.5.2. Let {(Wi,yi) : i = 1, 2, . . . , N} be a positive quadrature rule exact

for the polynomials of degree up to 2L. Then, given θ ∈ [ π
20L

, π], for all x ∈ Sd,∑
1≤i≤N

yi∈C(x,θ)

Wi ≤ cd |C (x, θ) |.



Chapter 5 Fully discrete needlet approximations on the sphere 117

Given s′ > 0, let A`, ` ≥ 1, be a real sequence satisfying

c̃d,s′ :=
∑
`≥1

|A`| `2s′+d−1 < +∞. (5.5.11)

Lemma 5.5.3. Given L ≥ 0, let {(Wi,yi) : i = 1, 2, . . . , N} be a positive quadrature

rule exact for the polynomials of degree up to 2L. Let g be a filter in Cκ(R+) with

1 ≤ κ < ∞ such that g(t) is a constant in [0, a] for some a > 0, and let A` satisfy

(5.5.11) with s′ > 0. Then,

IN :=
∣∣∣ N∑
i=1

N∑
i′=1

WiWi′

∞∑
`=L+1

A` Z(d, `) P
(d+1)
` (yi · yi′) vL,g(yi · yi′)

∣∣∣ = O
(
L−2s′

)
,

where the constant in the big O term depends only on d, s′, g and κ.

Proof. From Theorem 5.2.2,

IN ≤
N∑
i=1

N∑
i′=1

WiWi′

∞∑
`=L+1

|A`| Z(d, `)
∣∣vL,g(yi · yi′)∣∣

≤
∞∑

`=L+1

|A`| `2s′+d−1L−2s′
N∑
i=1

N∑
i′=1

WiWi′
cd,g,κ L

d

(1 + L dist(yi,yi′))
κ

≤ cd,g,κ c̃d,s′ L
−2s′

N∑
i=1

N∑
i′=1

LdWiWi′

(1 + L dist(yi,yi′))
κ =: cd,g,κ c̃d,s′L

−2s′I∗N , (5.5.12)

where c̃d,s′ is given by (5.5.11) and we used (2.1.7) and (2.1.3) in the first and

second inequalities respectively. We now show that the double sum I∗N is bounded

independently of N , i.e. I∗N = Od,κ (1). To show this, we split I∗N into two sums:

I∗N =
N∑
i=1

Wi

 ∑
1≤i′≤N

dist(yi′ ,yi)≤
π

20L

+
∑

1≤i′≤N
π

20L
<dist(yi′ ,yi)≤π

 LdWi′

(1 + L dist(yi′ ,yi))
κ =: I∗N,1 + I∗N,2,

(5.5.13)

and prove that both of I∗N,1 and I∗N,2 are bounded. For I∗N,1, using Lemma 5.5.2,

I∗N,1 ≤ cκ

N∑
i=1

Wi

∑
1≤i′≤N

yi′∈C(yi,
π

20L)

Wi′ L
d ≤ cd,κ

N∑
i=1

Wi

∣∣C (yi, π
20L

)∣∣ Ld

≤ cd,κ

N∑
i=1

Wi L
−d Ld = cd,κ,

where the third inequality used (2.1.2). For I∗N,2 in (5.5.13) we use

I∗N,2 ≤ Ld−κ
N∑
i=1

Wi

∑
1≤i′≤N

π
20L

<dist(yi′ ,yi)≤π

Wi′ dist(yi′ ,yi)
−κ =: Ld−κ

N∑
i=1

Wi fi. (5.5.14)
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We follow the argument of Brauchart and Hesse [10, p. 57–59] to estimate fi. For

1 ≤ i ≤ N , let

Fi(θ) :=
∑

1≤i′≤N
π

20L
<dist(yi′ ,yi)≤θ

Wi′ , θ ∈ [ π
20L

, π]. (5.5.15)

Then Fi(θ) is a non-decreasing function of θ on [ π
20L

, π] satisfying Fi(π/20L) = 0

and, by
∑N

i′=1Wi′ = 1, Fi(π) ≤ 1. Hence fi can be written as a Stieltjes integral,

fi =
∑

1≤i′≤N
π

20L
<dist(yi′ ,yi)≤π

Wi′ dist(yi′ ,yi)
−κ =

∫ π

π
20L

θ−κ dFi(θ).

By integration by parts,

fi = Fi(π)π−κ + κ

∫ π

π
20L

Fi(θ)θ
−κ−1 dθ. (5.5.16)

Applying Lemma 5.5.2 to Fi(θ) in (5.5.15) and using (2.1.2), we have

Fi(θ) ≤
∑

1≤i′≤N
yi′∈C(yi,θ)

Wi′ ≤ cd |C (yi, θ)| ≤ cd θ
d.

This with |Fi(π)| ≤ 1 and (5.5.16) gives, using d− κ− 1 < −1,

fi ≤ π−κ + cd,κ

∫ π

π
20L

θd−κ−1 dθ = Od,κ
(
Lκ−d

)
,

which together with (5.5.14) gives I∗N,2 ≤ cd,κ L
d−κ ∑N

i=1 Wi L
κ−d = cd,κ. Equation

(5.5.12) now gives the desired result.

Lemmas 2.6.5 and 5.5.3 imply the following estimate for the L2-error between

filtered approximation and filtered hyperinterpolation.

Lemma 5.5.4. With the assumptions of Theorem 5.3.3,∥∥VL,H(f)− V d
L,H,N(f)

∥∥
L2(Sd)

≤ c L−(s− d
2
−ε) ‖f‖Hs(Sd), (5.5.17)

where the constant c depends only on d, s, ε, H and κ.

Proof. For f ∈ Hs(Sd), we can write f(x) =
(
f,K(s)(· · x)

)
Hs(Sd)

, giving

VL,H(f)(y) =

∫
Sd

(
f,K(s)(· · x)

)
Hs(Sd)

vL,H(x · y) dσd(x),

V d
L,H,N(f)(y) =

N∑
i=1

Wi

(
f,K(s)(· · yi)

)
Hs(Sd)

vL,H(yi · y),
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and hence

VL,H(f)(y)− V d
L,H,N(f)(y)

=

(
f,

∫
Sd
K(s)(· · x)vL,H(x · y) dσd(x)−

N∑
i=1

Wi K
(s)(· · yi) vL,H(yi · y)

)
Hs(Sd)

.

Applying the Cauchy-Schwarz inequality, we obtain∣∣VL,H(f)(y)− V d
L,H,N(f)(y)

∣∣ ≤ ‖f‖Hs(Sd) Bs,L,H,N(y), (5.5.18)

where

Bs,L,H,N(y) :=
∥∥∥∫

Sd
K(s)(· ·x)vL,H(x ·y)dσd(x)−

N∑
i=1

WiK
(s)(· ·yi)vL,H(yi ·y)

∥∥∥
Hs(Sd)

.

Hence using reproducing kernel property, see (2.4.3),∣∣Bs,L,H,N(y)
∣∣2 =

∫
Sd

∫
Sd
K(s)(x′ · x) vL,H(x · y) vL,H(x′ · y) dσd(x) dσd(x

′)

− 2

∫
Sd

N∑
i=1

Wi K
(s)(yi · x) vL,H(x · y) vL,H(yi · y) dσd(x)

+
N∑
i=1

N∑
i′=1

WiWi′ K
(s)(yi · yi′) vL,H(yi · y) vL,H(yi′ · y).

This together with Proposition 5.2.1 gives∫
Sd

∣∣Bs,L,H,N(y)
∣∣2 dσd(y) =

∫
Sd

∫
Sd
K(s)(x′ · x) vL,H2(x · x′) dσd(x) dσd(x

′)

− 2

∫
Sd

N∑
i=1

Wi K
(s)(yi · x) vL,H2(x · yi) dσd(x)

+
N∑
i=1

N∑
i′=1

WiWi′ K
(s)(yi · yi′) vL,H2(yi · yi′).

(5.5.19)

Applying Lemma 2.6.5 to the two integrals of (5.5.19) gives∫
Sd

∣∣Bs,L,H,N(y)
∣∣2 dσd(y)

= v
(2s)

L,H2(1)− 2
N∑
i=1

Wi v
(2s)

L,H2(1) +
N∑
i=1

N∑
i′=1

WiWi′ K
(s)(yi · yi′) vL,H2(yi · yi′)

=
N∑
i=1

N∑
i′=1

WiWi′ K
(s)(yi · yi′) vL,H2(yi · yi′)− v(2s)

L,H2(1), (5.5.20)
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where v
(2s)

L,H2(yi · yi′) is given by (2.6.8) and the second equality used
∑N

i=1Wi = 1.

Let K
(s)
L (x · y) :=

∑L
`=0 b

(−2s)
` Z(d, `) P

(d+1)
` (x · y) be the first (L + 1)-term

truncation of K(s)(x · y). Then K
(s)
L (x · y) is a polynomial of degree L and the

remainder is

K(s)(x · y)−K(s)
L (x · y) =

∞∑
`=L+1

b
(−2s)
` Z(d, `) P

(d+1)
` (x · y).

Since the filtered kernel vL,H2(yi·yi′) is a polynomial of yi (and also yi′) of degree

up to 2L− 1 and the discretisation quadrature rule QN is exact for polynomials of

degree up to 3L− 1,

N∑
i=1

N∑
i′=1

WiWi′K
(s)
L (yi·yi′)vL,H2(yi·yi′) =

∫
Sd

∫
Sd
K

(s)
L (y′·y)vL,H2(y′·y)dσd(y)dσd(y

′).

We can hence rewrite (5.5.20) as∫
Sd

∣∣Bs,L,H,N(y)
∣∣2 dσd(y)

=
N∑
i=1

N∑
i′=1

WiWi′

(
K(s)(yi · yi′)−K(s)

L (yi · yi′)
)
vL,H2(yi · yi′)

−
∫
Sd

∫
Sd

(
K(s)(y′ · y)−K(s)

L (y′ · y)
)
vL,H2(y′ · y) dσd(y) dσd(y

′),

=: S1 − S2, (5.5.21)

where we used Lemma 2.6.5 again. Applying Lemma 5.5.3 with s′ = s− d
2
− ε > 0,

A` = b
(−2s)
` and g = H2 gives

S1 = O
(
L−2(s− d

2
−ε)
)
, (5.5.22)

where the constant in the big O depends only on d, s, ε,H and κ. Applying (2.2.2),

S2 becomes

S2 =
2L−1∑
`=L+1

H
( `
L

)2

b
(−2s)
` Z(d, `) ≤

2L−1∑
`=L+1

b
(−2s)
` Z(d, `) ≤ cd,s L

−(2s−d),

where the last inequality used (2.1.3) and (2.3.1). This with (5.5.22) and (5.5.21)

gives

‖Bs,L,H,N‖2
L2(Sd) =

∫
Sd

∣∣Bs,L,H,N(y)
∣∣2 dσd(y) = Od,s,ε,H,κ

(
L−2(s− d

2
−ε)
)
. (5.5.23)

Taking the L2-norm of both sides of (5.5.18) and by (5.5.23), we arrive at (5.5.17).
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Proof of Theorem 5.3.3. For f ∈ Hs(Sd) with s > d/2, by Corollary 5.2.7 and

Lemma 5.5.4∥∥f − V d
L,H,N(f)

∥∥
L2(Sd)

≤
∥∥f − VL,H(f)

∥∥
L2(Sd)

+
∥∥VL,H(f)− V d

L,H,N(f)
∥∥
L2(Sd)

≤ c L−s‖f‖Hs(Sd) + c L−(s−d/2−ε)‖f‖Hs(Sd),

thus completing the proof.
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Cărţii de ştiinţă, Cluj-Napoca, 2006, pp. 195–204.

[22] W. Freeden, T. Gervens and M. Schreiner, Constructive approximation on the

sphere with applications to geomathematics, Numer. Math. Sci. Comput., The

Clarendon Press, Oxford University Press, New York, 1998.

[23] W. Freeden and C. Mayer, Wavelets generated by layer potentials, Appl. Com-

put. Harmon. Anal., 14 (2003), pp. 195–237.

[24] W. Freeden and M. Schreiner, Orthogonal and non-orthogonal multiresolution

analysis, scale discrete and exact fully discrete wavelet transform on the sphere,

Constr. Approx., 14 (1998), pp. 493–515.

[25] W. Freeden and U. Windheuser, Combined spherical harmonic and wave-

let expansion—a future concept in Earth’s gravitational determination, Appl.

Comput. Harmon. Anal., 4 (1997), pp. 1–37.

[26] W. Freeden, Multiscale modelling of spaceborne geodata, B. G. Teubner, Stut-

tgart, 1999.

[27] C. L. Frenzen and R. Wong, A uniform asymptotic expansion of the Jacobi

polynomials with error bounds, Canad. J. Math., 37 (1985), pp. 979–1007.

[28] G. Gasper, Banach algebras for Jacobi series and positivity of a kernel, Ann.

of Math. (2), 95 (1972), pp. 261–280.

[29] G. Gasper, Positivity and the convolution structure for Jacobi series, Ann. of

Math. (2), 93 (1971), pp. 112–118.

[30] C. Gerhards, A combination of downward continuation and local approxima-

tion for harmonic potentials, Inverse Problems, 30 (2014), pp. 085004, 30.

[31] K. Hesse, A lower bound for the worst-case cubature error on spheres of ar-

bitrary dimension, Numer. Math., 103 (2006), pp. 413–433.

[32] K. Hesse and I. H. Sloan, Cubature over the sphere S2 in Sobolev spaces of

arbitrary order, J. Approx. Theory, 141 (2006), pp. 118–133.



126 Bibliography

[33] K. Hesse, I. H. Sloan and R. S. Womersley, Numerical integration on the

sphere, in Handbook of Geomathematics, Springer, 2010, pp. 1185–1219.

[34] E. Hille and G. Klein, Riemann’s localization theorem for Fourier series, Duke

Math. J., 21 (1954), pp. 587–591.

[35] K. Ivanov and P. Petrushev, Fast memory efficient evaluation of spherical

polynomials at scattered points, Adv. Comput. Math., 41 (2015), pp. 191–230.

[36] K. Ivanov, P. Petrushev and Y. Xu, Sub-exponentially localized kernels and

frames induced by orthogonal expansions, Math. Z., 264 (2010), pp. 361–397.

[37] A. I. Kamzolov, The best approximation of classes of functions Wα
p (Sn) by

polynomials in spherical harmonics, Mat. Zametki, 32 (1982), pp. 285–293,

425.

[38] Z. Khalid, R. Kennedy, S. Durrani, P. Sadeghi, Y. Wiaux and J. McEwen,

Fast directional spatially localized spherical harmonic transform, IEEE Trans.

Signal Process., 61 (2013), pp. 2192–2203.

[39] T. Koornwinder, Jacobi polynomials. II. An analytic proof of the product for-

mula, SIAM J. Math. Anal., 5 (1974), pp. 125–137.

[40] D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Power Spectra and WMAP-derived Parameters, Astrophys. J.

Supplement, 192 (2011), pp. 16.

[41] Q. T. Le Gia and H. N. Mhaskar, Localized linear polynomial operators and

quadrature formulas on the sphere, SIAM J. Numer. Anal., 47 (2008), pp. 440–

466.

[42] Q. T. Le Gia, I. H. Sloan and H. Wendland, Multiscale analysis in Sobolev

spaces on the sphere, SIAM J. Numer. Anal., 48 (2010), pp. 2065–2090.

[43] D. Marinucci et al., Spherical needlets for cosmic microwave background data

analysis, Mon. Not. R. Astron. Soc., 383 (2008), pp. 539–545.

[44] D. Marinucci and G. Peccati, Random fields on the sphere. Representation,

limit theorems and cosmological applications, London Math. Soc. Lecture Note

Ser. 389, Cambridge University Press, Cambridge, 2011.



Bibliography 127

[45] H. N. Mhaskar, On the representation of smooth functions on the sphere using

finitely many bits, Appl. Comput. Harmon. Anal., 18 (2005), pp. 215–233.

[46] H. N. Mhaskar, Polynomial operators and local smoothness classes on the unit

interval, J. Approx. Theory, 131 (2004), pp. 243–267.

[47] H. N. Mhaskar, Weighted quadrature formulas and approximation by zonal

function networks on the sphere, J. Complexity, 22 (2006), pp. 348–370.

[48] H. N. Mhaskar and J. Prestin, Polynomial operators for spectral approximation

of piecewise analytic functions, Appl. Comput. Harmon. Anal., 26 (2009),

pp. 121–142.

[49] H. N. Mhaskar, F. J. Narcowich, J. Prestin and J. D. Ward, Lp Bernstein

estimates and approximation by spherical basis functions, Math. Comp., 79

(2010), pp. 1647–1679.

[50] C. Müller, Spherical harmonics, Lecture Notes in Math. 17, Springer-Verlag,

Berlin-New York, 1966.

[51] F. Narcowich, P. Petrushev and J. Ward, Decomposition of Besov and Triebel-

Lizorkin spaces on the sphere, J. Funct. Anal., 238 (2006), pp. 530–564.

[52] F. J. Narcowich, P. Petrushev and J. D. Ward, Localized tight frames on

spheres, SIAM J. Math. Anal., 38 (2006), pp. 574–594.

[53] F. J. Narcowich and J. D. Ward, Scattered data interpolation on spheres:

error estimates and locally supported basis functions, SIAM J. Math. Anal.,

33 (2002), pp. 1393–1410.

[54] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Re-

lease 1.0.9 of 2014-08-29, Online companion to [55].

[55] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, eds., NIST

Handbook of Mathematical Functions, Print companion to [54], New York, NY:

Cambridge University Press, 2010.

[56] P. Petrushev and Y. Xu, Localized polynomial frames on the ball, Constr.

Approx., 27 (2008), pp. 121–148.



128 Bibliography

[57] P. Petrushev and Y. Xu, Localized polynomial frames on the interval with

Jacobi weights, J. Fourier Anal. Appl., 11 (2005), pp. 557–575.

[58] D. Pietrobon, A. Amblard, A. Balbi, P. Cabella, A. Cooray and D. Marinucci,

Needlet detection of features in the WMAP CMB sky and the impact on aniso-

tropies and hemispherical asymmetries, Phys. Rev. D, 78 (2008), pp. 103504.

[59] M. A. Pinsky, Pointwise Fourier inversion and related eigenfunction expan-

sions, Comm. Pure Appl. Math., 47 (1994), pp. 653–681.

[60] M. A. Pinsky, Pointwise Fourier inversion in several variables, Notices Amer.

Math. Soc., 42 (1995), pp. 330–334.

[61] M. A. Pinsky and M. E. Taylor, Pointwise Fourier inversion: a wave equation

approach, J. Fourier Anal. Appl., 3 (1997), pp. 647–703.

[62] M. Reimer, Hyperinterpolation on the sphere at the minimal projection order,

J. Approx. Theory, 104 (2000), pp. 272–286.

[63] W. Rudin, Principles of mathematical analysis, Third Edition, McGraw-Hill

Book Co., New York-Auckland-Düsseldorf, 1976.

[64] K. P. Rustamov, On the approximation of functions on a sphere, Izv. Ross.

Akad. Nauk Ser. Mat., 57 (1993), pp. 127–148 (in Russia), Russian Acad. Sci.

Izv. Math., 43 (1994), pp. 311–329 (in English).

[65] F. J. Simons, F. A. Dahlen and M. A. Wieczorek, Spatiospectral concentration

on a sphere, SIAM Rev., 48 (2006), pp. 504–536.

[66] F. J. Simons, I. Loris, E. Brevdo and I. C. Daubechies, Wavelets and wavelet-

like transforms on the sphere and their application to geophysical data inver-

sion, Proc. of SPIE, 81380X (2011), pp. 1–15.

[67] I. H. Sloan, Polynomial approximation on spheres—generalizing de la Vallée-

Poussin, Comput. Methods Appl. Math., 11 (2011), pp. 540–552.

[68] I. H. Sloan and R. S. Womersley, Filtered hyperinterpolation: a constructive

polynomial approximation on the sphere, Int. J. Geomath., 3 (2012), pp. 95–

117.



Bibliography 129

[69] E. M. Stein and R. Shakarchi, Fourier analysis: An introduction, Princeton

Lectures in Analysis 1, Princeton University Press, Princeton, NJ, 2003.

[70] G. Szegő, Orthogonal polynomials, Fourth Edition, Amer. Math. Soc. Colloq.

Publ. 23, AMS, Providence, R.I., 2003.

[71] M. E. Taylor, Eigenfunction expansions and the Pinsky phenomenon on com-

pact manifolds, J. Fourier Anal. Appl., 7 (2001), pp. 507–522.

[72] M. E. Taylor, Pointwise Fourier inversion on tori and other compact mani-

folds, J. Fourier Anal. Appl., 5 (1999), pp. 449–463.

[73] M. E. Taylor, The Gibbs phenomenon, the Pinsky phenomenon, and variants

for eigenfunction expansions, Comm. Partial Differential Equations, 27 (2002),

pp. 565–605.
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